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XFEL structures of the human MT> melatonin
receptor reveal the basis of subtype selectivity
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The human MT, and MT, melatonin receptors'? are G-protein-
coupled receptors (GPCRs) that help to regulate circadian rhythm
and sleep patterns®. Drug development efforts have targeted both
receptors for the treatment of insomnia, circadian rhythm and
mood disorders, and cancer®, and MT, has also been implicated
in type 2 diabetes*®. Here we report X-ray free electron laser
(XFEL) structures of the human MT) receptor in complex with the
agonists 2-phenylmelatonin (2-PMT) and ramelteon® at resolutions
of 2.8 A and 3.3 A, respectively, along with two structures of
function-related mutants: H208°%6A (superscripts represent the
Ballesteros—-Weinstein residue numbering nomenclature’) and
N86%°'D, obtained in complex with 2-PMT. Comparison of the
structures of MT, with a published structure® of M T reveals that,
despite conservation of the orthosteric ligand-binding site residues,
there are notable conformational variations as well as differences
in [*H]melatonin dissociation kinetics that provide insights into
the selectivity between melatonin receptor subtypes. A membrane-
buried lateral ligand entry channel is observed in both MT; and
MT,, but in addition the MT, structures reveal a narrow opening
towards the solvent in the extracellular part of the receptor. We
provide functional and kinetic data that support a prominent role
for intramembrane ligand entry in both receptors, and suggest that
there might also be an extracellular entry path in MT,. Our findings
contribute to a molecular understanding of melatonin receptor
subtype selectivity and ligand access modes, which are essential
for the design of highly selective melatonin tool compounds and
therapeutic agents.

To improve the low surface expression and stability of wild-type
MT,, we introduced eight point mutations on the basis of homology to
other class A receptors: D86>™N (ref. ), LI0SECI'F, F129°*4'W (ref. 1),
N137°%D, C140°>°L, W264%*°E, A305”°°P, and N312%*/D; these were
essential for determination of the high-resolution structure of both
MT, and MT,2. To promote crystal contacts, we used a double-fusion
approach, with rubredoxin!! in the intracellular loop 3 (ICL3) and ther-
mostabilized apocytochrome bs,RIL (BRIL)!! attached to the receptor
N terminus. Radioligand binding assays revealed a 120-fold reduction
in melatonin binding affinity (approximately 30-fold reduction at phys-
iological concentration of NaCl), probably owing to stabilization of
the crystallized construct in an inactive low agonist affinity’ state that
is deficient in G-protein coupling and signalling”!? (Extended Data
Table 1). All four MT; structures were obtained using lipidic cubic
phase (LCP)"? crystallization (Extended Data Fig. 1, Extended Data
Table 2). The overall receptor conformation was similar in all four

structures (Cox root mean squared deviation (r.m.s.d.) < 0.3 A), so we
used the highest resolution MT,-2-PMT structure in the analysis below
unless otherwise noted.

MT), adopts the canonical seven-transmembrane-domain (7TM)
fold of class A receptors, with the short amphipathic helix VIII parallel
to the membrane on the intracellular side (Fig. 1a). As in MT%, the
7TM bundle of MT}, is found in an inactive conformation. Restoration
of the function-impairing D86%*°°N mutation (Extended Data Table 3)
allowed us to solve the MT,(N86D)-2-PMT structure at a lower reso-
lution and showed that this mutation had no major effect on the overall
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Fig. 1 | Overview of the MT) structure. a, Overview of M T, (violet)
shows the canonical 7TM topology, with the ligand 2-PMT (purple) in
the binding pocket. A 90° view shows the receptor from the extracellular
side. Approximate membrane boundaries are shown as grey lines.

b, 2mF, — DF_ density (grey mesh) of 2-PMT contoured at 1. ¢, Binding
pocket with key ligand interaction residues. d, Schematic diagram of
ligand-interacting residues. Residues in the hydrophobic subpocket are
coloured green. Hydrogen bonds are shown as dashed yellow lines in ¢, d.
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Fig. 2 | Two possible ligand entries in MT,. a, View of the membrane-
buried channel in MT,. Inset, channel diameter profile across its length
for MT; and MT5. b, A 90° view of the channel in MT>, highlighting three
residues discussed in the text. ¢, The same view as in b of MT (green)
showing a different conformation of Y187°¢ that widens the channel
compared to MT5. d, View of the ECL opening found in M T, (violet)
with 2-PMT (purple). Inset, ECL opening profile across the length.

receptor conformation, as also supported by molecular dynamics sim-
ulations (Supplementary Fig. 1). Structural comparison of MT, and
MT;—which share 68% sequence identity—revealed notable overall
similarity (Cacr.m.s.d. < 0.6 A), with all ligand-interacting residues
conserved® (Fig. 1d, Extended Data Fig. 2c). There is a common phar-
macophore between receptor subtypes that consists of aromatic stack-
ing of the ligand core with F192E12, as well as hydrogen bonds between
the methoxy group of 2-PMT and N175%° and between the alkyla-
mide tail of the ligand and Q194E€12 (Fig. 1c, d). The stability of these
ligand-anchoring interactions was confirmed by molecular dynamics
simulations (Extended Data Fig. 3). Further, mutation of F192E¢2
to isoleucine or alanine caused loss of ligand binding and signalling
(Extended Data Tables 1, 4), as also observed for MT;® In contrast to
MT}, however, mutation of N175*% to alanine in M T, did not impair
receptor function, which indicates that this residue has different roles in
the activation of the two receptor subtypes. Mutation of either Q194512
or N268%%2 to alanine had only minor effects on receptor ligand affinity,
receptor activation or stability (Extended Data Tables 1, 4, 5), whereas
the double mutation Q1945“12A/N268%%2A results in a marked loss
of receptor activity (Extended Data Tables 4, 5), which suggests that
these residues show functional redundancy in MT,. Notably, despite
the binding site residues being conserved between the two receptors, we
observed subtle conformational differences between them, such as in
the side chains of Y200>*® and Y2947 and in the backbone region sur-
rounding P174*% (Extended Data Fig. 2d). Furthermore, the binding
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e, A 90° view through the ECL opening in MT), highlighting three residues
discussed in the text. f, The same view as in e of MT (green), showing

a different conformation of Y2817-*° that seals the ECL opening. g, [*H]
Melatonin dissociation kinetics for MT, membrane channel mutants (top)
and ECL opening mutants (bottom). h, As in g for MT,_Residence time
(ko 1) in g and h is given in minutes. Data are shown as mean = s.e.m. for
n = 3 independent experiments.

