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The theory of F-rational signature

By Ilya Smirnov at Bilbao and Kevin Tucker at Chicago

Abstract. F-signature is an important numeric invariant of singularities in positive char-
acteristic that can be used to detect strong F-regularity. One would like to have a variant that
rather detects F-rationality, and there are two theories that aim to fill this gap: F-rational sig-
nature of Hochster and Yao and dual F-signature of Sannai. Unfortunately, several important
properties of the original F-signature are unknown for these invariants. We find a modification
of the Hochster—Yao definition that agrees with Sannai’s dual F-signature and push further the
united theory to achieve a complete generalization of F-signature.

1. Introduction

Let (R, m) be a commutative Noetherian local domain of positive characteristic p. The
world of positive characteristic is driven by the Frobenius endomorphism F: R — R defined
by r + r?. A particular way to study this endomorphism is via the family of modules Ff R
obtained from R by iterated restriction of scalars so that rF¢x = F€(r?‘x). Under mild
assumptions, satisfied in most arithmetic or geometric settings, these modules are finitely gen-
erated; we shall assume this holds throughout the introduction. Kunz proved that these modules
detect regularity [39]: F£R is free for all e € N (or equivalently any e € N) if and only if R
is regular. This result motivates a number of numerical measures of singularities in positive
characteristic, including F-signature and Hilbert—Kunz multiplicity.

The first of such invariants, the Hilbert—Kunz multiplicity, was defined by Monsky in
1983 [46] as an extension of earlier work of Kunz [40]. If £(_) denotes the length over R
and the dimension of R is d, the Hilbert—Kunz multiplicity of an ideal / with £(R/I) < oo is
defined as egg (1) = lime 00 —7 (R /I1P°]), where TPl = (xP° | x € I is the expansion of
I over the e-iterated Frobenius. Similarly, the F-signature was formally defined by Huneke and
Leuschke [35] building upon the earlier work of Smith and Van den Bergh [61] on R-module
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direct sum decomposition of F ¢ R. In our setting, it is given by

_ max{N | there is a surjection F¢R — RV}
s(R) = lim .
e—00 rank F£ R

Both s(R) and egk (m) are natural measures of singularity, as they encode asymptotically how
far the modules F¢R are from being free. An alternate perspective on the F-signature, pio-
neered in [67,69] and borne out in [51], links the two invariants together and characterizes the
F-signature as the infimum of all relative Hilbert—Kunz differences

s(R) = inflenx (/) —enx ((/,u)) | u & I, £(R/I) < oo}.

A crucial property of the F-signature is that it detects strong F-regularity, a class of singu-
larities central to the celebrated theory of tight closure pioneered by Hochster and Huneke [29].
(Strong) F-regularity can be viewed as the positive characteristic analogue of Kawamata log
terminal singularities important to the minimal model program in higher-dimensional com-
plex algebraic geometry [23,24,60]. Closely related to F-regularity, F-rationality has long been
an important class of singularities in positive characteristic commutative algebra. Classically
defined by the property that all ideals (x) generated by a system of parameters x = x1,..., X4
are tightly closed [19], F-rationality can be interpreted geometrically as a positive characteristic
analogue of rational singularities over the complex numbers [23,45, 59].

Recent years have led to rapid advances in our understanding of the F-signature; focusing
on those most relevant to our current purpose, we highlight the following five core properties
of F-signature.

(a) Existence: the limit defining s(R) exists [63].

(b) Detects F-regularity: s(R) > 0, and s(R) > 0 if and only if R is strongly F-regular
[4, Theorem 0.2].

(¢) Detects regularity: s(R) < 1, and s(R) = 1 if and only if R is regular [35].

(d) Compatible with localization: s(R) < s(Ry) for every prime ideal p (see [4, Proposi-
tion 1.3]).

(e) Semicontinuity: p — s(Ryp) is lower semicontinuous on Spec R (see [50,51]).

Attempts have been made to find an invariant akin to F-signature which detects F-ratio-
nality rather than F-regularity. The first, due to Hochster and Yao [32], builds on the notion that
relative Hilbert—Kunz multiplicity can be used to test for tight closure. The F-rational signature
of R, denoted here by s.4(R), is defined as

srat(R) = infienk ((x)) — e ((x. u)) | u ¢ (x). x a system of parameters},

where the infimum is taken over all systems of parameters x and elements u ¢ (x). When R
is Gorenstein, it is straightforward to check that s.,(R) and s(R) coincide (see [35]). Hochster
and Yao show that s (R) > 0 if and only if R is F-rational so that the F-rational signature
detects F-rationality and satisfies the analogue of property (b) above. Moreover, interpreted
appropriately, one can show the F-rational signature satisfies an analogue of existence (a) as
well; this property is particularly important in practice as it allows for estimation and compu-
tation. However, a computation of Hochster and Yao [32, Example 7.4] (see also Remark 6.3)
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shows that s;,(R) = 1 does not determine regularity as in (¢). Moreover, to our knowledge, it is
unclear (and perhaps unlikely) that the F-rational signature satisfies analogues of properties (d)
and (e) above.

Following the introduction of the F-rational signature, an alternate construction was intro-
duced by Sannai [53] mimicking the original definition of F-signature directly. Called the dual
F-signature of R and denoted here squa(R), the invariant is defined as

. max{N | there is a surjection Ffwg —» a)g}
Sdual (R) = limsup ,

e—00 rank F. f WR
where R is assumed Cohen—Macaulay with a canonical module wg. Once again, when R is
Gorenstein, it is clear that squa(R) and s(R) coincide. Sannai shows further (relying heavily
upon [32]) that Squa(R) > 0 if and only if R is F-rational. Moreover, squ,(R) is known to
detect regularity and to be compatible with localization as well, satisfying in total the ana-
logues of properties (b), (c), and (d) above. However, outside of a small number of examples
(cf. [27,47]), it has remained open whether the limit defining the dual F-signature exists. Not
only is this problematic when attempting to compute or estimate squ (R), it is also at the heart
of the difficulty in attempting to show that the dual F-signature defines a lower semicontinu-
ous function on Spec(R). Thus, in short, we are left to wonder if the dual F-signature indeed
satisfies the analogue of properties (a) and (e). Note also that we will see in Example 3.2 that
Srat(R) can be strictly larger than s (R).

In this paper, we bring together the two approaches used above, showing that a modified
version of the Hochster—Yao invariant defined via relative Hilbert—Kunz multiplicity agrees
with Sannai’s dual F-signature defined via the maximal numbers of surjections. To that end, we
introduce herein the relative F-rational signature sr1(R) of R,

_ oo eak((x) —enk (1)
Sel(R) = o SR — LR/ D)’

where the infimum is taken over all systems of parameters x and all ideals / properly contain-
ing (x). Our first main results can be summarized as follows.

Theorem (Corollary 5.6, Theorem 5.10). The limit defining the dual F-signature exists
and equals the relative F-rational signature. Furthermore, the dual F-signature is lower semi-
continuous and therefore satisfies all five core properties (a)—(e) of F-signature listed above.

In the course of showing these results, the equivalence of different perspectives on the
F-signature plays a prominent role. The equivalence squa(R) = sre1(R) stated in the theorem
itself requires developing an intricate linear algebra result, based on a number of nontrivial
matrix computations and inductions, which we separated out from the main body of the article
in the appendix. The third perspective arises as a certain dual interpretation of the splitting
ideals 1., which were originally defined by Aberbach—Enescu [2] and Yao [68], developed in
Section 4 using the Cartier formalism in the sense of Blickle [9].

To the extent possible, our goal is to present unified theory of F-rational and dual F-signa-
ture that is fully parallel to the established theory of F-signature. The newly observed properties
of the dual F-signature immediately lead to a number of novel perspectives on previously
established results. For example, the core properties imply that the set {p | Squai(Rp) > 0} is
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equal to the F-rational locus of R and is open, so we recover a result of Vélez [64, Theo-
rem 1.11]. However, we are also able to leverage these properties further — the equality

Sdual(R) = Srel(R)

in particular opens the door to the use of sophisticated uniform convergence techniques from
Hilbert—Kunz theory to establish a number of new and important results.

Theorem. The dual F-signature satisfies the following properties.

e (Corollary 3.9) The dual F-signature deforms, i.e., Squal(R) > squal(R/XxR) for a regular
element x € R.

e (Corollaries 3.13 and 5.14) squal(R) > squal(S) for a faithfully flat local map R — S,
with equality if the closed fiber is geometrically regular.

e (Theorem 5.11) The global dual F-signature in the sense of [17] exists and is equal to
the minimum of localizations squa (Ryp).

* (Theorem 5.20) b (R) admits a second coefficient, i.e., there exists a constant 3 such that
be(R) = saat(R) p*? + pp@=0 + 0(p*=2).

In particular, while many of these results again parallel the theory of F-signature, in some
cases, we see that the behavior of the dual F-signature is even better. Indeed, F-signature (as
well as strong F-regularity) fails to deform without additional assumptions, and moreover, the
last result on the second coefficient remains an important open question for the F-splitting
numbers.

Finally, note that, while the dual F-signature is undefined when R is not assumed to be
F-finite, the definitions of both the F-rational and relative F-rational signature are well-posed.
While not the primary aim of this article, we additionally explore and verify a number of
desirable properties of the relative F-rational signature in this setting.

Theorem. The following statements hold.
(@) sre1(R) > 0, and sre1(R) > 0 if and only if R is F-rational (Corollary 3.7.
(b) se1(R) < 1, and sye1(R) = 1 if and only if R is regular (Proposition 3.3).
(©) srel(R) =< swe1(Ryp) for every prime p (Proposition 3.12).
(d) spe1(R) < swe1(S) for a faithfully flat local map R — S (Corollary 3.13).
(e) Ste1 deforms (Corollary 3.9).

1.1. Structure of the paper. After setting up definitions in Section 2, we define and
study the relative F-rational signature in Section 3. The results of this section are developed
without the F-finite assumption. In particular, the analogues of properties (c), (b), (d) of F-sig-
nature are shown to hold for the relative F-rational signature (Corollary 3.11, Propositions 3.3
and 3.12). We also present an appropriate inequality for flat extensions in Proposition 3.13 and
for deformation in Corollary 3.9. The main technical result of this section is Proposition 3.5,
which allows one to restrict the computation of the relative F-rational signature to socle ideals
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for a given system of parameters. In turn, this also allows us to utilize the results of Hochster—
Yao and show independence of a given system of parameters as well (Corollary 3.7). Combined
with the semicontinuity result of [57], we also deduce here that the relative F-rational signature
is a minimum (rather than infimum) of relative Hilbert—Kunz multiplicities. This gives a new
proof independent of [32, Section 3] showing that the positivity of either Sy, (R) or se1(R)
detects F-rationality.

In Section 4, we give an equivalent definition of the relative F-rational signature based
on the Cartier operator on the canonical module (Definition 4.3) in the F-finite setting. The
importance of this perspective comes in part by allowing one to view the relative F-rational
signature as the minimum of numerical function on the k-rational points on a Grassmann vari-
ety. This leads to further study of a technical extension of the relative rational signature that
takes into account the relative Hilbert—Kunz multiplicities determined by the non-k-rational
points as well, with a view towards properties such as semicontinuity where it is natural
to consider behavior at all geometric points. We will show existence, uniform convergence,
and semicontinuity of this generalized invariant. These proofs are somewhat novel and are
likely of independent interest. Inspired by [55], our method is roughly based on two steps:
we first apply uniform convergence methods introduced in [63] to translate the problem to
a more tractable invariant, and second, we use the semicontinuity of the rank of a continuous
matrix-valued function on a vector bundle. Restricting back to k-rational points gives a num-
ber of alternative arguments in the non-generalized setting as well. For instance, an alternative
proof of the fact that the relative F-signature achieves its minimum via these methods is given
(Corollary 4.22).

In Section 5, we apply the intricate linear algebra machinery of Appendix A to show that
all of the different points of view give equal invariants, and in particular, s.|(R) = Squal(R).
This allows one to exploit all of our techniques together at once and establish the fundamental
properties of the dual F-signature highlighted above: its existence as a limit (Corollary 5.9),
its semicontinuity (Theorem 5.10), existence of the second coefficient (Theorem 5.20), invar-
iance under regular morphisms (Corollary 5.14), and also the local-to-global property (Theo-
rem 5.11). We note that our proof of the existence of the global dual F-signature utilizes
semicontinuity more efficiently than [17] and can be used to significantly shorten it.

Finally, in Section 6, we present an approach for computing the F-rational signature of
a toric singularity, and we finish the paper with some of the remaining open questions. The
appendix contains the crucial linear algebra machinery.

2. Preliminaries

2.1. F-rational singularities. In[19], Fedder and Watanabe defined a local ring (R, m)
to be F-rational if every parameter ideal is tightly closed, in parallel to the notion of weakly
F-regular, due to Hochster and Huneke in [29], that asks every ideal to be tightly closed.
F-rational rings are normal, and an F-rational ring which is an image of Cohen—Macaulay
ring is Cohen—Macaulay itself. The theory of F-rational rings was further developed in [30].

It was shown in [29, Theorem 8.17] that tight closure is determined by Hilbert—Kunz
multiplicity under mild assumptions. Thus we can restate F-rationality using so-called relative
Hilbert—Kunz multiplicity. We provide a proof to illustrate where the assumptions are used.
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Proposition 2.1. Let (R, m) be a local ring. If eux ({x)) > eux (1) for every system
of parameters x and every ideal x S I, then R is F-rational. Moreover, if R is excellent
(more generally, it suffices that R and R have a common parameter test element; see also
[16, Proposition 3.2.2]), then the converse holds.

Proof. If R is not F-rational, then there exists a system of parameters which is not tightly
closed, say a € (x)* \ (x). Hence egk({x)) = eux (/) by [29, Theorem 8.17], which requires
no assumptions.

If R is complete and F-rational, then, since an F-rational ring is a domain, the assumptions
of the converse in [29, Theorem 8.17] are satisfied; thus epk ((x)) > euyx (/) forall x < 7. Since
Hilbert—Kunz multiplicity is not affected by completion, the relative Hilbert—-Kunz condition
determines whether R is F-rational. The excellence (or the weaker assumption) is needed to
descend F-rationality from R to R; see the discussion in [32, proof of Theorem 4.1]. O

The definitions of F-rational signature [32] and normalized F-rational signature (Sec-
tion 3) are motivated by this equivalence. In [58], Karen Smith restated F-rationality using
tight closure in local cohomology. As observed by Hochster—Yao, the relative Hilbert—Kunz
multiplicity can be also restated using local cohomology; see Proposition 3.6.

Motivated by the notion of strong F-regularity, Veléz gave definition of strong F-rational-
ity [64]. However, while the equivalence of strong and weak F-regularity is a long-standing con-
jecture, Velez [64, Lemma 1.3, Proposition 1.6] showed that the two versions of F-rationality
agree for F-finite domains, the assumption that we will impose from Section 4. Note that an
F-finite ring is excellent [40] and is a quotient of a regular ring by [21]; thus it has a dualiz-
ing module: a maximal Cohen—Macaulay module of finite injective dimension and Cohen—
Macaulay type 1. We refer to the Bruns—Herzog book [11, Section 3.3] for properties of
dualizing (canonical) modules.

Theorem 2.2 (Veléz). Let (R, m) be a Cohen—Macaulay F-finite reduced local ring
and wpg its dualizing module. Then R is F-rational if and only if, for every 0 # ¢ € R, there
are e > 1 and a homomorphism ¢: FEwr — wpg such that ¢ (FE(cwR)) = wg.

2.2. Semicontinuity. We recall that function f: X — R on a topological space X is
lower semicontinuous if, for any a € R, the set {x € X | f(x) > a} is open. Semicontinuity
is an essential property of a singularity invariant for multiple reasons, and we will present
multiple consequences of semicontinuity in this paper. Let us start with several fundamental
properties.

Theorem 2.3. Let [ be a lower semicontinuous function on a topological space X . The
following properties hold.

(a) If X is quasi-compact, then [ has a minimum.

(b) If X is Noetherian, then a lower semicontinuous function satisfies a descending chain
condition, i.e., the set of its values does not contain infinite strictly decreasing sequences.

(¢) In particular, if X is Noetherian, then the minimum of f is separated, i.e., there exists
& > O suchthat, forany y € X, if f(y) —minyex f(x) <e, then f(y) = mingey f(x).
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(d) If X is a Noetherian k-scheme, then f attains a minimum on {-rational points for any
k C L. This minimum is also separated.

Proof. (a) The ordered family of sets {x € X | f(x) > a} forms an open cover of X;
thus the quasi-compactness assumption implies that there exists a minimal a¢ such that

xeX| f(x)>a}#X.

This ag is the minimum of f.

(b) Suppose that a1 = f(x1) > az = f(x2) > --- > a; = f(x;) > --- is an infinite de-
creasing sequence. Then X; := {x € X | f(x) > a;} form an increasing chain of open sets,
but any such chain must stabilize because X is Noetherian. Hence x; € X; = X;—; fori > 0,
a contradiction.

(c) Since there is no infinite decreasing sequences, there is the second smallest value.

(d) The set of values on {-rational points has a minimum because it cannot contain an
infinite decreasing sequence. |

See Corollary 3.7 for an important application of (d).

