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Using X-ray free-electron lasers (XFELs), it is possible to determine three-
dimensional structures of nanoscale particles using single-particle imaging
methods. Classification algorithms are needed to sort out the single-particle
diffraction patterns from the large amount of XFEL experimental data.
However, different methods often yield inconsistent results. This study
compared the performance of three classification algorithms: convolutional
neural network, graph cut and diffusion map manifold embedding methods. The
identified single-particle diffraction data of the PR772 virus particles were
assembled in the three-dimensional Fourier space for real-space model
reconstruction. The comparison showed that these three classification methods
lead to different datasets and subsequently result in different electron density
maps of the reconstructed models. Interestingly, the common dataset selected by
these three methods improved the quality of the merged diffraction volume, as
well as the resolutions of the reconstructed maps.

1. Introduction

The ultrashort and bright X-ray pulses from free-electron
lasers (XFELs) make it possible to determine the structure of
single particles or even single molecules. Femtosecond
coherent X-ray pulses are used to take snapshots of individual
particles before the samples are destroyed by the intense
X-rays; this approach is known as ‘diffraction before
destruction’ (Aquila et al., 2015; Chapman et al., 2006; Neutze
et al., 2000; Reddy et al, 2017; Seibert et al., 2011). In these
experiments, reproducible particles (often assumed to be
identical) in random orientations are injected into the radia-
tion region and scattering signals of the particle can be
collected by detectors for one orientation each time. Three-
dimensional structure reconstruction requires a large number
of scattering patterns from particles in random orientations in
order to obtain sufficient sampling. The determination of
electron density maps from raw datasets needs to undergo a
procedure composed of single-particle scattering pattern
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classification, orientation recovery and phase retrieval. In this
article, we focus on the classification of scattering patterns to
find those patterns resulting from the scattering of single
particles; specifically, single virus particles.

Because of the small interaction region for single-particle
imaging (SPI), the probability of XFEL pulses hitting a sample
particle is low; more than 98% of XFEL pulses miss their
target particles and produce blank patterns with background
noise or scattering data from solvent droplets. It is also
possible for XFEL pulses to intercept more than one particle
during one exposure, producing scattering patterns with inter-
particle interference, often referred to as ‘multiple hits’, as
opposed to the ‘single hits’ that are the scattering patterns
from individual sample particles. The empty frames or data
from multiple-particle scattering must be filtered out because
they do not contain information that can be used for single-
particle reconstruction. The procedure of identifying the
scattering patterns is called ‘hit finding’. Several data reduc-
tion and analysis programs have been developed for hit
finding, such as Psocake based on the psana framework
(Damiani et al., 2016), CASS (Foucar et al., 2012) and Cheetah
(Barty et al, 2014). These programs are effective at filtering
out blank patterns or weakly scattering objects (such as small
water droplets) but the challenges in excluding multiple hits
remain along with other more complicated cases. Therefore,
advanced algorithms are needed to further classify the filtered
data and identify a clean set of single-particle scattering
patterns to improve data quality for structure recovery. Thus,
in this work, the term ‘pattern identification’ is used for hit
finding, or identifying the patterns with scattering signals
without distinguishing the scattering sources; while the term
‘pattern classification’ is used for sorting the patterns of single
sample particles or multiple particles. Here, three classification
algorithms were applied to pattern classification.

Unsupervised computational methods were developed in
recent years for SPI diffraction image classification, such as
principal component analysis (PCA) with spectral clustering
(Yoon et al., 2011), diffusion map (DM) manifold embedding
(Giannakis et al., 2012; Schwander et al., 2012) and particle-
size filters determined via image autocorrelation functions
(Andreasson et al., 2014; Bobkov et al, 2015). Pattern
decomposition methods used in image processing and
computer vision are also suitable for solving these kinds of
problems, such as isomap embedding (Yoon, 2012) and
t-distributed stochastic neighbour embedding (van der Maaten
& Hinton, 2008). These methods are generally based on
feature extraction and clustering in feature space. Features are
composed of a small set of parameters that describe the most
important characteristics of the original objects of interest.
Clustering methods for general purposes are well developed at
present, including k-means, spectral clustering and others.
However, in many cases, these decomposition algorithms
output different feature spaces when they are applied to
experimental data of different samples and thus clustering
methods must be designed in a problem-specific manner.
Furthermore, prior knowledge about the data distribution in
feature space may be needed to select the correct cluster that

corresponds with the desired
patterns.

