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To date X-ray protein crystallography is the most successful technique available
for the determination of high-resolution 3D structures of biological molecules
and their complexes. In X-ray protein crystallography the structure of a protein
is refined against the set of observed Bragg reflections from a protein crystal.
The resolution of the refined protein structure is limited by the highest angle at
which Bragg reflections can be observed. In addition, the Bragg reflections alone
are typically insufficient (by a factor of two) to determine the structure ab initio,
and so prior information is required. Crystals formed from an imperfect packing
of the protein molecules may also exhibit continuous diffraction between and
beyond these Bragg reflections. When this is due to random displacements of the
molecules from each crystal lattice site, the continuous diffraction provides the
necessary information to determine the protein structure without prior

596), 751 24, Uppsala, Sweden. knowledge, to a resolution that is not limited by the angular extent of the

observed Bragg reflections but instead by that of the diffraction as a whole. This
article presents an iterative projection algorithm that simultaneously uses the
continuous diffraction as well as the Bragg reflections for the determination of
protein structures. The viability of this method is demonstrated on simulated
crystal diffraction.

Keywords: X-ray diffraction; diffuse scattering;
phase retrieval; macromolecular
crystallography.

1. Introduction

The diffraction of coherent radiation from an object onto a
detector placed far from the object gives rise to smoothly
varying diffraction features that are bandwidth limited by the
size of the object. The detector measures the intensity, the
mean-squared value of the electric field amplitude, but not the
phases of the scattered radiation. If the phases were known,
then one could synthesize an image of the object directly by
numerical propagation of the wavefront of the coherent field
from the detector back to the sample. This image would be
proportional to the electron density or scattering strength of
the object. However, without the phases, the numerical
transformation of the measured intensities only yields a map
of the pair correlations, also known as the autocorrelation of
the object density, of the point scatterers in the object.
Despite the missing phase information, it is often the case
that an image of a single object of finite extent can be
reconstructed from the diffraction intensities without prior
knowledge if those smoothly varying diffraction intensities of
the object are sufficiently sampled according to the Nyquist—
Shannon sampling criterion (Nyquist, 2002; Shannon, 1949;
Bates & McDonnell, 1986). Such a reconstruction can be
achieved using a class of iterative projection algorithms (IPAs)
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to solve for the missing phases where only the intensities have
been measured (Marchesini et al., 2003; Dronyak et al., 2009;
Marchesini, 2007). If many copies of the object are packed into
a periodic array, for example in a crystal, then the diffraction
intensities are greatly enhanced at specific scattering angles
corresponding to Bragg reflection angles. The enhancement
factor is equal to the number of repeating objects, which even
in a small macromolecular crystal is large enough to make
such diffraction measurable. The diffraction pattern in this
case consists of Bragg peaks which have a width that is
inversely proportional to the side-length of the crystal and
which are, in general, spaced at intervals that are not fine
enough to satisfy the Nyquist-Shannon criterion of the unit-
cell contents. Thus the Bragg reflections of a crystal are said to
‘under-sample’ the molecular diffraction of the unit cell. This
is the well known ‘phase problem’ and the reason that the
phases of the Bragg peaks cannot be readily determined from
the diffraction alone. It is the central problem that every
crystallographic phasing method must overcome.

We see therefore that the phase problem in crystallography
stems from the under-sampled diffraction intensities by the
Bragg reflections and can more rightly be considered as an
intensity problem (Thibault & Elser, 2010); many experi-
mental and computational strategies have been employed to
increase the measurable information from macromolecular
crystals in order to solve the structure. These methods either
require specific properties of the sample, such as the presence
of heavy atoms, or partial chemical models to gain this infor-
mation - see for example Rupp (2009) for a description of
these methods in the present context. They also depend upon
the measurement of high-resolution diffraction to ensure a
large number of measurements compared with fitting para-
meters in the model. Obtaining well diffracting crystals to give
the necessary high resolution is one of the largest bottlenecks
in the structure determination pipeline. Macromolecules in
crystals are usually only tenuously connected to each other,
leaving large voids throughout the crystal that are filled with
solvent. The fraction of the volume of this solvent often can
exceed 50% (Chruszez et al., 2008), in which case the Bragg
reflections actually do over-sample the molecular transform
(even though they under-sample the unit-cell diffraction). For
this condition, it becomes possible to apply IPAs to directly
phase the diffraction without any need of a model, high-
resolution data or specific structural characteristics (Millane &
Stroud, 1997; Lo et al., 2016; He & Su, 2015), although Liu et
al. suggest that a solvent fraction of at least 65% is required in
practice (Liu et al., 2012).

More recently, it was found that translational disorder in
crystals of the membrane protein complex photosystem II
(PSII) gives rise to continuous diffraction that can be phased
using an IPA (Ayyer ef al., 2016). Random and independent
displacements of rigid units (the PSII dimer) from lattice sites
disrupt the formation of Bragg peaks at high resolutions, and
instead give rise to the incoherent sum of the single-molecule
(continuous) diffraction from the rigid objects. This presents
an opportunity to greatly increase the information content of
the measured diffraction to allow direct imaging (that is, ab

initio phasing), but also raises a challenge in how to best utilize
both the Bragg and continuous diffraction. In our previous
work (Ayyer et al., 2016) these two types of diffraction were
treated separately, with the continuous diffraction used to
extend the resolution of a map that was initially refined from
the Bragg data. Here we present an IPA that uses both types of
diffraction on equal footing to recover an image of the rigid
object in a translationally disordered crystal. The method
generalizes iterative phasing of crystal diffraction data and
combines ideas from the field of coherent diffractive imaging
with analysis concepts such as those used in molecular repla-
cement. We require that the contribution to the diffuse scatter
from other types of disorder in the crystal (except for uncor-
related random atomic displacements and solvent disorder) is
absent, or at least insignificant, compared with the uncorre-
lated rigid-body translations of the molecule/s. It should also
be noted that we do not provide, nor are we aware of, any
definitive prior test for establishing when these conditions are
satisfied."

2. Diffraction model of the crystal

We consider the mathematical description of a crystal that is
generated from a single rigid unit [with density p,;,;q(X) at
position x]. This rigid unit may be what is generally thought of
as the asymmetric unit of the crystal, or it may be a particular
molecular complex. We consider for now that there is only one
repeating rigid unit, but more generally there could be several
types, such as two domains of a molecule. The unit-cell density
can be generated from the single rigid unit along with the
crystal symmetry and the unit-cell dimensions via rotation and
translation operations O cen(X) = ZZ;& Prigia(R,, - X — 1),
where the sum is over the M symmetry-related copies of
Prigia(X) in the unit cell. Here R, is the rotation matrix for the
mth copy and t,, is the translation vector.

In a perfect crystal without any translational disorder, each
rigid unit of each unit cell within the crystal is located at the
ideal lattice sites R,, - a, —t,, where a, are the lattice points
that define the entire crystal consisting of N unit cells. In a
crystal with translational disorder each rigid unit (m) of each
unit cell (n) is displaced from its ideal location by an amount
A We consider displacements drawn from a normal

n,m*

distribution such that (A, ) = 0and (AZ,) = o°. The crystal

density pya(X) can be generated by a convolution of the
disordered lattice of N points with each of the M rigid units:

M-1N-1

pcrystal(x) = Z Z prigid(Rm X — tm) ® S(X —a, — Am,n)’

m=0 n=0
1

It can be shown, for example see Ayyer et al. (2016), that the
diffraction intensities of such a crystal are given by

! Recent work from Chapman er al. provides a statistical model for the
continuous diffraction intensities. Under the assumptions listed above, it
becomes possible to predict (for example) the number of rigid units in the
crystal. Therefore, their model could in principle be adapted as a prior test for
translational disorder (Chapman et al., 2017).
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@

