

18

On F -Pure Inversion of Adjunction

Thomas Polstra, Austyn Simpson, and Kevin Tucker

Abstract

We analyze adjunction and inversion of adjunction for the F -purity of divisor pairs in characteristic $p > 0$. In this vein, we give a complete answer for principal divisors under \mathbb{Q} -Gorenstein assumptions but without divisibility restrictions on the index. We also give a detailed analysis relating the F -purity of the pairs $(R, \Delta + D)$ and that of $(R_D, \text{Diff}_D(\Delta))$ motivated by Kawakita's log canonical inversion of adjunction via reduction to prime characteristic.

18.1 Introduction

Let (R, \mathfrak{m}, k) be a local ring of prime characteristic $p > 0$ and $R \rightarrow F_*R$ be the Frobenius map, where F_*R denotes the Frobenius push-forward of R . For simplicity, assume that R is complete or F -finite (i.e. F_*R is a finite R -module). The ring R is said to be F -pure if $R \rightarrow F_*R$ splits. Let $x \in \mathfrak{m}$ be a nonzerodivisor of R . Under suitable hypotheses, Kawakita's breakthrough result on the inversion of adjunction of log canonical singularities [11] (when viewed through the lens of reduction to prime characteristic via [6]) predicts that the following are equivalent:

- (1) The map $R \xrightarrow{F_*x^{p-1}} F_*R$ is split, that is, the pair $(R, \text{div}_R(x))$ is F -pure;
- (2) R/xR is F -pure.

Polstra was supported by NSF Grant DMS #2101890 and by a grant from the Simons Foundation, Grant Number 814268, MSRI.

Simpson was supported by NSF postdoctoral fellowship DMS #2202890.

Tucker was supported in part by NSF Grant DMS #2200716.

Acknowledgments We thank Mircea Mustață for suggesting the use of Manivel's trick in Section 18.5. We are also grateful to the anonymous referee for helpful comments on a previous draft.

The implications $(1) \Rightarrow (2)$ and $(2) \Rightarrow (1)$ are special cases of adjunction and inversion of adjunction of F -purity, respectively. While the forward direction requires no additional hypotheses, note that the converse $(2) \Rightarrow (1)$ is known to fail if R is not \mathbb{Q} -Gorenstein in light of counterexamples by Fedder [5] and Singh [22]. More generally, we may ask for the equivalence of (1) and (2) after incorporating an effective \mathbb{Q} -divisor Δ . Even after imposing \mathbb{Q} -Cartier assumptions on $K_R + \Delta$, however, the presence of p -torsion introduces additional subtleties that often require new methods to overcome.

The first contribution of this chapter is the following positive solution to F -pure inversion of adjunction along principal ideals for log \mathbb{Q} -Gorenstein pairs (R, Δ) , provided the denominators of the coefficients of Δ are prime to p (but without any divisibility restrictions on the index of $K_R + \Delta$).

Theorem A (Theorem 18.2.7) *Let (R, \mathfrak{m}, k) be an excellent local ring of prime characteristic $p > 0$ and $x \in \mathfrak{m}$ a nonzerodivisor such that R/xR is (G_1) and satisfies Serre's condition (S_2) . Let $\Delta \geq 0$ be an effective \mathbb{Q} -divisor of R with components disjoint from $\text{div}_R(x)$ such that $K_R + \Delta$ is \mathbb{Q} -Cartier and $(p^e - 1)\Delta$ is integral for all $e \gg 0$ and divisible. Then the pair $(R, \Delta + \text{div}_R(x))$ is F -pure if and only if $(R/xR, \Delta|_{\text{div}(x)})$ is F -pure.*

Note that Theorem A applied to the case that R is a regular ring and $\Delta = 0$ is Fedder's criterion for a hypersurface to be F -pure [5, Theorem 1.12]. Moreover, Theorem A is a significant improvement over previous work by Polstra and Simpson [18, Theorem A], which affirmatively settled the weaker question of whether F -purity deforms in \mathbb{Q} -Gorenstein rings. When $\Delta = 0$, Theorem A may be derived from [18] using a trick commonly attributed to Manivel [14] together with an understanding of the behavior of F -purity under separable finite covers; for completeness, we give a detailed proof of this in Section 18.5. However, the cyclic cover techniques employed in [18] do not seem to lend themselves to the incorporation of a boundary in a straightforward manner. Our proof of Theorem A both circumvents these difficulties and recovers the main theorem of [18] while showing a more general result.

More generally, in Sections 18.3 and 18.4 we turn our attention to F -pure adjunction and inversion of adjunction beyond the case of principal ideals, that is, along a divisor D with components disjoint from those of the boundary divisor Δ . Specifically, we aim to relate the F -purity of $(R, \Delta + D)$ with that of $(R_D, \text{Diff}_D(\Delta))$ where $\text{Diff}_D(\Delta)$ is Shokurov's *different*. Our analysis yields the following results.

Theorem B (Adjunction of F -purity – Theorem 18.3.5) *Let (R, \mathfrak{m}, k) be an excellent (S_2) and (G_1) local ring of prime characteristic $p > 0$ and let K_R be a choice of canonical divisor of $\text{Spec}(R)$. Suppose that $D \geq 0$ is an effective integral (S_2) and (G_1) divisor, and let $\Delta \geq 0$ be an effective \mathbb{Q} -divisor on $\text{Spec} R$ whose components are disjoint from D and such that $(p^e - 1)\Delta$ is integral for all sufficiently divisible $e \gg 0$. Suppose that $K_R + D + \Delta$ is \mathbb{Q} -Cartier. If $(R, \Delta + D)$ is F -pure, then $(R_D, \text{Diff}_D(\Delta))$ is F -pure.*

Theorem C (Inversion of Adjunction of F -purity along a \mathbb{Q} -Cartier divisor – Corollary 18.4.2) *With the notation and assumptions of Theorem B, suppose further that*

- (I) D is \mathbb{Q} -Cartier;
- (II) *for each \mathbb{Q} -Cartier divisor E and $\mathfrak{p} \in D \subseteq \text{Spec}(R)$, we have the inequality*

$$\text{depth}(R(E)_{\mathfrak{p}}) \geq \min\{\text{ht}(\mathfrak{p}), 3\}.$$

If the pair $(R_D, \text{Diff}_D(\Delta))$ is F -pure, then the pair $(R, \Delta + D)$ is F -pure.

We remark that assumption (C) is necessary in Theorem C whenever D is \mathbb{Q} -Cartier by Lemma 18.3.4. More generally, we provide a characterization for when inversion of adjunction of an F -pure pair is satisfied in the absence of properties (C) and (C). By Corollary 18.3.3 and Lemma 18.4.1, if $(R_D, \text{Diff}_D(\Delta))$ is F -pure, then $(R, \Delta + D)$ is F -pure if and only if for each p -power torsion divisor E of R , the R_D -module $R(E)/R(E - D)$ is (S_2) .

A particularly notable feature of our analysis is the lack of index restrictions. Prior work by Schwede has shown Theorems B and C under the assumptions that $K_R + D + \Delta$ is \mathbb{Q} -Cartier of index not divisible by p and D is Cartier in codimension 2 [20]. In particular, Theorem A was solved by Schwede under the hypothesis that R is \mathbb{Q} -Gorenstein of index not divisible by p . Note also that the strongly F -regular version of inversion of adjunction was settled by Das in [3]. We have also strived throughout to avoid unnecessary F -finite restrictions.

Those familiar with Kawakita's theorem on log canonical inversion of adjunction may be surprised by the assumption that D is (S_2) and (G_1) , which is slightly weaker than assuming D is normal and which is not a necessity in characteristic 0. Indeed, the content of [11] is that in equal characteristic 0, a pair $(R, \Delta + D)$ is log canonical if and only if $(R_{D^N}, \text{Diff}_{D^N}(\Delta))$ is log canonical where D^N denotes the normalization of D . However, as with assumption (C) in the case that D is \mathbb{Q} -Cartier, our assumption is a necessity in prime characteristic. There are simple counterexamples to Theorem C if we consider the F -singularities of D^N instead. Indeed, let $R = \mathbb{F}_2[x, y, z]$ and $D = \text{div}_R(x^2 - y^2z)$. Then the normalization of $R_D = \mathbb{F}_2[x, y, z]/(x^2 - y^2z)$ is

regular with $\text{Diff}_{D^N}(0)$ being a smooth divisor so that $(R_{D^N}, \text{Diff}_{D^N}(0))$ is F -pure, but the pair $(\mathbb{F}_2[x, y, z], \text{div}_R(x^2 - y^2z))$ is not F -pure by Fedder's criterion (see also Theorem A). See [20, Example 8.4] for additional details, as well as the work of Miller and Schwede [16] for an analysis of the behavior of F -purity via the normalization map.

18.2 The \mathbb{Q} -Gorenstein Case

Consider a local ring (R, \mathfrak{m}, k) . Let $E_R(k)$ be an injective hull of k , and suppose that $R \rightarrow M$ is a map of R -modules. According to [10, Lemma 2.1(e)], $R \rightarrow M$ is pure if and only if the induced map $E_R(k) \rightarrow E_R(k) \otimes_R M$ is injective, a fact that we will use repeatedly. The main goal of this section is to give a proof of Theorem A. However, we first present a simple proof of F -pure (principal) inversion of adjunction when R is a Gorenstein ring since it will guide our subsequent investigations.

Example 18.2.1 (Inversion of Adjunction of F -purity, the Gorenstein case) Let (R, \mathfrak{m}, k) be a local d -dimensional Gorenstein ring of prime characteristic $p > 0$, and $x \in R$ a nonzerodivisor. Let $\Delta \geq 0$ be an effective \mathbb{Q} -Cartier \mathbb{Q} -divisor with components disjoint from $\text{div}_R(x)$ such that $(p^e - 1)\Delta$ is integral for all sufficiently divisible $e \gg 0$. We will show that the following are equivalent:

- $(R, \Delta + \text{div}_R(x))$ is F -pure;
- $(R/xR, \Delta|_{\text{div}_R(x)})$ is F -pure.