In this article, we introduce two supervised algorithms
based on the convolutional neural network (CNN) and graph
cut (GC) framework (Yin & Tai, 2018), then assess their
performance in single-particle scattering data classification.
The CNN method extracts features from data that are signif-
icant for distinguishing the classes by training the designed
network against a labelled dataset and then sorting the data to
the appropriate class based on the evaluation of the extracted
features. The GC method utilizes the measures of data simi-
larity to group the data in a similar manner to image parti-
tioning (or image segmentation). For each classification
application, the CNN method may need fine tuning of the
network architecture, such as the number of layers or how
these layers are connected. The GC method is based on the
similarity measured using conventional metrics, such as the
least-square difference among the original images, so it can be
generalized to the classification of datasets for different
samples without fine-tuning the parameters. Nonetheless, both
CNN and GC require a training step for the method to learn
the data properties so they depend on the quality of the
training dataset. The dataset used in this study is from an
X-ray scattering experiment conducted with LAMP instru-
ment (Osipov et al., 2018) at the AMO beamline of the Linac
Coherent Light Source (LCLS) at the SLAC National
Accelerator Laboratory. This dataset contains 64511 scat-
tering patterns identified by Cheetah and Hummingbird
programs (Barty et al., 2014; Daurer et al., 2016) from millions
of raw data frames. The data were obtained from the scat-
tering of coliphage PR772, a DNA virus with an icosahedral
capsid shell (Coetzee et al, 1979). The two-dimensional
diffraction patterns have resolutions of 11.6 nm at the edge
and 8.3 nm at the corner of the detector, providing an over-
sampling rate of ~40. The same dataset has been analysed by
other groups from the single-particle imaging initiatives with
different approaches (Aquila ef al., 2015; Hosseinizadeh et al.,
2017; Kurta et al., 2017; Rose et al., 2018). In this study, we
compared the results of the classification methods and
analysed the differences in the final reconstructed models
from each individual dataset and the commonly selected
dataset.

single-particle scattering

2. Methods
2.1. Data preparation

The CNN and GC methods are supervised classification
approaches so a training dataset composed of manually
labelled patterns is needed. Data preparation is critical for
supervised methods, especially deep-learning methods, as the
training datasets directly affect the outcomes of the trained
model. Usually a large well-designed training set is required to
yield a general classifier that can be used robustly. However, in
XFEL experiments, it is very difficult to train a single CNN
model for scattering patterns from different types of samples.
One practical solution is to prepare training data for each type
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of sample. Considering the difficulties of
manually labelling a large number of patterns,
we labelled a small set of data composed of
200 randomly selected patterns from the
original dataset deposited in the Coherent
X-ray Imaging Data Bank (CXIDB). The
training data had 79 single-particle scattering
patterns and 121 patterns from other scatters
such as water droplets, multiple particles or
background noises, labelled as non-single-
particle scattering patterns. We did not
attempt to further classify the non-single-
particle scattering patterns as the major goal
was to distinguish the single-particle data
from others.

The scattering patterns were pre-processed before training
or classification, as summarized in Fig. 1. The original scat-
tering patterns were down-sampled by combining 4 x 4 pixels
into a single pixel (Reddy et al, 2017). Artefacts such as ‘bad’
pixels were fixed by using the values from their Friedel
symmetric pixels and the analogue digital unit (ADU) values
were converted to photon counts. The intensity values were
then subjected to logarithm operations to enhance the
features in regions with weaker signals. To avoid taking
logarithm on zero values, the intensities were increased by 1.0
prior to the logarithm operation. Finally, the resulting patterns
after the logarithm operation were scaled to have the same
mean value. This helps to achieve a good balance of weighting
factors through the resolution range of the compared images
because a chi-square type of measurement is regularly used to
quantify the data differences in CNN or GC methods. It
should be noted that these processed patterns were only used
as inputs for classification. The down-sampled data after
ADU-photon conversion were used for orientation recovery
and model reconstruction in the subsequent analysis.

