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Diffraction patterns from small protein crystals illuminated by highly coherent
X-rays often contain measurable interference signals between Bragg peaks. This
coherent ‘shape transform’ signal introduces enough additional information to
allow the molecular densities to be determined from the diffracted intensities
directly, without prior information or resolution restrictions. However, the
various correlations amongst molecular occupancies/vacancies at the crystal
surface result in a subtle yet critical problem in shape transform phasing
whereby the sublattices of symmetry-related molecules exhibit a form of partial
coherence amongst lattice sites when an average is taken over many crystal
patterns. Here an iterative phase retrieval algorithm is developed which is
capable of treating this problem; it is demonstrated on simulated data.

1. Introduction

The method of serial femtosecond crystallography (Chapman
et al., 2011) emerged soon after the startup of the world’s first
hard-X-ray free-electron laser (XFEL) in 2009 (Emma et al.,
2010). The extreme intensity of XFEL pulses enabled room-
temperature crystallography on protein crystals of sub-
micrometre sizes, with the option of triggering dynamics by
various means such as light activation, while at the same time
avoiding nearly all signs of X-ray radiation damage which
often limits resolution or leads to unwanted artifacts in
electron-density maps. As reviewed elsewhere, XFELs allow a
wide range of protein crystallography studies that appear to be
impossible with current synchrotron facilities (Schlichting,
2015; Spence, 2017; Zatsepin, 2018).

In serial femtosecond crystallography, large numbers of
crystal diffraction patterns, sometimes exceeding a million, are
combined to form a single, 3D set of crystallographic
structure-factor amplitudes by merging Bragg reflection
intensities. As with conventional crystallography, the struc-
ture-factor phases are unmeasured yet necessary to form the
real-space electron-density maps. It has now been established
that most, if not all, conventional crystallographic phase
retrieval techniques are effective on XFEL diffraction data
(Schlichting, 2017), including those that rely on anomalous
diffraction near resonant conditions. In addition to conven-
tional techniques, a number of new phase retrieval principles
have emerged during the development of serial femtosecond
crystallography (Son et al., 2011; Ayyer et al., 2016).

The phase retrieval method that we explore here is often
referred to as ‘shape transform phasing’, as it makes use of the
additional information contained in so-called shape transform
intensities seen between Bragg reflections when finite crystals
are exposed to coherent light (Kirian et al., 2010; Spence et al.,
2011; Chen et al., 2014a). By ‘shape transforms’ we literally
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mean the Fourier transform of the shape of the crystal, where,
mathematically, the shape of a crystal is given by a binary
function that has a 1 where a crystal lattice point is occupied
by a molecule and 0 where the lattice point is not occupied.
Section 2 contains more details on this model. Shape trans-
forms from protein crystals can be observed with a synchro-
tron X-ray source (Boutet & Robinson, 2008), but are rare
because most synchrotron-based crystallography instruments
do not provide coherence lengths that span the entire crystal,
and/or the fluence is usually too low because of the funda-
mental limitations imposed by radiation damage. The emer-
gence of intense, laser-like X-ray beams produced by
XFELs, which circumvent the effects of radiation damage in
the measurements by using femtosecond pulses, greatly
improved the visibility of shape transforms (Chapman et al.,
2011). An example diffraction pattern collected during
the first serial femtosecond X-ray crystallography experiment
is shown in Fig. 1. In addition, increased data rates
further improved the extent that inter-Bragg signals
can be seen in many data sets upon averaging in the conti-
nuum of 3D reciprocal-space locations (Yefanov et al., 2014).
Observations of high-contrast shape transforms at XFELs
triggered many studies on the theory of shape transform
phasing (Spence et al., 2011; Elser, 2013; Liu et al., 2014;
Chen et al., 2014a,b, 2016; Chen & Millane, 2014; Kirian et al.,
2014, 2015; Millane & Chen, 2014), but the only experimental
results published so far are limited to artificial 2D crystals
(Kirian et al., 2015).

The basic notion of solving the crystallographic phase
problem by sampling intensities between Bragg reflections was

Figure 1

A single raw diffraction pattern, ie. without any pixel masking or
background subtraction, obtained at the Linac Coherent Light Source
from a sub-micrometre crystal of Photosystem I (Chapman et al., 2011).
The interference fringes between Bragg reflections provide sufficient
sampling of the molecular transform to solve the phase problem in
principle. The red streak running vertically through the center of the
pattern is the scattering of X-rays from the edge of the water jet that
carried the crystals into the XFEL pulses.

first proposed in the crystallography literature by Sayre
(1952). Experimental efforts were made by Perutz and
colleagues in the 1950s to determine intensities between the
nominal Bragg reflections by exploiting the variation in unit-
cell dimensions upon crystal swelling (Green et al., 1954).
Shape transform phasing is similar in spirit to those early
efforts, in the sense that it also exploits additional samples of
the underlying molecular transform. This additional informa-
tion comes at the cost of requiring sufficiently small crystals,
highly coherent X-ray sources and perhaps larger volumes of
data, but is nonetheless of significant interest because, in
principle, it would allow for the solution of the phase problem
without prior-known information, and without restrictions on
the resolution of the data. In addition to its potential to solve
difficult phase problems in protein crystallography, the
development of shape transform phasing calls for general-
izations of the phase retrieval problem and may find other
applications in problems of a similar mathematical form. One
immediate generalization would include a model for the
diffuse diffraction associated with translational disorder,
which has recently been used as a means of extending the
resolution of density maps (Ayyer et al., 2016).

The absence of experimental shape transform phasing
results for protein samples is in part due to the lack of a
generalized phase retrieval algorithm which can accommodate
a subtle, yet critical, problem that arises due to variations in
molecular occupancies at the surfaces of crystals (Elser, 2013;
Kirian et al., 2014; Chen & Millane, 2014; Williams et al., 2017).
It is natural to describe the problem as the result of ‘incom-
plete unit cells’ at the surface of the crystal, but we warn that
the ‘unit cell’ is an elusive concept for finite crystals. For
example, in 1D, there are a total of four types of finite crystal
arrangements for two molecules, A and B, as shown in Fig. 2.
However only two of the four possible crystal types have a
well-defined unit cell, consisting of the molecular configura-
tions AB and BA. In a viewpoint which we take below, the
intensities averaged over many such crystals are equivalent to
those from a partially coherent target or illumination source,
roughly similar to the work by Dilanian et al. (2013). We model
the truncation effects arising inevitably on the edges of finite
crystals as occupancies of molecules on an infinite lattice.
Some attempts have been made to develop methods that
can accommodate the edge occupancy problem in shape

A[B| - [A|B
B|A B|A
A (B A|B|A
B|A| - |B|A|B

Figure 2
The four possible types of crystals consisting of two kinds of molecules in
1D.
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transform phasing (Kirian et al., 2014; Chen et al., 2016), but
these methods have been limited to idealizations and
approximations that are not likely to be effective on experi-
mental data.

In this article, we demonstrate an algorithm that solves the
general problem of shape transform phasing for crystals with
arbitrary molecular occupancies. We first describe a diffraction
model that accommodates missing molecules on the edge of,
and potentially within, finite crystals. Then, after describing
the basic ideas behind the application of iterative projection
algorithms to the problem of phase retrieval, we propose a
modified iterative projection algorithm that solves the phase
problem when the input intensity data are the 3D average over
coherent finite crystal diffraction intensities. We allow for any
types of molecular occupancies and provide simulation results
that demonstrate the algorithm for 2D and 3D crystals. We
conclude with a discussion of our findings and potential
extensions to the algorithm including how some other types of
crystal disorder could be accounted for in our diffraction
model and phase retrieval algorithm.

2. Finite crystal model

In this section we construct a mathematical model that
describes occupancies of objects (molecules) on a lattice. The
specific goal is to model the occurrence of molecules on the
surface of a finite crystal giving rise to irregular surface
terminations. We note here that the particular model we
formulate, along with our proposed reconstruction algorithm,
can handle arbitrary occupancies on a lattice in general and
need not be restricted to lattice occupancies describing the
surface of a finite crystal. Other cases of particular interest
include crystals with holes for example. The aim is to use this
model to describe the ensemble-average of crystal diffraction
intensities, which we take as the input to our phase retrieval
algorithm.

We assume that the X-ray scattering is in the regime where
there is no multiple scattering, and that the diffracted intensity
is measured in the far-field. The diffracted amplitude is
therefore given by the Fourier transform of a real-space
density. In the first Born approximation, this real-space
density is proportional to the electronic charge density. In
order for our model to describe more general scattering, for
example near X-ray edges, where there can be additional
phase shifts, we allow the real-space density to be complex, but
will continue to call it the electron or scattering density. No
other kind of crystal disorder except for random occupancies
of molecules on the crystal lattice is included in the model that
follows.

We begin by describing a general model that expresses the
averaged diffracted intensity explicitly in terms of the occu-
pancies of the crystal lattice (Section 2.1) and then show that
an equivalent model can be formulated in terms of shape
transforms (Section 2.2) which has a much smaller number of
parameters that are needed to capture the information in the
averaged diffracted intensity.

2.1. Occupancy formulation

Consider a molecule described by an electron density f(r)
that serves as the asymmetric unit for the construction of
crystals. The crystal space group consists of K symmetry-
related partners in total. The kth symmetry partner is denoted
by f,(r) and is related to f(r) through a rotation R, and spatial
shift s,. We combine these operations into a single linear
transformation, £,, such that

Fil®) = Lif (1) = f[Re(x — 5] 1)
and
fr) = ﬁ;lfk(l’) :fk(R;1r+sk)' 2

We denote the real-space scattering density of the nth crystal
as

M=

80 = 2 2 Wi TRe(r = 5 =1,
= 52 il =) )

where the vector a is a 3-tuple of integer indices
a = (o, ®,, @;) which identifies the real-space lattice points
and the molecular occupancies w,,, are equal to either 0 or 1
and specify the absence or presence, respectively, of the kth
molecule in the ath unit cell of the nth crystal. The location of
those lattice points, given by the lattice vectors r,, is formed
via linear combinations of the three crystal basis vectors a,, a,
and a; where r, = o;a, + o,a, + a3a;. The notation Y o is
shorthand for ) 0°_ >0 Yo .