M—1
x| Fiia(R,, - q) exp(27iq - t,,)

m=0

where q (reciprocal to x) is given in terms of the wavelength A
and the angle between the incoming and outgoing rays 6 such
that |q| = 2sin(60/2)/4, F4(q) is the molecular transform of
the rigid unit [equal to the Fourier transform of p,;,4(x)] and
we assume that the crystal is coherently illuminated.
Measurements of the intensity are made at samples q; (for
pixel i) by a pixellated detector placed far from the crystal.
The second term in equation (2) is the usual formulation for
the Bragg peak intensities, formed by the square of the
coherent sum of the scattering from each of the M rigid units
in their respective mean positions and orientations in the unit
cell. These Bragg peak intensities are modulated by the
Debye-Waller factor exp(—4720%g?), which decreases from 1
to 0 as the scattering angle increases. The Debye—Waller factor
arises because the Bragg peaks only give information about
the average structure of the unit cell. In this case the average
structure is blurry in real space due to the random displace-
ments, and the effect of this blurring is to diminish the strength
of the Bragg peaks at high resolution (or scattering angle)
according to this factor. The first term of equation (2) is the
incoherent sum of the square modulus of the scattered light
from each of the rigid units. The incoherent sum is similar to
twinning in crystallography, except that here the sum is over
the possible orientations of the rigid unit rather than the
possible orientations of the crystal. It is modulated by the
complementary Debye—Waller factor, which increases from 0
to 1 with increasing scattering angle. We note that distribu-
tions of the translations A, ,, could be considered other than

[010]

probability

. displacement (4)
Figure 1

Gaussian, in which case the factors multiplying the two terms
in equation (2) take on different forms as given by the
correlation of A, . Other forms of disorder may additionally
occur in the crystal, for example random and independent
displacements of atoms in all molecules that will give rise to
another Debye-Waller factor that modulates the entire
diffraction pattern.

At first glance it may appear that the ratio of the continuous
to the Bragg peak diffraction intensities [arising from the first
and second terms in equation (2), respectively] scales with the
number of unit cells in the crystal. However it is o (rather than
N) that determines the relative strength of the diffuse scatter
to the Bragg reflections in each resolution shell and as a whole.
Although the Bragg peak heights scale as N2, the solid angle is
inversely related to crystal size, giving a signal of integrated
counts that scales as N. In today’s detectors, the width of the
Bragg peak will be less than the angular extent of a single
pixel. In this regime I(q)/N is independent of crystal size,
within measurable limits, and the prefactor to the unit-cell
transform can be safely approximated by

N—1 N—-1

=z

expl2mi(a, —a,) - q) =N Y (g —b,),

0 n=—N

~
Il

n=l

where b, is the reciprocal-lattice vector with index n. Thus
both terms scale linearly with N and are indeed quite
comparable in terms of the number of scattered contributing
photons (Chapman et al., 2017).

In Fig. 1 we show the simulated diffraction from a potato
multicystatin crystal with translational disorder [PDB (Protein
Data Bank) model 2w9q, Nissen et al., 2009]. The space group
is P2,2,2,, which is the most common for protein crystals
(RCSB, 2018) [it occurs in roughly one-third of all monomeric
proteins (Wukovitz & Yeates, 1995)]. Each unit cell in the
crystal has four symmetry-related copies of the rigid unit. The
crystal is simulated with a disorder length of o = 0.6 A and a
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Model of a P2,2,2, crystal exhibiting translational disorder of the rigid-unit locations and its diffraction. Left: ribbon diagram of a unit cell containing
four rigid units (the potato multicystatin monomers), where we show the rigid-body translations for one of the rigid units to the left and right as a
transparent underlay, corresponding to one standard deviation (o = 0.6 A). Right: central section through the diffraction volume of the crystal in the

plane [AkO0].
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crystal size 100 unit cells wide, with a volume of approximately
255 x 545 x 791 nm. We should note that in fact such crystals
are unlikely to be cubic in shape. In this case the Bragg
reflections are around three orders of magnitude more intense
than the continuous diffraction intensity per pixel for small
scattering angles corresponding to the first few Bragg reflec-
tions (the colour scale in Fig. 1 has been truncated to show
the continuous diffraction). At larger scattering angles the
situation is reversed, such that the Bragg reflection intensities
are negligible when compared with that of the continuous
diffraction. The diffraction data are shown as a slice through
the diffraction volume, intersecting the origin I(q,, g,, 0), and
the pixel sampling is chosen so that the Bragg reflections are
centred on every second pixel along each dimension. This data
set thus contains eight times the number of data points that
would normally be stored in a list of Bragg peak intensities at
the same resolution.

In this example we consider the simplest case, in which the
rotation and translation operators that relate each of the rigid
units to each other {R,,,t,} form the space group of the
crystal. That is, the rigid units are related by the global crys-
tallographic symmetry and not just by local (or pseudo-)
symmetries. With respect to the information content of the
Bragg reflections, this represents a worst-case scenario, in
which the Bragg reflections and the continuous diffraction
follow the point-group symmetry of the crystal with inversion
symmetry (by Friedel’s law), in this case yielding the space
group Pmmm. Consequently there are eight equivalent
intensity values for most reciprocal vectors, excluding special
values of q such as the origin. Any additional local pseudo-
symmetries will only increase the information content,
although the corresponding symmetry operations {R,,,t,}
would need to be known (or determined) in order to benefit
from this additional information. For the rest of this article, we
will present the general form of this algorithm, applicable
when the rigid units are related by crystallographic or pseudo-
symmetries. However, in the former case it is possible to make
use of the crystal symmetry to more efficiently calculate each
update in the iterative algorithm.

In Appendix A we describe the noise model used to simu-
late the diffraction intensities. There we also describe how o
may be determined directly from the crystal diffraction prior
to phasing and how the number of rigid units in the crystal can
be evaluated by examination of the distribution of continuous
diffraction intensities and its deviation from ideal Wilson
statistics. It is necessary to have good estimates of these
parameters in order to relate the Bragg and continuous
diffraction intensities as needed to recover the structure from
the diffraction, as described in the following section. However,
it is likely that the algorithm could be modified to iteratively
refine initial estimates for these values.

3. Iterative projection algorithm

Having described the observable quantities, namely the
diffraction intensities /(q), in terms of the quantity of interest
which is the rigid-unit density p,;;4(X), we now turn to the task

of recovering p,;,4(x) from I(q) for a crystal with translational
disorder. We assume that all quantities in equation (2) (except
of course for Fy,4) have been determined. This includes the
disorder parameter o, the internal symmetry of the unit cell
(the R’s and t’s) and additionally the unit-cell parameters as
well as the solvent fraction of the crystal. We cast this problem
in the form of a phase problem in coherent diffractive imaging
(CDI), which requires that we formulate projection operators
responsible for enforcing the known constraints on the solu-
tion which are described below in Sections 4 and 5. We also
describe the conditions that must be satisfied for a unique
solution to exist in Section 6 and, finally, we verify that the
rigid-unit density can be reconstructed from the simulated
noisy diffraction intensity in Section 7.

The phase problem in CDI is commonly formulated as a set
intersection problem in Euclidean space. For example,
consider the problem of retrieving the structure of a single
finite object from its diffraction intensities I. We can represent
any 3D image as a point i in a vector space with a dimen-
sionality equal to the number of voxels in the image. The value
of each coordinate of i is given by the density of the object at
the corresponding voxel. We can then define the set of all
objects that are consistent with the given diffraction intensities
(the data constraint set D) and the set of objects that are
contained within a given finite volume (the real-space or
support constraint set S). The solutions are given by the points
Y that form the intersection of the two constraint sets DN S,
since these represent 3D images that are simultaneously
consistent with the measured diffraction and the support
constraint. The possible solutions can be related by trivial
operations (Bruck & Sodin, 1979; Hayes et al., 1980; Bates,
1982) such as inversion and translation. The projection
operator Pg maps a given point ¥ onto a point, in the set S,
that is nearest to ¥, and similarly for D. For example,
YP? = Pp - (the ‘- here simply connects the operator Pp to
the operand 1) makes the smallest change to 1 necessary for
YP to be a member of the set D consistent with the measured
data. Many algorithms, such as the error-reduction (ER),
hybrid input-output (HIO) or difference-map (DM), repeat-
edly apply both of these projection operators to find the
intersection points (Fienup, 1978; Bauschke ef al., 2002; Elser,
2003). For this work, we employ a combination of the ER and
DM algorithms. The ER algorithm is simplest; it applies first
the real-space projection followed by the data projection
operator and is guaranteed to reduce the distance between the
current guess (1) and the two constraint sets (S and D) after
each update but is prone to slow convergence or stagnation at
points far from the global solution. The DM algorithm
employs a somewhat more complex update rule that is
designed to avoid stagnation and improve convergence speed
but is more computationally expensive per update cycle, due
to the increased number of projection operations required per
iteration.

