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Diffraction patterns from small protein crystals illuminated by highly coherent

X-rays often contain measurable interference signals between Bragg peaks. This

coherent ‘shape transform’ signal introduces enough additional information to

allow the molecular densities to be determined from the diffracted intensities

directly, without prior information or resolution restrictions. However, the

various correlations amongst molecular occupancies/vacancies at the crystal

surface result in a subtle yet critical problem in shape transform phasing

whereby the sublattices of symmetry-related molecules exhibit a form of partial

coherence amongst lattice sites when an average is taken over many crystal

patterns. Here an iterative phase retrieval algorithm is developed which is

capable of treating this problem; it is demonstrated on simulated data.

1. Introduction

The method of serial femtosecond crystallography (Chapman

et al., 2011) emerged soon after the startup of the world’s first

hard-X-ray free-electron laser (XFEL) in 2009 (Emma et al.,

2010). The extreme intensity of XFEL pulses enabled room-

temperature crystallography on protein crystals of sub-

micrometre sizes, with the option of triggering dynamics by

various means such as light activation, while at the same time

avoiding nearly all signs of X-ray radiation damage which

often limits resolution or leads to unwanted artifacts in

electron-density maps. As reviewed elsewhere, XFELs allow a

wide range of protein crystallography studies that appear to be

impossible with current synchrotron facilities (Schlichting,

2015; Spence, 2017; Zatsepin, 2018).

In serial femtosecond crystallography, large numbers of

crystal diffraction patterns, sometimes exceeding a million, are

combined to form a single, 3D set of crystallographic

structure-factor amplitudes by merging Bragg reflection

intensities. As with conventional crystallography, the struc-

ture-factor phases are unmeasured yet necessary to form the

real-space electron-density maps. It has now been established

that most, if not all, conventional crystallographic phase

retrieval techniques are effective on XFEL diffraction data

(Schlichting, 2017), including those that rely on anomalous

diffraction near resonant conditions. In addition to conven-

tional techniques, a number of new phase retrieval principles

have emerged during the development of serial femtosecond

crystallography (Son et al., 2011; Ayyer et al., 2016).

The phase retrieval method that we explore here is often

referred to as ‘shape transform phasing’, as it makes use of the

additional information contained in so-called shape transform

intensities seen between Bragg reflections when finite crystals

are exposed to coherent light (Kirian et al., 2010; Spence et al.,

2011; Chen et al., 2014a). By ‘shape transforms’ we literally
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mean the Fourier transform of the shape of the crystal, where,

mathematically, the shape of a crystal is given by a binary

function that has a 1 where a crystal lattice point is occupied

by a molecule and 0 where the lattice point is not occupied.

Section 2 contains more details on this model. Shape trans-

forms from protein crystals can be observed with a synchro-

tron X-ray source (Boutet & Robinson, 2008), but are rare

because most synchrotron-based crystallography instruments

do not provide coherence lengths that span the entire crystal,

and/or the fluence is usually too low because of the funda-

mental limitations imposed by radiation damage. The emer-

gence of intense, laser-like X-ray beams produced by

XFELs, which circumvent the effects of radiation damage in

the measurements by using femtosecond pulses, greatly

improved the visibility of shape transforms (Chapman et al.,

2011). An example diffraction pattern collected during

the first serial femtosecond X-ray crystallography experiment

is shown in Fig. 1. In addition, increased data rates

further improved the extent that inter-Bragg signals

can be seen in many data sets upon averaging in the conti-

nuum of 3D reciprocal-space locations (Yefanov et al., 2014).

Observations of high-contrast shape transforms at XFELs

triggered many studies on the theory of shape transform

phasing (Spence et al., 2011; Elser, 2013; Liu et al., 2014;

Chen et al., 2014a,b, 2016; Chen & Millane, 2014; Kirian et al.,

2014, 2015; Millane & Chen, 2014), but the only experimental

results published so far are limited to artificial 2D crystals

(Kirian et al., 2015).

The basic notion of solving the crystallographic phase

problem by sampling intensities between Bragg reflections was

first proposed in the crystallography literature by Sayre

(1952). Experimental efforts were made by Perutz and

colleagues in the 1950s to determine intensities between the

nominal Bragg reflections by exploiting the variation in unit-

cell dimensions upon crystal swelling (Green et al., 1954).

Shape transform phasing is similar in spirit to those early

efforts, in the sense that it also exploits additional samples of

the underlying molecular transform. This additional informa-

tion comes at the cost of requiring sufficiently small crystals,

highly coherent X-ray sources and perhaps larger volumes of

data, but is nonetheless of significant interest because, in

principle, it would allow for the solution of the phase problem

without prior-known information, and without restrictions on

the resolution of the data. In addition to its potential to solve

difficult phase problems in protein crystallography, the

development of shape transform phasing calls for general-

izations of the phase retrieval problem and may find other

applications in problems of a similar mathematical form. One

immediate generalization would include a model for the

diffuse diffraction associated with translational disorder,

which has recently been used as a means of extending the

resolution of density maps (Ayyer et al., 2016).

The absence of experimental shape transform phasing

results for protein samples is in part due to the lack of a

generalized phase retrieval algorithm which can accommodate

a subtle, yet critical, problem that arises due to variations in

molecular occupancies at the surfaces of crystals (Elser, 2013;

Kirian et al., 2014; Chen & Millane, 2014; Williams et al., 2017).

It is natural to describe the problem as the result of ‘incom-

plete unit cells’ at the surface of the crystal, but we warn that

the ‘unit cell’ is an elusive concept for finite crystals. For

example, in 1D, there are a total of four types of finite crystal

arrangements for two molecules, A and B, as shown in Fig. 2.

However only two of the four possible crystal types have a

well-defined unit cell, consisting of the molecular configura-

tions AB and BA. In a viewpoint which we take below, the

intensities averaged over many such crystals are equivalent to

those from a partially coherent target or illumination source,

roughly similar to the work by Dilanian et al. (2013). We model

the truncation effects arising inevitably on the edges of finite

crystals as occupancies of molecules on an infinite lattice.

Some attempts have been made to develop methods that

can accommodate the edge occupancy problem in shape
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Figure 1
A single raw diffraction pattern, i.e. without any pixel masking or
background subtraction, obtained at the Linac Coherent Light Source
from a sub-micrometre crystal of Photosystem I (Chapman et al., 2011).
The interference fringes between Bragg reflections provide sufficient
sampling of the molecular transform to solve the phase problem in
principle. The red streak running vertically through the center of the
pattern is the scattering of X-rays from the edge of the water jet that
carried the crystals into the XFEL pulses.

Figure 2
The four possible types of crystals consisting of two kinds of molecules in
1D.



transform phasing (Kirian et al., 2014; Chen et al., 2016), but

these methods have been limited to idealizations and

approximations that are not likely to be effective on experi-

mental data.

In this article, we demonstrate an algorithm that solves the

general problem of shape transform phasing for crystals with

arbitrary molecular occupancies. We first describe a diffraction

model that accommodates missing molecules on the edge of,

and potentially within, finite crystals. Then, after describing

the basic ideas behind the application of iterative projection

algorithms to the problem of phase retrieval, we propose a

modified iterative projection algorithm that solves the phase

problem when the input intensity data are the 3D average over

coherent finite crystal diffraction intensities. We allow for any

types of molecular occupancies and provide simulation results

that demonstrate the algorithm for 2D and 3D crystals. We

conclude with a discussion of our findings and potential

extensions to the algorithm including how some other types of

crystal disorder could be accounted for in our diffraction

model and phase retrieval algorithm.

2. Finite crystal model

In this section we construct a mathematical model that

describes occupancies of objects (molecules) on a lattice. The

specific goal is to model the occurrence of molecules on the

surface of a finite crystal giving rise to irregular surface

terminations. We note here that the particular model we

formulate, along with our proposed reconstruction algorithm,

can handle arbitrary occupancies on a lattice in general and

need not be restricted to lattice occupancies describing the

surface of a finite crystal. Other cases of particular interest

include crystals with holes for example. The aim is to use this

model to describe the ensemble-average of crystal diffraction

intensities, which we take as the input to our phase retrieval

algorithm.

We assume that the X-ray scattering is in the regime where

there is no multiple scattering, and that the diffracted intensity

is measured in the far-field. The diffracted amplitude is

therefore given by the Fourier transform of a real-space

density. In the first Born approximation, this real-space

density is proportional to the electronic charge density. In

order for our model to describe more general scattering, for

example near X-ray edges, where there can be additional

phase shifts, we allow the real-space density to be complex, but

will continue to call it the electron or scattering density. No

other kind of crystal disorder except for random occupancies

of molecules on the crystal lattice is included in the model that

follows.

We begin by describing a general model that expresses the

averaged diffracted intensity explicitly in terms of the occu-

pancies of the crystal lattice (Section 2.1) and then show that

an equivalent model can be formulated in terms of shape

transforms (Section 2.2) which has a much smaller number of

parameters that are needed to capture the information in the

averaged diffracted intensity.

2.1. Occupancy formulation

Consider a molecule described by an electron density f ðrÞ

that serves as the asymmetric unit for the construction of

crystals. The crystal space group consists of K symmetry-

related partners in total. The kth symmetry partner is denoted

by fkðrÞ and is related to f ðrÞ through a rotation Rk and spatial

shift sk. We combine these operations into a single linear

transformation, Lk, such that

fkðrÞ ¼ Lkf ðrÞ ¼ f Rkðr� skÞ
� �

ð1Þ

and

f ðrÞ ¼ L
�1
k fkðrÞ ¼ fk R�1

k rþ sk
� �

: ð2Þ

We denote the real-space scattering density of the nth crystal

as

gnðrÞ ¼
P1
a

PK
k¼1

wkanf ½Rkðr� sk � raÞ�

¼
P1
a

PK
k¼1

wkanfkðr� raÞ; ð3Þ

where the vector a is a 3-tuple of integer indices

a ¼ ð�1; �2; �3Þ which identifies the real-space lattice points

and the molecular occupancies wkan are equal to either 0 or 1

and specify the absence or presence, respectively, of the kth

molecule in the ath unit cell of the nth crystal. The location of

those lattice points, given by the lattice vectors ra, is formed

via linear combinations of the three crystal basis vectors a1, a2

and a3 where ra ¼ �1a1 þ �2a2 þ �3a3. The notation
P1

a is

shorthand for
P1

�1¼�1

P1

�2¼�1

P1

�3¼�1.