pocket of MT, is about 50 A3 (7%) larger than that of M T, with most
of the volume difference attributed to the region around the alkylamide
tail and the hydrophobic subpocket that accommodates substituents of
melatonin analogues in our structures (Fig. 1d, Extended Data Fig. 2b).
These regions have a key role in MT) selectivity, as discussed below.
Structural analysis of MT, revealed an opening between helices IV
and V from the orthosteric ligand binding site to the membrane
(Fig. 2a). This channel is similar to that seen in MT}, but is more con-
stricted (around 2.6 A in diameter at the narrowest part). Comparison
of the structures of MT, and M T revealed that Y200°38 in M T, makes
a hydrogen bond to N175%9C, constricting the channel, whereas in M T,
itadopts a different conformation, pointing towards the lipid interface
(Fig. 2a-c, Extended Data Fig. 2¢, d). In our MT,(H208A)-2-PMT
structure, mutating H208>“¢ near the channel entrance to alanine
further closes off the opening by an approximately 0.9 A inward shift
of helix V (Extended Data Fig. 4). This finding suggests that H208°46
helps to control the channel entrance, albeit only moderately influ-
encing ligand affinity and receptor function in MT, (Extended Data
Tables 1, 4). Further analysis of the M T} structures revealed a potential
secondary access route to the orthosteric binding site from the sol-
vent-exposed extracellular (ECL) region (Fig. 2d). This second opening
has a slightly larger diameter (about 2.5-3 A) and is lined by aromatic
Y29473° and hydrophilic T1915°12 and Q194512 residues (Fig. 2e). In
MTj, the corresponding residues Q18 1ECL2 and Y2817%° adopt different
conformations, completely sealing off this entrance (Fig. 2f).
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Fig. 3 | Selectivity determinants of ligands at MT; and MT,.

a, Docking of selective ligands into M T (green), with 2-PMT (purple)
from the crystal structure shown as reference. Ligands selective for MT,
(compounds 63, 64, 65a, and 65b)!” are shown in grey. Two representative
ligands, 5-HEAT'® and CTL 01-05-B-A05% are coloured pale yellow,
with their selectivity-conferring substituents (R! position) shown in
orange. b, Docking of ligands into M T} (violet), with 2-PMT (purple)
shown as reference. Non-selective (tasimelteon, TIK301'7) and selective
(UCM1014?°, K185', and 4P-PDOT?) ligands are shown in grey. Two
representative ligands, DH97'® and IIK7'” are coloured pale yellow, with
selectivity-conferring substituents (R? and R® positions) shown in cyan.
Predicted hydrogen bonds are shown as dotted lines in a, b. ¢, Melatonin
SAR, in which R! substituents confer M T selectivity (orange), and
substituents in R* and R? positions confer M T selectivity (cyan). See
Supplementary Table 1 for a list of all docked ligands.

To test the relative importance of these two putative binding site
access routes, we performed kinetic ligand dissociation studies on both
receptors using [*H]melatonin as a tracer. The ligand residence time
(koft”") is substantially longer in wild-type MT, than in MTy, which sug-
gests that the narrower membrane entry channel restricts ligand access
(Fig. 2g, h). Mutation of the membrane channel-lining residue Y>8A,
designed to widen the access channel, caused a 30-fold decrease in
residence time for MT, (with similar ligand affinity), while the corre-
sponding mutation in MT; caused a more-modest decrease in residence
time, consistent with the wider channel and a different conformation of
Y338 in MT). To constrict the channel, we mutated A*%, a key residue
at the interface of helices IV and V in both receptors, into a bulkier
methionine. This mutation markedly increased residence time for both
receptors (Fig. 2g, h), reaching up to 20 h in MT,, which suggests that
this channel is important for ligand access in both receptors.

When we tested mutations designed to widen the ECL opening in
both receptors, ligand residence time was reduced more than tenfold in
MT, mutants T1915°12A and Q194€1?A, and roughly fivefold with the
equivalent ECL2 mutations in MT (Fig. 2g, h). The MT,(Y2947*A)
mutant showed an even greater decrease in ligand residence time
(22-fold) relative to the wild type, whereas the equivalent MT; mutant
showed a similar residence time to the wild type. These differences can
be reconciled if ligand site access through the ECL entrance is more
important in MT), than in MTj, consistent with the crystal structures, in
which residue Y2947 adopts a different conformation in MT5, allowing
easier ligand egress through the ECL opening.

The elucidation of high-resolution structures of both melatonin
receptor subtypes and published ligand structure-activity relationship
(SAR) data'*!* allowed us to establish a model of receptor subtype
ligand selectivity. To this end, we used molecular docking of several
available selective ligands to both receptors. Docking of the moder-
ately MT-selective compound 5-hydroxyethoxy-N-acetyltryptamine

A2977:42
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Fig. 4 | MT, mutations implicated in type 2 diabetes. Mapping of
residues implicated in type 2 diabetes®® onto the MT; crystal structure.
Gold, residues in which mutations lead to defects in two or more pathways;
cyan, G-protein-specific defects; blue, 3-arrestin-2-specific defects;
magenta, ERK-specific defects; green, mutations that abolish melatonin
binding; grey, mutations similar to the wild type. Type-2-diabetes-related
mutations in residues not observed in the crystal structure are not shown.

(5-HEAT)'® and the bitopic ligand CTL 01-05-B-A05® suggests that—
although an extension or substitution of the R! position by a linear alkyl
chain can be accommodated by the membrane access channel in both
MT, and MT, (Fig. 3a, c)—the narrower M T, channel renders binding
of the extended portion of the bitopic ligands suboptimal owing to
potential steric clashes. Accordingly, the H208>4¢A mutation in M T,
abolished the efficacy of CTL 01-05-B-A05 as a G; agonist (Extended
Data Fig. 4d), probably by further restricting the channel and/or elimi-
nating the hydrogen bond between H208>4¢ and CTL 01-05-B-A05 that
was observed in docking to MT;%. This mutation had a negligible effect
on monotopic ligand binding and function (Extended Data Tables 1,
4, 5), which suggests that a sufficiently wide membrane channel (as in
MT)) is essential for accommodation of bitopic ligands.