Recall that the pair $(R, \Delta + \text{div}_R(x))$ is F -pure if and only if

$$R \rightarrow F_*^e R((p^e - 1)(\Delta + \text{div}_R(x)))$$

is pure. There is a commutative diagram

$$\begin{array}{ccc} R & \longrightarrow & F_*^e R((p^e - 1)(\Delta + \text{div}_R(x))) \\ \downarrow = & & \downarrow \cong \\ R & \xrightarrow{\cdot F_*^e x^{p^e - 1}} & F_*^e R((p^e - 1)\Delta). \end{array}$$

Similarly, $(R/xR, \Delta|_{\text{div}_R(x)})$ is F -pure if and only if

$$R/xR \rightarrow (F_*^e(R/xR))((p^e - 1)\Delta|_{\text{div}_R(x)})$$

is pure. To summarize, we aim to show that the following are equivalent:

- $R \xrightarrow{\cdot F_*^e x^{p^e - 1}} F_*^e R((p^e - 1)\Delta)$ is pure;
- $R/xR \rightarrow F_*^e R/xR((p^e - 1)\Delta|_{\text{div}_R(x)})$ is pure.

For each $e > 0$, let $\Theta_e = (p^e - 1)\Delta$. There exists e_0 so that for sufficiently divisible $e \gg 0$, Θ_e is a p^{e_0} -torsion integral divisor. Tensoring the map $R \rightarrow F_*^{e_0}R$ with $R(\Theta_e)$ and reflexifying over R give the map

$$R(\Theta_e) \rightarrow F_*^{e_0}R(p^{e_0}\Theta_e) \cong F_*^{e_0}R.$$

By [5], R is necessarily F -pure, and the F -purity of R then gives that the map $R(\Theta_e) \rightarrow F_*^{e_0}R$ is pure. In particular, any regular sequence on $F_*^{e_0}R$ is a regular sequence on $R(\Theta_e)$ and therefore $R(\Theta_e)$ is a Cohen–Macaulay R -module.¹ Even further, $R(\Theta_e)/xR(\Theta_e)$ is a Cohen–Macaulay R/xR -module; as R/xR is (S_2) and (G_1) , we may therefore conclude that the R/xR -reflexification map is an isomorphism:

$$R(\Theta_e)/xR(\Theta_e) \xrightarrow{\cong} R/xR(\Theta_e|_{\text{div}_R(x)}) = R/xR((p^e - 1)\Delta|_{\text{div}_R(x)}).$$

Consider now the following commutative diagram:

$$\begin{array}{ccccccc} 0 & \longrightarrow & F_*^eR(\Theta_e) & \xrightarrow{\cdot F_*^e x} & F_*^eR(\Theta_e) & \longrightarrow & F_*^eR/xR(\Theta_e|_{\text{div}_R(x)}) \longrightarrow 0 \\ & & \uparrow \cdot F_*^e x^{p^e-1} & & \uparrow F^e & & \uparrow F^e \\ 0 & \longrightarrow & R & \xrightarrow{\cdot x} & R & \longrightarrow & R/xR \longrightarrow 0. \end{array}$$

Recall that we wish to show the leftmost vertical map is pure if and only if the rightmost vertical map is pure. The modules R and $F_*^eR(\Theta_e)$ are Cohen–Macaulay. Therefore, all of the lower local cohomology modules of R and $F_*^eR(\Theta_e)$ vanish and we have the commutative diagram of local cohomology modules whose horizontal arrows are injective:

$$\begin{array}{ccc} F_*^eH_{\mathfrak{m}}^{d-1}(R/xR(\Theta_e|_{\text{div}_R(x)})) & \xrightarrow{\subseteq} & F_*^eH_{\mathfrak{m}}^d(R(\Theta_e)) \\ \uparrow F^e & & \uparrow \cdot F_*^e x^{p^e-1} \\ H_{\mathfrak{m}}^{d-1}(R/xR) & \xrightarrow{\subseteq} & H_{\mathfrak{m}}^d(R). \end{array} \quad (18.1)$$

The local cohomology modules $H_{\mathfrak{m}}^{d-1}(R/xR) \cong (0 :_{H_{\mathfrak{m}}^d(R)} x) \cong E_{R/xR}(k)$ and $H_{\mathfrak{m}}^d(R) \cong E_R(k)$ are essential extensions of $k \cong (0 :_{H_{\mathfrak{m}}^d(R)} \mathfrak{m})$. Therefore, the left vertical map is injective if and only if the right vertical map is injective. We observe the following isomorphisms of the vertical maps in (18.1):

$$\begin{aligned} & \left(H_{\mathfrak{m}}^{d-1}(R/xR) \xrightarrow{F^e} F_*^eH_{\mathfrak{m}}^{d-1}(R/xR(\Theta_e|_{\text{div}_R(x)})) \right) \\ & \cong (R/xR \rightarrow F_*^e(R/xR(\Theta_e|_{\text{div}_R(x)}))) \otimes_{R/xR} H_{\mathfrak{m}}^{d-1}(R/xR) \end{aligned}$$

¹ Alternatively, a pure map splits after completion, and therefore one can verify the Cohen–Macaulay condition by examining induced maps of local cohomology modules.

and

$$\left(H_{\mathfrak{m}}^d(R) \xrightarrow{F_*^e x^{p^e-1}} F_*^e H_{\mathfrak{m}}^d(R(\Theta_e)) \right) \cong \left(R \xrightarrow{F_*^e x^{p^e-1}} F_*^e R(\Theta_e) \right) \otimes_R H_{\mathfrak{m}}^d(R).$$

Therefore, $R \xrightarrow{F_*^e x^{p^e-1}} F_*^e R(\Theta_e)$ is pure if and only if

$$R/xR \rightarrow F_*^e(R/xR(\Theta_e|_{\text{div}_R(x)}))$$

is pure, as desired.

We briefly review the definition that we will use in this chapter of a \mathbb{Q} -Gorenstein ring and of a generalized divisor, as outside of the normal setting these notions may be somewhat unfamiliar. Let (R, \mathfrak{m}, k) be an excellent equidimensional local ring satisfying conditions (S_2) and (G_1) . We utilize the language of (generalized) divisors as introduced by Hartshorne in [7]. In particular, in this chapter, when we speak of a divisor Δ on R , or equivalently a Weil divisor Δ on R , we shall mean an *almost Cartier divisor* in the language of [7]. Explicitly, this means that Δ is represented by a finitely generated R -submodule $I \subseteq \text{Tot}(R)$ of the total quotient ring of R (i.e. a fractional ideal) such that:

- (1) $I_{\mathfrak{p}} = \text{Tot}(R)_{\mathfrak{p}}$ for all minimal primes $\mathfrak{p} \subseteq R$;
- (2) I is reflexive, that is, $I \rightarrow \text{Hom}_R(\text{Hom}_R(I, R), R)$ is an isomorphism.

A generalized divisor corresponding to a fractional ideal I is *effective* if $I \subseteq R$. Note that if R is normal, this notion of divisors corresponds to the usual one. We refer the reader to [7, section 2] or [13, Appendix A] for more details.

We assume that R has a canonical divisor K_R , that is, K_R is the class of divisor so that the corresponding fractional ideal $R(K_R)$ is a canonical module of R . We say that R is \mathbb{Q} -Gorenstein if there exists an integer $n > 0$ so that $nK_R \sim 0$. The smallest positive integer n with this property is the *index* of R . If R is \mathbb{Q} -Gorenstein and $x \in R$ is a nonzerodivisor so that R/xR is (S_2) and (G_1) , then R/xR is also \mathbb{Q} -Gorenstein by [18, Proposition 2.6]. If $x \in R$ is such an element and if M is an R -module, then we write $M_{V(x)}$ to denote the R -module M/xM . If E is a divisor of R , then $R(E)$ is the corresponding fractional ideal. If E has components disjoint from $V(x)$, then $E|_{V(x)}$ denotes the class of the restricted divisor along $V(x)$. Let K_R be a choice of canonical divisor of $\text{Spec}(R)$. By prime avoidance, we may assume that K_R has components disjoint from $V(x)$. Then the restricted divisor $K_{R/xR} := (K_R)|_{V(x)}$ is a choice of canonical divisor of R/xR . If E is a divisor of R with components disjoint from $V(x)$, then $\text{Hom}_{R_{V(x)}}(\text{Hom}_{R_{V(x)}}(R(E)_{V(x)}, R_{V(x)}), R_{V(x)}) \cong R_{V(x)}(E|_{V(x)})$. Note that if

M is an R -module and x is a nonzerodivisor on M , then there is a short exact sequence

$$0 \rightarrow M \xrightarrow{x} M \rightarrow M_{V(x)} \rightarrow 0.$$

In particular, there is a right exact sequence of local cohomology modules

$$H_{\mathfrak{m}}^{d-1}(M_{V(x)}) \rightarrow H_{\mathfrak{m}}^d(M) \xrightarrow{x} H_{\mathfrak{m}}^d(M) \rightarrow 0.$$

Lemma 18.2.6 is an instance where this right exact sequence enjoys the property of being short exact. We first record an elementary observation.

Lemma 18.2.2 *Let (R, \mathfrak{m}, k) be an excellent local (S_2) and (G_1) F -pure ring of prime characteristic $p > 0$. Suppose that E is a divisor on R . Then $R(E) \rightarrow F_*^e R(p^e E)$ is a pure map. Moreover, if E is torsion of index p^e and if x_1, \dots, x_t is a regular sequence on R , then x_1, \dots, x_t is a regular sequence on $R(E)$.*

Proof Consider the pure map $R \rightarrow F_*^e R$. We claim that the composition of maps $R(E) \rightarrow F_*^e R \otimes_R R(E) \rightarrow F_*^e R(p^e E)$ is a pure map. The assumptions that R is F -pure, (G_1) and (S_2) are unchanged by completion (by [13, Corollary 2.3], [15, Theorem 18.3], and [23, Tag 0339], respectively, the latter using the excellence assumption on R), as are the assumptions on the divisor E . Hence, we may assume that R is complete, so there is a splitting of $R \rightarrow F_*^e R$. Applying $- \otimes_R R(E)$ to this splitting and reflexifying, we find that there is a splitting of $R(E) \rightarrow F_*^e R(p^e E)$. In particular, $R(E) \rightarrow F_*^e R(p^e E)$ is pure.