2.2.1. An important example. A standard example of an upper semicontinuous func-
tion (e.g., [51, Lemma 2.2]) is the minimal number of generators of a finitely generated R-mod-
ule M:p = dimg ) (M ® g k(p)) defines an upper semicontinuous function on Spec R. From
this example, we can build more. For example, if A is an Artinian k-algebra of finite length and
J is an ideal of A[X], where X is a set of variables, then p = £(A[X]/J ®4[x] k(p)) defines
an upper semicontinuous function on Spec k[ X].

Later, we will need a semicontinuity result on the Grassmannian. This was observed in
[57, Remark 4.17], but its uniform convergence machinery requires R to be a finitely generated
k-algebra. Instead, we may use that the Grassmannian parametrizes ideals in R, so we get
uniform convergence in much easier way.

Theorem 2.4. Let (R, ) be a local ring of characteristic p > 0, and let I be an m-
primary ideal. Let V = (I :g wm)/I be the socle of I, and for any subspace U C V, denote
Ju = (1, U), the corresponding socle ideal. Then the function

U+~

dim U (enx (1) —enxk(Ju))

is lower semicontinuous on the k-rational points of the Grassmannian of X .
Proof.  First, let us fix e and show that the function
U LR/ JFD)

is upper semicontinuous on the k-rational points of the Grassmannian of rank » subspaces of V.
This is a local question, so we may cover the Grassmannian by affine patches. After choosing
abasiseq,...,ey of V,apatch is given by setting a fixed maximal minor of the generic r x N-
dimensional matrix to be the identity; the remaining r X (N — r) entries are coordinates. Let
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us organize these entries in a generic matrix X . Without loss of generality, the non-vanishing
minor is the top one,

_ . _
0 0
0 0 1
X11 X1 - Xiy
_XN—r,l XN—r,Z te XN—r,r_

LeteA denote the Artinian ring R /(I 7°1). We may choose a coefficient field k for A. The
ideal J ([Jp Vis obtained by specializing X; ; in the ideal

N-—r N—r
A[X] D Jrel = (e1 + Z Xﬁi€r+i,...,€r + Z Xr{)l- er+,~).

i=1 i=1

Thus the function U — £(R/J [[Jp e]) is upper semicontinuous; note that the restriction to k-ra-
tional closed points is still semicontinuous since this set is equipped with the induced topology.

Second, we recall that [63, Theorem 3.6] gives uniform convergence: there exist a con-
stant C > 0 and a positive integer eg such that, for any ideal J O I and any positive integer e,

1

- [peteo] e
g (RN s c/pt.

‘CHK(J ) —
This implies uniform convergence of
Iy [p¢] [p°]
— Ply _ pe
e(l[[,q) CR/1P N —e(R/ I

to the relative Hilbert—Kunz multiplicity. It follows that

> dimg U (eax (1) —enk(Jv))

is lower semicontinuous as the uniform convergent limit of lower semicontinuous functions.
O

3. Relative F-rational signature

Definition 3.1. Let (R, m) be a local ring.

(a) The F-rational signature of R is defined as
srac(R) = inf {epx ((x)) — eux (1)},
xCI

where the infimum is taken over all systems of parameters x and ideals (x) C /.
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(b) The relative F-rational signature of R is

_ . enk((x)) —enk (/)
Se(R) = 100 ZRI ) = CR/T)”

where the infimum is taken over all systems of parameters x and ideals (x) C /.

F-rational signature was defined by Hochster and Yao in [32]. Clearly, if s;u(R) > 0
or Sei(R) > 0, then R is F-rational by Proposition 2.1. However, as its name indicates, the
converse also holds under the assumptions of Proposition 2.1 [32, Theorem 4.1]. In (a) above,
it is enough to consider any fixed system of parameters [32, Theorem 2.4], and it is easy to
see that one can restrict to socle ideals / = (x,u), where (x) : u = m (cf. Corollary 3.7 for
a similar result for relative F-rational signature). Though the difference in the two definitions
would seem small, the additional normalizing factor in the definition of relative F-rational
signature is quite useful and leads to a number of desirable properties that are unknown (if not
false) for F-rational signature.

Example 3.2. Tt is easy to find examples where s;5(R) # sg1(R) in the toric case;
see Section 6. Explicitly, let V;, be the nth Veronese subring of k[[x, y]]. Hochster and Yao
[32, Example 7.4] computed that sy (V) =1 — % On the other hand, one can see that the
relative Hilbert—Kunz multiplicity for the entire socle is 1 5o Stat(Vin) > spe1 (V) forn > 3.

Namely, if we take a system of parameters x”, y”, then the whole maximal ideal

is the socle. We compute the Hilbert—Kunz multiplicity by passing to S = k[[x, y]] as follows:

n n+1
ot iy = “GEPE = 2 2

Since ey ((x", y"), V) = L(V/{(x", ™)) = n, we get that

CHK((Xn, yn>’ Vn) - eHK(ms Vl’l) _ 1

E(m/(x™, y™)) 2

In [53, Example 3.17], Sannai has computed that the dual F-signature of any Veronese
subring of k[[x, y]] is % Using Theorem 5.4, this will show that, in fact, s.(Vy) = %

3.1. Measuring singularities. As a first step, we record that the relative F-rational sig-
nature is normalized so as to detect singularity. The original F-rational signature does not detect
singularities (Remark 6.3). It is also not known whether it is bounded above by 1 (which we
suspect may be false).

Proposition 3.3. [f (R, m) is a formally unmixed local ring, then s.(R) <1 with
equality if and only if R is regular.

Proof. Suppose that si;(R) > 1. It follows from the definition that

ek ({x)) — enx (m)

(R/(x) —C(Rjm) ~ '
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for any system of parameters x. Since £(R/m) = 1, we obtain that
1 = 4(R/(x)) —enk ({x)) + enx (m) > ek (m).

Because egg () > 1 and egg ({x)) = e((x)) < £(R/(x)), where the former holds by Lech’s
lemma [42, Theorem 2] and the latter by [37, Proposition 11.1.10], the above inequality implies
that egg (1) = 1 and R is regular by a result of Watanabe and Yoshida [66, Theorem 1.5].
The converse follows by noting that egg(/) = £(R/I) for any m-primary ideal / of
aregular local ring R, 5o s (R) = 1. D

The same idea can be also used to show that R has mild singularities assuming sej(R) is
sufficiently close to one.

Corollary 3.4. Let (R, m) be a formally unmixed local ring with an infinite residue

field.
1 1
(1) Ifsee1(R) > 1— W, then R is weakly F-regular.

2) Ifsrel(R) > 1 — m, then R is Gorenstein and F-regular.

Proof. Take a system of parameters x that forms a minimal reduction of m so that
e({x)) = e(R). Suppose that s, (R) > 1 — ¢ for some ¢ > 0. It follows from the definition

that
ek ({x)) — enx (m) -

UR/(x) — (R /m) =
Following the method of proof in Proposition 3.3, we obtain egg (R) < 1 4+ e(e(R) — 1). The
desired result now follows from that of Aberbach and Enescu [3, Corollaries 3.5, 3.6], which
makes use of the expressions for € appearing in statements (1) and (2). O

E.

The residue field assumption can be removed once we establish Corollary 3.14.

3.2. Reduction to socle ideals. We want to prove that it is enough to take only socle
ideals in the definition of s, (R). This reduction is at the core of the theory and will allow to
fix a system of parameters in the definition of sy (R).

Proposition 3.5. Let (R, m) be a local ring of characteristic p > 0. Then, for any -
primary ideal I, any ideal J 2 I, and any element x € wm, there exists an ideal J’ such that
I1¢J CJ,xJ' C1I, and

enk (/) —enx (/) _ enx(/) —euk(J')
(R/T)—L(R/T) — LR/T)—CR/T)

Proof.  Since both ideals are m-primary, there is an integer m such that x”*1J C I.
We will prove the claim by induction on m, with the trivial base case of m = 0.
By our assumption, the multiplication by x induces the exact sequence
I:yx J I +xJ
- — — —

1 1 1

0—
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By applying the containment (I :y x)[P1 € 11P1: jiper x[P1 0 the exact sequence

. R R B (V0 R V. B S vy .
- 70741 T 7071 -

we get after taking limits that

eak(/) —enk(J) > eux(/) —enx (! :y x) +enx(/) —enx (I + xJ).

Thus it follows from the inequality Zifi > min(%, §) that

ek (/) —eux(J) - enk (/) —eux( + xJ) +enux (/) —enx (! :y X)

R/ —CRT) — (R/T)— R/ T)
- min{ euk (/) —eux(/ +xJ)  eux(/) —enx( 1y X) }
=M GR/ D) — R/ T +x7) CR/T)—UR/T 0]

Depending on the minimizer, either J' = I + xJ satisfies the assertion or we apply the induc-
tion hypothesis to 7 :y x and find J' C I :y x C J such that xJ' C I. O

We will now show that one can fix a system of parameters in the definition of S (R)
using the machinery built by Hochster and Yao. First, recall that the Peskine—Szpiro functor of
amodule M is defined as a module such that F¢F¢(M) =~ M ®@g F{R as F¢ R-modules. If
L C H, we will use Lge] to denote the image of F¢(L) in F¢(H). The following proposition
combines [32, Proposition 2.3] and the proof of [32, Theorem 2.4].

Proposition 3.6. Let (R, m) be a local Cohen—Macaulay ring of prime characteristic
p > 0. If we denote H = HZ (R), then

(a) for every system of parameters x of R and ideal I such that (x) C I, there exists a sub-
module L of H isomorphic to I /{x);

(b) given a finite length submodule L of H, there always exists a system of parameters x and
ideal I, (x) € I suchthat I/{x) = L;

(¢) if L € 0 :g w, the socle of the top local cohomology, then such I exists for any system
of parameters Xx.

Moreover, via this identification, we have K(Lge]) = (171 (x) [pe]). In particular,

) /¢ ( L[Pe])
Jm pedIi-IInR = enk ((x)) —enx (/).

This proposition allows to consider F-rational signature as an invariant of the top local
cohomology module

RPN 0940
slR) = int (Jim - i)

where the infimum is taken over all nonzero finite length submodules of H and immediately
shows that sy (R) is independent of a system of parameters. Using Proposition 3.5, we will
apply the same argument to Sy (R).
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Corollary 3.7. Let (R, m) be a formally equidimensional local ring of characteristic
p > 0. Then, for any system of parameters x, we have

enx ({x)) —enx (/)
L(R/(x)) —L(R/T)

Moreover, the infimum in the definition is, in fact, a minimum. Hence, if R is excellent, then
Srel(R) > 0 if and only if R is F-rational.

Srel(R) = inf{ (x) C I C{x): m}

Proof. 'We note that the right-hand side does not change under completion, while the
left-hand side can only decrease. Hence we assume that R is complete. If R is not Cohen—
Macaulay, then it is enough to show that the right-hand side is 0. But by the colon-capturing
[29, Theorem 7.15 (a)], (x) is not tightly closed, so we can use I = (x)* to get 0 by [29, Theo-
rem 8.17].

Let J be an arbitrary ideal containing a system of parameters x. If {(my,...,my) = m,
then, after applying Proposition 3.5 k times, we obtain an ideal / such that

ml = (my,...,me)l C (x)

and

enk ((x) —enk(J) _ enx((x)) —enx(/)

C(R/(x)) —L(R/T) ~ L(R/(x)) —&(R/I)
This reduces s.j(R) to socle ideals. However, after fixing x, Proposition 3.6 gives that, for
H = an (R), we have

inf{ enk ((x)) —enx (1)
L(R/(x)) —L(R/)
_ inf{ Lo UL

mczg@:m}

E(L) ellg:o pe dim R

O;ELQO:Hm},

so the left side is independent of x and must be equal to S (R).
Since x can be fixed, the existence of the minimum follows from semicontinuity in Theo-
rem 2.4 and Theorem 2.3. We may now use Proposition 2.1 to characterize F-rationality. O

Remark 3.8. It is natural to expect that the minimum is achieved at the entire socle.
However, Example 6.5 shows that the minimum might be given by a proper subspace.

Corollary 3.9. Let (R, m) be a local ring of characteristic p > 0 which is a homomor-
phic image of a Cohen—Macaulay ring. If x is a regular element, then sge](R) > Siel(R/XR).

Proof. We may assume that s,[(R/xR) > 0, so R/xR is F-rational and R must be
Cohen—Macaulay. We complete x to a system of parameters x, y. Since R is Cohen—Macaulay,

enk ({x, y)) = €(R/(x,y)) = enx((y) R/xR).
However, for an arbitrary ideal / containing x, we only have an inequality
enk (/) < eux(/R/xR)

(see [66, Proposition 2.13]). Since sg(R) (resp. swe1(R/xR)) can be computed on a fixed
system of parameters x, y (resp. ), the inequality now follows. O
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As a corollary, we obtain that F-rationality deforms (proven in [30, Theorem 4.2 (h)]
without excellence).

Corollary 3.10. Let (R, m) be an excellent local ring of characteristic p > 0 which
is a homomorphic image of a Cohen—Macaulay ring, and let x € m be a regular element. If
R /xR is F-rational, then so is R.

Proof. By Corollary 3.9 and Corollary 3.7, we have sge(R) > swei(R/XR) > 0, 50 R is
F-rational. o

We can also derive an easy inequality that connects s (R) with Sy (R).

Corollary 3.11. Let (R, m) be a Cohen—Macaulay local ring of characteristic p > 0.

Then
Srat(R)
type(R)’

where type(R) is the dimension of the socle of any system of parameters.

Srat(R) = Srel(R) >

Proof. The first inequality is clear from the definition. For the second, we note that, for
any J such that mJ C x,

ek ((x)) —enx(J) - ek ({x)) —enx (J)

E(R/(x)) —L(R/T) ~ L(R/{x)) — EL(R/{x) : m)’

A classical result of Northcott [49] asserts that the denominator is independent of x. The
statement now follows after taking the infimums. |

3.3. Localization and flat extension. Another benefit of the normalized F-rational sig-
nature is that it satisfies the expected localization inequality sg1(R) < sri(Rp) which is not
known to hold for the original definition of Hochster and Yao. Namely, it is only known
[32, Proposition 5.8] that sy(R) < s (Rp)a(p), where a(p) > 1 with equality if and only
if R/p is regular.

The following version of the proof was suggested to us by Pham Hung Quy. In the F-finite
case, the proof is much easier; see Theorem 5.10.

Proposition 3.12. Let (R, m) be a local ring of characteristic p > 0, and let p be
a prime ideal. Then s (R) < sre1(Rp).

Proof. By induction on dim R /p, we may also assume dim R /p = 1. Let x be elements
in R such that the images of x in Ry, form a system of parameters. Let p, p1, ..., px be minimal
primes of x. By prime avoidance, we may choose u € (ﬂf;l pi)\pandv € p\ Uf;l p;. For
everyn > 1, let y, = u” 4 v; then x, y, is a system of parameters. By the associative formula
for multiplicity, we have, for every integer m > 1,

LR/ (x. yy") Z e({yy'). R/x) f
= nme((u). R/p)Lr,(Rp/(x) + ) _me((v). R/pi)LR,, (Rp,/(x)).

i=1
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By [56, Proposition 4.4], we also have

lim e (x, ¥27) = ne((u). R/p) en((x Rp>+Ze< R/pi) e ((x) Ry, ).

m—o00 m
i=1

Let J be an arbitrary ideal in Ry such that x C J. Since J N R is p-primary, we similarly
obtain that for

ER/(I N R, y,") =e((yn). R/J N R) =mne((u), R/p)R,(Rp/J])

and .
lim —eux({(J N R, y,')) =ne((u), R/p)lr,(Rp/J).

m—o00 m

For brevity, let us denote C = Zf-czl e({v), R/pi)KRpl_ (Ryp, /(x)). It follows from the
above discussion that
enk ((X, y,,') —enk((J N R, y,"))
ER/(x, y)) —E(R/(J N R, y))
enk ((x, y,')) —eux ((J N R, y"))
~ nme(u, R/p)(U(Rp/(x)) —(Rp/J)) + mC"

Therefore, after taking the limit as m — oo, we obtain that, for any n,

ne(u, R/p)(enx (xRp) —eux(JRyp)) + C
ne(, R/p)(L(Rp/(x)) —L(Ry/J)) + C "

Therefore, after taking the limit as n — oo, we must have

e(u, R/p)(enk(xRyp) — eux (JRp))
xCJ e(u, R/p)(l(Ry/(x)) — tL(Ryp/J))
enk (X Rp) — enk (JRyp)

= inf = Sp Ryp). U
2 Cr (Ry/xRy) —Cr, (Ro/ TRy " ®)

Srel(R) =

Srel(R) <

Srel(R) =

Next we study the behavior under flat extensions.

Proposition 3.13. Ler (R, m) and (S, wmg) be local rings of characteristic p > 0 with
a flat local map R — S. Then sie1(R) > sie1(S).

Proof. First, we can take a minimal prime ideal Q of mS and observe by Proposi-
tion 3.12 that sr(S) < sr1(Sp). Thus we assume that mS is primary to the maximal ideal
of S, i.e., the two rings have same dimension.

