
Citation: Richards, W.; Selker, J.;

Udell, C. Loom: A Modular

Open-Source Approach to Rapidly

Produce Sensor, Actuator, Datalogger

Systems. Sensors 2024, 24, 3466.

https://doi.org/10.3390/s24113466

Academic Editors: Manuel

José Cabral dos Santos Reis and

Nishu Gupta

Received: 16 April 2024

Revised: 23 May 2024

Accepted: 24 May 2024

Published: 28 May 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Loom: A Modular Open-Source Approach to Rapidly Produce
Sensor, Actuator, Datalogger Systems
William Richards, John Selker and Chet Udell *

OPEnS Lab, Oregon State University, Corvallis, OR 97330, USA; richawil@oregonstate.edu (W.R.);
john.selker@oregonstate.edu (J.S.)
* Correspondence: udellc@oregonstate.edu

Abstract: In the face of rising population, erratic climate, resource depletion, and increased exposure
to natural hazards, environmental monitoring is increasingly important. Satellite data form most of
our observations of Earth. On-the-ground observations based on in situ sensor systems are crucial for
these remote measurements to be dependable. Providing open-source options to rapidly prototype
environmental datalogging systems allows quick advancement of research and monitoring programs.
This paper introduces Loom, a development environment for low-power Arduino-programmable
microcontrollers. Loom accommodates a range of integrated components including sensors, various
datalogging formats, internet connectivity (including Wi-Fi and 4G Long Term Evolution (LTE)),
radio telemetry, timing mechanisms, debugging information, and power conservation functions.
Additionally, Loom includes unique applications for science, technology, engineering, and mathemat-
ics (STEM) education. By establishing modular, reconfigurable, and extensible functionality across
components, Loom reduces development time for prototyping new systems. Bug fixes and optimiza-
tions achieved in one project benefit all projects that use Loom, enhancing efficiency. Although not
a one-size-fits-all solution, this approach has empowered a small group of developers to support
larger multidisciplinary teams designing diverse environmental sensing applications for water, soil,
atmosphere, agriculture, environmental hazards, scientific monitoring, and education. This paper not
only outlines the system design but also discusses alternative approaches explored and key decision
points in Loom’s development.

Keywords: environmental sensing; in situ sensors; Loom; low power; low cost; Arduino; datalogging;
internet connectivity; Wi-Fi; 4G LTE; radio telemetry; power conservation; STEM education; water
monitoring; soil monitoring; atmospheric monitoring; agricultural monitoring; scientific monitoring;
open-source; real-time data; off-the-shelf sensors; microprocessors; Maker community; customizable
sensors; OPEnS; Oregon State University

1. Introduction

Research is shaped by what can be observed, and thus instrumentation. The need for
and lack of robust, automated, in situ environmental sensing methods across the spectrum
of geophysical science is well documented [1–3]. On-site automated devices remove the
need for on-site data collection by hand and provide critical ground-truth data that can
significantly complement and correct remote sensing approaches. The documentation in
pursuit of these environmental monitoring systems across several applications including
agricultural, atmospheric, hazards, and health are numerous [4–8]. A common theme that
unifies all these approaches is starting from scratch—integrating specific components ad
hoc to yield an application-specific solution. When designs are ad hoc, the time and effort
required to directly translate innovations from old designs into new ones are significant.
Innovations and discoveries can be too easily lost in literature. Additionally, an increasing
body of research promotes engaging multiple sources of knowledge such as formal science,
local communities, and Indigenous knowledge in participatory co-design, management,

Sensors 2024, 24, 3466. https://doi.org/10.3390/s24113466 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s24113466
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://doi.org/10.3390/s24113466
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24113466?type=check_update&version=1

Sensors 2024, 24, 3466 2 of 34

and maintenance of environmental monitoring technology [9–13]. We propose an open-
source, general-purpose, modular, application-inclusive approach that not only produces
data for environmental research, but applications that facilitate education and co-design of
sensor systems.

Our versatile software library and hardware management system, called Loom (https:
//doi.org/10.5281/zenodo.11318101, accessed 23 May 2024), sets itself apart from many
commercial dataloggers in four major ways. By using off-the-shelf hobbyist electronics, the
overall cost required to build and deploy dataloggers is reduced. The modular nature of
Loom also provides many opportunities for customization and reconfiguration. Including
support for actuators enables devices to mechanically respond to the environment, like
turning on a sprinkler. Finally, support for Max8 from Cycling’74, a graphical real-time
programming environment, enables interactive sensor activities for education and training.

Loom is a framework designed to significantly decrease the amount of time and effort
to prototype new environmental monitoring systems, collect data, and interact with sensor-
responsive controls. The systems we focus on all utilize some subset of the following typical
components: sensors, actuators, radio communication (telemetry), media for data storage,
internet connectivity, timing mechanisms, power management, and debugging. All this
functionality is combined and deployed on a small low-memory low-power microcontroller.

Most individual hardware components that are integrated into Loom have example
code and application notes from the manufacturer. The manufacturer notes and documen-
tation are written by engineers for engineers. It takes training and experience for users to
navigate and apply this documentation effectively. A typical approach is to start with these
individual resources and integrate components one by one, testing for functionality with
each step, until the complete prototype is produced.

One key aspect reducing the time between concept to completion of new prototypes
is the extensive programming effort required to integrate each component yourself. This
can also pose a barrier to those possessing other relevant skills like electronics, mechanical
engineering, and environmental science to modify or produce their own systems who
require specialized programming assistance. Instead, what if every component for each
project was modularized into a reconfigurable framework? One that required only minimal
programming experience to use. Only the novel components unique to new projects would
need to be developed from scratch and modularized. Every subsequent project becomes
potentially faster to prototype as more options become available to draw from.

There are increasing numbers of both commercial and open-source environmental
monitoring solutions. Many systems such as EnviroDIY/ModularSensors [14], Open
Source Building Science Sensors (OSBSS) [15], and the CR-family of devices from Campbell
Scientific [16] can provide real-time online data access to anyone around the world with
an internet connection. Real-time data are important for several reasons. They enable
users to stay up to date on the status of the environment, provide feedback and warning
signals for major events, automate internet-connected services, and help technicians assess
maintenance and functionality of the sensing systems without traveling to remote field
sites to inspect by hand. These datalogging systems also have the potential to significantly
increase the accessibility of important monitoring and educational tools for historically
underserved and marginalized communities alike, leading to more robust and sustainable
citizen science efforts, representation of traditional ecological knowledge in academic
research, and broader exposure of science practices and instrumentation to more diverse
future-career scientists [17].

The benefits of Loom over other open-source solutions arise when examining how
sensors are commonly integrated with commercial dataloggers. For example, the CR1000x
Campbell Scientific datalogger supports various common protocols (see list in reference;
however, the implementation for a given sensor is left up to the user to create themselves.
The datalogger requires that the complete sampling loop be written in Campble Scientific’s
proprietary language, CRBasic [18]. This approach, while versatile, is restrictive, and
significant initial effort is required to simply read data from a given sensor. Loom, on

https://doi.org/10.5281/zenodo.11318101
https://doi.org/10.5281/zenodo.11318101

Sensors 2024, 24, 3466 3 of 34

the other hand, utilizes Arduino, a self-described “easy-to-use software and hardware
package” [19]; the predefined implementation for each sensor within the framework allows
users to upload their code and expect it to work as-is. Additionally, the open-source nature
of the system allows anyone to integrate a new sensor at any point to improve the overall
user experience for everyone.

Loom was started in 2016 shortly after the establishment of the Openly Published
Environmental Sensing Lab (OPEnS) at Oregon State University. The mission of OPEnS
is to provide tools and engineering expertise to researchers in environmental science
to overcome limitations in research through new open-source instrumentation. A cur-
sory survey of open-source environmental sensor design yielded three major approaches:
(A) starting from scratch as described above; (B) adopting existing open-source platforms
like EnviroDIY, which are tailored towards specific applications; or (C) commercial systems
like Campbell Scientific, which were not open-source or extensible by design. Other open
sensor platforms like Seeed Studio [20] and DFRobot [21] were not as optimized for our
low-power environmental sensing requirements at the time.

The OPEnS lab would eventually need to serve over a dozen monitoring initiatives
across a variety of applications such as agriculture, water quality, hazard detection, and
facilitating educational sensor workshops for professionals and students. Furthermore,
funding for student design staff was limited. Loom is structured for a small team of pro-
grammers who support constellations of larger multidisciplinary teams focused on tackling
unique electrical and mechanical challenges specific to each project. This has proven to be
more efficient than hiring a team of programmers for each project working independently
from each other. While our approach may seem typical from the perspective of industry,
this model was not as obvious for our small university lab needing to significantly scale
from a few ad hoc projects. A range of low-power, low-cost, modular integrations of both
off-the-shelf and custom peripherals, including sensors, actuators, datalogging formats,
internet connectivity (including Wi-Fi and 4G LTE), radio telemetry, timing, debugging,
and power conservation hardware, have been developed over six years across fourteen
different environmental sensor applications. This approach has proven effective for our
needs and sharing these methods could be beneficial for the broader community.

The main objectives of this paper are as follows:

• Detail our methods and highlight strengths and weaknesses of this approach.
• Provide context for why a modular approach to software and hardware facilitates

rapid prototyping of new systems.
• Demonstrate the versatility of Loom to accommodate various contrasting applications

without substantial modification to the system itself.
• Demonstrate usability of Loom through examples of systems created by undergraduate

design students.
• Highlight unique aspects of this system compared to existing solutions (e.g., actuator

control, STEM education applications, user-friendly error logging, modularity).
• Present some novel applications that engage students and the public with environ-

mental data activities for education and co-design.

For convenience, a list of non-standard words in addition to all acronyms and their
expanded form are provided in Table A6.

2. Materials and Methods

The Loom framework is modular, grouping functionally similar building blocks
together. Each of the functional groups can be represented as a stage in a data pipeline
in Figure 1. The first stage is the Data Acquisition stage. In this stage, the device has two
configurations. The device can be configured to read data from various sensors attached to
the device and pass these data to the next stage. Or it can be configured as a hub in which
case it will relay sensor data transmitted from other devices via radio and pass along to
the next stage. The next stage, Collection and Processing, formats raw sensor data into a
JavaScript Object Notation (JSON) [22] document. If actuators are present, this is also the

Sensors 2024, 24, 3466 4 of 34

stage at which they would be set to new physical states. Then, the Data Logging/Transfer
stage either stores data locally or transmits data over the internet/radio to a long-term
storage location. Finally, the Long-Term Storage (output) stage represents the collected
data logged to a database, file, or other non-volatile storage where further data analysis
can begin. Since Loom follows this generic workflow, it is applicable to many different
projects. As such, Loom undergoes extensive and diverse reliability testing. When bugs
arise, we can quickly find and resolve them for all projects at once. Each of the sections
below highlights a specific building block of Loom. They all work together to create the
overall structure that provides Loom with its flexibility.

Sensors 2024, 24, x FOR PEER REVIEW 4 of 34

to the device and pass these data to the next stage. Or it can be configured as a hub in
which case it will relay sensor data transmitted from other devices via radio and pass
along to the next stage. The next stage, Collection and Processing, formats raw sensor data
into a JavaScript Object Notation (JSON) [22] document. If actuators are present, this is
also the stage at which they would be set to new physical states. Then, the Data Log-
ging/Transfer stage either stores data locally or transmits data over the internet/radio to a
long-term storage location. Finally, the Long-Term Storage (output) stage represents the
collected data logged to a database, file, or other non-volatile storage where further data
analysis can begin. Since Loom follows this generic workflow, it is applicable to many
different projects. As such, Loom undergoes extensive and diverse reliability testing.
When bugs arise, we can quickly find and resolve them for all projects at once. Each of the
sections below highlights a specific building block of Loom. They all work together to
create the overall structure that provides Loom with its flexibility.

.

Figure 1. High-level overview of the data path Loom utilizes to collect, transmit, and store data.
Each component of Loom can be categorized into one of the 4 stages above.

3. Hardware
The hardware of the Loom architecture is built on the Adafruit Feather M0 family

[23]. The Feather M0 is equipped with the SAMD21 microprocessor [24]. SAMD is the
manufacturer’s design name for their general-purpose microcontroller. This low-cost mi-
crocontroller collection has several key advantages that make it well suited to our appli-
cation. The Feather family comprises a variety of peripherals paired with a microproces-
sor, each providing functionality, including Long-Range, Low-Power Wide Area Network
(LoRa) Radio [25], Wi-Fi [26], Bluetooth [27], and SD logging in the form of the Adalogger
[28]. These configurations are provided on a formfactor called “Feather,” which has a di-
mension of 0.9″ × 2.0″ with 0.1″ holes at each corner (shown in Figure 2), a 16-pin header
row spaced 0.8 inches away from a 12-pin header row, and a consistent pinout configura-
tion enabling easier swapping across different boards adhering to the same layout [29].
This specification has increased in popularity, even being adopted by other high-profile
companies in the community including Particle.io and SparkFun (Boulder, CO, USA). The
significant advantage is that any product adhering to this formfactor and pin connection
configuration reduces the development overhead to integrate with the Loom system and
vice versa.

Figure 1. High-level overview of the data path Loom utilizes to collect, transmit, and store data. Each
component of Loom can be categorized into one of the 4 stages above.

3. Hardware

The hardware of the Loom architecture is built on the Adafruit Feather M0 fam-
ily [23]. The Feather M0 is equipped with the SAMD21 microprocessor [24]. SAMD is the
manufacturer’s design name for their general-purpose microcontroller. This low-cost micro-
controller collection has several key advantages that make it well suited to our application.
The Feather family comprises a variety of peripherals paired with a microprocessor, each
providing functionality, including Long-Range, Low-Power Wide Area Network (LoRa)
Radio [25], Wi-Fi [26], Bluetooth [27], and SD logging in the form of the Adalogger [28].
These configurations are provided on a formfactor called “Feather”, which has a dimension
of 0.9′′ × 2.0′′ with 0.1′′ holes at each corner (shown in Figure 2), a 16-pin header row
spaced 0.8 inches away from a 12-pin header row, and a consistent pinout configuration
enabling easier swapping across different boards adhering to the same layout [29]. This
specification has increased in popularity, even being adopted by other high-profile com-
panies in the community including Particle.io and SparkFun (Boulder, CO, USA). The
significant advantage is that any product adhering to this formfactor and pin connection
configuration reduces the development overhead to integrate with the Loom system and
vice versa.

Sensors 2024, 24, 3466 5 of 34

Sensors 2024, 24, x FOR PEER REVIEW 5 of 34

The choice of microprocessor useful across environmental monitoring projects neces-
sitated prioritization of energy conservation, as many sites are remote, and may not have
sunlight (e.g., forests), so the ability to run for a year on small batteries was a key design
criterion. While there are other popular and more powerful microprocessors on the
Feather formfactor like the SAMD51 (Microchip, Chandler, AZ, USA), the processor used
the Feather M4 series of boards by Adafruit (New York, NY, USA) and the ESP32 devel-
oped by Espressif Systems (Shanghai, China). We determined the SAMD21 provided a
good balance between processing power, compatibility with peripherals, and energy con-
sumption. The SAMD21 32 kB of random-access memory (RAM) and 256 kB of flash in-
creased utility over other popular Arduino-programmable chipsets including the AT-
mega32u4 (Microchip, Chandler, AZ, USA). The longstanding TI MSP430 (Texas Instru-
ments, Dallas, TX, USA) was also considered for its attractive balance between ultra-low
power consumption, high-speed processing capabilities, and industry reputation. It was
excluded from consideration primarily due to the lack of compatibility with the Arduino
Integrated Development Environment (IDE).

The Arduino IDE is prominent in the target Maker, do-it-yourself, hobbyist commu-
nity, and a preferred platform for programming and development. The synergy achieved
by combining the SAMD21 (Microchip, Chandler, AZ, USA) microcontroller, Feather fam-
ily component options, and our variety of custom Printed Circuit Boards (PCBs) has ren-
dered an extremely adaptable platform for the purposes of long-term in situ datalogging
across a variety of applications.

Figure 2. This shows the standard formfactor for all Feather M0 type boards [29], showing that all
different versions of the M0 will always be interchangeable.

Producing our own microprocessor board was also considered. The cost to develop
a custom board from scratch versus the advantages of having a company produce a gen-
eral-purpose board, maintaining and sourcing parts over time, and taking care of the extra
significant step of installing the Arduino bootloader required to program the micropro-
cessor was compared. It was decided the limited lab staff time would be better spent on
designing the project-specific aspects of the electrical and mechanical systems. Highly vol-
atile supply chain issues that occurred during the COVID-19 pandemic validated this de-
cision as we were able to still source many of these Feather M0 boards from suppliers, but
it was impossible to source our own components for a time.