Now suppose that E is torsion of index p^e and x_1, \dots, x_t is a regular sequence on R . Then $R(E) \rightarrow F_*^e R(p^e E) \cong F_*^e R$. The sequence $x_1^{p^e}, \dots, x_t^{p^e}$ is a regular sequence on R and therefore x_1, \dots, x_t is a regular sequence on $F_*^e R$. It follows that x_1, \dots, x_t is a regular sequence on $R(E)$ as well since we have an injection $R(E) \otimes_R R/(x_1, \dots, x_i) \hookrightarrow F_*^e R \otimes_R R/(x_1, \dots, x_i)$ for every i . \square

Lemma 18.2.3 *Let (R, \mathfrak{m}, k) be a d -dimensional excellent local ring and $\varphi : M \rightarrow N$ a map of R -modules for which φ is an isomorphism in codimension 1. Then $H_{\mathfrak{m}}^d(M) \rightarrow H_{\mathfrak{m}}^d(N)$ is an isomorphism.*

Proof There exists a four-term exact sequence

$$0 \rightarrow K \rightarrow M \xrightarrow{\varphi} N \rightarrow C \rightarrow 0$$

so that K and C are not supported in codimension 1. Therefore, $H_{\mathfrak{m}}^i(K) = H_{\mathfrak{m}}^i(C) = 0$ for $i = d, d-1$. Split this exact sequence into two short exact sequences

$$0 \rightarrow K \rightarrow M \rightarrow M/K \rightarrow 0$$

and

$$0 \rightarrow M/K \xrightarrow{\varphi} N \rightarrow C \rightarrow 0.$$

Examine the long exact sequences of local cohomology modules to conclude that $H_{\mathfrak{m}}^d(M) \cong H_{\mathfrak{m}}^d(M/K) \cong H_{\mathfrak{m}}^d(N)$. \square

We will frequently use finite generation of certain local cohomology modules when proving our main theorems. To that end, we the following.

Lemma 18.2.4 *Let (R, \mathfrak{m}, k) be a complete equidimensional local ring of dimension d , and let M be a finitely generated R -module satisfying Serre's condition (S_t) for some $t < d$. Then $\ell_R(H_{\mathfrak{m}}^t(M)) < \infty$.*

Proof This is [13, Exercise 29] and follows from the proof of [13, Lemma 4.5]. \square

Remark 18.2.5 *We remark that the equidimensionality assumption in Lemma 18.2.4 is harmless, as this result will only be applied to local rings that are (S_2) and are homomorphic images of Gorenstein local rings – such rings are always equidimensional (see for instance [1, Remark 4.5], [9, Remark 2.2(h)], or [2, section 2.2]).*

Lemma 18.2.6 *Let (R, \mathfrak{m}, k) be a d -dimensional excellent local (S_2) and (G_1) ring of prime characteristic $p > 0$. Suppose that $x \in R$ is a nonzerodivisor such that R/xR is (S_2) and (G_1) . Let E be a Weil divisor of R with the property that $R(E)_{V(x)}$ is reflexive. Then the natural map of local cohomology modules*

$$H_{\mathfrak{m}}^{d-1}(R(-E + K_R)_{V(x)}) \rightarrow H_{\mathfrak{m}}^d(R(-E + K_R))$$

is injective.

Proof Without loss of generality, we may assume that E has components disjoint from $V(x)$. In particular, the reflexification $R(E)_{V(x)} \rightarrow R_{V(x)}(E|_{V(x)})$ is an isomorphism. There is a short exact sequence

$$0 \rightarrow R(E) \xrightarrow{x} R(E) \rightarrow R_{V(x)}(E|_{V(x)}) \rightarrow 0. \quad (18.2)$$

The top local cohomology module $H_{\mathfrak{m}}^d(R(K_R))$ serves as the injective hull of the residue field. Therefore, we consider a choice of the Matlis duality functor $\text{Hom}_R(-, H_{\mathfrak{m}}^d(R(K_R)))$. By Tensor–Hom adjunction

$$\text{Hom}_R(R(E), H_{\mathfrak{m}}^d(R(K_R))) \cong R(-E) \otimes_R H_{\mathfrak{m}}^d(R(K_R)).$$

The local cohomology module $H_{\mathfrak{m}}^d(R(K_R))$ is a cokernel of a Čech complex, and tensor products preserve cokernels. Therefore,

$$R(-E) \otimes_R H_{\mathfrak{m}}^d(R(K_R)) \cong H_{\mathfrak{m}}^d(R(-E) \otimes_R R(K_R)).$$

The reflexification map $R(-E) \otimes_R R(K_R) \rightarrow R(-E + K_R)$ is an isomorphism in codimension 1. Therefore, by Lemma 18.2.3,

$$H_{\mathfrak{m}}^d(R(-E) \otimes_R R(K_R)) \cong H_{\mathfrak{m}}^d(R(-E + K_R)).$$

Similarly, the Matlis dual of $R_{V(x)}(E|_{V(x)})$ is

$$\begin{aligned} & \text{Hom}_R(R_{V(x)}(E|_{V(x)}), H_{\mathfrak{m}}^d(R(K_R))) \\ &= \text{Hom}_R(R_{V(x)}(E|_{V(x)}), 0 :_{H_{\mathfrak{m}}^d(R(K_R))} x) \\ &\cong \text{Hom}_R(R_{V(x)}(E|_{V(x)}), H_{\mathfrak{m}}^{d-1}(R(K_{R/xR}))) \\ &\cong H_{\mathfrak{m}}^{d-1}(R_{V(x)}(-E|_{V(x)} + K_{R/xR})). \end{aligned}$$

Therefore, the Matlis dual of (18.2) is the short exact sequence

$$0 \rightarrow H_{\mathfrak{m}}^{d-1}(R_{V(x)}(-E|_{V(x)} + K_{R/xR})) \xrightarrow{x} H_{\mathfrak{m}}^d(R(-E + K_R)) \rightarrow 0. \quad (18.3)$$

The reflexification map $R(-E + K_R)_{V(x)} \rightarrow R_{V(x)}(-E|_{V(x)} + K_{R/xR})$ is an isomorphism at the codimension 1 points of R/xR . Therefore,

$$H_{\mathfrak{m}}^{d-1}(R(-E + K_R)_{V(x)}) \cong H_{\mathfrak{m}}^{d-1}(R_{V(x)}(-E|_{V(x)} + K_{R/xR})). \quad (18.4)$$

We conclude the proof by plugging (18.4) into (18.3). \square

We are now prepared to prove Theorem A.

Theorem 18.2.7 *Let (R, \mathfrak{m}, k) be an excellent local ring of prime characteristic $p > 0$ and $x \in \mathfrak{m}$ a nonzerodivisor such that R/xR is (G_1) and (S_2) . Let $\Delta \geq 0$ be an effective \mathbb{Q} -divisor of R with components disjoint from $\text{div}_R(x)$ such that $K_R + \Delta$ is \mathbb{Q} -Cartier and $(p^e - 1)\Delta$ is integral for all $e \gg 0$ sufficiently large and divisible. Then the pair $(R, \Delta + \text{div}_R(x))$ is F -pure if and only if $(R/xR, \Delta|_{\text{div}(x)})$ is F -pure.*

Proof As in the proof of Lemma 18.2.2, we may assume that R is complete. If $\dim(R) \leq 2$, then the assumption that R/xR is (G_1) implies that the ring R is Gorenstein since the property of being Gorenstein deforms [23, Tag 0BJJ]. The theorem follows for rings of dimension at most 2 by Example 18.2.1.

We assume that $\dim(R) \geq 3$. By induction on the dimension, we may assume that both R and R/xR are F -pure when localized at any non-maximal prime ideal in $V(x)$. Let $\Theta_e = (p^e - 1)\Delta$ and consider the commutative diagram with exact rows:

$$\begin{array}{ccccccc} 0 & \longrightarrow & F_*^e R(p^e K_R + \Theta_e) & \xrightarrow{F_*^e x} & F_*^e R(p^e K_R + \Theta_e) & \longrightarrow & F_*^e R(p^e K_R + \Theta_e)_{V(x)} \longrightarrow 0 \\ & & \uparrow F_*^e x^{p^e - 1} & & \uparrow F^e & & \uparrow F^e \\ 0 & \longrightarrow & R(K_R) & \xrightarrow{x} & R(K_R) & \longrightarrow & R(K_R)_{V(x)} \longrightarrow 0. \end{array}$$

If $e \gg 0$ and sufficiently divisible, then $(p^e - 1)K_R + \Theta_e$ is an integral p^{e_0} -torsion divisor. By Lemma 18.2.6 applied to the divisor $E = 0$, we obtain the following commutative diagram with exact rows:

$$\begin{array}{ccccccc}
 F_*^e H_{\mathfrak{m}}^{d-1}(R(p^e K_R + \Theta_e)_{V(x)}) & \xrightarrow{\xi} & F_*^e H_{\mathfrak{m}}^d(R(p^e K_R + \Theta_e)) & \xrightarrow{F_*^e x} & F_*^e H_{\mathfrak{m}}^d(R(p^e K_R + \Theta_e)) & \longrightarrow 0 \\
 \uparrow F^e & & \uparrow \cdot F_*^e x^{p^e-1} & & \uparrow F^e & \\
 0 & \longrightarrow & H_{\mathfrak{m}}^{d-1}(R(K_R)_{V(x)}) & \longrightarrow & H_{\mathfrak{m}}^d(R(K_R)) & \longrightarrow & H_{\mathfrak{m}}^d(R(K_R)) \longrightarrow 0. \\
 \end{array} \tag{18.5}$$

The leftmost vertical map of (18.5) is isomorphic to

$$(R_{V(x)} \xrightarrow{F^e} F_*^e(R_{V(x)}(\Theta_e|_{\text{div}_R(x)}))) \otimes_{R/xR} H_{\mathfrak{m}}^{d-1}(R_{V(x)}(K_{R/xR}))$$

and the middle vertical map is isomorphic to

$$(R \xrightarrow{\cdot F_*^e x^{p^e-1}} F_*^e R(\Theta_e)) \otimes_R H_{\mathfrak{m}}^d(R(K_R)).$$

The local cohomology modules $H_{\mathfrak{m}}^{d-1}(R(K_R)_{V(x)})$ and $H_{\mathfrak{m}}^d(R(K_R))$ are essential extensions of the residue field k . If $(R, \Delta + \text{div}_R(x))$ is F -pure, then the middle vertical map in (18.5) is injective, from which it follows that the leftmost vertical map in (18.5) is injective (i.e. that $(R/xR, \Delta|_{\text{div}(x)})$ is F -pure). This concludes the proof of the forward direction.

We now prove the converse (i.e. inversion of adjunction), so suppose for the remainder of the proof that $(R/xR, \Delta|_{\text{div}(x)})$ is F -pure. Once we know that the map ξ in (18.5) is injective, we will be able to conclude that $(R, \Delta + \text{div}_R(x))$ is F -pure by once again equating the injectivity of the middle and leftmost vertical maps in (18.5). This will follow from the next claim.

