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On F-Pure Inversion of Adjunction
Thomas Polstra, Austyn Simpson, and Kevin Tucker

Abstract

We analyze adjunction and inversion of adjunction for the F-purity of divi-
sor pairs in characteristic p> 0. In this vein, we give a complete answer for
principal divisors under Q-Gorenstein assumptions but without divisibility
restrictions on the index. We also give a detailed analysis relating the F-purity
of the pairs (R,1+D) and that of (RD, DiffD(1)) motivated by Kawakita’s log
canonical inversion of adjunction via reduction to prime characteristic.

18.1 Introduction

Let (R,m, k) be a local ring of prime characteristic p> 0 and R→ F∗R be the
Frobenius map, where F∗R denotes the Frobenius push-forward of R. For sim-
plicity, assume that R is complete or F-finite (i.e. F∗R is a finite R-module).
The ring R is said to be F-pure if R → F∗R splits. Let x ∈ m be a nonze-
rodivisor of R. Under suitable hypotheses, Kawakita’s breakthrough result on
the inversion of adjunction of log canonical singularities [11] (when viewed
through the lens of reduction to prime characteristic via [6]) predicts that the
following are equivalent:

(1) The map R
·F∗xp−1

−−−−→ F∗R is split, that is, the pair (R, divR(x)) is F-pure;
(2) R/xR is F-pure.
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The implications (1) ⇒ (2) and (2) ⇒ (1) are special cases of adjunc-
tion and inversion of adjunction of F-purity, respectively. While the forward
direction requires no additional hypotheses, note that the converse (2) ⇒ (1)
is known to fail if R is not Q-Gorenstein in light of counterexamples by
Fedder [5] and Singh [22]. More generally, we may ask for the equiva-
lence of (1) and (2) after incorporating an effective Q-divisor 1. Even after
imposing Q-Cartier assumptions on KR + 1, however, the presence of p-
torsion introduces additional subtleties that often require new methods to
overcome.

The first contribution of this chapter is the following positive solution to F-
pure inversion of adjunction along principal ideals for log Q-Gorenstein pairs
(R,1), provided the denominators of the coefficients of 1 are prime to p (but
without any divisibility restrictions on the index of KR +1).

Theorem A (Theorem 18.2.7) Let (R,m, k) be an excellent local ring of prime
characteristic p> 0 and x ∈ m a nonzerodivisor such that R/xR is (G1) and
satisfies Serre’s condition (S2). Let 1 ≥ 0 be an effective Q-divisor of R with
components disjoint from divR(x) such that KR+1 is Q-Cartier and ( pe

−1)1
is integral for all e� 0 and divisible. Then the pair (R,1+ divR(x)) is F-pure
if and only if (R/xR,1|div(x)) is F-pure.

Note that Theorem A applied to the case that R is a regular ring and1 = 0 is
Fedder’s criterion for a hypersurface to be F-pure [5, Theorem 1.12]. Moreover,
Theorem A is a significant improvement over previous work by Polstra and
Simpson [18, Theorem A], which affirmatively settled the weaker question of
whether F-purity deforms in Q-Gorenstein rings. When 1 = 0, Theorem A
may be derived from [18] using a trick commonly attributed to Manivel [14]
together with an understanding of the behavior of F-purity under separable
finite covers; for completeness, we give a detailed proof of this in Section 18.5.
However, the cyclic cover techniques employed in [18] do not seem to lend
themselves to the incorporation of a boundary in a straightforward manner.
Our proof of Theorem A both circumvents these difficulties and recovers the
main theorem of [18] while showing a more general result.

More generally, in Sections 18.3 and 18.4 we turn our attention to F-pure
adjunction and inversion of adjunction beyond the case of principal ideals, that
is, along a divisor D with components disjoint from those of the boundary
divisor 1. Specifically, we aim to relate the F-purity of (R,1 + D) with that
of (RD, DiffD(1)) where DiffD(1) is Shokurov’s different. Our analysis yields
the following results.
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Theorem B (Adjunction of F-purity – Theorem 18.3.5) Let (R,m, k) be an
excellent (S2) and (G1) local ring of prime characteristic p> 0 and let KR be
a choice of canonical divisor of Spec(R). Suppose that D ≥ 0 is an effective
integral (S2) and (G1) divisor, and let 1 ≥ 0 be an effective Q-divisor on
Spec R whose components are disjoint from D and such that ( pe

− 1)1 is
integral for all sufficiently divisible e � 0. Suppose that KR + D + 1 is Q-
Cartier. If (R,1+ D) is F-pure, then (RD, DiffD(1)) is F-pure.

Theorem C (Inversion of Adjunction of F-purity along a Q-Cartier divisor –
Corollary 18.4.2) With the notation and assumptions of Theorem B, suppose
further that

(I) D is Q-Cartier;
(II) for each Q-Cartier divisor E and p ∈ D ⊆ Spec(R), we have the inequality

depth(R(E)p) ≥ min{ht(p), 3}.

If the pair (RD, DiffD(1)) is F-pure, then the pair (R,1+ D) is F-pure.

We remark that assumption (C) is necessary in Theorem C whenever D
is Q-Cartier by Lemma 18.3.4. More generally, we provide a characteriza-
tion for when inversion of adjunction of an F-pure pair is satisfied in the
absence of properties (C) and (C). By Corollary 18.3.3 and Lemma 18.4.1,
if (RD, DiffD(1)) is F-pure, then (R,1 + D) is F-pure if and only if for each
p-power torsion divisor E of R, the RD-module R(E)/R(E − D) is (S2).

A particularly notable feature of our analysis is the lack of index restrictions.
Prior work by Schwede has shown Theorems B and C under the assumptions
that KR + D + 1 is Q-Cartier of index not divisible by p and D is Cartier in
codimension 2 [20]. In particular, Theorem A was solved by Schwede under
the hypothesis that R is Q-Gorenstein of index not divisible by p. Note also that
the strongly F-regular version of inversion of adjunction was settled by Das in
[3]. We have also strived throughout to avoid unnecessary F-finite restrictions.