3.1. Sensors
The sensing component of Loom is represented in Figure 1 by the three generic sen-

sors in the top left that are passing data into the Manager which is discussed further in
Section 4.3. Many commercial and open-source environmental monitoring systems focus
on a particular stratum of the geosphere (e.g., water quality, landslide monitoring, air

Figure 2. This shows the standard formfactor for all Feather M0 type boards [29], showing that all
different versions of the M0 will always be interchangeable.

The choice of microprocessor useful across environmental monitoring projects ne-
cessitated prioritization of energy conservation, as many sites are remote, and may not
have sunlight (e.g., forests), so the ability to run for a year on small batteries was a key
design criterion. While there are other popular and more powerful microprocessors on the
Feather formfactor like the SAMD51 (Microchip, Chandler, AZ, USA), the processor used
the Feather M4 series of boards by Adafruit (New York, NY, USA) and the ESP32 developed
by Espressif Systems (Shanghai, China). We determined the SAMD21 provided a good
balance between processing power, compatibility with peripherals, and energy consump-
tion. The SAMD21 32 kB of random-access memory (RAM) and 256 kB of flash increased
utility over other popular Arduino-programmable chipsets including the ATmega32u4
(Microchip, Chandler, AZ, USA). The longstanding TI MSP430 (Texas Instruments, Dallas,
TX, USA) was also considered for its attractive balance between ultra-low power con-
sumption, high-speed processing capabilities, and industry reputation. It was excluded
from consideration primarily due to the lack of compatibility with the Arduino Integrated
Development Environment (IDE).

The Arduino IDE is prominent in the target Maker, do-it-yourself, hobbyist community,
and a preferred platform for programming and development. The synergy achieved by
combining the SAMD21 (Microchip, Chandler, AZ, USA) microcontroller, Feather family
component options, and our variety of custom Printed Circuit Boards (PCBs) has rendered
an extremely adaptable platform for the purposes of long-term in situ datalogging across a
variety of applications.

Producing our own microprocessor board was also considered. The cost to develop a
custom board from scratch versus the advantages of having a company produce a general-
purpose board, maintaining and sourcing parts over time, and taking care of the extra
significant step of installing the Arduino bootloader required to program the microprocessor
was compared. It was decided the limited lab staff time would be better spent on designing
the project-specific aspects of the electrical and mechanical systems. Highly volatile supply
chain issues that occurred during the COVID-19 pandemic validated this decision as we
were able to still source many of these Feather M0 boards from suppliers, but it was
impossible to source our own components for a time.

3.1. Sensors

The sensing component of Loom is represented in Figure 1 by the three generic
sensors in the top left that are passing data into the Manager which is discussed further in
Section 4.3. Many commercial and open-source environmental monitoring systems focus
on a particular stratum of the geosphere (e.g., water quality, landslide monitoring, air
quality, or soil moisture). Supporting projects across many strata requires a broad selection
of sensors and supported protocols including analog devices, Inter-Integrated Circuit

Sensors 2024, 24, 3466 6 of 34

(I2C), Universal Asynchronous Receiver/Transmitter (UART), Serial Digital Interface at
1200 baud (SDI12), and Serial Peripheral Interface (SPI). The decisions as to which sensors to
include in Loom have been determined directly by the research projects for which funding
was received for development. This collection of sensors (as well as affordability, precision,
resolution, and ruggedness) is a result of circumstances unique to this lab’s region, research
faculty, expertise, grant budget, partnerships, facilities, and institutional strengths. While
this collection will not serve as a one-size-fits-all solution, many applications are supported
and are readily expandable to include other sensors. Table A1 in Appendix A contains a
full list of supported sensors to date.

3.2. Actuators

Actuators enable interaction with the physical world. Several common actuators are
supported including relays, servos, and stepper motors (shown in Figures 3–5). They
are especially useful for when something mechanical needs to be performed in response
to a sensor reading, like turning on irrigation when a soil sensor is dry or changing the
position of a solar panel in response to sunlight. Actuator shields with Feather formfactors
produced by Adafruit were chosen for ease of integration with the Feather M0 boards
including latching and non-latching power relays [30]; 8-channel/16-channel Pulse Width
Modulation (PWM) Servos [31]; and stepper and DC motors [32]. Each of the actuator
types in Loom are generic, and as such, other hardware than listed here should also be
compatible. Support for multicolored Light-Emitting Diodes (LEDs) called Neopixels [33]
are also part of the actuator module and have been used as an informative visual status
interface for some projects in the field.

Sensors 2024, 24, x FOR PEER REVIEW 6 of 34

quality, or soil moisture). Supporting projects across many strata requires a broad selec-
tion of sensors and supported protocols including analog devices, Inter-Integrated Circuit
(I2C), Universal Asynchronous Receiver/Transmitter (UART), Serial Digital Interface at
1200 baud (SDI12), and Serial Peripheral Interface (SPI). The decisions as to which sensors
to include in Loom have been determined directly by the research projects for which fund-
ing was received for development. This collection of sensors (as well as affordability, pre-
cision, resolution, and ruggedness) is a result of circumstances unique to this lab’s region,
research faculty, expertise, grant budget, partnerships, facilities, and institutional
strengths. While this collection will not serve as a one-size-fits-all solution, many applica-
tions are supported and are readily expandable to include other sensors. Table A1 in Ap-
pendix A contains a full list of supported sensors to date.

3.2. Actuators
Actuators enable interaction with the physical world. Several common actuators are

supported including relays, servos, and stepper motors (shown in Figures 3–5). They are
especially useful for when something mechanical needs to be performed in response to a
sensor reading, like turning on irrigation when a soil sensor is dry or changing the position
of a solar panel in response to sunlight. Actuator shields with Feather formfactors pro-
duced by Adafruit were chosen for ease of integration with the Feather M0 boards includ-
ing latching and non-latching power relays [30]; 8-channel/16-channel Pulse Width Mod-
ulation (PWM) Servos [31]; and stepper and DC motors [32]. Each of the actuator types in
Loom are generic, and as such, other hardware than listed here should also be compatible.
Support for multicolored Light-Emitting Diodes (LEDs) called Neopixels [33] are also part
of the actuator module and have been used as an informative visual status interface for
some projects in the field.

Figure 3. Shows a fan that can be turned on and off using a power relay shield. This is controlled
using Loom on a Wi-Fi Feather M0 connected under the relay shield.
Figure 3. Shows a fan that can be turned on and off using a power relay shield. This is controlled
using Loom on a Wi-Fi Feather M0 connected under the relay shield.

Sensors 2024, 24, 3466 7 of 34
Sensors 2024, 24, x FOR PEER REVIEW 7 of 34

Figure 4. Shows two servos connected to a servo driver controlled using Loom on a Wi-Fi Feather
M0 (connected under the servo shield).

Figure 5. Shows a stepper motor being driven by a Loom-controlled motor driver via Wi-Fi Feather
M0 (connected under the motor driver shield).

3.3. Internet Interfaces
Loom supports three main forms of internet communication: Wi-Fi, Ethernet, and 4G

LTE. Wi-Fi and Ethernet internet connectivity can be supported using off-the-shelf Ada-
fruit products. The Wi-Fi Feather M0 or Ethernet FeatherWing’s [34] are plug-and-play
and require no additional configuration on the Loom side. The SparkFun SARA-R4 [35]
(U-blox, Zurich, Switzerland) board utilized by Loom to provide LTE internet connectivity
requires some additional configuration steps to register a Subscriber Identity Module
(SIM) card with a cellular network provider. 4G LTE hardware is significantly more ex-
pensive than Wi-Fi or Ethernet but allows for a broader distribution of internet-connected

Figure 4. Shows two servos connected to a servo driver controlled using Loom on a Wi-Fi Feather
M0 (connected under the servo shield).

Sensors 2024, 24, x FOR PEER REVIEW 7 of 34

Figure 4. Shows two servos connected to a servo driver controlled using Loom on a Wi-Fi Feather
M0 (connected under the servo shield).

Figure 5. Shows a stepper motor being driven by a Loom-controlled motor driver via Wi-Fi Feather
M0 (connected under the motor driver shield).

3.3. Internet Interfaces
Loom supports three main forms of internet communication: Wi-Fi, Ethernet, and 4G

LTE. Wi-Fi and Ethernet internet connectivity can be supported using off-the-shelf Ada-
fruit products. The Wi-Fi Feather M0 or Ethernet FeatherWing’s [34] are plug-and-play
and require no additional configuration on the Loom side. The SparkFun SARA-R4 [35]
(U-blox, Zurich, Switzerland) board utilized by Loom to provide LTE internet connectivity
requires some additional configuration steps to register a Subscriber Identity Module
(SIM) card with a cellular network provider. 4G LTE hardware is significantly more ex-
pensive than Wi-Fi or Ethernet but allows for a broader distribution of internet-connected

Figure 5. Shows a stepper motor being driven by a Loom-controlled motor driver via Wi-Fi Feather
M0 (connected under the motor driver shield).

Sensors 2024, 24, 3466 8 of 34

3.3. Internet Interfaces

Loom supports three main forms of internet communication: Wi-Fi, Ethernet, and
4G LTE. Wi-Fi and Ethernet internet connectivity can be supported using off-the-shelf
Adafruit products. The Wi-Fi Feather M0 or Ethernet FeatherWing’s [34] are plug-and-play
and require no additional configuration on the Loom side. The SparkFun SARA-R4 [35]
(U-blox, Zurich, Switzerland) board utilized by Loom to provide LTE internet connectivity
requires some additional configuration steps to register a Subscriber Identity Module (SIM)
card with a cellular network provider. 4G LTE hardware is significantly more expensive
than Wi-Fi or Ethernet but allows for a broader distribution of internet-connected sensors
if there is cellular data reception in the area. Each internet interface in Loom utilizes a
NetworkComponent abstraction layer. This allows for all internet interfaces to be treated
as the same type, increasing the modularity of the system. Some, all, or none of these
interfaces may be used depending on the desired context.

It is significant to consider that in situ systems typically possess limited memory,
processing power, bandwidth, and energy resources. Devices are typically battery powered.
Various constraints challenge the feasibility of incorporating some network technologies
like 4G LTE in all end devices, primarily due to energy consumption, cost, and scalability.
Additionally, there is a lack of Ethernet, Wi-Fi, and 4G coverage in many field contexts.
Data uplinks using Iridium satellite hardware like the SparkFun RockBLOCK Mk2 [36] for
areas outside of 4G coverage have been accomplished for some projects [37], but cost has
remained a barrier to feasibly implement as an option for Loom. These internet interfaces
are one of several logging methods included in the data transfer stage in Figure 1. Telemetry
using radios to transmit data from sensors in remote locations to a hub that hosts internet
access is often used as a cost-effective approach for these situations.

3.4. Telemetry

Radio telemetry is often essential for in situ environmental monitoring [38]. It enables
monitoring systems to relay data over distances (often via radio) to a hub hosting an
internet connection. To address the challenges posed by low-power remotely deployed
devices, we explored three different classes of radio hardware and protocols.

LoRa is designed for end-devices operating with limited battery capacity and trans-
mitting only small data payloads. The SEMTECH SX127x [39] RFM 95 (Camarillo, CA,
USA) radio chip was well positioned for our usage in Loom, especially because of the RFM
95 version of the Adafruit Feather M0 product. This option is a drop-in replacement for any
preexisting system already utilizing a Feather formfactor. These radios are suited for small
low-bandwidth payloads (max data rate of 300 kbps) to be transmitted between devices
that are within a two-kilometer line-of-sight range.

Methods and circumstances to achieve two kilometers or even more range are numer-
ous [40,41], but for application in hilly, wooded, and/or rainy regions, it is best to maintain
conservative expectations of range. One such application of these radios is transmitting sen-
sor data from an endpoint device that is out of Wi-Fi or 4G range to an internet-connected
hub to relay data to the internet [42].

FreeWave (Boulder, CO, USA) radios [43], specifically the Z9 series, allow for a much
longer range (exceeding 90 km) with a significantly higher data-transfer rate than LoRa
affords, up to 4 mbps [44]. However, the price of these radios is high (around USD 500) [43].
Usage of these radios and integration with Loom has led us to determine these are a more
stable and longer-range alternative to LoRa, but the cost makes them inaccessible for many
open-source sensing projects.

Previous versions of Loom included the Nordic Semiconductor (Trondheim, Norway)
NRF24L01+ [45] radio, which supports a higher 2.4 GHz bandwidth (250 kbps, 1 Mbps,
and 2 Mbps), but a significantly shorter range (up to 800 m achieved under ideal conditions
with a power amplifier). However, support for them has not yet been ported over into the
newest version of Loom due to the priority of telemetry range over the data bandwidth [46].

Sensors 2024, 24, 3466 9 of 34

Code from previous versions of Loom exists and reintegrating these radios is a viable
option should the need for more bandwidth over shorter ranges arise.

3.5. Shields

In the Maker community, a shield refers to a plug-and-play PCB that serves as an
extension to a host microprocessor board to interface with other peripherals. These PCB
interfaces resemble shields and have been named thusly. They adhere to standardized
formfactors of the microprocessor boards they adapt with (e.g., Feather), enabling Makers to
extend their projects more easily with an array of functionalities like communication, motor
control, display interfaces, amplifiers, sensors, and more—without requiring expertise in
circuit design or soldering. The embrace of shields by enthusiasts and the open-source
nature they embody have been catalysts for collaboration and further innovation, within
the Maker community. In addition to commercial off-the-shelf shields, there are many
custom shields designed by Makers to meet needs in the community that are not met
by manufacturers. One significant custom Loom shield, Hypnos [47], was a result of
identifying several core functionalities essential to environmental sensing and abstracting
those into a single shield to drop into all projects.

3.6. Hypnos

The Hypnos [47] is an SD-card logger, Real-Time Clock (RTC) and power-management
solution in one easy-to-use shield (as seen in Figure 6). These three features are a necessity
for most environmental sensing applications. Having a cost-effective solution such as
Hypnos makes it extremely easy to mass-produce these shields for all the projects across
our lab. A comprehensive explanation of the design and build instructions can be found in
the cited HardwareX article.

Sensors 2024, 24, x FOR PEER REVIEW 9 of 34

motor control, display interfaces, amplifiers, sensors, and more—without requiring ex-
pertise in circuit design or soldering. The embrace of shields by enthusiasts and the open-
source nature they embody have been catalysts for collaboration and further innovation,
within the Maker community. In addition to commercial off-the-shelf shields, there are
many custom shields designed by Makers to meet needs in the community that are not
met by manufacturers. One significant custom Loom shield, Hypnos [47], was a result of
identifying several core functionalities essential to environmental sensing and abstracting
those into a single shield to drop into all projects.

3.6. Hypnos
The Hypnos [47] is an SD-card logger, Real-Time Clock (RTC) and power-manage-

ment solution in one easy-to-use shield (as seen in Figure 6). These three features are a
necessity for most environmental sensing applications. Having a cost-effective solution
such as Hypnos makes it extremely easy to mass-produce these shields for all the projects
across our lab. A comprehensive explanation of the design and build instructions can be
found in the cited HardwareX article.

Figure 6. This figure shows the current version of the Hypnos board.

3.7. I2C Multiplexer (TCA9548)
Loom supports the TCA9548 (Texas Instruments, Dallas, TX, USA) multiplexer

(breakout board shown in Figure 7). This allows up to eight of the same or different I2C
sensors to be used at one time. It also enables automatic detection and “hot swapping”
(e.g., dynamically swapping out components mid-operation) of sensors. When the Loom
I2C multiplexer software component is used, each time a measure call is made, the list of
possible I2C sensors will be queried and refreshed. If a new sensor is detected, it will be
initialized at run time. This hot swapping feature has been useful for interactive workshop
environments because many different sensors can be connected and experimented with
on-the-fly without having to reprogram or restart the device or crashing the I2C bus due
to not-acknowledgements from removed sensors.

Figure 6. This figure shows the current version of the Hypnos board.

3.7. I2C Multiplexer (TCA9548)

Loom supports the TCA9548 (Texas Instruments, Dallas, TX, USA) multiplexer (break-
out board shown in Figure 7). This allows up to eight of the same or different I2C sen-
sors to be used at one time. It also enables automatic detection and “hot swapping”
(e.g., dynamically swapping out components mid-operation) of sensors. When the Loom
I2C multiplexer software component is used, each time a measure call is made, the list of
possible I2C sensors will be queried and refreshed. If a new sensor is detected, it will be
initialized at run time. This hot swapping feature has been useful for interactive workshop

Sensors 2024, 24, 3466 10 of 34

environments because many different sensors can be connected and experimented with
on-the-fly without having to reprogram or restart the device or crashing the I2C bus due to
not-acknowledgements from removed sensors.