The complex diffracted amplitude of the crystal, GnðqÞ, is

given by the Fourier transform of the scattering density gnðrÞ

and is equal to

GnðqÞ ¼
P1
a

PK
k¼1

wkan

R1
�1

fkðr� raÞ expð�iq � rÞ dr

¼
P1
a

PK
k¼1

wkanFkðqÞ expð�iq � raÞ ð4Þ

where

FkðqÞ ¼ FðRkqÞ expð�iq � skÞ ð5Þ

and FðqÞ is the Fourier transform of f ðrÞ. The diffracted

intensity is then

InðqÞ ¼ jGnðqÞj
2

¼
P1
a

P1
b

PK
k¼1

PK
l¼1

wkanwlbnF
�
l ðqÞFkðqÞ exp½�iq � ðra � rbÞ�

ð6Þ

where * denotes complex conjugation. The average diffracted

intensity over an ensemble of crystals is

IðqÞ ¼ hInðqÞin

¼
P1
a

P1
b

PK
k¼1

PK
l¼1

WkalbF
�
l ðqÞFkðqÞ exp½�iq � ðra � rbÞ�

ð7Þ
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where the term

Wkalb � hwkanwlbnin ð8Þ

specifies the correlations amongst molecular occupancies and

will be referred to simply as the ‘occupancy matrix’. Since we

assume finite crystals, each unique set of indices comprised of

k and a, which together specify a unique molecule in the

crystal, may be mapped to one index. Similarly, the sets of

indices comprised of l and b may also be mapped to a single

index, and hence the occupancy matrix requires only two

indices to uniquely refer to each pair of molecules. The use of

a single integer index would of course be the natural choice for

a non-crystalline assembly of molecules.

The number of parameters in the occupancy matrix W is of

the order of the square of the total number of molecules in the

largest crystal in the ensemble, and thus scales as the sixth

power of the linear crystal size. As an example, the number of

parameters in the occupancy matrix for a crystal with just ten

unit cells on each side is of the order 106. Given the very large

number of parameters and its unfavorable scaling with crystal

size, we seek a substantial reduction in the number of

unknowns in order to solve for our sought-after asymmetric

unit f ðrÞ. This might be possible through the use of a physical

model for protein crystal growth as occupancy correlations are

likely dependent only on local neighborhoods for example.

However, a much simpler approach is to reformulate the

problem as follows.

2.2. Shape transform formulation

We may view the construction of a finite crystal as the

superposition of K ‘sublattices’ in which the kth sublattice

contains molecules that have been rotated by Rk and trans-

lated by sk. Two examples of finite crystals are shown in Fig. 3.

In those examples, there exist two kinds of symmetry partners

(K ¼ 2) and the occupied molecular sites are marked by

crosses for one kind of symmetry partner (the ‘P’ molecule)

and circles for the other kind (the ‘mirrored P’ molecule).

The real-space scattering density of the nth crystal can now

be written as

gnðrÞ ¼
PK
k¼1

sknðrÞ � fkðrÞ ð9Þ

where � denotes the convolution operation and sknðrÞ is the

shape function for the kth symmetry partner in the nth crystal.

The shape function is related to the occupancies by

sknðrÞ ¼
P1
a

wkan�ðr� raÞ ð10Þ

where �ðrÞ is the Dirac delta function. The complex diffracted

amplitudes of the nth crystal are then equal to

GnðqÞ ¼
PK
k¼1

SknðqÞFkðqÞ ð11Þ

where SknðqÞ is the Fourier transform of the shape function for

the kth symmetry partner in the nth crystal, given by

SknðqÞ ¼
P1
a

wkan expð�iq � raÞ: ð12Þ

We refer to the Fourier transform of the shape function in this

article as the ‘shape transform’. The diffracted intensity for the

nth crystal is

InðqÞ ¼ jGnðqÞj
2
¼

PK
k¼1

PK
l¼1

S�lnðqÞSknðqÞF
�
l ðqÞFkðqÞ ð13Þ

and the average intensity is

IðqÞ ¼ hInðqÞin ¼
PK
k¼1

PK
l¼1

CklðqÞF
�
l ðqÞFkðqÞ; ð14Þ

where

CklðqÞ � hS�lnðqÞSknðqÞin ¼
P1
a

P1
b

Wkalb exp½�iq � ðra � rbÞ�:

ð15Þ

We will refer to CklðqÞ as the ‘averaged shape transform’. It is

useful to compare equation (14) with equation (7). The above

formulation effectively replaces the occupancy matrix with the

average products of shape transforms SknðqÞ. We show in

Appendix B that the diffracted intensity given by equation

(14) allows the coarse-graining (down-sampling) of the

intensity, and in turn, the averaged shape transforms, CklðqÞ,

such that the weights Wkalb do not need to be individually

retrieved. This leads to the reduction in the number of para-

meters describing the shape transform phasing problem as

desired.

A property of the averaged shape transforms, CklðqÞ, is that

they are periodic upon translations of reciprocal-lattice

vectors gh in reciprocal space,

Cklðq� ghÞ ¼ CklðqÞ; ð16Þ

where gh are the positions of the reciprocal-lattice points

identified with the reciprocal-lattice vectors b1, b2 and b3, and

a 3-tuple of integer indices h ¼ ðh1; h2; h3Þ (the Miller indices)

such that gh ¼ h1b1 þ h2b2 þ h3b3. We will refer to the peri-

odic domain in CklðqÞ as the ‘shape transform cell’. The shape

transform cells are equivalent to the Wigner–Seitz cells and

Brillouin zones in crystallography and condensed matter
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Figure 3
Two examples of finite crystals with two distinct molecular orientations
(‘P’ and ‘mirrored P’) along with their occupied sublattice points (crosses
and circles). (a) A finite crystal describable by a unit cell. (b) A finite
crystal not describable by any non-trivial unit cell (a trivial unit cell is
when the unit cell is the crystal itself).



physics in the sense that they all contain the same amount of

information that is needed to construct CklðqÞ. Note that the

averaged shape transform is also inversion conjugate

symmetric, i.e.

Cklð�qÞ ¼ C�
klðqÞ; ð17Þ

and CklðqÞ are Hermitian with respect to the indices k and l,

since

CklðqÞ ¼ hS�lnðqÞSknðqÞin

¼ hS�knðqÞSlnðqÞin
� ��

¼ C�
lkðqÞ; ð18Þ

consequently implying that CkkðqÞ ¼ C�
kkðqÞ which means

CkkðqÞ is real for all q. The periodicity and centrosymmetry of

the averaged shape transforms are derived in Appendix A.

Equation (14) can be written in matrix notation as

IðqÞ ¼ ½F�
1 ðqÞ . . .F

�
KðqÞ�

C11ðqÞ . . . C1KðqÞ

..

. ..
.

C�
1KðqÞ . . . CKKðqÞ

2
64

3
75

F1ðqÞ

..

.

FKðqÞ

2
64

3
75;
ð19Þ

yielding the matrix representation for the averaged diffracted

intensity at a particular q:

IðqÞ ¼ Fy
ðqÞCðqÞFðqÞ; ð20Þ

where FðqÞ is a K by 1 vector containing the set of complex

numbers fFkðqÞg, CðqÞ is a K by K matrix containing the set of

complex numbers fCklðqÞg, and the y denotes conjugate

transpose. Since the matrix CðqÞ is Hermitian, the intensities

IðqÞ and the diagonal elements CkkðqÞ will be real-valued. The

matrix CðqÞ is also positive semi-definite since IðqÞ 	 0 for all

FðqÞ. The above properties of the averaged shape transform

function, CklðqÞ, and the averaged shape transform matrix,

CðqÞ, will be utilized extensively in the phase retrieval process.

3. Reconstruction algorithm

The goal of the reconstruction problem is to retrieve the

scattering density of the asymmetric unit f ðrÞ, given the

averaged diffraction intensity IðqÞ along with some basic

assumptions about f ðrÞ and CðqÞ. A practical way of recon-

structing f ðrÞ from its measured Fourier intensity IðqÞ is via

iterative projection algorithms (Fienup, 1982; Elser, 2003a;

Marchesini, 2007; Millane & Lo, 2013). These algorithms are

designed to solve general constraint-satisfaction problems

where one is given a number of constraints that need to be

simultaneously satisfied. The problem is usually para-

meterized such that there are D parameters and each

constraint defines a set of equations in terms of those para-

meters, which can be interpreted geometrically as surfaces in a

D-dimensional space. Solutions to the constraint-satisfaction

problem are then located at the intersection of all the

constraint surfaces.

To reach the intersection, one starts at any position in the

D-dimensional space and explores the space by iteratively

applying a fixed rule composed of so-called projection

operators where the action of a single projection operation

makes the smallest change to the current position in the

D-dimensional space such that one of the constraints is

satisfied.

Suitable combinations of these projection operators are

used to iteratively update the current position in the

D-dimensional space to a new position such that the inter-

section of all constraint surfaces, and thus the solution to the

problem, may eventually be reached. Any combination of

projection operators is called an iterative projection algorithm

(IPA).

We first outline the projection operators for conventional

phase retrieval and describe the iterative update rules that we

use. These update rules are the same for the shape transform

phase retrieval problem and only the projection operators are

changed. These new operators for handling the averaged

diffracted intensity from finite crystals with random molecular

occupancies will be described thereafter.

3.1. Phase retrieval via IPAs

We define the function f ðrÞ that we sample at a series of

discrete points. Here we take a regular grid with D grid points

in total. The value of f ðrÞ on each grid point is viewed as an

independent dimension and the full function f ðrÞ is given by a

single point in that D-dimensional space. As mentioned

previously, the measured Fourier intensity IðqÞ, along with

constraints on the object f ðrÞ, can be described by sets of

equations that correspond to surfaces in the D-dimensional

space, and we seek the point at which all constraint surfaces

intersect. In the presence of measurement errors this inter-

section might not exist and we seek instead a point that is

closest to all constraint surfaces.

The constraints in diffraction phase retrieval are almost

invariably divided into two classes: those in real space and

those in reciprocal space.

The main constraint in real space is the finite extent of the

object, the shape of which is referred to as the object ‘support’.

In reciprocal space the main constraint is the measured

Fourier intensity data. The corresponding projection opera-

tors in real and reciprocal space are denoted by PS and PM,

respectively, and are defined as follows.

Let S be the set of all position vectors of the samples within

the support of f ðrÞ, i.e. f ðrÞ ¼ 0 for all r =2 S. The projection

operator PS sets the value of the samples outside S to zero and

leaves the value of the samples inside S unchanged. Defining a

binary function sðrÞ as

sðrÞ ¼
1 r 2 S

0 r =2 S

�
; ð21Þ

the projection operator PS is given by

PSf ðrÞ ¼ sðrÞf ðrÞ: ð22Þ

The projection operator PM takes a complex number and

changes the magnitude of that complex number to the desired

value, which in this case is the square root of the measured
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Fourier intensity, IdataðqÞ. The set of all complex numbers that

have the same magnitude defines a circle on the complex

plane; therefore the projection, which seeks the minimum

change to the input such that it satisfies the equation for the

associated constraint surface, involves scaling the input

complex number such that it moves radially on the complex

plane until it intersects the circle with the desired magnitude.

Denoting the Fourier transform operator by F, the projection

operator PM is

PMf ðrÞ ¼ F
�1 IdataðqÞ

IðqÞ

� �1=2

F f ðrÞ; ð23Þ

where IðqÞ ¼ jF f ðrÞj2. In simple terms, this operation sets

the magnitude of the complex diffraction amplitude to the

measured value, while leaving the current phase estimate

unchanged.