The complex diffracted amplitude of the crystal, G,(q), is
given by the Fourier transform of the scattering density g,(r)
and is equal to

M=

Gu@) =X Y wias | file = x)exp(—iq - r)dr
oo K
=> ;;1 Wi Fr(q) exp(—iq - r,) 4)
where
Fk(‘]) = F(qu) exp(—iq - ;) )

and F(q) is the Fourier transform of f(r). The diffracted
intensity is then

1,(q) = |G, (9)I
- §§ 5 3 Wi @F (@) expliq - (£ — £5)]
©)

where * denotes complex conjugation. The average diffracted
intensity over an ensemble of crystals is

1(q) = (1,(q)),

k=11=1
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where the term
Wi = <Wkanwlﬂn)n (8)

specifies the correlations amongst molecular occupancies and
will be referred to simply as the ‘occupancy matrix’. Since we
assume finite crystals, each unique set of indices comprised of
k and a, which together specify a unique molecule in the
crystal, may be mapped to one index. Similarly, the sets of
indices comprised of / and f# may also be mapped to a single
index, and hence the occupancy matrix requires only two
indices to uniquely refer to each pair of molecules. The use of
a single integer index would of course be the natural choice for
a non-crystalline assembly of molecules.

The number of parameters in the occupancy matrix W is of
the order of the square of the total number of molecules in the
largest crystal in the ensemble, and thus scales as the sixth
power of the linear crystal size. As an example, the number of
parameters in the occupancy matrix for a crystal with just ten
unit cells on each side is of the order 10°. Given the very large
number of parameters and its unfavorable scaling with crystal
size, we seek a substantial reduction in the number of
unknowns in order to solve for our sought-after asymmetric
unit f(r). This might be possible through the use of a physical
model for protein crystal growth as occupancy correlations are
likely dependent only on local neighborhoods for example.
However, a much simpler approach is to reformulate the
problem as follows.

2.2. Shape transform formulation

We may view the construction of a finite crystal as the
superposition of K ‘sublattices’ in which the kth sublattice
contains molecules that have been rotated by R, and trans-
lated by s,. Two examples of finite crystals are shown in Fig. 3.
In those examples, there exist two kinds of symmetry partners
(K =2) and the occupied molecular sites are marked by
crosses for one kind of symmetry partner (the ‘P’ molecule)
and circles for the other kind (the ‘mirrored P> molecule).

The real-space scattering density of the nth crystal can now
be written as

. (@) q
x X P-P
X x P(IP(I

(b)
Two examples of finite crystals with two distinct molecular orientations
(‘P’ and ‘mirrored P’) along with their occupied sublattice points (crosses
and circles). (@) A finite crystal describable by a unit cell. (b) A finite
crystal not describable by any non-trivial unit cell (a trivial unit cell is
when the unit cell is the crystal itself).

K
gn(r) = ]; skn(r) ®fk(r) (9)

where ® denotes the convolution operation and s,,,(r) is the
shape function for the kth symmetry partner in the nth crystal.
The shape function is related to the occupancies by

Sen(0) = 3 Wyadlr — 1) (10)

where §(r) is the Dirac delta function. The complex diffracted
amplitudes of the nth crystal are then equal to

G,(qQ = kZ:l Se(@WFi(q) (11)

where S,,(q) is the Fourier transform of the shape function for
the kth symmetry partner in the nth crystal, given by

Skn(q) = i Wikan exp(—zq : ra)' (12)

We refer to the Fourier transform of the shape function in this
article as the ‘shape transform’. The diffracted intensity for the
nth crystal is

K K

L(@) =G, (@) =X Y. S5 (@S, (@F (@F (@  (13)

k=11=1
and the average intensity is

1@ = (L@), = 3 3. Co@F @F@.  (14)

k=1

—_

where

Cul@) = (S5 @S (@)y = > ? Wop expl—iq - (r, —1,)].

(15)

We will refer to Cy,(q) as the ‘averaged shape transform’. It is
useful to compare equation (14) with equation (7). The above
formulation effectively replaces the occupancy matrix with the
average products of shape transforms S,,(q). We show in
Appendix B that the diffracted intensity given by equation
(14) allows the coarse-graining (down-sampling) of the
intensity, and in turn, the averaged shape transforms, C,(q),
such that the weights W,,,; do not need to be individually
retrieved. This leads to the reduction in the number of para-
meters describing the shape transform phasing problem as
desired.

A property of the averaged shape transforms, C,(q), is that
they are periodic upon translations of reciprocal-lattice
vectors g, in reciprocal space,

Cu(q — &) = Cy(q), (16)

where g, are the positions of the reciprocal-lattice points
identified with the reciprocal-lattice vectors by, b, and b;, and
a 3-tuple of integer indices h = (hy, h,, h;) (the Miller indices)
such that g, = h,b; 4+ h,b, + h;b;. We will refer to the peri-
odic domain in C,,(q) as the ‘shape transform cell’. The shape
transform cells are equivalent to the Wigner-Seitz cells and
Brillouin zones in crystallography and condensed matter
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physics in the sense that they all contain the same amount of
information that is needed to construct Cy,(q). Note that the
averaged shape transform is also inversion conjugate
symmetric, i.e.

Cu(=a) = Cy(), (17)

and C,,(q) are Hermitian with respect to the indices k and /,
since

Ckl(q) = (S;kn(q)skn(q»n
= [(St.(@S,(@),]"
= Ci(q), (18)

consequently implying that C,,(q) = Cj,(q) which means

C,«(q) is real for all q. The periodicity and centrosymmetry of

the averaged shape transforms are derived in Appendix A.
Equation (14) can be written in matrix notation as

Ci(q) Cix(q) Fi(q)
(@) =[F(q)...Fg(@]| : o
Cix(q) Cxk(q) F(q)
(19)

yielding the matrix representation for the averaged diffracted
intensity at a particular q:

1(q) = F'(q)C(q)F(q), (20)

where F(q) is a K by 1 vector containing the set of complex
numbers {F,(q)}, C(q) is a K by K matrix containing the set of
complex numbers {C,(q)}, and the { denotes conjugate
transpose. Since the matrix C(q) is Hermitian, the intensities
1(q) and the diagonal elements C,,(q) will be real-valued. The
matrix C(q) is also positive semi-definite since I(q) > 0 for all
F(q). The above properties of the averaged shape transform
function, C,(q), and the averaged shape transform matrix,
C(q), will be utilized extensively in the phase retrieval process.

3. Reconstruction algorithm

The goal of the reconstruction problem is to retrieve the
scattering density of the asymmetric unit f(r), given the
averaged diffraction intensity I(q) along with some basic
assumptions about f(r) and C(q). A practical way of recon-
structing f(r) from its measured Fourier intensity /(q) is via
iterative projection algorithms (Fienup, 1982; Elser, 2003a;
Marchesini, 2007; Millane & Lo, 2013). These algorithms are
designed to solve general constraint-satisfaction problems
where one is given a number of constraints that need to be
simultaneously satisfied. The problem is wusually para-
meterized such that there are D parameters and each
constraint defines a set of equations in terms of those para-
meters, which can be interpreted geometrically as surfaces in a
D-dimensional space. Solutions to the constraint-satisfaction
problem are then located at the intersection of all the
constraint surfaces.

To reach the intersection, one starts at any position in the
D-dimensional space and explores the space by iteratively

applying a fixed rule composed of so-called projection
operators where the action of a single projection operation
makes the smallest change to the current position in the
D-dimensional space such that one of the constraints is
satisfied.

Suitable combinations of these projection operators are
used to iteratively update the current position in the
D-dimensional space to a new position such that the inter-
section of all constraint surfaces, and thus the solution to the
problem, may eventually be reached. Any combination of
projection operators is called an iterative projection algorithm
(TPA).

We first outline the projection operators for conventional
phase retrieval and describe the iterative update rules that we
use. These update rules are the same for the shape transform
phase retrieval problem and only the projection operators are
changed. These new operators for handling the averaged
diffracted intensity from finite crystals with random molecular
occupancies will be described thereafter.

3.1. Phase retrieval via IPAs

We define the function f(r) that we sample at a series of
discrete points. Here we take a regular grid with D grid points
in total. The value of f(r) on each grid point is viewed as an
independent dimension and the full function f(r) is given by a
single point in that D-dimensional space. As mentioned
previously, the measured Fourier intensity /(q), along with
constraints on the object f(r), can be described by sets of
equations that correspond to surfaces in the D-dimensional
space, and we seek the point at which all constraint surfaces
intersect. In the presence of measurement errors this inter-
section might not exist and we seek instead a point that is
closest to all constraint surfaces.

The constraints in diffraction phase retrieval are almost
invariably divided into two classes: those in real space and
those in reciprocal space.

The main constraint in real space is the finite extent of the
object, the shape of which is referred to as the object ‘support’.
In reciprocal space the main constraint is the measured
Fourier intensity data. The corresponding projection opera-
tors in real and reciprocal space are denoted by Py and P,
respectively, and are defined as follows.

Let S be the set of all position vectors of the samples within
the support of f(r), i.e. f(r) =0 for all r¢S. The projection
operator Pg sets the value of the samples outside S to zero and
leaves the value of the samples inside S unchanged. Defining a
binary function s(r) as

1 res
S(l')— {O r¢Sv (21)

the projection operator Py is given by
Pgf(r) = s(r)f (r). (22)

The projection operator P,, takes a complex number and
changes the magnitude of that complex number to the desired
value, which in this case is the square root of the measured
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Fourier intensity, /,,,,(q). The set of all complex numbers that
have the same magnitude defines a circle on the complex
plane; therefore the projection, which seeks the minimum
change to the input such that it satisfies the equation for the
associated constraint surface, involves scaling the input
complex number such that it moves radially on the complex
plane until it intersects the circle with the desired magnitude.
Denoting the Fourier transform operator by F, the projection
operator P, is

[a@]

Pty =5 g, )
(@)

where I(q) = |F f(r)]>. In simple terms, this operation sets

the magnitude of the complex diffraction amplitude to the

measured value, while leaving the current phase estimate

unchanged.