Claim 18.2.8 *Suppose that E is an integral torsion divisor of index p^{e_0} . Then $R(E)_{V(x)}$ is an (S_2) R/xR -module.*

Proof of Claim 18.2.8 By assumption, R is F -pure whenever we localize at a non-maximal prime ideal $\mathfrak{p} \in V(x)$. By Lemma 18.2.2, the localized module $(R(E)_{V(x)})_{\mathfrak{p}}$ is an (S_2) $(R_{V(x)})_{\mathfrak{p}}$ -module. Therefore, to show $R(E)_{V(x)}$ is (S_2) , it suffices to show that $R(E)_{V(x)}$ has depth at least 2. Consider the following commutative diagram:

$$\begin{array}{ccccccc}
 & F_*^e R & \longrightarrow & F_*^e R_{V(x)} & \longrightarrow & 0 \\
 \cong \uparrow & & & \cong \uparrow & & \\
 F_*^e R(p^e E) & \longrightarrow & F_*^e R(p^e E)_{V(x)} & \longrightarrow & 0 \\
 F^e \uparrow & & F^e \uparrow & & \\
 0 & \xrightarrow{\cdot x} & R(E) & \longrightarrow & R(E)_{V(x)} & \longrightarrow & 0.
 \end{array}$$

We cannot yet assert that the rightmost vertical map of this diagram is split. However, we claim that the rightmost map is split after applying $H_{\mathfrak{m}}^2(-)$. Indeed, the reflexification map $R(E)_{V(x)} \rightarrow R_{V(x)}(E|_{V(x)})$ is an isomorphism on the punctured spectrum of R/xR . Therefore, the induced map of local cohomology modules

$$H_{\mathfrak{m}}^2(R(E)_{V(x)}) \rightarrow H_{\mathfrak{m}}^2(R_{V(x)}(E|_{V(x)}))$$

is an isomorphism. Our assumptions imply that R/xR is F -pure. By Lemma 18.2.2, $R_{V(x)}(E|_{V(x)}) \rightarrow F_*^e R_{V(x)}(p^e E|_{V(x)}) \cong F_*^e R_{V(x)}$ is split. Therefore,

$$H_{\mathfrak{m}}^2(R(E)_{V(x)}) \cong H_{\mathfrak{m}}^2(R_{V(x)}(E|_{V(x)})) \rightarrow F_*^e H_{\mathfrak{m}}^2(R_{V(x)}(p^e E|_{V(x)}))$$

is split. Since R/xR is assumed to be (S_2) , we know that $\text{depth}(R) \geq 3$, hence $H_{\mathfrak{m}}^2(R) = 0$. Now consider the resulting diagram of local cohomology modules

$$\begin{array}{ccccccc}
 0 = F_*^e H_{\mathfrak{m}}^2(R) & \longrightarrow & F_*^e H_{\mathfrak{m}}^2(R_{V(x)}) \\
 \cong \uparrow & & \cong \uparrow \\
 F_*^e H_{\mathfrak{m}}^2(R(p^e E)) & \longrightarrow & F_*^e H_{\mathfrak{m}}^2(R_{V(x)}(p^e E|_{V(x)})) \\
 F^e \uparrow & & F^e \uparrow \\
 H_{\mathfrak{m}}^1(R(E)_{V(x)}) & \xrightarrow{\subseteq} & H_{\mathfrak{m}}^2(R(E)) & \xrightarrow{\cdot x} & H_{\mathfrak{m}}^2(R(E)) & \longrightarrow & H_{\mathfrak{m}}^2(R_{V(x)}(E|_{V(x)})). \\
 & & & & & & (18.6)
 \end{array}$$

The composition of the right vertical maps in (18.6) is split and therefore injective. One verifies by chasing the diagram (18.6) that $H_{\mathfrak{m}}^2(R(E)) \xrightarrow{\cdot x} H_{\mathfrak{m}}^2(R(E))$ is an onto map. Since $R(E)$ is an (S_2) R -module, $H_{\mathfrak{m}}^2(R(E))$ is finitely generated by Lemma 18.2.4. By Nakayama's lemma, we have $H_{\mathfrak{m}}^2(R(E)) = 0$, so $H_{\mathfrak{m}}^1(R(E)_{V(x)}) = 0$ as needed. \square

Combining Claim 18.2.8 with Lemma 18.2.6 applied to the divisor $E = -(p^e - 1)K_R - \Delta_e$ tells us that ξ is injective. Again, using that $H_{\mathfrak{m}}^{d-1}(R(K_R)_{V(x)})$ and $H_{\mathfrak{m}}^d(R(K_R))$ are essential extensions of k , the left vertical map of (18.5) is injective if and only if the middle vertical map of (18.5) is injective. Therefore, $(R_{V(x)}, \Delta|_{\text{div}_R(x)})$ is F -pure if and only if $(R, \Delta + \text{div}_R(x))$ is F -pure. \square

18.3 Adjunction of F -Purity along a Divisor

The primary objective of this section is to prove Theorem B (adjunction of F -purity), but we first give a brief description of the different $\text{Diff}_D(\Delta)$.

18.3.1 The Different

Let R be a reduced excellent (S_2) and (G_1) local ring, D an effective integral (S_2) and (G_1) Weil divisor, and Δ an effective \mathbb{Q} -divisor with components disjoint from D such that the divisor class $K_R + D + \Delta$ is \mathbb{Q} -Cartier of index n . We choose a canonical divisor K_R so that $K_R = -D + G$ for some divisor G with components disjoint from D .

In particular, if $U \subseteq \text{Spec}(R)$ is a dense open subscheme that is regular, then $(K_R + D)|_U$ is Cartier with components disjoint from $D \cap U$. It follows that $(K_R + D)|_{D \cap U}$ is a canonical divisor on $D \cap U$. The section $1 \in R(G)$ gives rise to a rational section of ω_D via the restriction mappings $R(G) \rightarrow R(G)|_U \rightarrow \omega_D|_{D \cap U}$, and we denote by K_D the corresponding canonical divisor. Note that if D is Cartier in codimension 2, then so too is $K_R + D$ as D is (G_1) , and it follows that $K_D = (K_R + D)|_D$.

Suppose $n(K_R + D + \Delta) = \text{div}_R(f)$ for some $f \in R$, and let \bar{f} be its image in R_D . The *different* of Δ along D is the \mathbb{Q} -divisor $\text{Diff}_D(\Delta) := \frac{1}{n} \text{div}_D(\bar{f}) - K_D$ of R_D . This is independent of the choices of K_R and f ; see [12, section 4.1] for further discussion. We recall some properties enjoyed by $\text{Diff}_D(\Delta)$.

- (1) $\text{Diff}_D(\Delta)$ is effective and $0 \sim mn(K_R + D + \Delta)|_D = mn(\text{Diff}_D(\Delta) + K_D)$ for every $m \in \mathbb{Z}$.
- (2) Let V be an irreducible codimension 1 subvariety of D and view V simultaneously as an irreducible codimension 2 subvariety of $\text{Spec}(R)$. Then $\text{Diff}_D(\Delta)$ is not supported at V if and only if R and R_D are both regular at V and $V \notin \text{Supp}(\Delta)$.
- (3) If D is Cartier in codimension 2, then $\text{Diff}_D(\Delta) = \Delta|_D$.

18.3.2 F -Purity

Let (R, \mathfrak{m}, k) be a reduced local ring of prime characteristic $p > 0$ with total ring of fractions K . Suppose that R is (S_2) and (G_1) . If Δ is a \mathbb{Q} -divisor, then

$$R(\Delta) = \{f \in K \mid \text{div}_R(f) + \Delta \geq 0\}.$$

If $\Delta = \sum r_i [R/P_i]$ and $\lfloor \Delta \rfloor = \sum \lfloor r_i \rfloor [R/P_i]$ is the round down divisor, then $R(\Delta) = R(\lfloor \Delta \rfloor)$. If Δ is effective, then the pair (R, Δ) is *F -pure* if for all sufficiently divisible $e \gg 0$ the Frobenius maps $R \rightarrow F_*^e R((p^e - 1)\Delta)$ are pure.

There are several competing notions of F -purity as it pertains to pairs — we direct the reader to Section 18.4.1 for more details. In particular, we provide a counterexample to sharp F -pure inversion of adjunction, at least at the level of generality of Theorem C (see Example 18.4.4).

Lemma 18.3.1 *Let (R, \mathfrak{m}, k) be an excellent d -dimensional (S_2) and (G_1) local ring of prime characteristic $p > 0$, Δ an effective \mathbb{Q} -divisor, and K_R a choice of canonical divisor. Then the following are equivalent:*

(1) *For all sufficiently divisible $e \gg 0$, the maps*

$$R \rightarrow F_*^e R((p^e - 1)\Delta)$$

are pure, that is, the pair (R, Δ) is F -pure.

(2) *There exists an e_0 so that for all sufficiently divisible $e \gg 0$, the maps*

$$R \rightarrow F_*^{e+e_0} R(p^{e_0}(p^e - 1)\Delta)$$

are pure.

(3) *For all sufficiently divisible $e \gg 0$, the maps of local cohomology*

$$\begin{aligned} H_{\mathfrak{m}}^d(R(K_R)) &\rightarrow F_*^e H_{\mathfrak{m}}^d((p^e - 1)\Delta + p^e K_R) \\ &\cong (R \rightarrow F_*^e R((p^e - 1)\Delta)) \otimes_R H_{\mathfrak{m}}^d(R(K_R)) \end{aligned}$$

are injective.

(4) *There exists an e_0 so that for all sufficiently divisible $e \gg 0$, the maps*

$$\begin{aligned} H_{\mathfrak{m}}^d(R(K_R)) &\rightarrow F_*^{e+e_0} H_{\mathfrak{m}}^d(p^{e_0}(p^e - 1)\Delta + p^{e+e_0} K_R) \\ &\cong (R \rightarrow F_*^{e+e_0} R(p^{e_0}(p^e - 1)\Delta)) \otimes_R H_{\mathfrak{m}}^d(R(K_R)) \end{aligned}$$

are injective.

Proof For all integers e, e_0 , we can factor the map

$$R \rightarrow F_*^{e+e_0} R((p^{e+e_0} - 1)\Delta)$$

as

$$R \rightarrow F_*^e R((p^e - 1)\Delta) \rightarrow F_*^{e+e_0} (p^{e_0}(p^e - 1)\Delta) \subseteq F_*^{e+e_0} R((p^{e+e_0} - 1)\Delta).$$

This proves the equivalence of (1) and (2).