Before continuing, for notational convenience, let us first
vectorize functions of r and q so that, say, f(q) can be repre-
sented as a vector f such that f; = f(q;) and all equations
relating bold quantities should be understood as element-wise
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relations. For example a = bc is equivalent to a(q) =
b(q) x c(q) for all q. Note that we have used simple juxta-
position, rather than ‘X’, to represent element-wise multi-
plication in order to avoid confusion with the vector cross-
product operator. In the above example, the support projec-
tion Pg is carried out by setting all elements of
w = Y(r) outside the support region S to zero, so that
wP? = Ps -y = Sy, where S (not to be confused with the set
S) is 1 inside the support region and 0 outside.

4. Data projection

For the data projection Pp, we now employ a useful property
of projection operators, which is that they may be defined in
real or reciprocal space. This is because the Euclidean
distances between vectors are preserved under a Fourier
transform (Parseval’s theorem). In this example, where
diffraction is measured from a single finite object, the
diffraction intensities of our object I = I(q) are equal to the
square modulus of the Fourier transform of the object density
which in turn is equal to the sum of the squares of its real and
imaginary components ||* = @? + y?, where ¥ is the Fourier
transform of y. At every voxel in reciprocal space we wish to
make the smallest change to the independent variables g, and
w, such that @?+w? =1 This equation describes the
constraint surface at each ¢ value as a circle of radius I'/? and
the projection operator simply scales y while keeping the ratio
¥,/ fixed: P = Pp -y = 1 /1.

Let us return to the case of a crystal with translational
disorder. In this case it is not immediately clear how these
projection operators should be defined. To see this, let us
group the prefactors to F,y in equation (2) into the diffuse
weighting terms D and the Bragg weighting terms B:

D(q) = N[1 — exp(—4m°0?q*)] and
L, NN .
B(q) = exp(—4m°0°q") Z; kZ; exp[27i(a, —a,) - q]  (3)
so that equation (2) can now be written:

@) = D@ 2 IFy®,, - 0
+B@| T FRy expCria-t,)| . (@

Consider the influence of F,q on [ in our P2,2,2; crystal.
Here M = 4 and so, by equation (4), each g-space voxel gains
contributions from four different Fourier components of p,,q
from each of the four orientations of p,,;y. Conversely, each
Fourier component of p,,q will influence the intensity
observed in the four symmetry-related g-space voxels.
Therefore, in order to determine the projection operation for
a single Fourier component of p,;,, four coupled non-linear
equations must be solved.

One way to decouple the effect of the symmetry-related
values of F; ;4 on the observed intensity is to expand the state
vector to include each occurrence of F;;4(R,, - q) in equation
(4) as an independent mode:

'/A/= {F07-~~7FM—1} (5)

where
Fm(q) = Frigid(Rm : q) eXP(zmq ' tm) (6)
Inserting equation (6) into equation (4) yields

M-1 2

M—1
I=D) |F,’+B|)F,
m=0 m=0
M1 5 - M—1 2 /M- \2?
=D ¥ [(F,)+(F,)’] +B (Z F:n) +<Z F)
m=0 m=0 m=0

™

where, in the second line, we have expanded F,, in terms of its
real and imaginary components (F', and F! , respectively) in
order to better illustrate the number of independent variables.

Consider first when there is no crystal disorder and
measurements are only taken at the Bragg peaks. Millane &
Lo (2013) have examined this case, where D = 0. They set the
coherent sum over the reciprocal rigid units equal to the unit-
cell transform U = Z%;(} F,,. The constraint surface is now a
circle in 2D space (for every voxel in reciprocal space) and the
data projection must rescale U by the ratio I'/?/|U|. With this
construction, the real-space projection enforces any known
internal symmetries of the unit cell. Indeed, these projections
can be used to phase Bragg reflections using the principles of
CDI for crystals of high solvent content (He & Su, 2015).

At the other extreme, when B = 0, and the set of M rotation
operators R,, form a group, Elser & Millane (2008) have
shown that the constraint surface forms a (2M — 1)-sphere in
2M-dimensional space of radius (I/D)"? one dimension for
each of the real and imaginary components of F,, and again
for each voxel in reciprocal space. The data projection
then rescales each of the rotated Fy,y’s by the ratio
(I/D ZZ;OI IF,,|*)'/>. As a physical realization of this case,
Elser and Millane were motivated by diffraction of laser-
aligned molecules which can exist in equal populations aligned
parallel and antiparallel to an alignment axis with completely
random intermolecule translations (o — 00).

In general, however, D > 0 and B > 0, which is a departure
from the above cases in two ways. First, the intensity depends
on a mixture of coherent and incoherent additions over the
F,. Second, the contribution to the intensity from the
coherent and incoherent summations of F,, has weighting
factors that can vary with q. Chen et al. (2016) formulated
projection operators to account for mixtures of coherent and
incoherent additions, arising in the context of diffraction of
finite crystals. However, this formulation can only incorporate
constant (non-q-dependent) values for D and B. In the second
case, we have a more fundamental departure from previous
work in this field, where most phase problems rely on data
projection operators that project a point onto a hyper-sphere
or a hyper-cylinder. In the present case, however, equation (7)
describes a 2M-dimensional hyper-ellipsoid for arbitrary D
and B. For a crystal composed of a single rigid-unit type, this
2M-hyper-ellipsoid can be reduced to a 2D ellipse (in general,
the dimension of the ellipse is twice the number of rigid-unit
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types). Nevertheless, the projection cannot be described in
terms of simple operations (such as rescaling). In the following
section (4.1) we derive the data projection operator P, and
show that it satisfies the requirements as a distance-minimizing
mapping of 1} onto the set D. This involves the use of a simple
algorithm for projecting a point onto an ellipse surface, for
which we have written a Python implementation of the
procedure described by Eberly (2011).

4.1. Data projection: derivation

Given the state vector 1}, the data projection P, is an
operator that minimizes the Euclidean distance:

Y IPy - i — I’ ®)
such that equation (7) is satisfied by Pp - % (the sum is over
each element of ).

Currently, equation (7) describes a multi-dimensional
ellipse; this we know simply because it is a quadratic equation
constraining each of the values in our state vector ¥ (or
equivalently the set of F,,’s). One way to simplify equation (7)
is to rotate our basis vectors so that they are aligned to the
principal axes of the ellipse. Fortunately, this rotation matrix is
somewhat trivial to construct in the present case. Consider the
second term in equation (7), which involves the coherent sum
over all m components of F,,, suggesting that we might find a
rotation matrix such that this coherent sum is represented by a
single component in the new basis. Indeed, R, =
1/M"Y? exp(—2minm/M) is sufficient for this task and R, - f,,
is nothing but a discrete Fourier transform with an easily
constructed inverse R} = 1/M'/? exp(2m’nm/M).

So let us rotate our state vector from w={F,...,F,_}to
{FO, ..., Fy_,}, where F is the Fourier transform of F,
over m (not q!), so that
. m
B, = Ml . Z F, exp(—2mi"7). ©)

m=0

With  this

S IR =

transformation ¥, = (1/M'?)Y F, and
>, IF,.|>. Equation (7) becomes

M-1 N
D Y |F,|> + MBIF,| =1,

n=0

A M_l A
(D+MB)[F,>+D Y [F,[ =1L (10)
n=1

Note that k, =(1/M'2)>"M~'F, is nothing but the coherent
sum over each rigid unit in the unit cell (the unit-cell
transform of the crystal) scaled by 1/M'/2 The transform from
F to Fis unitary on our state vector and so distances between
vectors in this space are preserved. As a consequence
S Py - — > =Y [Py -/ — ¢/|%. That is, we are free to
rotate our state vector from y to ¥/, apply the data projection
to obtain §}, =P, -4 and then rotate back to get the
projected state vector ¥, in our original basis.