By flatness, we can tensor a composition series and get that, for an m-primary ideal 7/,
L(S/1S) =L(R/IR)L(S/mS). Thus

ek ((x)) —enx (/)  enx((x)S) —eux(IS)
CR/(x) —E(R/T) ~ €(S/(x)S) —E&(S/IS)

Thus, because there are more ideals in S, we obtain that

Si(R) = inf enk ((x ))_eHK(I) inf euk ({x)S) —enk(J)
el = O CR/(x) — LR/T) — x5¢7 €(S/(x)S) — £(S/T)

= Sre1(S). O
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By using that a system of parameters can be fixed, we have the following result.

Corollary 3.14. Let (R, m) be a local ring of characteristic p > 0. Then
Srel(R) = sret(R[[t]]) = sre1(R(?)).

Proof. By Proposition 3.13, we have s (R) > sg1(R(?)), so we need to show the oppo-
site inequality.

Let S = (R[f])(m,r)- As a first step, we observe that s;e|(R) = sre1(S). Namely, we take
an arbitrary system of parameters x of R and observe that the map / + (/, ¢) forms a bijection
between socle ideals of (x) and (x, ). Since £(R/1) = £(S/(I,t)S), we can derive that this
extension preserves the relative Hilbert—Kunz multiplicities, so the claim follows from Corol-
lary 3.7. The same argument holds for R[[¢]]. Now, $;e1(S) < Sre1(Swms) by Proposition 3.12,
and the assertion follows since R(t) = Sws. m]

Last, we give the following comparison result between F-signature and relative F-rational
signature.

Proposition 3.15. Let (R, m) be a Cohen—Macaulay local ring; then si1(R) > s(R),
where the latter is defined for non-F-finite rings as in [69, Definition 2.2].
Moreover, if sie1(R) > 0, then sie1(R) = s(R) if and only if R is Gorenstein.

Proof. 'We see that s (R) > s(R) using [69, Theorem 1.3 (3)]. If R is Gorenstein, then,
by the proof of [35, Theorem 11], s(R) = epx({x)) — eux({x, u)), where u generates the socle
((x) : m)/{x). However, Corollary 3.7 shows that s;;(R) = epx({x)) — eux ({x, u)).

For the converse, [69, Remark 2.3] allows to extend the residue field without changing
the F-signature, so we let S be such an extension, an F-finite faithfully flat R-algebra such
that S/m S is its residue field. Thus, by Proposition 3.13, s(R) = Sge1(R) > 1 (S) > s(S), so
Sre1(S) = s(S). Note that it is now enough to show the statement for S, which is F-finite. The
F-finite case will follow from [53, Proposition 3.10] after we will prove Corollary 5.9. |

3.4. Graded rings. We also want to remark that the F-rational signature of a graded
ring can be computed using only homogeneous ideals.

Proposition 3.16. Let R be an N-graded ring over a local ring (Rg, m) and

M=maoDR,.
Then swe1(Rar) = srel(R), where the latter is computed in the graded category.

Proof. We can choose a homogeneous system of parameters x of R to compute Sgej(Rpz).
Now, for any finite colength ideal / C Rjy, it is known that / and its initial form ideal

inl = (I +R>0)ﬂR0@(l +R>1)ﬂR1 PD---
have equal colengths. Moreover, one can easily see that

(in NPT cin 1?1 5o epx(in(Z)) > eux(I).
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Thus, by comparing / with its initial ideal, we see that

eux ({x)) —enx (/) X C I}
LR/ (x) —€(R/T) | —

can be computed using only homogeneous ideals, so it is then equal to s (R). O

Srel(RM) = inf{

By the same technique, we derive an expected inequality with the associated graded ring.

Proposition 3.17. Let (R, m) be a local ring of characteristic p > 0, and let I be
an m-primary ideal. Then si1(R) > sre1(gr7 (R)), where the latter is computed in the graded
category.

Proof. 'We may assume that gr; (R) is F-rational; otherwise, the statement is trivial. Note
that gr; (R) is a quotient of a polynomial ring over R /I which is Cohen—Macaulay, so gr; (R)
is Cohen—Macaulay and so is R by [31, Theorem 4.11].

We may use Corollary 3.14 to assume that the residue field is infinite. Then we may
choose a regular sequence on gr; (R) such that its lift to R is a minimal reduction of / (e.g.,
by the proof of [37, Corollary 8.6.2, Theorem 8.6.3]). The multiplicity of an ideal generated
by a regular sequence is equal to its colength; thus the multiplicities of this common system of
parameters in R and in the associated graded ring are equal. Hence, by comparing any socle
ideal J with its initial ideal as in the previous proof, we see that

. enk ((x)) — enx (/)

sel) = | e = e
= f{ enk ((x)) —enx(in 1)

g (R)/(x)) — £(gry(R)/in J)

and the latter is clearly greater than or equal to s (gr7 (R)). o

zcj}

ch},

Corollary 3.18. Let (R, m) be a local ring of characteristic p > 0, let I be an m-pri-
mary ideal, and let S = R[It,t™']. Then, for any prime ideal p of S, srei(Sp) > sre1(gr7 (R)),
where the latter is computed in the graded category.

Proof. The statement is trivial if s, (gr; (R)) = 0, so as in the proof of Proposition 3.17,
we may assume that gr; (R) is Cohen-Macaulay. Since gr; (R) = S/t~1S, for any p € Spec S
that contains ¢!, the localization S, is Cohen-Macaulay. Thus we use the inequalities from
Corollary 3.9 and Proposition 3.12 to get that

srel (Sp) = 811 ((S/1718)p) = srer(gry (R)).

For primes that do not contain ¢!, we note that S,—1 = R[¢,#!] and then use Proposi-
tion 3.12, Corollary 3.14, and Proposition 3.17. O

3.5. Finite extensions. The following result recovers F-rationality of direct summands
of regular rings.

Proposition 3.19. Ler (R, m, k) be a local domain of characteristic p > 0, and let
(S, 1, £) be a module-finite domain extension of R. Then [S : R] sre1(R) > [€ : k] ste1(S).
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Proof. Let x be a system of parameters in R; then x is also a system of parameters in S
because S is module-finite. By the formula for Hilbert—Kunz multiplicity in finite extensions
[66, Theorem 2.7], [S : Rleux () = [£ : k]eux(/S) for any wm-primary ideal. Because there
can be ideals in S which are not extended from an ideal in R, it follows that

Sat(R) = in enk ({x)) —enx (/)

- xcl L(R/(x)) —€(R/T)
— inf [€: k] enk({x)S) —enx(/S) - [€ : k]
xCI [S: RIL(S/(x)S)—4(S/IS) ~ [S:R]

Sre1(S). o

4. F-signature theories in the dualizing module

The goal of this section is to take our considerations to the dualizing module, where we
can see generalizations of all three perspectives on F-signature. In this section, we will focus on
a generalization of the definition of F-signature via so-called F-splitting or degeneracy ideals.

In order to relate this definition to the relative F-rational signature, we first need to trans-
fer sie1(R) to the dualizing module. Since the results of Hochster—Yao already transferred the
invariant to the top local cohomology module, it only remains to dualize Proposition 3.6 to
obtain a theory of F-signature of the dualizing module based on the Cartier trace operator.
This definition can be further generalized in the framework of Cartier modules introduced by
Blickle [9], but we will not pursue such generalization in this work.

Definition 4.1. Let R be a ring of positive characteristic p > 0. A Cartier module
(M, ¢) is a finitely generated module M equipped with a p~!-linear map ¢: M — M. Equiv-
alently, ¢ can be thought of as an R-module homomorphism FxM — M.

Remark 4.2. The canonical module wg of a Cohen—Macaulay ring is naturally a Cartier
module via the trace map which is constructed as follows. By applying Hompg (e, wg) to the
Frobenius map, we obtain the trace map Tr¢: Ffwg = Hom(F§ R, wgr) — wgr by the evalua-
tion Tré (o) = a(1). Since F¥ R is a maximal Cohen—-Macaulay module, we can dualize again
and obtain that any map from Ffwg = Hom(F{R,wR) to wpg is a precomposition of trace,
Tré(FEr x e).

The next definition naturally extends the definition of F-signature used by Tucker in [63]
and based on prior work of Yao [68] and Aberbach—Enescu [2].

Definition 4.3. Let (R, m, k) be alocal F-finite ring of characteristic p > 0 with a dual-
izing module wg, and let W ## 0 be a quotient of wg /mwpg. For e > 1, we define the submod-
ule of Ffwr,

T (F¢rxe)
Ze(W) = [ ket[F{or ———— wg w).

re€R
It is clear that mPlwg € Z, (W) for all W, so dimg ((FEwR)/Ze(W)) is finite and can be
used to define the Cartier signature of W as

dimg (F{wr)/Ze(W))
s(W) = elig)lo Eck . kpefpedimR ’
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Remark 4.4. If R is a domain, then, in the denominator,
peIm R - kP°] = rank F¢R = rank F{wg,
where the first equality holds due to [40, Proposition 2.3] and the second because rank wg = 1.

Remark 4.5. An alternative interpretation of Z, (W) is closer to the standard definition
of the splitting ideals I.: for N C wg, consider a submodule

Ze(N) ={x € F{wpr | TrqR(F{Rx) C N}.

It is easy to see that if £(wgr/N) < 0o, then Zo,(N) = Z.(wr/N).

Remark 4.6. Because Tr¢ generates Hom(Ffwpg, wr), the elements of Z, (W) belong
to the kernel of any map Ffwr — wg.

We now define a notion of F-signature in wg; it will be later revisited in Definition 4.11.

Definition 4.7. Let (R, m, k) be a local F-finite ring of characteristic p > 0. Then the
(small) Cartier signature of R is

(W
S (R) = inf 2V
w dim; W

where the infimum is taken over all nonzero quotients W of wg /mwg.

This definition is chosen so that it coincides with the dual of Proposition 3.6. In order to
prove this, we first recall that an F-finite Cohen—Macaulay ring always has a dualizing module
because Gabber [21, Remark 13.6] showed that an F-finite ring is an image of a regular ring.

Lemma 4.8. Let (R, w1, k) be an F-finite Cohen—Macaulay local ring, and let wg be
a dualizing module. Let x be a system of parameters and (x) € I C (x) : m. Let L = I/(x)
and W = Hompg (L, E), where E is the injective hull of the residue field. Then

dimg (F{wR)/Ze(W)) = [k : kP 10171/ (x)17)).

Therefore, ek ((x)) — eux (1) = ste(W) and se1(R) = S1:(R).

Proof. Denote MV := Homg (M, E). First, by Proposition 3.6, we view L as a vector
space in H = an(R), so W is naturally a quotient of HY Qg k = wr ®gr k. Hence st (W)
is defined.

By Proposition 3.6, we are interested in E(L[If;e]). Since

eLE N k7] = (FeLED),

e
it will be more convenient to work with F¢ Lg ], i.e.,theimageof FFR®r L — FERQR H.
Because tensor product is right-exact, we have an exact sequence

0 — Homg(F{R ®g H/L, E) — Homg(F¢R ®g H, E) — Homg(FS L) E) - 0.
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By the Hom-tensor adjunction, we obtain that

Homg(F{R ®g H, E) =~ Homg(F¢ R,Homg(H, E)) =~ Homg(F{ R, wR)
= WFER = Ffa)R.
Similarly, Homg(F¢R ® g H/L, E) =~ Homg(F£fR,(H/L)") is a submodule of Ffwg, so
it is enough to show that Z,(W) = Homg(F¢R, (H/L)Y).
By Remark 4.2, we identify Tré (F¢r x o) with the evaluation of Hom(F¢ R, wg) at F£r.
Then we have Z,(W) = {¢ € Hom(FfR,wg) | Im¢ C (H/L)Y}, which clearly coincides
with Homg(FER, (H/L)Y). |

4.1. New perspective on existing results. Our new interpretation gives a more trans-
parent proof of the localization property (Proposition 3.12) in the F-finite case.

Proposition 4.9. Let (R, m) be an F-finite local ring of characteristic p > 0, and let p
be a prime ideal. Then s1:(R) < st(Rp).

Proof. If R is not F-rational, then S1;(R) = syj(R) = 0 and the claim is trivial. Thus
we assume that R is Cohen—Macaulay and let wg be its dualizing module. By induction on
dim R /p, we may assume that dim R /p = 1. Let x be a parameter modulo p. As (wR)p = @R,
for any submodule pwg, S N C wg,, we may associate a submodule N "= NNwg + yor
of finite colength. Because N N wg is p-primary, x is a regular element on wg/N N wg and,
using that multiplicity is additive, we may compute that

t(wr/N') = e(x,wr/N NwRr) = e(x, R/p)lR,(wRr,/N).
If L C wg and Z.(L) are defined as in Remark 4.5, then one can check that
Ze(L) :Fewp X = Ze(L g X).
In particular, Z,(N N wg) is still p-primary. We also note that Tr localizes, so
(Ze(N NwR))p = Ze(N) © Fwg,.
It is straightforward to check that x FEwgr + Zo(N NwRr) € Z.(N'); thus

UF{wRr/Ze(N')) < U(Ffwr/(xF{or + Ze(N NwR)))
= e(x, F{wr/Ze(N N wR))
= e(x, R/p)IR, (F{wR,/Ze(N)).
It follows that sty(wr/N’) < e(x, R/p) str(wgr,/N); hence, by Lemma 4.8,
N N’
ﬁ?(Rp) _ inf STr(a)Rp/ ) > inf STr(U)R/ / )
prpgN ERp(a)Rp/N) prpgN E(a)R/N)
STr(a)R/N/) —_
—————— = s(R),
% pomen Uwp/N7) R

where the last inequality holds by Proposition 3.6 and the proof of Lemma 4.8 because every
such N’ gives a system of parameters x and an ideal 7 D (x). |



20 Smirnov and Tucker, The theory of F-rational signature

It is also more convenient to derive a deformation statement in the new language.

Proposition 4.10. Let (R, m, k) be an F-finite Cohen—Macaulay local ring, x € m a
parameter, and wpg the dualizing module of R. Then S;(R) > St;(R/xR).

Proof. Since wg/xr = wR/XwR, we have the following commutative diagram:

xF¢x

0 —— Ffop ——— Ffop — F,fa)R/xR — > 0
Trle lTrwR(fope_lxo) lTrwR/xR
X
0 WR WR wRr/xR —> 0

that allows us to think about the trace map on wg /g as a precomposition of the trace on wg.
For any quotient W of k ® g/xgr @r/xR = k ® g wg and an element r € R, we obtain the
induced diagram

Féop —2— F{wor/xg —> 0

J/TrwR(fopefer.) lTrwR/xR(Ffrxo)
WR —> WRr/xg — 0
W s em—— W
which easily shows that @(Ze(wr. W) :Fewp FexP‘~1) c Ze(wr/xr- W). Hence

. Ffwg . Fiwr/xr
dimy e e T 5 > dimy ———F——.
Ze(wR, W) Fewr (FExP"™1) + Fi{xwpg Ze(wr/xr- W)

Since xFfwr € Ze(wgr, W), we may filter

Ze(W) + Fex" log
Ze(W) + Fix"wpg

pe
dimy F{wr/Ze(W) =) dimy
n=1

2 . fon_la)R
= Z dlmk e.,n—1 e.,n
— ZeW)YNFEx" log + FEx"wpR

- . Ffa)R
Z dlmk Z (W) : Fe n—1 Fe
=1 eW) iFewp FEX"logp + Fi{xwpg

Ffopg
Ze(W) Fewr FEXP"log + Ffxog
Fiwr/xr
Ze(W, a)R/xR).

Hence str(wr, W) > str(wgr/xr. W), and the assertion follows. D

> p®dimy
> p®dimy

4.2. Relative Hilbert—Kunz multiplicity on the Grassmannian. The Grassmann func-

tor of a coherent sheaf £ on a scheme X of rank n associates to any X-scheme Y the set of
all equivalence classes E xxy ¥ — F, where F is locally free on Y of rank n. The Grass-
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mannian scheme 7,: Grass(E,n) — X represents the functor as Homy (Y, Grass(E, n)). The
representing scheme is projective over S. We refer to [22, 48] for further background.

If we consider wpg as a coherent sheaf on Spec R, then a point x € Grass(wg,n) can be
thought of as a pair {k(x), Wy} consisting of a field extension k(x) of 7,(x) and a rank n
quotient Wy of wg ® k(x). This forces us to extend st; to such quotients.

Definition 4.11. Let (R, m, k) be a local F-finite ring of characteristic p > 0 with
a dualizing module wg. If £ is a field extension of k and W # 0 is a quotient of wgr ®Rg £,
for e > 1, we define the submodule of Ffwr Qg £,
1QTré (Ffrxe)
Ze(W) = ﬂ ker[l ® g Ffwpr il A ®r wgp ————> W].
reR

The Cartier signature of W is then defined as

. dimg((£ g FfwR)/Ze(W))
4.1) ste(W) = ell)n;o [k : kpe]pedimR ’

Definition 4.12. Let (R, m, k) be a local F-finite ring of characteristic p > 0 with
a dualizing module wg. Then the Cartier signature of R is

w
str(R) := inf S,Tr( ) k C £ is finite and W is a nonzero quotient of £ @ g wg ;.
dimy, W

Before showing that this definition makes sense, i.e., that the limit in the definition exists,
we want to make several useful observations.
The next observation is the key to the semicontinuity.