Those familiar with Kawakita’s theorem on log canonical inversion of
adjunction may be surprised by the assumption that D is (S2) and (G1), which
is slightly weaker than assuming D is normal and which is not a necessity
in characteristic 0. Indeed, the content of [11] is that in equal characteris-
tic 0, a pair (R,1 + D) is log canonical if and only if (RDN , DiffDN (1)) is
log canonical where DN denotes the normalization of D. However, as with
assumption (C) in the case that D is Q-Cartier, our assumption is a necessity
in prime characteristic. There are simple counterexamples to Theorem C if
we consider the F-singularities of DN instead. Indeed, let R=F2[x, y, z] and
D = divR(x2

− y2z). Then the normalization of RD=F2[x, y, z]/(x2
− y2z) is
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regular with DiffDN (0) being a smooth divisor so that (RDN , DiffDN (0)) is F-
pure, but the pair (F2[x, y, z], divR(x2

−y2z)) is not F-pure by Fedder’s criterion
(see also Theorem A). See [20, Example 8.4] for additional details, as well as
the work of Miller and Schwede [16] for an analysis of the behavior of F-purity
via the normalization map.

18.2 The Q-Gorenstein Case

Consider a local ring (R,m, k). Let ER(k) be an injective hull of k, and suppose
that R→ M is a map of R-modules. According to [10, Lemma 2.1(e)], R→ M
is pure if and only if the induced map ER(k)→ ER(k)⊗R M is injective, a fact
that we will use repeatedly. The main goal of this section is to give a proof
of Theorem A. However, we first present a simple proof of F-pure ( principal)
inversion of adjunction when R is a Gorenstein ring since it will guide our
subsequent investigations.

Example 18.2.1 (Inversion of Adjunction of F-purity, the Gorenstein case)
Let (R,m, k) be a local d-dimensional Gorenstein ring of prime characteris-
tic p> 0, and x ∈ R a nonzerodivisor. Let 1 ≥ 0 be an effective Q-Cartier
Q-divisor with components disjoint from divR(x) such that ( pe

− 1)1 is inte-
gral for all sufficiently divisible e � 0. We will show that the following are
equivalent:

l (R,1+ divR(x)) is F-pure;
l (R/xR,1|divR(x)) is F-pure.

Recall that the pair (R,1+ divR(x)) is F-pure if and only if

R→ Fe
∗R(( pe

− 1)(1+ divR(x)))

is pure. There is a commutative diagram

R //

=

� �

Fe
∗R(( pe

− 1)(1+ divR(x)))

·Fe
∗x

pe
−1∼=

��
R

·Fe
∗x

pe
−1

// Fe
∗R(( pe

− 1)1).

Similarly, (R/xR,1|divR(x)) is F-pure if and only if

R/xR→ (Fe
∗(R/xR))(( pe

− 1)1|divR(x))

is pure. To summarize, we aim to show that the following are equivalent:

l R
·Fe
∗x

pe
−1

−−−−−→ Fe
∗R(( pe

− 1)1) is pure;
l R/xR→ Fe

∗R/xR(( pe
− 1)1|divR(x)) is pure.
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For each e> 0, let 2e = ( pe
− 1)1. There exists e0 so that for sufficiently

divisible e � 0, 2e is a pe0 -torsion integral divisor. Tensoring the map R →
Fe0
∗ R with R(2e) and reflexifying over R give the map

R(2e)→ Fe0
∗ R( pe02e) ∼= Fe0

∗ R.

By [5], R is necessarily F-pure, and the F-purity of R then gives that the map
R(2e)→ Fe0

∗ R is pure. In particular, any regular sequence on Fe0
∗ R is a regu-

lar sequence on R(2e) and therefore R(2e) is a Cohen–Macaulay R-module.1

Even further, R(2e)/xR(2e) is a Cohen–Macaulay R/xR-module; as R/xR is
(S2) and (G1), we may therefore conclude that the R/xR-reflexification map is
an isomorphism:

R(2e)/xR(2e)
∼=
−→ R/xR(2e|divR(x)) = R/xR(( pe

− 1)1|divR(x)).

Consider now the following commutative diagram:

0 // Fe
∗R(2e)

·Fe
∗x // Fe

∗R(2e) // Fe
∗R/xR(2e|divR(x)) // 0

0 // R
·x //

·Fe
∗x

pe
−1

O O

R //

Fe

OO

R/xR //

Fe

OO

0.

Recall that we wish to show the leftmost vertical map is pure if and only if
the rightmost vertical map is pure. The modules R and Fe

∗R(2e) are Cohen–
Macaulay. Therefore, all of the lower local cohomology modules of R and
Fe
∗R(2e) vanish and we have the commutative diagram of local cohomology

modules whose horizontal arrows are injective:

Fe
∗H

d−1
m (R/xR(2e|divR(x)))

⊆ / / Fe
∗H

d
m(R(2e))

Hd−1
m (R/xR)

⊆ / /

Fe

OO

Hd
m(R).

·Fe
∗x

pe
−1

O O
(18.1)

The local cohomology modules Hd−1
m (R/xR) ∼= (0 : Hd

m(R)x) ∼= ER/xR(k) and

Hd
m(R) ∼= ER(k) are essential extensions of k ∼= (0 :Hd

m(R) m). Therefore, the
left vertical map is injective if and only if the right vertical map is injective.
We observe the following isomorphisms of the vertical maps in (18.1):Ä

Hd−1
m (R/xR)

Fe

→ Fe
∗H

d−1(R/xR(2e|divR(x)))
ä

∼=
(
R/xR→ Fe

∗(R/xR(2e|divR(x)))
)
⊗R/xR Hd−1

m (R/xR)

1 Alternatively, a pure map splits after completion, and therefore one can verify the Cohen–
Macaulay condition by examining induced maps of local cohomology modules.
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andÇ
Hd
m(R)

·Fe
∗x

pe
−1

→ Fe
∗H

d
m(R(2e))

å
∼=

Ç
R
·Fe
∗x

pe
−1

−−−−−→ Fe
∗R(2e)

å
⊗R Hd

m(R).

Therefore, R
·Fe
∗x

pe
−1

−−−−−→ Fe
∗R(2e) is pure if and only if

R/xR→ Fe
∗(R/xR(2e|divR(x)))

is pure, as desired.