Cokernels are preserved under tensor product and the top local cohomology of a module is the cokernel of the last non-trivial map of a Čech complex. Hence, the isomorphisms described in (3) and (4) are valid. Furthermore, as $H_{\mathfrak{m}}^d(R(K_R))$ serves as the injective hull of the residue field of R , purity of the map in (1) is equivalent to injectivity of the maps in (2). (2) \Leftrightarrow (4) is similar. \square

Let E be a \mathbb{Q} -divisor and D an effective integral divisor of an (S_2) and (G_1) ring R . We use the following notation:

$$R(E)_D := \frac{R(E)}{R(E - D)}.$$

Lemma 18.3.2 *Let (R, \mathfrak{m}, k) be a complete d -dimensional (S_2) and (G_1) local ring of prime characteristic $p > 0$. Suppose that D is an effective integral divisor such that the pair (R, D) is F -pure. If E is an integral Weil divisor of index p^{e_0} , then $R(E)_D$ is a direct summand of $F_*^e R_D$ for all sufficiently divisible $e \gg 0$.*

Proof For all sufficiently divisible $e \gg 0$, the composition of the maps

$$R \rightarrow F_*^e R \rightarrow F_*^e R((p^e - 1)D)$$

is pure since we are assuming the pair (R, D) is F -pure. Let $\varphi_e : F_*^e R((p^e - 1)D) \rightarrow R$ be a splitting of $R \rightarrow F_*^e R((p^e - 1)D)$. Note that since D is effective, we have $F_*^e R \subseteq F_*^e R((p^e - 1)D)$ and so $\varphi_e(F_*^e R) \subseteq R$. Moreover, we have $\varphi_e(F_*^e R(-D)) = R(-D)$. To see this, simply tensor $\varphi_e : F_*^e R((p^e - 1)D) \rightarrow F_*^e R$ with $R(-D)$ and reflexify. Therefore, there are commutative diagrams

$$\begin{array}{ccccc} 0 & \longrightarrow & R(-D) & \longrightarrow & R \\ & & \uparrow & & \uparrow \varphi_e \\ 0 & \longrightarrow & F_*^e R(-D) & \longrightarrow & F_*^e R \\ & & \uparrow & & \uparrow \\ 0 & \longrightarrow & R(-D) & \longrightarrow & R \end{array}$$

and the composition of the vertical maps are the identity maps on their respective modules. Therefore, if we tensor by $R(E)$ and reflexify, we find that there is a commutative diagram

$$\begin{array}{ccccc} 0 & \longrightarrow & R(E - D) & \longrightarrow & R(E) \\ & & \uparrow & & \uparrow \tilde{\varphi}_e \\ 0 & \longrightarrow & F_*^e R(p^e E - D) & \longrightarrow & F_*^e R(p^e E) \\ & & \uparrow \cong & & \uparrow \cong \\ 0 & \longrightarrow & F_*^e R(-D) & \longrightarrow & F_*^e R. \end{array}$$

The maps $\tilde{\varphi}_e$ are splittings of $R(E) \rightarrow F_*^e R(p^e E)$ and commutativity of this diagram provides us an inclusion

$$\tilde{\varphi}_e(F_*^e R(p^e E - D)) \subseteq R(E - D).$$

It follows that we can restrict φ_e to $F_*^e R(p^e E)_D \cong F_*^e R_D$ and produce maps $\varphi_{e,D} : F_*^e R_D \rightarrow R(E)_D$ that are splittings of

$$R(E)_D \rightarrow F_*^e R_D.$$

In particular, $R(E)_D$ can be realized as a direct summand of $F_*^e R_D$ as claimed. \square

Corollary 18.3.3 *Let (R, \mathfrak{m}, k) be an excellent d -dimensional (S_2) and (G_1) local ring of prime characteristic $p > 0$. Suppose that D is an effective integral divisor such that the pair (R, D) is F -pure and R_D is (S_2) and (G_1) . If E is an integral Weil divisor of index p^{e_0} , then the reflexification map $R(E)_D \rightarrow R_D(E|_D)$ is an isomorphism.*

Proof By Lemma 18.3.2, the module $R(E)_D$ is a direct summand of $F_*^e R_D$. We are assuming that R_D is (S_2) and (G_1) . Therefore, $F_*^e R_D$ is (S_2) and so is any direct summand, hence the reflexification map $R(E)_D \rightarrow R_D(E|_D)$ is an isomorphism. \square

Lemma 18.3.4 *Let (R, \mathfrak{m}, k) be an excellent (S_2) and (G_1) d -dimensional local ring of prime characteristic $p > 0$. Suppose that there exists a non-zero reduced \mathbb{Q} -Cartier divisor D such that (R, D) is F -pure. If E is a \mathbb{Q} -Cartier divisor, then*

$$\text{depth}(R(E)) \geq \min\{3, d\}.$$

Proof We may assume R is complete as all hypotheses and the desired conclusions are unaffected by completion. We are assuming that R is (S_2) . Therefore, we may assume that R is of dimension at least 3 and show that $H_{\mathfrak{m}}^2(R(E)) = 0$. The composition of maps

$$R \rightarrow F_*^e R \subseteq F_*^e R((p^e - 1)D)$$

is pure and hence also split. Tensor with $R(E)$ and reflexify to conclude the composition of maps

$$R(E) \rightarrow F_*^e R(p^e E) \subseteq F_*^e R(p^e E + (p^e - 1)D)$$

is split. Consequently, the composition of maps of local cohomology modules

$$H_{\mathfrak{m}}^2(R(E)) \rightarrow H_{\mathfrak{m}}^2(F_*^e R(p^e E)) \subseteq H_{\mathfrak{m}}^2(F_*^e R(p^e E + (p^e - 1)D))$$

is injective. To conclude that $H_{\mathfrak{m}}^2(R(E)) = 0$, it suffices to show that the inclusion

$$R(p^e E) \subseteq R(p^e E + (p^e - 1)D)$$

induces the 0-map of local cohomology modules

$$H_{\mathfrak{m}}^2(R(p^e E)) \rightarrow H_{\mathfrak{m}}^2(R(p^e E + (p^e - 1)D))$$

for all sufficiently divisible $e \gg 0$.

The divisor E is \mathbb{Q} -Cartier. Therefore, there exists an e_0 so that for all sufficiently divisible $e \gg 0$, we have $R(p^e E) \cong R(p^{e_0} E)$. Let g_e be an element of the total ring of fractions of R so that $R(p^e E) \xrightarrow{\cdot g_e} R(p^{e_0} E)$ is an isomorphism. Suppose that D has \mathbb{Q} -Cartier index n and $nD = \text{div}(f)$. For all $e \gg 0$, there exists $q_e \geq 1$ and $0 \leq r_e < n$ such that $p^e - 1 = q_e n + r_e$. Observe that $q_e \rightarrow \infty$ as $e \rightarrow \infty$. There are commutative diagrams:

$$\begin{array}{ccc} R(p^e E) & \xrightarrow{\subseteq} & R(p^e E + (p^e - 1)D) \\ \cdot g_e \downarrow \cong & & \cong \downarrow \cdot g_e f^{q_e} \\ R(p^{e_0} E) & \xrightarrow{f^{q_e}} & R(p^{e_0} E) \xrightarrow{\subseteq} R(p^{e_0} E + r_e D). \end{array}$$

Consider the induced maps of local cohomology modules:

$$\begin{array}{ccc} H_{\mathfrak{m}}^2(R(p^e E)) & \longrightarrow & H_{\mathfrak{m}}^2(R(p^e E + (p^e - 1)D)) \\ \cdot g_e \downarrow \cong & & \cong \downarrow \cdot g_e f^{q_e} \\ H_{\mathfrak{m}}^2(R(p^{e_0} E)) & \xrightarrow{f^{q_e}} & H_{\mathfrak{m}}^2(R(p^{e_0} E)) \longrightarrow H_{\mathfrak{m}}^2(R(p^{e_0} E + r_e D)). \end{array}$$

The module $R(p^{e_0} E)$ is (S_2) , $f \in \mathfrak{m}$, and therefore $H_{\mathfrak{m}}^2(R(p^{e_0} E)) \xrightarrow{f^{q_e}}$ $H_{\mathfrak{m}}^2(R(p^{e_0} E))$ is the 0-map for all $e \gg 0$. Therefore, the map

$$H_{\mathfrak{m}}^2(R(p^e E)) \rightarrow H_{\mathfrak{m}}^2(R(p^e E + (p^e - 1)D))$$

is the 0-map as it can be factored through the 0-map. \square

18.3.3 Adjunction of F -Purity

Theorem 18.3.5 (Adjunction of F -Purity) *Let (R, \mathfrak{m}, k) be an excellent d -dimensional (S_2) and (G_1) local ring of prime characteristic $p > 0$. Suppose that D is an integral (S_2) and (G_1) divisor. Let Δ be an effective \mathbb{Q} -divisor of R with components disjoint from D such that $(p^e - 1)\Delta$ is integral for all sufficiently divisible $e \gg 0$. Suppose that $K_R + D + \Delta$ is \mathbb{Q} -Cartier. If $(R, \Delta + D)$ is F -pure, then $(R_D, \text{Diff}_D(\Delta))$ is F -pure.*

Proof There exists an integer e_0 so that for all sufficiently divisible $e \gg 0$,

$$\Delta_e := (p^e - 1)(K_R + D + \Delta)$$

is an integral divisor of index p^{e_0} . By Lemma 18.3.2, $R(-\Delta_e)_D$ is a direct summand of $F_*^e R_D$ for all sufficiently divisible $e \gg 0$. Therefore, $R(-\Delta_e)_D$ is an (S_2) R_D -module, that is,²

$$R(-\Delta_e)_D \cong R_D(-\Delta_e|_D) = R_D(-(p^e - 1)(\text{Diff}_D(\Delta) + K_D)).$$

We have shown the existence of the following short exact sequences for all sufficiently divisible $e \gg 0$:

$$0 \rightarrow R(-\Delta_e - D) \rightarrow R(-\Delta_e) \rightarrow R_D(-\Delta_e|_D) \rightarrow 0. \quad (18.7)$$

The Matlis dual of (18.7) produces the short exact sequence

$$0 \rightarrow H_m^{d-1}(R_D(\Delta_e|_D + K_D)) \rightarrow H_m^d(R(\Delta_e + K_R)) \rightarrow H_m^d(R(\Delta_e + D + K_R)) \rightarrow 0, \quad (18.8)$$

that is, the kernel of the natural map

$$H_m^d(R(\Delta_e + K_R)) \rightarrow H_m^d(R(\Delta_e + D + K_R))$$

induced by the inclusion $R(\Delta_e + K_R) \subseteq R(\Delta_e + D + K_R)$ is

$$H_m^{d-1}(R_D(\Delta_e|_D + K_D)).$$

Similarly, the Matlis dual of the short exact sequence

$$0 \rightarrow R(-D) \rightarrow R \rightarrow R_D \rightarrow 0$$

is

$$0 \rightarrow H_m^{d-1}(R_D(K_D)) \rightarrow H_m^d(R(K_R)) \rightarrow H_m^d(R(D + K_R)) \rightarrow 0. \quad (18.9)$$

Therefore, the kernel of $H_m^d(R(K_R)) \rightarrow H_m^d(R(K_R + D))$ induced from the inclusion $R(K_R) \subseteq R(K_R + D)$ is $H_m^{d-1}(R_D(K_D))$.