The above projection operators can be combined to form
rules that update f(r) in such a way that it becomes closer to
satisfying all of the constraints. The update rule generates the
(i + 1)th iterate from a combination of Py, P,, and the iterate
at the ith iteration, x?, i.e.

x*Y = Rule [x?, P, Py, ]. (24)

The iterate in the case of conventional diffractive imaging is
f(r) but it could in general encapsulate the entire list of entities
that are allowed to change during the application of the
algorithm. In the case of shape transform phasing, the iterate
is comprised of {f,(r)} and {C},(q)} as will be explained in more
detail in the next section. When the iterate no longer changes
upon application of the update rule, ie. x*) =x®, the
algorithm is said to have reached a fixed point. Not all fixed
points are solutions and they often correspond to local minima
of the distance between the two constraint surfaces. The
update rule in equation (24) must therefore be chosen
prudently so that the iterate is able to escape local minima if
need be to avoid stagnation.

The simplest IPA is the error reduction (ER) algorithm
(Fienup, 1982) in which the ith iterate is updated according to
the rule

x* = p.p,x9. (25)

The ER algorithm moves the iterate steadily towards a fixed
point but is unable to escape and explore other regions of the
search space if that fixed point turns out not to be a solution.
Alternatively, the difference map (DM) algorithm (Elser,
2003a) uses an update rule which is able to escape local
minima and is given by

XD — 50 4 B(PsR,, — PMRS)X(i), (26)

where |B] <1 is a parameter of the algorithm that can be
thought of as the step size of the update, and R and R, are
relaxed projections defined by

Rsx(i) = [(1 + vs)Ps — Vs]x(i)
RMX(i) = [(1 + V) Py — VM]XU)'

The amount of relaxation for the two relaxed projections is
controlled by the parameters yg and y,,. It is usual to set
ys = —1/B, vy = 1/B as justified by Elser (2003b). If the
iterate no longer changes when the DM algorithm is applied, a
solution x®°) that satisfies both constraints is obtained from
the current iterate x by

X(sul) — PSRMX(i) — PMRSx(i)' (27)

Another useful update rule that is capable of escaping local
minima is the relaxed averaged alternating reflections
(RAAR) algorithm (Luke, 2005) which can be expressed as

X = B2PgP), — Py + Dx? + (1 = 2B8)P,x",  (28)
where f is again a parameter of the algorithm.

3.2. Phase retrieval from averaged finite crystal intensities

Our shape transform phasing problem at hand is to recon-
struct the sets of functions {f,(r)} and {C,,(q)} for k and /
ranging from / to K, given the averaged intensity function /(q)
defined by equation (14). The asymmetric unit f(r) that we
ultimately desire can be obtained from any one of the func-
tions in {f,(r)} once a solution is found. The iterate in the IPA
can therefore be represented as a real vector that contains the
combined sets of samples in the real and imaginary parts of
{f.(r)} and {C,,(q)}. The length of this vector determines the
dimension of the search space, D, which in turn corresponds to
the amount of computer memory needed to store all of the
variables in the problem. Here we provide an estimate for D
and hence the memory requirement of our algorithm.

If we have N discrete samples in q, we will also have N
discrete samples in r since these two spaces are related by a
discrete Fourier transform. In order to count the total number
of independent samples in {C,(q)}, we introduce the sampling
factor s that determines the number of samples between
reciprocal-lattice points (Bragg reflections), which we assume
in this analysis to be the same in all three dimensions. A
sampling factor of s = 1 corresponds to the usual situation in
crystallography in which there are no intensity samples
between Bragg reflections, a sampling factor of s = 2 doubles
the sampling along each direction in reciprocal space, and so
on. Assuming a cubic array, the total number of samples N is
then related to s by N = (sL)3 where L is the number of
resolution elements of the molecular density in each dimen-
sion, i.e. the reconstructed density of the molecule will be in an
array of L x L x L voxels.

Neglecting knowledge of the object support, non-
crystallographic symmetry or other such parameter reduc-
tions, there are in total K x 2N = 2KN samples in the set
{f.(r)} when accounting for both the real and imaginary parts
of the potentially complex scattering densities. The set {C,,(q)}
has far fewer independent parameters than K2 x 2N = 2K>*N,
because of the many relations developed in Section 2, i.e.
C,,(q) is periodic and inversion symmetric with respect to q
[equations (16) and (17)], and Hermitian with respect to the
indices k, [ [equation (18)].
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Applying the property of periodicity of Cy,(q), the number
of independent q samples in the averaged shape transform is
no greater than the number of samples contained in its peri-
odic domain, i.e. the shape transform cell, which is equal to s>.
Taking into account centrosymmetry, the number of inde-
pendent q samples in the shape transform cell is therefore
approximately s°/2 (approximate due to the discrete nature of
the problem). Finally, at each q, the complex matrix C(q) has a
total of K? independent real parameters when accounting for
Hermitian symmetry. Thus, the overall dimension of the
search space is approximately equal to

D ~2KN + K*s* /2
= 2Ks*(L* 4+ K /4). (29)

Typically, L is large compared with K (say L = 64, K = 4) so
D scales roughly as 2KN = 2K(sL)’, meaning that the amount
of computer memory taken up by the averaged shape trans-
forms is negligible compared with the arrays needed to hold
the set {f,(r)}. Note that the above analysis does not determine
the constraint ratio 2 (Elser & Millane, 2008), defined as the
ratio of the number of independent known samples to the
number of independent unknown parameters. This is because
some of the samples involved in the counting above are not
independent or are known to be zero given the support of
fi(r). We provide a discussion of € in the context of our
problem in Appendix B.

To summarize, the iterate in the IPA for our shape trans-
form phasing formulation is a real vector of length approxi-
mately 2Ks*(L® + K/4) containing the combined sets of
samples in the real and imaginary parts of {f,(r)} and {C,,(q)}
for k and [/ ranging from 1 to K. Having defined what the
iterate is, we can now describe the projection operators that
act on this iterate.

3.3. Reciprocal-space constraints and the projection operator
Py

The operator P, acts on the iterate x defined in the
previous section to generate an output, P,,x, that satisfies the
data constraint

Liaa(Q) = ]; ; Fi(@)Cy(q)F(q). (30)

A particular combination of operations that is able to make
an iterate satisfy equation (30) can be summarized in the
following three steps:

Step (i). The averaged shape transforms {C,(q)} are
updated via a least-squares procedure using the intensity data
and the current estimate of the molecular transforms {F,(q)}.

Step (ii). A positive semi-definite projection operation is
applied to the averaged shape transforms obtained from step
(i), which ensures that the intensity values calculated using
{F,(q)} and {C,,(q)} are non-negative.

Step (iii). The molecular transforms {F,(q)} are updated
given the intensity data and the new averaged shape trans-

forms from step (ii) with an operation that corresponds to a
projection onto a hyper-ellipsoid.

Note that although each of these steps is in fact a distance-
minimizing operation, as will be shown next, the combination
of them yielding P,, turns out not to be a distance-minimizing
operator in general. The reason for this is that step (i) holds
{F,(q)} constant while it updates {C,,(q)} and vice versa for
step (iii). We would need an operation that updates both the
F’s and C’s simultaneously in a distance-minimizing way for
P,, to be strictly classified as a projection operator. However,
in its current form, P,, does change the iterate such that it
satisfies the intensity data, which is the desired constraint. P,,
could therefore be referred to as a ‘constraint-satisfaction
operator’.

Next we describe these three steps in detail.

3.3.1. Step (i). Updating the averaged shape transforms
{Cu(q)}. Since the averaged shape transforms are transla-
tionally symmetric according to

Cu(q — &) = Cy(q), (31)

where g, is a reciprocal-lattice vector indexed by h, it is
helpful to divide reciprocal-space vectors into two compo-
nents: q = qy,, = &, + q,,- Under this formulation, the index
h specifies a shape transform cell and the index m refers
to a specific point within that particular cell, as depicted in
Fig. 4. Upon consideration of the translational symmetry
C,(q) = C,/(q,,), as evident from equation (31), we write the
diffracted intensities as

A : : Shape-transform cell

Bragg reflection

D s

]
|:I Shape-transform cell
L]

[] sample
q : Independent shape-
g transform cell sample
1
7 1
' L4
| X
| ] T >
1
1
1
_____ 1

Figure 4

Explanation of the q vector indexing scheme in 2D reciprocal space. Red
dashed boxes, indexed by h, are the shape transform cells. Small blue
squares, indexed by m, are the samples within the shape transform cells.
The thick-outlined small red squares are the Bragg reflections; thus each
shape transform cell is associated with a Bragg reflection. Periodicity of
the averaged shape transform C,,(q) implies the set of blue squares shown
(both filled and empty) will be the same in each of the red dashed boxes.
Inversion symmetry of the shape transform cells means the filled blue
squares are the only unique samples within the cell. Note the entire
diagram repeats to infinity in the two g-space directions in principle.
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K K
1(q) = I(g, + dw) = X_ > Fi (g + 40) Cu() Fi(8h + q)-

k=1I=

(32)

Now consider gathering together samples of I(q) and
F{(q)F,(q) at the q vectors with identical C,(q). These samples
form subsets of all samples within the functions I(q) and
F{(q)F,(q). The subsets consist of all reciprocal-space posi-
tions q that have the same m, and inversion-symmetry-related
—m, but different h. Let there be a total of H such samples in a
subset, indexed by A, and B subsets altogether, indexed by b.
For the bth subset, equation (32) can be expressed in matrix
form as

I, =7,C,. (33)

The term I, is an H x 1 column matrix containing the intensity
samples /(qy,,) and I[qy_,,], which we abbreviate as I, for
compactness. The term Z, is an H x K? matrix consisting of
the products 7 (dm)F(tm) and F{[dy_mFl(ty ] Which
we abbreviate as F},, Fy,. Finally, the term C, is a K? x 1
column matrix consisting of the samples C(q,,) which we
abbreviate as Cy,.