Figure 1

2.2. Classification methods

2.2.1. CNN method. The CNN used in this study is based on
the sequential model. The functional components of a CNN
model are composed of three types of layers: convolutional
layer, pooling layer and dense layer. The convolutional layer
executes a convolution operation by swiping over each pattern
through kernel windows. The pooling layer executes a
zooming operation. Here we use 2 x 2 max-pooling, where the
input feature patterns are resized to one-quarter of their
original size by choosing the maximum values of every 2 x 2
block of original patterns. The dense layer is comprised of a set
of neurons where each neuron is fully connected to all of the
neurons in the previous layer to form an M x N weighting
matrix. In CNN, the dense layer should be implemented
behind a flattened layer, which reshapes two-dimensional
feature maps into a one-dimensional array of neurons.

The CNN optimizes the parameters used in non-linear
transformations to reproduce known labels. The parameter
space is designed to avoid overfitting. As our training set is
small, the CNN model contains only three convolutional
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Pre-treatment of scattering patterns. (¢) The original pattern, (b) after ‘bad’-pixel fixation
using Friedel symmetry and (c¢) after photon-count conversion. The intensities are shown in
logarithm scale to display the details. The apparent contrast difference between (b) and (c) is
caused by the removal of weak signals (negative or analogue signals smaller than one photon
were set to zero).

layers and one hidden dense layer. After down-sampling the
original pattern to the size of 64 x 64 pixels, the whole CNN
network contains 316 parameters. The number of model
parameters is a little higher than the number of training
samples (316 versus 200). To reduce the chance of overfitting
and speed up parameter optimization, we randomly drop out a
subset of neurons in both the convolutional layers and the
dense layers (Srivastava et al., 2014) and normalize each batch
after every convolutional layer; thus, the mean and variance
are 0 and 1, respectively. The CNN architecture is described in
Section S1 of the Supporting information.

2.2.2. GC method. GC is an algorithm for semi-supervised
clustering of high-dimensional data (Yin & Tai, 2018). In this
method, the scattering patterns are modelled as vertices of a
weighted graph with the weights defined as the similarity
measurements of the connected vertices. Each vertex defined
with intensity values (x) is only connected to a small number
of the nearest vertices to make it a sparse graph. The similarity
measure w between the two vertices (x;,x;) is defined
as a radial basis function used in spectral clustering
proposed in Zelnik-Manor & Perona (2004): w(x;, x;) =
exp{—d(x;, xi)2 /lo(x))o(x))]}, where the distance d is the
Euclidean distance and o(x;) denotes the standard deviation of
d(x;, x;) for fixed x;.

The labelling function ¢ defined on each vertex takes values
from [0,1], which can be interpreted as the probability of
belonging to class 1 of single-particle patterns. The algorithm
is proposed as a minimization of a convex functional of the
labelling function. A variational method based on the Potts
model is proposed for the partitioning of the graph, where
each vertex is assigned a score between 0 and 1, indicating the
likelihood of belonging to a specific cluster. More specifically,
the convex functional consists of a data-fitting term (the so-
called region force) based on an estimate of the probability of
each vertex having a certain label and a regularization term
that characterizes the total variation of the labelling function.
This is formulated as the optimization problem

D IVae()] + Tl = 2p(x)]e(x), (1)

xeV

where p(x) is the region force term modelling the prior
probability of the vertex x belonging to class 1 given the
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already labelled data. V,, is the weighted gradient operator
acting on the scalar-valued functions defined on the graph.
The calculation of p(x) and V,, are explained in detail in S2.
Once a solution ¢(x) is obtained from the above minimization
problem, the class of a vertex x is determined through a
threshold process, that is, we choose some threshold value «
and set ¢(x) to 1 for ¢(x) > « and to 0 otherwise. The term « is
chosen to be 0.5 unless specified otherwise. The integral of
|V, 0| is then interpreted as the graph cut given the partition of
the graph indicated by the labelling function ¢. For more
detailed information, see Yin & Tai (2018). The above convex
minimization can be interpreted as a min-cut problem on the
graph, whose dual is a max-flow problem, see Yuan et al
(2010). The solution to this problem can be obtained through a
primal-dual algorithm. The details of this algorithm can be
found in Yuan et al. (2010) with an adaptation to our appli-
cation in Yin & Tai (2018). More details are also included in
Section S2.