We briefly review the definition that we will use in this chapter of a Q-
Gorenstein ring and of a generalized divisor, as outside of the normal setting
these notions may be somewhat unfamiliar. Let (R,m, k) be an excellent
equidimensional local ring satisfying conditions (S2) and (G1). We utilize the
language of (generalized) divisors as introduced by Hartshorne in [7]. In par-
ticular, in this chapter, when we speak of a divisor 1 on R, or equivalently a
Weil divisor 1 on R, we shall mean an almost Cartier divisor in the language
of [7]. Explicitly, this means that 1 is represented by a finitely generated R-
submodule I ⊆ Tot(R) of the total quotient ring of R (i.e. a fractional ideal)
such that:

(1) Ip = Tot(R)p for all minimal primes p ⊆ R;
(2) I is reflexive, that is, I → HomR(HomR(I , R), R) is an isomorphism.

A generalized divisor corresponding to a fractional ideal I is effective if
I ⊆ R. Note that if R is normal, this notion of divisors corresponds to the usual
one. We refer the reader to [7, section 2] or [13, Appendix A] for more details.

We assume that R has a canonical divisor KR, that is, KR is the class of
divisor so that the corresponding fractional ideal R(KR) is a canonical module
of R. We say that R is Q-Gorenstein if there exists an integer n> 0 so that
nKR ∼ 0. The smallest positive integer n with this property is the index of R.
If R is Q-Gorenstein and x ∈ R is a nonzerodivisor so that R/xR is (S2) and
(G1), then R/xR is also Q-Gorenstein by [18, Proposition 2.6]. If x ∈ R is such
an element and if M is an R-module, then we write MV (x) to denote the R-
module M/xM . If E is a divisor of R, then R(E) is the corresponding fractional
ideal. If E has components disjoint from V (x), then E|V (x) denotes the class
of the restricted divisor along V (x). Let KR be a choice of canonical divisor of
Spec(R). By prime avoidance, we may assume that KR has components disjoint
from V (x). Then the restricted divisor KR/xR := (KR)|V (x) is a choice of canon-
ical divisor of R/xR. If E is a divisor of R with components disjoint from V (x),
then HomRV (x)(HomRV (x) (R(E)V (x), RV (x)), RV (x)) ∼= RV (x)(E|V (x)). Note that if
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M is an R-module and x is a nonzerodivisor on M , then there is a short exact
sequence

0→ M
·x
−→ M → MV (x) → 0.

In particular, there is a right exact sequence of local cohomology modules

Hd−1
m (MV (x))→ Hd

m(M)
·x
−→ Hd

m(M)→ 0.

Lemma 18.2.6 is an instance where this right exact sequence enjoys the
property of being short exact. We first record an elementary observation.

Lemma 18.2.2 Let (R,m, k) be an excellent local (S2) and (G1) F-pure
ring of prime characteristic p> 0. Suppose that E is a divisor on R. Then
R(E)→ Fe

∗R( peE) is a pure map. Moreover, if E is torsion of index pe and if
x1, . . . , xt is a regular sequence on R, then x1, . . . , xt is a regular sequence on
R(E).

Proof Consider the pure map R → Fe
∗R. We claim that the composition of

maps R(E)→ Fe
∗R⊗R R(E)→ Fe

∗R( peE) is a pure map. The assumptions that
R is F-pure, (G1) and (S2) are unchanged by completion (by [13, Corollary
2.3], [15, Theorem 18.3], and [23, Tag 0339], respectively, the latter using the
excellence assumption on R), as are the assumptions on the divisor E. Hence,
we may assume that R is complete, so there is a splitting of R→ Fe

∗R. Applying
−⊗R R(E) to this splitting and reflexifying, we find that there is a splitting of
R(E)→ Fe

∗R( peE). In particular, R(E)→ Fe
∗R( peE) is pure.

Now suppose that E is torsion of index pe and x1, . . . , xt is a regular sequence
on R. Then R(E) → Fe

∗R( peE) ∼= Fe
∗R. The sequence xpe

1 , . . . , xpe

t is a regular
sequence on R and therefore x1, . . . , xt is a regular sequence on Fe

∗R. It follows
that x1, . . . , xt is a regular sequence on R(E) as well since we have an injection
R(E)⊗R R/(x1, . . . , xi) ↪→ Fe

∗R⊗R R/(x1, . . . , xi) for every i.

Lemma 18.2.3 Let (R,m, k) be a d-dimensional excellent local ring and ϕ :
M → N a map of R-modules for which ϕ is an isomorphism in codimension 1.
Then Hd

m(M)→ Hd
m(N) is an isomorphism.

Proof There exists a four-term exact sequence

0→ K → M
ϕ
−→ N → C→ 0

so that K and C are not supported in codimension 1. Therefore, H i
m(K) =

H i
m(C) = 0 for i = d, d − 1. Split this exact sequence into two short exact

sequences
0→ K → M → M/K → 0

and

0→ M/K
ϕ
−→ N → C→ 0.
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Examine the long exact sequences of local cohomology modules to conclude
that Hd

m(M) ∼= Hd
m(M/K) ∼= Hd

m(N).

We will frequently use finite generation of certain local cohomology mod-
ules when proving our main theorems. To that end, we the following.

Lemma 18.2.4 Let (R,m, k) be a complete equidimensional local ring of
dimension d, and let M be a finitely generated R-module satisfying Serre’s
condition (St) for some t < d. Then `R(H t

m(M)) <∞.

Proof This is [13, Exercise 29] and follows from the proof of [13, Lemma
4.5].

Remark 18.2.5 We remark that the equidimensionality assumption in Lemma
18.2.4 is harmless, as this result will only be applied to local rings that are
(S2) and are homomorphic images of Gorenstein local rings – such rings are
always equidimensional (see for instance [1, Remark 4.5], [9, Remark 2.2(h)],
or [2, section 2.2]).

Lemma 18.2.6 Let (R,m, k) be a d-dimensional excellent local (S2) and (G1)
ring of prime characteristic p> 0. Suppose that x ∈ R is a nonzerodivisor such
that R/xR is (S2) and (G1). Let E be a Weil divisor of R with the property that
R(E)V (x) is reflexive. Then the natural map of local cohomology modules

Hd−1
m

(
R(−E + KR)V (x)

)
→ Hd

m(R(−E + KR))

is injective.

Proof Without loss of generality, we may assume that E has components dis-
joint from V (x). In particular, the reflexification R(E)V (x) → RV (x)(E|V (x)) is an
isomorphism. There is a short exact sequence

0→ R(E)
·x
−→ R(E)→ RV (x)(E|V (x))→ 0. (18.2)

The top local cohomology module Hd
m(R(KR)) serves as the injective hull of

the residue field. Therefore, we consider a choice of the Matlis duality functor
HomR(−, Hd

m(R(KR))). By Tensor–Hom adjunction

HomR(R(E), Hd
m(R(KR))) ∼= R(−E)⊗R Hd

m(R(KR)).