Since there are many ways to form the matrices in equation
(33), we look to an example in which there are only two
molecular orientations, i.e. K =2, to gain intuition. Multi-
plying out equation (32) and using the above notation gives

Ly = |Fipl* Crip + 1Fap* Coy + FiyyFapy Crap + FuyyFap Carp-
(34)
Note that since C,;(q) = Cj,(q) we may rewrite equation
(34) as
Ly, = |Fip P Crip + |Fypy > oy + 2Re(Fy Frpy)Re(C)
— 2Im(Fyy, Fyp)Im(Cyy) (35)
so that the entries of the Z, matrix and the C, vector are all

real. Stacking equation (35) up for all & gives the matrix
equation I, = Z,C, for this example:

I,
Iy
|F1h1|2 |sz1|2 2Re(Fy Fopy) —2Im(Fiy; Fpy)
|F1bH|2 |F2bH|2 2Re(FlyFopy)  —2Im(Fyy Fapy)
Ciip
C
2b (36)
Re(Cpyp)
Im(Cy,;)

Returning to the discussion of our general problem, there are
in total B such matrix equations that can be formed using the
current estimate of the averaged shape transforms {C,(ci,) (q)},
giving I, = ZbCEf). Each of these matrix equations can be

inverted to obtain a new estimate of the averaged shape
transform, denoted here by Cj, via

C, = C) +Z{[1, — Z,C)], (37)

where Z; is the pseudo-inverse of Z,. The pseudo-inverse can
be calculated by first forming the singular value decomposi-
tion of Z,, ie. Z, = UbeVZ where U, and V, are unitary
matrices of shape H x H and K? x K2, respectively, and X, is
the rectangular diagonal matrix of shape H x K? containing
all the singular values of Z,, denoted by o,, along the diagonal.
The pseudo-inverse of Z,, is then given by

Z; = V,I;U], (38)

where X is the rectangular diagonal matrix containing the
reciprocal of all the singular values of Z,, with entries corre-
sponding to singular values less than some threshold ¢ set to
ZEero, L.e.

z:;:{l/(’k Ok Z ¢ (39)

0 o <€

Equation (37) is the least-squares solution to C, that mini-
mizes the distance between Cﬁf) and C, measured in terms of
the 2-norm, defined for two arbitrary column matrices A and
Bas|[B—Al,=0_|B,— A,—|2)1/2. The derivation of equa-
tion (37) is detailed in Appendix C. Carrying out the least-
squares estimate given by equation (37) for every b results in
an updated estimate of the averaged shape transforms over all
q, denoted here by Cj,(q). Note the use of a prime in C},(q),
which indicates that this temporary estimate will be further
updated in the next step.

3.3.2. Step (ii). Enforcing positive semi-definiteness of
{Ci(q)}. The diffracted intensity calculated using the above
intermediate estimate of the averaged shape transforms,
C},(q), along with the current molecular transform estimates,
F,(f)(q), may produce negative intensity values, which are
unphysical. More explicitly, for the estimate of the averaged
shape transforms, C,(q), the expression

r@=éé#%mmm%) (40)

is not guaranteed to be greater than or equal to 0 for all q.
Equation (40) is a quadratic form and can be written in matrix
form as was done in equation (20), giving

I'(q) = F'"(q)C'(q)F(q). (41)

Demanding I'(q) > 0 for any F”(q) implies the matrix C'(q)
must be positive semi-definite (PSD). Thus, we seek an
operation to ensure that C'(q) is PSD for every q, which we
explain below.

The projection operation that modifies an arbitrary matrix
A to form a PSD matrix B while minimizing the Frobenius
norm |[|B—Allg=(Q_ > IB;— Ai]-|2)1/2 is described by
Higham (1988). We provide an alternative derivation of this
operation in Appendix D. This projection operation consists
of three steps: (i) eigen-decompose A, (ii) set all the negative
eigenvalues of A to zero, and (iii) eigen-recompose with the
new set of non-negative eigenvalues.
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In the context of our problem, first eigen-decompose C'(q)
into the diagonal matrix A'(q) and unitary transform U(q)
such that

C'(q) = U(q)A'(q)U'(q). (42)

A new diagonal matrix A(q) is then formed by setting the
negative entries of A’(q) to zero and leaving the non-negative
entries unchanged, i.e.

@ ={ 5@ =p (43)

where A,(q) and A (q) are the kth eigenvalues, and hence kth
diagonal entries, in the K x K diagonal matrices A(q) and
A'(q), respectively. Finally, we eigen-recompose to form the
new C(q) that is PSD via

C(q) = U(g)A(q)U'(g). (44)

The updated averaged shape transforms C,((',Jr D (q) are then the
(k, I)th entries of the matrix C/(q).

3.3.3. Step (iii). Updating {F.(q)}. We would like to now
make the smallest possible change to the current estimate of
the molecular transforms, {F,Ei)(q)}, such that the updated
versions {F,Ei+1)(q)} satisfy

K K . ) .
mezgwa@%Wmey 45)

First let us investigate the geometry of the constraint equation
(45). Writing down the matrix form of equation (45) yields

Lia(q) = F Y (@)CV(@F ) (q). (46)

Inserting the eigen-decomposition of C*(q) from equation
(44) gives

Liya(@) = F (q)U(@) AU (q)F ™ (q) (47)

which can be written as

Lia(@) = F Y (@ AQF(g), (48)
where we have introduced the primed variable
F*(q) = U'(@F"*(q). (49)

Expanding the matrix product, equation (48) can be written as

K R
Imwzgmwwmwﬁ (50)

where A, (q) is the kth eigenvalue of C“™(q). Since F,/{(M)(q) is
complex and the A, (q)’s are not necessarily the same, equation
(50) is an equation of a hyper-ellipsoid in 2K-dimensional
space.

To form the projection onto the constraint equation (50)
from the initial starting point F?(q), we first apply the same
unitary transformation on the current estimate of the mol-
ecular transform, yielding F'”(q) = U'(q)F?(q). We then seek
the minimum change to F'¥(q) such that it satisfies equation
(50). The distance-minimizing property of such an operation is
carried over from F’ to F as Euclidean distances are preserved
under unitary transformations. Using the method of Lagrange
multipliers, we show in Appendix E that the projection onto

the multi-dimensional ellipsoid described by equation (50) is
given by

F(@)
1+ B(@r(q)

where S(q) is the Lagrange multiplier which is obtained by
solving the equation

F () = (51)

K @IE ()P
L (q) =Y Ve WL 52
@ = ) @l ¢2)

Equation (52) can be solved for 5(q) by rearranging it into a
polynomial of degree 2K and using a numerical polynomial
solver to obtain the roots.

In that case, there are up to 2K possible solutions for 8(q).
In order to find the B(q) that minimizes the distance between
F'*V(q) and F?(q), each obtained root is substituted into
equation (51) to form a candidate solution F"*)(q) and for
each of those candidates the distance ||[F“"V(q) — F'”(q)|[, is
calculated. The F'Ut)(q) that gives the minimum distance is
then the projection onto the constraint equation (50). For K
large (greater than about 6), massive differences in the
magnitudes of the polynomial coefficients can cause numerical
problems and prevent accurate determination of the roots via
the rearrangement of equation (52) into a degree 2K poly-
nomial. In those cases it is better to work with equation (52)
directly and solve for B(q) via, for example, the bisection
method as detailed by Morgan et al. (2019). We also adopt this
approach here but use instead the bisection-bounded
Newton—Raphson method where the root search is started in
the state of Newton—Raphson for each iteration, only
reverting to the bisection method for iterations where the new
estimate of the root falls outside the bound provided for
bisection. The bounds are updated by the estimate of the root
obtained from the previous iteration as the root-finding
algorithm proceeds. The initial bound 1is given by
(=1/Xpax> +00) where X, is the largest eigenvalue of
C*(q). This bound is a result of the observation that the
distance-minimizing solution that gives the projection of a
point onto a hyper-ellipsoid must lie within the same quadrant
as that point, i.e. the components of the starting point should
have the same sign as the components of the projected point.
In terms of equation (51), this statement says that F,’C(M)(q)
must have the same sign as F,/C(i) (q), which means 1 + B(q)A,(q)
must be greater than zero, and hence B(q) > — 1/A,,,, giving
us the initial bound.

After the Lagrange multiplier SB(q) for the distance-
minimizing solution has been determined, it can be substituted
into equation (51) to yield the required F“*Y(q) as before.
The geometric interpretation of equation (51) is that (q) > 0
implies the starting point is outside the hyper-ellipsoid and we
are projecting inwards by making F,’((i)(q) smaller, B(q) <0
implies the starting point is inside the hyper-ellipsoid and we
are projecting outwards by making F,'{(i)(q) larger, S(q) =0
implies the starting point is already on the hyper-ellipsoid and
we do not need to do anything, as evident by equation (51)

where F,'{(Hl)(q) :F,;(i)(q) when B(q) = 0. Projections onto
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ellipsoids have been considered by Stark & Yang (1998),
Borwein et al. (2018), Morgan et al. (2019) and projections
onto more general constraint surfaces have been outlined by
Elser (2017).

Once the required F"*Y(q) has been determined, the new
estimates of the molecular transform are finally obtained by
applying the inverse transformation

Fi*(q) = U(@F (). (53)

3.3.4. Summary of the P,, operator. To summarize, the
three steps of the P,, operator results in the update

Pyx? = P (F(q), C(q)} = (FI(q), Ci (@)} (54)

such that {Cffl+ 1)(q)} has the correct periodicity, the matrix
C*(q) is PSD, and along with the updated molecular
transforms {F,((i+1)(q)}, the intensity data constraint equation
(45) is satisfied.