2.2.3. DM manifold embedding. DM manifold embedding
is an eigenfunction-based feature extraction algorithm
(Coifman & Lafon, 2006; Giannakis et al., 2012). Assuming
that every pixel stands for a dimension in a data manifold, the
original patterns are embedded in a very high dimensional
space. Similar to other embedding methods, DM is of type
kernel-PCA and identifies principal components from the
eigenvectors of an affinity matrix. Eigenvectors associated
with the largest eigenvalues are used as features for classifi-
cation. More specifically, the normalized graph Laplacian of
the low-dimension manifold in feature space is used to
calculate the likelihood of diffusion from the centre of the
clusters. The procedures to calculate the DM kernel and the
classification of scattering patterns are described in Section S3.

It has been shown that the eigenvectors from DM embed-
ding can also represent orientation information of both cryo-
EM and XFEL single-particle data (Hosseinizadeh et al., 2014;
Schwander et al., 2012). The advantages of DM are very
notable because of its simplicity of implementation and good
orientation analysis performance. However, it has been shown
that DM eigenvalues are continuously distributed in eigen-
space (Hosseinizadeh et al., 2015, 2014) making it difficult to
do clustering using traditional algorithms without prior
information about the manifold.

2.3. Phase retrieval

Phase retrieval is an essential step to obtain real-space
electron density maps and to compare the differences
resulting from the classification methods. Two iterative
phasing methods were used for phase retrieval: error reduc-
tion (Bauschke et al., 2002) and difference map (Elser, 2003).
Each phasing cycle contains 100 iterations of error-reduction
phasing, 200 iterations of difference-map phasing and an
additional 200 iterations of the error-reduction-phasing
processes. The support region was updated by setting it to
consist of 2000 voxels with highest intensities in the phased
model at each iteration. The volume of the support region is
estimated from the particle size and the oversampling rate of

the input data. For every dataset, 40 independent phasing
retrievals were carried out to obtain the averaged model after
alignments as the final output models. The program is modi-
fied from the three-dimensional phasing program by Andrew
Morgan and collaborators (Morgan, 2016). The phase-
retrieval transfer functions (PRTFs) were calculated to eval-
uate the model resolutions,

N
PRTF(k) = ‘%Zexp (@B @)
k=1

where N is the number of independent phasing results and ¢,
is the phase angle of the kth phase retrieval.

A convergence value was used to describe the difference
between the current model and the one obtained in the
previous iteration [equation (3)]. The difference between the
calculated intensities and the input intensities is noted as the
modulus error [equation (4)].

1/2
Zpixels |Mk—1 - Mk|2> (3)
Zpixels }Mk—l ’2

Convergence, = (

1/2
1
Mod_Error;, = | =—— , 4)
Zpixels I

where k is the kth iteration, M, is the retrieved reciprocal
model and [ is the merged scattering intensity using the
expansion—-maximization—compression (EMC) algorithm im-
plemented in Dragonfly (Ayyer et al, 2016; Loh & Elser,
2009).

2.4. Testing dataset

The dataset used for testing in this study was downloaded
from the CXIDB (Maia, 2012). The data (CXIDB 58) were
collected from experiment amo86615 carried out at the LCLS,
the XFEL facility at the SLAC National Accelerator
Laboratory. For a detailed description of the dataset and
classification results using the DM manifold embedding
approach refer to the work by Reddy et al. (2017). There are
64 511 patterns containing significant scattering signals, 14 772
of which were selected as single hits using the DM method
(see Section S7).