The local cohomology module Hd
m(R(KR)) is a cokernel of a C̆ech complex,

and tensor products preserve cokernels. Therefore,

R(−E)⊗R Hd
m(R(KR)) ∼= Hd

m(R(−E)⊗R R(KR)).
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The reflexification map R(−E) ⊗R R(KR) → R(−E + KR) is an isomorphism
in codimension 1. Therefore, by Lemma 18.2.3,

Hd
m(R(−E)⊗R R(KR)) ∼= Hd

m(R(−E + KR)).

Similarly, the Matlis dual of RV (x)(E|V (x)) is

HomR(RV (x)(E|V (x)), Hd
m(R(KR)))

= HomR(RV (x)(E|V (x)), 0 :Hd
m(R(KR)) x)

∼= HomR(RV (x)(E|V (x)), Hd−1
m (R(KR/xR)))

∼= Hd−1
m (RV (x)(−E|V (x) + KR/xR)).

Therefore, the Matlis dual of (18.2) is the short exact sequence

0→ Hd−1
m (RV (x)(−E|V (x) + KR/xR))→ Hd

m(R(−E + KR))
·x
−→ Hd

m(R(−E + KR))→ 0.
(18.3)

The reflexification map R(−E + KR)V (x) → RV (x)(−E|V (x) + KR/xR) is an
isomorphism at the codimension 1 points of R/xR. Therefore,

Hd−1
m (R(−E + KR)V (x)) ∼= Hd−1

m (RV (x)(−E|V (x) + KR/xR)). (18.4)

We conclude the proof by plugging (18.4) into (18.3).

We are now prepared to prove Theorem A.

Theorem 18.2.7 Let (R,m, k) be an excellent local ring of prime characteristic
p> 0 and x ∈ m a nonzerodivisor such that R/xR is (G1) and (S2). Let 1 ≥ 0
be an effective Q-divisor of R with components disjoint from divR(x) such that
KR + 1 is Q-Cartier and ( pe

− 1)1 is integral for all e � 0 sufficiently
large and divisible. Then the pair (R,1 + divR(x)) is F-pure if and only if
(R/xR,1|div(x)) is F-pure.

Proof As in the proof of Lemma 18.2.2, we may assume that R is complete.
If dim(R) ≤ 2, then the assumption that R/xR is (G1) implies that the ring R
is Gorenstein since the property of being Gorenstein deforms [23, Tag 0BJJ].
The theorem follows for rings of dimension at most 2 by Example 18.2.1.

We assume that dim(R) ≥ 3. By induction on the dimension, we may assume
that both R and R/xR are F-pure when localized at any non-maximal prime
ideal in V (x). Let2e = ( pe

−1)1 and consider the commutative diagram with
exact rows:

0 // Fe
∗R( peKR +2e)

·Fe
∗x // Fe
∗R( peKR +2e) // Fe

∗R( peKR +2e)V (x) // 0

0 // R(KR) ·x //

·Fe
∗x

pe
−1

OO

R(KR) //

Fe

OO

R(KR)V (x) //

Fe

OO

0.
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If e � 0 and sufficiently divisible, then ( pe
− 1)KR + 2e is an integral pe0 -

torsion divisor. By Lemma 18.2.6 applied to the divisor E = 0, we obtain the
following commutative diagram with exact rows:

Fe
∗H

d−1
m (R( peKR +2e)V (x))

ξ // Fe
∗H

d
m(R( peKR +2e))

·Fe
∗x // Fe
∗H

d
m(R( peKR +2e)) // 0

0 // Hd−1
m (R(KR)V (x)) //

Fe

OO

Hd
m(R(KR)) //

·Fe
∗x

pe
−1

OO

Hd
m(R(KR)) //

Fe

OO

0.

(18.5)

The leftmost vertical map of (18.5) is isomorphic to

(RV (x)
Fe

−→ Fe
∗(RV (x)(2e|divR(x))))⊗R/xR Hd−1

m (RV (x)(KR/xR))

and the middle vertical map is isomorphic to

(R
·Fe
∗x

pe
−1

−−−−−→ Fe
∗R(2e))⊗R Hd

m(R(KR)).

The local cohomology modules Hd−1
m (R(KR)V (x)) and Hd

m(R(KR)) are essential
extensions of the residue field k. If (R,1 + divR(x)) is F-pure, then the mid-
dle vertical map in (18.5) is injective, from which it follows that the leftmost
vertical map in (18.5) is injective (i.e. that (R/xR,1|div(x)) is F-pure). This
concludes the proof of the forward direction.

We now prove the converse (i.e. inversion of adjunction), so suppose for the
remainder of the proof that (R/xR,1|div(x)) is F-pure. Once we know that the
map ξ in (18.5) is injective, we will be able to conclude that (R,1 + divR(x))
is F-pure by once again equating the injectivity of the middle and leftmost
verticle maps in (18.5). This will follow from the next claim.

Claim 18.2.8 Suppose that E is an integral torsion divisor of index pe0 . Then
R(E)V (x) is an (S2) R/xR-module.

Proof of Claim 18.2.8 By assumption, R is F-pure whenever we localize at a
non-maximal prime ideal p ∈ V (x). By Lemma 18.2.2, the localized module
(R(E)V (x))p is an (S2) (RV (x))p-module. Therefore, to show R(E)V (x) is (S2),
it suffices to show that R(E)V (x) has depth at least 2. Consider the following
commutative diagram:
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Fe
∗R / / Fe

∗RV (x) // 0

Fe
∗R( peE) //

∼=

OO

Fe
∗R( peE)V (x) //

∼=

OO

0

0 // R(E) ·x // R(E) //

Fe

OO

R(E)V (x) / /

Fe

OO

0.