Note that, as mentioned at the start of this section (Section
3.3), P, is strictly not a projection since it holds {F,(q)}
constant while it updates {C,(q)} and vice versa. We would
need an operation that updates both the F’s and C’s simulta-
neously in a distance-minimizing way for P,, to be strictly
classified as a projection operator. However, in its current
form, P,, does change the iterate such that it satisfies the
intensity data and each of the steps within P,, are in fact
distance-minimizing individually.

A further note on the use of P, is that, under certain
circumstances, a degeneracy exists that prevents the unique
retrieval of {C,,(q)}. In 2D, this degeneracy arises if any
molecules with real density values are related by a 180°
rotation, e.g. in the P2 space group, the Fourier transform of
those molecules will have the same intensity due to Friedel
symmetry. The two coinciding symmetries mean that two of
the rows in the matrix Z, from equation (33) are identical and
therefore the outer product Z;Z, becomes non-invertible.
This issue is handled by the pseudo-inverse Z;; however
it has implications for the reconstruction problem as
follows. Consider the K =2 example in equation (34). If
|Fypul> = |Fy,|* then equation (35) can be rewritten as

Ly, = |Fy P (Cryp + Cop) + 2Re(Fy, Frp)Re(Coyy)

— 2Im(F7},;, Fyp)Im(Cyyp) (55)
which leads to
Iy, |Fil? 2Re(FiyiFoy)  —2Im(Ffy Fyp)
Iy |F1bH|2 2Re(FiyyFopy)  —2Im(FY, 1 Fappy)
Cip + Copp
x| Re(Cp,) |- (56)
Im(Cyy,)

This example shows that we can only recover the sum
of C,(q) and Cy(q) at the q locations for which
|F.(q))* = |[F(q)]>. In 3D this degeneracy arises when the
molecules are related by inversion symmetry, which is rare for

protein molecules. This degeneracy may also be possible when
crystals are twinned. In that case, if we know the potential
twinning operations then we can accommodate twinned
intensity data sets by including the appropriate symmetry
operators. However, we emphasize that this degeneracy
affects only the recovery of {C,,(q)}. If our objective is to
recover {f,(r)}, as in the case of shape transform phasing, this
issue does not pose a problem.

3.4. Real-space constraints and projection operator Pg

The constraints that we use in real space are (i) known
symmetry relations between f(r) and f,(r) for all &, /, and (ii)
the finite support for the asymmetric unit f(r) that generates
the support for the set of all f,(r). The real-space projection
operator consists of sequentially applying the projection
operators for these constraints and is implemented as follows.
First, the inverse symmetry operations for each molecular
density f,(r) are applied to re-map each molecule to the same
position and orientation as the asymmetric unit f(r). The set of
K re-mapped f,(r) are then averaged, and the support
constraint is applied to this average. We then rescale the
averaged f(r) such that the root-mean-squared value of its
density is 1. This normalization procedure is useful because
the intensity data constraint equation (30) cannot determine
the absolute scale of the molecular transforms without prior
knowledge of the absolute scale of the averaged shape
transforms. By fixing the scale of f,(r) at each iteration, we
avoid potential issues such as numerical overflow and this also
aids the convergence of the algorithm by preventing drift in
the overall scale. Finally, we map the resulting averaged
asymmetric unit density back to the kth position by applying
the kth set of symmetry operations.

The above description may be given notationally by

1 K
Pfi0) = Ly P SO 22 > L F0), (57)
k=1

where the forward and inverse linear transformations £, and
L, are defined by equations (1) and (2), s(r) is the binary
support function for f(r) defined by equation (21), and

f@)

Pscaef(r) =T A"
o)

(58)

3.5. Summary of constraints

Altogether, the constraints that we have are: averaged
diffracted intensity data I,,,(q); support for f(r); real-space
symmetry between {f.(r)}; {C,,(q)} are periodic; {C,,(q)} are
centrosymmetric; the matrices C(q) formed from {C,,(q)} are
PSD.

A flow diagram illustrating the step-by-step procedures
within the operators Py and P, is shown in Fig. 5. The inputs
and outputs of the two operators are connected in Fig. 5 in the
form of the ER algorithm.
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Figure 5

The steps of the projection operators and how they are combined to form
the ER algorithm. The dashed boxes encapsulate the step-by-step recipe
for each of the projections and the quantities S, {R,, s,} and I,,,, are the
ingredients needed for the recipe. Ppgy is the positive semi-definite
projection as outlined in Section 3.3.2.

4. Simulations

We conducted two sets of simulations to test the above algo-
rithm: one for a synthetic image in 2D and the other for two
protein molecules in 3D.

4.1. 2D simulation

The algorithm was first tested in 2D. A synthetic data set
was constructed consisting of an ensemble of finite 2D crystals.
The capital letter ‘P’ in bold Times New Roman font was
selected as the support of the molecule. The scattering density
of the molecule was chosen to be the Kodak test image
‘kodim23’ featuring two parrots. This was obtained by multi-
plying a binary letter-P mask with the kodim23 image that was
resized to be of the same shape. The symmetry operation was
chosen to be a reflection. There are thus two symmetry part-
ners (K = 2), ‘P’ and mirrored ‘P’.

The crystals were generated by defining two regions: (i) an
inner region for the body of the crystal, (ii) an outer region on
the perimeter of the inner region which constitutes the edge.
The inner region is rectangular with its width and height
randomly chosen from a uniform distribution. The outer
region is defined to be a shell around the inner region with a
width of one unit-cell lattice spacing away from the inner
region. The probability of a molecule occupying a lattice point
within the inner region is 1. The probability of a molecule
occupying a lattice point within the outer region is 0.5.

Fig. 6 shows two example crystals and their diffracted
intensity. The diffracted intensity was calculated using the
discrete Fourier transform with five samples between each
Bragg reflection, i.e. s = 6. The last row of Fig. 6 shows the

result of averaging the intensities for 100 crystals and the
behavior of a convergence metric, A(l,(q)),. The convergence
metric is defined as the difference between the averaged
diffracted intensity from an ensemble of N crystals and that
from the previous N — 1 crystals summed over all q, normal-
ized to the intensity of the first crystal,

AlL(Q)), = Z[%Zln(q) - ﬁ 2 In(q):|/ PRAC)
q n=1 n—1 P
1 1 N-1
= ;{NIN(q) - m;&(q)}/ ;11((]).

(59)

As can be seen from the last row of Fig. 6, the averaged
intensity does not change much after the intensity from a few
tens of crystals has been summed.

Iterative phase retrieval was carried out as described in
Section 3. The correct support of the molecule was assumed to
be known (the letter P). The positivity constraint was not
applied. A periodic cycling of IPAs composed of 80 iterations
of ER and 20 iterations of DM with g = 0.6, with the cycle
being initiated in the ER state, was empirically found to work.
The IPA was started such that the initial iterate, x©, had
uniformly random sample values between 0 and 1 for both the
sets of functions {f,io)(r)} and {C,(g)(q)}.

Convergence of the entire iterative procedure was
measured by the normalized root-mean-squared (NRMS)
error, EY between I,,,(q) and the diffracted intensity ?(q)
computed from the estimates {f,gi) (r)} and {Cz(ciz) (q)} via equation
(14) at the ith iteration, ie.

ED — Zq[l(i)(q) - Idata(q)]z v
! Zq I(%ata(q) '

The final reconstruction is obtained by taking the iterate at the
iteration where Egi) is the minimum within the maximum
number of iterations.

The quality of the reconstruction was measured by the
NRMS error, EY, between the true molecular density f(r) and
the ith estimate of the density, fO(r), i.e.

50 _ [Zr IO —f<r>|2}”2
! IO ’

and also by the NRMS error, E(Ci) , between the true averaged
shape transforms {C,,(q)} and the ith estimate {Cg,)(q)}, ie.
; 172
E(Ci) _ Dk Zq |C§<I)(CI) - Ckz(‘l)|2 . (62)
Zk ZI Zq |Ck1((I)|2

Fig. 7 shows the results from a successful run of the recon-
struction. Only C;;(q) and Cy,(q) (the real and imaginary
parts) are shown.

(60)

(61)

4.2. 3D simulations

The proposed algorithm was tested in 3D with simulated
diffraction from two different protein molecules that
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crystallize with different numbers of molecular orientations
(different values of K). The first is the Photosystem II (PSII)
protein molecule with Protein Data Bank (PDB) entry 3wu2
(Umena et al., 2011). The crystalline form of this protein
consists of a single molecule (the asymmetric unit) in four
different orientations (K = 4) with space group P2,2,2,. The
second molecule tested was the Trypanosoma brucei proca-
thepsin B (CatB) protein molecule with PDB entry 4hwy
(Redecke et al., 2013). The crystalline form of this protein
consists of a single molecule (the asymmetric unit) in eight
different orientations (K = 8) with space group P4,2,2.

The electron density of the molecule was generated by first
initializing a 3D array consisting of voxels at a specified
resolution in real space; then, ignoring all the hydrogen atoms,
each non-hydrogen atom is modeled as a Gaussian in real
space scaled such that the integral of the Gaussian is equal to
the number of electrons in the atom with a fixed width of one
standard deviation equal to half an A. The electron density
was then obtained by summing all the Gaussians. We worked
in the crystal basis for the entire simulation to avoid any
interpolation or sampling issues when performing translation/
rotation symmetry operations; our symmetry operators
effectively consist of permutation matrices. The simulation
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Figure 6

Example 2D crystals generated are shown in the left column. The right
column shows their corresponding diffracted intensities on a log scale.
The last row on the left shows the change in the averaged intensity as
more diffracted intensities from different crystals are averaged, and on
the right shows the final averaged intensity. The box that both the crystals
and the diffracted intensities are shown in is the extent of the entire
computational volume of the simulation.

results from the PSII protein are described first, followed by
the results from the CatB molecule.