The MT,-selective ligands IIK7 and DH97 (both of which are about
90-fold selective)'”!® adopt ‘tail up’ binding modes similar to that of
2-PMT, with their alkylamide tails (R? position in Fig. 3b, ¢) interacting
with Q1945C12, By contrast, in MT) the longer alkylamide tails of these
ligands avoid this upward tail position owing to steric clashes, and can
adopt only suboptimal ‘tail down’ conformations. Bulky substituents in
the R® position confer MT; selectivity by using the larger hydrophobic
subpocket of the receptor (Fig. 3b, ¢). In summary, our analysis suggests
that R! substituents are important for MT; selectivity, while R* and R®
mostly convey selectivity towards M T, (Fig. 3c). The slightly larger
binding site in M T also helps to achieve selectivity, as reflected by the
larger number of compounds that are moderately selective for MT,
(Extended Data Fig. 5).

Subtype-selective compounds are desirable owing to the involvement
of MT; in type 2 diabetes, for which a number of single nucleotide
polymorphisms (SNPs) have been reported*>. When we mapped these
sites onto our MT, structure, we observed clustering of residues in
the vicinity of the ligand binding pocket and on the receptor surface,
along the membrane interface of helices I and II and the intracellular
G-protein and 3-arrestin binding regions (Fig. 4). The exposed positions
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of these residues could point to their involvement in interactions with
intracellular and membrane partners. Other instances of SNPs asso-
ciated with type 2 diabetes include P95**°L of the YPYP motif, which
is involved in receptor stability and function in MT,® and mutations
in known microswitches such as R138**°H/L/C of the E/DRY motif'’
and Y3087*°S of the NPXXY motif'2. Although none of the analysed
SNPs is involved in direct interactions with melatonin, the M120*321/V
and V124%3] variants are located in the hydrophobic subpocket of the
receptor, which could influence ligand binding and affect subsequent
signalling pathways*®.

The structural basis of melatonin receptor subtype selectivity
revealed here has the potential to inspire a new generation of highly
selective pharmacological tools that will help to further dissect the
melatonin system. We also provide insights into differences in ligand
entry between the two receptors by demonstrating the potential of MT,
to support extracellular ligand access to the binding pocket. This dif-
ference in ligand entry can be exploited to facilitate melatonin recep-
tor subtype selectivity, as the ECL route in MT, could accommodate
more polar compounds compared to the membrane-buried channel.
We therefore expect that our results will lead to new therapies involving
these pleiotropic receptors, aimed at—but not limited to—the treat-
ment of type 2 diabetes, cancer and sleep disorders.

Online content
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METHODS

No statistical methods were used to predetermine sample size. The experiments
were not randomized and the investigators were not blinded to allocation during
experiments and outcome assessment.

Design and expression of MT; crystallized construct. The DNA sequence of
human MT, receptor (UniProt?! identifier P49286) was synthesized by GenScript
with optimization for expression in insect cells. The crystallized construct
(MT,-CC) has truncations of N-terminal residues 1-30 and C-terminal residues
341-362. The thermostabilized apocytochrome BRIL (UniProt POABE7) from
Escherichia coli with mutations M7W, H102I and R106L was fused to the trun-
cated N terminus of MT), with a six-residue linker (GDGARP). Another fusion
protein, rubredoxin (Rub, UniProt P00268), was fused in ICL3, replacing recep-
tor residues 232-240. For construct optimization (to increase monodispersity,
thermostability and crystallizability), the following point mutations were added:
D862°°N°, L108 M, F129*4'W'%, N137°4°D, C140>2L, W264°F, A305”°P
and N312847D (see the accompanying paper® for details). The MT,-CC coding
sequence was subcloned into a modified pFastBacl (Invitrogen) vector, with a
haemagglutinin (HA) signal sequence and a Flag tag on the N terminus and a
PreScission protease cleavage site followed by a 10x His tag on the C terminus. The
receptor was expressed in Spodoptera frugiperda cells (Sf9, purchased from ATCC,
CRL-1711, authenticated by supplier using morphology and growth characteristics,
certified mycoplasma-free), which were collected and stored as described in the
accompanying paper®.

Purification of MT,-CC. Insect cell membranes were prepared by thawing fro-
zen cell pellets in a hypotonic buffer containing 10 mM HEPES (pH 7.5), 10mM
MgCl,, 20mM KCl, and homemade protease inhibitor cocktail. Extensive washing
of the raw membranes was performed by repeated Dounce homogenization and
centrifugation in hypotonic buffer (once), followed by high osmotic buffer contain-
ing 1.0 M NaCl, 10mM HEPES (pH 7.5), 10 mM MgCl,, 20 mM KCl, and home-
made protease inhibitor cocktail (two or three times), thereby separating soluble
and membrane-associated proteins from integral membrane proteins. Stocks
(100 mM) of 2-PMT (Tocris) and ramelteon (Apex Biosciences) were dissolved
in DMSO. Washed membranes were resuspended into a buffer containing 50 pM
2-PMT or ramelteon, 2mg ml ™! iodoacetamide, and homemade protease inhibitor
cocktail, and incubated at 4 °C for 30 min before solubilization. The membranes
were then solubilized in 50 mM HEPES (pH 7.5), 150 mM NaCl, 1% (wt/vol)
n-dodecyl-3-p-maltopyranoside (DDM, Anatrace), 0.2% (wt/vol) cholesteryl hem-
isuccinate (CHS, Sigma-Aldrich) at 4°C for 3h. The supernatant was isolated by
centrifugation at 60,000¢ for 50 min, and incubated in 20 mM HEPES (pH 7.5),
800 mM NaCl with Talon (immobilized metal affinity chromatography IMAC)
resin (Clontech) overnight at 4 °C. After binding, the resin was washed with twenty
column volumes of wash buffer 1 (50 mM HEPES (pH 7.5), 50 uM 2-PMT or ramel-
teon, 800 mM NaCl, 10% (vol/vol) glycerol, 0.1% (wt/vol) DDM, 0.02% (wt/vol)
CHS, 10 mM imidazole), followed by ten column volumes of wash buffer 2 (50 mM
HEPES (pH 7.5), 50 pM 2-PMT or ramelteon, 150 mM NaCl, 10% (vol/vol) glyc-
erol, 0.05% (wt/vol) DDM, 0.01% (wt/vol) CHS, 50 mM imidazole). The protein
was then eluted in minimal volumes of elution buffer (50 mM HEPES (pH 7.5),
50 uM 2-PMT or ramelteon, 150 mM NaCl, 10% (vol/vol) glycerol, 0.02% (wt/vol)
DDM, 0.01% (wt/vol) CHS, 220 mM imidazole). PD MiniTrap G-25 columns (GE
Healthcare) were used to remove imidazole. The protein was then treated over-
night with His-tagged PreScission protease (GenScript) to cleave the C-terminal
His-tag. PreScission protease and the cleaved C-terminal fragment were removed
by binding to Talon IMAC resin for 1.5h at 4 °C. The protein was collected as the
TALON IMAC column flow-through. The ligand concentration was increased
to 100 pM, and the protein was concentrated to 30-40 mg ml™! with a 100-kDa
molecular mass cut-off Vivaspin centrifuge concentrator (Sartorius).