3. Results

We applied two supervised methods described in the Methods
section to the same set of scattering data from the PR772 virus
particles. The classification results were compared with the
previously published results and the common subset from
these three datasets was identified. The computing speed was
evaluated to compare the analysis throughput. The single-
particle datasets obtained from these three methods were
compared from the perspectives of the reduced one-dimen-
sional radial profiles and the merged three-dimensional
diffraction volumes. Furthermore, phase retrievals were
performed for each merged diffraction volume to investigate
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Table 1
Computing-speed comparison.
Algorithm Hardware Time
CNN K80 GPU ~5 min
GC Xeon CPU (ten cores) ~15 min
DM Xeon CPU (ten cores) ~20 min
10 016
9404
11124
Figure 2

Venn diagram for the three sets of single-particle scattering patterns.
There are 10016 commonly selected patterns between the CNN and DM,
11 124 patterns between the GC and CNN, and 11 389 patterns between
the GC and DM. A total of 9404 patterns were tagged as single-particle
scattering patterns by all three methods.

the real-space electron density maps resulting from each
dataset.

3.1. Classification results

Both the CNN and GC output scores between 0 and 1 to
describe the likelihood of being single-particle diffraction
patterns, and 0.5 was used as the cutoff to label the outcome
classes. A validation dataset containing 500 manually labelled
patterns was used to evaluate the accuracy of the trained
models by computing the true positive rate at a cutoff of 0.5.
CNN has a prediction accuracy of 83.8%, and the accuracies
for GC and DM methods are 84.2 and 80.8%, respectively. It is
notable that mistakes in the manually selected training/vali-
dation data could not be completely avoided; thus, these
values are not the comparison results against the ground truth.
The CNN and GC methods were tested using simulation data
that are composed of scattering patterns from single particles
and multiple particles [see examples in Figs. S8(a) and S8(¢)].
The accuracy rates for both CNN and GC methods are above
96% for simulation dataset classification.

Specifically, the CNN selected 14 552 patterns as single hits,
while the GC provided 22793 single hits. In the published
dataset selected using the DM method, there were 14772
single hits. The fiducial number and event time associated with
each pattern were used to identify the consensus and the
differences in the classification results, which are summarized
in a Venn diagram (Fig. 2). The common subset of selections
resulting from the three methods is composed of 9404
patterns. This implies that each method utilizes different
properties of the patterns for the classification. The largest

10°
CNN
102 GC
----DM
Common
2 10! ——Simulation
‘@
[
2
£ 10°
10™
102
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
q (nm™)
Figure 3

Averaged intensity radial profiles. Here ¢ is calculated by 2sin(6/2)/2,
where 6 is the scattering angle and A is the wavelength of the X-rays. The
profiles are overlaid by the matching intensities at the low-g region.

overlap occurs between the sets selected using the GC and
DM methods, which contain 11389 patterns in common.

As shown in Table 1, all three methods require a similar
amount of computing time for the classification of this parti-
cular dataset. The model training time is included for the CNN
method. CNN and DM are implemented using Python [CNN
uses the Theano package (The Theano Development Team et
al., 2016) to build neural network architecture], while GC is a
MATLAB program. The CNN used one CPU core for job
management and most computing was performed using one
NVIDIA K80 GPU.

3.2. Averaged intensity radial profiles

A virtual small-angle X-ray scattering (SAXS) pattern and
one-dimensional profile can be generated from the selected
single-particle scattering patterns. Because of the limited
numbers of patterns in each selected subset, the corresponding
one-dimensional radial profile can be treated only as an
approximation of the conventional SAXS profile, which is a
summed contribution of the scattering signals from a very
large number of particles. The three radial profiles exhibit
similar intensity distributions as shown in Fig. 3. The positions
of intensity minima in the three profiles are very consistent.
The most evident divergence of the three curves occurs
beyond ¢ ~ 0.022nm™', where the signals from the GC
dataset are more similar to the CNN dataset. The common
subset composed of patterns selected by all three methods is
also converted to a one-dimensional radial intensity profile.
This common subset has a radial profile with a faster
decreasing trend, especially in the high-g region (¢ =~
0.022 nm ™). Because a measured SAXS profile for PR772 was
not immediately available for comparison, we computed a
simulated SAXS profile from an icosahedron model that
approximates the PR772 particles. Although the solid model
could not capture the electron density differences between the
protein capsid and the interior DNA molecules, the SAXS
profile can still serve as a reference to compare with the four
radial profiles. As shown in Fig. 3, the overall profiles are very
similar and the profile from the common dataset has better
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agreement in the high-resolution region to that of the icosa-
hedron model.