The above projection operators can be combined to form

rules that update f ðrÞ in such a way that it becomes closer to

satisfying all of the constraints. The update rule generates the

(iþ 1)th iterate from a combination of PS, PM and the iterate

at the ith iteration, xðiÞ, i.e.

xðiþ1Þ ¼ Rule xðiÞ;PS;PM

� �
: ð24Þ

The iterate in the case of conventional diffractive imaging is

f ðrÞ but it could in general encapsulate the entire list of entities

that are allowed to change during the application of the

algorithm. In the case of shape transform phasing, the iterate

is comprised of ffkðrÞg and fCklðqÞg as will be explained in more

detail in the next section. When the iterate no longer changes

upon application of the update rule, i.e. xðiþ1Þ ¼ xðiÞ, the

algorithm is said to have reached a fixed point. Not all fixed

points are solutions and they often correspond to local minima

of the distance between the two constraint surfaces. The

update rule in equation (24) must therefore be chosen

prudently so that the iterate is able to escape local minima if

need be to avoid stagnation.

The simplest IPA is the error reduction (ER) algorithm

(Fienup, 1982) in which the ith iterate is updated according to

the rule

xðiþ1Þ
¼ PSPMx

ðiÞ: ð25Þ

The ER algorithm moves the iterate steadily towards a fixed

point but is unable to escape and explore other regions of the

search space if that fixed point turns out not to be a solution.

Alternatively, the difference map (DM) algorithm (Elser,

2003a) uses an update rule which is able to escape local

minima and is given by

xðiþ1Þ
¼ xðiÞ þ �ðPSRM � PMRSÞx

ðiÞ; ð26Þ

where j�j 
 1 is a parameter of the algorithm that can be

thought of as the step size of the update, and RS and RM are

relaxed projections defined by

RSx
ðiÞ
¼ ð1 þ �SÞPS � �S

� �
xðiÞ

RMx
ðiÞ ¼ ð1 þ �MÞPM � �M

� �
xðiÞ:

The amount of relaxation for the two relaxed projections is

controlled by the parameters �S and �M . It is usual to set

�S ¼ �1=�, �M ¼ 1=� as justified by Elser (2003b). If the

iterate no longer changes when the DM algorithm is applied, a

solution xðsolÞ that satisfies both constraints is obtained from

the current iterate xðiÞ by

xðsolÞ ¼ PSRMx
ðiÞ ¼ PMRSx

ðiÞ: ð27Þ

Another useful update rule that is capable of escaping local

minima is the relaxed averaged alternating reflections

(RAAR) algorithm (Luke, 2005) which can be expressed as

xðiþ1Þ ¼ �ð2PSPM � PS þ 1ÞxðiÞ þ ð1 � 2�ÞPMx
ðiÞ; ð28Þ

where � is again a parameter of the algorithm.

3.2. Phase retrieval from averaged finite crystal intensities

Our shape transform phasing problem at hand is to recon-

struct the sets of functions ffkðrÞg and fCklðqÞg for k and l

ranging from 1 to K, given the averaged intensity function IðqÞ

defined by equation (14). The asymmetric unit f ðrÞ that we

ultimately desire can be obtained from any one of the func-

tions in ffkðrÞg once a solution is found. The iterate in the IPA

can therefore be represented as a real vector that contains the

combined sets of samples in the real and imaginary parts of

ffkðrÞg and fCklðqÞg. The length of this vector determines the

dimension of the search space, D, which in turn corresponds to

the amount of computer memory needed to store all of the

variables in the problem. Here we provide an estimate for D

and hence the memory requirement of our algorithm.

If we have N discrete samples in q, we will also have N

discrete samples in r since these two spaces are related by a

discrete Fourier transform. In order to count the total number

of independent samples in fCklðqÞg, we introduce the sampling

factor s that determines the number of samples between

reciprocal-lattice points (Bragg reflections), which we assume

in this analysis to be the same in all three dimensions. A

sampling factor of s ¼ 1 corresponds to the usual situation in

crystallography in which there are no intensity samples

between Bragg reflections, a sampling factor of s ¼ 2 doubles

the sampling along each direction in reciprocal space, and so

on. Assuming a cubic array, the total number of samples N is

then related to s by N ¼ ðsLÞ
3 where L is the number of

resolution elements of the molecular density in each dimen-

sion, i.e. the reconstructed density of the molecule will be in an

array of L� L� L voxels.

Neglecting knowledge of the object support, non-

crystallographic symmetry or other such parameter reduc-

tions, there are in total K � 2N ¼ 2KN samples in the set

ffkðrÞg when accounting for both the real and imaginary parts

of the potentially complex scattering densities. The set fCklðqÞg

has far fewer independent parameters than K2 � 2N ¼ 2K2N,

because of the many relations developed in Section 2, i.e.

CklðqÞ is periodic and inversion symmetric with respect to q

[equations (16) and (17)], and Hermitian with respect to the

indices k; l [equation (18)].
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Applying the property of periodicity of CklðqÞ, the number

of independent q samples in the averaged shape transform is

no greater than the number of samples contained in its peri-

odic domain, i.e. the shape transform cell, which is equal to s3.

Taking into account centrosymmetry, the number of inde-

pendent q samples in the shape transform cell is therefore

approximately s3=2 (approximate due to the discrete nature of

the problem). Finally, at each q, the complex matrix CðqÞ has a

total of K2 independent real parameters when accounting for

Hermitian symmetry. Thus, the overall dimension of the

search space is approximately equal to

D � 2KN þ K2s3=2

¼ 2Ks3ðL3 þ K=4Þ: ð29Þ

Typically, L3 is large compared with K (say L ¼ 64, K ¼ 4) so

D scales roughly as 2KN ¼ 2KðsLÞ
3, meaning that the amount

of computer memory taken up by the averaged shape trans-

forms is negligible compared with the arrays needed to hold

the set ffkðrÞg. Note that the above analysis does not determine

the constraint ratio � (Elser & Millane, 2008), defined as the

ratio of the number of independent known samples to the

number of independent unknown parameters. This is because

some of the samples involved in the counting above are not

independent or are known to be zero given the support of

fkðrÞ. We provide a discussion of � in the context of our

problem in Appendix B.

To summarize, the iterate in the IPA for our shape trans-

form phasing formulation is a real vector of length approxi-

mately 2Ks3ðL3 þ K=4Þ containing the combined sets of

samples in the real and imaginary parts of ffkðrÞg and fCklðqÞg

for k and l ranging from 1 to K. Having defined what the

iterate is, we can now describe the projection operators that

act on this iterate.

3.3. Reciprocal-space constraints and the projection operator
PM

The operator PM acts on the iterate x defined in the

previous section to generate an output, PMx, that satisfies the

data constraint

IdataðqÞ ¼
PK
k¼1

PK
l¼1

F�
k ðqÞCklðqÞFlðqÞ: ð30Þ

A particular combination of operations that is able to make

an iterate satisfy equation (30) can be summarized in the

following three steps:

Step (i). The averaged shape transforms fCklðqÞg are

updated via a least-squares procedure using the intensity data

and the current estimate of the molecular transforms fFkðqÞg.

Step (ii). A positive semi-definite projection operation is

applied to the averaged shape transforms obtained from step

(i), which ensures that the intensity values calculated using

fFkðqÞg and fCklðqÞg are non-negative.

Step (iii). The molecular transforms fFkðqÞg are updated

given the intensity data and the new averaged shape trans-

forms from step (ii) with an operation that corresponds to a

projection onto a hyper-ellipsoid.

Note that although each of these steps is in fact a distance-

minimizing operation, as will be shown next, the combination

of them yielding PM turns out not to be a distance-minimizing

operator in general. The reason for this is that step (i) holds

fFkðqÞg constant while it updates fCklðqÞg and vice versa for

step (iii). We would need an operation that updates both the

F’s and C’s simultaneously in a distance-minimizing way for

PM to be strictly classified as a projection operator. However,

in its current form, PM does change the iterate such that it

satisfies the intensity data, which is the desired constraint. PM

could therefore be referred to as a ‘constraint-satisfaction

operator’.

Next we describe these three steps in detail.

3.3.1. Step (i). Updating the averaged shape transforms
{Ckl(q)}. Since the averaged shape transforms are transla-

tionally symmetric according to

Cklðq� ghÞ ¼ CklðqÞ; ð31Þ

where gh is a reciprocal-lattice vector indexed by h, it is

helpful to divide reciprocal-space vectors into two compo-

nents: q ¼ qhm ¼ gh þ qm. Under this formulation, the index

h specifies a shape transform cell and the index m refers

to a specific point within that particular cell, as depicted in

Fig. 4. Upon consideration of the translational symmetry

CklðqÞ ¼ CklðqmÞ, as evident from equation (31), we write the

diffracted intensities as
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Figure 4
Explanation of the q vector indexing scheme in 2D reciprocal space. Red
dashed boxes, indexed by h, are the shape transform cells. Small blue
squares, indexed by m, are the samples within the shape transform cells.
The thick-outlined small red squares are the Bragg reflections; thus each
shape transform cell is associated with a Bragg reflection. Periodicity of
the averaged shape transform CklðqÞ implies the set of blue squares shown
(both filled and empty) will be the same in each of the red dashed boxes.
Inversion symmetry of the shape transform cells means the filled blue
squares are the only unique samples within the cell. Note the entire
diagram repeats to infinity in the two q-space directions in principle.



IðqÞ ¼ Iðgh þ qmÞ ¼
PK
k¼1

PK
l¼1

F�
k ðgh þ qmÞCklðqmÞFlðgh þ qmÞ:

ð32Þ

Now consider gathering together samples of IðqÞ and

F�
k ðqÞFlðqÞ at the q vectors with identical CklðqÞ. These samples

form subsets of all samples within the functions IðqÞ and

F�
k ðqÞFlðqÞ. The subsets consist of all reciprocal-space posi-

tions q that have the same m, and inversion-symmetry-related

�m, but different h. Let there be a total of H such samples in a

subset, indexed by h, and B subsets altogether, indexed by b.

For the bth subset, equation (32) can be expressed in matrix

form as

Ib ¼ ZbCb: ð33Þ

The term Ib is an H � 1 column matrix containing the intensity

samples IðqhmÞ and I½qhð�mÞ�, which we abbreviate as Ibh for

compactness. The term Zb is an H � K2 matrix consisting of

the products F�
k ðqhmÞFlðqhmÞ and F�

k ½qhð�mÞ�Fl½ðqhð�mÞ�, which

we abbreviate as F�
kbhFlbh. Finally, the term Cb is a K2 � 1

column matrix consisting of the samples CklðqmÞ which we

abbreviate as Cklb.

Since there are many ways to form the matrices in equation

(33), we look to an example in which there are only two

molecular orientations, i.e. K ¼ 2, to gain intuition. Multi-

plying out equation (32) and using the above notation gives

Ibh ¼ jF1bhj
2C11b þ jF2bhj

2C22b þ F�
1bhF2bhC12b þ F1bhF

�
2bhC21b:

ð34Þ

Note that since C21ðqÞ ¼ C�
12ðqÞ we may rewrite equation

(34) as

Ibh ¼ jF1bhj
2C11b þ jF2bhj

2C22b þ 2ReðF�
1bhF2bhÞReðC12bÞ

� 2ImðF�
1bhF2bhÞImðC12bÞ ð35Þ

so that the entries of the Zb matrix and the Cb vector are all

real. Stacking equation (35) up for all h gives the matrix

equation Ib ¼ ZbCb for this example:

Ib1

..

.