Sensors 2024, 24, x FOR PEER REVIEW 10 of 34

Figure 7. This figure shows the Loom custom shield for the TCA9548 with various I2C sensors in-
cluding (left to right) SHT31 Temperature and Humidity, SparkFun ZX gesture (red), TSL2591 lux,
Maxbotix sonar distance. See Table A1 for list of supported sensors.

3.8. Project-Specific Breakout Boards
For specific environmental sensor projects using Loom, the FeatherM0 and Hypnos

boards are typically stacked together onto another custom PCB specifically designed for
each project. This PCB routes the hardware connections Loom requires to interact with
project-specific hardware peripherals. For example, the SmartRock [48] is a low-cost sub-
mersible sensor suite that monitors water depth, temperature, turbidity, and electrical
conductivity of streams over time. Also known as a Sonde in the environmental and hy-
drological communities, these devices take the form of probes that are installed in water,
which require a cable connection to a logging gauge on the surface. Alternatively, the
SmartRock is designed for all components to be integrated underwater. This would miti-
gate common issues including vandalism of the gauge on the surface and connecting
wires getting snagged or severed by branches and other floating debris. Figure 8 below
illustrates the custom SmartRock PCB with project-specific components and connectors,
including female headers adhering to the Feather formfactor convention to receive the
Feather M0/Hypnos stack. More projects are described in the Section 5 below.

Figure 7. This figure shows the Loom custom shield for the TCA9548 with various I2C sensors
including (left to right) SHT31 Temperature and Humidity, SparkFun ZX gesture (red), TSL2591 lux,
Maxbotix sonar distance. See Table A1 for list of supported sensors.

3.8. Project-Specific Breakout Boards

For specific environmental sensor projects using Loom, the FeatherM0 and Hypnos
boards are typically stacked together onto another custom PCB specifically designed for
each project. This PCB routes the hardware connections Loom requires to interact with
project-specific hardware peripherals. For example, the SmartRock [48] is a low-cost
submersible sensor suite that monitors water depth, temperature, turbidity, and electrical
conductivity of streams over time. Also known as a Sonde in the environmental and
hydrological communities, these devices take the form of probes that are installed in
water, which require a cable connection to a logging gauge on the surface. Alternatively,
the SmartRock is designed for all components to be integrated underwater. This would
mitigate common issues including vandalism of the gauge on the surface and connecting
wires getting snagged or severed by branches and other floating debris. Figure 8 below
illustrates the custom SmartRock PCB with project-specific components and connectors,
including female headers adhering to the Feather formfactor convention to receive the
Feather M0/Hypnos stack. More projects are described in the Section 5 below.

Sensors 2024, 24, 3466 11 of 34
Sensors 2024, 24, x FOR PEER REVIEW 11 of 34

Figure 8. This shows the SmartRock expansion board.

3.9. Course Shields
Specific configurations of the Loom system have been used in formal college courses

and informal STEM education workshops. Course shields facilitate little-to-no assembly
of the hardware for these students, enabling class activities to focus on key applied con-
cepts more rapidly.

The Wattson (shown in Figure 9) connects a Feather M0 with Wi-Fi to an MPU6050
(InvenSense, San Jose, CA, USA) 3-axis accelerometer and 3-axis gyroscope for motion
tracking, as well as three general purpose ports, a push button, and a switch. The general-
purpose ports can be set as a combination of analog input, digital input, digital output, or
Red, Green, and Blue (RGB) LED output. Pads for optional resistors are also on each port
for adapting some sensors into a voltage divider circuit. The Wi-Fi interface provides wire-
less access to the real-time sensor data that can either be streamed to computer applica-
tions or uploaded to MongoDB cloud database. The shield has been used in an honors
College Colloquium (Making Enchanted Objects), and a cross-listed College of Liberal
Arts class (Sensor Technologies and the Arts).

Figure 8. This shows the SmartRock expansion board.

3.9. Course Shields

Specific configurations of the Loom system have been used in formal college courses
and informal STEM education workshops. Course shields facilitate little-to-no assembly of
the hardware for these students, enabling class activities to focus on key applied concepts
more rapidly.

The Wattson (shown in Figure 9) connects a Feather M0 with Wi-Fi to an MPU6050
(InvenSense, San Jose, CA, USA) 3-axis accelerometer and 3-axis gyroscope for motion
tracking, as well as three general purpose ports, a push button, and a switch. The general-
purpose ports can be set as a combination of analog input, digital input, digital output, or
Red, Green, and Blue (RGB) LED output. Pads for optional resistors are also on each port for
adapting some sensors into a voltage divider circuit. The Wi-Fi interface provides wireless
access to the real-time sensor data that can either be streamed to computer applications
or uploaded to MongoDB cloud database. The shield has been used in an honors College

Sensors 2024, 24, 3466 12 of 34

Colloquium (Making Enchanted Objects), and a cross-listed College of Liberal Arts class
(Sensor Technologies and the Arts).

Sensors 2024, 24, x FOR PEER REVIEW 12 of 34

Figure 9. This shows the Wattson shield with MPU gyro and various other peripherals.

The BEE222 shield (as seen in Figure 10) is named after the introductory course for
environmental sensing and adapts an Adalogger M0 containing an SD card data storage
slot to three general purpose ports like the Wattson shield, 4-pin I2C sensor port, software
serial port for a thermocouple amplifier, a push button, and a switch. This shield has been
swapped onto an M0-WiFi Feather to enable online datalogging and connectivity. Plug-
ging this M0-shield stack into a Feather Doubler enables students to connect a variety of
other Feather-footprint devices such as a relay for turning devices on and off, motor con-
trollers, and a DS3231 (Analog Devices, Wilmington, MA, USA) RTC to time samples and
manage low-power sleep periods.

Figure 9. This shows the Wattson shield with MPU gyro and various other peripherals.

The BEE222 shield (as seen in Figure 10) is named after the introductory course for
environmental sensing and adapts an Adalogger M0 containing an SD card data storage
slot to three general purpose ports like the Wattson shield, 4-pin I2C sensor port, software
serial port for a thermocouple amplifier, a push button, and a switch. This shield has been
swapped onto an M0-WiFi Feather to enable online datalogging and connectivity. Plugging
this M0-shield stack into a Feather Doubler enables students to connect a variety of other
Feather-footprint devices such as a relay for turning devices on and off, motor controllers,
and a DS3231 (Analog Devices, Wilmington, MA, USA) RTC to time samples and manage
low-power sleep periods.

Sensors 2024, 24, 3466 13 of 34
Sensors 2024, 24, x FOR PEER REVIEW 13 of 34

Figure 10. This figure shows the Loom-supported BEE222 shield which is used as a learning tool in
courses at Oregon State University. The connectors labeled A0, A1, and A2 are connected to the pins
on the microcontroller with the corresponding names. The same can be said for the switch and but-
ton labeled P5 and P6, respectively.

4. Software
Many open-source Arduino-compatible libraries that help simplify sensor prototyp-

ing exist. The closest in terms of functionality and scope is the ModularSensors library by
EnviroDIY (Stroud Water Research Center, Avondale, PA, USA). Further comparative
analysis of these systems will be discussed in Section 4. One key difference with Loom is
the abstraction and modularization of similar workflows in environmental sensing sys-
tems. Loom is a modular framework, not a static algorithm. The user determines which
components to include or leave out. They also determine when and how certain functions
are performed. Even across a wide variety of applications, it is typical to follow a similar
procedure in in situ environmental sensing.

Devices, when first powered on, will initialize all attached sensors, and run all first-
time setup code. They will then enter the main software loop consisting of measuring data
from sensors, taking the measured data and formatting it in a parsable format such as a
comma-separated values (CSV) file or a JSON-formatted document. Sometimes an actua-
tor will need to be set depending on the value of the sensors, like turning on a water sprin-
kler if a soil moisture sensor registers too low. They will log the formatted data to some
medium like an SD card and/or publish remotely. We employ several protocols but the
most used in Loom is the Message Queuing Telemetry Transport (MQTT) protocol.

Figure 10. This figure shows the Loom-supported BEE222 shield which is used as a learning tool
in courses at Oregon State University. The connectors labeled A0, A1, and A2 are connected to the
pins on the microcontroller with the corresponding names. The same can be said for the switch and
button labeled P5 and P6, respectively.

4. Software

Many open-source Arduino-compatible libraries that help simplify sensor prototyping
exist. The closest in terms of functionality and scope is the ModularSensors library by
EnviroDIY (Stroud Water Research Center, Avondale, PA, USA). Further comparative
analysis of these systems will be discussed in Section 4. One key difference with Loom
is the abstraction and modularization of similar workflows in environmental sensing
systems. Loom is a modular framework, not a static algorithm. The user determines which
components to include or leave out. They also determine when and how certain functions
are performed. Even across a wide variety of applications, it is typical to follow a similar
procedure in in situ environmental sensing.

Devices, when first powered on, will initialize all attached sensors, and run all first-
time setup code. They will then enter the main software loop consisting of measuring data
from sensors, taking the measured data and formatting it in a parsable format such as a
comma-separated values (CSV) file or a JSON-formatted document. Sometimes an actuator
will need to be set depending on the value of the sensors, like turning on a water sprinkler
if a soil moisture sensor registers too low. They will log the formatted data to some medium
like an SD card and/or publish remotely. We employ several protocols but the most used in
Loom is the Message Queuing Telemetry Transport (MQTT) protocol. Finally, devices must

Sensors 2024, 24, 3466 14 of 34

power-off peripherals and enter a low-power sleep mode until triggered at some future
time to reawaken and conduct the main cycle over again.

The Loom framework standardizes this action chain regardless of what devices are
being used within the system. The action chain need not use all the above steps. The chain
can be conducted in different orders and can even be conditionally executed based on user
specifications. Because of this organization, adding or removing components like sensors
to an existing system becomes a matter of choosing whether to include a declaration of that
component at the start of the code. Figures 11 and 12 below show how different components
of Loom can be integrated together to achieve different results while still maintaining a
consistent structure. The specific components within the diagrams are discussed in the
following sections.

Sensors 2024, 24, x FOR PEER REVIEW 14 of 34

Finally, devices must power-off peripherals and enter a low-power sleep mode until trig-
gered at some future time to reawaken and conduct the main cycle over again.

The Loom framework standardizes this action chain regardless of what devices are
being used within the system. The action chain need not use all the above steps. The chain
can be conducted in different orders and can even be conditionally executed based on user
specifications. Because of this organization, adding or removing components like sensors
to an existing system becomes a matter of choosing whether to include a declaration of
that component at the start of the code. Figures 11 and 12 below show how different com-
ponents of Loom can be integrated together to achieve different results while still main-
taining a consistent structure. The specific components within the diagrams are discussed
in the following sections.

Figure 11. This diagram demonstrates how Loom can be used to create a system that collects data
from sensors, logs data to the SD card, transmits the data over LTE, and then enters a low-power
state until the RTC triggers an interrupt and restarts the loop procedure.

Figure 11. This diagram demonstrates how Loom can be used to create a system that collects data
from sensors, logs data to the SD card, transmits the data over LTE, and then enters a low-power
state until the RTC triggers an interrupt and restarts the loop procedure.

Sensors 2024, 24, x FOR PEER REVIEW 15 of 34

Figure 12. This diagram shows how Loom can be used to create a program where one device collects
data and transmits data (like Figure 11) over LoRa radio to another device that then uploads the
data to the internet.

4.1. Library and Board Profile
Many of the Loom modules depend on open-source libraries from the manufacturer

or organization to function. Loom utilizes a modified Feather M0 board profile that auto-
mates installation of libraries and packages required to run Loom. This also allows modi-
fied versions of libraries to run alongside globally installed libraries so that patches can be
created for libraries that do not inherently support the Feather M0 or do not behave en-
tirely as desired. Having a local store of the libraries means that issues related to manu-
facturers pushing updates that could break our system can be avoided. This also allows
us manufacturers to continue supporting and updating their products and for Loom to
evaluate and accept these changes following due process.

4.2. Module Architecture
The architecture of each module inside Loom is derived from a generic module ab-

straction class. The following five methods are the main way one can interact with each
module: initialize(), measure(), package(), power_up(), and power_down(). Which mod-
ules the user is going to need to utilize for each project cannot be predicted by the Loom
developers. In a previous version of Loom [49], the developers chose to include every
module and autodetect which modules were being used at runtime. This turned out to be
an inefficient and infeasible approach given the microcontroller’s limited memory. In-
stead, Loom’s modules adhere to a universal blueprint, requiring new modules to imple-
ment the five above methods within this module abstraction class.

Consequently, all modules can be treated as one type, ensuring consistency, and en-
abling easy addition of new modules. This principle aligns with the concept of polymor-
phism in computer science [50]. Each module created within the Loom framework has a

Figure 12. This diagram shows how Loom can be used to create a program where one device collects
data and transmits data (like Figure 11) over LoRa radio to another device that then uploads the data
to the internet.

Sensors 2024, 24, 3466 15 of 34

4.1. Library and Board Profile

Many of the Loom modules depend on open-source libraries from the manufacturer or
organization to function. Loom utilizes a modified Feather M0 board profile that automates
installation of libraries and packages required to run Loom. This also allows modified
versions of libraries to run alongside globally installed libraries so that patches can be
created for libraries that do not inherently support the Feather M0 or do not behave
entirely as desired. Having a local store of the libraries means that issues related to
manufacturers pushing updates that could break our system can be avoided. This also
allows us manufacturers to continue supporting and updating their products and for Loom
to evaluate and accept these changes following due process.

4.2. Module Architecture

The architecture of each module inside Loom is derived from a generic module
abstraction class. The following five methods are the main way one can interact with
each module: initialize(), measure(), package(), power_up(), and power_down(). Which
modules the user is going to need to utilize for each project cannot be predicted by the
Loom developers. In a previous version of Loom [49], the developers chose to include every
module and autodetect which modules were being used at runtime. This turned out to be
an inefficient and infeasible approach given the microcontroller’s limited memory. Instead,
Loom’s modules adhere to a universal blueprint, requiring new modules to implement the
five above methods within this module abstraction class.

Consequently, all modules can be treated as one type, ensuring consistency, and
enabling easy addition of new modules. This principle aligns with the concept of poly-
morphism in computer science [50]. Each module created within the Loom framework
has a constructor for any parameters that may be required to facilitate different sensor
configurations. These could include different I2C addresses, gain settings, communication
pins, etc.

Each implemented module needs to have an instance of the Manager passed into it
when it is created. This registers each module with the Manager. This allows the Manager
to issue universal calls to those five methods, and all registered modules will execute those
functions based on their own implementation (refer to Section 4.3). This allows for users to
include any combination of modules without having to directly interact with the code of
the individual modules themselves. This is the main footprint that allows us to create these
action chains that we discussed in Section 2.

The initialize() method has the specific code that needs to run for each sensor to
properly initialize and interface with the Feather M0. Each sensor unit will have its own
initialization procedure and needs to be different for each module. For example, the
ADS1115 analog-to-digital converter can have different gain settings that need to be set
when the module is initialized to take accurate measurements. These kinds of functions are
executed inside each module’s initialization code.

The measure() method is called when we want a specific sensor module to collect data
from its associated sensor hardware. This function sends a request to each registered sensor
to take a sample and store it for later use. This action is visualized in Figure 1 by the arrows
connecting each sensor to the Manager process.

The package() method parses the collected data from each module into a JSON-
formatted object and stores it within a global JSON document. This serves as a unified
document that all modules can reference, pull data from, and reformat as needed. This
stage is visualized in Figure 1 by the arrow connecting the Manager to the JSON-formatted
data node.

The power_up() method must exist in all modules but is not necessarily used in all of
them. This method is called as soon as the Loom device exits sleep mode. This function
reinitializes any volatile settings and values that may have been lost when the device was
powered off.

Sensors 2024, 24, 3466 16 of 34

The power_down() method allows modules to safely shutdown before entering a
low-power sleep state and cutting power to the sensor. This allows for better reliability in
powering the sensors back up without issue. One such use case would include properly
powering down and disconnecting I2C devices where pulling power could cause instability
issues for the next cycle.