We cannot yet assert that the rightmost vertical map of this diagram is split.
However, we claim that the rightmost map is split after applying H2

m(−).
Indeed, the reflexification map R(E)V (x)→RV (x)(E|V (x)) is an isomorphism
on the punctured spectrum of R/xR. Therefore, the induced map of local
cohomology modules

H2
m(R(E)V (x))→ H2

m(RV (x)(E|V (x)))

is an isomorphism. Our assumptions imply that R/xR is F-pure. By Lemma
18.2.2, RV (x)(E|V (x))→ Fe

∗RV (x)( peE|V (x)) ∼= Fe
∗RV (x) is split. Therefore,

H2
m(R(E)V (x)) ∼= H2

m(RV (x)(E|V (x)))→ Fe
∗H

2
m(RV (x)( peE|V (x)))

is split. Since R/xR is assumed to be (S2), we know that depth(R) ≥ 3, hence
H2
m(R) = 0. Now consider the resulting diagram of local cohomology modules

0 = Fe
∗H

2
m(R) // Fe

∗H
2
m(RV (x))

Fe
∗H

2
m(R( peE)) //

∼=

OO

Fe
∗H

2
m(RV (x)( peE|V (x)))

∼=

OO

H1
m(R(E)V (x))

⊆ // H2
m(R(E)) ·x // H2

m(R(E)) //

Fe

OO

H2
m(RV (x)(E|V (x))).

Fe

OO

(18.6)
The composition of the right vertical maps in (18.6) is split and there-

fore injective. One verifies by chasing the diagram (18.6) that H2
m(R(E))

·x
−→

H2
m(R(E)) is an onto map. Since R(E) is an (S2) R-module, H2

m(R(E)) is finitely
generated by Lemma 18.2.4. By Nakayama’s lemma, we have H2

m(R(E)) = 0,
so H1

m(R(E)V (x)) = 0 as needed.

Combining Claim 18.2.8 with Lemma 18.2.6 applied to the divisor E =
−( pe

−1)KR−1e tells us that ξ is injective. Again, using that Hd−1
m (R(KR)V (x))

and Hd
m(R(KR)) are essential extensions of k, the left vertical map of (18.5) is

injective if and only if the middle vertical map of (18.5) is injective. Therefore,
(RV (x),1|divR(x)) is F-pure if and only if (R,1+ divR(x)) is F-pure.
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18.3 Adjunction of F-Purity along a Divisor

The primary objective of this section is to prove Theorem B (adjunction of
F-purity), but we first give a brief description of the different DiffD(1).

18.3.1 The Different

Let R be a reduced excellent (S2) and (G1) local ring, D an effective integral
(S2) and (G1) Weil divisor, and 1 an effective Q-divisor with components dis-
joint from D such that the divisor class KR + D + 1 is Q-Cartier of index n.
We choose a canonical divisor KR so that KR = −D + G for some divisor G
with components disjoint from D.

In particular, if U ⊆ Spec(R) is a dense open subscheme that is regular, then
(KR + D)|U is Cartier with components disjoint from D ∩ U . It follows that
(KR+D)|D∩U is a canonical divisor on D∩U . The section 1 ∈ R(G) gives rise
to a rational section of ωD via the restriction mappings R(G) → R(G)|U →
ωD|D∩U , and we denote by KD the corresponding canonical divisor. Note that
if D is Cartier in codimension 2, then so too is KR + D as D is (G1), and it
follows that KD = (KR + D)|D.

Suppose n(KR+D+1) = divR( f ) for some f ∈ R, and let f be its image in
RD. The different of 1 along D is the Q-divisor DiffD(1) := 1

n divD(f ) − KD

of RD. This is independent of the choices of KR and f ; see [12, section 4.1] for
further discussion. We recall some properties enjoyed by DiffD(1).

(1) DiffD(1) is effective and 0 ∼ mn(KR + D+1)|D = mn(DiffD(1)+ KD)
for every m ∈ Z.

(2) Let V be an irreducible codimension 1 subvariety of D and view V simul-
taneously as an irreducible codimension 2 subvariety of Spec(R). Then
DiffD(1) is not supported at V if and only if R and RD are both regular at
V and V 6∈ Supp(1).

(3) If D is Cartier in codimension 2, then DiffD(1) = 1|D.

18.3.2 F-Purity

Let (R,m, k) be a reduced local ring of prime characteristic p> 0 with total
ring of fractions K. Suppose that R is (S2) and (G1). If 1 is a Q-divisor, then

R(1) = { f ∈ K | divR( f )+1 ≥ 0}.

If 1=
∑

ri[R/Pi] and b1c=
∑
bric[R/Pi] is the round down divisor, then

R(1)=R(b1c). If 1 is effective, then the pair (R,1) is F-pure if for all suf-
ficiently divisible e � 0 the Frobenius maps R → Fe

∗R(( pe
− 1)1) are pure.
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There are several competing notions of F-purity as it pertains to pairs — we
direct the reader to Section 18.4.1 for more details. In particular, we provide a
counterexample to sharp F-pure inversion of adjunction, at least at the level of
generality of Theorem C (see Example 18.4.4).

Lemma 18.3.1 Let (R,m, k) be an excellent d-dimensional (S2) and (G1) local
ring of prime characteristic p> 0, 1 an effective Q-divisor, and KR a choice
of canonical divisor. Then the following are equivalent:

(1) For all sufficiently divisible e� 0, the maps

R→ Fe
∗R(( pe

− 1)1)

are pure, that is, the pair (R,1) is F-pure.
(2) There exists an e0 so that for all sufficiently divisible e� 0, the maps

R→ Fe+e0
∗ R( pe0 ( pe

− 1)1)

are pure.
(3) For all sufficiently divisible e� 0, the maps of local cohomology

Hd
m(R(KR))→ Fe

∗H
d
m(( pe

− 1)1+ peKR)
∼= (R→ Fe

∗R(( pe
− 1)1))⊗R Hd

m(R(KR))

are injective.
(4) There exists an e0 so that for all sufficiently divisible e� 0, the maps

Hd
m(R(KR)) → Fe+e0

∗ Hd
m( pe0 ( pe

− 1)1+ pe+e0KR)
∼= (R→ Fe+e0

∗ R( pe0 ( pe
− 1)1))⊗R Hd

m(R(KR))

are injective.

Proof For all integers e, e0, we can factor the map

R→ Fe+e0
∗ R(( pe+e0 − 1)1)

as

R→ Fe
∗R(( pe

− 1)1)→ Fe+e0
∗ ( pe0 ( pe

− 1)1) ⊆ Fe+e0
∗ R(( pe+e0 − 1)1).