3.3. Orientation recovery and merging

We applied the EMC algorithm implemented in Dragonfly
to recover the orientations and merge the intensity to three-
dimensional reciprocal space (Ayyer et al., 2016; Loh & Elser,
2009). Because the EMC algorithm merges the two-
dimensional scattering patterns to the diffraction volume
iteratively from the random initial models, independent
reconstructions for the same dataset may have some differ-
ences. To evaluate the consistency of the merged results, two
independent reconstructions from the random initial models
with the same control parameters were carried out for each
selected dataset. The evaluation of the R factor after model
alignment (Fig. 4) shows high consistency between the inde-
pendent reconstructions for all three datasets. The overall R
factors of the merged results for the datasets selected using the
CNN, GC and DM are 0.076, 0.062 and 0.074, respectively. The
results from the CNN dataset have the largest R factors; yet,
the values are still under 10%, indicating good self-consistency
of the merged results with the independent starting models.
The merged diffraction volumes also have good correspon-
dence with individual single-particle scattering patterns, see
Fig. S5 for two representative patterns compared with their
best matched central slices from the merged data.

0.2
CNN
DM
0.15 =
S
8 0.1
i
0.05
00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
q(nm™')
(a)
1
CNN vs DM
0.6 ~—GC vs DM
CNN vs GC
5 0.6
8
= 04
o
0.2
0 ’
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
q(nm™')
()
Figure 4

Self-consistency and cross-comparison of the merged results from the
three datasets. Here ¢ is calculated in the same way as in Fig. 3. The two
graphs are (a) the R factors between the independent merged results
from the same dataset and (b) the R factors for the merged results from
the different datasets.

The comparisons of the merged intensities in the three-
dimensional diffraction volumes from the different datasets
were measured using R factors at discrete resolution shells
[Fig. 4(b)]. There are significant R-factor peaks among the
merged results for the three datasets. These regions corre-
spond to the intensity minimums as shown in the inset of Fig.
4(b) (see also Fig. 3).

As the EMC algorithm calculates the probabilities of
patterns at 50 100 different spatial orientations (including in-
plane rotations), we selected the most likely orientations that
had the largest probabilities (pn.c) for each pattern and
studied the distributions of p.,.x values (Fig. 5). For a pattern
composed of random numbers, the expectation of probability
is approximately 2 x 107> (1/50100). The dataset selected
using the GC method has a probability distribution centred
around 0.0115 with a relatively small number of ‘bad’ patterns
(~2.62%) whose orientations are uncertain (probability
<10™*). In the dataset selected using the CNN and DM
methods, the orientations for a relatively larger number of
patterns are not well determined (7.19 and 6.76%, respec-
tively) as indicated by the population with low probabilities in
Figs. 5(a) and 5(c). Quite interestingly, we found that the
common dataset has far fewer patterns whose orientations are
uncertain (28 out of 9404 patterns have their p.c < 107%).
From Fig. 5, we can also see that only a small fraction of
patterns have their p,,,, values < 1072 in the common dataset.
This strongly suggests that the combined selection power of
the three methods helps the exclusion of ‘bad’ diffraction
patterns.

The orientation distributions of the patterns were also
investigated. For each pattern, we selected ten orientations
with the highest probabilities. The in-plane rotations were not
explicitly considered in the distribution analysis so the
orientations could be displayed on the surface of a sphere. The
probabilities of each pattern being at each of the ten most
likely orientations were then summed to the corresponding
orientations, which were mapped to the spherical surface.
Then we obtained the probability for the patterns identified at
each given orientation as shown in Fig. S4. The large variation
of probabilities indicated by the size of the dots suggests that
orientation preferences exist in this dataset. In order to rule
out that this orientation anisotropy was introduced during the
merging or the orientation distribution analysis, we carried out
the orientation recovery using the same procedure on a
simulated dataset composed of 10000 single-particle patterns
sampled at random orientations. The orientation distribution
for the simulated data is shown in Fig. S8(b), from which no
significant orientation bias could be observed. The variations
in probabilities for the simulated dataset are much smaller
than those of experimental data. Since all four datasets
exhibited similar orientation bias, it is plausible to be the
nature of the PR772 dataset.