IbH

2
664

3
775

¼

jF1b1j
2

jF2b1j
2 2ReðF�

1b1F2b1Þ �2ImðF�
1b1F2b1Þ

..

.

jF1bH j
2

jF2bH j
2 2ReðF�

1bHF2bHÞ �2ImðF�
1bHF2bHÞ

2
664

3
775

�

C11b

C22b

ReðC12bÞ

ImðC12bÞ

2
6664

3
7775: ð36Þ

Returning to the discussion of our general problem, there are

in total B such matrix equations that can be formed using the

current estimate of the averaged shape transforms fC
ðiÞ
kl ðqÞg,

giving Ib ¼ ZbC
ðiÞ
b . Each of these matrix equations can be

inverted to obtain a new estimate of the averaged shape

transform, denoted here by C0
b, via

C0
b ¼ C

ðiÞ
b þ Zþ

b ½Ib � ZbC
ðiÞ
b �; ð37Þ

where Zþ
b is the pseudo-inverse of Zb. The pseudo-inverse can

be calculated by first forming the singular value decomposi-

tion of Zb, i.e. Zb ¼ UbRbV
y

b where Ub and Vb are unitary

matrices of shape H �H and K2 � K2, respectively, and Rb is

the rectangular diagonal matrix of shape H � K2 containing

all the singular values of Zb, denoted by �k, along the diagonal.

The pseudo-inverse of Zb is then given by

Zþ
b ¼ VbR

þ

b U
y

b; ð38Þ

where Rþ
b is the rectangular diagonal matrix containing the

reciprocal of all the singular values of Zb, with entries corre-

sponding to singular values less than some threshold " set to

zero, i.e.

Rþ

b ¼
1=�k �k 	 "
0 �k <"

�
: ð39Þ

Equation (37) is the least-squares solution to Cb that mini-

mizes the distance between C
ðiÞ
b and C0

b measured in terms of

the 2-norm, defined for two arbitrary column matrices A and

B as jjB�Ajj2 ¼ ð
P

i jBi �Aij
2
Þ

1=2. The derivation of equa-

tion (37) is detailed in Appendix C. Carrying out the least-

squares estimate given by equation (37) for every b results in

an updated estimate of the averaged shape transforms over all

q, denoted here by C0
klðqÞ. Note the use of a prime in C0

klðqÞ,

which indicates that this temporary estimate will be further

updated in the next step.

3.3.2. Step (ii). Enforcing positive semi-definiteness of
{Ckl(q)}. The diffracted intensity calculated using the above

intermediate estimate of the averaged shape transforms,

C0
klðqÞ, along with the current molecular transform estimates,

F
ðiÞ
k ðqÞ, may produce negative intensity values, which are

unphysical. More explicitly, for the estimate of the averaged

shape transforms, C0
klðqÞ, the expression

I 0ðqÞ ¼
PK
k¼1

PK
l¼1

F
ðiÞ�
k ðqÞC0

klðqÞF
ðiÞ
l ðqÞ ð40Þ

is not guaranteed to be greater than or equal to 0 for all q.

Equation (40) is a quadratic form and can be written in matrix

form as was done in equation (20), giving

I 0ðqÞ ¼ FðiÞyðqÞC0
ðqÞFðiÞðqÞ: ð41Þ

Demanding I 0ðqÞ 	 0 for any FðiÞðqÞ implies the matrix C0
ðqÞ

must be positive semi-definite (PSD). Thus, we seek an

operation to ensure that C0
ðqÞ is PSD for every q, which we

explain below.

The projection operation that modifies an arbitrary matrix

A to form a PSD matrix B while minimizing the Frobenius

norm jjB�AjjF ¼ ð
P

i

P
j jBij �Aijj

2
Þ

1=2 is described by

Higham (1988). We provide an alternative derivation of this

operation in Appendix D. This projection operation consists

of three steps: (i) eigen-decompose A, (ii) set all the negative

eigenvalues of A to zero, and (iii) eigen-recompose with the

new set of non-negative eigenvalues.
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In the context of our problem, first eigen-decompose C0
ðqÞ

into the diagonal matrix K0
ðqÞ and unitary transform UðqÞ

such that

C0
ðqÞ ¼ UðqÞK0

ðqÞUy
ðqÞ: ð42Þ

A new diagonal matrix KðqÞ is then formed by setting the

negative entries of K0
ðqÞ to zero and leaving the non-negative

entries unchanged, i.e.

�kðqÞ ¼
�0
kðqÞ �0

kðqÞ 	 0

0 �0
kðqÞ< 0

�
; ð43Þ

where �kðqÞ and �0
kðqÞ are the kth eigenvalues, and hence kth

diagonal entries, in the K � K diagonal matrices KðqÞ and

K0
ðqÞ, respectively. Finally, we eigen-recompose to form the

new Cðiþ1Þ
ðqÞ that is PSD via

Cðiþ1Þ
ðqÞ ¼ UðqÞKðqÞUyðqÞ: ð44Þ

The updated averaged shape transforms C
ðiþ1Þ
kl ðqÞ are then the

ðk; lÞth entries of the matrix Cðiþ1Þ
ðqÞ.

3.3.3. Step (iii). Updating {Fk(q)}. We would like to now

make the smallest possible change to the current estimate of

the molecular transforms, fF
ðiÞ
k ðqÞg, such that the updated

versions fF
ðiþ1Þ
k ðqÞg satisfy

IdataðqÞ ¼
PK
k¼1

PK
l¼1

F
ðiþ1Þ�
k ðqÞC

ðiþ1Þ
kl ðqÞF

ðiþ1Þ
l ðqÞ: ð45Þ

First let us investigate the geometry of the constraint equation

(45). Writing down the matrix form of equation (45) yields

IdataðqÞ ¼ Fðiþ1Þy
ðqÞCðiþ1Þ

ðqÞFðiþ1Þ
ðqÞ: ð46Þ

Inserting the eigen-decomposition of Cðiþ1Þ
ðqÞ from equation

(44) gives

IdataðqÞ ¼ Fðiþ1ÞyðqÞUðqÞKðqÞUyðqÞFðiþ1ÞðqÞ ð47Þ

which can be written as

IdataðqÞ ¼ F0ðiþ1Þy
ðqÞKðqÞF0ðiþ1Þ

ðqÞ; ð48Þ

where we have introduced the primed variable

F0ðiþ1Þ
ðqÞ ¼ Uy

ðqÞFðiþ1Þ
ðqÞ: ð49Þ

Expanding the matrix product, equation (48) can be written as

IdataðqÞ ¼
PK
k¼1

�kðqÞjF
0ðiþ1Þ
k ðqÞj2; ð50Þ

where �kðqÞ is the kth eigenvalue of Cðiþ1Þ
ðqÞ. Since F

0ðiþ1Þ
k ðqÞ is

complex and the �kðqÞ’s are not necessarily the same, equation

(50) is an equation of a hyper-ellipsoid in 2K-dimensional

space.

To form the projection onto the constraint equation (50)

from the initial starting point FðiÞðqÞ, we first apply the same

unitary transformation on the current estimate of the mol-

ecular transform, yielding F0ðiÞðqÞ ¼ UyðqÞFðiÞðqÞ. We then seek

the minimum change to F0ðiÞðqÞ such that it satisfies equation

(50). The distance-minimizing property of such an operation is

carried over from F0 to F as Euclidean distances are preserved

under unitary transformations. Using the method of Lagrange

multipliers, we show in Appendix E that the projection onto

the multi-dimensional ellipsoid described by equation (50) is

given by

F
0ðiþ1Þ
k ðqÞ ¼

F
0ðiÞ
k ðqÞ

1 þ �ðqÞ�kðqÞ
ð51Þ

where �ðqÞ is the Lagrange multiplier which is obtained by

solving the equation

IdataðqÞ ¼
XK
k¼1

�kðqÞjF
0ðiÞ
k ðqÞj2

½1 þ �ðqÞ�kðqÞ�
2
: ð52Þ

Equation (52) can be solved for �ðqÞ by rearranging it into a

polynomial of degree 2K and using a numerical polynomial

solver to obtain the roots.

In that case, there are up to 2K possible solutions for �ðqÞ.
In order to find the �ðqÞ that minimizes the distance between

F0ðiþ1ÞðqÞ and F0ðiÞðqÞ, each obtained root is substituted into

equation (51) to form a candidate solution F0ðiþ1ÞðqÞ and for

each of those candidates the distance jjF0ðiþ1ÞðqÞ � F0ðiÞðqÞjj2 is

calculated. The F0ðiþ1ÞðqÞ that gives the minimum distance is

then the projection onto the constraint equation (50). For K

large (greater than about 6), massive differences in the

magnitudes of the polynomial coefficients can cause numerical

problems and prevent accurate determination of the roots via

the rearrangement of equation (52) into a degree 2K poly-

nomial. In those cases it is better to work with equation (52)

directly and solve for �ðqÞ via, for example, the bisection

method as detailed by Morgan et al. (2019). We also adopt this

approach here but use instead the bisection-bounded

Newton–Raphson method where the root search is started in

the state of Newton–Raphson for each iteration, only

reverting to the bisection method for iterations where the new

estimate of the root falls outside the bound provided for

bisection. The bounds are updated by the estimate of the root

obtained from the previous iteration as the root-finding

algorithm proceeds. The initial bound is given by

ð�1=�max;þ1Þ where �max is the largest eigenvalue of

Cðiþ1Þ
ðqÞ. This bound is a result of the observation that the

distance-minimizing solution that gives the projection of a

point onto a hyper-ellipsoid must lie within the same quadrant

as that point, i.e. the components of the starting point should

have the same sign as the components of the projected point.

In terms of equation (51), this statement says that F
0ðiþ1Þ
k ðqÞ

must have the same sign as F
0ðiÞ
k ðqÞ, which means 1 þ �ðqÞ�kðqÞ

must be greater than zero, and hence �ðqÞ> � 1=�max, giving

us the initial bound.

After the Lagrange multiplier �ðqÞ for the distance-

minimizing solution has been determined, it can be substituted

into equation (51) to yield the required F0ðiþ1ÞðqÞ as before.

The geometric interpretation of equation (51) is that �ðqÞ> 0

implies the starting point is outside the hyper-ellipsoid and we

are projecting inwards by making F
0ðiÞ
k ðqÞ smaller, �ðqÞ< 0

implies the starting point is inside the hyper-ellipsoid and we

are projecting outwards by making F
0ðiÞ
k ðqÞ larger, �ðqÞ ¼ 0

implies the starting point is already on the hyper-ellipsoid and

we do not need to do anything, as evident by equation (51)

where F
0ðiþ1Þ
k ðqÞ ¼ F

0ðiÞ
k ðqÞ when �ðqÞ ¼ 0. Projections onto

research papers

Acta Cryst. (2019). A75, 239–259 J. P. J. Chen et al. � Shape transform phasing of edgy nanocrystals 247



ellipsoids have been considered by Stark & Yang (1998),

Borwein et al. (2018), Morgan et al. (2019) and projections

onto more general constraint surfaces have been outlined by

Elser (2017).