A total of 100 finite edgy crystals of the PSII protein are
generated using the same edgy construction approach as the
2D simulation described in Section 4.1, with the inner and
outer regions being bounded by 3D rectangular cuboids
instead of 2D rectangles. The maximum size of the crystal for
this particular simulation is 4 x 4 x 4 full unit cells. Projection
view of two example crystals from the ensemble is shown in
Fig. 8. The far-field diffraction at a resolution of 10 A was
calculated with the discrete Fourier transform. The diffracted
intensity had three samples between each Bragg reflection, i.e.
s = 4. The calculated intensity was averaged to form the input
averaged diffracted intensity data.

Iterative phase retrieval was carried out as described in
Section 3. The correct support of the molecule was assumed to
be known. The positivity constraint was not applied. A peri-
odic cycling of IPAs composed of 60 iterations of ER and 40
iterations of DM with 8 = 0.7, with the cycle being initiated in
the ER state, was empirically found to work. The initial
iterate, ¥, had uniformly randomly sampled values between
0 and 1 for both the sets of functions {f,go)(r)} and {C,(g)(q)}.
Convergence and quality of the entire iterative procedure
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Figure 7

The top row shows the ground truth and the second row shows the
best reconstruction as gauged by E;. (Column 1) Real-space density of
the molecule, (Column 2) C,;(q), (Column 3) Re[C},(q)], (Column 4)
Im[C,,(q)]. Only one period of the C,, functions is shown (the shape
transform cell). The bottom plot shows the reconstruction errors E;
(solid), E. (dotted) and E, (dashed) on a log scale as the algorithm
proceeds.
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Figure 8

Projection views of two example crystals from the PSII molecule
displayed in the crystal basis are shown in the left column. The right
column shows one central slice of their corresponding 3D diffracted
intensities on a log scale. The last row on the left shows the change in the
averaged intensity as more diffracted intensities from different crystals
are averaged, and on the right shows the same central slice of the final
averaged 3D intensity. The box that both the crystals and the diffracted
intensities are shown in is the extent of the computational volume of the
simulation in two of the three directions.
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Figure 9

The top row shows the ground truth molecule and the second row shows
the best reconstruction as gauged by E;. (Column 1) Projected view of
the molecule, (Column 2) Cy;(q), (Column 3) Re[C),(q)], (Column 4)
Im[C,,(q)]. Only one slice of one period of the 3D C,, functions is shown
(the shape transform cell). The bottom plot shows the reconstruction
errors E; (solid), E (dotted) and E; (dashed) on a log scale as the
algorithm proceeds.

were again measured by the NRMS errors, E;, E; and E.
Fig. 9 shows the results from a successful run of the recon-
struction. The final reconstruction is obtained by taking the
iterate at the iteration where E; is the minimum. Only one
slice from the 3D shape transform cell of two C,,(q) functions,
C,;(q) and C,,(q), is shown as there are in total ten different
C,,(q) functions.

The second protein molecule tested was CatB. A total of
100 finite edgy crystals of the CatB protein are generated
using the same construction as described in Section 4.1, again
with the inner and outer regions being bounded by 3D
rectangular cuboids instead of 2D rectangles. The maximum
size of the crystal for this particular simulation is 4 x 4 x 4 full
unit cells. Projection view of two example crystals from the
ensemble is shown in Fig. 10. The far-field diffraction at a
resolution of 4 A was calculated with the discrete Fourier
transform. The diffracted intensity had three samples between
each Bragg reflection, i.e. s = 4. The calculated intensity was
averaged to form the input averaged diffracted intensity data.

Iterative phase retrieval was carried out as described in
Section 3. The correct support of the molecule was assumed to
be known. The positivity constraint was not applied. A peri-
odic cycling of IPAs composed of 300 iterations of ER and 100
iterations of RAAR with 8 = 0.7, with the cycle being initi-
ated in the ER state, was empirically found to work. The initial
iterate, x’, had uniformly randomly sampled values between
0 and 1 for both the sets of functions {f,fo)(r)} and {C,(g)(q)}.
Convergence and quality of the entire iterative procedure
were again measured by the NRMS errors, E;, E; and Ec.
Fig. 11 shows the results from a successful run of the recon-
struction. The final reconstruction is obtained by taking the
iterate at the iteration where E; is the minimum. Only one
slice from the 3D shape transform cell of two Cy,(q) functions,
C,;(q) and Cj,(q), is shown as there are in total 36 different
C,,(q) functions.

4.3. 3D simulations with noise

The simulations in Section 4.2 are repeated with the addi-
tion of Poisson noise in the diffracted intensity and the
simulated merging of a finite number of 2D diffraction slices in
3D reciprocal space. Edgy crystals of PSII and CatB, and their
3D diffracted intensities, are calculated with the same proce-
dure and parameters as described in Section 4.2. The effect of
merging 2D diffraction patterns was modeled by first gener-
ating a unit vector centered at the origin of reciprocal space
with a uniformly randomly sampled orientation. This unit
vector is taken to be the unit normal of a plane passing
through the reciprocal-space origin and the set of all voxels
that the plane intersects in the 3D diffraction volume is taken
as the 2D diffracted intensity pattern measured from a single
X-ray pulse diffracting from the finite edgy crystal. Poisson
noise is then added to the intensity values at those voxels
intersected by the plane. The resulting noisy 2D pattern is
merged (averaged) into a 3D volume and the procedure is
repeated with a newly generated edgy crystal. The final
averaged diffracted intensity can be written as
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Figure 10

Projection views of two example crystals from the CatB molecule
displayed in the crystal basis are shown in the left column. The right
column shows one central slice of their corresponding 3D diffracted
intensities on a log scale. The last row on the left shows the change in the
averaged intensity as more diffracted intensities from different crystals
are averaged, and on the right shows the same central slice of the final
averaged 3D intensity. The box that both the crystals and the diffracted
intensities are shown in is the extent of the computational volume of the
simulation in two of the three directions.
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Figure 11
The top row shows the ground truth molecule and the second row shows
the best reconstruction as gauged by E;. (Column 1) Projected view of
the molecule, (Column 2) Cy;(q), (Column 3) Re[C),(q)], (Column 4)
Im[C,,(q)]. Only one slice of one period of the 3D C,, functions is shown
(the shape transform cell). The bottom plot shows the reconstruction
errors E; (solid), E (dotted) and E; (dashed) on a log scale as the
algorithm proceeds.

Ty ana(@) = <% Po[n1n<q>]> , 63)

n

where Po(x) is a function that returns a value drawn from a
Poisson probability density function of mean x. The scale
factor n is chosen to give a desired level of noise and the
average is over the number of times the particular voxel in
reciprocal space was sampled by the randomly oriented 2D
diffraction plane. To summarize, our noise generation proce-
dure is: (i) calculate the entire 3D diffracted intensity from an
individual 3D crystal; (ii) take a single random 2D central slice
from that 3D intensity; (iii) apply Poisson noise to that 2D
slice; (iv) merge the noisy 2D slice into a 3D averaged
diffracted intensity volume; (v) repeat step (i) with a different
crystal.

The signal-to-noise ratio (SNR) is calculated as
172

Zq I czlala (@)

SNR = .
Zq [Idata (q) - Inoisy data (q)]

(64)

where I, is the noiseless averaged diffracted intensity, and
the summation is over all q that contain the intensity samples
of interest. In our case we elected to plot the radially averaged
profile of SNR and so the q values of interest are those that fell
within radial shells and correspond to valid intensity samples,
i.e. the intensity data at that location in reciprocal space are
not missing. A region of missing data of radius equal to the
first Bragg order (3 voxels in this case) was also implemented
at the center of the 3D diffracted intensity volume to simulate
the effect of the central detector gap, present in order to let
the direct X-ray beam pass through. A central slice of the 3D
Fourier space volume for the PSII and CatB molecule
generated with the above procedure and averaged over 100
2D patterns is shown in Figs. 12 and 15, respectively. The
radially averaged SNR from intensity samples of the entire 3D
volume, calculated separately for the Bragg and inter-Bragg
samples, is plotted alongside the respective slices.

The IPA reconstruction parameters for both the PSII and
CatB molecule are kept the same as before, as described in
Section 4.2. The intensity values at the missing data regions in

325
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Figure 12

(Left) Radially averaged SNR for the 3D merged diffracted intensity
from an ensemble of 100 2D noisy diffraction patterns of edgy PSII
crystals. The radially averaged SNR are calculated for Bragg (dashed)
and inter-Bragg (solid) locations. (Right) One central 2D slice of the 3D
merged diffracted intensity.
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reciprocal space are allowed to float during the reconstruction
process. The correct support is still assumed and applied as in
the previous section. The positivity constraint is again not
applied. The values of the intensity at regions in reciprocal
space where the intensity data are missing or below a value of
1 intensity value units (blank regions in Figs. 12 and 15) are left
floating during the reconstruction process. The results of the
reconstructions for PSII and CatB are shown in Figs. 13 and
16, respectively. The final reconstructions shown in those
figures are obtained by taking the iterate at the iteration
where E,; is the minimum. The reconstructed molecular
density and shape transforms from noisy data do not converge
to the ground truth; however they do not diverge and give
completely non-nonsensical values either, even in the

presence of high levels of noise and missing data. Additional
work on directly modeling noise in the algorithm should
improve its ability to handle noise. A final 3D rendering of the
ground truth, the reconstruction with noise, the reconstruction
without noise, for the two molecules are given in Figs. 14
and 17.

N ——

0 200 400 600 800 1000
Iteration

Figure 13
Reconstruction of the PSII molecule given the correct support and the
noisy intensity data shown in Fig. 12. Top row shows the ground truth and
the second row shows the best reconstruction as gauged by E;. (Column
1) Projected view of the molecule, (Column 2) C,(q), (Column 3)
Re[C,(q)], (Column 4) Im[C,,(q)]. Only one slice of one period of the 3D
C,,(q) functions (the shape transform cell) is shown. The bottom plot
shows the reconstruction errors E, (solid), E. (dotted) and E; (dashed)
on a log scale as the algorithm proceeds.