4.3. Manager

The Loom Manager maintains an abstraction layer that allows for seamless interaction
with all peripherals and is key for coordinating system-wide operations. The Manager also
has calls for initialize(), measure(), package(), power_up(), and power_down(). Instead of
defining specific characteristics of each module, we are calling the corresponding function
on each registered module and storing them in the Manager’s JSON document. The usage
of initialize(), measure(), and package() can be seen in both Figures 11 and 12 right before
the data are logged to the SD card. The Manager also has a few unique functions.

When a new Loom module is constructed within our Arduino sketch, a register_
module() method is called on the Manager and the instance of the module in question is
passed in and added to a list. This list held within the Manager contains pairs of strings
and modules. The strings store the module’s name while the module is a reference to
the module with the given name. This act of registering the modules with the Manager
allows us to be able to interact with all included modules by simply talking to the Manager.
The action of registering each component can be seen in Figures 11 and 12 within the
“Components registered with the Manager” section.

The begin_serial() method tells the Manager to wait 20 s for the serial monitor to be
opened before continuing. This allows the user to see the first several print statements
that may be missed if the user takes time to open the serial monitor. The addition of the
20 s timeout in conjunction with the while(!Serial) call makes it so that no reprogramming
is required when devices are deployed in the field. If the while(!Serial) command were
present without the timeout and the device was powered on without a USB connection,
it would hang in setup. This action occurs as soon as all modules have been registered as
seen in the setup procedure section in Figures 11 and 12.

The display_data() method prints the user-readable JSON-formatted data to the Ar-
duino serial monitor or the supported Organic Light-Emitting Diode (OLED) display so
that the user can see the collected data in real time.

4.4. Hypnos

The Hypnos software library ties all the hardware components of the Hypnos shield
together (see [34] for details). Loom utilizes the SDFat [51] library to provide stable SPI SD
card communication between the Feather and SD card. The files on the card are formatted
using an incremental file system where each individual device cycle (device completely
restarting) will log to its CSV file; all logging is facilitated by a single log call that formats
and logs data to the SD card.

Loom also supports saving many sequential packets as a “batch” to be transmitted all
at once to conserve energy that powering on internet components for each packet would
otherwise use. This action can be seen in Figure 12 on both the Hub and the Node where the
device waits until enough packets have been collected before transmitting. The Feather
M0 has manufacturer support to enter a low-power standby state that will then wait for an
interrupt on a given pin to wake back up. The Hypnos expands on this feature, utilizing
the DS3231 real-time clock to schedule time-based interrupt signals to wake the device at
a set sampling period. The next interrupt is scheduled at the start of each sample period
(as shown in Figure 11), only after the RTC is updated with the current network time (if
network components are attached). This is performed at the start to ensure consistent times
between samples that are not affected by devices responding slower than normal. Hypnos
are also able to programmatically sever power to all sensors when entering sleep, allowing
the device to use even less power, and extending the battery life.

Sensors 2024, 24, 3466 17 of 34

4.5. Integrating New Modules

For maintaining modularity and expandability, a standardized procedure for integrat-
ing new modules into the Loom framework called “Loomifying” was developed. Many
manufacturers and developers provide example code and libraries to use their sensor on
the Arduino platform. Loomifying starts with evaluating this example code or writing
your own. Once the sensor and code are confirmed functional, additional checks and
timeouts are added to this generic code as well as features to ensure system-wide stability
over long-term usage and changing conditions (discussed in Section 4.10 below). This
partial integration of example code and support functions with the other Loom code is
assessed for long-term stability. Finally, the partial integration is formatted into its own
Loom module structure referred to in Section 4.2. Once proven stable, the module is merged
into the main build, making it available for use in any subsequent projects. Templates
providing examples for different components like sensors, actuators, and internet interfaces
are provided in the repository.

4.6. Actuation Integration

One of Loom’s many unique features that is often absent from other unified data-
collection frameworks is the ability to control different physical actuators such as stepper
motors, servos, relays, and LED Neopixels (see Table A3 for a complete list). These allow
developers to easily invoke physical responses to the data they have collected or even
allow them to be controlled remotely through other Loom-connected applications (Refer
to Section 4.9 (Max)). An example application of the Loom framework to provoke such
a reaction is illustrated in Figure 13. The integration of the actuators relies on a slightly
modified module parent class aptly called the actuator. As a module itself, it has the same
methods such as measure() and package() as any other sensor. However, it also has an
additional control method. The control() method is overridden on each sub-actuator and
provides the actuator specific functionality to control the connected hardware. Depending
on the device, this could mean moving a servo or changing the color of some LEDS. A
key-value pair sequence is provided to a given actuator’s control method to specify how
we want to control the connected hardware.

Sensors 2024, 24, x FOR PEER REVIEW 18 of 34

reaction is illustrated in Figure 13. The integration of the actuators relies on a slightly
modified module parent class aptly called the actuator. As a module itself, it has the same
methods such as measure() and package() as any other sensor. However, it also has an
additional control method. The control() method is overridden on each sub-actuator and
provides the actuator specific functionality to control the connected hardware. Depending
on the device, this could mean moving a servo or changing the color of some LEDS. A
key-value pair sequence is provided to a given actuator’s control method to specify how
we want to control the connected hardware.

Figure 13. This diagram shows how Loom can be used to convert environmental stimuli into a phys-
ical response when a given calculated value is greater than or less than some threshold.

4.7. Telemetry Integration
Radios in Loom are all derived from a basic radio abstraction class utilizing the Ra-

dioHead [52] library for reliable data communication. This class provides the footprint for
functionality such as transmitting and receiving in addition to handling decoding of Mes-
sagePacks [53]. It is easier to integrate and use different radios if all radios are set up in a
comparable manner. In this case, two other methods are specified for radio modules:
transmit() and receive(). Loom also supports large packets over LoRa (a common issue
using these radios) by splitting the packet payloads into sizes of less than 251 bytes (max
LoRa payload size), making several transmissions, and reassembling the packet on the
other side. This use case is again detected and managed automatically in Loom, further
decreasing development time and issues writing code from scratch.

4.8. MQTT
The MQTT protocol utilized within Loom allows for easy transmission and interpre-

tation of data from many different devices and uses a publish/subscribe format. This re-
stricts data to different topics that can be accessed individually. Loom’s application relies
on using the open-source Mosquitto [54] broker to handle servicing MQTT requests. Each
request is formatted where each component is separated by a slash; project name (if ap-
plicable), an arbitrarily defined database name, and finally, the device name concatenated
with the instance number (e.g., Project1/WeatherChimes/Chime6). From here, we utilize
a custom Node-Red [55] flow that is based on the root of the MQTT topic. The topic de-
termines which MongoDB cluster to route the data. This transaction is illustrated in Figure
14. This allows organization of different projects across multiple clusters. These databases
are hosted using MongoDB. While this may not be the best option for large datasets, it

Figure 13. This diagram shows how Loom can be used to convert environmental stimuli into a
physical response when a given calculated value is greater than or less than some threshold.

4.7. Telemetry Integration

Radios in Loom are all derived from a basic radio abstraction class utilizing the
RadioHead [52] library for reliable data communication. This class provides the footprint
for functionality such as transmitting and receiving in addition to handling decoding of

Sensors 2024, 24, 3466 18 of 34

MessagePacks [53]. It is easier to integrate and use different radios if all radios are set up
in a comparable manner. In this case, two other methods are specified for radio modules:
transmit() and receive(). Loom also supports large packets over LoRa (a common issue
using these radios) by splitting the packet payloads into sizes of less than 251 bytes (max
LoRa payload size), making several transmissions, and reassembling the packet on the
other side. This use case is again detected and managed automatically in Loom, further
decreasing development time and issues writing code from scratch.

4.8. MQTT

The MQTT protocol utilized within Loom allows for easy transmission and interpreta-
tion of data from many different devices and uses a publish/subscribe format. This restricts
data to different topics that can be accessed individually. Loom’s application relies on using
the open-source Mosquitto [54] broker to handle servicing MQTT requests. Each request
is formatted where each component is separated by a slash; project name (if applicable),
an arbitrarily defined database name, and finally, the device name concatenated with the
instance number (e.g., Project1/WeatherChimes/Chime6). From here, we utilize a custom
Node-Red [55] flow that is based on the root of the MQTT topic. The topic determines
which MongoDB cluster to route the data. This transaction is illustrated in Figure 14. This
allows organization of different projects across multiple clusters. These databases are
hosted using MongoDB. While this may not be the best option for large datasets, it allows
for easy data insertion and retrieval as all data are formatted as JSON before being pushed
into the database. In addition, these MongoDB clusters offer convenient chart and data
visualization tools.

Sensors 2024, 24, x FOR PEER REVIEW 19 of 34

allows for easy data insertion and retrieval as all data are formatted as JSON before being
pushed into the database. In addition, these MongoDB clusters offer convenient chart and
data visualization tools.

Figure 14. The process flow for data transfer from the Feather M0 device to MongoDB.

4.9. Max
The application of Cycling’74 MaxMSP [56] also known as Max8 in the context of

environmental sensing is one of the most unique features distinguishing Loom from other
similar options. Max8 is a graphical programming environment that provides a more vis-
ual approach to viewing and interacting with real-time data in addition to controlling de-
vices on a network as shown in the user interface (UI) in Figure 15. Loom devices have the
capability to either connect to an existing Wi-Fi network or create an ad hoc local hotspot
that can be connected to by a computer. Once connected, data visualization, interaction,
control of different actuators such as servos or motors, and data sonification (translating
data into audio signals) are accessible from any internet-connected Loom device. The ap-
plication of such is shown in Figure 16. These devices may be connected on a local net-
work, or from the field over 4G. This opens the possibilities for many different interactive
educational activities used by students from middle school to college and scientists in
workshops. The benefits of being able to see and manipulate tangible environmental data
in real time makes an interactive approach to learning environmental sensors. One de-
tailed account of using the Max applications for real-time environmental sensor and STEM
education has been detailed in the WeatherChimes project section below. These applica-
tions have also been used significantly in two Honors College classes (Enchanted Objects,
Electric Nature) and one cross-listed College of Liberal Arts class (Sensor Tech and the
Arts) at Oregon State University.

Figure 14. The process flow for data transfer from the Feather M0 device to MongoDB.

4.9. Max

The application of Cycling’74 MaxMSP [56] also known as Max8 in the context of
environmental sensing is one of the most unique features distinguishing Loom from other
similar options. Max8 is a graphical programming environment that provides a more
visual approach to viewing and interacting with real-time data in addition to controlling
devices on a network as shown in the user interface (UI) in Figure 15. Loom devices
have the capability to either connect to an existing Wi-Fi network or create an ad hoc
local hotspot that can be connected to by a computer. Once connected, data visualization,
interaction, control of different actuators such as servos or motors, and data sonification
(translating data into audio signals) are accessible from any internet-connected Loom device.
The application of such is shown in Figure 16. These devices may be connected on a local
network, or from the field over 4G. This opens the possibilities for many different interactive
educational activities used by students from middle school to college and scientists in
workshops. The benefits of being able to see and manipulate tangible environmental
data in real time makes an interactive approach to learning environmental sensors. One
detailed account of using the Max applications for real-time environmental sensor and
STEM education has been detailed in the WeatherChimes project section below. These

Sensors 2024, 24, 3466 19 of 34

applications have also been used significantly in two Honors College classes (Enchanted
Objects, Electric Nature) and one cross-listed College of Liberal Arts class (Sensor Tech and
the Arts) at Oregon State University.

Sensors 2024, 24, x FOR PEER REVIEW 20 of 34

Figure 15. Max interface shows Wi-Fi connection client with real-time interactive sensor and actua-
tor modules.

Figure 16. Max interface showing MongoDB database connection client, data plotter, data play-
back, sonification, and visualization module example. After connecting to the database, the user
can parse individual data streams to plot over a defined time span and use those to shape audio
signals and visual effects.

4.10. Robustness, Troubleshooting Utilities, and Failing Gracefully
Having a robust protocol for communication and device control is crucial to running

a successful datalogger. One main purpose of Loom is to prevent users having to com-
pletely reset the device to account for situations when sensors are disconnected mid-cycle,
or when other unexpected edge cases occur. Instead of crashing the device, the system
should be able to recover from errors and continue data collection. One typical issue is a
system hanging from cases where I2C sensors fail to acknowledge during communication.

Figure 15. Max interface shows Wi-Fi connection client with real-time interactive sensor and
actuator modules.

Sensors 2024, 24, x FOR PEER REVIEW 20 of 34

Figure 15. Max interface shows Wi-Fi connection client with real-time interactive sensor and actua-
tor modules.

Figure 16. Max interface showing MongoDB database connection client, data plotter, data play-
back, sonification, and visualization module example. After connecting to the database, the user
can parse individual data streams to plot over a defined time span and use those to shape audio
signals and visual effects.

4.10. Robustness, Troubleshooting Utilities, and Failing Gracefully
Having a robust protocol for communication and device control is crucial to running

a successful datalogger. One main purpose of Loom is to prevent users having to com-
pletely reset the device to account for situations when sensors are disconnected mid-cycle,
or when other unexpected edge cases occur. Instead of crashing the device, the system
should be able to recover from errors and continue data collection. One typical issue is a
system hanging from cases where I2C sensors fail to acknowledge during communication.

Figure 16. Max interface showing MongoDB database connection client, data plotter, data playback,
sonification, and visualization module example. After connecting to the database, the user can parse
individual data streams to plot over a defined time span and use those to shape audio signals and
visual effects.

4.10. Robustness, Troubleshooting Utilities, and Failing Gracefully

Having a robust protocol for communication and device control is crucial to running a
successful datalogger. One main purpose of Loom is to prevent users having to completely

Sensors 2024, 24, 3466 20 of 34

reset the device to account for situations when sensors are disconnected mid-cycle, or when
other unexpected edge cases occur. Instead of crashing the device, the system should be
able to recover from errors and continue data collection. One typical issue is a system
hanging from cases where I2C sensors fail to acknowledge during communication. Loom
has support for I2C devices that disconnect mid-cycle and can determine whether it should
no longer attempt to collect data from unresponsive sensors to prevent a hardware crash.
Upon reconnection, the Loom Manager will attempt to reinitialize the sensor.

Another example arises with network communication not receiving an expected result.
If Loom is unable to connect to a given network, the system should not wait indefinitely.
Instead, it should retry a set number of times and then fail gracefully to allow us to continue
collecting data, saving on other available media, and try to connect and publish again later.

In addition to preventive measures to ensure devices are running smoothly, a custom
debugging framework to quickly diagnose and fix software was produced. This framework
provides functionality for tracking and storing debugging information. The framework
supports standard serial output as well as SD logging of all output. In addition, it is also
capable of logging and tracking memory usage of individual functions inside of Loom to
allow users to quickly find and fix memory leaks. Figure 17 illustrates an example log file
produced by the logging framework.

Sensors 2024, 24, x FOR PEER REVIEW 21 of 34

Loom has support for I2C devices that disconnect mid-cycle and can determine whether
it should no longer attempt to collect data from unresponsive sensors to prevent a hard-
ware crash. Upon reconnection, the Loom Manager will attempt to reinitialize the sensor.

Another example arises with network communication not receiving an expected re-
sult. If Loom is unable to connect to a given network, the system should not wait indefi-
nitely. Instead, it should retry a set number of times and then fail gracefully to allow us to
continue collecting data, saving on other available media, and try to connect and publish
again later.

In addition to preventive measures to ensure devices are running smoothly, a custom
debugging framework to quickly diagnose and fix software was produced. This frame-
work provides functionality for tracking and storing debugging information. The frame-
work supports standard serial output as well as SD logging of all output. In addition, it is
also capable of logging and tracking memory usage of individual functions inside of Loom
to allow users to quickly find and fix memory leaks. Figure 17 illustrates an example log
file produced by the logging framework.

In earlier versions of Loom, we utilized the SAMD21’s built-in watchdog timer
(WDT) [24] (pp. 212–219) to handle fault recovery. The WDT will automatically reset the
device if its timer has not been reset in a certain period, typically 8 or 16 s. However, this
can also introduce several unpredictable issues once systems are faced with unforeseen
field scenarios where the WDT has not been configured to respond to a presented edge
case. Many instabilities were encountered specifically because of the WDT. Instead of re-
lying on the WTD, Loom development focused on accounting for edge cases preemp-
tively, and failing gracefully. If components stop responding mid-operation, the WDT is
not relied on to reset the board.

Figure 17. This figure shows the first several actions of a newly powered-on device utilizing Loom’s
debugging framework to log the actions to a file. This mirrors what the serial monitor would print
if connected to a computer and is logged to the SD card for evaluation during the entire lifecycle of
the device.