Once the required F0ðiþ1ÞðqÞ has been determined, the new

estimates of the molecular transform are finally obtained by

applying the inverse transformation

Fðiþ1Þ
ðqÞ ¼ UðqÞF0ðiþ1Þ

ðqÞ: ð53Þ

3.3.4. Summary of the PM operator. To summarize, the

three steps of the PM operator results in the update

PMx
ðiÞ ¼ PMfF

ðiÞ
k ðqÞ;CðiÞ

kl ðqÞg ¼ fF
ðiþ1Þ
k ðqÞ;Cðiþ1Þ

kl ðqÞg ð54Þ

such that fC
ðiþ1Þ
kl ðqÞg has the correct periodicity, the matrix

Cðiþ1Þ
ðqÞ is PSD, and along with the updated molecular

transforms fF
ðiþ1Þ
k ðqÞg, the intensity data constraint equation

(45) is satisfied.

Note that, as mentioned at the start of this section (Section

3.3), PM is strictly not a projection since it holds fFkðqÞg

constant while it updates fCklðqÞg and vice versa. We would

need an operation that updates both the F’s and C’s simulta-

neously in a distance-minimizing way for PM to be strictly

classified as a projection operator. However, in its current

form, PM does change the iterate such that it satisfies the

intensity data and each of the steps within PM are in fact

distance-minimizing individually.

A further note on the use of PM is that, under certain

circumstances, a degeneracy exists that prevents the unique

retrieval of fCklðqÞg. In 2D, this degeneracy arises if any

molecules with real density values are related by a 180


rotation, e.g. in the P2 space group, the Fourier transform of

those molecules will have the same intensity due to Friedel

symmetry. The two coinciding symmetries mean that two of

the rows in the matrix Zb from equation (33) are identical and

therefore the outer product ZT
bZb becomes non-invertible.

This issue is handled by the pseudo-inverse Zþ
b ; however

it has implications for the reconstruction problem as

follows. Consider the K ¼ 2 example in equation (34). If

jF1bhj
2
¼ jF2bhj

2 then equation (35) can be rewritten as

Ibh ¼ jF1bhj
2
ðC11b þ C22bÞ þ 2ReðF�

1bhF2bhÞReðC12bÞ

� 2ImðF�
1bhF2bhÞImðC12bÞ ð55Þ

which leads to

Ib1

..

.

IbH

2
664

3
775 ¼

jF1b1j
2 2ReðF�

1b1F2b1Þ �2ImðF�
1b1F2b1Þ

..

.

jF1bH j
2 2ReðF�

1bHF2bHÞ �2ImðF�
1bHF2bHÞ

2
664

3
775

�

C11b þ C22b

ReðC12bÞ

ImðC12bÞ

2
64

3
75: ð56Þ

This example shows that we can only recover the sum

of CkkðqÞ and CllðqÞ at the q locations for which

jFkðqÞj
2
¼ jFlðqÞj

2. In 3D this degeneracy arises when the

molecules are related by inversion symmetry, which is rare for

protein molecules. This degeneracy may also be possible when

crystals are twinned. In that case, if we know the potential

twinning operations then we can accommodate twinned

intensity data sets by including the appropriate symmetry

operators. However, we emphasize that this degeneracy

affects only the recovery of fCklðqÞg. If our objective is to

recover ffkðrÞg, as in the case of shape transform phasing, this

issue does not pose a problem.

3.4. Real-space constraints and projection operator PS

The constraints that we use in real space are (i) known

symmetry relations between fkðrÞ and flðrÞ for all k; l, and (ii)

the finite support for the asymmetric unit f ðrÞ that generates

the support for the set of all fkðrÞ. The real-space projection

operator consists of sequentially applying the projection

operators for these constraints and is implemented as follows.

First, the inverse symmetry operations for each molecular

density fkðrÞ are applied to re-map each molecule to the same

position and orientation as the asymmetric unit f ðrÞ. The set of

K re-mapped fkðrÞ are then averaged, and the support

constraint is applied to this average. We then rescale the

averaged f ðrÞ such that the root-mean-squared value of its

density is 1. This normalization procedure is useful because

the intensity data constraint equation (30) cannot determine

the absolute scale of the molecular transforms without prior

knowledge of the absolute scale of the averaged shape

transforms. By fixing the scale of fkðrÞ at each iteration, we

avoid potential issues such as numerical overflow and this also

aids the convergence of the algorithm by preventing drift in

the overall scale. Finally, we map the resulting averaged

asymmetric unit density back to the kth position by applying

the kth set of symmetry operations.

The above description may be given notationally by

PSfkðrÞ ¼ Lk Pscale sðrÞ
1

K

XK
k¼1

L
�1
k fkðrÞ; ð57Þ

where the forward and inverse linear transformations Lk and

L
�1
k are defined by equations (1) and (2), sðrÞ is the binary

support function for f ðrÞ defined by equation (21), and

Pscalef ðrÞ ¼
f ðrÞP

r jf ðrÞj
2

� �1=2
: ð58Þ

3.5. Summary of constraints

Altogether, the constraints that we have are: averaged

diffracted intensity data IdataðqÞ; support for f ðrÞ; real-space

symmetry between ffkðrÞg; fCklðqÞg are periodic; fCklðqÞg are

centrosymmetric; the matrices CðqÞ formed from fCklðqÞg are

PSD.

A flow diagram illustrating the step-by-step procedures

within the operators PS and PM is shown in Fig. 5. The inputs

and outputs of the two operators are connected in Fig. 5 in the

form of the ER algorithm.
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4. Simulations

We conducted two sets of simulations to test the above algo-

rithm: one for a synthetic image in 2D and the other for two

protein molecules in 3D.

4.1. 2D simulation

The algorithm was first tested in 2D. A synthetic data set

was constructed consisting of an ensemble of finite 2D crystals.

The capital letter ‘P’ in bold Times New Roman font was

selected as the support of the molecule. The scattering density

of the molecule was chosen to be the Kodak test image

‘kodim23’ featuring two parrots. This was obtained by multi-

plying a binary letter-P mask with the kodim23 image that was

resized to be of the same shape. The symmetry operation was

chosen to be a reflection. There are thus two symmetry part-

ners (K ¼ 2), ‘P’ and mirrored ‘P’.

The crystals were generated by defining two regions: (i) an

inner region for the body of the crystal, (ii) an outer region on

the perimeter of the inner region which constitutes the edge.

The inner region is rectangular with its width and height

randomly chosen from a uniform distribution. The outer

region is defined to be a shell around the inner region with a

width of one unit-cell lattice spacing away from the inner

region. The probability of a molecule occupying a lattice point

within the inner region is 1. The probability of a molecule

occupying a lattice point within the outer region is 0.5.

Fig. 6 shows two example crystals and their diffracted

intensity. The diffracted intensity was calculated using the

discrete Fourier transform with five samples between each

Bragg reflection, i.e. s ¼ 6. The last row of Fig. 6 shows the

result of averaging the intensities for 100 crystals and the

behavior of a convergence metric, �hInðqÞin. The convergence

metric is defined as the difference between the averaged

diffracted intensity from an ensemble of N crystals and that

from the previous N � 1 crystals summed over all q, normal-

ized to the intensity of the first crystal,

�hInðqÞin ¼
X
q

1

N

XN
n¼1

InðqÞ �
1

N � 1

XN�1

n¼1

InðqÞ

" #
=
X
q

I1ðqÞ

¼
X
q

1

N
INðqÞ �

1

NðN � 1Þ

XN�1

n¼1

InðqÞ

" #
=
X
q

I1ðqÞ:

ð59Þ

As can be seen from the last row of Fig. 6, the averaged

intensity does not change much after the intensity from a few

tens of crystals has been summed.

Iterative phase retrieval was carried out as described in

Section 3. The correct support of the molecule was assumed to

be known (the letter P). The positivity constraint was not

applied. A periodic cycling of IPAs composed of 80 iterations

of ER and 20 iterations of DM with � ¼ 0:6, with the cycle

being initiated in the ER state, was empirically found to work.

The IPA was started such that the initial iterate, xð0Þ, had

uniformly random sample values between 0 and 1 for both the

sets of functions ff
ð0Þ
k ðrÞg and fC

ð0Þ
kl ðqÞg.

Convergence of the entire iterative procedure was

measured by the normalized root-mean-squared (NRMS)

error, E
ðiÞ
I , between IdataðqÞ and the diffracted intensity IðiÞðqÞ

computed from the estimates ff
ðiÞ
k ðrÞg and fC

ðiÞ
kl ðqÞg via equation

(14) at the ith iteration, i.e.

E
ðiÞ
I ¼

P
q½I

ðiÞðqÞ � IdataðqÞ�
2P

q I
2
dataðqÞ

( )1=2

: ð60Þ

The final reconstruction is obtained by taking the iterate at the

iteration where E
ðiÞ
I is the minimum within the maximum

number of iterations.

The quality of the reconstruction was measured by the

NRMS error, E
ðiÞ
f , between the true molecular density f ðrÞ and

the ith estimate of the density, f ðiÞðrÞ, i.e.

E
ðiÞ
f ¼

P
r jf

ðiÞðrÞ � f ðrÞj2P
r jf ðrÞj

2

� �1=2

; ð61Þ

and also by the NRMS error, E
ðiÞ
C , between the true averaged

shape transforms fCklðqÞg and the ith estimate fC
ðiÞ
kl ðqÞg, i.e.

E
ðiÞ
C ¼

P
k

P
l

P
q jC

ðiÞ
kl ðqÞ � CklðqÞj

2P
k

P
l

P
q jCklðqÞj

2

" #1=2

: ð62Þ

Fig. 7 shows the results from a successful run of the recon-

struction. Only C11ðqÞ and C12ðqÞ (the real and imaginary

parts) are shown.

4.2. 3D simulations

The proposed algorithm was tested in 3D with simulated

diffraction from two different protein molecules that
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Figure 5
The steps of the projection operators and how they are combined to form
the ER algorithm. The dashed boxes encapsulate the step-by-step recipe
for each of the projections and the quantities S, fRk; skg and Idata are the
ingredients needed for the recipe. PPSD is the positive semi-definite
projection as outlined in Section 3.3.2.



crystallize with different numbers of molecular orientations

(different values of K). The first is the Photosystem II (PSII)

protein molecule with Protein Data Bank (PDB) entry 3wu2

(Umena et al., 2011). The crystalline form of this protein

consists of a single molecule (the asymmetric unit) in four

different orientations (K ¼ 4) with space group P212121. The

second molecule tested was the Trypanosoma brucei proca-

thepsin B (CatB) protein molecule with PDB entry 4hwy

(Redecke et al., 2013). The crystalline form of this protein

consists of a single molecule (the asymmetric unit) in eight

different orientations (K ¼ 8) with space group P42212.

The electron density of the molecule was generated by first

initializing a 3D array consisting of voxels at a specified

resolution in real space; then, ignoring all the hydrogen atoms,

each non-hydrogen atom is modeled as a Gaussian in real

space scaled such that the integral of the Gaussian is equal to

the number of electrons in the atom with a fixed width of one

standard deviation equal to half an Å. The electron density

was then obtained by summing all the Gaussians. We worked

in the crystal basis for the entire simulation to avoid any

interpolation or sampling issues when performing translation/

rotation symmetry operations; our symmetry operators

effectively consist of permutation matrices. The simulation

results from the PSII protein are described first, followed by

the results from the CatB molecule.