Figure 14

3D isosurface plots of the PSII molecule contoured at 10% of the
maximum true density. (Left) Ground truth. (Center) Reconstruction
with noiseless intensity data. (Right) Reconstruction with noisy intensity
data, generated as described in the text. Both the noisy and noiseless
reconstructions assume the correct support.

5. Discussion and conclusions

We developed a reconstruction algorithm that is capable of
determining the density of the molecular asymmetric unit
when given the averaged coherent diffraction intensity from
many crystals of different sizes, shapes and, unlike previous
work, with arbitrary molecular occupancies. A mathematical
model is formulated that expresses the averaged diffracted
intensity in terms of lattice occupancies and the scattering
density of the different molecular orientations. The occupancy
description can be reformulated in terms of shape transforms,
reducing the number of parameters needed to describe the
problem while retaining the quantity of interest, which in this
case is the scattering density of the asymmetric unit.

The main impetus of shape transform phasing is that
diffraction signals can consist of samples both at the Bragg
condition and at points between Bragg reflections. The inter-
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Figure 15

(Left) Radially averaged SNR for the 3D merged diffracted intensity
from an ensemble of 100 2D noisy diffraction patterns of edgy CatB
crystals. The radially averaged SNR are calculated for Bragg (dashed)
and inter-Bragg (solid) locations. (Right) One central 2D slice of the 3D
merged diffracted intensity.
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Figure 16

Reconstruction of the CatB molecule given the correct support and the
noisy intensity data shown in Fig. 15. Top row shows the ground truth and
the second row shows the best reconstruction as gauged by E;. (Column
1) Projected view of the molecule, (Column 2) C,,(q), (Column 3)
Re[C},(q)], (Column 4) Im[C,,(q)]. Only one slice of one period of the 3D
C,/(q) functions (the shape transform cell) is shown. The bottom plot
shows the reconstruction errors E; (solid), E¢ (dotted) and E; (dashed)
on a log scale as the algorithm proceeds.
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Figure 17

3D isosurface plots of the CatB molecule contoured at 10% of the
maximum true density. (Left) Ground truth. (Center) Reconstruction
with noiseless intensity data. (Right) Reconstruction with noisy intensity
data, generated as described in the text. Both the noisy and noiseless
reconstructions assume the correct support.

Bragg samples improve the information content significantly
compared with the case when only Bragg reflections are
available, thus allowing the determination of the electron
density of the molecule from the diffracted intensities alone.
Through simulations, we showed how our IPA is capable of
recovering both the unknown molecular density and the
unknown averaged shape transforms in parallel, with good
convergence behavior. We have tested the algorithm with
intensity data corrupted by Poisson noise along with signifi-
cant incomplete measurements from the simulated merging of
a small number of 2D diffraction patterns. The behavior of the
algorithm under these circumstances seems to be stable;
however the correct support of the molecule was assumed to
be known and therefore the phasing trials with noise
performed here are only necessary but not sufficient evidence
that the algorithm can work with real data. For a robust
implementation, a good noise model or a direct measurement
of statistical errors from the serial diffraction data should be
incorporated into the reconstruction algorithm, perhaps using
techniques explored in other works (Williams et al., 2007; Loh
et al., 2010; Dilanian et al., 2010; Martin et al., 2012). A basic
noise model in the context of phase retrieval that utilizes
signals from shape transforms has been outlined by Chen et al.
(2014a).

The issue of uniqueness for this particular variant of the
phase retrieval problem is complicated in general because it
depends on (i) the molecular occupancies, (ii) the number of
molecular orientations, (iii) the sampling rate of the diffracted
intensity and (iv) the shape of the molecule itself. However,
simulations suggest that the algorithm can treat the averaged
diffraction from crystal ensembles for space groups that have
up to eight different molecular orientations per unit cell. Note
that we do not need to sample the diffracted intensity
according to the size of whole crystals (i.e. we do not need to
resolve the fringes in the diffraction pattern arising from the
shape transform), but rather we only need sufficient sampling
with respect to the single molecule. The precise amount of
sampling needed to ensure unique reconstruction depends on
the constraint ratio 2.

Although we propose using the averaged diffraction
intensity as the input to the reconstruction algorithm for the
purpose of improving the SNR and to reduce data volumes, it
is conceivable that one may develop an algorithm that utilizes
the full set of diffraction patterns individually, without aver-

aging, similar in spirit to frameworks proposed by Loh & Elser
(2009), Donatelli et al. (2017). With sufficient signal, it may
indeed be possible to model the shape transforms in each
individual frame via projection operations or expectation-
maximization.

The use of distance-minimizing projection operators can be
important in IPAs. An initial attempt at the P,, operator
utilized a non-distance-minimizing ‘constraint-satisfaction’
operation for updating the set of functions {F,(q)}. The non-
optimal operator consisted of a plain scaling of the intensities,
suitable for projecting onto a hyper-sphere, but not ideal in
general for projecting onto a hyper-ellipsoid. Utilizing this
non-distance-minimizing operation in the IPA resulted in
unstable reconstructions that often failed to converge.
Projections onto ellipsoids have been documented by Stark &
Yang (1998), Borwein et al. (2018), and in the context of phase
retrieval by Morgan et al. (2019).

We are working on generalizations to incorporate other
kinds of crystal disorder since, under the Born approximation,
all diffraction intensities can in principle be expressed in the
form I(q) = F'(q)C(q)F(q), given by the central equation (20)
in this article. It may be possible, for example, to include both
translational and rotational disorder, as is being explored in
other work (Morgan et al., 2019), with the assumption that
although disorder breaks the translational symmetry in the
shape transforms that we exploit to our advantage here, we
expect that many disorder models still retain much redun-
dancy within shells of similar resolution.

Another source that breaks translational symmetry of the
shape transforms is from complex wavefront distortions of the
incident X-ray beam, as was pointed out by Kirian et al
(2015). If we allow the molecular occupancies in our model,
Weans t0 take on any real values rather than restricting them to
be either 0 or 1, then that could in principle model a non-
uniform incident-beam profile. The assumption in that case
would be that the change in X-ray intensity is negligible across
a single molecule. Going one step further, complex w,,,, could
also be used to emulate phase distortions if, once again, those
distortions do not vary significantly from one molecule to the
next. Our formulation might also allow for the K objects to be
different, although the constraint ratio for that case will be
reduced and is yet to be worked out.

APPENDIX A
Properties of the averaged shape transform

We show here that the averaged shape transforms satisfy
C,(q — g,) = Cy(q) for all k, [ and h, i.e. the averaged shape
transform functions are periodic in reciprocal space.

Let the real-space lattice points be

I, =3 + &3, + a3, (65)
and the reciprocal-space lattice points be
g = luby + hyb, + hsb, (66)

where the reciprocal-lattice vectors are related to the real-
space lattice vectors via
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a, xa
b, =2 s St SR
a; - (a; x a,)
It follows that
b; - a; = 27§ (67)

where §;; is the Kronecker delta function (§; = 1 for i = j and
8; = 0 for i # ).

Now

Culq—gy) =) 3 (WeanWipn) o expl—i(q — gy) - (r, — 1p)]

(68)

S §<wkanw,ﬂn>n expl—iq - (v, — r)] expligy - (& — £5)]

(69)

= Cy(q), (70)

since the value of the last exponential in equation (69) is unity,
as

(hyby + hyby + hsbs) - [(o — By)ay
+ (0 — Br)a, + (o3 — By)ay]
=2nfhy(o; — By) + hyla, — Bo)

+ hy(o; — B5)]

=2mm

g - (1, _l'p) =

where m is an integer. The averaged shape transform function
C,/(q) is therefore periodic, with the period being referred to
in this article as the ‘shape transform cell’.

We finally note that the above also shows that the averaged
shape transforms are inversion conjugate symmetric with
respect to q, i.e.

Cu(—q) = Ci(q), (71)

since a change of sign in q is equivalent to taking the complex
conjugate of equation (70).

Note that exchanging the indices @ and f that appear
symmetrically in the summations in equation (70) may at first
sight suggest C,(—q) = C,,(q); however, upon closer inspec-
tion we see that the product of the occupancies wy,,w;s, and
WigaWien Ay not necessarily be equal.

APPENDIX B
Constraint ratio

The constraint ratio €2 is defined as the ratio of the number of
independent measurements to the number of independent
unknown quantities. It is necessary, but not sufficient, to have

2>1 in order to obtain a unique solution to any phase
retrieval problem. In order to count independent measure-
ments, it is helpful to look to the Fourier transform of the
diffraction intensities, which is equal to the autocorrelation of
the object densities, which is finite in extent. For a single,
isolated object, the number of independent measurements of
its diffraction intensity is estimated as the number of samples
in the non-zero region of the autocorrelation of the object,
denoted here by A, divided by two, to account for the
centrosymmetry of the autocorrelation. The number of inde-
pendent unknown parameters is the number of samples in the
object, denoted here by S. Assuming that the diffraction
intensities are sampled with sufficient frequency, the
constraint ratio for a single particle, ,, is equal to half the
volume of the autocorrelation of the particle over the volume
of the particle (Elser & Millane, 2008), i.e.

AJ2

Qsp:?.

(72)
In 3D, the constraint ratio is greater than or equal to 4, where
the worst case of 2 = 4 is for an object with a support that is
convex and centrosymmetric.

Previous considerations of the constraint ratio for crystal-
line objects took into account only crystals comprising full
unit cells without consideration of individual molecular
occupancies (Millane & Chen, 2014; Millane & Arnal, 2015;
Morgan et al., 2019). We now investigate the constraint ratio
for the case when it is not assumed that the crystal is
comprised of full unit cells. The differences in the problem that
we consider here compared with previous studies are that (i)
we have an ensemble of crystals and the intensity data are the
averaged intensity from this ensemble, and (ii) each crystal in
the ensemble can have molecules that are absent when
compared with the nominal unit-cell configuration.