3.4. Phase retrieval

Using the phase-retrieval algorithm described in the
Methods section, the real-space models were reconstructed for
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Figure 5

The distributions of the largest probability for each pattern. For randomly sampled orientations, the expected probability should be approximately
2 x 107>, For the CNN (a) , the GC (b) and the DM (d) methods, the percentage of patterns whose largest probabilities are smaller than 10~ are 7.19,
2.62 and 6.76%, respectively. In comparison, the common dataset (d) has 9404 patterns, 28 of which have the largest probability smaller than 10™*

(~0.3%).
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Figure 6
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Contour display of the retrieved electron density maps. The maps for the datasets selected using the (a) CNN, (b) GC, (¢) DM and (d) common dataset.

the merged data from patterns selected using the three
methods. The retrieved density maps are shown in Fig. 6. All
of the reconstructed models display icosahedral symmetry for
the virus capsid. However, the genetic materials (DNA
molecules) enclosed by the capsid are not located in the very
centre of the reconstructed models, coloured in red because of
this higher electron density compared with protein molecules.
As observed in the electron density maps, the CNN and DM
datasets yielded models with DNA molecules shifted toward
one of the fivefold vertices. Interestingly, the reconstructed
model from the common subset exhibited the least shift of the
enclosed DNA molecules [Fig. 6(d)]. The reconstructed map
similarities were assessed using the Fourier shell correlation
(FSC). All pairwise comparisons were carried out using
EMAN?2 package (Tang et al., 2007). Using a cutoff value of
0.5, the consistency levels between maps reconstructed from
four datasets were summarized in Table 2 (see Fig. S9 for FSC
curves). In general, the maps are consistent with each other to
about 10.0 nm resolution, except for the case of the CNN

dataset which yielded a map that exhibited significant incon-
sistency at about 11.5 nm resolution compared with the maps
from GC or DM datasets.

Using 1/e, where e is the Euler number e = 2.71828, as the
PRTF cutoff, model resolutions from the datasets selected
using the CNN, GC and DM methods are 11.6, 9.2 and
11.8 nm, respectively (see Fig. S6). Although the commonly
selected dataset contains only 9404 patterns, the reconstructed
model has the highest resolution of 8.8 nm based on the same
criteria (nearly to the resolution corresponding with the
corner of the detector, 8.5 nm). This might be because the
common dataset is composed of data from particles with fewer
variations.

The shapes of the reconstructed virus particles were
examined using the eccentricity by fitting the cross-sections
with ellipses [Fig. 7(a)]. The cross-section planes were
uniformly selected based on Fibonacci sampling on a sphere
surface. The parameters for the optimally fitted ellipses were
then used to compute the eccentricity [e = c/a, where c is the

IUCr) (2019). 6, 331-340

Shi et al. = Performance of classification algorithms 337



research papers

Table 2
The consistency levels between the reconstructed maps from four
datasets.

q value at cutoff Real-space resolution

Model A Model B of 0.5nm™" (nm)
CNN DM 0.087 11.5
CNN GC 0.087 11.5
DM GC 0.102 9.8
CNN Common 0.097 103
DM Common 0.097 10.3
GC Common 0.100 10.0

distance between foci and a is the length of the major axis, see
Fig. 7(b) for examples]. The distributions of the eccentricity
are summarized in Fig. 7(¢) for the four reconstructed maps.
The results indicate that the reconstructed models have clear
deviation from a perfect sphere or icosahedron. The mean
values of the eccentricity are in the range between 0.358 and
0.407 for the four models. This is consistent with a discovery in
a recent report, where the authors found that the PR772 virus
particles deviated from ideal icosahedral symmetry (Rose et
al., 2018).