With the substitutions e, = [I/(D + MB)]'*and e, =(1/D)"?
we can recast equation (10) in the form of a 2M-dimensional
hyper-ellipsoid (one dimension for each of the real and
imaginary components of ﬁn):

LA A
+ > =1. (11)

2
€5 €

Here all of the hyper-ellipsoid semi-axes (at a particular voxel)
are one of e, or e, suggesting a high degree of symmetry,
which we will now make use of. First we note that the phases of
an are not present in the equation for the hyper-ellipsoid (we
remind the reader that these are not the phases of the scat-
tering amplitudes which we are trying to solve for). Therefore,
a change in these phases represents a motion in ¥’ that is
parallel to the surface of the hyper-ellipsoid. Since the vector
PD 1//’ w that projects 1// onto the constraint surface must
be orthogonal to the constraint surface, this vector must also
be independent of these phases. We can therefore keep the
phases of an constant in our projection and factor them out of
equation (11). The same is also true for any relative change in
IF | (for n>0) that keeps the total (Zn L |F ) constant.
Therefore we can make the substitution:

A M_l A
=|F,[> and y’=) [F,J (12)
n=1

so that equation (11) reduces to the equation for a 2D ellipse:

Xy

=1. 13
e € (13)

Thus the data projection for the state vector 1/Af maps to the
problem of projecting any 2D vector (X, y) to the closest point
on the surface of the ellipse (x,,y,) = f’empse(eo, e) - (x,y)
Although we can find no closed-form solution for this
projection, the points (x,,y,) can be obtained by assessing
candidates from the roots of a fourth-order polynomial
equation (Hart, 1994). In an excellent review by Eberly
(2011), this method is compared to numerical solutions based
on root finding. He finds that the bisection method applied to
a parametrized form of the ellipse equation provides the most
reliable results, and can be generalized to any number of
dimensions. We provide Python code that projects a point
onto an ellipse surface following the suggestions of Eberly.?
While this may be the first time that a physical diffraction
model has motivated the use of an ellipse projection, Borwein
et al. (2018) have developed an algorithm for projecting a
point onto a 2D ellipse for the purpose of analysing the
dynamics of an iterative algorithm called the Douglas—
Rachford method. They employ an algorithm based on
Newton’s method (a root-finding algorithm), an approach that
Eberly had earlier rejected in favour of the bisection search
(because it is more numerically stable). Shortly before this
work, Elser (2017), also in the context of phase retrieval,
developed algorithms for projecting a point onto constraint
surfaces that can be described by the matrix equation
XY = C, where C is the constraint matrix and X, Y contain
the state variables. While this constraint equation cannot be
used to describe an ellipse, the iterative scheme employed by
Elser to solve for these other projections is applicable in the
present case. We have tested the algorithms from both Elser

2 https://github.com/andyofmelbourne/crappy_crystals.
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Table 1

Data projection operation.

The superscript ‘p’ signifies a projected quantity, D and B can be determined

from the data and are defined in equation (3), and Py, (€, ;) - (X, y) is
calculated numerically.
Step 1 F,= ! ZF exp( 2mi —)
t M m=0 M
M—1 1/2
Step 2 x=F| y= (Z |ﬁ,,|2>
n=1
Step 3 e, =[1/(D + MB)]'” e = (1/D)"
Step 4 (Xp’ yp) = f’el]ipse(eﬂ’ ) (x,y)
. . X
Step 5 Fo=F,=2 F =F 2forn>0
X
Step 6 P = Lnf P exp(Zni @)
m M2 ra n M

and Eberly (though we do not claim to have done so defini-
tively) and found that they are roughly equivalent in speed
and robustness. However, we favour the approach described
by Eberly because it is well documented.

As an example, consider an ellipse with e;/e; = 4, as shown
to the left in Fig. 2. The black line is the set of all points (x, y)
that are consistent with the measured intensity at a given q.
Starting at a given point (shown in green), the data projection
finds the closest point on the ellipse (shown as the blue vector)
where (x,,y,) = lse,ﬁpse(eo, e,) - (x, y). For an initial point (x, y)
along the major axis of the ellipse in the interval |x| <fe
(shown in grey), where f and ¢ are the focus [(e3 — el)l/ *] and
eccentricity (f/e,) of the ellipse, respectively, the projection
operation has two possible outcomes (x,, £y,) (as shown in
lighter blue). In this case our algorithm arbitrarily chooses to
project upwards to (x,,y,). If y =0 and [x| > fe then x is
projected to the right- or left-most point of the ellipse, i.e.
X, =¢ for x > fe and X, = —¢, for x < —fe.

In contrast to this data projection, consider conventional
phase retrieval with a single coherent mode ; here the data
projection is given by Py, - 1// w x (I/I))'* where I, is the
forward model for the measured intensity, given the current

ellipse circle line

z,y
Zps Yp

== Az Ay

Figure 2

Elliptical data projection of the diffuse and unit-cell amplitudes onto the
data constraint surface with e;/e; = 4; the red dashed line illustrates the
projected path taken by a simple rescaling and the black dashed line the
shortest path to the constraint surface. Spherical projection onto a circle
with ¢,/e; = 1. Line projection onto a line along the axis with ¢,/e; = 0.

state vector (usually /; = |1/A/|2). This is a simple rescaling of the
state vector by the ratio of the square root of the intensity with
the forward model of the intensity and is illustrated by the red
dashed lines in Fig. 2. This is not the closest point on the
constraint set to 1}, and hence is not a projection operator, and
therefore an iterative algorithm based upon this will not
possess the standard convergence properties.

In Fig. 2 (middle) we show the special case where e, /e, = 1
and the ellipse reduces to a circle. In the unlikely case where
this applies, the data projection reduces to a rescaling of the
model intensity and the elliptical projection is identical to the
conventional projection. When e; — oo (right) or ¢, — oo
(not shown) the data projection rescales x (right) or y (not
shown) with two solutions along the axis.

Having projected (x, y) onto the ellipse, the data projection
then simply maps the points (x,, yp) back into our original
basis. This is achieved by rescaling F, by the ratio x,/x and
each of the F by y,/y, for n>0, and then computlng the
discrete inverse Fourier transform over n.

In Table 1 we summarize the procedure for performing the
data projection on each of the Fourier space modes F,,.

5. Real-space projection and support update

Pg is more straightforward to construct; it makes the smallest
change to a given estimate for the rigid-unit densities at a
given iterate such that the mapped projection is consistent
with our prior knowledge of the crystal. We must ensure that
the rigid units are all identical copies of themselves (in
different orientations), that they are arranged according to the
symmetry of the crystal, that their densities do not overlap,
and that they each have a given number of volume elements
that deviate from the solvent density level, consistent with the
solvent fraction of the crystal.

In the following section (5.1) we derive Pg and show that Pg
also satisfies the requirements as a projection operator. To
summarize: the M estimates for the rigid units are averaged
within the volume known to occupy the rigid unit, that is the
‘support volume’, after first overlaying them by applying the
inverse of the rotation and translation operations for each.
This averaged rigid unit is then replicated and placed back into
the unit cell according to the symmetry of the crystal. These M
copies of the rigid unit are then propagated back to reciprocal
space by a Fourier transform.

Additionally, if the support volume is not known, then it can
be periodically updated based on the current estimate of the
rigid-unit density in a manner similar to that of Marchesini’s
‘shrink-wrap’ algorithm (Marchesini et al., 2003). In the
current case of the potato multicystatin crystal, an estimate for
the support was updated by keeping the highest density values
for the averaged rigid unit, within a loose support region, such
that the total number of elements is equal to a given number
(the voxel number support) consistent with the solvent frac-
tion of the crystal. This support volume is then convolved with
a Gaussian kernel and the voxel number support is applied
once again to this function. For this first step we have found
that it was necessary to apply the additional (very loose)
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support on the rigid-unit density. This region is indicated by
the black dashed line in Fig. 5 (bottom left) and is equal to
40% of the unit-cell volume. Without this additional constraint
it was commonly observed that the support would become
fragmented, even with an aggressive smoothing parameter.
TheoGaussian smoothing kernel has a standard deviation of
0.5 A.

5.1. Real-space projection and support update: derivation

Let us now formulate the constraints listed in the previous
section mathematically: we wish to find Pg such that

W =Ps-y={F . . F, )} (14)
where

ensuring that the rigid-unit densities are identical and
arranged according to the crystal symmetry. We also require
that

plrjigid(r) = S(r) x :Orpigid(r) (16)

where pf 4 = F _1(Frpigid) and S(r) is the support of the rigid
unit with a given volume, ensuring that the rigid units have a
fixed number of voxels. Note that equation (16) defines a
constraint that must be enforced by the projection operation
and is not (as is often the case) the projection operation itself,
which we will derive shortly. So, to satisfy equation (16) we

require that

e=2 [Ps-v—yf (17)

is minimized for any 4, ensuring that Pg is a distance-
minimizing projection in Euclidean space. Note that in
equations (14)-(16) we have used the superscript ‘p’ to
represent projected quantities. In addition we demand that
there is no spatial overlap between the symmetry-related
copies of the rigid unit in the crystal. To reiterate, the goal here
is to find Pg, which is defined by the projected modes F?,
which in turn are given by Fﬁgid (related by a Fourier transform
to pﬂgid). This can be achieved by minimizing equation (17)
with respect to Pg.