This proves the equivalence of (1) and (2).
Cokernels are preserved under tensor product and the top local cohomology

of a module is the cokernel of the last non-trivial map of a Čech complex.
Hence, the isomorphisms described in (3) and (4) are valid. Furthermore, as
Hd
m(R(KR)) serves as the injective hull of the residue field of R, purity of

the map in (1) is equivalent to injectivity of the maps in (2). (2) ⇔ (4) is
similar.
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Let E be a Q-divisor and D an effective integral divisor of an (S2) and (G1)
ring R. We use the following notation:

R(E)D :=
R(E)

R(E − D)
.

Lemma 18.3.2 Let (R,m, k) be a complete d-dimensional (S2) and (G1) local
ring of prime characteristic p> 0. Suppose that D is an effective integral divi-
sor such that the pair (R, D) is F-pure. If E is an integral Weil divisor of index
pe0 , then R(E)D is a direct summand of Fe

∗RD for all sufficiently divisible e� 0.

Proof For all sufficiently divisible e� 0, the composition of the maps

R→ Fe
∗R→ Fe

∗R(( pe
− 1)D)

is pure since we are assuming the pair (R, D) is F-pure. Let ϕe : Fe
∗R(( pe

−

1)D)→ R be a splitting of R→ Fe
∗(R( pe

−1)D). Note that since D is effective,
we have Fe

∗R ⊆ Fe
∗R(( pe

− 1)D) and so ϕe(Fe
∗R) ⊆ R. Moreover, we have

ϕe(Fe
∗R(−D)) = R(−D). To see this, simply tensor ϕe : Fe

∗R(( pe
− 1)D) →

Fe
∗R with R(−D) and reflexify. Therefore, there are commutative diagrams

0 // R(−D) // R

0 // Fe
∗R(−D) //

OO

Fe
∗R

ϕe

OO

0 // R(−D)

OO

// R

OO

and the composition of the vertical maps are the identity maps on their respec-
tive modules. Therefore, if we tensor by R(E) and reflexify, we find that there
is a commutative diagram

0 // R(E − D) // R(E)

0 // Fe
∗R( peE − D) //

OO

Fe
∗R( peE)

ϕ̃e

OO

0 // Fe
∗R(−D) //

∼=

OO

Fe
∗R.

∼=

OO

The maps ϕ̃e are splittings of R(E) → Fe
∗R( peE) and commutativity of this

diagram provides us an inclusion

ϕ̃e(Fe
∗R( peE − D)) ⊆ R(E − D).
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It follows that we can restrict ϕe to Fe
∗R( peE)D ∼= Fe

∗RD and produce maps
ϕ̃e,D : Fe

∗RD → R(E)D that are splittings of

R(E)D → Fe
∗RD.

In particular, R(E)D can be realized as a direct summand of Fe
∗RD as

claimed.

Corollary 18.3.3 Let (R,m, k) be an excellent d-dimensional (S2) and (G1)
local ring of prime characteristic p> 0. Suppose that D is an effective integral
divisor such that the pair (R, D) is F-pure and RD is (S2) and (G1). If E is
an integral Weil divisor of index pe0 , then the reflexification map R(E)D →

RD(E|D) is an isomorphism.

Proof By Lemma 18.3.2, the module R(E)D is a direct summand of Fe
∗RD.

We are assuming that RD is (S2) and (G1). Therefore, Fe
∗RD is (S2) and so

is any direct summand, hence the reflexification map R(E)D→RD(E|D) is an
isomorphism.

Lemma 18.3.4 Let (R,m, k) be an excellent (S2) and (G1) d-dimensional
local ring of prime characteristic p > 0. Suppose that there exists a non-zero
reduced Q-Cartier divisor D such that (R, D) is F-pure. If E is a Q-Cartier
divisor, then

depth(R(E)) ≥ min{3, d}.

Proof We may assume R is complete as all hypotheses and the desired conclu-
sions are unaffected by completion. We are assuming that R is (S2). Therefore,
we may assume that R is of dimension at least 3 and show that H2

m(R(E)) = 0.
The composition of maps

R→ Fe
∗R ⊆ Fe

∗R(( pe
− 1)D)

is pure and hence also split. Tensor with R(E) and reflexify to conclude the
composition of maps

R(E)→ Fe
∗R( peE) ⊆ Fe

∗R( peE + ( pe
− 1)D)

is split. Consequently, the composition of maps of local cohomology modules

H2
m(R(E))→ H2

m(Fe
∗R( peE)) ⊆ H2

m(Fe
∗R( peE + ( pe

− 1)D))

is injective. To conclude that H2
m(R(E)) = 0, it suffices to show that the

inclusion

R( peE) ⊆ R( peE + ( pe
− 1)D)
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induces the 0-map of local cohomology modules

H2
m(R( peE))→ H2

m(R( peE + ( pe
− 1)D))

for all sufficiently divisible e� 0.
The divisor E is Q-Cartier. Therefore, there exists an e0 so that for all suffi-

ciently divisible e � 0, we have R( peE) ∼= R( pe0E). Let ge be an element of

the total ring of fractions of R so that R( peE)
·ge
−→ R( pe0E) is an isomorphism.

Suppose that D has Q-Cartier index n and nD = div( f ). For all e � 0, there
exists qe ≥ 1 and 0 ≤ re < n such that pe

− 1 = qen + re. Observe that
qe →∞ as e→∞. There are commutative diagrams:

R( peE)

·ge ∼=

��

⊆ // R( peE + ( pe
− 1)D)

∼= ·gef qe

��
R( pe0E)

·f qe
// R( pe0E)

⊆ // R( pe0E + reD).

Consider the induced maps of local cohomology modules:

H2
m(R( peE))

∼=·ge

��

// H2
m(R( peE + ( pe

− 1)D))

∼= ·gef qe

��
H2
m(R( pe0E))

·f qe
// H2

m(R( pe0E)) // H2
m(R( pe0E + reD)).

The module R( pe0E) is (S2), f ∈m, and therefore H2
m(R( pe0 E))

·f qe

−−→

H2
m(R( pe0E)) is the 0-map for all e� 0. Therefore, the map

H2
m(R( peE))→ H2

m(R( peE + ( pe
− 1)D))

is the 0-map as it can be factored through the 0-map.

18.3.3 Adjunction of F-Purity

Theorem 18.3.5 (Adjunction of F-Purity) Let (R,m, k) be an excellent d-
dimensional (S2) and (G1) local ring of prime characteristic p> 0. Suppose
that D is an integral (S2) and (G1) divisor. Let 1 be an effective Q-divisor of
R with components disjoint from D such that ( pe

− 1)1 is integral for all suf-
ficiently divisible e� 0. Suppose that KR +D+1 is Q-Cartier. If (R,1+D)
is F-pure, then (RD, DiffD(1)) is F-pure.