Lemma 4.13. Let (R, m, k) be a local F-finite ring of characteristic p > 0 with a dual-
izing module wg, let { be a field extension of k, and let w:{ @ g wr — W be a nonzero
surjection of vector spaces over L. If r1,....rm € R are such that {Ffr;} generate FER as
an R-module for some e > 1, then

e 1®Tr¢ (F{r;xe)
Ze(W) = ﬂker[ﬁ ®Rr Ffwpg ®RCUR+>W]
i=1
1@TH(FSrixe) -
=ker[€ ®R Ffa)RZr—rX>@€ ®R OR o @W]

While we defined st(R) as the infimum over all finite extensions, this was done merely
for convenience.

Lemma 4.14. Let (R, w, k) be a local ring. Then

(W
ste(R) = inf| ST V)
dimy W
. STr(W)
= inf{ —
dimg W

LRQrwr = W =0, Lis algebraic}

E@Ra)R—>W—>O}.
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Proof. 1f £ is algebraic (in particular, finite) over k, from a given surjection
7l Q®rwg —> W,

we may obtain a surjection 1 ® : k ®r wr — k ®¢ W by tensoring. Let W’ = k Q¢ W. We
claim that st (W) = s (W’).
Let Ffry,..., F¢ry, generate F¢ R as an R-module. Then, by Lemma 4.13,
dim¢({ ®R F{wR)/Ze(W)

m

1@TH(F{rixe) [
:rankg[ﬁ@R Ffa)R z Sl @Z@Ra)R il @W]

Because ® gE is exact, we obtain that

dimy({ @R FEoR)/Ze(W) = dimg(k @ FEoR)/ Ze(W'),

and the claim follows.
The claim easily implies the assertion. First,
ste(R) > inf{s(W)/(dimy W) | L ®r wgr — W — 0, £ is algebraic}
> inf{st(W)/(dimg W) | k ® g wg — W — 0},
where the first inequality holds since we have more extensions and the second because of
the claim. It remains to observe that, for any surjection w:k ® g wg — W, we can find, by

taking_a basis of W, a finite extension £ of k and a surje_ction 0:{ ®gr wr — V such that
W =k®yVandr =1xo0.Thus st (R) > inf{sp;(W) | k g wr — W — 0} O

In fact, it will follow from Corollary 4.22 that even including arbitrary extensions will
not change the invariant.

4.3. Existence and uniform convergence. We will now show that our definitions make
sense, i.e., the dimensions are finite and the limits exist. Furthermore, we will show that the
convergence in Definition 4.11 is uniform.

Lemma 4.15. Let (R, m, k) be a local F-finite ring of characteristic p > 0 with a dual-
izing module wg. If £ is a field extension of k, then for any nonzero quotient W of wg QR £,

dimy({ ®g FEw)/Ze(W) < [k : kP U r(0r/mPwg) < 0.

Proof. Observethat { g Ffwr = { Qi k Qr Ffw = { Qp F,f(uR/m[Pe]a)R. Thus
dime(¢ ®r FEw/Ze(W)) < dimg £ @ (Ffwr/mPwg) = dimg Ffog/mlPlwg,

and the latter length is finite since wg is finitely generated and R is F-finite. O

Theorem 4.16. Let (R, w, k) be an F-finite reduced Cohen—Macaulay local ring of
dimension d with a dualizing module wg. The limit in (4.1) exists and the convergence is
uniform, i.e., there exists a constant C such that, for any e > 1, any extension £ of k, and any
nonzero quotient W of £ @ g wg,

dimg({ Qr F{wR)/Ze(W)
[k : kP¢]ped

C
— STr(W) < ?
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Proof. Let ap = [k : k7] p?. Since a Cohen—Macaulay local ring is equidimensional,
by [40, Proposition 2.3], the ranks of Fxwg, and P w R, agree at any minimal prime ideal p.
As in the proof of [63, Lemma 3.3], this gives us the exact sequence

op

@wReF*wRaTeo,

where dim 7T < d (i.e., T = 0if d = 0). Thus the sequence

*p

P Feor 25 Fflwg — FET — 0

is exact and, by tensoring it with £, we obtain an exact sequence

@€®R Fea)R z_)/e)€®R Fe-Ha)R —>€®R FeT —> 0.
Claim 4.17. (1; Q@ Ye)(®*? Z(W)) C Zey1(W).

Proof. By restricting Y, to a summand and composing with an arbitrary multiple of
Tr¢*1, we obtain the diagram

et (FE ]rxo)
1 *
F,fa)R—>Ff WR ———> WRQR.

Since the resulting map Ffwgr — wp is necessarily a premultiple of Tr¢ by the main property
of the trace, the kernel of the induced map

(®pr Flwg (g FEMwg

1®Tre+1(Ff+] rxe)

{ @R wR w

contains Z, (W) by the definition. Since r was arbitrary, we see that
(I ®@ye)(Ze(W)) S Zet1(W). o
The claim gives us the exact sequence

?éﬁ@]g Ffor 1,®y. L QR F,f“a)R e L QRr FET
Ze(W) Zep1(W) Te(Ze+1(W))

which, as in the proof of Lemma 4.15, gives us the bound

Y Fe-‘rl Y] Fe
dimg(M) —ap dimg(M) < dimg(¢ ®g FT)

Zotr(W Ze(W
+1(W) ) <Ik: kpe]fR(T/m[pe]T)-

For the second step, we consider the analogously obtained exact sequence

1,®8e

(®r FSMlog — @£®R Feor —2— t @r FEU — 0.
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Claim 4.18. (1, ® 8¢)(FfT 1 Zoy 1 (W) C @* FEZo(W).

Proof. 1Tt is enough to show that if we compose (1; ® &.) with the projection on one
of the summands, then the image of Z.41(W) is in Z,(W). Following the proof of the first
claim, this reduces to the fact that

@p
)
Fftlogp = @Ffu)R — F{wR

is necessarily a premultiple of the trace again. O

Thus we have the exact sequence

op

L ®r Fflog {®Rr Ffor QR FEU
_— @ — — 0,
Zet1(W) Ze(W) p(Ze(W))

which by Lemma 4.15 gives us the bound

. dim (L QR F{og 4 L ®r F¢H g
PR T Zow) N Zew)

) <dimy({ g FSU)
= [k : kP U R(U/m!P1U).

e+1]p(e+1)d

After combining and dividing the inequalities by [k : k7 , we get that

dim({ ®r FfwRr)/Ze(W)  dimg(£ ®r Ff'wr)/Zes1(W)
[k : kP¢]ped [k : kpet!]pletDd
_ max{{R(T/wl?IT) Lp(U/mP"1U)}
- [k : kp]ple+Dd '

By [46, Lemma 1.1], the right-hand side is bounded above by D/ p¢ for some constant D > 0.
The theorem then follows from [51, Lemma 3.5]. O

4.2)

The proof also shows uniform, independent of a prime ideal, convergence on Spec R.

Corollary 4.19. Let R be an F-finite reduced Cohen—Macaulay ring of dimension d.
If Spec R is connected, then there exists a constant C such that, for all p € Spec(R), all field
extensions k(p) C £, all nonzero quotients W of wgr @R £, and all e > 1, we have
dimg (£ Qg F{wr)/Ze(W)
[k(p) : k(p)P*]peht®

Proof. By [40, Corollary 2.7, ap = [k(p) : k(p)P]p"P is independent of p. Hence, as
in the proof of Theorem 4.16, we may choose the exact sequences

C
< —.
e

—st(W)

op op

@a)R—>F*a)R—>T—>O and F*a)R—>@a)R—>U—>(),

where Ty = U, = 0 for every minimal prime . By [50, Proposition 3.3], we can find a con-
stant D > 0 such that, for all p € Spec R,

max{Cr, (Tp/p'"1Ty), R, Up/p710y)} D

[k(p) : k(p)P]pletDher p¢
and then use this bound in (4.2) of Theorem 4.16. ]
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For our main result, it will be important to interchange the infimum and the limit.

Corollary 4.20. Let R be an F-finite reduced Cohen—Macaulay ring of dimension d.
If Spec R is connected, then there exists a constant C such that, for all p € Spec(R) and all
e > 1, we have, for ae(p) = [k(p) : k(p)?] p"»,

L o [dime®r Fior,)/Ze(W)
e (p) dimy W

[€:k(p)] < o0, W #0,

C

€®Ra)R—>W—>O}—sTr(R) <—.

Proof. A standard application of uniform convergence shows that, in a local ring Ry,
we can interchange the infimum and the limit as follows:

se(W) . Uy dime(E®r Fiwp)/Ze(W))

£®R2)HR—>W dimy W £®RLHR—>W dimy W e—o0 [k(p) : k(p)P°]|pehtp

1
1- 3 i f d ﬁ Fe Z W )
I K0 - K@) P 177 o dimg W O (E SR Frwp)/Ze(W)

str(R) =

But since the appearing constants are independent of p by Corollary 4.19, we get that this
convergence is also uniform in p. m]

4.4. Semicontinuity. We extended st to a function on Grass(wg, ) and will now show
its semicontinuity, which will imply several other good properties.

Theorem 4.21. Let R be an F-finite reduced Cohen—Macaulay ring of characteristic
p > 0 with a connected spectrum, and let wg be a dualizing module. Let 1t,,: B;,, — Spec R be
the rank n Grassmannian of the coherent sheaf wg. Then st.: 8, — R is a lower semicontin-
uous function.

Proof. Let @ be the universal quotient bundle of 8. Let r1,...,r, € R be such that
they generate F¢ R as an R module. Then we may define ¢;: FEwr — wpr by x > Tré(F£frix)
and consider

X W w
gn:m, F{oR M @n;wR _— @Q‘Z
i=1 i=1
where the last map is given by the construction of €. The rank of the image of the composition
is a lower semicontinuous function (e.g., because non-vanishing of a minor is an open condi-
tion). If x € B, is a point such that 7, (x) = p, then k(x) is a field extension of k(p) and x
represents a rank n quotient Wy of wg ® g k(x). Thus, at x, we have the map

Yo K =
&n,e(x): F{ogr @ k(x) =——— P wr ®r k(x) —— P Wx,

which coincides with Lemma 4.13. Note that s,(x) is defined as sp.(Wx).

Furthermore, let e (x) = [, (x) : 77, (x)P ] p€ ™72 (X) and note that rank 8n,e(x)/0te(x)
then coincides with the sequence used in the definition of st (W, ). Hence Theorem 4.19 estab-
lishes its uniform convergence independent of x. Because Spec R is connected, by [40, Corol-
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lary 2.7], ate(x) is a constant; it does not depend on x. Thus rank g, ¢ (x)/ae(x) is a lower
semicontinuous function. Therefore,

. rank gy e (x)
sp(x) = lim —nx8melt)
e—00 ae(x)

is lower semicontinuous because it is the uniform limit of lower semicontinuous functions. D

Corollary 4.22. Let (R, m, k) be an F-finite Cohen—Macaulay local ring, and let wg
be a dualizing module. Then the infimum in the definition of st:(R) is achieved.

Proof. If R is not F-rational, then st.(W) = 0 by the tight closure characterization
and Lemma 4.8. Hence we may assume that R is a domain. By Theorem 4.21, sy, is lower
semicontinuous on B, for each n. Thus st has a minimum on $B,,, and this minimum is
achieved at a closed point x. Because 7, is projective, 7, (x) = m. Furthermore, it follows
from Nullstellensatz that k(x) is a finite extension of k. Therefore,

1
ste(R) = min{— min str(x) | 1 <n < dimy a)R/ma)R}. D
n xeB,

Remark 4.23. Lemma 4.8 allows to view s (R) as the infimum of the generalized
F-signature function st on k-rational points of the Grassmannian. Hence, by (d) of Theo-
rem 2.3, we obtain a different proof of Corollary 3.7 in the F-finite case. It should be noted
that, for non-k-rational points, the two functions are different: we will show in the next section
(Theorem 5.4 and Corollary 5.9) that s, (R) = S1:(R), i.e., the minimum on k-rational points is
equal to the global minimum, while Corollary 3.7 considers relative Hilbert—Kunz multiplicity
after the field extension.

Semicontinuity also implies that the minimum is separated, i.e., there is the second
smallest value. This result also holds for non-F-finite rings by using [57] as in Corollary 3.7.

Corollary 4.24. Let R be an F-finite reduced Cohen—Macaulay ring such that Spec R
is connected. Then

w
p = ste(Rp) = inf{;_ i I/I)/ ‘ k(p) C Lis finite and W # 0 is a quotient of wr, ®R,, E}
imy

is a lower semicontinuous function.

Proof. We need to show that {p | st;(Rp) < a} is closed for all a € R. Let
7n: B — Spec R

be the rank n Grassmannian. Because 75, is projective and sty is lower semicontinuous, the set
Zn(Za) :=m,({x € By | se(x) < a}) is closed for all @ € R. Clearly, we have

Zu(< a) = {p € Spec R | inf{sty(x) | p = 72 ()} < a}.

By the definition of Grassmannian, the points x € 7, ! (p) parametrize all possible extensions
of k(p) and all possible quotients of wg ® g k(x) of rank n. Furthermore, from the proof of
Corollary 4.22, we know that this infimum is achieved at x such that k(x) is finite over k(p).
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Thus, if we let N be such that wg can be generated by N elements as an R-module, then
U1<n<n Zn(= na) is closed and coincides with {p | s7:(Rp) < a} due to the equality

w
U Zy(< na) = {p € Spec R & < a for some [{: k(p)] < oo
dimy (W)
1<n<N
and wgr Qrl — W — 05. O

5. New properties of the dual F-signature

In this section, we proceed to study the dual F-signature. The powerful linear algebra
machinery of the appendix will show that all three perspectives on F-rational signature are
equivalent. By combining the available techniques, this will allow to greatly advance the theory
of dual F-signature, in particular, due to the powerful uniform convergence techniques of
Hilbert—Kunz theory available for the relative F-rational signature.

Let us start by recalling the definition given by Sannai in [53].

Definition 5.1. Let (R, m, k) be an F-finite Cohen—Macaulay local ring. Let wg be the
dualizing module of R. For any e, let bo(R) be the largest integer N such that there exists

a surjection
N

F f WR —> @ WR —> 0.
Then the dual F-signature of R is defined as

be(R)
edimR[k : kpe]'

Sdual(R) = lim sup
e—>o00 P

Remark 5.2. In [53], the dual F-signature of R was defined under the assumption that
R is reduced. This restriction is not essential because R must be reduced if sgqya (R) > 0.

Namely, suppose there is a surjection Ffwr — wg — 0. If a is a nilpotent element
such that a?® = 0, then aFfwgr = 0. It follows that awg = 0, which is a contradiction with
faithfulness of wg (see [7, (1.8)]).

Remark 5.3. Sannai observed in [53, Lemma 3.6] that there is a useful one-to-one
correspondence, arising from duality, between surjections

be
Fi{owr — @a)R -0

and injections
be

0—>@R—>R1/pe—>M—>0,

where M is maximal Cohen—Macaulay. In particular, this shows that gy, (R) > s(R).
We now easily get inequalities connecting the theories of F-rational signature.

Theorem 5.4. Let (R, m) be an F-finite Cohen—Macaulay local ring. Then
Srat(R) = se1(R) = g'\F;(R) > s1r(R) > squal(R) > s(R).
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Proof. The last inequality was established in [53, Proposition 3.8]. The inequalities
Srat(R) > Sre1(R) and 817 (R) > s1:(R) follow from the definitions. It was proved in Lemma 4.8
that s, (R) = S1r(R), so it remains to show the second to last inequality.

Let wg be the dualizing module. By tensoring the definition of b.(R), for any field
extension £ and any quotient W of £ ® g wpg, there is a surjection

be(R) be(R)
L QR Fior — @ L Q@r wp — @ w.

Since the original b, (R) surjective maps were necessarily multiples of Tr¢ by Remark 4.2, the
map induces a surjection

be(R)
(E®r F{wR)/ZeW) -~ @ W —0,

and the inequality sty(R) > squai(R) follows. D

We refine the theorem in the following uniform relation needed both for showing the
existence and semicontinuity of the dual F-signature.

Theorem 5.5. Let R be an F-finite ring and wpg its dualizing module. There is a constant
C such that, for all p € Spec R and for all e > 1, we have

dimk(p)(Ffa)Rp/Ze

5 { (W))' }
e(Rp) + C > min W #0, o @r k(p) > W — 0

dimy ) W
> be(Rp).

Proof. The second inequality was observed in the proof of Theorem 5.4, so it remains
to show the first inequality. Let us denote

dimk(p)(Ffa)Rp/Ze

N (o) — { (W))' }
¢(p) = min W #0, wg Qr k(p) = W —0}.

dimy ) W

As a first step, we assume that R is a local ring with the maximal ideal m and the residue
fieldk.Let X = F,fa)R/m[pe]a)R and Y = wgr/mwpg. Note that any map Ffwr — wr/mwpR
factors through Fwg/mPlwg, so we let H € Hom(X,Y) consist of homomorphisms in-
duced by Hompg (F{wgr, wRr). By Corollary A.12, by taking C = P(dimg Y) for the polyno-
mial P(T) = T?(T? — 1)/6, we can build a surjection

Ne(m)—C
Féorp/mPlyg — @ wRr/mwr — 0

which descended from R-module maps. By Nakayama’s lemma, it can be lifted to a surjection
Féor — @N™=C 4. Thus be(R) > N,(m) — C.