First, let us assume that the support region S(r) is known.
We can express the error in equation (17) in terms of the
deviation between the real-space rigid units inside this support
region. Expanding equation (17) in terms of the unit-cell
modes yields

e=Y |ly* —yf
=Y Y[IFi(@) — F, (@]

= 2 Y[ IR, - @ exp@ria - ,) — F@F] (18)
m q

As the distance between vectors is preserved under a unitary
transformation of the vectors, we are free to apply the
following transformations:

e=) Z[Ffigid(q) — F, (R, - q) exp(—27iq - tm)lz]
m q

= % 2| 10ha) = £, 1,012} (19)

m re§

In this first step we have applied the inverse of the rotation
and translation operators defined by the space group of the
crystal to each of the unit-cell modes. This serves to bring each
estimate of the reciprocal rigid unit into register. In the
following step we propagate each mode to real space via an
inverse Fourier transform where the sum over r is confined to
the real-space volume of the rigid unit such that ), ¢ =
> .S =V.

It can be shown that
1 _
Praa® =80 x > " p,[R, -+, (20)

minimizes the Euclidean distance (¢) in equation (19)
(Bricogne, 1974). pq in equation (20) now satisfies two
constraints, the internal symmetry of the unit cell and the
support constraint, and is thus at an intersection of these two
sets. Because the two projections, multiplication by S(r) and
the average over m, commute they form a single projection
operation onto the set formed by their intersection.

We can now simply Fourier transform ,ofigid(r) to obtain
Ffigid(q). The projected modes are then given by application of
equation (15). These operations are illustrated as a flow
diagram in Fig. 3, where we have used a 2D crystal of ducks
with the space group p2/m. This is the same toy model as
illustrated in Fig. 4.

Now we describe our procedure for updating the support
region S(r), given an estimate for the rigid-unit density p;giq(r):
This procedure consists of four steps. First, p,;,4(r) is multi-
plied by a very loose support S,,..(r). This region may be
much bigger than the rigid unit itself and may also contain
parts of the unit cell which are occupied by the symmetry-
related copies of the rigid unit. We found that this step is
necessary to avoid fragmentation of the support to different
regions of the field of view, despite the aforementioned
smoothing procedure. Second, within the loose support
region, we apply a voxel number projection which enforces the
solvent fraction of the crystal. Third, this support volume is
then smoothed with a Gaussian kernal. This step, which is
employed in a similar way in Marchesini’s ‘shrink-wrap’
algorithm (Marchesini et al., 2003), biases low-resolution
features in p,;,4(r) and helps to remove small isolated regions
from the resulting support envelope. Finally, the voxel number
support is applied (once again) to the smoothed support
volume.

In both cases the voxel number support, first posited (in the
context of CDI) by Elser (2003), has been modified to include
collision avoidance between rigid units in the crystal:

(1) For all r, assign S, oyeriap(r) = 1

if |prigid(r)| = maX{|pfjgid(r0)|7 cees |psigid(rM)|}

and Sloose(r) = 1’

otherwise assign S, oyertap(r) = 0.
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Real-space projection

B =0) and from their sum (€2, Wwhen
B >0 and D > 0). We find that for the ten
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most common crystal space groups released
in the PDB, representing approximately
77% of all structures in the PDB (RCSB,
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Figure 3

Flow diagram illustrating the real-space projection operation for a 2D crystal. The crystal has
the space group p2/m and the unit cell consists of two ducks separated by a mirror plane cut
horizontally across the middle of the array. Also illustrated is the procedure for updating the

real-space support region, which is not part of the projection operation.

(2) Within the no overlap volume [S,..,,(r)] keep only the

V most intense values of ,ofigid(r) by setting:

Sk)=1fori<V

where the set {|S,,, Overlap(ri)pﬂgid(ri)f}i is sorted from highest

to lowest value,

wherer,, =R, -r—t,.

This last operation is, of itself, a projection operator (Elser,
2003) but does not commute with the averaging projection and
so the procedure outlined here for updating S(r) cannot join
equation (20) as a single projection and should therefore be
applied periodically outside the projection algorithm.

And so, with the above procedure for finding the support
volume and equation (20) for the rigid unit, we can map the
unit-cell modes onto the closest set of modes that are
consistent with a single rigid unit.

6. Uniqueness of the solution

In phase retrieval the constraint ratio (€2) is defined by the
ratio of linearly independent equations to unknown quantities
in the phase problem® (Elser & Millane, 2008). If Q <1 then
the phase problem is certainly under-determined and there is
no unique solution. For 2 > 1, a given solution may be unique
and in some cases it can be shown that multiple solutions are
pathologically rare (Bates, 1984). Thus €2 > 1 is a necessary
but not sufficient condition for a unique solution. A single
isolated object has 2 > 4, where the lower bound corresponds
to an object with a convex and centrosymmetric support, while
non-convex supports have a higher constraint ratio and are
easier to solve (Fienup, 1987).

In the following section (6.1) we derive expressions for the
constraint ratio when phasing from Bragg reflections (2
corresponding to D = 0), continuous diffraction (€2

crystal

continuous for

3 By ‘linearly independent equations’ we mean here the number of equations
relating the unknown quantities to the known quantities that are not linearly
related by known constraints or symmetries of the system.

xS(r) & ﬁR .

2018), Q2 = 1, suggesting that ab initio
phasing is almost always possible in principle
for crystals that possess purely translational
disorder.

These results are summarized in Table 2
where we provide the lower bound of these
constraint ratios for a few crystal space
groups, including the ten most common
space groups listed in the PDB (RCSB,
2018). These lower bounds correspond to
the case of zero solvent fraction. Most
proteins have a significant volume of solvent
which, if known or determined, will
increase 2.

6.1. Uniqueness of the solution: derivation

The Fourier transform of diffraction intensities of any
object (including a crystal or single particle) is equal to the
autocorrelation function of that object. Thus, the information
content of a diffraction pattern can be quantified by the area
and symmetry of the non-zero regions of the autocorrelation
function. In phase retrieval the constraint ratio (£2) defines
the ratio of independent equations to unknown quantities in
the phase problem. For a single isolated object Q =
V(A%)/[2V(S)], where AS is the support of the autocorrelation
of the object support, that is, the region outside of which A is
known to be zero, V(A5)/2 is half the volume of the AS and
V(S) is the number of unknown elements (voxels) in the object
support (S) (Elser & Millane, 2008). The factor of one-half
arises because the autocorrelation of the object is equal to the
inverse Fourier transform of the real-valued diffraction
intensities and thus has Hermitian symmetry, A(x) = A*(—x) =
[g"(x)g(x +x)dx' = F'|G(q)I* where F is the Fourier
transform operator and g* is the complex conjugate of g. If the
object function is complex valued, then the number of
unknowns is twice the support volume 2V(S), but in that case
A is also complex, yielding twice the number of equations and
so 2 is unchanged. A convex and centrosymmetric object
(such as a cuboid) has V(AS%) = 8V(S) and yields the lowest
constraint ratio with = 4, while non-convex supports have a
higher constraint ratio and are easier to solve (Fienup, 1987).

Since the continuous diffraction is the incoherent sum of the
transforms of the rigid units in each of their orientations of the
crystal [see equation (2)], the inverse Fourier transform of the
continuous diffraction is the sum of the autocorrelations of
each of these rigid units. By way of illustration, consider a
single unit cell in a 2D crystal with plane group pm as shown in
Fig. 4(a). The unit cell consists of two rigid units (here ducks)
which randomly displace independently of each other. The
dimensions of the unit cell are indicated by the black rectangle
and the single mirror plane is indicated by the horizontal thick
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Table 2
The constraint ratio for ab initio phase retrieval from symmetry summed
diffraction (Qconginuous)> Bragg reflections ($2qy,) and from their sum

(antal)'

The lower limit corresponds to cases where there is no solvent content, the
rigid-unit support is centrosymmetric and convex, the Bragg reflections are
point like and there are no known local pseudo-symmetries in the crystal or
other prior constraints. In the last column we also list the estimated percentage
of the total number of PDB entries for that space group.