5. Results
Due to modularity, Loom supports a variety of different projects and applications

without significant redesigns to the system itself. Provided below are a few examples of
devices produced by undergraduate engineering students utilizing Loom. These exam-
ples are not intended to provide an in-depth analysis of the data collected from each pro-
ject. Each is explained and validated with data in high detail in their cited peer-reviewed
articles and proceedings. A more thorough list of Loom-supported projects can be found
in Table A5.

5.1. WeatherChimes
WeatherChimes [57] (Figure 18) is a low-power in situ weather monitoring and son-

ification system, that enables near real-time access to environmental sensor data,

Figure 17. This figure shows the first several actions of a newly powered-on device utilizing Loom’s
debugging framework to log the actions to a file. This mirrors what the serial monitor would print if
connected to a computer and is logged to the SD card for evaluation during the entire lifecycle of
the device.

In earlier versions of Loom, we utilized the SAMD21’s built-in watchdog timer
(WDT) [24] (pp. 212–219) to handle fault recovery. The WDT will automatically reset
the device if its timer has not been reset in a certain period, typically 8 or 16 s. However,
this can also introduce several unpredictable issues once systems are faced with unforeseen
field scenarios where the WDT has not been configured to respond to a presented edge case.
Many instabilities were encountered specifically because of the WDT. Instead of relying
on the WTD, Loom development focused on accounting for edge cases preemptively, and
failing gracefully. If components stop responding mid-operation, the WDT is not relied on
to reset the board.

5. Results

Due to modularity, Loom supports a variety of different projects and applications
without significant redesigns to the system itself. Provided below are a few examples of
devices produced by undergraduate engineering students utilizing Loom. These examples
are not intended to provide an in-depth analysis of the data collected from each project.
Each is explained and validated with data in high detail in their cited peer-reviewed
articles and proceedings. A more thorough list of Loom-supported projects can be found
in Table A5.

Sensors 2024, 24, 3466 21 of 34

5.1. WeatherChimes

WeatherChimes [57] (Figure 18) is a low-power in situ weather monitoring and sonifi-
cation system, that enables near real-time access to environmental sensor data, including
light, temperature, relative humidity, soil moisture, and rainfall anywhere with a Wi-Fi or
4G internet connection (Figure 11 shows a simplified version of this device’s firmware). It
is being used by scientists, educators, and artists to obtain and interact with environmental
phenomena in new and innovative ways. It is currently in use at Sitka High School’s
Traditional Ecological Knowledge course, facilitating student observations of environ-
mental impacts on Yellow Cedar. It is also in use in Hoonah, Alaska to measure water
quality and rainfall at nearby reservoirs and to compare remediated versus not-remediated
streams. Much of the local rainfall data are intended to supplement models tracking land-
slide risk in communities. WeatherChimes data and hardware have also been used in
community and undergraduate STEM education and co-design programs. Some activi-
ties include transforming data into auditory signals, soundscapes, and visual art as part
of educational workshops and college-level courses using the Max8 computer software
(https://cycling74.com/products/max, accessed 23 May 2024) as shown in Figure 16. This
effort yielded a peer-reviewed article with two undergraduate co-authors.

Sensors 2024, 24, x FOR PEER REVIEW 22 of 34

including light, temperature, relative humidity, soil moisture, and rainfall anywhere with
a Wi-Fi or 4G internet connection (Figure 11 shows a simplified version of this device’s
firmware). It is being used by scientists, educators, and artists to obtain and interact with
environmental phenomena in new and innovative ways. It is currently in use at Sitka High
School’s Traditional Ecological Knowledge course, facilitating student observations of en-
vironmental impacts on Yellow Cedar. It is also in use in Hoonah, Alaska to measure water
quality and rainfall at nearby reservoirs and to compare remediated versus not-remedi-
ated streams. Much of the local rainfall data are intended to supplement models tracking
landslide risk in communities. WeatherChimes data and hardware have also been used in
community and undergraduate STEM education and co-design programs. Some activities
include transforming data into auditory signals, soundscapes, and visual art as part of
educational workshops and college-level courses using the Max8 computer software
(https://cycling74.com/products/max, accessed 23 May 2024) as shown in Figure 16. This
effort yielded a peer-reviewed article with two undergraduate co-authors.

Figure 18. This figure shows a field-deployed WeatherChimes device.

5.2. Dendrometer
Dendrometers [58] (Figure 19) are a plant-based tool that has shown potential to im-

prove irrigation management in high-value woody perennial crops (e.g., trees and vines).
A dendrometer continuously measures small fluctuations in stem diameter; this has been
directly correlated to water stress measurements using traditional methods. While plant-
based measures of water deficits are the best measures of water stress, current dendrom-
eter methods are imprecise due to mechanical hysteresis and thermal expansion. Loom
manages the linear magnetic encoder used to track 0.5 micron fluctuations in stem diam-
eter and supporting sensors including air temperature and humidity. It also manages all
support functions like logging, LoRa telemetry to a 4G hub, and power savings (the dia-
gram in Figure 12 is based on this project). The system was developed by an undergradu-
ate engineering team, yielded an undergraduate first-author publication, utility patent

Figure 18. This figure shows a field-deployed WeatherChimes device.

5.2. Dendrometer

Dendrometers [58] (Figure 19) are a plant-based tool that has shown potential to
improve irrigation management in high-value woody perennial crops (e.g., trees and vines).
A dendrometer continuously measures small fluctuations in stem diameter; this has been
directly correlated to water stress measurements using traditional methods. While plant-
based measures of water deficits are the best measures of water stress, current dendrometer
methods are imprecise due to mechanical hysteresis and thermal expansion. Loom manages

https://cycling74.com/products/max

Sensors 2024, 24, 3466 22 of 34

the linear magnetic encoder used to track 0.5 micron fluctuations in stem diameter and
supporting sensors including air temperature and humidity. It also manages all support
functions like logging, LoRa telemetry to a 4G hub, and power savings (the diagram
in Figure 12 is based on this project). The system was developed by an undergraduate
engineering team, yielded an undergraduate first-author publication, utility patent [59],
and is in use at Oregon State University, University of British Columbia, and Biosphere 2 to
help researchers to better understand plant–irrigation relationships.

Sensors 2024, 24, x FOR PEER REVIEW 23 of 34

[59], and is in use at Oregon State University, University of British Columbia, and Bio-
sphere 2 to help researchers to better understand plant–irrigation relationships.

Figure 19. This figure shows a field-deployed dendrometer device monitoring the diameter of a
grape vine to determine the amount of water being absorbed by the plant.

5.3. eGreenhouse, Robotically Positioned Sensor Package
The eGreenhouse sensor package (as seen in Figure 20) is designed to measure the

spatial and temporal distribution of CO2 concentrations in greenhouses. These data are
crucial for various fields including soil science, agriculture, and atmospheric science. Tra-
ditionally, CO2 detection has relied on stationary sensors with low spatial resolution.
What if you could build up a profile of CO2 concentrations along a path? The system is
comprised two Loom-configured devices: a data hub and liner rail motor controller, and
a remote mobile sensor package. The hub controls a motor to transport the remote sensor
package down a track. The hub also sends requests at user-specified intervals to the re-
mote sensor package to report data. Relayed data are saved to an SD card and uploaded
online for the sensor package, Loom-supported integration of a non-dispersive infrared
(NDIR) CO2 sensor, combined with pre-existing temperature, relative humidity, and lu-
minosity sensing onto a single logging device, providing high-resolution data of the
greenhouse environment along the rail path. The resulting system was designed and pub-
lished by a visiting postdoctoral student and two undergraduate engineering students in
HardwareX [60]. Systems like these could provide significant spatiotemporal data for re-
search, monitoring, and management for greenhouses.

Figure 19. This figure shows a field-deployed dendrometer device monitoring the diameter of a
grape vine to determine the amount of water being absorbed by the plant.

5.3. eGreenhouse, Robotically Positioned Sensor Package

The eGreenhouse sensor package (as seen in Figure 20) is designed to measure the
spatial and temporal distribution of CO2 concentrations in greenhouses. These data are
crucial for various fields including soil science, agriculture, and atmospheric science.
Traditionally, CO2 detection has relied on stationary sensors with low spatial resolution.
What if you could build up a profile of CO2 concentrations along a path? The system
is comprised two Loom-configured devices: a data hub and liner rail motor controller,
and a remote mobile sensor package. The hub controls a motor to transport the remote
sensor package down a track. The hub also sends requests at user-specified intervals
to the remote sensor package to report data. Relayed data are saved to an SD card and
uploaded online for the sensor package, Loom-supported integration of a non-dispersive
infrared (NDIR) CO2 sensor, combined with pre-existing temperature, relative humidity,
and luminosity sensing onto a single logging device, providing high-resolution data of
the greenhouse environment along the rail path. The resulting system was designed and
published by a visiting postdoctoral student and two undergraduate engineering students
in HardwareX [60]. Systems like these could provide significant spatiotemporal data for
research, monitoring, and management for greenhouses.

Sensors 2024, 24, 3466 23 of 34Sensors 2024, 24, x FOR PEER REVIEW 24 of 34

Figure 20. This figure shows an eGreenhouse sensor package mounted on the rail in a greenhouse
with a closeup view inside the enclosure showing components.

5.4. LilyPad
Fresh water is among the most critical resources. The Lilypad [61] (as seen in Figure

21) aims to provide live data to assist in monitoring water loss and water management in
freshwater reservoirs. The device collects water temperature, air temperature, air humid-
ity, and solar energy per square meter, logging the data locally to an SD card and sending
the data over 4G for live monitoring. It was designed by an undergraduate electrical en-
gineering student and an undergraduate mechanical engineering student with intent for
use in Africa. Most of the programming and electrical design aspects already existed in
Loom. Only a new light sensor with application-specific requirements needed to be
added. LilyPad is being used on freshwater reservoirs in Ontario, Canada to monitor the
effects of solar panels deployed on the surface. The Lilypad aims to be a low-cost alterna-
tive to traditional methods of long-term water surface monitoring buoys.

Figure 20. This figure shows an eGreenhouse sensor package mounted on the rail in a greenhouse
with a closeup view inside the enclosure showing components.

5.4. LilyPad

Fresh water is among the most critical resources. The Lilypad [61] (as seen in Figure 21)
aims to provide live data to assist in monitoring water loss and water management in
freshwater reservoirs. The device collects water temperature, air temperature, air humidity,
and solar energy per square meter, logging the data locally to an SD card and sending
the data over 4G for live monitoring. It was designed by an undergraduate electrical
engineering student and an undergraduate mechanical engineering student with intent for
use in Africa. Most of the programming and electrical design aspects already existed in
Loom. Only a new light sensor with application-specific requirements needed to be added.
LilyPad is being used on freshwater reservoirs in Ontario, Canada to monitor the effects
of solar panels deployed on the surface. The Lilypad aims to be a low-cost alternative to
traditional methods of long-term water surface monitoring buoys.

Sensors 2024, 24, x FOR PEER REVIEW 25 of 34

Figure 21. This figure shows a LilyPad prototype device.

5.5. Weed Warden
Controlling the weed population in agriculture ensures water, nutrients, and other

major resources are maximized. Current methods often resort to harmful herbicides,
which are costly, pose health risks, and stimulate plant resistance to existing herbicides.
This requires stronger chemical interventions each passing year. In fallow fields, it is de-
sired for no plants to grow to give the soil time to recover. Strategic spot application herb-
icide or other interventions such as steam or tillage would significantly reduce the nega-
tive impacts of traditional management methods. Weed Warden [62] consists of a spec-
troscopy sensor, OPEnS Lab Hypnos Board, 5 V battery, and Adafruit Feather M0 with SD
storage. A team of electrical engineering and biological and ecological engineering stu-
dents integrated the SparkFun spectral triad sensor AS7265x [63] into Loom. The sensor is
mounted to a mobile system to take readings of the ground and determine if weeds in
fallow fields are present. If weeds are present, this will trigger a 12V relay on the Hypnos
board that would power a spray nozzle to dispose of the weed (this functionality is
demonstrated in Figure 13). The method used to determine if a weed is present is called
the normalized difference vegetation index (NDVI). This algorithm compares the near-
infrared (which vegetation strongly reflects) and red light (which vegetation absorbs) to
output a value between −1 and +1. By setting a benchmark NDVI value on a patch of bare
dirt and comparing that value to a new value, the presence of plants can be accurately
determined; this is shown in Figure 22. This prototype does not yet distinguish between
weeds and other plants. However, the objective to target all plants for fallow field man-
agement provided a more accessible proof of concept and significant real-world applica-
tion. This effort yielded a peer-reviewed paper with three undergraduate co-authors.

Figure 21. This figure shows a LilyPad prototype device.

5.5. Weed Warden

Controlling the weed population in agriculture ensures water, nutrients, and other
major resources are maximized. Current methods often resort to harmful herbicides, which

Sensors 2024, 24, 3466 24 of 34

are costly, pose health risks, and stimulate plant resistance to existing herbicides. This
requires stronger chemical interventions each passing year. In fallow fields, it is desired for
no plants to grow to give the soil time to recover. Strategic spot application herbicide or
other interventions such as steam or tillage would significantly reduce the negative impacts
of traditional management methods. Weed Warden [62] consists of a spectroscopy sensor,
OPEnS Lab Hypnos Board, 5 V battery, and Adafruit Feather M0 with SD storage. A team
of electrical engineering and biological and ecological engineering students integrated the
SparkFun spectral triad sensor AS7265x [63] into Loom. The sensor is mounted to a mobile
system to take readings of the ground and determine if weeds in fallow fields are present.
If weeds are present, this will trigger a 12V relay on the Hypnos board that would power
a spray nozzle to dispose of the weed (this functionality is demonstrated in Figure 13).
The method used to determine if a weed is present is called the normalized difference
vegetation index (NDVI). This algorithm compares the near-infrared (which vegetation
strongly reflects) and red light (which vegetation absorbs) to output a value between −1
and +1. By setting a benchmark NDVI value on a patch of bare dirt and comparing that
value to a new value, the presence of plants can be accurately determined; this is shown
in Figure 22. This prototype does not yet distinguish between weeds and other plants.
However, the objective to target all plants for fallow field management provided a more
accessible proof of concept and significant real-world application. This effort yielded a
peer-reviewed paper with three undergraduate co-authors.

Sensors 2024, 24, x FOR PEER REVIEW 26 of 34

Figure 22. The top plot shows the Weed Warden sensor response when hovering over dirt versus
plant sample (highlighted in green). The bottom plot shows the calculated index (blue) intersected
with the set threshold (black) used to activate the 12 V relay to activate an intervention mechanism
(e.g., spray nozzle, tillage arm, etc.).

6. Discussion
The purpose of this section is to compare our approach with other similar and estab-

lished open-source libraries. Of the existing open-source sensor solutions, libraries such
as the Adafruit Unified Sensor Driver [64] and ModularSensors are similar to Loom and
attempt to facilitate more efficient usage of sensors. While the Adafruit Unified Sensor
Driver exclusively supports sensors, the ModularSensors library also supports radio te-
lemetry, internet logging platforms, and debugging tools. ModularSensors does have key
advantages over Loom for many applications, most especially a wider variety of hydro-
logical monitoring sensors, a wider variety of supported radios, and one additional inter-
net publishing platform, Monitor my Watershed [65]. ModularSensors has been available
since 2017 and has a significantly larger and more established userbase.

In contrast, Loom accommodates a broader scope of sensors across a variety of envi-
ronments such as accelerometers, carbon dioxide (CO2) sensors, air quality (PM2.5 PM10),
and multispectral optical sensors (Appendix A) with less comprehensive support for wa-
ter quality sensing. Loom’s actuator support also poses a significant advantage for many
applications requiring mechatronic response to environmental stimuli.

Figure 22. The top plot shows the Weed Warden sensor response when hovering over dirt versus
plant sample (highlighted in green). The bottom plot shows the calculated index (blue) intersected
with the set threshold (black) used to activate the 12 V relay to activate an intervention mechanism
(e.g., spray nozzle, tillage arm, etc.).

Sensors 2024, 24, 3466 25 of 34

6. Discussion

The purpose of this section is to compare our approach with other similar and es-
tablished open-source libraries. Of the existing open-source sensor solutions, libraries
such as the Adafruit Unified Sensor Driver [64] and ModularSensors are similar to Loom
and attempt to facilitate more efficient usage of sensors. While the Adafruit Unified Sen-
sor Driver exclusively supports sensors, the ModularSensors library also supports radio
telemetry, internet logging platforms, and debugging tools. ModularSensors does have key
advantages over Loom for many applications, most especially a wider variety of hydrologi-
cal monitoring sensors, a wider variety of supported radios, and one additional internet
publishing platform, Monitor my Watershed [65]. ModularSensors has been available since
2017 and has a significantly larger and more established userbase.