Protein stability assays. The stability of purified MT,-CC was analysed using
a microscale thermostability assay?? using Rotorgene (QIAGEN). In brief,
1-5pg of protein was mixed with 1.5uM 7-diethylamino-3-(4’-maleimidylphe-
nyl)-4-methylcoumarin (CPM) dye (2.5 mM stock in DMSO) in 25 mM HEPES
pH 7.5, 150 mM NaCl, 0.02% DDM (wt/vol), 0.004% CHS (wt/vol), 10% glycerol
(vol/vol), and indicated concentrations of compounds to a final volume of 100 pl.
Samples were incubated for 15min at 20 °C and then heated gradually from 25°C
to 95°C at a rate of 2 °C min~!, monitoring CPM fluorescence (excitation 365 nm,
emission 460 nm). The melting temperature (7j,,) was determined using the deriva-
tive of the resulting melting temperature curve after background subtraction using
Prism 7.0 (GraphPad).

Crystallization. Purified MT,-CC in complex with 2-PMT or ramelteon was
reconstituted into LCP by mixing it with molten lipid using a mechanical syringe
mixer!>. The protein-LCP mixture contained 40% (wt/wt) receptor solution, 54%
(wt/wt) monoolein, and 6% (wt/wt) cholesterol. Crystallization trials were per-
formed in 96-well glass sandwich plates (Marienfeld) using an NT8-LCP robot
(Formulatrix) by dispensing 40 nl of protein-laden LCP and 800 nl of precipitant
solution per well. Plates were incubated and imaged at 20 °C using an automatic
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incubator/imager (RockImager 1000, Formulatrix). Initial crystal hits were iden-
tified in a condition containing 100 mM HEPES, pH 6.8, 30% (vol/vol) PEG 400,
100 mM NH4CH;CO,. These crystals, approximately 30 x 30 x 70 pm?, were
collected using micromounts (MiTeGen) and flash-frozen in liquid nitrogen for
data collection at a microfocus synchrotron source. After extensive optimization,
the best crystals diffracted to about 3.0 A resolution, but suffered from radiation
damage, resulting in a 3.5 A complete dataset. Additives had no effect on diffraction
quality. Microcrystals for SFX data collection were prepared in gas-tight syringes
(Hamilton) as previously described®. After optimization, diffraction-quality crys-
tals were obtained from 100 mM ADA pH 5.8-6.5, 24-28% (vol/vol) PEG 400,
10-200 mM NH4CH3CO3, 50 pM 2-PMT or ramelteon, by injecting 5 jul of protein-
laden LCP into 50 pl precipitant in syringes. Before loading the microcrystals into
the LCP injector, excess precipitant was removed and 7.9 monoacylglycerol (MAG)
lipid was added to the LCP to absorb any residual precipitant solution and to
prevent crystalline phase formation upon rapid cooling when injecting LCP into
vacuum?%,

Crystallographic data collection. Data collection was performed at the
Coherent X-ray Imaging (CXI)* end station of the Linac Coherent Light Source
(LCLS), which operated at a wavelength of 1.3 A (9.83keV) delivering individual
X-ray pulses of 30 and 43 fs pulse duration and approximately 10'! photons
per pulse focused into a spot size of approximately 1.5 pm in diameter using
a pair of Kirkpatrick-Baez mirrors. Microcrystals (Extended Data Fig. 1c) of
MT;, (approximately 5 x 5 x 5 um?) were delivered in the LCP medium using
an LCP microextrusion injector? with 50-pum nozzle running at a flow rate
of approximately 300 nl min~". Diffraction images were recorded at a rate of
7,200 patterns per minute (120 Hz) with the 2.3 Megapixel Cornell-SLAC Pixel
Array Detector (CSPAD)?. Initial diffraction frames were corrected and fil-
tered using the software package Cheetah?”. A crystal ‘hit’ was defined as an
image containing a minimum of 20 diffraction peaks with a signal-to-noise ratio
above 4 and a number of pixels above 3. After further refinement of parame-
ters (peak detection, prediction and integration), images were indexed using
MOSFLM?, DirAx*, and XDS* and integrated and merged into a final dataset
using CrystFEL v.0.6.2 software suite’!. Integration radii of 3, 5, and 6 pixels
with per pattern resolution cut-offs 1.0 nm™! above the conservative resolution
estimates for each crystal were applied (push-res option), otherwise default val-
ues were used. The total numbers of collected images/hits/indexed images are
as follows: 2,154,963/84,928/31,677 (MT,-CC-2-PMT), 476,863/59,071/28,130
(MT,-CC(H208A)-2-PMT), 293,060/22,267/20,704 (MT,-CC(N86D)-2-PMT),
727,004/60,005/28,834 (MT,-CC-ramelteon). As a resolution cutoff, the crite-
rion®? of CC*>0.5 was used for all datasets (see Extended Data Table 2 for data
statistics). The space group was determined to be P2,, with two molecules per
asymmetric unit.