Space group Qconlinuous (Z) chyslal (Z) Qlolz\l (2) % of PDB
Fig. 1 (tight support) =19 =0.7 =26 NA
P2,2,2, 1 12 32 233
P12,1 2 172 512 16.7
C121 1 12 32 9.8
222, 172 172 1 5.1
P2,2,2 1 12 32 5.1
P1 4 172 912 4.0
P4;2,2 12 12 1 3.9
P4,2,2 172 172 1 32
P3,21 2/3 172 7/6 32
P3,21 2/3 172 7/6 3.0
Pl 8 1 9 0.02

line. The regions occupied by the two symmetry-related ducks
we write as p§ and p} where p° is the support area of p and the
subscript is used to index the rigid unit in the unit cell (0 for
blue and 1 for red). In Fig. 4(b) we display two regions, each
corresponding to the support area of the autocorrelation of
one of the ducks (the colouring indicates which is which). The
rigid outline bounds the union of the two regions which is
given by Aj U A} = U, ,A3. Here inversion symmetry at the
origin (shown as a white circle) has generated a second mirror
plane perpendicular to the first and so the unique area of
U,,A3 is confined to one-fourth of the total (rather than one-
half as above). In this case the constraint ratio is therefore less
than that given by diffraction from a single object by a factor 2,
such that Q = V(U, A3)/[4V(S)]. For the general case, the
constraint ratio from symmetry-averaged diffraction data has
been examined in the work of Elser & Millane (2008). They
find that when the set of M orientations (R,,) form a closed set
(they form a group), then the constraint ratio is given by
V(U,A;

Szcontinuous = % (21)
where P; is the number of symmetry operators in the space
group (including the identity operator) generated by inversion
through the origin and the set of rotation operators R,, (this is
equal to the number of symmetry operators in the Patterson
group). Thus P; is always greater than or equal to 2. In the
worst case, the support of the object is centrosymmetric and
invariant to a rotation under any of the rotation operations, in
which case the autocorrelation functions all overlap and
V(U,4;,) = V(A7) = 8V(S), so that Quyninuens = 8V (S)/P;V(S)
= 8/P,. That is, the constraint ratio is reduced by a factor equal
to the number of point-group operations (excluding inversion
symmetry) with respect to the single-particle case. For the
simulation shown in Fig. 1 the space group is P2,2,2,, this
has a Patterson group Pmmm which has eight symmetry
operations including inversion through the origin, yielding

Q = 2.64. If the support were (say) a sphere, then
Qeontinuous = 1, in which case phase retrieval is generally not
considered to be possible in the absence of other prior
constraints [that is, beyond a knowledge of S or V(5)].

As seen in equation (2), the Bragg peak intensities are given
by the modulus square of the Fourier transform of the unit
cell. That is, it is the coherent addition of all rigid units,
arranged and oriented in the unit cell. Thus, the autocorrela-
tion of the unit cell contains autocorrelations of the two rigid
units (as is the case for the continuous diffraction) in addition
to cross-correlation terms that arise from the quadratic
expansion of the autocorrelation in terms of the two rigid
units: A(U) = A(py+ p1) = Alpy) + A(py) + C(py, py) +
C(py, py), where Clpy, p)(x) = [ p5(x)py(x +x)dx’. The
autocorrelation support of the unit cell (bold outline)
including the cross-correlation supports (yellow region) and
the two autocorrelation support regions [red and blue as in
(b)] are shown in Fig. 4(c). This function has the same
symmetry axes as those in (b) and has a larger support that
also extends beyond the region of the unit cell itself. The
inverse Fourier transform of Bragg peaks from a perfect
crystal is equal to the autocorrelation of the entire (perfect)
crystal, which has the same periodicity in real space as the
crystal. Therefore, the autocorrelation of the single unit cell
shown in Fig. 4(c) overlaps with the neighbouring cells, giving
rise to an aliasing. This aliased autocorrelation function is
called the Patterson function of the crystal. This aliasing is
illustrated in Fig. 4(d). To guide the eye, regions that are
related to those within the unit-cell area by translation
symmetry are shown in grey. We write the autocorrelation
function, aliased by the reciprocal lattice [L(q)] and
bounded by the unit-cell support [US(x)], as A(g)(x) =
US(x)F~'[L(q)|G(q)|*], the aliased autocorrelation support for
the mth rigid unit as .A,Sn and the aliased cross-correlation
support for rigid units m and n as Cfnn. As the Patterson map
possesses the same symmetry as the autocorrelations in
Fig. 4(b) and the number of unknowns are also the same, the
expression for the constraint ratio is given by equation (21)
but with the substitution A%, — A%:

m

continuous

V(A
crystal — PZV(S) .

(22)

This derivation follows closely that of Millane & Arnal (2015).
There they also consider the case when only the solvent
content [and consequently V(S)] is known rather than the
support itself. They find that when the volume, and not the
envelope, of the rigid unit is used to constrain the phase
problem, then the constraint ratio remains unchanged,
although the speed of convergence is much reduced due to the
large multiplicity of supports with equal volume. Consider the
extreme case where the space group of the crystal and the rigid
object support are unknown; then the number of unknowns is
equal to the volume of the unit cell V(S) = V(U®), P, is given
by the identity operator and the point-group symmetry of
the Patterson map so that P, =2, m =1 and V(A®) is also
equal to V(U®). This gives Q. = V(U*)/2V(U®) =1/2 [as
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discovered by Sayre (1952)] and is a factor of eight less than
the worst case for single-molecule imaging. For a P2,2,2,
crystal and with no support volume, V(A®%) = V(U®), P, =8
and V(S) = V(U%)/4 (since the four rigid units must fit within
the unit cell) once again give 2y, = 1/2. In both cases
Qe ysal < 1 and so phase retrieval from Bragg reflections alone
and without knowledge of the solvent content is not feasible
without other constraints. In general, the number of symmetry
operations in the Patterson symmetry is equal to one or two
times the number of symmetry operations in the crystal, so
Qerysal = 1/2 for crystals without inversion symmetry in the
crystal point group and €2y, > 1 for crystals that already
possess inversion symmetry in the corresponding point group
(i.e. the Patterson map possesses the same number of
symmetry operators as the crystal itself).

The constraint ratio will increase when a tight support for
the rigid unit is known, which is possible when the solvent
content of the crystal is not negligible, or when some of the R,
are not members of a closed group (i.e. there are rigid units
related by local pseudo-symmetry), by increasing V(.A®). This
is illustrated in part by the constraint ratio for the simulation
shown in Fig. 1 (again with a tight support) where
increases from 1 to 1.38 due to the solvent fraction.

Finally, we now consider the case where the diffraction is
given by the weighted addition of the Bragg reflections and
the continuous diffraction. For large crystals illuminated by
coherent radiation the Bragg peaks are effectively point like,
while the continuous diffraction produces smooth diffraction
features (sometimes called speckles) which are band limited
due to the finite extent of the autocorrelation function. Thus, if
the crystal diffraction is sufficiently sampled then the contin-
uous diffraction for points on the reciprocal lattice can be
determined by Fourier interpolation of the neighbouring
values. The continuous diffraction and the Bragg reflections
are then separable and can be demodulated by the known
weighting factors, although in practice measurement error will
prevent perfect separation. One can also think of this process
in autocorrelation space: the inverse Fourier transform of the

crystal

(@
v Vv

(a) A unit cell with two identical rigid units (ducks) related by a mirror line (horizontal line); the
border indicates the unit-cell dimensions in the pm crystal. (b) The symmetry summed
autocorrelation region of the two ducks shown in (@) (solid line) with space group p2/m, with
regions corresponding to the two autocorrelation functions coloured to match the corresponding
duck. Inversion symmetry through the origin (white circle) has generated a second mirror line
(vertical line). (c) The full un-aliased autocorrelation of the unit cell, with the cross-correlation terms
between the two ducks coloured in yellow. (d) The Patterson map of the crystal inside the unit-cell
area (coloured) and outside the unit cell (in grey). (¢) The Patterson map of the crystal confined to the
unit-cell area and excluding the region occupied only by the aliased autocorrelation of the two ducks.

diffraction will yield the autocorrela-

(e) tion of the rigid units located in the
F’ centre of the array plus the Patterson
map which repeats on the crystal

=-= lattice. Because of the oversampling at

[ ' ' least two periods of the Patterson map

will be contained within the bounds of
the array in each direction and so the
central region of the Patterson map
can be determined by neighbouring
cells and thus subtracted from the
global function to give the auto-
correlation due to the continuous
diffraction alone.