In contrast, Loom accommodates a broader scope of sensors across a variety of envi-
ronments such as accelerometers, carbon dioxide (CO2) sensors, air quality (PM2.5 PM10),
and multispectral optical sensors (Appendix A) with less comprehensive support for water
quality sensing. Loom’s actuator support also poses a significant advantage for many
applications requiring mechatronic response to environmental stimuli.

While ModularSensors supports debugging applications through a serial monitor,
Loom’s SD card debugging framework uniquely allows for diagnosing problems on devices
where a serial connection to a computer in the field is not feasible. Loom also allows users
to find and fix instances where dynamically allocated memory is not cleared properly
resulting in an over-usage of memory ending in a crash. Loom combats this through
generating function usage summaries that log exactly how much memory each function
is using.

Loom’s Manager framework streamlines and standardizes integration of new com-
ponents like sensors and actuators by only including the module header and completing
its constructor. The rest is handled by the Manager, eliminating the need to manage
individual components.

Loom also has support for publishing data via MQTT to MongoDB and ThingS-
peak [66]. ModularSensors does not support MongoDB logging but does support ThingS-
peak. ThingSpeak supports a maximum of publishing to eight distinct data fields, while
MongoDB supports packets up to two thousand bytes (limited arbitrarily by the Loom
support code and adjustable). Loom’s MQTT implementation is agnostic of the target
database. Instead of rewriting Loom’s MQTT Manager, only the server credentials to the
target broker need to be modified.

Loom’s code structure is more succinct and streamlined. A comparison of the code
required to obtain an Atlas Scientific EZO-CO2 sensor [67], supported in both Loom
and ModularSensors, working with a standard cycle of recording sensor measurements,
packaging the retrieved data into JSON and logging the data to an SD card is about half as
many lines of code in Loom versus the ModularSensors equivalent.

Loom’s Hypnos class and the ModularSensors’s Logger class perform similar functions
including real-time clock, low-power standby management, and SD logging. The Hypnos
class also has functionality to physically cut power to some or all connected peripherals,
allowing for even greater power savings.

Loom utilizes statically allocated c-style string buffers whereas ModularSensors uti-
lizes Arduino’s built-in string implementation, which if used too frequently can result in
memory fragmentation and inevitably a crash due to RAM depletion (which we encoun-
tered when developing Loom). Another distinguishing approach comparing these two
libraries is that Loom pivoted away from using the WDT to recover from hard-faults and
hanging states, a strategy often employed in these systems and used in ModularSensors.

Finally, Loom supports the ability to interact with many aspects of a sensor-actuator
device over a Wi-Fi connection (either via router or local hotspot) utilizing the Max8
application. This functionality provides accessible data manipulation and control of devices
that have been used in educational workshops for high school, undergraduate, scientific,
and community programs.

Sensors 2024, 24, 3466 26 of 34

7. Conclusions

The availability of more open-source options to rapidly prototype in situ sensor sys-
tems is crucial for supporting scientific observations in the face of changing climate patterns,
hazards, and rising human population. While there are other open-source frameworks that
address similar needs, Loom contains unique features (in addition to sensor data acquisi-
tion, logging, and telemetry) including actuation control, interactive data applications for
education and scientific workshops, field and classroom utilities, diagnostic tools, and a
streamlined integration workflow.

The motivation behind this abstraction structure is to enable a low floor to accessibility,
while maintaining high overhead for customization and extensibility. While the extent
to how much more accessible this approach is compared to others has not been formally
studied, the variety and complexity of peer-reviewed systems being designed mostly by
undergraduate researchers is considerable evidence for Loom’s usability.

One notable significant development bottleneck is the dependence, time, and cost
to validate these systems on physical hardware. Using AI-based models such as Digital
Twins [68] could accelerate our development process by simulating different hardware
and environments.

Moving forward, Loom will continue to expand its support for various sensors and
actuators. Strengths and weaknesses of Loom will be compared to preexisting datalogging
solutions, commercial and open-source, to categorically evaluate the viability of Loom in
various applications.

8. Patents

The specific sensor design of the dendrometer mentioned in this manuscript maintains a
utility patent issued to Oregon State University on 8 June 2023, with the number OSU-21-38.

Author Contributions: Conceptualization, C.U. and W.R.; methodology, W.R.; software, W.R. and
C.U.; validation, W.R. and C.U; investigation, C.U. and W.R.; resources, C.U. and J.S.; writing—
original draft preparation, W.R. and C.U.; writing—review and editing, W.R., C.U. and J.S.; supervi-
sion, C.U.; project administration, C.U. and J.S.; funding acquisition, C.U. and J.S. All authors have
read and agreed to the published version of the manuscript.

Funding: This work was supported via the USDA NIFA Hatch Act (Regular Research Fund,
ORE00218A) and the National Science Foundation award #1832170. This work was supported
via the Oregon State University Learning Innovation Grant, Office of Research.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are openly available in Loom at
https://doi.org/10.5281/zenodo.11318101 (accessed on 23 May 2024).

Conflicts of Interest: The authors declare no conflicts of interest.

Appendix A

Table A1. This table provides a list of I2C sensors currently supported by the Loom framework.

Sensor Name Datasheet URL Resolution Range Accuracy

ADS1115 16-Bit ADC
https://cdn-shop.adafruit.

com/datasheets/ads1115.pdf
(Accessed 23 May 2024)

16 bits Depends on gain:
See datasheet N/A

Adafruit AS7262
6-Channel Visible

Light/Color Sensor

https://ams.com/
documents/20143/36005/AS7

262_DS000486_5-00.pdf
(Accessed 23 May 2024)

16 bits 450–650 nm ±5 nm

https://doi.org/10.5281/zenodo.11318101
https://cdn-shop.adafruit.com/datasheets/ads1115.pdf
https://cdn-shop.adafruit.com/datasheets/ads1115.pdf
https://ams.com/documents/20143/36005/AS7262_DS000486_5-00.pdf
https://ams.com/documents/20143/36005/AS7262_DS000486_5-00.pdf
https://ams.com/documents/20143/36005/AS7262_DS000486_5-00.pdf

Sensors 2024, 24, 3466 27 of 34

Table A1. Cont.

Sensor Name Datasheet URL Resolution Range Accuracy

SparkFun AS7263
Spectral Sensor

https:
//cdn.sparkfun.com/assets/

1/b/7/3/b/AS7263.pdf
(Accessed 23 May 2024)

16 bits 610–860 nm ±5 nm

SparkFun AS7265x
Spectral Triad Sensor

https://cdn.sparkfun.com/
assets/c/2/9/0/a/AS7265x_

Datasheet.pdf
(Accessed 23 May 2024)

16 bits 410–940 nm ±10 nm

EZO-CO2™ Embedded
Carbon Dioxide Sensor

https:
//files.atlas-scientific.com/

EZO_CO2_Datasheet.pdf
(Accessed 23 May 2024)

1 ppm 0–10,000 ppm (±5%) + (±50 ppm)

EZO™ Dissolved
Oxygen Circuit

https://files.atlas-scientific.
com/DO_EZO_Datasheet.pdf

(Accessed 23 May 2024)
0.00–100 mg/L ±0.05 mg/L

EZO™ ORP Circuit

https:
//files.atlas-scientific.com/
ORP_EZO_Datasheet.pdf
(Accessed 23 May 2024)

N/A −1019.9 mV–1019.9 mV ±1 mV

EZO™ pH Circuit
https://files.atlas-scientific.

com/pH_EZO_Datasheet.pdf
(Accessed 23 May 2024)

0.001 pH 0.001–14.000 pH ±0.002 pH

EZO-RGB™ Embedded
Color Sensor

https:
//files.atlas-scientific.com/
EZO_RGB_Datasheet.pdf
(Accessed 23 May 2024)

24 bits 0–65,535 LuX N/A

K30 CO2 Sensor

https:
//rmtplusstoragesenseair.

blob.core.windows.net/docs/
publicerat/PSH0131.pdf
(Accessed 23 May 2024)

N/A 0–5000 ppm ±30 ppm

MB1232 Ultrasonic
Sensor

https:
//maxbotix.com/pages/i2cxl-

maxsonar-ez-datasheet
(Accessed 23 May 2024)

1 cm 0 cm–765 cm N/A

Adafruit MMA8451
Triple-Axis

Accelerometer

https:
//cdn-shop.adafruit.com/

datasheets/MMA8451Q-1.pdf
(Accessed 23 May 2024)

14 bits 2 g–8 g (depending
on mode) ±2.64%

MPU-6050 Six-Axis
(Gyro + Accelerometer)

https://invensense.tdk.com/
wp-content/uploads/2015/0
2/MPU-6000-Datasheet1.pdf

(Accessed 23 May 2024)

16 bits 2 g–16 g ±2 g, ±4 g, ±8 g, ±16 g

MS580302BA01-00
Pressure Sensor

https://www.te.com/usa-en/
product-MS580302BA01-00
.datasheet.pdf (Accessed 23

May 2024)

0.024 mbar 300 mbar to 1.1 bar ±2.5 mbar

SEN55 PM, RH/T,
VOC, and NOx Sensor

https://cdn.sparkfun.com/
assets/5/b/f/2/8/Sensirion_

Datasheet_SEN5x.pdf
(Accessed 23 May 2024)

Multiple: See
datasheet Multiple: See datasheet Multiple: See datasheet

https://cdn.sparkfun.com/assets/1/b/7/3/b/AS7263.pdf
https://cdn.sparkfun.com/assets/1/b/7/3/b/AS7263.pdf
https://cdn.sparkfun.com/assets/1/b/7/3/b/AS7263.pdf
https://cdn.sparkfun.com/assets/c/2/9/0/a/AS7265x_Datasheet.pdf
https://cdn.sparkfun.com/assets/c/2/9/0/a/AS7265x_Datasheet.pdf
https://cdn.sparkfun.com/assets/c/2/9/0/a/AS7265x_Datasheet.pdf
https://files.atlas-scientific.com/EZO_CO2_Datasheet.pdf
https://files.atlas-scientific.com/EZO_CO2_Datasheet.pdf
https://files.atlas-scientific.com/EZO_CO2_Datasheet.pdf
https://files.atlas-scientific.com/DO_EZO_Datasheet.pdf
https://files.atlas-scientific.com/DO_EZO_Datasheet.pdf
https://files.atlas-scientific.com/ORP_EZO_Datasheet.pdf
https://files.atlas-scientific.com/ORP_EZO_Datasheet.pdf
https://files.atlas-scientific.com/ORP_EZO_Datasheet.pdf
https://files.atlas-scientific.com/pH_EZO_Datasheet.pdf
https://files.atlas-scientific.com/pH_EZO_Datasheet.pdf
https://files.atlas-scientific.com/EZO_RGB_Datasheet.pdf
https://files.atlas-scientific.com/EZO_RGB_Datasheet.pdf
https://files.atlas-scientific.com/EZO_RGB_Datasheet.pdf
https://rmtplusstoragesenseair.blob.core.windows.net/docs/publicerat/PSH0131.pdf
https://rmtplusstoragesenseair.blob.core.windows.net/docs/publicerat/PSH0131.pdf
https://rmtplusstoragesenseair.blob.core.windows.net/docs/publicerat/PSH0131.pdf
https://rmtplusstoragesenseair.blob.core.windows.net/docs/publicerat/PSH0131.pdf
https://maxbotix.com/pages/i2cxl-maxsonar-ez-datasheet
https://maxbotix.com/pages/i2cxl-maxsonar-ez-datasheet
https://maxbotix.com/pages/i2cxl-maxsonar-ez-datasheet
https://cdn-shop.adafruit.com/datasheets/MMA8451Q-1.pdf
https://cdn-shop.adafruit.com/datasheets/MMA8451Q-1.pdf
https://cdn-shop.adafruit.com/datasheets/MMA8451Q-1.pdf
https://invensense.tdk.com/wp-content/uploads/2015/02/MPU-6000-Datasheet1.pdf
https://invensense.tdk.com/wp-content/uploads/2015/02/MPU-6000-Datasheet1.pdf
https://invensense.tdk.com/wp-content/uploads/2015/02/MPU-6000-Datasheet1.pdf
https://www.te.com/usa-en/product-MS580302BA01-00.datasheet.pdf
https://www.te.com/usa-en/product-MS580302BA01-00.datasheet.pdf
https://www.te.com/usa-en/product-MS580302BA01-00.datasheet.pdf
https://cdn.sparkfun.com/assets/5/b/f/2/8/Sensirion_Datasheet_SEN5x.pdf
https://cdn.sparkfun.com/assets/5/b/f/2/8/Sensirion_Datasheet_SEN5x.pdf
https://cdn.sparkfun.com/assets/5/b/f/2/8/Sensirion_Datasheet_SEN5x.pdf

Sensors 2024, 24, 3466 28 of 34

Table A1. Cont.

Sensor Name Datasheet URL Resolution Range Accuracy

SHT31 Temperature
and Humidity

https://cdn-shop.adafruit.
com/product-files/2857

/Sensirion_Humidity_SHT3x_
Datasheet_digital-767294.pdf

(Accessed 23 May 2024)

0.01%RH/
0.015 ◦C

0 to 100%RH/−40
to 125 ◦C ±2%RH/±0.3 ◦C

STEMMA Soil Moisture

https://cdn-learn.adafruit.
com/downloads/pdf/

adafruit-stemma-soil-sensor-
i2c-capacitive-moisture-

sensor.pdf
(Accessed 23 May 2024)

N/A 200–2000 (very
dry–very wet) N/A

TSL2591 High Dynamic
Range Light Sensor

https://ams.com/
documents/20143/9331680/
TSL2591_DS000338_7-00.pdf

(Accessed 23 May 2024)

N/A 188–88,000 uLux N/A

ZX Gesture Sensor

https:
//cdn.sparkfun.com/assets/
learn_tutorials/3/4/5/XYZ_
Interactive_Technologies_-_

ZX_SparkFun_Sensor_
Datasheet.pdf

(Accessed 23 May 2024)

N/A N/A N/A

Key sensor metrics have been provided; however, the link to each datasheet will have additional information.

Table A2. This table provides a list of all additional sensors supported by the Loom framework.

Sensor Name Datasheet URL Protocol Resolution Range Accuracy

ADS1232
Analog-to-Digital

Converter

https://www.ti.com/lit/
ds/symlink/ads1232.pdf
(Accessed 23 May 2024)

SPI 24 bits ±1.5 V N/A

MAX31856
Precision

Thermocouple

https:
//www.analog.com/
media/en/technical-
documentation/data-

sheets/MAX31856.pdf
(Accessed 23 May 2024)

SPI 19 bit/
0.0078125 ◦C

Refer to Table 1 in
datasheet linked

on right
±0.15%

MAX31865 Digital
Resistance
Converter

https:
//www.analog.com/
media/en/technical-
documentation/data-

sheets/MAX31865.pdf
(Accessed 23 May 2024)

SPI 15 bit/0.03125 ◦C −40 to 125 ◦C ±0.05%/±0.5 ◦C

Decagon GS3 Soil
Moisture Sensor

https:
//library.metergroup.
com/Manuals/20429_

GS3_Web.pdf (Accessed
23 May 2024)

SDI12
See Section 3.1

in datasheet
linked datasheet

0.0–1.0 m3/m3 ±0.03 m3/m3

https://cdn-shop.adafruit.com/product-files/2857/Sensirion_Humidity_SHT3x_Datasheet_digital-767294.pdf
https://cdn-shop.adafruit.com/product-files/2857/Sensirion_Humidity_SHT3x_Datasheet_digital-767294.pdf
https://cdn-shop.adafruit.com/product-files/2857/Sensirion_Humidity_SHT3x_Datasheet_digital-767294.pdf
https://cdn-shop.adafruit.com/product-files/2857/Sensirion_Humidity_SHT3x_Datasheet_digital-767294.pdf
https://cdn-learn.adafruit.com/downloads/pdf/adafruit-stemma-soil-sensor-i2c-capacitive-moisture-sensor.pdf
https://cdn-learn.adafruit.com/downloads/pdf/adafruit-stemma-soil-sensor-i2c-capacitive-moisture-sensor.pdf
https://cdn-learn.adafruit.com/downloads/pdf/adafruit-stemma-soil-sensor-i2c-capacitive-moisture-sensor.pdf
https://cdn-learn.adafruit.com/downloads/pdf/adafruit-stemma-soil-sensor-i2c-capacitive-moisture-sensor.pdf
https://cdn-learn.adafruit.com/downloads/pdf/adafruit-stemma-soil-sensor-i2c-capacitive-moisture-sensor.pdf
https://ams.com/documents/20143/9331680/TSL2591_DS000338_7-00.pdf
https://ams.com/documents/20143/9331680/TSL2591_DS000338_7-00.pdf
https://ams.com/documents/20143/9331680/TSL2591_DS000338_7-00.pdf
https://cdn.sparkfun.com/assets/learn_tutorials/3/4/5/XYZ_Interactive_Technologies_-_ZX_SparkFun_Sensor_Datasheet.pdf
https://cdn.sparkfun.com/assets/learn_tutorials/3/4/5/XYZ_Interactive_Technologies_-_ZX_SparkFun_Sensor_Datasheet.pdf
https://cdn.sparkfun.com/assets/learn_tutorials/3/4/5/XYZ_Interactive_Technologies_-_ZX_SparkFun_Sensor_Datasheet.pdf
https://cdn.sparkfun.com/assets/learn_tutorials/3/4/5/XYZ_Interactive_Technologies_-_ZX_SparkFun_Sensor_Datasheet.pdf
https://cdn.sparkfun.com/assets/learn_tutorials/3/4/5/XYZ_Interactive_Technologies_-_ZX_SparkFun_Sensor_Datasheet.pdf
https://cdn.sparkfun.com/assets/learn_tutorials/3/4/5/XYZ_Interactive_Technologies_-_ZX_SparkFun_Sensor_Datasheet.pdf
https://www.ti.com/lit/ds/symlink/ads1232.pdf
https://www.ti.com/lit/ds/symlink/ads1232.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/MAX31856.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/MAX31856.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/MAX31856.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/MAX31856.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/MAX31856.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/MAX31865.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/MAX31865.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/MAX31865.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/MAX31865.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/MAX31865.pdf
https://library.metergroup.com/Manuals/20429_GS3_Web.pdf
https://library.metergroup.com/Manuals/20429_GS3_Web.pdf
https://library.metergroup.com/Manuals/20429_GS3_Web.pdf
https://library.metergroup.com/Manuals/20429_GS3_Web.pdf

Sensors 2024, 24, 3466 29 of 34

Table A2. Cont.