4. Discussion and conclusions

XFEL single-particle imaging is an alternative method for
determining structures of large biological particles and has
potential to visualize conformational changes of three-
dimensional nanoscale objects. Advanced data-analysis
methods are critical for the development of the XFEL single-
particle imaging method. Herein we evaluated the perfor-
mance of three classification methods and their impact on the
reconstructed models.

The supervised classification approach requires a training
dataset labelled by experts or other methods. In this study, the
performance of the algorithm is acceptable even with a small

¢ - B
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orientations (Fibonacci)

get slices from model
from all orientations
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@ 50! 50
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3T 30 30
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training dataset. It is possible to manually label 200 single-
particle scattering patterns with a good signal-to-noise ratio
within a few minutes, so these methods can potentially be used
for real-time data classification during experiments. In prac-
tice, it is always better to include more labelled data as training
dataset to improve the accuracy and robustness of the classi-
fication methods.

Because of the conformation heterogeneity of the PR772
samples, the electron density inside the virus capsid of the
reconstructed models from each individual classification
method exhibited a clear deviation toward one of the fivefold
vertices. It is interesting to observe that the common dataset
leads to a model with a higher resolution and more centralized
genetic materials [Fig. 6(d)]. Arguably, the ‘bad’ patterns are
partially responsible for the lower resolution of individual
datasets. For those ‘bad’ patterns whose orientations are not
confidently recovered (pmax < 107%, see Fig. 5), the signals
contribute to the background and the inclusion of such
patterns might affect the final model resolution. This indicates
that the data quality and sample heterogeneity issue can be
improved by combining several classification methods. In
other words, a group decision based on a properly designed
voting system may outperform individual methods.

A recent study revealed a conformational landscape of
PR772, where a rearrangement of the distribution of the viral
content could be observed by conformational analysis of
XFEL data (Hosseinizadeh et al., 2017). PR772 is a member of
the Tectiviridae virus family and is similar to the prototype
member, PRD1. During infection and also upon sample
storage, it has been directly observed by electron microscopy
that the PRDI1 inner lipid membrane containing the DNA
genome changes its icosahedral form and produces a proteo-
lipid tube from a fivefold portal of the outer protein capsid,
which results in the release of the viral genome (Peralta et al.,
2013; Santos-Pérez et al., 2017). The differences in the phased
models shown in Fig. 6 might be attributed to the bias of each
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Figure 7

(©

The shape analysis of the reconstructed maps. (a) An illustration of the cross-section slicing procedure: a Fibonacci sampling algorithm was used to select
the direction of the planes that pass through the model centre. (b) Ellipses with three eccentricity values to guide the understanding of the deviation from
a perfect circle. (¢) The distribution of eccentricity values of map cross-sections for four reconstructed maps.
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dataset towards different conformational states. On the other
hand, the common subset formed by the consensus of three
methods might be less biased towards any particular confor-
mational state. It may therefore be possible to use the
consensus subset to determine the most populated state (often
the ground state), serving as the first step for studying the
conformational changes using model-based approaches. For
example, using the model obtained from the common subset
as the starting point, a series of models could be generated
using structure perturbation or dynamic simulation methods.
Then each generated model could be used as a reference to
classify the experimental data. This model-based data classi-
fication approach could be improved iteratively by refining the
initial models with the classified data.

In summary, we presented two supervised image-classifica-
tion methods based on CNN and GC algorithms to identify
scattering patterns resulting from the single particles. The
performances and outcomes were compared against the
published dataset selected using the DM manifold embedding
method. Although the structure of PR772 virus is not known
from an independent study to allow direct comparison, the
cross-comparisons among the four datasets reveal interesting
results. The commonly selected dataset contains far fewer
‘bad’ patterns whose orientations could not be recovered to
high confidence levels. Furthermore, the phase-retrieval
results revealed that the common dataset yielded a recon-
structed model with higher resolutions. The enclosed DNA of
PR772 is found to locate closer to the centre of the virus in the
reconstructed model from the common dataset, in contrast to
the other three reconstructed models from individually
selected datasets. Given the rapid development in cryo-EM
single-particle imaging methods, we hope to see the high-
resolution structure of PR772, which will serve as the ground
truth to assess the quality of these four datasets.
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