Consider the following commutative diagrams with exact rows:

$$\begin{array}{ccccccc} 0 & \longrightarrow & F_*^e R(\Delta_e + K_R) & \longrightarrow & F_*^e R(\Delta_e + D + K_R) & \longrightarrow & F_*^e R(\Delta_e + D + K_R)_D \longrightarrow 0 \\ & & \uparrow F^e & & \uparrow F^e & & \uparrow F^e \\ 0 & \longrightarrow & R(K_R) & \longrightarrow & R(D + K_R) & \longrightarrow & R(D + K_R)_D \longrightarrow 0. \end{array}$$

The short exact sequences (18.8) and (18.9) give us commutative diagrams of local cohomology modules with exact rows

$$\begin{array}{ccccccc} 0 & \longrightarrow & F_*^e H_m^{d-1}(R_D(\Delta_e|_D + K_D)) & \longrightarrow & F_*^e H_m^d(R(\Delta_e + K_R)) & \longrightarrow & F_*^e H_m^d(R(\Delta_e + D + K_R)) \longrightarrow 0 \\ & & \uparrow F^e & & \uparrow F^e & & \uparrow F^e \\ 0 & \longrightarrow & H_m^{d-1}(R_D(K_D)) & \longrightarrow & H_m^d(R(K_R)) & \longrightarrow & H_m^d(R(D + K_R)) \longrightarrow 0. \end{array} \quad (18.10)$$

² Note that this isomorphism requires that D is (G_1) .

In light of Lemma 18.2.3, the left vertical map in (18.10) is isomorphic to

$$(R_D \rightarrow F_*^e R((p^e - 1) \text{Diff}_D(\Delta))) \otimes_R H_{\mathfrak{m}}^{d-1}(R_D(K_D))$$

and the right vertical map is isomorphic to $(R \rightarrow F_*^e R((p^e - 1)(\Delta + D))) \otimes_R H_{\mathfrak{m}}^d(R(K_R))$. We are assuming that $(R, \Delta + D)$ is F -pure; therefore, the middle map is injective by Lemma 18.3.1. Since the middle vertical map is injective, so too is the left vertical map. Therefore, the pair $(R_D, \text{Diff}_D(\Delta))$ is F -pure by Lemma 18.3.1. \square

Remark 18.3.6 *The proof of Theorem 18.3.5 contains an important observation that will be necessary to proving the theorem's converse. Namely, if $(R, \Delta + D)$ is F -pure and $(p^e - 1)\Delta$ is integral for all sufficiently divisible $e \gg 0$, then*

$$R(-\Delta_e)|_D \rightarrow R_D(-\Delta_e|_D)$$

is an isomorphism for all such e .

18.4 Inversion of Adjunction of F -Purity

Lemma 18.4.1 (Key Lemma) *Let (R, \mathfrak{m}, k) be an excellent d -dimensional (S_2) and (G_1) local ring of prime characteristic $p > 0$. Suppose that D is a reduced (S_2) and (G_1) divisor. Let Δ be an effective \mathbb{Q} -divisor with components disjoint from D . Suppose that $K_R + D + \Delta$ is \mathbb{Q} -Cartier and $(p^e - 1)\Delta$ is integral for all sufficiently divisible $e \gg 0$. Suppose that $(R_D, \text{Diff}_D(\Delta))$ is F -pure. Then the following are equivalent:*

- (1) *The pair $(R, \Delta + D)$ is F -pure.*
- (2) *If E is a p -power torsion divisor, then $R(E)_D = R(E)/R(E - D)$ is an (S_2) R_D -module.*

Proof If the pair $(R, \Delta + D)$ is F -pure, then the pair (R, D) is F -pure. Therefore, if E is a torsion divisor of index p^{e_0} , then $R(E)_D$ is a direct summand of $F_*^e R_D$ for all sufficiently divisible $e \gg 0$ by Lemma 18.3.2. We are assuming that R_D is (S_2) . Therefore, $R(E)_D$ is (S_2) since it is a direct summand of an (S_2) R_D -module. This completes the forward direction $(1) \Rightarrow (2)$.

We introduce notation that will be used in the proof of the converse $(2) \Rightarrow (1)$. For each $e \in \mathbb{N}$, let $\Delta_e = (p^e - 1)(K_R + D + \Delta)$. There exists an integer e_0 so that for all sufficiently divisible $e \gg 0$, the divisor $-\Delta_e$ is a torsion of index p^{e_0} . By assumption, the reflexification map $R(-\Delta_e)_D \rightarrow R_D(-\Delta_e|_D)$ is an isomorphism for all sufficiently divisible $e \gg 0$. There are short exact sequences

$$0 \rightarrow R(-\Delta_e - D) \rightarrow R(-\Delta_e) \rightarrow R_D(-\Delta_e|_D) \rightarrow 0.$$

Matlis duality provides us short exact sequences (again using that R_D is (S_2))

$$0 \rightarrow H_{\mathfrak{m}}^{d-1}(R_D(\Delta_e|_D + K_D)) \rightarrow H_{\mathfrak{m}}^d(R(\Delta_e + K_R)) \rightarrow H_{\mathfrak{m}}^d(R(\Delta_e + D + K_R)) \rightarrow 0.$$

Consequently, the kernel of the natural map $H_{\mathfrak{m}}^d(R(\Delta_e + K_R)) \rightarrow H_{\mathfrak{m}}^d(R(\Delta_e + D + K_R))$ induced by the inclusion $R(\Delta_e + K_R) \rightarrow R(\Delta_e + D + K_R)$ is $H_{\mathfrak{m}}^{d-1}(R_D(\Delta_e|_D + K_D))$. Similarly, there are short exact sequences,

$$0 \rightarrow R(-D) \rightarrow R \rightarrow R_D \rightarrow 0$$

and Matlis duality provides us short exact sequences

$$0 \rightarrow H_{\mathfrak{m}}^{d-1}(R_D(K_D)) \rightarrow H_{\mathfrak{m}}^d(R(K_R)) \rightarrow H_{\mathfrak{m}}^d(R(K_R + D)) \rightarrow 0.$$

Therefore, the commutative diagram

$$\begin{array}{ccccccc} 0 & \longrightarrow & F_*^e R(\Delta_e + K_R) & \longrightarrow & F_*^e R(\Delta_e + K_R + D) & \longrightarrow & F_*^e R(\Delta_e + K_R + D)_D \longrightarrow 0 \\ & & \uparrow & & \uparrow & & \uparrow \\ 0 & \longrightarrow & R(K_R) & \longrightarrow & R(K_R + D) & \longrightarrow & R(K_R)_D \longrightarrow 0 \end{array}$$

induces the commutative diagram

$$\begin{array}{ccccccc} 0 & \rightarrow & F_*^e H_{\mathfrak{m}}^{d-1}(R_D(\Delta_e|_D + K_D)) & \rightarrow & F_*^e H_{\mathfrak{m}}^d(R(\Delta_e + K_R)) & \rightarrow & F_*^e H_{\mathfrak{m}}^d(R(\Delta_e + K_R + D)) \rightarrow 0 \\ & & \uparrow & & \uparrow & & \uparrow \\ 0 & \longrightarrow & H_{\mathfrak{m}}^{d-1}(R_D(K_D)) & \longrightarrow & H_{\mathfrak{m}}^d(R(K_R)) & \longrightarrow & H_{\mathfrak{m}}^d(R(K_R + D)) \longrightarrow 0. \end{array} \quad (18.11)$$

The left vertical map in (18.11) is isomorphic to

$$(R_D \rightarrow F_*^e R_D((p^e - 1) \text{Diff}_D(\Delta))) \otimes_{R_D} H_{\mathfrak{m}}^{d-1}(R_D(K_D)). \quad (18.12)$$

Since $(R_D, \text{Diff}_D(\Delta))$ is F -pure, the map in (18.12) is injective by Lemma 18.3.1. Since $H_{\mathfrak{m}}^{d-1}(R_D(K_D))$ and $H_{\mathfrak{m}}^d(R(K_R))$ are essential extensions of the residue field, a simple chase of a socle element in the diagram (18.11) shows that the middle vertical map is similarly injective. Moreover, this map is isomorphic to

$$(R \rightarrow F_*^e R((p^e - 1)(\Delta + D))) \otimes_R H_{\mathfrak{m}}^d(R(K_R)).$$

In particular, the pair $(R, \Delta + D)$ is F -pure by Lemma 18.3.1. This completes the proof of $(2) \Rightarrow (1)$. \square

Corollary 18.4.2 (Inversion of adjunction along a \mathbb{Q} -Cartier divisor) *Let (R, \mathfrak{m}, k) be an excellent (S_2) and (G_1) ring of prime characteristic $p > 0$ and let K_R be a choice of canonical divisor of $\text{Spec}(R)$. Suppose that $D \geq 0$ is an effective integral (S_2) and (G_1) divisor, and let $\Delta \geq 0$ be an effective \mathbb{Q} -divisor on $\text{Spec } R$ whose components are disjoint from those of D and such that $(p^e - 1)\Delta$ is integral for all sufficiently divisible $e \gg 0$. Suppose that $K_R + D + \Delta$ is \mathbb{Q} -Cartier. Suppose that*

- (I) D is \mathbb{Q} -Cartier;
- (II) for each \mathbb{Q} -Cartier divisor E and $\mathfrak{p} \in D \subseteq \text{Spec}(R)$ that

$$\text{depth}(R(E)_{\mathfrak{p}}) \geq \min\{\text{ht}(\mathfrak{p}), 3\}.$$

If $(R_D, \text{Diff}_D(\Delta))$ is F -pure, then $(R, \Delta + D)$ is F -pure.