Sensor Name Datasheet URL Protocol Resolution Range Accuracy

Teros 10 Soil
Moisture Sensor

https://publications.
metergroup.com/

Manuals/20788_TEROS1
0_Manual_Web.pdf

(Accessed 23 May 2024)

Analog 0.001 m3/m3 0.00–0.64 m3/m3 ±0.03 m3/m3

Teros 11 Soil
Moisture Sensor

https://publications.
metergroup.com/

Manuals/20587_TEROS1
1-12_Manual_Web.pdf
(Accessed 23 May 2024)

SDI12
Multiple: see

Section 3.1
in datasheet

Multiple: see
Section 3.1

in datasheet

Multiple: see
Section 3.1

in datasheet

Teros 12 Soil
Moisture Sensor

https://publications.
metergroup.com/

Manuals/20587_TEROS1
1-12_Manual_Web.pdf
(Accessed 23 May 2024)

SDI12
Multiple: see

Section 3.1
in datasheet

Multiple: see
Section 3.1

in datasheet

Multiple: see
Section 3.1

in datasheet

SDS011 Laser
Particulate

Matter Sensor

https://cdn-reichelt.de/
documents/datenblatt/

X200/SDS011
-DATASHEET.pdf

(Accessed 23 May 2024)

UART 0.3 µg/m3 0.0–999.9 µg/m3 ±15%

Key sensor metrics have been provided; however, the link to each datasheet will have additional information.

Table A3. This table provides a list of all actuators supported by the Loom framework.

Sensor Name Part # Datasheet URL Description

Adafruit Neopixel WS2812B or SKC6812
https://www.adafruit.com/

category/168 (Accessed
23 May 2024)

Supports any Adafruit
Neopixel-based Device

Non-latching Relay 3191

https://cdn-shop.adafruit.
com/product-files/3191/G5

LE-14-DC3-Omron-
datasheet-10841140.pdf
(Accessed 23 May 2024)

Supports any relay that is
controlled by toggling a pin at

high or low

Adafruit Servo Driver 2928
https://www.adafruit.com/

product/2928 (Accessed
23 May 2024)

8 channel Adafruit Servo
drivers that allow for generic

PWM control of servos

Adafruit Stepper
Motor Driver 1483

https://www.adafruit.com/
product/1438 (Accessed

23 May 2024)

DC Motor/Stepper Motor
Driver Board

Table A4. This table provides a list of all additional hardware supported by the Loom framework.

Sensor Name Part # Product URL Description

SARA-R4 LTE Shield 14997
https://www.sparkfun.com/

products/14997 (Accessed
23 May 2024)

SparkFun SARA-R4 LTE
shield for cellular connections

https://publications.metergroup.com/Manuals/20788_TEROS10_Manual_Web.pdf
https://publications.metergroup.com/Manuals/20788_TEROS10_Manual_Web.pdf
https://publications.metergroup.com/Manuals/20788_TEROS10_Manual_Web.pdf
https://publications.metergroup.com/Manuals/20788_TEROS10_Manual_Web.pdf
https://publications.metergroup.com/Manuals/20587_TEROS11-12_Manual_Web.pdf
https://publications.metergroup.com/Manuals/20587_TEROS11-12_Manual_Web.pdf
https://publications.metergroup.com/Manuals/20587_TEROS11-12_Manual_Web.pdf
https://publications.metergroup.com/Manuals/20587_TEROS11-12_Manual_Web.pdf
https://publications.metergroup.com/Manuals/20587_TEROS11-12_Manual_Web.pdf
https://publications.metergroup.com/Manuals/20587_TEROS11-12_Manual_Web.pdf
https://publications.metergroup.com/Manuals/20587_TEROS11-12_Manual_Web.pdf
https://publications.metergroup.com/Manuals/20587_TEROS11-12_Manual_Web.pdf
https://cdn-reichelt.de/documents/datenblatt/X200/SDS011-DATASHEET.pdf
https://cdn-reichelt.de/documents/datenblatt/X200/SDS011-DATASHEET.pdf
https://cdn-reichelt.de/documents/datenblatt/X200/SDS011-DATASHEET.pdf
https://cdn-reichelt.de/documents/datenblatt/X200/SDS011-DATASHEET.pdf
https://www.adafruit.com/category/168
https://www.adafruit.com/category/168
https://cdn-shop.adafruit.com/product-files/3191/G5LE-14-DC3-Omron-datasheet-10841140.pdf
https://cdn-shop.adafruit.com/product-files/3191/G5LE-14-DC3-Omron-datasheet-10841140.pdf
https://cdn-shop.adafruit.com/product-files/3191/G5LE-14-DC3-Omron-datasheet-10841140.pdf
https://cdn-shop.adafruit.com/product-files/3191/G5LE-14-DC3-Omron-datasheet-10841140.pdf
https://www.adafruit.com/product/2928
https://www.adafruit.com/product/2928
https://www.adafruit.com/product/1438
https://www.adafruit.com/product/1438
https://www.sparkfun.com/products/14997
https://www.sparkfun.com/products/14997

Sensors 2024, 24, 3466 30 of 34

Table A5. This table provides a list of all officially supported Loom projects.

Project Name Project Page Description

WeatherChimes https://github.com/OPEnSLab-OSU/WeatherChimes
(Accessed 23 May 2024) In situ remote weather station

LilyPad https://github.com/OPEnSLab-OSU/Lilypad
(Accessed 23 May 2024) Floating watershed monitoring station

FloDar https://github.com/OPEnSLab-OSU/FloDar
(Accessed 23 May 2024)

Remote datalogger measuring flow rate
(L/min) of water passing through a pipe

for prolonged periods of time

Smart Rock https://github.com/OPEnSLab-OSU/SmartRock
(Accessed 23 May 2024)

Low-cost device to monitor
remote streams

Evaporometer https://github.com/OPEnSLab-OSU/Evaporometer
(Accessed 23 May 2024)

Low-cost load cell-based rain
gauge system

Dendrometer https://github.com/OPEnSLab-OSU/Dendrometer
(Accessed 23 May 2024)

Effectively measure and log diurnal
fluctuations in grape vines

eGreenhouse https://github.com/OPEnSLab-OSU/eGreenHouse
(Accessed 23 May 2024)

Lightweight and low-cost greenhouse
sensor package

WeedWarden https://github.com/OPEnSLab-OSU/WeedWarden
(Accessed 23 May 2024)

Low-cost plant detection sensor that can
be mounted on rovers or tractors.

Table A6. This table provides a list of uncommon words and abbreviations with their descriptions or
full terms in the order they appear.

Abbreviation/Word Full Term Description

STEM Science, technology, engineering,
and mathematics

Common term used in educational
literature and programs

LTE Long-Term Evolution Current generation of cellular
data transmission

JSON JavaScript Object Notation Used to serialize data to a dictionary

SAMD21/51 N/A Microcontroller from the SAM D21/DA1
family developed by Microchip

SAMD N/A Family of ARM® processors developed
by Microchip

LoRa Long-Range, Low-Power Wide
Area Network Used for low-power radio transmission

SD Secure Digital Used for low-power radio transmission

Adalogger N/A Feather M0 formfactor board with
built-in SD card reader/writer

ESP32 N/A Microcontroller developed by
Espressif systems

RAM Random access memory N/A

kB Kilobytes N/A

ATmega32u4 N/A AVR® microcontroller developed
by Microchip

TI MSP430 N/A General purpose microcontroller
developed by Texas Instruments

IDE Interactive Development Environment N/A

https://github.com/OPEnSLab-OSU/WeatherChimes
https://github.com/OPEnSLab-OSU/Lilypad
https://github.com/OPEnSLab-OSU/FloDar
https://github.com/OPEnSLab-OSU/SmartRock
https://github.com/OPEnSLab-OSU/Evaporometer
https://github.com/OPEnSLab-OSU/Dendrometer
https://github.com/OPEnSLab-OSU/eGreenHouse
https://github.com/OPEnSLab-OSU/WeedWarden

Sensors 2024, 24, 3466 31 of 34

Table A6. Cont.

Abbreviation/Word Full Term Description

PCB Printed Circuit Board N/A

I2C Inter-Integrated Circuit Used to communicate between the
microcontroller and other peripherals

UART Universal Asynchronous
Receiver/Transmitter

Used to communicate between the
microcontroller and other peripherals

SDI12 Serial Digital Interface at 1200 baud Used to communicate between the
microcontroller and other peripherals

SPI Serial Peripheral Interface Used to communicate between the
microcontroller and other peripherals

PWM Pulse Width Modulation Used to control analog circuits with
digital outputs

DC Direct Current N/A

LED Light-Emitting Diode N/A

SARA-R4 N/A LTE module developed by u-blox

SIM Subscriber Identity Module Used to identify cellular connections with
the cell network

RockBLOCK Mk2 N/A Iridium satellite communication module

RFM Radio Frequency Module N/A

kbps Kilobits per second N/A

RTC Real-time clock Keeps track of the current time

TCA9548 N/A I2C multiplexer developed by
Texas Instruments

MPU6050 N/A 3-axis gyroscope and accelerometer

RGB Red, green, blue N/A

BEE222 Biological and Ecological Engineering 222 The course number and department that
the shield was made for

DS3231 N/A Real-time clock hardware developed by
Analog Devices

CSV Comma-separated values File format used to store data

MQTT Message Queuing Telemetry Transport Used to upload data from a device to a
remote server

Serial Monitor N/A Interface used to communicate between
the device and a connected computer

UI User interface N/A

WDT Watchdog Timer Will reset the device if triggered to
recover from a hung state

CO2 Carbon dioxide N/A

NDIR Non-dispersive infrared N/A

NDVI Normalized difference vegetation index N/A

MongoDB N/A No-SQL database used to store
device measurements

EZO™ N/A Line of Atlas Scientific water sensors

C-style string N/A An array of characters in memory that
terminated with null (0) byte

Sensors 2024, 24, 3466 32 of 34

References
1. Communications-Wireless, Remote, Hard-Wired, Direct, or Two-Way Communication. Available online: http://www.campbellsci.

com/communications (accessed on 15 September 2023).
2. Messer, H.; Zinevich, A.; Alpert, P. Environmental sensor networks using existing wireless communication systems for rainfall

and wind velocity measurements. IEEE Instrum. Meas. Mag. 2012, 15, 32–38. [CrossRef]
3. Andres, L.; Boateng, K.; Borja-Vega, C.; Thomas, E. A Review of In-Situ and Remote Sensing Technologies to Monitor Water and

Sanitation Interventions. Water 2018, 10, 756. [CrossRef]
4. Arnold, C.; Harms, M.; Goschnick, J. Air Quality Monitoring and Fire Detection With The Karlsruhe Electronic Micronose

KAMINA. Sens. J. IEEE 2002, 2, 179–188. [CrossRef]
5. Grimaldi, D.; Marinov, M. Distributed measurement systems. Measurement 2001, 30, 279–287. [CrossRef]
6. Lee, D.-D.; Lee, D.-S. Environmental gas sensors. IEEE Sens. J. 2001, 1, 214–224. [CrossRef]
7. Kim, Y.; Evans, R.G.; Iversen, W.M. Remote Sensing and Control of an Irrigation System Using a Distributed Wireless Sensor

Network. IEEE Trans. Instrum. Meas. 2008, 57, 1379–1387. [CrossRef]
8. Lee, H.C.; Banerjee, A.; Fang, Y.-M.; Lee, B.-J.; King, C.-T. Design of a Multifunctional Wireless Sensor for In-Situ Monitoring of

Debris Flows. IEEE T Instrum. Meas. 2010, 59, 2958–2967. [CrossRef]
9. Lempert, R.J.; Busch, L.; Brown, R.; Patton, A.; Turner, S.; Schmidt, J.; Young, T. Community-Level, Participatory Co-Design for

Landslide Warning with Implications for Climate Services. Sustainability 2023, 15, 4294. [CrossRef]
10. Intergovernmental Panel on Climate Change. Summary for Policymakers. In Climate Change 2022: Impacts, Adaptation, and

Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Pörtner,
H.-O., Roberts, D.C., Poloczanska, E.S., Eds.; Cambridge University Press: Cambridge, UK, 2022.

11. Moser, S.C. Can science on transformation transform science? Lessons from co-design. Curr. Opin. Environ. Sustain. 2016,
20, 106–115. [CrossRef]

12. Reed, M.S. Stakeholder participation for environmental management: A literature review. Biol. Conserv. 2008, 141, 2417–2431.
[CrossRef]

13. Blomkamp, E. The Promise of Co-Design for Public Policy. In Routledge Handbook of Policy Design; Howlett, M., Mukherjee, I., Eds.;
Routledge: New York, NY, USA, 2018; pp. 59–73.

14. Aufdenkampe, A.K.; Damiano, S.G.; Hicks, S.; Horsburgh, J.S. EnviroDIY ModularSensors: A Library to give Environmental
Sensors a Common Interface of Functions for use with Arduino-Compatible Dataloggers. In AGU Fall Meeting Abstracts; American
Geophysical Union: New Orleans, LA, USA, 2017; Volume 2017, p. H41J-1579.

15. Ali, A.S.; Zanzinger, Z.; Debose, D.; Stephens, B. Open Source Building Science Sensors (OSBSS): A low-cost Arduino-based
platform for long-term indoor environmental data collection. Build. Environ. 2016, 100, 114–126. [CrossRef]

16. CR1000X: Measurement and Control Datalogger. Available online: https://www.campbellsci.com/cr1000x (accessed on
26 September 2023).