Second, in all other cases, we let v be any integer such that there are v elements that gen-
erate wg. Since dimy () wR, /pwr, < v for all p, and P(T') is monotone by Corollary A.12,
the theorem follows from the first case with C = P (v). O

Combining the theorem with Lemma 4.8, we obtain a connection with relative Hilbert—
Kunz multiplicities.
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Corollary 5.6. Let R be an F-finite ring. There is a constant C such that, for any
p € Spec R and any system of parameters Xp of Ry, we have

LR, (11717 (x) 1P
RIS (xp) C 1 S (xp) R, p}

be®) + C = [k(p) : k(»)"'] min{

> be(p).

Xv
Xp

Remark 5.7. From the optimal criterion for two-dimensional vector spaces in Theo-
rem A.4, by appropriately modifying Corollary A.12 and Theorem 5.5, we obtain the exact
equality

(xp) C I < (x_p> ‘R, P

(R, (I [pe]/(_p) [pe])
R/ | 2 }

betw) = k() s ko) Jmin 2
whenever type R(p) = 2.

We will combine these results with the following uniform convergence result that easily
follows from [50, Theorem 3.6].

Theorem 5.8. Let R be an F-finite ring. There exists a constant D such that, for any
p € Spec R and any p-primary ideal I, we have

1 (R, (JPIR, /TIPYIR
‘ L { R, ( p/ p) chgp}
pentp KRD(JRp/IRp)
IR,) — R D
inf euk (/ Rp) — enx (JRyp) Icicpll<2
ZRp(JRp/IRp) pe

Proof. By setting go — oo in [50, Theorem 3.6], we obtain a constant D > 0 such that,
for any p € Spec R and any pair of p-primary ideals I € J,

1 JIPAIR, JRy
pen (IIP“IRD) (e“K(IR‘”)_e“K(JRp))‘ <p_£(uep)

In order to finish the proof, it remains to remove the absolute value and take the infimums,

f eHK(IRp) — eHK(JRp) D < inf pr(J[pe]Rp/][pe]Rp)

n
1c; LR, ,(JRp/IRy) pé T Icy pehPLr (JRy/IRy)

0 enk(/Rp) —eux(JRp) D

5.1. Dual F-signature exists and is semicontinuous. Now, we can easily show that
the dual F-signature exists.

Corollary 5.9. Let (R, m) be an F-finite Cohen—Macaulay local ring and wg its dual-
izing module. Then

be(R)
Sawa(R) = lim e e

exists and is equal to s (R).
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Proof. By Corollary 5.6, it is enough to show that, for a system of parameters x,

. 1 (et
I, e | Sy | @ €1 € ) m)
exists. This follows from Theorem 5.8. O

Combining the corollary with Theorem 5.4 and Corollary 4.24 shows that the dual F-sig-
nature defines a lower semicontinuous function on the spectrum p — squa(Rp). However, it is
easy to give a direct proof avoiding Corollary 4.24.

Theorem 5.10. Let R be an F-finite Cohen—Macaulay locally equidimensional ring. If
Spec R is connected, then the convergence of

be(p)
peaim Relk(p): k(p)P°]
is uniform on Spec R and p > squal(Ryp) is lower semicontinuous.

— Sdual(Rp)

Proof. 'We may assume that Spec R is connected because semicontinuity can be checked
on components. Furthermore, since F-rationality coincides with regularity for Artinian rings,
we may assume that dim R > 0.

We start by proving lower semicontinuity of the function

N
p > be(p) = max{N ‘ F{wg, — EDa)Rp —0is exact}.

We can lift a surjection by collecting denominators: for any p, there is an element s ¢ p such
that Ffwg, — @b"(p) wpr, — 0 is exact. Thus be(q) > be(p) for any g € D(s). Therefore,
for any p such that b.(p) > a, there is an open set p € D(s) satisfying the same inequality;
hence the set {q | be(q) > a} is open.

Because Spec R is connected, by [40, Corollary 2.7], for any e > 1, the function

p > ae(p) = p¢imRe [k (p) < k(p)P°]

is constant on Spec R. Clearly, «. (p) > p€. Thus, by Corollary 5.6, there is a constant C such
that, for all p,

be(p) C _ be(p)+C

+— =
ae(p)  p¢ e (p) , [pe]/( >[pe]
: U7 Vxp) ") be(r)
2 —amR, mi — I C > )
= pedmky mm{ Wiy | @ cls) } Z ae(®)
Hence Theorem 5.8 and Corollary 5.9 imply that
be(p) C+D
PRk k] =T

This finishes the proof because the uniform limit of semicontinuous functions is semicontinu-
ous. m

Note that semicontinuity is a vast generalization of [64, Theorem 1.11], where it was
shown that the F-rational locus, i.e., the set {p € Spec R | squal(Rp) > 0}, is open.



Smirnov and Tucker, The theory of F-rational signature 31

5.2. Global dual F-signature. De Stefani, Polstra, and Yao defined global versions of
F-signature and Hilbert—-Kunz multiplicity in [17]. A similar definition can be made for the
dual F-signature: if R is a Cohen—Macaulay F-finite ring with a dualizing module wg, then we
define b, (wR) by the formula in Definition 5.1. It seems that b, (wg) may depend on the choice
of wg, but this does not affect the dual F-signature: it follows from a result of Baidya, see (5.1)
in the next proof, that |be (wR) — be(wy)| < dim R for any two dualizing modules wg, w'g.

We will now give an analogue of the main result of [17]. Our treatment is based on
a deeper use of semicontinuity and greatly shortens [17] since we do not need to show the
existence of the global dual F-signature separately.

Theorem 5.11. Let R be a Cohen—Macaulay F-finite domain with a dualizing mod-
ule wg. Then

) be(w
sdual(R) = lim 6( R)

e—>00 m = mln{sdual(Rp) | p e Spec R},

In particular, the limit defining squa (R) exists and does not depend on the choice of wg.

Proof. By Theorem 2.3, s = min{squal(Rp) | p € Spec R} exists due to semicontinuity,
so the right-hand side is defined. Similarly, the function p — b.(R}) also has a minimum by
semicontinuity. Note that dim R < oo by [40, Proposition 1.1]. Then

(5.1) min{b.(Ryp) | p € Spec R} —dim R < b.(wg) < min{b.(Ry) | p € Spec R},

where the first inequality holds by [8, Theorem 1.1] and the second holds by localizing the
definition. Using the inequalities, it is enough to show that

min{b.(Ry) | p € Spec R}
rank F{ R

converges to s. We will derive this using semicontinuity and uniform convergence of the dual
F-signature obtained in Theorem 5.10.

By Theorem 2.3, there exists ¢ > 0 such that, for every p, we have either Squa(Rp) = s
or Squal(Rp) > s + €. By uniform convergence established in Theorem 5.10, for all e > 0, we
have

be(Ryp) €
Rp) — ———F 1 <
Sawl(Ro) = FER| < 2

Note that )
rank FER = p®UimRe[k(p) : k(p)P]

by [40, Proposition 2.3]. Therefore, if squa(Rp) # s, then for any m such that squa(Rwm) = s,

we have bo(Ry) be(Ran)
e(IXp & & e \m
—_— > Ry — = > - > ——
rank FeR  Swa(Re) =5 >80 > R
Thus min{b.(Ry) | p € Spec R} = min{b.(Ryp) | p € Spec R, squai(Rp) = s} for all e > 0.
Then, by uniform convergence,
be(wR) . min{b.(Rp) | p € Spec R}
im ——— = lim
e—oorank FfR  e—oo rank F¢ R
m min{be(Rp) | P, Sdual(RD) = S} —
e—>00 rank FfR
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5.3. Geometrically regular fibers. As observed in Proposition 3.13, F-rational signa-
ture does not increase in flat extensions, and it is natural to search for conditions that ensure
equality. This seems to be a difficult question, perhaps due to the lack of complete understand-
ing of the conditions that guarantee that F-rationality passes from R to S. We will present
a generalization of a result of Vélez [64, Theorem 3.1], asserting that F-rationality is preserved
when R — § is smooth, by proving that sgua(R) = squal(S) if the closed fiber is geometrically
regular. Note that R — § is flat with a geometrically regular fiber if and only if R — S is
formally smooth.

There are further results in the literature that concern the transfer of rationality from
R to S (see [18,26, 64]). In particular, Aberbach and Enescu [1] relaxed the assumption to
requiring geometric F-rationality of the closed fiber.

Lemma 5.12. Let (R, m, k) — (S, n,£) be aflat local homomorphism of F-finite rings
such that the closed fiber k — S /wS is geometrically regular. Then [k : kP] = [€ : £P].

Proof. Let L be the fraction field of the regular domain S/mS. Because L is geomet-
rically regular over k, it is separable. Thus [L : L?] = [k : k?]p™d L On the other hand,
tr.deg, L = dim S/mS, so [L : LP] = [£ : £P]p'deex L by [40, formula 2.2]. m]

Theorem 5.13. Let (R, m, k) — (S,u,{) be a flat local homomorphism of F-finite
rings such that the closed fiber k — S /wS is geometrically regular. Then

be(R)pedimS/mS < be(S)

Proof. By a theorem of André [5, page 297], the homomorphism R — § is regular,
i.e., all fibers are geometrically regular. Thus we may apply the Radu—André theorem [6,
52] to learn that the relative Frobenius map S ® g F£ R — F£S is faithfully flat. Note that
S ®r FER is still a local ring due to F£ R being purely inseparable and that F£S is a finite
module over S @ FfR because S is F-finite. It follows that F¢S is a free module over
S ®g F{R. Its rank can be found after first tensoring with ® ge g F{k, which yields the map
S/mS ®; Ffk — FZS/mS, and further tensoring with the quotient field L of S/mS to see
that it is enough to compute the rank of LYP¢ over L @ k'/P°. Since L is separable over L,
this rank is equal to p®™-degk L, _

By the first paragraph, there is an isomorphism &” cams/ms (S ®Rr FER) = F£S, which
implies that

pedimS/mS

F{ws =~ Homg (F{S,wg) = @ Homg (S ®r F{R, ws).

Since § is flat and S/m.S is Gorenstein, we have ws = wr ®g S. This leads to a further
isomorphism Homg (S ® g FER, ws) = S ®r Ffwg. Thus we can build a surjection

be(R)pedimS/mS
F{ws — ED ws

by tensoring F¢wgp — Q}b"(R) wr — 0 with S and taking an appropriate direct sum. This
finishes the proof. O
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Corollary 5.14. Let (R,m, k) — (S,u,£) be a flat local homomorphism of F-finite
rings such that the closed fiber k — S /wS is geometrically regular. Then squa(R) = Squal(S).

Proof.  'We combine Theorem 5.13, Proposition 3.13, and Corollary 5.9. |

Remark 5.15. A special case of the corollary is when the residue field extension k — ¢
is separable. Recall, that a field extension k C L is separable if L ® k1P s still a field
(hence, equivalently, L is geometrically reduced over L) and is separably generated if it can
be presented as a separable algebraic extension of a purely transcendental extension of k. The
second notion is due to Mac Lane [44] who showed that every finitely generated separable
extension is separably generated. However, Mac Lane also observed that L = k(t1/?7) is
separable, but is not separably generated.

5.4. A transformation rule. In [12], it was established that, for an extension R — S
which is étale in codimension one, there is a transformation rule connecting F-signatures.
Such rule is impossible for F-rational signature because an example of Singh (see [54, Ex-
amples 6.5, 6.6] and [54, Theorem 4.2] for the background) shows that F-rationality may not
transfer from R to S.

5.5. Second coefficient. It was shown in [36] that Hilbert—Kunz functions have a sec-
ond coefficient in an excellent normal local ring with a perfect residue field. Subsequent works
have shown this result holds with somewhat weaker assumptions: an unpublished manuscript
of Hochster and Yao demonstrates that, essentially, only Serre’s (R1) condition is needed. For
rings over a perfect field, this was also independently shown in [13].

We will now prove a similar result for the dual F-signature. In order to do so, we will
work with the relative Hilbert—Kunz multiplicity and follow Huneke’s alternative proof from
[34] of the main result in [36]. While the proof in [34] was stated for normal rings with perfect
residue field, a close inspection shows that it works in merely F-finite rings. In our proof, we
track the dependency of a number of constants so as to give uniform control over the correction
terms. Our careful handling is further motivated by the proof of [34, Lemma 7.5]: it appears
that it has a small inaccuracy, which we explain and fix, and its last part is left as an exercise,
which we believe requires a mild generalization of [34, Lemma 7.2].

Theorem 5.16 (Huneke). Letr (R, 1) be an F-finite local normal domain of dimension
d > 2 and characteristic p > 0, and let x be a fixed system of parameters. For any torsion
module N, there exists a positive constant C(N) with the following property: for all ideals
(x) C I, there exists y(I, N) € R such that, for all e > 1,

|€(Tor1 (N, R/ TPy — (1, N)p¢@—V| < C(N)pe@—2.

Proof. The result essentially follows from the proof of [34, Theorem 7.8], but the con-
stant C (N ) needs to be chosen to work uniformly for all (x) € /. In order to verify this claim,
we will carefully trace through the proof and the preceding results of [34, Section 7].

Step 1 (Uniform and extended [34, Lemma 7.2]). We will show that, for any finitely
generated R-module torsion module 7" and a finite generated R-module M, there exists a con-
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stant C>(T, M) such that, for all ideals / containing x,
£(Tory (T, M/][pe]M)) < Co(T, M) p® dim 7"

We start with the case of M = R covered by Huneke. In the proof, he shows that, for any
finitely generated R-module 7" and any ideal / containing x, there is a bound

L(Tor( (T, R/[[pe])) < C(T,l)pedimT + E(I/<£>)£(T/m[pe]T)
< C(T, x) pi™T 4 ¢(R/ (x)(T/m!?IT),

where C(T, x) is given by applying [34, Theorem 7.3] to the Koszul complex of x and does
not depend on I. Since the Hilbert—Kunz function converges [46], it follows from the above
equation that there is a constant C»(7") such that, for all ideals / containing x, we have

£(Tor (T, R/I[pe])) < Cz(T)pedimT.

For an arbitrary M, we tensor an exact sequence

N
O—>Q—>@R—>M—>O

with R/ 17! to get an exact sequence

N
0— /(P + 4,) > P R/1PT - M/ 1P I — 0.
After tensoring with 7, it is possible to estimate the Tor-module of interest as
¢(Tory (T, M/I'PIM)) < Ne(Tor (T, R/IPY)) + (T g Q/1P1Q)
< NCT)p* ™™ + UT ®r 2/ (x)17]Q)
< NCZ(T)pedimT + C3pe dimT’
where the last bound is given by Hilbert—-Kunz theory because dimQ2 ® g T < dim 7. The
proof is now finished after setting Co(7, M) = NC, + Cs.

Step 2 (Uniform and extended version of [34, Lemma 7.4]). We will show that, for any
finitely generated R-module 7" of dimension at most d — 2 and a finitely generated R-module
M, there exists a constant C4 (7, M) such that, for all ideals / containing x,

U(Torz(T, M/1PIM)) < Co(T. M) p*@~2).

Following Huneke’s proof, we deduce for any R-module 7" annihilated by a regular
sequence x, y and generated by N elements a bound

€(Tora (T, M/ TP IM)) < Ne(Tora(R/(x, y), M/ TP IM)) + €(Tor (T, M/ 171 01)),
where T’ is an R/(x, y)-syzygy of T. Using the Koszul resolution of R/(x, y), we bound
£(Tora(T, M/ TP IMY)) < Ne(Tor1 (R/(x, y), M/1PIM)) + ¢(Tory (T', M/ 17T 01)).

The result of the first step bounds the length of Tor-modules and shows that we may take
Ca(T.M) = NC2(R/(x.y). M) + Co(T". M).
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Step 3 (Uniform version of [34, Lemma 7.5]). We need to show that, for any torsion-
free finitely generated R-module, there exists a constant Cs5(M ) such that, for all ideals /
containing x,

¢(Tory (M. R/ 1Y) < Cs(M) pe@2.

Huneke’s proof first passes to the double dual M ** by observing that
£(Tory (M, R/1'P°Yy) < ¢(Tory (M**, R/I'P°Y)) + ¢(Tor; (M**/ M, R/ 117°1))
+ {(Tora (M ™ /M. R/ 117"
< {(Tory (M**, R/1P°Ty)
+ (Co(M™* /M) + Ca(M** /M) p*“@ 2.

Thus we may assume that M is reflexive.
Let - Fy — Fop — M — 0 be a part of a free resolution of M. Let Z, be the kernel of
the induced map
(F1 — Fo) ® R/,

and let B, be the image of the induced map
(Fy — Fi) ® R/ 1P,
Because Tor (M, R/IP°l) = Z,/B., we derive an exact sequence
(5.2) 0 — Tory (M, R/I")y — F\/B, - F1/Z. — 0.

By tensoring the exact sequence defining the first syzygy 21 of M, F, — F; — Q1 — 0,
with R/IP°] we identify" Fy/B. = Q;/1P°1Q,.