Structure determination. To solve the 2.8 A resolution MT,-CC-2-PMT struc-
ture, a search model was generated as follows: the MT, receptor sequence was
sent to the HHpred server*, and the output models were reduced by removing
all low-resolution (<3.0 A) and NMR structures. The RCSB Protein Data Bank
(PDB) files of the top ten hits were downloaded and prepared with Sculptor®.
The models were structurally superimposed, and the side chains were pruned,
yielding the conserved receptor core model. The model that produced a successful
molecular replacement solution with Phaser®® (TFZ score of 14.9 and LLG of 320)
was based on the C-C chemokine receptor 2 structure (PDB ID: 5T1A)%. This
solution containing two receptor molecules was fixed as a partial solution, and
the search continued with rubredoxin (PDB ID: 1IRO), in which one molecule
was placed in the asymmetric unit. The resulting three-component solution was
subjected to several rounds of refining with phenix.refine’” and model building
with phenix.autobuild®® followed by manual refinement in Coot*”. BRIL (PDB
ID: 1IM6T) was then used independently as a search model for remaining fusion
partners in the asymmetric unit. The second BRIL was manually modelled into the
electron density; however, no density could be found for the second rubredoxin
molecule, which, therefore, was not modelled in the final structure. This rubre-
doxin fusion partner is likely to be disordered and does not participate in crystal
contacts, however, there is space for it in the crystal lattice (Extended Data Fig. 1d).
A zinc ion was modelled in rubredoxin as previously described?’. Refinement and
model completion were performed by repetitive cycling between Refmac5*! or
autoBUSTER v.2.10.2*? and manual rebuilding in Coot* using both 2mF, — DF,
and mF, — DF, maps. Ligand restraints for refinement of 2-PMT and ramelteon
coordinates were generated by Prodrg™®. For the other three datasets, the MT,-
CC-2-PMT structure was used as a search model for molecular replacement, and
the refinement procedure was repeated as described above. The Ramachandran
plot obtained by MolProbity** shows that, with the exception of Y92 from the
YPYP motif, all residues are in the favoured/allowed regions: 95.4/4.4% of residues
(MT,-CC-2-PMT), 93/6.8% of residues (MT,-CC(H208A)-2-PMT), 94.8/5.0% of
residues (MT,-CC(N86D)-2-PMT), 95.3/4.5% of residues (MT,-CC-ramelteon).
Data collection and refinement statistics are summarized for each structure in
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Extended Data Table 2. Figures containing electron density and molecular struc-
tures were generated using PyMol*.

Channel profile calculations. The channel diameter profile along its length was
calculated with CAVER analyst v.2.0%® using default parameters. Further details
can be found in the accompanying paper?®.

Molecular docking. MT) receptor ligands obtained from the ChEMBL database'®
were docked into the 2-PMT-bound crystal structures using an energy based dock-
ing in ICM-Pro v3.8-6* as described in the accompanying paper®.

Molecular dynamics simulations. The experimental structure of MT, was
prepared and subjected to molecular dynamics simulations as described in the
accompanying paper®. The simulation periodic box had dimensions (x, y, z) of
75.5A,75.5 A, 105.4 A, and contained lipids (129 POPC molecules), 10,281 water
molecules, 26 sodium ions, and 36 chloride ions.

Radioligand binding assays. Equilibrium binding assays were performed and ana-
lysed as described in the accompanying paper®. HEK293T cells were obtained from
ATCC (CRL-11268, authenticated by supplier using morphology, growth charac-
teristics and short tandem repeat profiling, certified mycoplasma-free). For kinetic
studies, to initiate dissociation of [*H]melatonin, 10 jul of cold excess melatonin
(10 pM) was added per well at specific time points ranging from 2 min to 10 h,
and immediately at time = 0 min plates were collected. Dissociation experiments
were performed at 25°C for MT; and 37 °C for MT; because of the slow kinetics
in MT,. For all assays, non-specific activity was defined by the addition of 5 pM
2-PMT. Ligand dissociation data were analysed using ‘Dissociation-One phase
exponential decay’ to yield estimates of koff using GraphPad Prism 7.0.

MT; Gyo-mediated cAMP inhibition assay. M T, G;,-mediated cAMP inhibition
assays were performed in HEK293T cells as described in the accompanying paper®.
Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this paper.

Data availability

Structure factors and coordinates were deposited in the Protein Data Bank
under the following accession codes: 6ME6 (MT,-CC-2-PMT), 6ME7
(MT,-CC(H208A)-2-PMT), 6ME8 (MT,-CC(N86D)-2-PMT), 6ME9 (MT,-CC-
ramelteon).
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Extended Data Fig. 1 | Crystallization of MT): crystals, crystal packing
and electron density. a, b, Bright field (a) and cross-polarized images (b)
of representative MT,-2-PMT crystals optimized for synchrotron data
collection (representing three independent crystallization setups).

¢, Cross-polarized image of representative MT,(N86D)-2-PMT

crystals used for XFEL data collection (representing three independent
crystallization setups). See Extended Data Table 2 for data collection

statistics. d, e, Crystal packing (receptor, purple; BRIL, green; rubredoxin,
blue). Space for missing rubredoxin in molecule B of the asymmetric unit
is indicated with a red circle. Lattice rotated 90° is shown in e. f, Overlay
of 2-PMT (purple) and ramelteon (blue) ligands of MT,. g-i, 2mF, - DF,
density (grey) contoured at 1o of ramelteon (g), N86>°°D mutation (h),
and H208>4°A mutation (i). 2-PMT is shown in purple.
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Extended Data Fig. 2 | Structural differences between MT; and MT,.
a, Overlay of MT;-2-PMT (green) and MT,-2-PMT (violet) structures

(Carm.s.d = 0.6 A). b, Comparison of MT, (green) and MT), (violet)
binding pockets. Overall, the binding pocket in MT; is about 50 A3
larger than in MT. ¢, Comparison of 2-PMT ligand conformations in

MT, (green) and MT, (violet). Hydrogen bonds are shown as yellow
dashed lines. d, Overlay of MT; and MT,, showing residues with different
conformations in the vicinity of the binding pocket. N**° makes a
hydrogen bond with Y*>*® in MT, but not in MT}.
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Extended Data Fig. 3 | Molecular dynamics simulations. a, b, Distance
plots for interactions between residues in MT, (N175*, atom ND2;
Q194E€L2 atom NE2; N268%°2, atom ND2), and closest oxygen atoms

of the ligand methoxy and acetyl groups, respectively, in complexes

with melatonin (a) and 2-PMT (b) from three independent simulation

runs. ¢, Distance histograms for interactions of N175%% with methoxy
of melatonin (yellow) and 2-PMT (violet). d, Distance histograms for
interactions of Q194E€12 with alkylamide tail of melatonin (yellow) and
2-PMT (violet).