Proof By Lemma 18.4.1, we only require that $R(E)_D$ is an (S_2) R_D -module whenever E is a p -power torsion divisor. We first remark that if $r \in R$ and $s \in R(E)$, then $rs \in R(E - D)$ if and only if $r \in R(-D)$. Therefore, $R(E)_D = R(E)/R(E - D)$ is a torsion-free R_D -module. In particular, if $\dim R \leq 2$, then R_D is at most one-dimensional and $R(E)_D$ is a torsion-free (and therefore a maximal Cohen–Macaulay) R_D -module. By induction, we may assume that $\dim R \geq 3$ and aim to show that $H_{\mathfrak{m}}^1(R(E)_D) = 0$.

There are short exact sequences

$$0 \rightarrow R(E - D) \rightarrow R(E) \rightarrow R(E)_D \rightarrow 0$$

and therefore $H_{\mathfrak{m}}^1(R(E)_D) \subseteq H_{\mathfrak{m}}^2(R(E - D))$. The divisor $E - D$ is torsion and therefore the latter local cohomology module is 0 by assumption. \square

Lemma 18.3.4 demonstrates a necessary condition for F -pure inversion of adjunction, namely

$$\text{depth}(R(E)_{\mathfrak{p}}) \geq \min\{\text{ht}(\mathfrak{p}), 3\}$$

for all \mathbb{Q} -Cartier divisors E and $\mathfrak{p} \in D \subseteq \text{Spec}(R)$. This assumption is vacuous whenever the ambient ring is strongly F -regular by [17, Corollary 3.3]. Moreover, we can replace this hypothesis with the milder assumption that for all $\mathfrak{p} \in D \subseteq \text{Spec}(R)$

$$\text{depth}(R_{\mathfrak{p}}) \geq \min\{\text{ht}(\mathfrak{p}), 3\}$$

and still obtain F -pure inversion of adjunction under the hypothesis that D is a p -power torsion divisor.

Corollary 18.4.3 (Inversion of adjunction along a p -power torsion divisor) *Let (R, \mathfrak{m}, k) be an excellent (S_2) and (G_1) ring of prime characteristic $p > 0$ and*

let K_R be a choice of canonical divisor of $\text{Spec}(R)$. Suppose that $D \geq 0$ is an effective integral (S_2) and (G_1) divisor, and let $\Delta \geq 0$ be an effective \mathbb{Q} -divisor on $\text{Spec } R$ whose components are disjoint from those of D and such that $(p^e - 1)\Delta$ is integral for all sufficiently divisible $e \gg 0$. Suppose that $K_R + D + \Delta$ is \mathbb{Q} -Cartier. Suppose further that D is a p -power torsion divisor and that for all $\mathfrak{p} \in D \subseteq \text{Spec}(R)$ that

$$\text{depth}(R_{\mathfrak{p}}) \geq \min\{\text{ht}(\mathfrak{p}), 3\}.$$

If $(R_D, \text{Diff}_D(\Delta))$ is F -pure, then $(R, \Delta + D)$ is F -pure.

Proof As in the proof of Corollary 18.4.2, we may assume that R is of dimension at least 3. By induction on the dimension of R , we may assume that $(R, \Delta + D)$ is F -pure when localized at a non-maximal point of D . In light of Lemma 18.4.1, the reflexification map $R(E)_D \rightarrow R_D(E|_D)$ is an isomorphism on the punctured spectrum. Therefore, it suffices to show $H_{\mathfrak{m}}^1(R(E)_D) = 0$ to conclude that $R(E)_D$ is an (S_2) R_D -module.

As the reflexification map $R(E)_D \rightarrow R_D(E|_D)$ is an isomorphism on the punctured spectrum, we observe

- $H_{\mathfrak{m}}^2(R(E)_D) \cong H_{\mathfrak{m}}^2(R_D(E|_D))$, and
- $H_{\mathfrak{m}}^2(R(E)_D) \rightarrow F_*^e H_{\mathfrak{m}}^2(R_D(p^e E|_D))$ is an injective map as R_D is F -pure.

Consider the following commutative diagram:

$$\begin{array}{ccccccc} 0 & \longrightarrow & F_*^e R(p^e E - D) & \longrightarrow & F_*^e R(p^e E) & \longrightarrow & F_*^e R(p^e E)_D \longrightarrow 0 \\ & & \uparrow & & \uparrow & & \uparrow \\ 0 & \longrightarrow & R(E - D) & \longrightarrow & R(E) & \longrightarrow & R(E)_D \longrightarrow 0 \end{array}$$

and the resulting commutative diagram of local cohomology modules:

$$\begin{array}{ccccccc} 0 & \rightarrow & F_*^e H_{\mathfrak{m}}^1(R(p^e E)_D) & \rightarrow & F_*^e H_{\mathfrak{m}}^2(R(p^e E - D)) & \rightarrow & F_*^e H_{\mathfrak{m}}^2(R(p^e E)) \rightarrow F_*^e H_{\mathfrak{m}}^2(R(p^e E)_D) \\ & & \uparrow \alpha & & \uparrow \beta & & \uparrow \gamma \\ 0 & \longrightarrow & H_{\mathfrak{m}}^1(R(E)_D) & \longrightarrow & H_{\mathfrak{m}}^2(R(E - D)) & \longrightarrow & H_{\mathfrak{m}}^2(R(E)) \xrightarrow{\zeta} H_{\mathfrak{m}}^2(R(E)_D). \\ & & & & & & \uparrow \delta \end{array}$$

If $e \gg 0$, then $p^e E \sim 0$ in which case $H_{\mathfrak{m}}^1(R(p^e E)_D) = H_{\mathfrak{m}}^2(R(p^e E)) = H_{\mathfrak{m}}^2(R) = 0$ by assumption and the diagram simplifies as

$$\begin{array}{ccccccc} 0 & \longrightarrow & 0 & \longrightarrow & F_*^e H_{\mathfrak{m}}^2(R(p^e E - D)) & \longrightarrow & 0 \longrightarrow F_*^e H_{\mathfrak{m}}^2(R(p^e E)_D) \\ & & \uparrow \alpha & & \uparrow \beta & & \uparrow \gamma \\ 0 & \rightarrow & H_{\mathfrak{m}}^1(R(E)_D) & \rightarrow & H_{\mathfrak{m}}^2(R(E - D)) & \rightarrow & H_{\mathfrak{m}}^2(R(E)) \xrightarrow{\zeta} H_{\mathfrak{m}}^2(R(E)_D). \\ & & & & & & \uparrow \delta \end{array}$$

The map δ is injective. Therefore, ζ is the 0-map and we have a surjection $H_{\mathfrak{m}}^2(R(E - D)) \twoheadrightarrow H_{\mathfrak{m}}^2(R(E))$. We mention that up to this point, we have not utilized that D is a p -power torsion divisor.

We may repeat the argument from the previous paragraph after replacing E with the likewise p -power torsion divisor $E - D$ to obtain a surjection $H_{\mathfrak{m}}^2(R(E - 2D)) \twoheadrightarrow H_{\mathfrak{m}}^2(R(E - D))$. More generally, for any $n \in \mathbb{N}$, we obtain surjections

$$H_{\mathfrak{m}}^2(R(E - nD)) \twoheadrightarrow H_{\mathfrak{m}}^2(R(E - (n-1)D)) \twoheadrightarrow \cdots \twoheadrightarrow H_{\mathfrak{m}}^2(R(E - D)) \twoheadrightarrow H_{\mathfrak{m}}^2(R(E)).$$

Choose n so that $nD = \text{div}_R(f) \sim 0$. Then there is a commutative diagram

$$\begin{array}{ccc} H_{\mathfrak{m}}^2(R(E - nD)) & \xrightarrow{\cong} & H_{\mathfrak{m}}^2(R(E)) \\ \downarrow f \cong & & \downarrow = \\ H_{\mathfrak{m}}^2(R(E)) & \xrightarrow{f} & H_{\mathfrak{m}}^2(R(E)). \end{array}$$

Consequently, $H_{\mathfrak{m}}^2(R(E)) = f H_{\mathfrak{m}}^2(R(E))$. The module $H_{\mathfrak{m}}^2(R(E))$ is finitely generated by Lemma 18.2.4 since $R(E)$ is (S_2) and $\dim R \geq 3$. By Nakayama's lemma, the module $H_{\mathfrak{m}}^2(R(E)) = 0$. Similarly, $H_{\mathfrak{m}}^2(R(E - D)) = 0$ because $E - D$ is a p -power torsion divisor. Therefore, $H_{\mathfrak{m}}^1(R(E)_D) = 0$ as needed since $H_{\mathfrak{m}}^1(R(E)_D)$ is a submodule of $H_{\mathfrak{m}}^2(R(E - D)) = 0$. \square

18.4.1 Closing Remarks on Theorems B and C

Techniques used here might be useful in proving other cases of F -pure inversion of adjunction. For example, there are cases to consider whenever the boundary divisor Δ does not have the property that $(p^e - 1)\Delta$ is integral for sufficiently divisible $e \gg 0$. Arguments using our techniques will require additional assumptions on the modules $R((p^e - 1)\Delta) = R(\lfloor (p^e - 1)\Delta \rfloor)$ for sufficiently divisible $e \gg 0$. For example, one could develop a version of Lemma 18.4.1 under the additional hypothesis that $\lfloor (p^e - 1)(K_R + D + \Delta) \rfloor$ is \mathbb{Q} -Cartier for all sufficiently large and divisible $e \gg 0$.

Alternatively, one can consider novel roundings of the divisors $(p^e - 1)\Delta$ when defining a competing notion of an F -pure pair (R, Δ) . For example, Schwede defined a pair (R, Δ) to be *sharply F -pure* if for all sufficiently divisible $e \gg 0$ the maps

$$R \rightarrow F_*^e R(\lceil (p^e - 1)\Delta \rceil)$$

are pure [19]. Sharp F -purity has a distinct advantage whenever $\Delta + D$ is \mathbb{Q} -Cartier:

$$\text{Hom}_R(F_*^e R(\lceil (p^e - 1)\Delta \rceil), R) \cong F_*^e R(-(p^e - 1)(\Delta + K_R)).$$

Regardless, there are simple counterexamples to sharp F -pure inversion of adjunction, even if the ambient ring R is nonsingular.