As explained in Huneke’s proof, one can choose a regular sequence x, y so that (x, y)
annihilates all Tory (M, e). It follows that tensoring (5.2) with R /(x, y) yields the bound

E(TOI'l(M, R/I[Pe])) < E(TOI'I(R/()C,y)’ Fl/Ze)) 4 5(91/(x,y, I[pe]>s_21)
< {(Tory(R/(x, ), F1/Ze)) + L(Q1/{x, y, ()P hQ))
< U(Tory(R/(x, ), F1/Ze)) + Cpe@=2

from Hilbert—Kunz theory. We estimate the remaining Tor-module by tensoring
0— F1/Ze — Fo/IPVFy - M/ 1P I — 0
with R/(x, y) and obtain that

U(Tory (R/(x, ), F1/Ze)) < €(Tora(R/(x, y), M/I'P1 1))
+ £(Tor1(R/{x, y), Fo/ 1PV Fy))
< C4(R/(x, ). M)p*“™2 + Co(R/(x.y). Fo)p?“~2.

The assertion follows.

" The proof in [34] seems to claim that F{/Z, = 91/1[1781521.



36 Smirnov and Tucker, The theory of F-rational signature

Step 4 (Uniform [34, Corollary 7.6]). The assertion follows by replacing [34, Lem-
ma 7.5] by its uniform version. Hence, for any R-module M and any i > 2, there exists
a constant Cg ; such that £(Tor; (M, R/IP%ly) < Ce,i (M) p¢@=2 forall (x) C I.

Step 5 (Uniform [34, Corollary 7.7]). The proof shows that, for an exact sequence
0 — T1 — T, — T3 — 0 of torsion modules, we can bound

3
> (= 1)L (Tory (15, R/I“’e]))‘
i=1 3
< U(Tory (T3, R/ 1PNy + 3 (=11 /17T,
i=1

Since R is a domain, we can find ¢ # 0 that annihilates 77, T3, T3. Because Hilbert-Kunz
multiplicity is additive in short exact sequences and converges uniformly [63, Theorem 3.6],
by working in R/(c), we can find a constant D such that, for all / containing x, there is a bound

|€(T3/I[pe]T3) + Z(Tl/][Pe]Tl) _ g(Tz/I[Pe]TZN < Dpe(d—z).

Therefore, we take C7 = C¢,2(73) + D to bound

3
> (=1 e(Tory (T3, R/1WPN)| < C7pe@2,
i=1

Step 6 (The proof of the assertion). Last, we trace the proof [34, Theorem 7.8] to show
that it works in the F-finite case and provides a uniform constant. First, it is explained that we
may reduce to N = R/Q, where Q is a height one prime. Observe that

k(Q) : k()] = p*~ [k : k7]
by [40, Corollary 2.7], so [34, (10) in the proof of Theorem 7.8] can be replaced with
(53)  [p? 7Nk kPY(Tory (R/ Q. R/TPT) — £(Tory ((R/Q)V/7. R/ 117y
< (C2(T) + Ca(T)) p*U .
From the long exact sequence for the tensor product, we derive that the quantity
U(Tory (R/ Q)P R/ 11P)) —£(Q'7 @ g R/ 1P
+URY? @ R/IPT) —C(R/ Q)P @R R/1P)
is non-negative and is bounded above by £(Tor; (RY/?, R/1!P1)). Thus

(Tor (R/Q)Y/?, R/ TPy
[k : k?]

+ 4(R/1P

e+1

10)

e+l]

_g(Q/[[p

e+1 - CS(Rl/p) e(d—2)‘

h—tr/Q.17I) = T

Huneke notes that the alternating sum of lengths can be computed by tensoring

0>Q0—-R—>R/Q0—0
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with R/I[Pe+l], so it follows that

£(Tor1 ((R/ Q)Y P, R/11PTy) [pe+1] Cs(RVP) ,a
[k - k7] — {(Tor1(R/Q,R/I'? )| = W .

By plugging this into (5.3), we get that

1p? 1 0(Tory (R/ Q. R/TPN)) — £(Tory (R/ Q. R/ TPy

B Cs(R'/P) + Co(T) + Ca(T) eta-2)
[k : kP]

which allows to invoke [51, Lemma 3.5 (iii)] and deduce the existence of

e—>

1 e
y(I.R/Q) = lim ————{(Tory(R/Q.R/IP°))
(e’ pe(d—l)
and estimate the convergence rate by

[¢(Tor (R/Q, R/1PY)) — p¢@=Dy (1, R/ Q)|
< 2C5(R1/P) + CQ(T) + C4(T)pe(d—2)‘
[k : kP]

Corollary 5.17 ([34, Proposition 7.9, Corollary 7.10]). Let (R, m) be an F-finite local
normal domain of dimension d > 2 and characteristic p > 0, and let x be a system of parame-
ters. Let M be a finitely generated torsion-free R-module. There exists a constant Co(M) € R
such that, for any ideal I that contains x, there exists a constant y(I, M) such that

|€(Toro(M. R/1¥1)) — re(Torg(R. R/ IPT)) — y (1, M) p¢@=D| < Co(M) pe@=2.
In particular, for any ideal I that contains x, there exists y(I, R ?) € R such that

Ik : kP1e(Toro(R. R/1P“ ")) — p?[k : kP}e(Toro(R, R/11PY)) — y(1, R/ P) pe@=D)]
< Co(RYP)peld=2),

Proof. Huneke’s proof of [34, Proposition 7.9] applies verbatim to the first statement by
replacing his references to [34, Lemma 7.5, Theorem 7.8] by the uniform versions obtained in
Theorem 5.16 and his appeal to the convergence of the Hilbert—Kunz sequence by the uniform
convergence estimate from [63, Theorem 3.6].

The second statement can be obtained by taking M = RY'P and noting that its rank is
p@[k : kP] and that

U(Torg(R, RYP @& R/IPY)) = ((RVP @g R/IPYy = [k - kPYe(R/ 1Py, o

Theorem 5.18. Let (R, m) be an F-finite local normal domain of dimension d > 2, and
let x be a system of parameters. Then there exists a constant C > 0 such that, for every ideal
x € 1, there exists B(I) such that

|€(R/I[p€]) _ eHK(I)ped . ﬂ(l)pe(d_l)l < Cpe(d_z).
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Proof. The assertion is a uniform version of [34, Theorem 7.11] and is obtained from
its proof by replacing y(R'/?) with y(RY/P)/[k : kP] in the definition of €4, replacing the
reference to [34, Corollary 7.10] by the uniform estimate in Corollary 5.17, and quantifying
the geometric series trick through [51, Lemma 3.5 (iii)]. D

Corollary 5.19. Let (R, m) be an F-finite local normal domain of dimension d > 2,
and let x be a system of parameters. Then there exists a constant C > 0 such that, for every
ideal (x) C I, there exists B(I) such that

(717 ()P — (e ((x) = enx (1) p*? + B(1) p* 70| < 20p* 2.
Proof. This follows from Theorem 5.18 by using the estimates for (x) and /. O

Theorem 5.20. Let (R, w1, k) be an F-finite F-rational local domain of dimension d > 2.
Then there exists a constant 8 such that
be(R) d - _
e s (R)p® e(d—1) 0 e(d2)'
Proof.  As discussed in Remark 4.23, semicontinuity of the relative Hilbert—-Kunz mul-
tiplicity on the Grassmannian of the socle implies that there exists ¢ > 0 such that, whenever
ek ((x)) —eux (1) < (sre1(R) + €)€(I/{(x)) for anideal x € I C (x) : m, then

enk ((x)) —enk (/) = sre1(R)E(1 /{x)).

Due to the uniform convergence (Theorem 5.8), there exists eg > 0 such that, for all socle
ideals I and all e > ey,

(1P (x) Py

o — (enx((x)) — enx (1)) p¢? + (1) p°@—1 <§.
p

Hence, if 1, J are arbitrary socle ideals such that egg({x)) — epgx (/) = swe1(R)€(I/{x)) and
ek ((x)) —eux(J) > sl (R)L(J/(x)), then for all e > ey,

eIV )Py ek ((x) —enk(J) e e LI (x)tP°ly

e R I A N T

Therefore, by Corollary 5.6, for all e > ey,

g(][pe]/@)[pe])
(I /{x))

(x) C I < (x):m,
enk ((x)) —enx (/)
o) o) _ srel(R)} + o).

Now, for any socle ideal I such that egg ({(x)) — epx (1) = sre1(R)L(I /{x)), consider the
sequence

be(R) = [k : kpe]min{

1 (g(][p“]/(i)[pe]) -

— ed
Ce(l) - pe(d—l) E(l/(i)) V4 Srel(R))'
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By Corollary 5.19, this sequence converges uniformly, at the rate 2C / p¢ independent of I, to
B(I)/L(I/{x)). Thus, by taking the infimum in the inequality

ce(1) —2C/p® = BI)/U(I/(x)) = ce(I) +2C/p®,
we obtain that infy ¢ (1) converges, at the same rate, to inf; S(1)/€(1/(x)). Therefore,

be(R) BUI) | eux((x)) —enx(I) e(d—1)
Tk W) | ) ‘*“R%p

+ 0(ped—2), o

= $rel(R) p? + inf{

Corollary 5.21. Let (R, m, k) be an F-finite Q-Gorenstein F-rational local domain of
dimension d > 2 with a perfect residue field. Then

be(R) = saual(R) p°? + O(p*@~2),

Proof. By [41], the second coefficient (/) is zero for every m-primary ideal /. |

6. A formula for toric varieties

Besides Gorenstein examples where dual F-signature and F-signature coincide, we do
not have many examples where the dual F-signature was computed. In [53], Sannai com-
puted dual F-signature of the Veronese subrings of k[x, y] (Example 3.2). More generally,
the results of Nakajima in [47] can be used for computations in cyclic quotients of k[x, y].
In [27], Hashimoto studied the dual F-signature of invariant subrings and was able to char-
acterize vanishing of squa(wR) representation-theoretically even in the non-Cohen—Macaulay
case. In particular, he showed that sqy, (wgc) > 1/|G| whenever it is positive.

We suspect that it might be easier to work with the Hilbert—Kunz definition and will now
discuss F-rational signature in the toric case. Note that cyclic quotient surface singularities
are exactly two-dimensional toric singularities [20, Section 2.2]. Hilbert—Kunz multiplicity of
monomial ideals in toric rings was computed combinatorially by Watanabe [65]. We extend his
idea and will start with a recipe for computing st.(wgr/N) where mwgr C N is torus-invariant.

Specifically, consider a lattice L (i.e., a group isomorphic to Z") and a convex rational
polyhedral cone 0 C L ®z R. We can always assume that L = Z", but sometimes, it is more
convenient to work with a proper sublattice of Z". Let M = Hom(L, Z) be the dual lattice,
the dual cone is definedasoY = {u e M Qz R | (u,v) >0, v € o}, andlet R = k[oY N M]
be a monomial subring of a Laurent polynomial ring k[xlil, e, x,:ltl] = k[Z"]. It is invariant
under the torus action 7': x; —> t; x; with t; € k°.

We say that o is pointed if 0¥ N —o¥ = 0 or, equivalently, if ¢ spans L ®z R. In this
case, R = k[0 N M] has a distinguished maximal ideal generated by all nontrivial monomi-
als. It corresponds to the unique fixed point of the torus action on the toric variety Spec R. We
will denote this ideal by m.

By the work of Hochster [28], R is Cohen—Macaulay, and it is also known that one can
choose a torus-invariant dualizing ideal [15] corresponding to the interior (¢¥)° of the cone.
From now on, we will use wpg to denote this ideal.
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Suppose that N C wpg is a monomial ideal where wg /N has finite length, and we identify
wpgr/N with the k-vector space with basis given by the finitely many monomials in the com-
plement wg \ N. Following the interpretation of st.(wgr/N) in Remark 4.6, we are searching
for monomials

x* e w}le/pe such that Trg(r'/?°x") ¢ N for some r € R.
It is known (see [33, page 1780]) that Tr¢ is a projection on the lattice: foru € 1/p¢M,

x* ifueM,
0 otherwise.

T (x%) = {

e
Hence we need x* € a)lle/p such that x*1? € wg \ N forsome x? € RV/P* = k[pieM NoVl,
ie.,

1
u€E P = U{—eMﬂ(UV)°ﬂ(a—UV) x ea)R\N}.
p
Thus we see that

dimy 1/ pe a)R /Z (1) . | Pe|
STr(a)R/N) ll)ngo pedlmR ell)II;o pedimR'

Since dim R = dimo Y, from the Ehrhart theory, we obtain that the limit is the normalized
volume of a region,

(6.1) st(wgr/N) = vol(|_J{o¥ N(a—0c") | x* € wg \ N})/vol(M),

where vol(M) is the Euclidean volume of an elementary parallelepiped of the lattice.
We will now show that F-rational signature can be computed from the toric quotients
only.

Proposition 6.1. Let R = k[o™ N M] be an affine pointed toric ring and
={ac@)°NM|a—m¢ @) forall0 #meo’ NM}

a finite set of lattice points corresponding to the monomials x* € wgr \ mwg. Then

srel(R) = —Vol (Jlo¥n@—o")|acs)).

vol(M) (ZJ;éScT |S|

Proof. It follows from (6.1) and the discussion preceding it that the invariant on the
right-hand side is the infimum computed over the subset of monomial quotients wr/N of wg
with mwg € N, so it is clearly no less than St (R) = s, (R). Furthermore, the right-hand side
is independent of the ground field by (6.1). Since s (R) cannot increase when the ground field
is extended, it is enough to show the equality at some field extension. Thus we may assume
that k is algebraically closed.

Since wpg is T-invariant, T acts on the Grassmannian of rank n quotients, so we follow
the construction in Theorem 4.21 to show that st(wr/N) = str(wr/t - N) for any t € T.
Namely, choose a T'-invariant set {ri};nil such that Ffr; generate F¢ R as an R-module and
let

DT (F i+®)
ge(N): Fea)R/m Togr Rl Sl @a)R/ma)R - @a)R/N.
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Since T acts invertibly and the first map is 7 -invariant, one can easily check that
kerge(t-N) =1 -kerge(N).

Thus rank g, (N) = rank g (¢ - N), so spr(N) = sx(t - N).

Because k is algebraically closed, the infimum in S1;(R) is attained by Corollary 4.22.
Then the locus of the Grassmannian that minimizes st.(N) is 7 -invariant and, because the
Grassmannian is projective, we may apply the Borel fixed point theorem [10, Theorem 10.4]
to conclude that there is a T -invariant minimizer.

It remains to show that the minimizer is monomial.” For any f € I, we can write

b
f = Z xipi(x2,...,xn)
i——

a

as an element of the Laurent polynomial ring. Take g to be the generator of the multiplicative
group of Fat» C k;then 1,..., g% are all distinct. Since I is T-invariant, multiplying by
the powers of the element# = (g, 1,...,1) € T provides that

g“z(tZ ) =x7%p—a(x2, ..., x0) + gexl_a+1p_a+1(xz, e Xp) F

byt b
+ gt pp(xa . xn) €1
for{ =0,...,a + b. Since the Vandermonde matrix is invertible, each x’ipi (x2,....,xp) €1
for any i = —a,...,b as it is a linear combination of the g%¢(s¢ - ). After repeating the
process for xz, ..., X, it is easy to see that I is monomial. O

Note that, in the above result, the number of monomials x¢ € wg \ mwg is finite but may
be large in number, whereby the number of subsets S involved in applying Proposition 6.1 is
an issue when doing computations. Moreover, the volume of the union in (6.1) for a given S
can be computed from the basic volumes vol(cY N (a — o)) by inclusion-exclusion, but this
does not give an efficient algorithm.

Example 6.2. It is sometimes easier to work with a sublattice. We can consider the
nth Veronese subring of the polynomial ring in d variables as a toric variety for the sublattice
L c 74 formed by vectors whose sum of components is divisible by n and the positive orthant
as the cone. If ¢; are a standard basis of Zd, thenney,e; —e;, i > 2, form a basis of L, so we
can easily compute that vol(L) = n.

Integral points in wy are vectors @ = (ay, ..., a4 ) such that all components are positive
and their sum is divisible by n. One can further see that an integral point ¢ € wy \ mwy is
such that Y a; = f%}n since any smaller sum will have some a; = 0 (so it is not in wg) and
any larger sum can be decreased without violating positivity of a; (so it is in muwg). For any
such point, we can easily compute the volume vol(c¥ N (a — o)) = [] a;. This volume is
minimized when all but one components are equal to 1, giving the minimum of f%]n —d+ 1.
See Hochster—Yao [32, Example 7.4] for another approach.

%) An alternative to the elementary proof given here can be found in [14, Lemma 1.1.16], noting that the
referenced result [62, Theorem 3.2.3] is characteristic independent.
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It is well known that there are (2’:11) integer points such that a; > 0, Y a; = N. If
we use all of them in (6.1), we obtain a shape which is best described as a “building block
pyramid”. The volume of it is equal to the number of integer points with positive coordinates
such that ) a; < N, which can be seen by identifying each integer unit cube with its vertex
with the largest coordinates (e.g., top-right for a square). Hence the volume of that region is

S ()=

Thus, using N = [%1 n, we obtain from (6.1) that the relative Hilbert—Kunz multiplicity of the

entire socle is
&) N 174
”(la\l,:ll) T dn dln|
Note that (%]n > d with equality if and only if d is divisible by n, which is itself equiv-
alent, by the socle formula, to V' being Gorenstein. Hence S5 (V') = s (V) if and only if V' is
Gorenstein because sp (V) = ([%]n —d+1)/n> %[%1 = srel(V).