One might think that in such a
case the constraint ratio is then given
by the sum chyslal + Qconlinuous Since
they share a common denominator.
However, not all points within the
Patterson map are linearly independent from those in the
symmetry summed autocorrelation. One can see in Fig. 4(d)
that there is a region near the origin of the Patterson map
wherein the aliased autocorrelation of the rigid units does not
overlap the set of cross-correlation terms, given by the
unwieldy expression (Ummém(fim)C N (U, A) (the superscript
‘C’ denotes the complement of a set). All points that lie in this
region of the Patterson map can be generated by the symmetry
summed autocorrelation functions. This can be achieved by
subsampling the symmetry summed autocorrelation A [as
shown in Fig. 4(b)] in Fourier space on the reciprocal lattice to
form A [the aliased symmetry summed autocorrelation shown
near the centre in (d)]. Therefore, we must exclude this region
from the Patterson map before adding the region occupied
by the symmetry summed autocorrelations. This is easily
achieved by confining the Patterson map to the regions where
the cross-correlation terms are non-zero. This region is shown
in Fig. 4(e) and is just the region occupied by the aliased cross-
correlation terms (Unm’n#mCim):

V(UmArSn) + V(Unm,n7émcim)
P.V(S)

Qtntal = (23 )

For a tightly packed crystal, the rigid units will be in close
contact and thus the aliased cross-correlation regions will fully
overlap the aliased autocorrelation regions in the Patterson
map. In that case V(Unm’nimCim) = V(US) = P.V(S), where
P is the number of symmetry operations in the crystal space
group. In this case no region of the Patterson map can be
generated from the symmetry summed autocorrelation and so
there is no redundancy in the information provided by the
Bragg reflections and the continuous diffraction, leading to
Qo = Lcontinuous T $2erystar- I the worst case, for a convex and
centrosymmetric support, V(U, A5) = V(A7) = 8V(S). Thus
the total constraint ratio always satisfies Q. = (8 + Pc)/P;
As we have mentioned previously P, = (1 or 2) xP and so
Qo = 8+ Pc)/Pc or Qg = (84 Pc)/(2P¢), depending
on the space group of the crystal.
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7. Simulation results

Now that we have defined the crystal diffraction model,
determined the required projection operators and that a
unique solution may exist, we now demonstrate that our IPA is
capable of solving for the electron density of a potato multi-
cystatin crystal from simulated noisy diffraction.

In the absence of noise, with a fixed tight support volume
and with no error in the input o value (or form of B and D) the
electron density of the potato multicystatin monomer, whose
model is shown in Fig. 1 (left), can be retrieved to within
numerical precision. From a random start this typically occurs
within the first 100 iterations of the DM algorithm. However,
when the diffraction is noisy and the shape and position of the
rigid unit are not given to the algorithm but instead only a
loose support and the crystal solvent fraction are provided,
then many more iterations are required for convergence (6000
in this case).

In Fig. 5 we compare the rigid unit reconstructed from
three simulated data sets. The three data sets are derived
from the full 3D merged diffraction data as shown in

Bragg reflections only

diffuse scatter only

Fig. 1: the contribution from the Bragg reflections alone
I; =B Z;;;?l Fm|2 (left), the diffuse scatter alone
I, =D, |F,|” (middle column) and the full combined
data set I =I5 + I, (right column) equal to the incoherent
addition of the first two data sets. The total number of photons
used to simulate the noisy diffraction intensities are 9.7 x 105,
2.4 x 107 and their sum 10°, respectively. The number of
photons was chosen such that the signal level drops to nearly
zero at the highest diffraction angles covered by the detector.
This was done to test the behaviour of the algorithm across a
broad range of signal-to-noise levels. In each case the resulting
rigid unit is the average of 50 independent reconstructions,
starting with density values drawn from a uniform random
number in the range 0 to 1 within the loose support volume
(the outline of this volume is the black dashed line in the
bottom left). The overall scale of the initial estimate is irre-
levant here; after the first application of the data projection
operator the scale is set by the diffraction intensities. But the
random initialization helps to provide an unbiased solution
and to avoid pathologies that might arise during the recon-
struction from other simpler starting values (e.g. all zeros).

Bragg and diffuse scatter

FSC (real)

Figure 5

3{7 215 )
full-period resolution (nm)

1.8

Rigid-unit reconstructions from the Bragg reflection intensities (left), the diffuse scatter (middle) and the full diffraction intensity including the sum of
both the Bragg reflections as well as the diffuse scatter (right). Top row: noisy diffraction intensities used for the reconstructions, in the (100) plane shown
with the same log-scale colour map. Middle row: the corresponding reconstructions of the rigid unit shown as one-level contour plots overlaid on the
potato multicystatin monomer model (for visual reference). These images were made using the UCSF Chimera software package (Pettersen et al., 2004).
Bottom: one-level contour plot of the ground-truth density (left). The real part of the FSC of each of the three reconstructions with the ground truth, as a

function of the full period resolution (right).
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Table 3
Simulation and reconstruction parameters used in Fig. 5.

3D dimensions are given as x, y, z values.

Parameters Values

N 100°,

o 0.6 A
Diffraction grid 128, 128, 128
Real-space domain 51, 109, 158 (A)
Space group P2,2,2,

Iteration sequence 6 x (500 DM then 500 ER)
DM: 8 0.8

Support update frequency 20 iterations

Support smoothing parameter 0.5 A

Voxels (volume of rigid unit) 46658 (111 nm®)

The reconstruction algorithm is also the same in all three cases
except that the weighting parameters for the Bragg and
continuous diffraction have been set to zero where appro-
priate; see equation (3) for the definition of these weighting
factors and Table 3 for more detailed parameters. These
reconstructions are not molecular replacement solutions, and
there is no model at all. That is, we are presenting (simulated)
experimental phasing with no knowledge about chemistry.

The reconstructed rigid units corresponding to each of these
diffraction intensities are shown in the middle row as single-
level contour plots overlaid on top of the atomic model (again
this model is not used for the reconstruction) for the potato
multicystatin monomer, serving as a visual aid to the recon-
struction quality. The contour level is set to an electron-
density value of 0.2 e A~ The initial support was generated
by thresholding the random initial guess until the specified
number of volume elements for the rigid unit was obtained
(the voxel number support projection). Subsequent updates to
the support followed the recipe described in Section 5.1,
maintaining the correct solvent fraction at every iteration.

The constraint ratio from the Bragg diffraction is 0.7 (as
listed in Table 2) and so, being less than 1, we could not expect
to reconstruct the rigid unit without the use of additional
constraints. On the other hand, the constraint ratio of the
continuous diffraction is 1.9, indicating that it should be
possible to retrieve a unique solution and one can see this is
borne out by the fidelity of the two reconstructions shown in
Fig. 5. One can also see that although the reconstruction from
the Bragg reflections alone has clearly failed, the reconstruc-
tion quality marginally improves when they are added to the
continuous diffraction, consistent with the increase in the
constraint ratio from 1.9 to 2.6. Although an increase in
reconstruction quality is desirable, we suggest that the main
benefit to the global reconstruction approach may be the fact
that the Bragg and continuous diffraction need not be treated
separately. Separating these components is otherwise a feat
that could prove difficult due to the very large deviations in
intensity between the Bragg and continuous diffraction at low
scattering angles.

In order to quantitatively compare the reconstructions, we
calculate the fidelity error which is a measure of the agreement
with the ground truth, where 0 corresponds to perfect agree-
ment and 1 to very poor agreement. In the present case the

fidelity errors are 0.78, 0.44 and 0.26, respectively. Another
measure of the reconstruction fidelity is the Fourier shell
correlation (FSC) (Frank, 2006) which we plot in Fig. 5
(bottom right) for each of the three reconstructions. This
shows a consistent increase in the FSC for the global recon-
struction for most resolution shells (at high scattering angles
the reconstruction is dominated by noise). Global recon-
structions performed without noise added to the diffraction
intensities are able to reach agreement with the ground truth
to 1 part in 10*. Both the fidelity error and the FSC are defined
in Appendix D [equations (26) and (27)].