A total of 100 finite edgy crystals of the PSII protein are

generated using the same edgy construction approach as the

2D simulation described in Section 4.1, with the inner and

outer regions being bounded by 3D rectangular cuboids

instead of 2D rectangles. The maximum size of the crystal for

this particular simulation is 4 � 4 � 4 full unit cells. Projection

view of two example crystals from the ensemble is shown in

Fig. 8. The far-field diffraction at a resolution of 10 Å was

calculated with the discrete Fourier transform. The diffracted

intensity had three samples between each Bragg reflection, i.e.

s ¼ 4. The calculated intensity was averaged to form the input

averaged diffracted intensity data.

Iterative phase retrieval was carried out as described in

Section 3. The correct support of the molecule was assumed to

be known. The positivity constraint was not applied. A peri-

odic cycling of IPAs composed of 60 iterations of ER and 40

iterations of DM with � ¼ 0:7, with the cycle being initiated in

the ER state, was empirically found to work. The initial

iterate, xð0Þ, had uniformly randomly sampled values between

0 and 1 for both the sets of functions ff
ð0Þ
k ðrÞg and fC

ð0Þ
kl ðqÞg.

Convergence and quality of the entire iterative procedure
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Figure 6
Example 2D crystals generated are shown in the left column. The right
column shows their corresponding diffracted intensities on a log scale.
The last row on the left shows the change in the averaged intensity as
more diffracted intensities from different crystals are averaged, and on
the right shows the final averaged intensity. The box that both the crystals
and the diffracted intensities are shown in is the extent of the entire
computational volume of the simulation.

Figure 7
The top row shows the ground truth and the second row shows the
best reconstruction as gauged by EI. (Column 1) Real-space density of
the molecule, (Column 2) C11ðqÞ, (Column 3) Re½C12ðqÞ�, (Column 4)
Im½C12ðqÞ�. Only one period of the Ckl functions is shown (the shape
transform cell). The bottom plot shows the reconstruction errors Ef

(solid), EC (dotted) and EI (dashed) on a log scale as the algorithm
proceeds.



were again measured by the NRMS errors, EI , Ef and EC.

Fig. 9 shows the results from a successful run of the recon-

struction. The final reconstruction is obtained by taking the

iterate at the iteration where EI is the minimum. Only one

slice from the 3D shape transform cell of two CklðqÞ functions,

C11ðqÞ and C12ðqÞ, is shown as there are in total ten different

CklðqÞ functions.

The second protein molecule tested was CatB. A total of

100 finite edgy crystals of the CatB protein are generated

using the same construction as described in Section 4.1, again

with the inner and outer regions being bounded by 3D

rectangular cuboids instead of 2D rectangles. The maximum

size of the crystal for this particular simulation is 4 � 4 � 4 full

unit cells. Projection view of two example crystals from the

ensemble is shown in Fig. 10. The far-field diffraction at a

resolution of 4 Å was calculated with the discrete Fourier

transform. The diffracted intensity had three samples between

each Bragg reflection, i.e. s ¼ 4. The calculated intensity was

averaged to form the input averaged diffracted intensity data.

Iterative phase retrieval was carried out as described in

Section 3. The correct support of the molecule was assumed to

be known. The positivity constraint was not applied. A peri-

odic cycling of IPAs composed of 300 iterations of ER and 100

iterations of RAAR with � ¼ 0:7, with the cycle being initi-

ated in the ER state, was empirically found to work. The initial

iterate, xð0Þ, had uniformly randomly sampled values between

0 and 1 for both the sets of functions ff
ð0Þ
k ðrÞg and fC

ð0Þ
kl ðqÞg.

Convergence and quality of the entire iterative procedure

were again measured by the NRMS errors, EI , Ef and EC.

Fig. 11 shows the results from a successful run of the recon-

struction. The final reconstruction is obtained by taking the

iterate at the iteration where EI is the minimum. Only one

slice from the 3D shape transform cell of two CklðqÞ functions,

C11ðqÞ and C12ðqÞ, is shown as there are in total 36 different

CklðqÞ functions.

4.3. 3D simulations with noise

The simulations in Section 4.2 are repeated with the addi-

tion of Poisson noise in the diffracted intensity and the

simulated merging of a finite number of 2D diffraction slices in

3D reciprocal space. Edgy crystals of PSII and CatB, and their

3D diffracted intensities, are calculated with the same proce-

dure and parameters as described in Section 4.2. The effect of

merging 2D diffraction patterns was modeled by first gener-

ating a unit vector centered at the origin of reciprocal space

with a uniformly randomly sampled orientation. This unit

vector is taken to be the unit normal of a plane passing

through the reciprocal-space origin and the set of all voxels

that the plane intersects in the 3D diffraction volume is taken

as the 2D diffracted intensity pattern measured from a single

X-ray pulse diffracting from the finite edgy crystal. Poisson

noise is then added to the intensity values at those voxels

intersected by the plane. The resulting noisy 2D pattern is

merged (averaged) into a 3D volume and the procedure is

repeated with a newly generated edgy crystal. The final

averaged diffracted intensity can be written as
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Figure 9
The top row shows the ground truth molecule and the second row shows
the best reconstruction as gauged by EI. (Column 1) Projected view of
the molecule, (Column 2) C11ðqÞ, (Column 3) Re½C12ðqÞ�, (Column 4)
Im½C12ðqÞ�. Only one slice of one period of the 3D Ckl functions is shown
(the shape transform cell). The bottom plot shows the reconstruction
errors Ef (solid), EC (dotted) and EI (dashed) on a log scale as the
algorithm proceeds.

Figure 8
Projection views of two example crystals from the PSII molecule
displayed in the crystal basis are shown in the left column. The right
column shows one central slice of their corresponding 3D diffracted
intensities on a log scale. The last row on the left shows the change in the
averaged intensity as more diffracted intensities from different crystals
are averaged, and on the right shows the same central slice of the final
averaged 3D intensity. The box that both the crystals and the diffracted
intensities are shown in is the extent of the computational volume of the
simulation in two of the three directions.



Inoisy dataðqÞ ¼
1

�
Po½�InðqÞ�

	 

n

; ð63Þ

where PoðxÞ is a function that returns a value drawn from a

Poisson probability density function of mean x. The scale

factor � is chosen to give a desired level of noise and the

average is over the number of times the particular voxel in

reciprocal space was sampled by the randomly oriented 2D

diffraction plane. To summarize, our noise generation proce-

dure is: (i) calculate the entire 3D diffracted intensity from an

individual 3D crystal; (ii) take a single random 2D central slice

from that 3D intensity; (iii) apply Poisson noise to that 2D

slice; (iv) merge the noisy 2D slice into a 3D averaged

diffracted intensity volume; (v) repeat step (i) with a different

crystal.

The signal-to-noise ratio (SNR) is calculated as

SNR ¼

P
q I

2
dataðqÞP

q½IdataðqÞ � Inoisy dataðqÞ�
2

( )1=2

ð64Þ

where Idata is the noiseless averaged diffracted intensity, and

the summation is over all q that contain the intensity samples

of interest. In our case we elected to plot the radially averaged

profile of SNR and so the q values of interest are those that fell

within radial shells and correspond to valid intensity samples,

i.e. the intensity data at that location in reciprocal space are

not missing. A region of missing data of radius equal to the

first Bragg order (3 voxels in this case) was also implemented

at the center of the 3D diffracted intensity volume to simulate

the effect of the central detector gap, present in order to let

the direct X-ray beam pass through. A central slice of the 3D

Fourier space volume for the PSII and CatB molecule

generated with the above procedure and averaged over 100

2D patterns is shown in Figs. 12 and 15, respectively. The

radially averaged SNR from intensity samples of the entire 3D

volume, calculated separately for the Bragg and inter-Bragg

samples, is plotted alongside the respective slices.

The IPA reconstruction parameters for both the PSII and

CatB molecule are kept the same as before, as described in

Section 4.2. The intensity values at the missing data regions in
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Figure 12
(Left) Radially averaged SNR for the 3D merged diffracted intensity
from an ensemble of 100 2D noisy diffraction patterns of edgy PSII
crystals. The radially averaged SNR are calculated for Bragg (dashed)
and inter-Bragg (solid) locations. (Right) One central 2D slice of the 3D
merged diffracted intensity.

Figure 11
The top row shows the ground truth molecule and the second row shows
the best reconstruction as gauged by EI. (Column 1) Projected view of
the molecule, (Column 2) C11ðqÞ, (Column 3) Re½C12ðqÞ�, (Column 4)
Im½C12ðqÞ�. Only one slice of one period of the 3D Ckl functions is shown
(the shape transform cell). The bottom plot shows the reconstruction
errors Ef (solid), EC (dotted) and EI (dashed) on a log scale as the
algorithm proceeds.

Figure 10
Projection views of two example crystals from the CatB molecule
displayed in the crystal basis are shown in the left column. The right
column shows one central slice of their corresponding 3D diffracted
intensities on a log scale. The last row on the left shows the change in the
averaged intensity as more diffracted intensities from different crystals
are averaged, and on the right shows the same central slice of the final
averaged 3D intensity. The box that both the crystals and the diffracted
intensities are shown in is the extent of the computational volume of the
simulation in two of the three directions.



reciprocal space are allowed to float during the reconstruction

process. The correct support is still assumed and applied as in

the previous section. The positivity constraint is again not

applied. The values of the intensity at regions in reciprocal

space where the intensity data are missing or below a value of

1 intensity value units (blank regions in Figs. 12 and 15) are left

floating during the reconstruction process. The results of the

reconstructions for PSII and CatB are shown in Figs. 13 and

16, respectively. The final reconstructions shown in those

figures are obtained by taking the iterate at the iteration

where EI is the minimum. The reconstructed molecular

density and shape transforms from noisy data do not converge

to the ground truth; however they do not diverge and give

completely non-nonsensical values either, even in the

presence of high levels of noise and missing data. Additional

work on directly modeling noise in the algorithm should

improve its ability to handle noise. A final 3D rendering of the

ground truth, the reconstruction with noise, the reconstruction

without noise, for the two molecules are given in Figs. 14

and 17.

5. Discussion and conclusions

We developed a reconstruction algorithm that is capable of

determining the density of the molecular asymmetric unit

when given the averaged coherent diffraction intensity from

many crystals of different sizes, shapes and, unlike previous

work, with arbitrary molecular occupancies. A mathematical

model is formulated that expresses the averaged diffracted

intensity in terms of lattice occupancies and the scattering

density of the different molecular orientations. The occupancy

description can be reformulated in terms of shape transforms,

reducing the number of parameters needed to describe the

problem while retaining the quantity of interest, which in this

case is the scattering density of the asymmetric unit.

The main impetus of shape transform phasing is that

diffraction signals can consist of samples both at the Bragg

condition and at points between Bragg reflections. The inter-
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Figure 13
Reconstruction of the PSII molecule given the correct support and the
noisy intensity data shown in Fig. 12. Top row shows the ground truth and
the second row shows the best reconstruction as gauged by EI. (Column
1) Projected view of the molecule, (Column 2) C11ðqÞ, (Column 3)
Re½C12ðqÞ�, (Column 4) Im½C12ðqÞ�. Only one slice of one period of the 3D
CklðqÞ functions (the shape transform cell) is shown. The bottom plot
shows the reconstruction errors Ef (solid), EC (dotted) and EI (dashed)
on a log scale as the algorithm proceeds.