LETTER

671 == MT,-CC-2-pmt
== MT,-CC-H20854A

Minimum
diameter [A]
'S

3-
0 2 4 6 8 10 12
Channel depth [A]
d
melatonin CTL 01-05-B-A05
Mutant EC,,, nM [n] W A'°§((:E»;Ax/ EC,, nM[n]  %E,,, A";ES!((;En;Ax/
EC, +s.em. %E,, . * 50 EC, +s.e.m. %E,, . * 50
(PECq* sem)  (%Eyuu®) (mutant-wt) (PECq*sem)  (%Eyu®) (mutant-wt)
WT 0.028 [16] 100 0 16.59 [6] 100 0
(10.56+0.09) (100) (7.78+0.07) (63+7)
0.190 [9] . .
H208A (5.46) (9.72+0.26) 80+9 -0.93 No agonist activity

Extended Data Fig. 4 | Structural and functional differences MT,-2-PMT (purple) and MT,(H208>4°A)-2-PMT (grey) reveals a
between MT,-2-PMT and MT,(H208A546)-2-PMT. a, Overlay of narrowing of the MT,(H208%4¢A)-2-PMT channel at a depth of around
the MT,-2-PMT (purple) structure with that of MT,(H208>6A)-2-PMT 6Aasa consequence of the mutation and subsequent inward rotation
(grey) reveals an inward shift of helix V of about 0.9 A, due to of helix V. d, Functional data for wild-type and H208*°A mutant MT,
the H208>4A mutation (black arrow). b, Surface representation of expressed in HEK293T cells by using GloSensor to measure Gj/,-mediated
the H20846 and H208>46A residues. Rotation of helix V renders the inhibition of cAMP. Data represent mean =+ s.e.m. for n independent
binding pocket volume about 50 A smaller for the H208%46A structure experiments as indicated in square brackets. %Eyax (maximum effect of a
(binding site volume for MT,-2-PMT: 766 A’ compared to 716 A’ for drug) is relative to wild-type receptor (in columns), and %Enax* is relative
the MT,(H208>46A)-2-PMT structure). ¢, Comparison of the channel to melatonin activity (in rows). See Methods for further information and

profiles (from the outside of the protein towards the ligand) for Supplementary Fig. 6 for dose-response curves.
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a, Binding affinities of ligands for MT; (ChEMBL target identifier b, Histogram of observed ligand selectivities. MT, selective ligands are on
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MT);-selective ligands are in the upper left quadrant. Data points are docked ligands.
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Extended Data Table 1 | Ligand affinity data for MT, mutants

melatonin 2-pmt ramelteon agomelatine
Mutant
Kd, nM [n] Ki, nM [n] Ki, nM [n] Ki, nM [n]
(pKgy £s.e.m.) (pKi £s.e.m.) (pKi £s.e.m.) (pKi £s.e.m.)
wWT 0.54 [10] 0.17 [10] 0.23 [4] 0.24 [4]
(9.27+0.12) (9.78+0.11) (9.66+0.10) (9.63+0.08)
1.56 [6]
WT + NaCl (61 $0.18) ND ND ND
MT,-CC 63.10 [3] 3.14 [4] 2.60 [4] 6.88 [4]
(Sf9) (7.20£0.06) (8.50£0.06) (8.59£0.02) (8.16+0.05)
MT,-CC (sf9) + NaCl (f§'22+30[g]3) ND ND ND
A NRE2SD 29.40 [6] 6.46 [4] 7.37 [4] 26.76 [4]
MTCC-N86™""D (Sf9) (7.53+0.34) (8.19+0.15) (8.130.09) (7.57+0.05)
~rLip0aS48 10.81 [6] 3.57 [6] 2.03 [6] 4.98 [6]
MT,-CC-H208""A (Sf9) (7.97£0.16) (8.45£0.03) (8.69+0.13) (8.30£0.04)
5.80 [3] 0.33 [3]
D86N (2.50) (8.24+0.04) (9.48+0.12) ND ND
D86N (2.50) + NaCl (834350[30]9) ND ND ND
0.94 [3] 0.13[3]
L108F (ECL1) (9.030.11) (9.8720.15) ND ND
2.84 [3] 0.22 3]
F122W (3:41) (8.55+0.04) (9.65+0.08) ND ND
1.24 [3] 0.12[3]
NASTD (3.:49) (8.91£0.13) (9.92£0.00) ND N
0.21[3] 0.03 [3]
C140L (3.52) (9.68+0.05) (10.50£0.02) ND ND
0.88 [3] 0.06 [3]
W264F (6.48) (9.06+0.14) (10.25+0.26) ND ND
3.94 3] 0.47 [3]
AS06P (7.50) (8.40+0.19) (9.32+0.06) ND ND
2.85 [3] 0.36 [3]
N312D (7.57) (8.54+0.07) (9.44+0.04) ND ND
P95A (2.59) No specific binding up to 7 nM [‘3 H]J-melatonin
0.44 [3] 0.028 [3] 0.055 [3] 0.052 [3]
B20A(3:52) (9.42£0.16) (10.7£0.3) (10.280.09) (10.35£0.18)
0.86 [3] 0.09 [3] 0.08 [3] 0.25 [3]
N175A (4.60) (9.2+0.3) (10.06+0.06) (10.12£0.11) (9.600.04)
F192A (ECL2) Low expression, no specific binding up to 7 nM [8 HJ-melatonin
F192| (ECL2) No specific binding up to 7 nM [“H]-melatonin
0.62 [3] 0.043 3] 0.051[3] 0.12 (3]
QI94A (ECLZ) (9.4£0.3) (10.38+0.07) (10.40.2) (9.94+0.09)
0.63 [3] 0.14 [3] 0.19 [3] 0.67 3]
Y200A (5.38) (9.3+0.3) (9.86:0.01) (9.73:0.03) (9.18+0.02)
0.82 [5] 0.12 [5] 0.19 [5] 0.42 [5]
A203F (5.41) (9.09+0.01) (9.940.06) (9.47£0.19) (9.37£0.19)
1.24 3] 017 [3] 0.18 [3] 0.22 [3]
H208A (546) (8.94+0.13) (9.79+0.09) (9.77+0.11) (9.68:0.11)
0.96 [3] 0.09 [3] 0.12 [3] 0.20 [3]
s (9.3+0.4) (10.08:0.09) (9.92+0.05) (9.690.03)
1.07 [3] 0.042 [3] 0.049 [3] 0.10 [3]
Y294A (7.39) (8.99:0.09) (10.3840.04) (10.33£0.09) (10.04£0.10)
Y308S (7.53) No specific binding up to 7 nM [3H]-me/atonin

Data were acquired with wild-type (WT) MT, and mutants expressed in HEK293T cells by radioligand competition binding using [*H]melatonin to yield Kq or K; affinity estimates. Data represent
mean + s.e.m. for n independent experiments as indicated in square brackets. Crystal constructs (CC) were expressed in Sf9 cells. ND, not determined. Binding isotherms are shown in Supplementary
Fig. 2. For determining the effect of NaCl, binding assays were performed in the presence of 147 nM NaCl (binding isotherms in Supplementary Fig. 3).