Remark 6.3. The second Veronese of k[x, y, z] is an example of a singular ring such
that s (V) = 1.

Question 6.4. Is s (V;,) = 5(%1?

The equality is easy to verify when the Cohen—Macaulay type is close to d. For example,
in the simplest non-Gorenstein case, such as n =2 or n = d + 1, we have |’%'|n =d+1.
Then wg \ mwp has d integer points and they have the form (1,...,1,2, ..., 1). By symmetry,
any collection of k points will have the volumes 2 + (k — 1), so the relative Hilbert-Kunz
multiplicity is (k + 1)/(kn), which is minimized for k = d. With slightly more effort, one
can also verify combinatorially the next case |’%‘|n =d+2.

Example 6.5. Suppose C C R? is the strongly convex rational polyhedral cone with
rays through the points [0, 0, 1], [0,2, 1], [3,0, 1], and [1, —1, 1]. In other words, C is the cone
over the polytope pictured in Figure 1 in the z = 1 plane. Let k be any F-finite field of charac-
teristic p > 0 and consider R = k[C N Z"] and m the homogeneous maximal ideal. We view

[0,2,1]

[0,0,1] ; [3,0,1]

[1,-1,1]

Figure 1
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wpg as k[C° N Z"], the ideal of R generated by the monomials corresponding to the interior
lattice points of C. One checks that ug = [1,0,1], uy = [1,1, 1], up = [2,0, 1] correspond
to a minimal set of generators for wg, i.e., the images of the corresponding monomials give
a k-basis for the vector space wg/mwg. In particular, we see that the type of R is three.

For each subset of indices @ # S C {0, 1,2}, let Ng be the R-submodule of wg gen-
erated by mwg and x* fori € {0,1,2} \ S. We have that Ws = wgr/Ngy is then a k-vector
space with basis given by the images of x* for i € S. To make our use of (6.1) transparent,
consider the rational polytopes P; = C N (u; — C) fori = 0, 1, 2; we then have that st.(Ws)
is the Euclidean volume of | J;.¢ P; divided by the number of elements in S. One computes

STr(VV{O}) = 136/441, STr(W{O,l}) = 187/882, STr(VV{(),Lz}) = 101/588,
STr(W{l}) = 167/882, STr(W{o,z}) = 89/441,
STr(W{z}) = 80/441, STr(W{l,z}) = 571/3528

and checks that the smallest value achieved is thus squa(R) = Sre1(R) = 571/3528. In contrast,
taking the minimum of the st,.(Wy;y) for i = 0, 1,2 gives sy (R) = 80/441, which is strictly
larger. Moreover, unlike what was seen for Veronese subrings in the previous example, Sej(R)
is also not achieved by taking the (normalized) relative Hilbert—Kunz multiplicity for the entire
socle modulo a parameter ideal. Explicitly, note that we have

enk (/) —epx (/ : m)

stt(Wio,1,2)) = sti(wr/mwR) = TOREY0) = 101/588

for an ideal / C m corresponding to a parameter ideal of Ry;.

7. Some open questions

This work opens a number of natural questions inspired by the existing theory of Hilbert—
Kunz multiplicity and F-signature. We want to highlight questions that were touched but not
resolved in this work.

Beyond F-finite. One benefit of s, (R) is that it is defined via Hilbert—Kunz theory, and
the definition makes sense for any local ring of positive characteristic. We developed Section 3
without the F-finite hypothesis and showed that s (R) has many good properties. However, all
further results are tied to the dual F-signature.

Question 7.1. Is s, (R) semicontinuous without the F-finite assumption?

We suspect that, for this question, one needs an interpretation of dual F-signature for
non-F-finite rings. This is related to the following question since we would like to get rid of the
residue field extension appearing in the definition of the dual F-signature.

Question 7.2. s b, always divisible by [k : k7°]?

Note that this will follow if one could remove the constant C from Corollary 5.6.
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Good fibers.
Question 7.3. If R — § is aflat local map, under which conditions is Sye] (R) = Sre(S)?

In particular, it is desirable to show that s;.;(R) = s (S) for a regular map. One way to
achieve this would be to reduce to the F-finite case by means of the so-called I'-construction
[30]. This motivates the following question.

Question 7.4. If " varies over the cofinite subsets of a p-base of a coefficient field k
of R, then does the equality supr s, (R') = swe1(R) hold? Is the supremum achieved, i.e., is
supr srel(RF) = srel(RF/) for all sufficiently small T""?

Here, note that we have always have s (R F) < sre1(R), and moreover, R is F-rational if
and only if s (RT") > 0 for all sufficiently small I"'.

Question 7.5. Let (R, m, k) be a complete F-finite Cohen—Macaulay local ring, and
let £ be a finite separable field extension of k. Do R and S := R ®; £ have equal Sannai’s
sequences b, ?

Rees algebras. We explored a connection with Rees algebras in Corollary 3.18, but it
is likely that one can say more. For example, it was conjectured in [25] and proved in [38]
that, for an m-primary ideal /, the extended Rees algebra R[/¢,¢~'] is F-rational if and only
if R and the Rees algebra R[/t] are F-rational. It is desirable to give a connection in terms of
F-rational signature akin to Corollary 3.18.

Remark 7.6. A very recent work [43] by Shiji Lyu made progress on Questions 7.1, 7.4.

A. A criterion for simultaneous injection of vector spaces

Throughout this section, we will work with vector spaces over a field k. For finite-
dimensional vector spaces V, W and subspaces U C V and H € Homy(V, W), we denote
by HWU) := ) ey h(U) the total image of U under H.

Definition A.1. We shall say that there are n simultaneous injections from V' to W in
H provided there exist ¢1, ..., ¢, € H such that the induced map

= (¢1.....0n): PV > W

i=1

is an injection. We will use MaxInj( H ) to denote the maximal non-negative integer n such that
there are n simultaneous injections from V to W in H.

Given n simultaneous injections, for any k-vector subspace U of V', we must have

n

(A.1) n-dimU) = dim(q>(€9 U)) = dim(z bi (U)) < dim(H(U)),
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and so n < mingxycy [dim(H (U))/dim(U)], where U varies over all of the non-zero sub-
spaces of V. The problem we seek to address here is the optimality of this upper bound, and
the main technical result of this section is the following criterion.

Theorem A.2. Let k be a field and suppose V is a finite-dimensional vector space
over k. Then there exists a positive constant C with the following property: for any finite-
dimensional vector space W and vector subspace H C Homy (V, W), we have

Ldim(H(U))

(A-2) 0= dim(U)

< J — MaxInj(H) < C,
0£UCV

where U varies over all non-zero subspaces of V.

Remark A.3. Our proof will show that the constant C appearing in Theorem A.2 can
be taken to be

dim(V)—1
C = Z i(dim(V)—i)-dim(V):é(dim(V))z((dim(V))z—l)

i=1

independently of the ground field k. However, we believe this bound to be far from optimal.
In particular, when working over an infinite field k and using general k linear combinations
of maps in H appropriately, we believe it is possible to exhibit a quadratic bound in terms of
dim(V). This should not be a surprise because new injections can appear in H after extending
from a finite field. For example, over the field F» = Z/2Z,let V = W = F2€B3 and consider
the subspace

0 1 00
Of,B=|1 0 0|, A+B=
0 0 01

S = O
S = O
- O O

of Hompg, (V, W). There is no injection in H, but xA + B is an injection over
Fy = Folx]/(x* + x + 1).
When dim(V') = 2, we obtain a much sharper theorem.

Theorem A.4. Let k be a field and suppose V is a two-dimensional vector space over k.
For any finite-dimensional vector space W and vector subspace H C Homy (V, W), we have
\\dim(H U)) J

MaxInj(H) = min

oxUcv| dim(U)

where U varies over all non-zero subspaces of V.

The following example shows that the assumption dim(}') = 2 is essential in Theo-
rem A.4.
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Example A.5. Let k be an arbitrary field and set V = W = k®3 with standard basis
vectors €1, €3, €3. Consider the linear transformations from V' to W given by the matrices

I 0 O 0 0 O 0 0 1
=10 1 0|, g=|0 0—-1f, Ah=|0 0 O],
0O 0 O 1 0 O 0O 1 O

and let H be the linear span of f, g, h in Homg (V, W). By verifying that
det(Af +ug +vh) =0
for all values of A, i, v, we see that there are no injections in H. Yet

min |[dim(HU))/dim(U)| =1,
Jmin [dim(H(U))/dim(U)]
as it is easy to verify that H(V) = W and that dim H(k(v)) = 2forany 0 # v € V.
Turning first towards a proof of Theorem A.4, we start with an elementary lemma.

Lemma A.6. Let V and W be two finite-dimensional vector spaces over a field k.
If ¢,& € Homp (V, W) are such that Im¢p NImé& = 0, then rank(¢p + &) > rank ¢ and the
inequality is strict provided there exists U € ker ¢ such that £(v) # 0.

Proof. 1If v € ker(¢p + &), then ¢(v) = —£(V) € Im¢ NImy = 0. Thus we see that
ker(¢p + &) = (ker¢ Nker&) C ker ¢, and the desired inequality rank(¢ + &) > rank ¢ fol-
lows and is strict provided ker ¢ Nker ¢ < ker ¢. O

Proposition A.7. Let k be a field, V a two-dimensional k-vector space, and n > 1 an
integer. Let W be a finite-dimensional k-vector space and H a subspace of Hom(V, W) such
that, for every 0 = U C V, we have dim H(U) > ndim U. Then MaxInj(H) > n, i.e., there
is an injection " V — W, where each component is in H.

Proof. We proceed by induction starting with n = 1. Suppose all maps in H have
rank at most 1. Take any O % h € H and let U = ker h. By the assumption, there is g € H
such that g(U) # 0. We must have Im g = Im 4, or g + 4 has rank 2 by Lemma A.6. Since
dim H(V') > 2, there is f € H such that Im f & Im g. This gives a contradiction since either
f + gor f + h must have rank 2 by Lemma A.6.

Now, assume that the n + 1-level condition holds, i.e., dim H(U) > (n 4+ 1) dim U for
all 0 #£ U C V. By induction, we find independent injections ¢y, . .., ¢,. Set W = W/Im ¢;.
If the n-level condition holds for H’ € Hom(V, W’), then there is an injection @" vV —w
by induction which then lifts to the required injection EB”+1 V—>W.

Thus we assume that H’ does not satisfy the n-level condition, i.e., there is a one-
dimensional subspace U such that dim H'(U) < n — 1, forcing that dim H(U) = n + 1 and
¢1(V) € H(U). This can only happen if ¢1 (V) + ¢p2(U) + ... + ¢ (U) = H(U) since the
dimensions are equal. We now pass to W = W/ >, ¢i(V).Forany ¢ € H, we denote by ¢
the induced map V' — W and define H analogously. Since the original ¢, . . . , ¢, are indepen-
dent injections, we still have that ¢1 (V) = H(U). Hence dim H (U) = 2 and dim H(V) > 4.



Smirnov and Tucker, The theory of F-rational signature 47

It remains to build two independent injections U — W because their lifts will be independent
with ¢2, ..., ¢n.

Let ¥ be such that ¢, (V) = H(U) = ¥ (U) + ¢1(U). First, assume that  is an injec-
tion, and let ¥ ¢ U be such that ¢;() € ¥ (U). Since dim H (V) > 4, there is g such that
g(V) Z (V) +¢1(V). If g, ¥ are independent injections, then we are done. Otherwise,
clearly, g(@) ¢ v(V) + ¢1(V), so we may apply Lemma A.6 in W /v (V) to show that g + ¢
and ¥ are independent 1nJect10ns

Last, suppose that V¥ is not an injection and fix 0 ;é ¢ € ker . As dim H (V) = 4, there
is & such that (V) € Im¢, = H(U). By the choice of ¥, we have & ¢ U, so h(e) ¢ H(U).
Ifh(U) € ¢ (U), then his injective and we reduce to the previous case by replacing  with h.
Otherwise, if 21(U) € ¢1(U), then (V) Ny (V) =0, so h + ¥ is injective by Lemma A.6
and we reduce to the previous case since ¢1 (V) = (¥ + h)(U) + ¢1(U). |

Proof of Theorem A.4. From (A.1), we have that n dim(U) < dim H(U) for all sub-
spaces 0 # U C V, and hence

n < min
0£UCV

dim H(U)
dim(U) |

Moreover, we must have dim H(Up) < (n + 1) dim(Up) for some 0 # Uy C V by Proposi-

tion A.7. Altogether this gives

2 < min Ldim.(H(U))J <dim_(H(Uo)) <n,
oxUcVv| dim(U) dim(Uyp)

and so equality must hold throughout completing the proof. |

Our proof of Theorem A.2 runs similarly to the proof of Theorem A.4 above, though
the requisite inductive constructions in Theorem A.9 and Corollary A.10 are quite a bit more
involved than that of Proposition A.7. Additionally, the elementary result below is used to avoid
using general linear combinations over finite fields.

Lemma A.8. Let U, W be vector spaces over a field k. Suppose that
¢1,...,¢n € Hom(U, W)

are such that ® = (¢1,...,9N): @N U — W is an injection. If Z is a subspace of W such
that dim(Z N'Im ®) = d < N, then omitting some d of the ¢1, . .., PN will yield an injection
@N_d U — W with image disjoint from Z. In other words, after reordering ¢1, ..., PN, one
can ensure that Z N (Zthd+1 Im¢;) = 0.

Proof. 'We proceed by induction on d, noting first that the lemma is a tautology when
d = 0. Now, assume the statement holds for all 0 < n < d and we have an injection

N
=($1.....¢n):EPU > W
and a subspace Z C W withdim(Z NIm®) =d < N.Let0 # v € (Z N Im ®) and denote

@ = ($1..... hj. .. PN).
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Since ﬂl_l Im ®; = 0, it follows that v ¢ Im ®; for some j which we may assume to be 1.
In particular, ®;: @N 1 U — W is an injection w1th ZNIm®; € Z NIm P so that

dm(ZNIm®d;)=n<d-1=<N —1.

Using the induction assumption on ®; and Z, it follows that we can reorder ¢5, ..., ¢y to
achieve 0 = (Z N (XN ,4, Im @) 2 (Z N (XN 4.1 Im¢y)) as desired. O

Theorem A.9. Let V and W be finite-dimensional vector spaces over a field k, and H
a subspace of Homy (V, W). Suppose n > 0 and 1 <d < dimV are integers and assume the
following conditions are satisfied.

(a) There exist ¢1,...,¢n € H giving an injection ® = (¢1,...,¢dn): @?:1 V —->W.
(b) We have dim(H (U)) > n dim(U) for any non-zero subspace 0 £ U C V.
(¢) Writing m := (dim(V) —d) - dim(V') + 1, there exist Y1, ..., Vm € H so that

{—1

dlm(ImCD + Zlmxpj) >d +d1m(Im<I> + Zlmwj)

Jj=1 j=1

for £ =1,...,m. In other words, we have that each ¥y has rank at least d modulo
Im® + Y 02 Imy;.

Then there are maps ¢~51, . ,q~5n, v € H so that ® = (51, e ,5,,): @" V — W isaninjection
and Y has rank at least d + 1 modulo Im ®, i.e.,

dim(Imlﬂ + Zlméﬁi) >d+1+ dim(ZIng).

Proof. In order to have the rank at least d modulo Im ® + Z =1 ! Im Y, each ¥, must
have rank at least d modulo Im ®. The assertion follows trivially if any 1, has rank at least
d + 1 modulo Im ®, so we may assume each v, has rank exactly ¢ modulo either Im ® or
Im® + Zf;ll Im ;.

Let W = W/Im ®, and for any ¢ € Homy (V, W), we denote by ¢’ € Homy (V, W)
the map V' — W —> W’ induced by the quotient. Slnce the rank of we does not change after
going modulo Z Im W we have Im we (Z I w ) =0 forany 1 <{ < m, and in
particular, Im ¢/ N Img/f =0 for any i # j. If ever kerlﬁ % kerlﬁ for some i # j, then
rank (Y] + 1//1’.) > d by Lemma A.6, and the assertion follows. Hence assume now that all of
these kernels are equal, and set K = ker Wé forall 1 </{ <m.

Let U be a vector space complement of K in V' so that dim(U) = d = dim(V') — dim(K)
and V = U + K with U N K = 0. Observe that Im, = ¥, (U), so the restriction of each v,
to U is injective as rank Wé = dim(U) = d. Moreover, setting

=Wl.... ¥ PV ->w.

we similarly have that W’ |gm is an injection as dlm(z =1 w (U)) = dm. In particular, it fol-
lows that each ¥ has rank d modulo Z/—l jeImyrie., Imw N (Zj_l Iy, Imx/f ) =0.
Note that we may permute V1, ..., ¥, as needed below while preserving our setup.
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If H(K) € Im ®, then we will find 2 € H and v € K such that 2’ (v) # 0. Since Im v/
are disjoint from each other, at most rank 2’ < dim(}) < m of the Im v, can intersect Im /'
nontrivially, so after reordering, we may assume Im y; N Im#A’ = 0 (as in the proof of Lem-
ma A.8). By Lemma A.6, rank(y; + h") > rank | = d and the assertion follows. Thus we
may assume going forward that H(K) C Im ®. In particular, note that this implies Im ® # 0
so we must have n > 1.