Proof There exists an integer e0 so that for all sufficiently divisible e� 0,

1e := ( pe
− 1)(KR + D+1)
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is an integral divisor of index pe0 . By Lemma 18.3.2, R(−1e)D is a direct
summand of Fe

∗RD for all sufficiently divisible e � 0. Therefore, R(−1e)D is
an (S2) RD-module, that is,2

R(−1e)D ∼= RD(−1e|D) = RD(−( pe
− 1)(DiffD(1)+ KD)).

We have shown the existence of the following short exact sequences for all
sufficiently divisible e� 0:

0→ R(−1e − D)→ R(−1e)→ RD(−1e|D)→ 0. (18.7)

The Matlis dual of (18.7) produces the short exact sequence

0→ Hd−1
m (RD(1e|D + KD))→ Hd

m(R(1e + KR))→ Hd
m(R(1e + D+ KR))→ 0,

(18.8)
that is, the kernel of the natural map

Hd
m(R(1e + KR))→ Hd

m(R(1e + D+ KR))

induced by the inclusion R(1e + KR) ⊆ R(1e + D+ KR) is

Hd−1
m (RD(1e|D + KD)).

Similarly, the Matlis dual of the short exact sequence

0→ R(−D)→ R→ RD → 0

is

0→ Hd−1
m (RD(KD))→ Hd

m(R(KR))→ Hd
m(R(D+ KR))→ 0. (18.9)

Therefore, the kernel of Hd
m(R(KR)) → Hd

m(R(KR + D)) induced from the
inclusion R(KR) ⊆ R(KR + D) is Hd−1

m (RD(KD)).
Consider the following commutative diagrams with exact rows:

0 // Fe
∗R(1e + KR) // Fe

∗R(1e + D+ KR) // Fe
∗R(1e + D+ KR)D // 0

0 // R(KR) //

Fe

OO

R(D+ KR) //

Fe

OO

R(D+ KR)D //

Fe

OO

0.

The short exact sequences (18.8) and (18.9) give us commutative diagrams of
local cohomology modules with exact rows

0 // Fe
∗H

d−1
m (RD(1e|D + KD)) // Fe

∗H
d
m(R(1e + KR)) // Fe

∗H
d
m(R(1e + D+ KR)) // 0

0 // Hd−1
m (RD(KD)) //

Fe

OO

Hd
m(R(KR)) //

Fe

OO

Hd
m(R(D+ KR)) //

Fe

OO

0.

(18.10)

2 Note that this isomorphism requires that D is (G1).
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In light of Lemma 18.2.3, the left vertical map in (18.10) is isomorphic to

(RD → Fe
∗R(( pe

− 1) DiffD(1)))⊗R Hd−1
m (RD(KD))

and the right vertical map is isomorphic to (R→ Fe
∗R(( pe

− 1)(1 + D)))⊗R

Hd
m(R(KR)). We are assuming that (R,1+ D) is F-pure; therefore, the middle

map is injective by Lemma 18.3.1. Since the middle vertical map is injective,
so too is the left vertical map. Therefore, the pair (RD, DiffD(1)) is F-pure by
Lemma 18.3.1.

Remark 18.3.6 The proof of Theorem 18.3.5 contains an important obser-
vation that will be necessary to proving the theorem’s converse. Namely, if
(R,1 + D) is F-pure and ( pe

− 1)1 is integral for all sufficiently divisible
e� 0, then

R(−1e)|D → RD(−1e|D)

is an isomorphism for all such e.

18.4 Inversion of Adjunction of F-Purity

Lemma 18.4.1 (Key Lemma) Let (R,m, k) be an excellent d-dimensional (S2)
and (G1) local ring of prime characteristic p> 0. Suppose that D is a reduced
(S2) and (G1) divisor. Let1 be an effective Q-divisor with components disjoint
from D. Suppose that KR + D+1 is Q-Cartier and ( pe

− 1)1 is integral for
all sufficiently divisible e � 0. Suppose that (RD, DiffD(1)) is F-pure. Then
the following are equivalent:

(1) The pair (R,1+ D) is F-pure.
(2) If E is a p-power torsion divisor, then R(E)D = R(E)/R(E − D) is an (S2)

RD-module.

Proof If the pair (R,1+D) is F-pure, then the pair (R, D) is F-pure. Therefore,
if E is a torsion divisor of index pe0 , then R(E)D is a direct summand of Fe

∗RD

for all sufficiently divisible e � 0 by Lemma 18.3.2. We are assuming that
RD is (S2). Therefore, R(E)D is (S2) since it is a direct summand of an (S2)
RD-module. This completes the forward direction (1)⇒ (2).

We introduce notation that will be used in the proof of the converse
(2)⇒ (1). For each e∈N, let1e= ( pe

−1)(KR+D+1). There exists an inte-
ger e0 so that for all sufficiently divisible e � 0, the divisor −1e is a torsion
of index pe0 . By assumption, the reflexification map R(−1e)D→RD(−1e|D)
is an isomorphism for all sufficiently divisible e � 0. There are short exact
sequences
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0→ R(−1e − D)→ R(−1e)→ RD(−1e|D)→ 0.

Matlis duality provides us short exact sequences (again using that RD is (S2))

0→ Hd−1
m (RD(1e|D + KD))→ Hd

m(R(1e + KR))→ Hd
m(R(1e + D+ KR))→ 0.

Consequently, the kernel of the natural map Hd
m(R(1e + KR))→ Hd

m(R(1e +

D + KR)) induced by the inclusion R(1e + KR) → R(1e + D + KR) is
Hd−1
m (RD(1e|D + KD)). Similarly, there are short exact sequences,

0→ R(−D)→ R→ RD → 0

and Matlis duality provides us short exact sequences

0→ Hd−1
m (RD(KD))→ Hd

m(R(KR))→ Hd
m(R(KR + D))→ 0.