Extended Data Table 2 | MT, Crystallographic data collection and refinement statistics

MT2-CC-2-pmt?

MT2-CC-H208546A-2-pmt®

MT2-CC-N862%°D-2-pmt°

MT2-CC-ramelteon?

Data collection
Space group
Cell dimensions
a, b, c(A)

a, B,y (°)
Resolution (A)
Rspitt

/ol

Ccc*
Completeness (%)
Redundancy

Refinement
Resolution (A)
No. reflections
Rwork/R'ree
No. atoms
Protein
Ligand/zZn*?
Lipid and other
B-factors (A2?)
Receptor
BRIL
Rubredoxin
Ligand/zZn*?
Lipids and other
R.m.s. deviations
Bond lengths (A)
Bond angles (°)

P24

69.5, 146.2, 77.3
90, 111.7, 90
21.99-2.80 (2.88-2.80)
0.146 (4.31)

3.07 (0.46)
0.999 (0.52)

100 (100)

571.2 (141.3)

21.99-2.80
35,193
0.219/0.249
A B
3,333 2,852
231 23/0
0 11
116.4 121.0
162.3 188.9
114.7 n/a
101.6/114.7 106.1/n/a
n/a 138.8
0.009
0.97

P24

69.2, 146.2, 77.3
90, 105.2, 90
21.99-3.20 (3.34-3.20)
0.181 (3.26)

4.02 (0.39)
0.997 (0.54)

100 (100)

196.6 (39)

21.99-3.20
24,439
0.224/0.250
A B
3,343 2,786
231 23/0
0 12

95.0 99.6
143.2 176.4
100.3 n/a
73.3/91.2 88.7/n/a
n/a 111.0

0.010
1.06

P24

68.7, 145.8,77.0
90, 107.4, 90
22.0-3.10 (3.23-3.10)
0.189 (4.70)
3.87 (0.3)
0.997 (0.60)

100 (100)

133 (38.2)

22.0-3.10
26,179
0.234/0.262
A B
3,293 2,752
231 23/0
0 0

114.2 117.2
167.6 208.8
116.2 n/a
96.9/112.3 102.1/n/a
n/a n/a

0.009
0.96

P24

69.4, 1457, 77.2
90, 106.2, 90
22.0-3.30 (3.46-3.30)
0.201 (2.90)
367 (0.42)
0.997 (0.54)

100 (100)

221.1 (84.6)

22.0-3.30
22,122
0.248/0.270
A B
3,227 2,738
191 19/0
0 0

114.1 118.2
185.3 2481
118.6 n/a
94.9/117.7 105.6/n/a
n/a n/a

0.009
0.95

Number of crystals used for structure determination: 231,677, 28,130, ©20,704 and 928,834. Values in parentheses are for highest-resolution shell.
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Extended Data Table 3 | Functional data (G;,, GloSensor) for MT; crystal construct mutants

melatonin 2-pmt
Mutant ECso, M [n] %Ewmax Alog(Ewax / ECso) ECso, nM [n] % Ewax Alog(Ewax / ECs0)
(pPECso £s.e.m.) (%Emax*) (mutant-WT) (PECso £s.e.m.) (%Emax®) (mutant-WT)
" 0.028 [16] 100 . 0.018 [14] 100 .
(10.560.09) (100) (10.75£0.11) (100£5)
MT,-CC (Sf9) No activity
MT,-Rub No activity

3.951 [3] 8018 ) 1.995 [3] 101217 )

D86N (2.50) (8.40£0.34) (100) e (8.70£0.11) (126+21) 2.04
0.029 [5] 724 ) 0.011 [6] 8048

L108F (ECL1) (10.5420.10) (100) 0.16 (10.95£0.19) (110£11) 0.11
0.011 [6] 12849 0.007 [6] 1287

FI1Z9W(3.41) (10.95+0.17) (100) *0.50 (11.16+0.20) (99+6) 0:52
0.019 [6] 8816 0.016 [6] 905

N137D (3.49) (10.72£0.12) (100) -0.11 (10.810.10) (103+5) 0.19
0.072 [7] 9048 0.035 [6] 8916

C140L (3.52) (10.15:0.16) (100) -0.46 (10.45:0.16) 10124) -0.34
0.044 [7] 11716 0.020 [5] 11848

W2e4F16.49) (10.36:0.09) (100) =015 (10.70+0.40) (10116) =0.05
0.141 [7] 12945 0.073 [5] 143+4

AS05P (7.50) (9.85+0.16) (100) ~0.60 (10.14£0.26) (9116) =045
0.069 [5] 13516 0.041 [3] 138+10

N&12D (7.57) (10.1640.15) (100) -0.26 (10.39+0.18) (102+8) =021

Data were acquired with wild-type MT, and mutants expressed in HEK293T cells by using GloSensor to measure Gi,-mediated cAMP inhibition via isoproterenol stimulation. Data represent
mean + s.e.m. for n independent experiments as indicated in square brackets. %Ewax is relative to wild-type receptor (in columns), and %Ewax is relative to melatonin (in rows). Mutant effects were
calculated by the change in relative activity or log(Emax/ECsg), subtracting wild type from mutant. Dose-response curves are shown in Supplementary Fig. 4.