8. Discussion and conclusion

Having shown that model-free phasing of diffraction from
crystals with translational disorder is possible, we now
consider some aspects of the application of this method to
experimental data. Because Bragg peaks often yield very
bright and sharp peaks on the detector, any underlying
background can usually be estimated (and thus subtracted
from the data) by examining the detected signal in the
immediate neighbourhood of the diffraction spot. This is not
true however for the continuous diffraction. In general, this
method places higher demands on data collection and esti-
mation of the background, for example due to the crystal
solvent, ice formation or from the carrying medium of the
crystal such as a liquid jet, aerosol or sample holder. Chapman
et. al. have recently suggested a method to estimate this
background (Chapman et al., 2017). Standard crystallographic
methods for structure retrieval are also fairly robust with
regard to missing diffraction intensity measurements. For
instance, when calculating the R-free metric, some reflections
are excluded when fitting the molecular model to the
diffraction data (Briinger, 1992). However, in model-free
phasing, missing data regions can lead to unconstrained modes
in the reconstruction (Thibault et al., 2006) which can be a
problem, particularly near the origin where a beamstop is
often placed. For these reasons, we expect that a combination
of our proposed method with model fitting and refinement
may often be the more robust approach, particularly for
structures where prior information is available.

In this work we have assumed that the translational
disorder is isotropic, with the displacements following a
normal distribution. However, this is not required for the
reconstruction algorithm and this procedure could likely be
modified to account for alternative models for the rigid body’s
translational motion. Indeed, all that is required is that the
diffraction is partitioned into a coherent and incoherent sum
over the rigid-unit transforms. The elliptical projection
remains valid for arbitrary weighting functions.

However, for some crystals, translational disorder will not
be the only significant contribution to the continuous
diffraction. Other rigid-body motions of the rigid unit may be
dominant or at least significant, and need to be accounted for
to obtain an accurate description of the crystal diffraction.
Extending the current work to account for these effects will
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greatly increase the number of potential structures that could
be solved by our method and is a matter of ongoing research.

We hope that this work will soon lead to model-free phasing
of crystals with unknown structures, particularly for those
without a good reference. To that end, we have included code
that, although not intended as a general application, should at
least aid in the reproduction of our results and accelerate real-
world applications for the work presented here.*

APPENDIX A
Noise model

In simulating the diffraction intensities of the disordered
crystal we have included the effect of photon-counting
statistics from a flat 2D detector in the far-field of the crystal.
We have assumed that the diffraction intensities are obtained
in a serial collection scheme, for example at a synchrotron or a
free-electron laser facility, by merging many 2D diffraction
images from all orientations of the crystal. The mean value of
I(q) is then equal to the total number of photons detected at
this point in g-space (within a given binning radius or voxel
size) divided by the number of times this voxel was intersected
by a detector pixel, which is proportional to the inverse of the
scattering angle 1/q (if the crystal orientations were evenly
sampled). This scaling rule applies for resolution shells that
fall fully within the 2D extent of the detector and does not
account for detector gaps or corners. The decrease in the solid
angle for pixels at higher diffraction angles has no effect on
this scaling, as this simply spreads the photon counts for
elements of I(q) across more pixels. To simulate this process
we therefore scaled the calculated I(q) by 1/¢, normalized this
function to the total number of collected photons (which at
this point represents a map of the total number of photons
collected at each g-space bin), applied Poisson counting
statistics and rescaled by ¢. In this way the calculated
diffraction intensities more accurately reflected the increase in
noise at higher resolution. For the simulation shown in Fig. 1
the total photon count is 10°.

APPENDIX B
Estimation of the disorder length

In Fig. 6 we show the radial profile of the scattering intensities
both on and off the reciprocal-lattice sites. For large crystals
with sharp diffraction peaks, the scattering intensity for points
off the reciprocal lattice is dominated by the continuous
diffraction of the crystal, while points on the reciprocal lattice
have contributions from both the first and second terms in
equation (2). In both cases the average intensity in a given
g-shell is proportional to the intensity of the computed
diffraction of the rigid unit. For the reciprocal-lattice points,
this is because the summation over several Bragg reflections
tends to cancel the interference terms between each rigid unit
in the unit cell. This is commonly assumed to be true, for

4 https:/github.com/andyofmelbourne/crappy_crystals.

example, when evaluating the so-called ‘B factor’ from a
Wilson plot. This suggests that o can be estimated indepen-
dently of Fy;,;4(q) by evaluating the ratio of the radial profiles
for the on-Bragg and inter-Bragg intensities as shown in Fig. 6
(black circles). Here we make the assumption that on-Bragg
intensities include contributions from both terms in equation
(2) while the inter-Bragg intensities depend only on the first
term. Starting from equation (2) this ratio r(g) can be
approximated by

1
1 — exp(—4m202¢?)’

r(q) = 24)
if the radial average of the normalized reciprocal-lattice
function, given by

L(q) = %<Z 2 exp[2ri(a, — a;) - q]>

k=0

i

where g, lie on the reciprocal-lattice points, is known, then r(q)
is better approximated by
_[L(g) — Nexp(—47°0’q’) + 1

) = 1 — exp(—4n202qg?) ’ 25)

For our simulation, a least-squares fit of equation (25) to the
ratio r(q) (determined from the noisy diffraction data)
provides a good estimate for the disorder length (o = 0.62 A
versus 0.6 A). The curve fit to r(g) is shown as the blue line in
Fig. 6. Because o is determined from the ratio of diffraction
intensities at equal diffraction angles, they are invariant to
other factors that might scale the radial intensity such as the
g-dependent falloff in the scattering intensity due to the
atomic form factors or uncorrelated atomic disorder in the
crystal.
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Top: radial profile of the scattering intensity on and off the reciprocal
lattice, labelled ‘Bragg + diffuse’ and ‘diffuse’, respectively. Bottom: ratio
of the on-Bragg to continuous diffraction shown on the top (black circles)
and the model fit to this profile (blue line).
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Note that this fitting procedure assumes that the transla-
tional disorder is isotropic, with the displacements following a
normal distribution. However this is not required for the
reconstruction algorithm and this fitting procedure could
likely be modified to account for alternative models for the
rigid-body motion.

APPENDIX C
Estimation of the number of rigid units

The distribution of Bragg peak intensities arising from
macromolecular crystals inside a given resolution shell has
long been known to follow a particular distribution, described
by Wilson statistics. The continuous diffraction intensities
arising from a single orientation of the rigid unit will follow
this same distribution. However the distribution of the sum of
diffraction intensities from different orientations of the rigid
unit is equal to the convolution of the distributions of those
intensities alone. The distribution of the continuous diffrac-
tion intensities in this context has been studied extensively in
recent work by Chapman et al. (2017). There they show that a
modified form of Wilson statistics can be used not only to
estimate ¢g-dependent background levels in individual
diffraction frames, but also to identify the number of inde-
pendent rigid units, that is unique types of rigid units, in the
crystal as a whole.

APPENDIX D
Metrics

As it is the Bragg reflections that encode the rigid unit’s
position relative to the crystal symmetry axes, the recon-
struction from the continuous diffraction alone (which lacks
this information) will be shifted with respect to its true loca-
tion. To account for this, our fidelity metric has been mini-
mized with respect to a shift in real space of the retrieved rigid
unit (pfq) relative to the ground truth (o), so that our
fidelity metric can be written as

. 12
_ mmA.[Z, |p;igid(r — Ar) — Iorigid(r)|2]

Eid =
" [Zr |prigid(r)|2]1/2

Also, as any one of the rigid units may be retrieved (without
loss of generality), ;4 Was calculated against each of the rigid
units in the unit cell and the minimum value was chosen.

Another measure of the reconstruction fidelity is the
FSC (Frank, 2006), which measures the normalized cross-
correlation coefficient between the ground truth and recon-
structed volumes for each resolution shell in Fourier (or
reciprocal) space. This is shown in Fig. 5 (bottom), where we
plot the real part of

(26)

Yiaies @) F@)
1/2
[ iy F@IF - Ty 1]

where F and F’ are one of the F,, (chosen above) for the
ground truth and the reconstruction, respectively.

FSC(q) =

@7
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