Since dim(H (K)) > n dim(K), there is some & € H with h(K) & ®(K). Because

h(K) S H(K) CIm® = PV

and an element of " V is in @" K if and only if each of the components is in K, we may
reorder the ¢; so that

hK) ¢ (¢1(1<) n Zlmqs,-)
=2

and choose v € K with

b # (9160 + D mar ).
i=2
Let

W= W/(ilmd)i),

and for any ¢ € Homy (V, W), we shall denote by ¢ € Homy (V, W) the map V —> W W
induced by the quotient by Zl —, Im ¢;. It now sulffices to find an injection ¢ and a map
that has rank d + 1 modulo ¢. We break the rest of the proof up into two cases depending on
whether we could assume that this / is one of ;.

Case 1. There is some 1 < < m with yy(K) € ®(K), i.e., h = Yy.

Since dim(Homy (K, Im ¢1)) = dim(K) - dim(V) = (dim(V) — d) - dim(V) < m, there
must be a nontrivial linear combination § = Z;"_l oy withag, ..., o, € k not all zero and
K Cker&. If0# i e U, then &'(u) = W' (o1, ..., amii) # 0 as \Il |@my is an injection and
aj # 0 for some j. Thus E(ii) # 0 as well, so it follows that £|y is an injection, rank £ = d,
and K = keré Moreover, since ker ¥y # K, £ cannot be a scalar multiple of 1y, and we must
have that o; # 0 for some j # £.

We will now show that ¢ := ¢; + & and ¢ := ¥, are the required maps. Let us first
check that Im E N (Im ¢y + Im ;) = 0. We already know that

Imé =£(U) and Img; +Imyy, = Imgy + Y (U).

Thus if £(if) = ¢1(@) + V¢(), then ii, ¥ € U and £(it) — ¥¢(¥) € ImP(®™U) N Impy. As
W’ l@mu is 1nJectlve it follows that 1, v = 0 as £’ is an injection modulo ‘/’é Thus we conclude
ImE N (Im ¢y + Im ;) = 0. In particular, we have 0 = Imé N Im ¢y, giving that ¢ = ¢1 + %‘
is injective by applying Lemma A.6 and using that ¢; is injective.

It remains to show that ¥, has rank at least d 4+ 1 modulo Im(¢; + §) To that end, let us
first check that v/, has rank at least d + 1 modulo ¢ (K). By our choice of ¥ € K above, we
have that ¢ (¥) € Im¢; \ ¢1(K). Put T = U + kv, which has dimension d + 1. Suppose we
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have 1 € U and A € k with ¥ (i + A0) € ¢1(K). It follows that v, (i) € Im ¢1, and so also
Y, (i) = 0, which gives it = Oasker y/; = K. Thus yy(A0) = A¢¢() € ¢1(K), which yields
A=0as we(f)) ¢ ¢1(K). Tt follows that ¥ |7 is injective modulo ¢ (K), i.e., ¥y is injective
on T and ¥¢(T) N ¢1(K ) = 0. To conclude the stronger statement that V¢ has rank at least
d + 1 modulo Im(¢; + &), it suffices verify Im(¢; + é) N W(T) = 0. Suppose we have some
W € V with ¢1 () + E(W) € Yy (T). It follows that £(w) € Im& N (Imp; + Im wg) = 0and
W € ker € = K. Thus we must have ¢ () € ¥¢(T) N ¢1(K) = 0, so that ¢ (W) + £(W) = 0
and hence Im(¢p; + &) N Yy (T) = 0.

Case2. Foralll <{ <m, yy(K)C ®(K)=>Y"_, ¢i(K).

Since . .
dim(Z v (U)) = dim(z w;(U)) = md,
j=1 J=1

we see that dim(z;":l v 7 (U)) remains unchanged modulo Im $1, and thus

(Z lZj(U)) NImg¢; = 0.

Jj=1
Set Z = h(U) + Im ¢;. Then

Zm(Z%(U)) ZmZﬂ(Z V@) Z k) + Imdy

_ MO,
O ) NImgy — Imgs . Impy )

and in particular,

m
dim(Z N (Z 1/_/]-(U))) < dim(h'(U)) < dim(U) =
j=1
Applying Lemma A.8 to 1|y, . ..., ¥m|y € Hom(U, W) and Z, it follows that, after reorder-
ing V¥1,..., ¥m, we may assume

(A.3) zZn ( > %(U)) = (h(U) +Im¢py) N ( > %(U)) =0

j=d+1 j=d+1
Since Vg 41lK. .- ¥mlgx € Homy (K, ¢1(K)) and
dim(Homy (K, ¢1(K))) = (dim(V) —d)? <m —d,

there must be a nontriv_ial linear combination § = Z:": dr1 Vi withagq,...,0m € k not
all zero and K C keré. If 0 # u € U, then &'(i) = V/(0,...,0,ag 41U, ...,ami) # 0 as
U'|gmy is an injection and o # O for some d + 1 < j < m. Thus E(ii) # 0 as well, so it
follows |y is an injection, rank § = d, and K = ker€. Since m > dim(V) + 1 > d + 2, we
may choose Yy withd +1 <{ <msothata; # 0forsomed + 1 < j <mand j # (. We
know V¢ |y is injective as ¥, lu is injective, and it follows from (A.3) that Y(U)NAh(U) =0
so that vy + & restricts to an injection on U by Lemma A.6. Furthermore, let us argue that

(A4) EU)N W (U) + Z) =EU) N (Ye(U) + h(U) +Imgy) = 0.
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Suppose i, i, 1" € U and W € V with £(ii) = ¥, (i) + h(ii”) + ¢1 (). Then

m m
Y@@y + Y (i) € Zn ( > lW]'(U)) =0
i=d+1 j=d+1
by (A.3), which implies
\D/(O, ey 0,0(d+1ﬁ, ey a(_lﬁ, O((ﬁ — 171/,0654_1&, ey amﬁ) = 0,

giving that o;ju = 0 by the injectivity of W'|gmy as j # £; thus we must have 1 = 0, and
(A.4) follows.

We will now show that ¢ := ¢1 + & and ¥ := Yy + h are the two required maps. Notice
first that, since ImE NIm¢;, = E(U) NIm¢; = 0 by (A.4) and ¢; is injective, Lemma A.6
implies that ¢ + é remains injective. To finish, we need to show that 1//[ + h has rank at least
d + 1 modulo Im(¢; + £). By our choice of T € K above, we have thath(v) e Im¢; \ ¢1(K).
Put T = U + kv, which has dimension d + 1. Suppose we have i € U and A € K with

(V¢ + h)(ii + AV) € Im(¢; + £).
AsV =U + K, suppose i’ € U and w € K with
(Ve + )i + 20) = (1 + § (@' + ).
Then, as ¥, W € K = ker& and H(K) € Im ®, we see

Q) = Yu(@) + h(i) + Ye(A0) + h(AD) — g1 + ®) € (Ye(U) + h(U) + Im 1),

and it follows that g(ﬁ’ ) = 0by (A.4), and also ’ = 0 because §|U is an injection. Rearranging
once again, we have

V() = —h(@) = Ye(A0) — h(AD) + ¢1(0) € h(U) +Imy = Z,

and it follows that ¥;(11) = 0 by (A.3), and also # = 0 because |y is an injection. Using
that w € K and y¢(K) € (3.7, ¢i (K)), this leaves

h(AB) = ¢1(0) — Ye(AD) € p1(K).
which is only possible if A = 0 as h(v) ¢ <,z_51 (K). Putting all of this together, we conclude
that, given i € U and A € k, we have (Y, + h)(@ii + A7) € Im(¢py + E) only when # = 0 and

A = 0. It follows that ¥, + h restricts to an injection on 7' which persists modulo Im(¢; + E ),
which concludes the proof. m]

Corollary A.10. Let V and W be finite-dimensional vector spaces over a field k, and
H a subspace of Homy (V, W). Suppose n > 0and 1 < d < dimV are integers, and assume
the following conditions are satisfied.
(a) There exist 1, ...,¢n € H giving an injection (¢1,...,¢n):Di—; V — W.
(b) We have
d—1
dim H(U) > ndimU + 1+ Y " i(dim V — i) dim V
i=1
for any non-zero subspace 0 £ U C V.



52 Smirnov and Tucker, The theory of F-rational signature

Then there are maps ¢, . .., ¢n. ¥ € H so that D= (P1.....¢n): @i-,V — W isaninjec-
tion and  has rank at least d modulo Im ®, i.e.,

n n
dim(Imw + Z%) >d + dim(zq"s',-).
i=1 i=1
Proof. 1f d = 1, we have dim(H(V)) > ndimV + 1 = ndim(}_;_, Im¢;). Taking

v € H with (V) € Y7, Im¢;, we see that PL=@1.....¢0n = ¢p, ¥ € H give a suit-
able collection of maps. Proceeding inductively, assume now the conclusion holds for some

d > 1. Suppose we have finite-dimensional vector spaces V, W with dim(V') < d admitting n
simultaneous injections from V to W in H € Homy (V, W) and so that

d
(A.5) dim(H(U)) > ndim(U) + 1 + Zi(dim V —i)dimV
i=1

for any non-zero subspace 0 # U < V. We need to find a map in H with rank at least d + 1
modulo the image of some n potentially dlfferent s1multaneous injections from V to W in H.

By our induction assumption, there are ¢1 ). ¢n ,wl € H with
n n
dim(z m¢" + Im 1//1) > dim(z Im¢l-(1)) +d =ndim(V) +d.
i=1 i=1
We proceed to define ¥q,...,¥, € H and ¢(£) . (e) € H recursively until either the de-

sired conclusion is satisfied or we reach £ = (dim V d )dim V' + 1. Assume we have
Yi....Ye € H and ¢V gD e H

so that dim(}_7_; Im ¢(e—1)) = ndim(V) and

-1

dlm(ZImqs“ Dy Zlm%) > dlm(ZIm¢“ Dy Zlm%)

i=1 i=1

forall 1 < ¢’ < £. In particular, we also have

n n
dim(Z m¢ ™ +Im w) > dim(z Im¢l.“‘1)) +d

for any 1 < £’ < £. If this inequality is ever strict, we are done as

=0\ =0y =ypeH

give the desired maps, so we shall assume we have equality for all 1 < ¢’ < £. Moreover, if we

Wy ™ (Z Im¢>§“”) # Wi ™ (Zlm@“‘”)

i=1 i=1
for some 1 < ¢’ <{' <{, Lemma A.6 gives that the rank of ¥ + ¥y~ is at least d + 1
modulo Y7, Im ¢(e D , and again, we are done with

have

Y (-1

dr=07 " =0V Y =y + Y € H,
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giving the desired maps. Thus we may assume

Ke=g ! (Z 1m¢,.<f—1>)

i=1
is independent of 1 < ¢’ < £. Picking U, to be a complement of K;, we have that Uy has

dimension d. Let
-1

W= W/(Z Wj(Ue)),
j=1
and for any ¢ € Homy (V, W), we shall denote by ¢ € Homy (V, W) the map V g W —Ww
induced by quotienting out by Zf;ll ¥ (Uy). Note that ¥/ (Uy) = Im v, modulo either

n n -1
Zlmqﬁl.(e_l) or Zlmgbi(e_l) + Z Im
i=1 i=1 Jj=1
for 1 < ¢’ < £ so that
{—1
dim(Z v (Ug)) = —-1)d.
j=1
. = T = —(L—1) —(l—1) . .
Consider also H = {¢ | ¢ € H} € Homy (V, W). We have that ¢, 7, ..., ¢, give n si-

multaneous injections from V to W in H, and for any subspace 0 # U C V, we compute

-1

dim (U) > dim H(U) — dim(z i (Ug))

i=1

d
> ndim(U) + 14 ) _i(dimV —i)dimV — ({ — 1)d
i=1
d—1
>ndim(U) + 1+ ) i(dimV —i)dimV + ((dim V — d) dim V + 1 — £)d
i=1
d—1
> ndim(U) + 14 Y _i(dimV —i)dimV
i=1

since { < (dim V' — d)dim V + 1. Thus, by our induction assumption, there are maps
14
pO. Oy e H

so that

n n
dim(z m ¢ + Im @) > dim(z Im &l.“)) +d,

dim(z Im q‘sl.“)) = ndim(V).
i=1

In particular, it follows that

dim(z Im ¢§‘)) = ndim(V).

i=1
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If the rank of any ¥, modulo Y 7_; Im ¢( ) is at least d + 1 for some 1 <! <, we are
again done so we may assume this rank is at most d. As dim(>_7_; Im¢ ) does not change
modulo Z _1 ¥ (Uyg), we similarly must have that

-1
aim(( v @0} = (0~ 1d
j=1

does not change modulo Y 7_; Im gbl.(e). Thus

{—1
Wioeo V) P U~ W

Jj=1

is injective and remains so after going modulo Y 7_; Im ¢i(€)‘ Moreover, we must have that
Yo (Up) = Im pr modulo either

-1

Y me® o Zlm¢“) + Z Im

i=1 i=1

for 1 < {' < {, and also,

dlm(z Imqﬁ(z) + Zlm lﬁj) = dlm(z Im¢(e) + Z Vi (Ug) +Im Wg)
i=1 j= i=1 j=
_ dlm(ZImqs“) +Im )

i=1

Zlm ¢(ﬁ>)

i=1

Zlmqs“) + Z v (Ue))

i=1 Jj=

- dim(z Tm ¢ + ilm w,-) +d.

i=1 j=1

> dim

II
/—\ /—\

This completes our recursive construction, as it now follows dim(}_7_; Im ¢l-(e)) = ndim(V)
and

dlm(z Tm ¢ + Z Im w,) > dlm(z Im¢® + Zlm w,) +d
i=1 i=1
foralll </ < (.

To finish the proof, we need only address the remaining case where the recursion above
proceeded all the way to £ — (dim(V') — d) dim(V') + 1. However, the desired conclusion now
follows from Theorem A.9 because conditions (a) and (c¢) from Theorem A.9 are satisfied by
¢(€) . ¢( and V1, ..., ¥y, and condition (b) is immediate from (A.5). O
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Corollary A.11. Let k be an arbitrary field, let V, W be finite-dimensional vector spaces
over k, and let H be a subspace of Homy(V, W). Suppose that, for some n > 0 and any
0£U CV, we have

dim V—1
dmHU) > (n—1)dimU + 1 + Z i(dimV —i)dimV.
i=1

Then there is an injection @" V — W where all components are in H.

Proof.  'We use induction on 7, noting first that the base case n = 0 is trivially satisfied.
Assume now that the statement holds for some n > 0 and we have finite-dimensional k-vector
spaces V, W and H € Homy (V, W) with

dim V-1
dmHU) >ndimU + 1 + Z i(dimV —i)dimV.
i=1

The induction hypothesis implies there exist ¢1, ..., ¢, € H so that

n
@1, ¢ PV > W
is an injection. Applying Corollary A.10, we have ¥ € H with full rank modulo the image of

the simultaneous injections ¢1, ..., ¢, € H, giving an injection
n+1
@1.....on. V)PV > W
with all components in H as desired. |

Proof of Theorem A.2. Combining (A.1) and Corollary A.11, we must have
dim V-1
ndim(U) < dim H(U) < ndim(U) + Z i(dmV —i)dimV
i=1
for all subspaces 0 £ U C V. Dividing through by dim(U), it follows the constant
dimV—1 1
C = Z i(dimV —i)dimV = 6(dim(V))Z((cﬁm(V))2 —1)
i=1

satisfies (A.2). O

To conclude this section, we exhibit a dual formulation of the above results that is tailored
towards our desired applications.

Corollary A.12. The polynomial P(T) = éTz(T2 — 1) € Q[T] is an increasing func-
tion on positive integers with the following property: for any integer n > 1, any field k, all
finite-dimensional vector spaces X, Y over k, and all subspaces H C Homy (X, Y') so that

dim(X/( (M ker(rz o h))) > (n + P(dimY))dim Z,
heH

for all nontrivial quotients wz:Y — Z # 0, there exists a surjection X — @" Y with all
components in H.
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Proof. Let hy,...,hy be a basis of H. For any surjection 7z:Y — Z # 0 of vector
spaces, observe first that

14
ﬂ ker(zz o h) = ﬂ ker(zwz o h;).

heH i=1

Writing @z for the composition

(k) oy A
X S Py L Pz

our assumptions give rank @z > (n + P(dim Y')) dim Z for all nontrivial quotients Z of Y.

We let (_)* = Homy(_, k) and use duality for finite-dimensional vector spaces over k.
Put H* = {¢* | ¢ € H} € Homy (Y™, X™). For every nontrivial subspace 0 # U C Y*, the
rank of

éU éy* Gioechd)

equals the rank of @7+ and so is at least (n + P(dim Y)) dim U. It follows that
dim H*(U) > (n + P(dimY))dimU forall0 # U C Y*.

Applying Theorem A.2, we have that there exists an injection

n

(¢*9"'9¢;;)
@Y* L X for some ¢7, ..., ¢, € H*.

Dualizing yields a surjection

n
x LoD ONY withr, ... g € H
as desired. D
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