Example 18.4.4 Let $R = \mathbb{F}_p[x, y, z]$, $\Delta = \frac{1}{p}[R/(x + y^p + z^p)]$, and $D = V(x)$. The pair $(R_D, \Delta|_D)$ is sharply F -pure, but $(R, \Delta + \text{div}_R(x))$ is not sharply F -pure. To see this, first notice that $[R/(x + y^p + z^p)]|_D = p[R_D/(y + z)]$. Therefore, $\Delta|_D = [R_D/(y + z)]$. The pair $(R_D, \Delta|_D)$ is (sharply) F -pure. Indeed, R_D is isomorphic to the regular local ring $\mathbb{F}_p[y, z]$ and $(y + z)^{p^e-1} \notin \mathfrak{m}^{[p^e]}$ for all e .

Observe that

$$\lceil (p^e - 1)\Delta \rceil = \left\lceil \frac{p^e - 1}{p} \right\rceil \left[\frac{R}{(x + y^p + z^p)} \right] = p^{e-1} \left[\frac{R}{(x + y^p + z^p)} \right].$$

In particular, the pair $(R, \Delta + D)$ is not sharply F -pure as $(x + y^p + z^p)^{p^{e-1}} x^{p^e-1} \in \mathfrak{m}^{[p^e]}$ for all $e \in \mathbb{N}$.

We conclude this section by highlighting an application of our results (and those of [18]) to a question of Enescu.

Question 18.4.5 (see [4, Question 3.5] and surrounding discussion) *Does there exist an excellent local F -rational ring (R, \mathfrak{m}) such that for all nonzero divisors $x \in R$, the ring R/xR is not F -pure?*

Example 18.4.6 By either Theorem A or [18, Theorem A], any \mathbb{Q} -Gorenstein isolated singularity (R, \mathfrak{m}) which is F -rational but not F -pure will provide an affirmative answer to Question 18.4.5. In particular, the ring

$$R = \left(\frac{\mathbb{F}_2[x, y, z, w]}{(x^3 + y^3 + z^3 + w^3)} \right)_{\mathfrak{m}}^{(n)}, \quad n \geq 2$$

(where $(-)^{(n)}$ denotes the n th Veronese subring and \mathfrak{m} is its homogeneous maximal ideal) is such an example by [21, Example 6.3].

18.5 Manivel's Trick

Recall the following theorem on deformation of F -purity.

Theorem 18.5.1 ([18]) *Let (R, \mathfrak{m}, k) be a local F -finite \mathbb{Q} -Gorenstein ring of prime characteristic $p > 0$. Suppose that $x \in \mathfrak{m}$ is a nonzero divisor such that R/xR is (G_1) , (S_2) , and F -pure. Then R is F -pure.*

We will demonstrate in this section how a special case of Theorem A follows from Theorem 18.5.1 using a variant of a trick due to Manivel [14].

Proof of Theorem A when R is F -finite and $\Delta = 0$ Assume now that (R, \mathfrak{m}, k) is an F -finite \mathbb{Q} -Gorenstein local ring of prime characteristic p , and $x \in \mathfrak{m}$ is a nonzerodivisor such that R/xR is (G_1) and (S_2) , and so that R/xR is F -pure. Suppose $n \in \mathbb{Z}_{>0}$ is relatively prime to p and consider the module finite extension ring $U_n := R[Y]/(Y^n - x)$. Note first that U_n is reduced, as U_n is generically étale over R . Also, U_n is a free R -module of rank n , from which it follows that U_n remains (S_2) and f is a nonzerodivisor on U_n . Consequently, if y denotes the image of Y in U_n , y is also a nonzerodivisor on U_n , and moreover $U_n/(y) = R/xR$ is (S_2) , (G_1) , and F -pure. Since $\text{Hom}_R(U_n, R) \cong U_n$, for example, by taking the projection onto the R -factor corresponding to y^{n-1} , we also see that U_n is (G_1) as it is Gorenstein over the Gorenstein locus of R . Similarly, U_n remains \mathbb{Q} -Gorenstein. By Theorem 18.5.1 (applied to the localizations at the finitely many maximal ideals of U_n), it follows that U_n is F -pure.

Letting $n = p + 1$, consider the following diagram:

$$\begin{array}{ccc}
 R & \xrightarrow[\gamma]{1 \mapsto F_*x^{p-1}} & F_*R \\
 \downarrow 1 \mapsto y^p \beta & & \downarrow \delta \text{ } F_*1 \mapsto F_*y \\
 U_{p+1} & \xrightarrow[\text{1} \mapsto F_*1]{\alpha} & F_*U_{p+1}.
 \end{array}$$

To see that this commutes, note that we have

$$\delta(\gamma(1)) = \delta(F_*x^{p-1}) = F_*x^{p-1}y = F_*y^{(p+1)(p-1)}y = F_*y^{p^2}$$

and also

$$\alpha(\beta(1)) = \alpha(y^p) = y^p\alpha(1) = y^pF_*1 = F_*y^{p^2}.$$

Since U_{p+1} is F -pure, the bottom rightward arrow α is a split inclusion of U_{p+1} -modules, hence also of R -modules. The left downward arrow β is also a split inclusion of R -modules. It follows that the composite mapping $\alpha \circ \beta = \delta \circ \gamma$ is a split inclusion of R -modules, and so in particular γ is as well. By definition, we see that the pair $(R, \text{div}_R(x))$ is F -pure. \square

Remark 18.5.2 One can also apply Manivel's original trick in the the preceding alternate proof of Theorem A when R is F -finite and $\Delta = 0$ proof instead. With the same notation as in the first paragraph of the proof, instead consider the commutative diagram

$$\begin{array}{ccc}
 R & \xrightarrow[\gamma]{1 \mapsto F_*^e x^{(1-1/n)(p^e-1)}} & F_*^e R \\
 \downarrow 1 \mapsto y^{n-1} \beta & & \downarrow \delta F_*^e 1 \mapsto F_*^e y^{n-1} \\
 U_n & \xrightarrow[\alpha]{1 \mapsto F_*^e 1} & F_*^e U_n
 \end{array}$$

where $e \gg 0$ is sufficiently large and divisible so that $n|(p^e - 1)$. Since U_n is F -pure, the bottom rightward arrow α is a split inclusion of U_n -modules, hence also of R -modules. The left downward arrow β is also a split inclusion of R -modules. It follows that the composite mapping $\alpha \circ \beta = \delta \circ \gamma$ is a split inclusion of R -modules, and so in particular γ is as well. By definition, we see that the pair $(R, (1 - 1/n)\text{div}_R(x))$ is F -pure. Letting $n \rightarrow \infty$ and using [8, Theorem 4.9], it follows that $(R, \text{div}_R(x))$ is F -pure.

References

- [1] Y. Aoyama, *Some basic results on canonical modules*, Kyoto J. Math. 23 (1983), no. 1, 85–94.
- [2] K. Česnavicius, *Macaulayfication of Noetherian schemes*, Duke Math. J. 170 (2021), no. 7, 1419–1455.
- [3] O. Das, *On strongly F -regular inversion of adjunction*, J. Algebra 434 (2015), 207–226.
- [4] F. Enescu, *On the behavior of F -rational rings under flat base change*, J. Algebra 233 (2000), no. 2, 543–566.
- [5] R. Fedder, *F -purity and rational singularity*, Trans. Amer. Math. Soc. 278 (1983), no. 2, 461–480.
- [6] N. Hara and K.-I. Watanabe, *F -regular and F -pure rings vs. log terminal and log canonical singularities*, J. Algebraic Geom. 11 (2002), no. 2, 363–392.
- [7] R. Hartshorne, *Generalized divisors on Gorenstein schemes*, K-Theory 8 (1994), no. 3, 287–339.
- [8] D. J. Hernandez, *F -purity of hypersurfaces*, Math. Res. Lett. 19 (2012), no. 2, 389–401.
- [9] M. Hochster and C. Huneke, *Indecomposable canonical modules and connectedness*, Commutative algebra: Syzygies, multiplicities, and birational algebra (South Hadley, MA, 1992), pp. 197–208, Contemp. Math., 159, Amer. Math. Soc., Providence, RI, 1994.
- [10] M. Hochster and C. Huneke, *Applications of the existence of big Cohen-Macaulay algebras*, Adv. Math. 113 (1995), no. 1, 45–117.
- [11] M. Kawakita, *Inversion of adjunction on log canonicity*, Invent. Math. 167 (2007), no. 1, 129–133.

- [12] J. Kollar, *Singularities of the minimal model program*, Cambridge Tracts in Mathematics, 200, Cambridge University Press, Cambridge, 2013, With the collaboration of Sándor Kovács.
- [13] L. Ma and T. Polstra, *F-singularities: A commutative algebra approach*, www.math.purdue.edu/~ma326/F-singularitiesBook.pdf, 2021.
- [14] L. Manivel, *Un théorème de prolongement L^2 de sections holomorphes d'un fibré hermitien.*, Mathematische Zeitschrift 212 (1993), no. 1, 107–122.
- [15] H. Matsumura, *Commutative ring theory*, 2nd ed., Cambridge Studies in Advanced Mathematics, 8, Cambridge University Press, Cambridge, 1989, xiv+320 pp, Translated from the Japanese by M. Reid.
- [16] L. E. Miller and K. Schwede, *Semi-log canonical vs F-pure singularities*, J. Algebra 349 (2012), 150–164.
- [17] Z. Patakfalvi and K. Schwede, *Depth of F-singularities and base change of relative canonical sheaves*, J. Inst. Math. Jussieu 13 (2014), no. 1, 43–63.
- [18] T. Polstra and A. Simpson, *F-purity deforms in \mathbb{Q} -Gorenstein rings*, International Mathematics Research Notices (2022), to appear.
- [19] K. Schwede, *Generalized test ideals, sharp F-purity, and sharp test elements*, Math. Res. Lett. 15 (2008), no. 6, 1251–1261.
- [20] K. Schwede, *F-adjunction*, Algebra Number Theory 3 (2009), no. 8, 907–950.
- [21] A. Singh, *Veronese subrings and tight closure*, Pacific Journal of Mathematics 192 (2000), 399–413.
- [22] A. K. Singh, *F-regularity does not deform*, Amer. J. Math. 121 (1999), no. 4, 919–929.
- [23] T. Stacks Project Authors, *Stacks Project*, <https://stacks.math.columbia.edu>.