Taking the inverse Fourier transform of the average
diffracted intensity I(q) in equation (7) returns the average
over crystal autocorrelations:

A(r) = (A,(r))

Wkalﬂ[fl(r - l'ﬂ) *filr —x,)]  (73)
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: Wiaplfi(®) * fillr = (e, =)} (74)
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where = denotes the correlation operation. The above
expression consists of a weighted superposition of translated
copies of the autocorrelations A, (r) = f.(r) * f,(r) and cross-
correlations A, (r) = f,(r) = f;(r). With this notation we write
the compact form

A(r) =

:Mg

oo K K
%: Z Z WkawAkl —(r, — l‘p)]- (75)

k=11=1

We can also express A(r) in terms of the ‘averaged shape
functions’, ¢,,(r), which is just the inverse Fourier transform of
C,,(q). In that case we get

Acta Cryst. (2019). A75, 239-259

J. P.J. Chen et al.

255

+ Shape transform phasing of edgy nanocrystals



research papers

Ae) = i l_flckzm ® Ay(®) (76)
where
=3 i Wyl — (1, — 1), (77)

The number of non-zero weights W, that multiply with the
Dirac delta functions in equation (77) represent the total
amount of information needed to uniquely determine c,(r).
This number scales with the sixth power of the linear crystal
size as discussed in Section 2.1, and if our objective is to
determine the set of all W, then we will almost certainly
have a constraint ratio of much less than one (2 <« 1).
However, the objective in our case is to determine the mol-
ecular densities, and hence we need only consider the
sampling frequency of the diffracted intensity that is required
to determine the density of the molecule, which we expect is
well below the critical sampling frequency for determining a
whole crystal. If we sample the diffraction intensities on a
uniform grid in the crystal basis, with a subset of the grid
points coinciding exactly with the Bragg conditions, then the
shape function given by equation (77) will be aliased such that
the delta functions overlap exactly. The weights associated
with those delta functions that overlap will sum to form a new
set of weights W, .. In such a case, equation (77) maintains
the same form, but the number of new unknown weights W; s
needed to specify our data is reduced. This is the basis of the
reduction in the number of parameters when the problem is
formulated in terms of the averaged shape transform (Section
2.2) as opposed to the occupancy matrix (Section 2.1).

For finite crystals, the lowest value of €2 corresponds to an
incoherent average over the diffracted intensities of all mol-
ecular orientations, which can arise from hypothetical crystals
with very low occupancies that are uniformly random and
diffract like a gas of oriented molecules in the limiting case. In
that scenario, it was concluded by Millane & Chen (2014) that
unique recovery of a 3D molecule of any shape from the
averaged diffracted intensity is possible if the number of
molecular orientations is less than or equal to 4, where 4 is the
marginal case, since €2 is bounded below by 4 in 3D for a single
isolated object as previously mentioned. Using the notation
introduced in equation (72) for the constraint ratio of a single

particle, €2, the constraint ratio for the worst case can be
expressed as
A/Q2K) €
S-ZWOI'St = = : * (78)
S K

The best-case scenario is another hypothetical situation in
which all molecules are spaced sufficiently far apart to give
direct access to all the cross-correlation terms A, (r), k # I,
without overlap, solely from the diffracted intensity, which is
analogous to holographic techniques studied elsewhere
(Martin et al., 2013). In this case the constraint ratio increases
due to the additional volumes of the cross-correlations, which
we assume for simplicity in the analysis here to have the same
support volume as the autocorrelations. Since the cross-

Table 1
The constraint ratio for objects in various configurations and reciprocal-
space samplings.

fis the fraction of the unit cell (well-defined for perfect crystals) occupied by
the molecule, K is the number of unique orientations of the molecule in the
crystal. s is the sampling factor in reciprocal space relative to the Bragg
sampling.

s=1 s>2
Single particles Q=1/2 Q=9
Perfect crystals Q=1/2f) 1/2f) < Q=< Q,

Edgy crystals 12<Q<1 Q,/K<Q=<(K*-K+1)Q,

correlations are not centrosymmetric like the autocorrela-
tions, and since each of the autocorrelations is identical in 3D,
the number of independent measurements grows from
A/(2K) in the worst case to A/2 + (K*> — K).A/2 in the best
case. The constraint ratio for the best case is therefore given
by

Al 4 (K* = K)]/2
best — S

The ranges of 2 for molecules arranged in three different
configurations are summarized in Table 1. The three config-
urations are: (i) single particle — only a single molecule in the
X-ray beam; (ii) perfect crystals — crystals that can be
described by a single type of unit cell, i.e. no random edge
truncations; (iii) edgy crystals — crystals with arbitrary mol-
ecular occupancies. Note that we assume the number of
unknown weights W}, is sufficiently small in comparison with
S that the weights can be ignored when counting the amount
of unknowns in determining the constraint ratio, ie. the
number of parameters in the molecular density is much
greater than the number of parameters needed to describe the
averaged shape transforms.

Q = (K* — K+ 1)Q,,. (79)

APPENDIX C
Minimum-change least squares

Consider matrices I (M x 1), Z (M x N) and C?” (N x 1) for
some integers M and N, related by

I1=27C?. (80)

Note that Iis not the identity matrix but a vector that holds the
diffracted intensity values in the context of shape transform
phasing. A new estimate of C, denoted by C*Y is given by

CH) = 7', (81)

where Z7 is the pseudo-inverse of Z as defined in equation
(38). In this case the 2-norm of the new estimate is minimized:

min ||C“HV[,. (82)

This is the ‘minimum-norm’ least-squares solution.

Instead of finding a C closest to the origin, an often more
sensible minimization is to find a C that is closest to a previous
estimate of C. Our problem then becomes

min ||C*Y — 7|, (83)
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subject to
I=2zc. (84)

The trick to solving this is to utilize the result from the
minimum-norm solution. Write

I= Z[C(Hl) —CY 4 C(i)]
and rearrange to get
I-7CY = Z[c™) — 9. (85)

Comparing the form of equations (80) and (85), we can
immediately utilize equation (81) to write

ct) — ¢V =z —2c"), (86)
giving the ‘minimum-change’ least-squares solution as

CH) = €O 4 Z+[1 — 2], 87)

APPENDIX D
Positive semi-definite projection

Given a Hermitian matrix A we seek a matrix B that
is PSD such that the Frobenius norm [[A—B| =
Qi 1A — Bij|2)1/2 is as small as possible. In other words,
we want to minimize ||A — B||r such that the eigenvalues of B
are all non-negative. In this appendix, we first show that the
Frobenius norm of the difference between two matrices is
always minimized when the two matrices have the same set of
eigenvectors. Then imposing the condition for the eigenvalues
of B to be non-negative leads to the desired result.

Using Dirac notation, the Frobenius norm can be expressed
as

|A — B||}; = tr[(A — B)(A — B)']
= > (il(A — B)(A — B)']i), (88)

where tr(-) denotes the trace operation. The trace is invariant
to similarity transformations, and in particular, unitary trans-
formations. We can therefore write the above in terms of the
eigenbasis of the, so far, unknown B,

Bn) = 1" |n), (89)
where the eigenvectors are normalized such that
(nlm) =6, (90)
Writing the Frobenius norm in this basis gives

1A = BIl = Y (n|A? = 24PA + 47 |n).  (OD)
n

We need to minimize equation (91) subject to the constraint
that the eigenvectors |n) satisfy the normalization condition
given by equation (90), and that the eigenvalues A% > 0.
Using Lagrange multipliers B, and B, for the above two
constraints, respectively, we can write down the objective
function, L, for our optimization problem as

L=lIA = BIE = By(nln) — B (W17 = {P17)). ©2)
Minimizing first with respect to the eigenvectors, we vary L
with respect to the left eigenvectors, (n|, to find

3L
L= (A =AY = Biln). (93)
8(n|
Setting equation (93) to zero yields
2
A[A = 22In) = [B, — 47 in) (94)
which is an eigenvalue equation
Cln) = a,|n), (95)

where C = A[A — 22 and o, = B, — A®)’. Since AC = CA
and that A and C are both Hermitian, the eigenvectors |n)
must be common to the matrices C and A. Furthermore, since
|n) was originally the eigenvector of B, A and B can therefore
share the same set of eigenvectors.

In light of this revelation, equation (91) can be written as

IA = B|]2 = S (n]a? — 2005 4 \B7|)

=Y Y — PP, (96)

where A is the nth eigenvalue of A. Now we see that the
Frobenius norm is minimized if

) (A >
® _ | M n =
b _{0 A <0 ©7)

when the constraint A%®) > 0 is enforced. This is the desired
operation as required. The projection operator therefore
consists of calculating the eigenvalues and eigenvectors of A,
setting any negative eigenvalues to 0, and transforming using
the original eigenvectors to form the matrix B. The matrix B
will then be the closest PSD matrix to A measured in terms of
the Frobenius norm.

APPENDIX E
Ellipsoidal projection

Given the equation
K , K .,
Ly = 20 Ml Fil™ = 32 A + ), (98)
k=1 k=1
where F, = x, + iy,, we seek the modification to an arbitrary
complex number F;, = xj + iy, such that equation (98) is
satisfied while minimizing the FEuclidean distance

Zf;l[(xk —x,)* 4 (y, — ¥,)’]. Using a Lagrange multiplier j,
we can write down the objective function:

K
L=3% [ =2 + O — )]
K
+ /3|:k2:l )“k(xi + yi) - Idatai| . (99)

Differentiating with respect to x, and y, and setting those
expressions to zero yields
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oL
0=—=2x,(1+ Br,) —2x,

ax;,
oL
0= 3_ =2y, (1 + BAy) — 2}’2
Vi
so that
Xk
X, =— 100
=T (100)
P (101)
14 BA,

Substituting these into the constraint equation (98) gives

K 2
M Fr
Idata = Z K 2
(14 Bry)

k=1

(102)

which can be numerically solved for the optimum g, as
explained in Section 3.3.3, and substituted into equations (100)
and (101) to yield the real and imaginary parts of the F, that
satisfies equation (98) but is also the closest to the starting
point F; measured in terms of the Euclidean distance.
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