17. Clement, S.; Spellman, K.; Oxtoby, L.; Kealy, K.; Bodony, K.; Sparrow, E.; Arp, C. Redistributing Power in Community and Citizen
Science: Effects on Youth Science Self-Efficacy and Interest. Sustainability 2023, 15, 8876. [CrossRef]

18. CRBasic Help-CRBasic Editor. Available online: https://help.campbellsci.com/crbasic/cr6/ (accessed on 9 May 2024).
19. What Is Arduino? Available online: https://www.arduino.cc/en/Guide/Introduction (accessed on 9 May 2024).
20. Seeed Studio Bazaar, The IoT Hardware Enabler. Available online: https://www.seeedstudio.com/ (accessed on 19 January 2024).
21. DFRobot Open-Source Hardware Electronics and Kits. Available online: https://www.dfrobot.com/ (accessed on 19 January 2024).
22. JSON. Available online: https://www.json.org/json-en.html (accessed on 19 January 2024).
23. A. Industries, Adafruit Feather M0 Basic Proto-ATSAMD21 Cortex M0. Available online: https://www.adafruit.com/product/27

72 (accessed on 26 September 2023).
24. Microchip, SAM D21/DA1, DS40001882F. 2020. Available online: https://ww1.microchip.com/downloads/en/DeviceDoc/

SAM_D21_DA1_Family_DataSheet_DS40001882F.pdf (accessed on 19 September 2023).
25. A. Industries, Adafruit Feather M0 with RFM95 LoRa Radio-900MHz. Available online: https://www.adafruit.com/product/31

78 (accessed on 19 September 2023).
26. Adafruit Feather M0 WiFi-ATSAMD21 + ATWINC1500: ID 3010: $39.95: Adafruit Industries, Unique & fun DIY Electronics and

Kits. Available online: https://www.adafruit.com/product/3010 (accessed on 26 September 2023).
27. A. Industries. Adafruit Feather M0 Bluefruit LE. Available online: https://www.adafruit.com/product/2995 (accessed on

26 September 2023).
28. A. Industries. Adafruit Feather M0 Adalogger. Available online: https://www.adafruit.com/product/2796 (accessed on

26 September 2023).
29. Adafruit Learning System. Feather Specifications. Available online: https://learn.adafruit.com/adafruit-feather/feather-

specification (accessed on 19 September 2023).
30. Adafruit Learning System. Relay Wings. Available online: https://learn.adafruit.com/adafruit-feather/relay-wings (accessed on

19 September 2023).
31. Adafruit Learning System. Adafruit 8-Channel PWM or Servo FeatherWing. Available online: https://learn.adafruit.com/

adafruit-8-channel-pwm-or-servo-featherwing/overview (accessed on 19 September 2023).

http://www.campbellsci.com/communications
http://www.campbellsci.com/communications
https://doi.org/10.1109/MIM.2012.6174577
https://doi.org/10.3390/w10060756
https://doi.org/10.1109/JSEN.2002.800681
https://doi.org/10.1016/S0263-2241(01)00019-7
https://doi.org/10.1109/JSEN.2001.954834
https://doi.org/10.1109/TIM.2008.917198
https://doi.org/10.1109/TIM.2010.2046361
https://doi.org/10.3390/su15054294
https://doi.org/10.1016/j.cosust.2016.10.007
https://doi.org/10.1016/j.biocon.2008.07.014
https://doi.org/10.1016/j.buildenv.2016.02.010
https://www.campbellsci.com/cr1000x
https://doi.org/10.3390/su15118876
https://help.campbellsci.com/crbasic/cr6/
https://www.arduino.cc/en/Guide/Introduction
https://www.seeedstudio.com/
https://www.dfrobot.com/
https://www.json.org/json-en.html
https://www.adafruit.com/product/2772
https://www.adafruit.com/product/2772
https://ww1.microchip.com/downloads/en/DeviceDoc/SAM_D21_DA1_Family_DataSheet_DS40001882F.pdf
https://ww1.microchip.com/downloads/en/DeviceDoc/SAM_D21_DA1_Family_DataSheet_DS40001882F.pdf
https://www.adafruit.com/product/3178
https://www.adafruit.com/product/3178
https://www.adafruit.com/product/3010
https://www.adafruit.com/product/2995
https://www.adafruit.com/product/2796
https://learn.adafruit.com/adafruit-feather/feather-specification
https://learn.adafruit.com/adafruit-feather/feather-specification
https://learn.adafruit.com/adafruit-feather/relay-wings
https://learn.adafruit.com/adafruit-8-channel-pwm-or-servo-featherwing/overview
https://learn.adafruit.com/adafruit-8-channel-pwm-or-servo-featherwing/overview

Sensors 2024, 24, 3466 33 of 34

32. Adafruit Learning System. Adafruit Stepper + DC Motor FeatherWing. Available online: https://learn.adafruit.com/adafruit-
stepper-dc-motor-featherwing/overview (accessed on 19 September 2023).

33. NeoPixels Products Category on Adafruit Industries. Available online: https://www.adafruit.com/category/168 (accessed on
26 September 2023).

34. A. Industries. Adafruit Ethernet FeatherWing. Available online: https://www.adafruit.com/product/3201 (accessed on
26 September 2023).

35. SparkFun LTE CAT M1/NB-IoT Shield-SARA-R4-CEL-14997-SparkFun Electronics. Available online: https://www.sparkfun.
com/products/14997 (accessed on 26 September 2023).

36. RockBLOCK Mk2-Iridium SatComm Module-WRL-13745-SparkFun Electronics. Available online: https://www.sparkfun.com/
products/13745 (accessed on 26 October 2023).

37. Ebrahimi, K.K.; Lunn, G.R.; Hudson, B.M.; Udell, C.; Selker, J.S. Slide Sentinel: A Fully Automated, Low-Cost Landslide
Monitoring System Using Real Time Kinematics. In Proceedings of the AGU Fall Meeting 2019, AGU, San Francisco, CA,
USA, 9–13 December 2019. Available online: https://agu.confex.com/agu/fm19/meetingapp.cgi/Paper/561000 (accessed on
19 November 2023).

38. Kampianakis, E.; Kimionis, J.; Tountas, K.; Konstantopoulos, C.; Koutroulis, E.; Bletsas, A. Wireless Environmental Sensor
Networking With Analog Scatter Radio and Timer Principles. IEEE Sens. J. 2014, 14, 3365–3376. [CrossRef]

39. SX1276/77/78/79—137 MHz to 1020 MHz Low Power Long Range Transceiver. Available online: https://cdn-shop.adafruit.
com/product-files/3179/sx1276_77_78_79.pdf (accessed on 19 November 2023).

40. Ameloot, T.; Van Torre, P.; Rogier, H. A Compact Low-Power LoRa IoT Sensor Node with Extended Dynamic Range for Channel
Measurements. Sensors 2018, 18, 2137. [CrossRef] [PubMed]

41. Augustin, A.; Yi, J.; Clausen, T.; Townsley, W.M. A Study of LoRa: Long Range & Low Power Networks for the Internet of Things.
Sensors 2016, 16, 1466. [CrossRef]

42. Chu, M.; Patton, A.; Roering, J.; Siebert, C.; Selker, J.; Walter, C.; Udell, C. SitkaNet: A low-cost, distributed sensor network for
landslide monitoring and study. HardwareX 2021, 9, e00191. [CrossRef] [PubMed]

43. Z9-T, Digi-Key Electronics. Available online: https://www.digikey.com/en/products/detail/freewave-technologies/Z9-T/9963
074 (accessed on 26 September 2023).

44. Embeddable Industrial-Grade Radio Module. Available online: https://www.freewave.com/wp-content/uploads/2019/07/
FreeWave-LDS0006AA-ZumLink-Z9-C-T-900-Series-Serial-Radio-Module-DS-Jul-2019.pdf (accessed on 26 September 2023).

45. 2.4 GHz Transceiver IC-nRF24L01+-COM-00690-SparkFun Electronics. Available online: https://www.sparkfun.com/products/
690 (accessed on 16 October 2023).

46. In-Depth: How nRF24L01 Wireless Module Works & Interface with Arduino. Last Minute Engineers. Available online: https:
//lastminuteengineers.com/nrf24l01-arduino-wireless-communication/ (accessed on 16 October 2023).

47. Nguyen, B.; Goto, B.; Selker, J.S.; Udell, C. Hypnos board: A low-cost all-in-one solution for environment sensor power
management, data storage, and task scheduling. HardwareX 2021, 10, e00213. [CrossRef]

48. Milford, C.; Udell, C.; Selker, J.S. Smart Rock: Low Cost, User Friendly Stream Monitoring. In Proceedings of the the Fall Meeting
2022, AGU, Chicago, IL, USA, 12–16 December 2022. Available online: https://agu.confex.com/agu/fm22/meetingapp.cgi/
Paper/1163828 (accessed on 19 November 2023).

49. Kang, K.; Kerr, A.C.; Smith, M.; Brady, C.G.; Koontz, N.; Selker, J.S.; Udell, C. Loom, A Simple Modular Framework for Rapid
Prototyping Environmental Sensors, Actuators, and Data Collection. In Proceedings of the AGU Fall Meeting 2020, AGU, Online,
1–17 December 2020. Available online: https://agu.confex.com/agu/fm20/meetingapp.cgi/Paper/685976 (accessed on 1 April
2024).

50. “What Is Polymorphism?|Definition from TechTarget,” WhatIs. Available online: https://www.techtarget.com/whatis/
definition/polymorphism (accessed on 1 April 2024).

51. Greiman, B. greiman/SdFat. Available online: https://github.com/greiman/SdFat (accessed on 19 October 2023).
52. RadioHead: RadioHead Packet Radio Library for Embedded Microprocessors. Available online: https://www.airspayce.com/

mikem/arduino/RadioHead/ (accessed on 26 September 2023).
53. MessagePack: It’s Like JSON. But Fast and Small. Available online: https://msgpack.org/ (accessed on 26 September 2023).
54. Eclipse Mosquitto. Available online: https://mosquitto.org/ (accessed on 19 September 2023).
55. Node-RED. Available online: https://nodered.org/ (accessed on 19 September 2023).
56. What Is Max?|Cycling ’74. Available online: https://cycling74.com/products/max (accessed on 16 October 2023).
57. Woo, W.; Richards, W.; Selker, J.; Udell, C. WeatherChimes: An Open IoT Weather Station and Data Sonification System.

HardwareX 2023, 13, e00402. [CrossRef] [PubMed]
58. Clonch, C.; Huynh, M.; Goto, B.; Levin, A.; Selker, J.; Udell, C. High precision zero-friction magnetic dendrometer. HardwareX

2021, 10, e00248. [CrossRef]
59. Clonch, C.; Goto, B.; Huynh, M.; Selker, J.; Udell, C. Magnetic Dendrometer Apparatus and Corresponding Method.

US20230175830A1, 8 June 2023. Available online: https://patents.google.com/patent/US20230175830A1/en?q=(Dendrometer)
&before=publication:20230608&after=publication:20230608 (accessed on 9 May 2024).

https://learn.adafruit.com/adafruit-stepper-dc-motor-featherwing/overview
https://learn.adafruit.com/adafruit-stepper-dc-motor-featherwing/overview
https://www.adafruit.com/category/168
https://www.adafruit.com/product/3201
https://www.sparkfun.com/products/14997
https://www.sparkfun.com/products/14997
https://www.sparkfun.com/products/13745
https://www.sparkfun.com/products/13745
https://agu.confex.com/agu/fm19/meetingapp.cgi/Paper/561000
https://doi.org/10.1109/JSEN.2014.2331704
https://cdn-shop.adafruit.com/product-files/3179/sx1276_77_78_79.pdf
https://cdn-shop.adafruit.com/product-files/3179/sx1276_77_78_79.pdf
https://doi.org/10.3390/s18072137
https://www.ncbi.nlm.nih.gov/pubmed/29970839
https://doi.org/10.3390/s16091466
https://doi.org/10.1016/j.ohx.2021.e00191
https://www.ncbi.nlm.nih.gov/pubmed/35492035
https://www.digikey.com/en/products/detail/freewave-technologies/Z9-T/9963074
https://www.digikey.com/en/products/detail/freewave-technologies/Z9-T/9963074
https://www.freewave.com/wp-content/uploads/2019/07/FreeWave-LDS0006AA-ZumLink-Z9-C-T-900-Series-Serial-Radio-Module-DS-Jul-2019.pdf
https://www.freewave.com/wp-content/uploads/2019/07/FreeWave-LDS0006AA-ZumLink-Z9-C-T-900-Series-Serial-Radio-Module-DS-Jul-2019.pdf
https://www.sparkfun.com/products/690
https://www.sparkfun.com/products/690
https://lastminuteengineers.com/nrf24l01-arduino-wireless-communication/
https://lastminuteengineers.com/nrf24l01-arduino-wireless-communication/
https://doi.org/10.1016/j.ohx.2021.e00213
https://agu.confex.com/agu/fm22/meetingapp.cgi/Paper/1163828
https://agu.confex.com/agu/fm22/meetingapp.cgi/Paper/1163828
https://agu.confex.com/agu/fm20/meetingapp.cgi/Paper/685976
https://www.techtarget.com/whatis/definition/polymorphism
https://www.techtarget.com/whatis/definition/polymorphism
https://github.com/greiman/SdFat
https://www.airspayce.com/mikem/arduino/RadioHead/
https://www.airspayce.com/mikem/arduino/RadioHead/
https://msgpack.org/
https://mosquitto.org/
https://nodered.org/
https://cycling74.com/products/max
https://doi.org/10.1016/j.ohx.2023.e00402
https://www.ncbi.nlm.nih.gov/pubmed/36875258
https://doi.org/10.1016/j.ohx.2021.e00248
https://patents.google.com/patent/US20230175830A1/en?q=(Dendrometer)&before=publication:20230608&after=publication:20230608
https://patents.google.com/patent/US20230175830A1/en?q=(Dendrometer)&before=publication:20230608&after=publication:20230608

Sensors 2024, 24, 3466 34 of 34

60. Levintal, E.; Kang, K.L.; Larson, L.; Winkelman, E.; Nackley, L.; Weisbrod, N.; Selker, J.S.; Udell, C.J. eGreenhouse: Robotically
positioned, low-cost, open-source CO2 analyzer and sensor device for greenhouse applications. HardwareX 2021, 9, e00193.
[CrossRef]

61. Home·OPEnSLab-OSU/Lilypad Wiki. Available online: https://github.com/OPEnSLab-OSU/Lilypad/wiki (accessed on
16 October 2023).

62. Duncan, L.; Miller, B.; Shaw, C.; Graebner, R.; Moretti, M.L.; Walter, C.; Selker, J.; Udell, C. Weed Warden: A low-cost weed
detection device implemented with spectral triad sensor for agricultural applications. HardwareX 2022, 11, e00303. [CrossRef]
[PubMed]

63. Smart 18-Channel VIS to NIR Spectral_ID 3-Sensor Chipset with Electronic Shutter. Available online: https://cdn.sparkfun.com/
assets/c/2/9/0/a/AS7265x_Datasheet.pdf (accessed on 14 May 2024).

64. Adafruit Unified Sensor Driver. Adafruit Industries, 18 November 2023. Available online: https://github.com/adafruit/
Adafruit_Sensor (accessed on 19 November 2023).

65. Monitor My Watershed. WikiWatershed. Available online: https://wikiwatershed.org/monitor/ (accessed on 19 November
2023).

66. IoT Analytics-ThingSpeak Internet of Things. Available online: https://thingspeak.com/ (accessed on 16 October 2023).
67. EZO-CO2TM Embedded Carbon Dioxide Sensor. Atlas Scientific. Available online: https://atlas-scientific.com/probes/co2

-sensor/ (accessed on 26 October 2023).
68. Kutscher, V.; Martins, T.W.; Olbort, J.; Anderl, R. Concept for Interaction of Hardware Simulation and Embedded Software in a

Digital Twin Based Test Environment. Procedia CIRP 2021, 104, 999–1004. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.ohx.2021.e00193
https://github.com/OPEnSLab-OSU/Lilypad/wiki
https://doi.org/10.1016/j.ohx.2022.e00303
https://www.ncbi.nlm.nih.gov/pubmed/35509898
https://cdn.sparkfun.com/assets/c/2/9/0/a/AS7265x_Datasheet.pdf
https://cdn.sparkfun.com/assets/c/2/9/0/a/AS7265x_Datasheet.pdf
https://github.com/adafruit/Adafruit_Sensor
https://github.com/adafruit/Adafruit_Sensor
https://wikiwatershed.org/monitor/
https://thingspeak.com/
https://atlas-scientific.com/probes/co2-sensor/
https://atlas-scientific.com/probes/co2-sensor/
https://doi.org/10.1016/j.procir.2021.11.168

	Introduction
	Materials and Methods
	Hardware
	Sensors
	Actuators
	Internet Interfaces
	Telemetry
	Shields
	Hypnos
	I2C Multiplexer (TCA9548)
	Project-Specific Breakout Boards
	Course Shields

	Software
	Library and Board Profile
	Module Architecture
	Manager
	Hypnos
	Integrating New Modules
	Actuation Integration
	Telemetry Integration
	MQTT
	Max
	Robustness, Troubleshooting Utilities, and Failing Gracefully

	Results
	WeatherChimes
	Dendrometer
	eGreenhouse, Robotically Positioned Sensor Package
	LilyPad
	Weed Warden

	Discussion
	Conclusions
	Patents
	Appendix A
	References