Figure 14
3D isosurface plots of the PSII molecule contoured at 10% of the
maximum true density. (Left) Ground truth. (Center) Reconstruction
with noiseless intensity data. (Right) Reconstruction with noisy intensity
data, generated as described in the text. Both the noisy and noiseless
reconstructions assume the correct support.

Figure 15
(Left) Radially averaged SNR for the 3D merged diffracted intensity
from an ensemble of 100 2D noisy diffraction patterns of edgy CatB
crystals. The radially averaged SNR are calculated for Bragg (dashed)
and inter-Bragg (solid) locations. (Right) One central 2D slice of the 3D
merged diffracted intensity.

Figure 16
Reconstruction of the CatB molecule given the correct support and the
noisy intensity data shown in Fig. 15. Top row shows the ground truth and
the second row shows the best reconstruction as gauged by EI. (Column
1) Projected view of the molecule, (Column 2) C11ðqÞ, (Column 3)
Re½C12ðqÞ�, (Column 4) Im½C12ðqÞ�. Only one slice of one period of the 3D
CklðqÞ functions (the shape transform cell) is shown. The bottom plot
shows the reconstruction errors Ef (solid), EC (dotted) and EI (dashed)
on a log scale as the algorithm proceeds.



Bragg samples improve the information content significantly

compared with the case when only Bragg reflections are

available, thus allowing the determination of the electron

density of the molecule from the diffracted intensities alone.

Through simulations, we showed how our IPA is capable of

recovering both the unknown molecular density and the

unknown averaged shape transforms in parallel, with good

convergence behavior. We have tested the algorithm with

intensity data corrupted by Poisson noise along with signifi-

cant incomplete measurements from the simulated merging of

a small number of 2D diffraction patterns. The behavior of the

algorithm under these circumstances seems to be stable;

however the correct support of the molecule was assumed to

be known and therefore the phasing trials with noise

performed here are only necessary but not sufficient evidence

that the algorithm can work with real data. For a robust

implementation, a good noise model or a direct measurement

of statistical errors from the serial diffraction data should be

incorporated into the reconstruction algorithm, perhaps using

techniques explored in other works (Williams et al., 2007; Loh

et al., 2010; Dilanian et al., 2010; Martin et al., 2012). A basic

noise model in the context of phase retrieval that utilizes

signals from shape transforms has been outlined by Chen et al.

(2014a).

The issue of uniqueness for this particular variant of the

phase retrieval problem is complicated in general because it

depends on (i) the molecular occupancies, (ii) the number of

molecular orientations, (iii) the sampling rate of the diffracted

intensity and (iv) the shape of the molecule itself. However,

simulations suggest that the algorithm can treat the averaged

diffraction from crystal ensembles for space groups that have

up to eight different molecular orientations per unit cell. Note

that we do not need to sample the diffracted intensity

according to the size of whole crystals (i.e. we do not need to

resolve the fringes in the diffraction pattern arising from the

shape transform), but rather we only need sufficient sampling

with respect to the single molecule. The precise amount of

sampling needed to ensure unique reconstruction depends on

the constraint ratio �.

Although we propose using the averaged diffraction

intensity as the input to the reconstruction algorithm for the

purpose of improving the SNR and to reduce data volumes, it

is conceivable that one may develop an algorithm that utilizes

the full set of diffraction patterns individually, without aver-

aging, similar in spirit to frameworks proposed by Loh & Elser

(2009), Donatelli et al. (2017). With sufficient signal, it may

indeed be possible to model the shape transforms in each

individual frame via projection operations or expectation-

maximization.

The use of distance-minimizing projection operators can be

important in IPAs. An initial attempt at the PM operator

utilized a non-distance-minimizing ‘constraint-satisfaction’

operation for updating the set of functions fFkðqÞg. The non-

optimal operator consisted of a plain scaling of the intensities,

suitable for projecting onto a hyper-sphere, but not ideal in

general for projecting onto a hyper-ellipsoid. Utilizing this

non-distance-minimizing operation in the IPA resulted in

unstable reconstructions that often failed to converge.

Projections onto ellipsoids have been documented by Stark &

Yang (1998), Borwein et al. (2018), and in the context of phase

retrieval by Morgan et al. (2019).

We are working on generalizations to incorporate other

kinds of crystal disorder since, under the Born approximation,

all diffraction intensities can in principle be expressed in the

form IðqÞ ¼ FyðqÞCðqÞFðqÞ, given by the central equation (20)

in this article. It may be possible, for example, to include both

translational and rotational disorder, as is being explored in

other work (Morgan et al., 2019), with the assumption that

although disorder breaks the translational symmetry in the

shape transforms that we exploit to our advantage here, we

expect that many disorder models still retain much redun-

dancy within shells of similar resolution.

Another source that breaks translational symmetry of the

shape transforms is from complex wavefront distortions of the

incident X-ray beam, as was pointed out by Kirian et al.

(2015). If we allow the molecular occupancies in our model,

wk�n, to take on any real values rather than restricting them to

be either 0 or 1, then that could in principle model a non-

uniform incident-beam profile. The assumption in that case

would be that the change in X-ray intensity is negligible across

a single molecule. Going one step further, complex wk�n could

also be used to emulate phase distortions if, once again, those

distortions do not vary significantly from one molecule to the

next. Our formulation might also allow for the K objects to be

different, although the constraint ratio for that case will be

reduced and is yet to be worked out.

APPENDIX A
Properties of the averaged shape transform

We show here that the averaged shape transforms satisfy

Cklðq� ghÞ ¼ CklðqÞ for all k, l and h, i.e. the averaged shape

transform functions are periodic in reciprocal space.

Let the real-space lattice points be

ra ¼ �1a1 þ �2a2 þ �3a3 ð65Þ

and the reciprocal-space lattice points be

gh ¼ h1b1 þ h2b2 þ h3b3 ð66Þ

where the reciprocal-lattice vectors are related to the real-

space lattice vectors via
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Figure 17
3D isosurface plots of the CatB molecule contoured at 10% of the
maximum true density. (Left) Ground truth. (Center) Reconstruction
with noiseless intensity data. (Right) Reconstruction with noisy intensity
data, generated as described in the text. Both the noisy and noiseless
reconstructions assume the correct support.



b1 ¼ 2	
a2 � a3

a1 � ða2 � a3Þ

b2 ¼ 2	
a3 � a1

a2 � ða3 � a1Þ

b3 ¼ 2	
a1 � a2

a3 � ða1 � a2Þ
:

It follows that

bi � aj ¼ 2	�ij ð67Þ

where �ij is the Kronecker delta function (�ij ¼ 1 for i ¼ j and

�ij ¼ 0 for i 6¼ j).

Now

Cklðq� ghÞ ¼
P1
a

P1
b

hwkanwlbnin exp½�iðq� ghÞ � ðra � rbÞ�

ð68Þ

¼
P1
a

P1
b

hwkanwlbnin exp½�iq � ðra � rbÞ� exp½igh � ðra � rbÞ�

ð69Þ

¼
P1
a

P1
b

hwkanwlbnin exp½�iq � ðra � rbÞ�

¼ CklðqÞ; ð70Þ

since the value of the last exponential in equation (69) is unity,

as

gh � ðra � rbÞ ¼ ðh1b1 þ h2b2 þ h3b3Þ � ½ð�1 � �1Þa1

þ ð�2 � �2Þa2 þ ð�3 � �3Þa3�

¼ 2	½h1ð�1 � �1Þ þ h2ð�2 � �2Þ

þ h3ð�3 � �3Þ�

¼ 2	m

where m is an integer. The averaged shape transform function

CklðqÞ is therefore periodic, with the period being referred to

in this article as the ‘shape transform cell’.

We finally note that the above also shows that the averaged

shape transforms are inversion conjugate symmetric with

respect to q, i.e.

Cklð�qÞ ¼ C�
klðqÞ; ð71Þ

since a change of sign in q is equivalent to taking the complex

conjugate of equation (70).

Note that exchanging the indices a and b that appear

symmetrically in the summations in equation (70) may at first

sight suggest Cklð�qÞ ¼ CklðqÞ; however, upon closer inspec-

tion we see that the product of the occupancies wkanwlbn and

wkbnwlan may not necessarily be equal.

APPENDIX B
Constraint ratio

The constraint ratio � is defined as the ratio of the number of

independent measurements to the number of independent

unknown quantities. It is necessary, but not sufficient, to have

� 	 1 in order to obtain a unique solution to any phase

retrieval problem. In order to count independent measure-

ments, it is helpful to look to the Fourier transform of the

diffraction intensities, which is equal to the autocorrelation of

the object densities, which is finite in extent. For a single,

isolated object, the number of independent measurements of

its diffraction intensity is estimated as the number of samples

in the non-zero region of the autocorrelation of the object,

denoted here by A, divided by two, to account for the

centrosymmetry of the autocorrelation. The number of inde-

pendent unknown parameters is the number of samples in the

object, denoted here by S. Assuming that the diffraction

intensities are sampled with sufficient frequency, the

constraint ratio for a single particle, �sp, is equal to half the

volume of the autocorrelation of the particle over the volume

of the particle (Elser & Millane, 2008), i.e.

�sp ¼
A=2

S
: ð72Þ

In 3D, the constraint ratio is greater than or equal to 4, where

the worst case of � ¼ 4 is for an object with a support that is

convex and centrosymmetric.

Previous considerations of the constraint ratio for crystal-

line objects took into account only crystals comprising full

unit cells without consideration of individual molecular

occupancies (Millane & Chen, 2014; Millane & Arnal, 2015;

Morgan et al., 2019). We now investigate the constraint ratio

for the case when it is not assumed that the crystal is

comprised of full unit cells. The differences in the problem that

we consider here compared with previous studies are that (i)

we have an ensemble of crystals and the intensity data are the

averaged intensity from this ensemble, and (ii) each crystal in

the ensemble can have molecules that are absent when

compared with the nominal unit-cell configuration.

Taking the inverse Fourier transform of the average

diffracted intensity IðqÞ in equation (7) returns the average

over crystal autocorrelations:

AðrÞ ¼ hAnðrÞin

¼
P1
a

P1
b

PK
k¼1

PK
l¼1

Wkalb ½flðr� rbÞ ? fkðr� raÞ� ð73Þ

¼
P1
a

P1
b

PK
k¼1

PK
l¼1

WkalbfflðrÞ ? fk½r� ðra � rbÞ�g ð74Þ

where ? denotes the correlation operation. The above

expression consists of a weighted superposition of translated

copies of the autocorrelations AkkðrÞ ¼ fkðrÞ ? fkðrÞ and cross-

correlations AklðrÞ ¼ fkðrÞ ? flðrÞ. With this notation we write

the compact form

AðrÞ ¼
P1
a

P1
b

PK
k¼1

PK
l¼1

WkalbAkl½r� ðra � rbÞ�: ð75Þ

We can also express AðrÞ in terms of the ‘averaged shape

functions’, cklðrÞ, which is just the inverse Fourier transform of

CklðqÞ. In that case we get
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AðrÞ ¼
PK
k¼1

PK
l¼1

cklðrÞ � AklðrÞ ð76Þ

where

cklðrÞ ¼
P1
a

P1
b

Wkalb�½r� ðra � rbÞ�: ð77Þ

The number of non-zero weights Wkalb that multiply with the

Dirac delta functions in equation (77) represent the total

amount of information needed to uniquely determine cklðrÞ.