Extended Data Table 4 | Functional data (G;/, GloSensor) for MT, mutants

LETTER

melatonin 2-pmt ramelteon agomelatine
ECso.nM[n] AlogEuax  gcy M) AlogEuax  gc M) NogEwnx o oM Blog(Ewax
(PECso % Emax / ECsp) (PECso % Ewax  / ECs) (PECso % Emax  / ECso) (PECso % Emax | ECso)
o, * . o, * - ) * - o, * L
Mutant +s.e.m.) (%Buax”) (muwtte)ant +s.e.m.) (%Euax”) (m:ltta)nt +s.e.m.) (%Ewax’) (m:}te;nt +s.e.m.) (%Buax") (m:}gnt
WT 0.028 [16] 100 0 0.018[12] 100 0 0.016 [12] 100 0 0.018 [10] 100 0
(10.56£0.09)  (100) (10.75£0.11)  (100:4) (10.81£0.14)  (108+3) (10.75£0.12)  (1054)
P95A ..
(2.59) No activity
A171M 0.075[9] 66+9 061 0.032[8] 6219 046 0.031[7] 6719 0.47 0.025 [6] 7510 0.27
4.56) 10.13t0.14 (100 : 10.490.11  (94+14) : 1051019  (90£12) : 1060016  (107+15) O
N175A 0.070 [9] 74+10 053 0.0192 [8] 6714 0.20 0.010 [7] 72412 +0.05 0.015 (7] 717 0.08
(4.60) (10.16£0.15)  (100) ' (10.72:0.12)  91+19 ' (11.00:0.21)  (87+14) : (10.82:0.43) (91x10)
F192A 99.235 [6] 122+7 3.46 4.808 [10] 139+3 2928 4.799 [9] 150+4 231 5.316 [9] 1452 231
(ECL2) (7.00£0.26)  (100) : 832009  (11416) ' 8.32:0.04  (109+3) ' 827+0.05  (111x2) '
F1921  3.00 3] 15984 o 0211[3] 15983 o 0571[3] 16945 ., 2754[3] 16088 oo
(ECL2) (8.52+0.30)  (100) : (9.68:0.07)  (100+1) : (9.24:0.16)  (94+3) : (8.56£0.05)  (94+5) :
Q194A  0.025[3] 1314 0.011[3]  130£3 0.006[3] 1306 0.005[3]  110%15
(ECL2) (10.60:0.22) (100) 918 (1006:0.08) (99+3) 033  (1123:0.10) (88x4) *0%%  (11.30:013) (78t10) Y059
Y200A 0.517 [3] 161+10 1.06 0.009 [3] 158+16 +0.53 0.014 [3] 164121 0.26 0.314 [3] 149+14 1.07
(5.38) (9.29+0.32)  (100) . (11.07£0.08) (98+10) : (10.86£0.07)  (9010) : (9.50:0.31)  (87+8) :
H208A  0.190 [9] 80+9 093 O101[10] 7529 o 0035[8] 79t 0 0.083 [8] 7682 oo
(5.46) (9.72:0.26)  (100) ' (10.00£0.15)  (93+11) : (10.45:0.28)  (88+12) : (10.08£0.26)  (89+3) '
N268A  0.046[3]  141%10 0013[3] 1408 0.009[3] 13249 0007[3]  112+4
652) (1033:027) (100) 098  (1087:0.10) (99t6) T02®  (1105:010) (83t6) ‘036 (11.16:0.10) (75:3) *O46
Q194A
(ECL2)  2405[9]  116+7 1gs  0033[10] 11216 .. 0136[9] 12147 oo 0759[8]  116:4
N268A  8.62:0.21 ooy T 10.49:0.18  (965) - 987+0.15  (93x5) O 9.12:0.14  (94+4) "
(6.52)
Y294A 0.460 [4] 14816 -1.05 0.008 [4] 15317 +0.56 0.008 [3] 153111 +0.48 0.015 [3] 118111 015
(7.39)  (9.34£0.15)  (100) : (11.12:0.11)  (94£9) : (11.11:0.09) (11411) - (10.83£0.20) (143x12)
Y3085 No activity
(7.53)

Data were acquired with MT, mutants by using GloSensor to measure Gi,-mediated cAMP inhibition via isoproterenol stimulation. Data represent mean + s.e.m. for n independent experiments as
indicated in square brackets. %Ewax is relative to wild-type receptor (in columns), and %Ewax is relative to melatonin (in rows). Mutant effects were calculated by the change in relative activity, or
log(Emax/ECso) subtracting wild-type from mutant. ND, not determined. Dose-response curves are shown in Supplementary Fig. 5.
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Extended Data Table 5 | Thermostability data for MT, mutants

apo mit 2-pmt mit 2-pmt

Mutant Tm, °C Tm, °C Tm, °C ATm, °C ATm, °C
MT,-CC 63.6+0.3 73.4+0.1 79.9+0.4 +9.8 +16.3
W129F (3.41) 59.0+0.2 72.4+0.1 78.9+0.3 +13.4 +19.9
N175A (4.60) 64.6+0.3 70.6+0.1 78.1+0.2 +6 +13.5
F192A (ECL2) 57.1+0.5 66.5+0.1 75.4+0.1 +9.4 +18.3
Q194A (ECL2) 65.5+0.3 69.9+0.3 77.3%0.2 +4.4 +11.8
H208A (5.46) 58.7+0.6 72.6+0.4 78.9+0.3 +13.9 +20.2
N268A (6.52) 63.3+0.3 66.1+0.2 74.6+0.3 +2.8 +11.3
Q194A (ECL2)/N268A (6.52) 67.9+0.3 67.9+0.1 71.4+0.3 0 +3.5

Y308S (7.53) ND 65.5+0.2 75.8+0.3 ND ND

Melting temperature T, determined using the CPM assay?® (mean + s.d. for n = 3 independent experiments) for the crystallized construct (MT,-CC), and indicated mutants (in the MT,-CC
background), purified in the absence (apo) or presence (100 uM) of ligand (mlt, melatonin and 2-PMT, 2-phenylmelatonin). ND, not determined. W129F refers to MT,-CC but without the
F129341W mutation. Melting curves are shown in Supplementary Fig. 7.
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Structure factors and coordinates were deposited in the Protein Data Bank under the following accession codes: 6ME6 (MT2-CC-2-pmt), 6ME7(MT2-CC-H208A-2-
pmt), 6ME8 (MT2-CC-N86D-2-pmt), 6ME9 (MT2-CC--ramelteon).
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CRL-11268.
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