This number scales with the sixth power of the linear crystal

size as discussed in Section 2.1, and if our objective is to

determine the set of all Wkalb then we will almost certainly

have a constraint ratio of much less than one (� � 1).

However, the objective in our case is to determine the mol-

ecular densities, and hence we need only consider the

sampling frequency of the diffracted intensity that is required

to determine the density of the molecule, which we expect is

well below the critical sampling frequency for determining a

whole crystal. If we sample the diffraction intensities on a

uniform grid in the crystal basis, with a subset of the grid

points coinciding exactly with the Bragg conditions, then the

shape function given by equation (77) will be aliased such that

the delta functions overlap exactly. The weights associated

with those delta functions that overlap will sum to form a new

set of weights W 0
kalb. In such a case, equation (77) maintains

the same form, but the number of new unknown weights W 0
kalb

needed to specify our data is reduced. This is the basis of the

reduction in the number of parameters when the problem is

formulated in terms of the averaged shape transform (Section

2.2) as opposed to the occupancy matrix (Section 2.1).

For finite crystals, the lowest value of � corresponds to an

incoherent average over the diffracted intensities of all mol-

ecular orientations, which can arise from hypothetical crystals

with very low occupancies that are uniformly random and

diffract like a gas of oriented molecules in the limiting case. In

that scenario, it was concluded by Millane & Chen (2014) that

unique recovery of a 3D molecule of any shape from the

averaged diffracted intensity is possible if the number of

molecular orientations is less than or equal to 4, where 4 is the

marginal case, since � is bounded below by 4 in 3D for a single

isolated object as previously mentioned. Using the notation

introduced in equation (72) for the constraint ratio of a single

particle, �sp, the constraint ratio for the worst case can be

expressed as

�worst ¼
A=ð2KÞ

S
¼

�sp

K
: ð78Þ

The best-case scenario is another hypothetical situation in

which all molecules are spaced sufficiently far apart to give

direct access to all the cross-correlation terms AklðrÞ, k 6¼ l,

without overlap, solely from the diffracted intensity, which is

analogous to holographic techniques studied elsewhere

(Martin et al., 2013). In this case the constraint ratio increases

due to the additional volumes of the cross-correlations, which

we assume for simplicity in the analysis here to have the same

support volume as the autocorrelations. Since the cross-

correlations are not centrosymmetric like the autocorrela-

tions, and since each of the autocorrelations is identical in 3D,

the number of independent measurements grows from

A=ð2KÞ in the worst case to A=2 þ ðK2 � KÞA=2 in the best

case. The constraint ratio for the best case is therefore given

by

�best ¼
A½1 þ ðK2 � KÞ�=2

S
¼ ðK2

� K þ 1Þ�sp: ð79Þ

The ranges of � for molecules arranged in three different

configurations are summarized in Table 1. The three config-

urations are: (i) single particle – only a single molecule in the

X-ray beam; (ii) perfect crystals – crystals that can be

described by a single type of unit cell, i.e. no random edge

truncations; (iii) edgy crystals – crystals with arbitrary mol-

ecular occupancies. Note that we assume the number of

unknown weights W 0
kalb is sufficiently small in comparison with

S that the weights can be ignored when counting the amount

of unknowns in determining the constraint ratio, i.e. the

number of parameters in the molecular density is much

greater than the number of parameters needed to describe the

averaged shape transforms.

APPENDIX C
Minimum-change least squares

Consider matrices I (M � 1), Z (M � N) and CðiÞ (N � 1) for

some integers M and N, related by

I ¼ ZCðiÞ: ð80Þ

Note that I is not the identity matrix but a vector that holds the

diffracted intensity values in the context of shape transform

phasing. A new estimate of C, denoted by Cðiþ1Þ, is given by

Cðiþ1Þ
¼ ZþI; ð81Þ

where Zþ is the pseudo-inverse of Z as defined in equation

(38). In this case the 2-norm of the new estimate is minimized:

min jjCðiþ1Þ
jj2: ð82Þ

This is the ‘minimum-norm’ least-squares solution.

Instead of finding a C closest to the origin, an often more

sensible minimization is to find a C that is closest to a previous

estimate of C. Our problem then becomes

min jjCðiþ1Þ
� CðiÞ

jj2 ð83Þ
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Table 1
The constraint ratio for objects in various configurations and reciprocal-
space samplings.

f is the fraction of the unit cell (well-defined for perfect crystals) occupied by
the molecule, K is the number of unique orientations of the molecule in the
crystal. s is the sampling factor in reciprocal space relative to the Bragg
sampling.

s = 1 s 	 2

Single particles � ¼ 1=2 � ¼ �sp

Perfect crystals � ¼ 1=ð2f Þ 1=ð2f Þ 
 � 
 �sp

Edgy crystals 1=2 
 � 
 1 �sp=K 
 � 
 ðK2 � K þ 1Þ�sp



subject to

I ¼ ZCðiþ1Þ: ð84Þ

The trick to solving this is to utilize the result from the

minimum-norm solution. Write

I ¼ Z½Cðiþ1Þ
� CðiÞ

þ CðiÞ
�

and rearrange to get

I� ZCðiÞ
¼ Z½Cðiþ1Þ

� CðiÞ
�: ð85Þ

Comparing the form of equations (80) and (85), we can

immediately utilize equation (81) to write

Cðiþ1Þ
� CðiÞ

¼ Zþ
½I� ZCðiÞ

�; ð86Þ

giving the ‘minimum-change’ least-squares solution as

Cðiþ1Þ
¼ CðiÞ

þ Zþ½I� ZCðiÞ
�: ð87Þ

APPENDIX D
Positive semi-definite projection

Given a Hermitian matrix A we seek a matrix B that

is PSD such that the Frobenius norm jjA� BjjF =

ð
P

i

P
j jAij � Bijj

2
Þ

1=2 is as small as possible. In other words,

we want to minimize jjA� BjjF such that the eigenvalues of B

are all non-negative. In this appendix, we first show that the

Frobenius norm of the difference between two matrices is

always minimized when the two matrices have the same set of

eigenvectors. Then imposing the condition for the eigenvalues

of B to be non-negative leads to the desired result.

Using Dirac notation, the Frobenius norm can be expressed

as

jjA� Bjj2F ¼ tr½ðA� BÞðA� BÞy�

¼
P
i

hijðA� BÞðA� BÞyjii; ð88Þ

where trð�Þ denotes the trace operation. The trace is invariant

to similarity transformations, and in particular, unitary trans-

formations. We can therefore write the above in terms of the

eigenbasis of the, so far, unknown B,

Bjni ¼ �ðBÞ
n jni; ð89Þ

where the eigenvectors are normalized such that

hnjmi ¼ �nm: ð90Þ

Writing the Frobenius norm in this basis gives

jjA� Bjj2F ¼
P
n

hnjA2
� 2�ðBÞ

n Aþ �ðBÞ
n

2
jni: ð91Þ

We need to minimize equation (91) subject to the constraint

that the eigenvectors jni satisfy the normalization condition

given by equation (90), and that the eigenvalues �ðBÞ
n 	 0.

Using Lagrange multipliers �1 and �2 for the above two

constraints, respectively, we can write down the objective

function, L, for our optimization problem as

L ¼ jjA� Bjj2F � �1hnjni � �2 ½�ðBÞ
n �

1=2
� ½�ðBÞ

n �
1=2

� ��
 �
: ð92Þ

Minimizing first with respect to the eigenvectors, we vary L

with respect to the left eigenvectors, hnj, to find

�L

�hnj
¼ ½A2

� 2�ðBÞ
n Aþ �ðBÞ

n

2
�jni � �1jni: ð93Þ

Setting equation (93) to zero yields

A½A� 2�ðBÞ
n �jni ¼ ½�1 � �ðBÞ

n

2
�jni ð94Þ

which is an eigenvalue equation

Cjni ¼ �njni; ð95Þ

where C ¼ A½A� 2�ðBÞ
n � and �n ¼ �1 � �ðBÞ

n

2
. Since AC ¼ CA

and that A and C are both Hermitian, the eigenvectors jni

must be common to the matrices C and A. Furthermore, since

jni was originally the eigenvector of B, A and B can therefore

share the same set of eigenvectors.

In light of this revelation, equation (91) can be written as

jjA� Bjj2F ¼
P
n

hnj�ðAÞ
n

2
� 2�ðAÞ

n �ðBÞ
n þ �ðBÞ

n

2
jni

¼
P
n

½�ðAÞ
n � �ðBÞ

n �
2; ð96Þ

where �ðAÞ
n is the nth eigenvalue of A. Now we see that the

Frobenius norm is minimized if

�ðBÞ
n ¼

�ðAÞ
n �ðAÞ

n 	 0

0 �ðAÞ
n < 0

�
ð97Þ

when the constraint �ðBÞ
n 	 0 is enforced. This is the desired

operation as required. The projection operator therefore

consists of calculating the eigenvalues and eigenvectors of A,

setting any negative eigenvalues to 0, and transforming using

the original eigenvectors to form the matrix B. The matrix B

will then be the closest PSD matrix to A measured in terms of

the Frobenius norm.

APPENDIX E
Ellipsoidal projection

Given the equation

Idata ¼
PK
k¼1

�kjFkj
2
¼

PK
k¼1

�kðx
2
k þ y2

kÞ; ð98Þ

where Fk ¼ xk þ iyk, we seek the modification to an arbitrary

complex number F 0
k ¼ x0k þ iy0k such that equation (98) is

satisfied while minimizing the Euclidean distancePK
k¼1½ðxk � x0kÞ

2
þ ðyk � y0kÞ

2
�. Using a Lagrange multiplier �,

we can write down the objective function:

L ¼
PK
k¼1

ðxk � x0kÞ
2
þ ðyk � y0kÞ

2
� �

þ �
PK
k¼1

�kðx
2
k þ y2

kÞ � Idata

� �
: ð99Þ

Differentiating with respect to xk and yk and setting those

expressions to zero yields
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0 ¼
@L

@xk
¼ 2xkð1 þ ��kÞ � 2x0k

0 ¼
@L

@yk
¼ 2ykð1 þ ��kÞ � 2y0k

so that

xk ¼
x0k

1 þ ��k

ð100Þ

yk ¼
y0k

1 þ ��k

: ð101Þ

Substituting these into the constraint equation (98) gives

Idata ¼
XK
k¼1

�kjF
0
kj

2

ð1 þ ��kÞ
2 ; ð102Þ

which can be numerically solved for the optimum �, as

explained in Section 3.3.3, and substituted into equations (100)

and (101) to yield the real and imaginary parts of the Fk that

satisfies equation (98) but is also the closest to the starting

point F 0
k measured in terms of the Euclidean distance.
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