Therefore, the commutative diagram

0 // Fe
∗R(1e + KR) // Fe

∗R(1e + KR + D) // Fe
∗R(1e + KR + D)D // 0

0 // R(KR) //

OO

R(KR + D) //

OO

R(KR)D //

OO

0

induces the commutative diagram

0 // Fe
∗H

d−1
m (RD(1e|D + KD)) // Fe

∗H
d
m(R(1e + KR)) // Fe

∗H
d
m(R(1e + KR + D)) // 0

0 // Hd−1
m (RD(KD)) //

OO

Hd
m(R(KR))

OO

// Hd
m(R(KR + D)) //

OO

0.

(18.11)
The left vertical map in (18.11) is isomorphic to

(RD → Fe
∗RD(( pe

− 1) DiffD(1)))⊗RD Hd−1
m (RD(KD)). (18.12)

Since (RD, DiffD(1)) is F-pure, the map in (18.12) is injective by Lemma
18.3.1. Since Hd−1

m (RD(KD)) and Hd
m(R(KR)) are essential extensions of the

residue field, a simple chase of a socle element in the diagram (18.11) shows
that the middle vertical map is similarly injective. Moreover, this map is
isomorphic to

(R→ Fe
∗R(( pe

− 1)(1+ D)))⊗R Hd
m(R(KR)).

In particular, the pair (R,1 + D) is F-pure by Lemma 18.3.1. This completes
the proof of (2)⇒ (1).
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Corollary 18.4.2 (Inversion of adjunction along a Q-Cartier divisor) Let
(R,m, k) be an excellent (S2) and (G1) ring of prime characteristic p> 0 and
let KR be a choice of canonical divisor of Spec(R). Suppose that D ≥ 0 is
an effective integral (S2) and (G1) divisor, and let 1 ≥ 0 be an effective Q-
divisor on Spec R whose components are disjoint from those of D and such
that ( pe

− 1)1 is integral for all sufficiently divisible e � 0. Suppose that
KR + D+1 is Q-Cartier. Suppose that

(I) D is Q-Cartier;
(II) for each Q-Cartier divisor E and p ∈ D ⊆ Spec(R) that

depth(R(E)p) ≥ min{ht(p), 3}.

If (RD, DiffD(1)) is F-pure, then (R,1+ D) is F-pure.

Proof By Lemma 18.4.1, we only require that R(E)D is an (S2) RD-module
whenever E is a p-power torsion divisor. We first remark that if r ∈ R and
s ∈ R(E), then rs ∈ R(E − D) if and only if r ∈ R(−D). Therefore, R(E)D =

R(E)/R(E − D) is a torsion-free RD-module. In particular, if dim R ≤ 2, then
RD is at most one-dimensional and R(E)D is a torsion-free (and therefore a
maximal Cohen–Macaulay) RD-module. By induction, we may assume that
dim R ≥ 3 and aim to show that H1

m(R(E)D) = 0.
There are short exact sequences

0→ R(E − D)→ R(E)→ R(E)D → 0

and therefore H1
m(R(E)D) ⊆ H2

m(R(E − D)). The divisor E − D is torsion and
therefore the latter local cohomology module is 0 by assumption.

Lemma 18.3.4 demonstrates a necessary condition for F-pure inversion of
adjunction, namely

depth(R(E)p) ≥ min{ht(p), 3}

for all Q-Cartier divisors E and p ∈ D ⊆ Spec(R). This assumption is vac-
uous whenever the ambient ring is strongly F-regular by [17, Corollary 3.3].
Moreover, we can replace this hypothesis with the milder assumption that for
all p ∈ D ⊆ Spec(R)

depth(Rp) ≥ min{ht(p), 3}

and still obtain F-pure inversion of adjunction under the hypothesis that D is a
p-power torsion divisor.

Corollary 18.4.3 (Inversion of adjunction along a p-power torsion divisor) Let
(R,m, k) be an excellent (S2) and (G1) ring of prime characteristic p> 0 and
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let KR be a choice of canonical divisor of Spec(R). Suppose that D ≥ 0 is
an effective integral (S2) and (G1) divisor, and let 1 ≥ 0 be an effective Q-
divisor on Spec R whose components are disjoint from those of D and such
that ( pe

− 1)1 is integral for all sufficiently divisible e � 0. Suppose that
KR + D+1 is Q-Cartier. Suppose further that D is a p-power torsion divisor
and that for all p ∈ D ⊆ Spec(R) that

depth(Rp) ≥ min{ht(p), 3}.

If (RD, DiffD(1)) is F-pure, then (R,1+ D) is F-pure.

Proof As in the proof of Corollary 18.4.2, we may assume that R is of dimen-
sion at least 3. By induction on the dimension of R, we may assume that
(R,1 + D) is F-pure when localized at a non-maximal point of D. In light of
Lemma 18.4.1, the reflexification map R(E)D → RD(E|D) is an isomorphism
on the punctured spectrum. Therefore, it suffices to show H1

m(R(E)D) = 0 to
conclude that R(E)D is an (S2) RD-module.

As the reflexification map R(E)D → RD(E|D) is an isomorphism on the
punctured spectrum, we observe

l H2
m(R(E)D) ∼= H2

m(RD(E|D)), and
l H2

m(R(E)D)→ Fe
∗H

2
m(RD( peE|D)) is an injective map as RD is F-pure.

Consider the following commutative diagram:

0 / / Fe
∗R( peE − D) / / Fe

∗R( peE) // Fe
∗R( peE)D / / 0

0 // R(E − D)

OO

// R(E)

OO

//

OO

R(E)D / /

OO

0

and the resulting commutative diagram of local cohomology modules:

0 // Fe
∗H

1
m(R( peE)D) // Fe

∗H
2
m(R( peE − D)) // Fe

∗H
2
m(R( peE)) // Fe

∗H
2
m(R( peE)D)

0 // H1
m(R(E)D) //

α

OO

H2
m(R(E − D)) //

β

OO

H2
m(R(E))

ζ //

γ

OO

H2
m(R(E)D).

δ

OO

If e � 0, then peE ∼ 0 in which case H1
m(R( peE)D) = H2

m(R( peE)) =
H2
m(R) = 0 by assumption and the diagram simplifies as

0 // 0 // Fe
∗H

2
m(R( peE − D)) // 0 // Fe

∗H
2
m(R( peE)D)

0 / / H1
m(R(E)D) / /

α

OO

H2
m(R(E − D)) / /

β

O O

H2
m(R(E))

ζ / /

γ

OO

H2
m(R(E)D).

δ

O O
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The map δ is injective. Therefore, ζ is the 0-map and we have a surjection
H2
m(R(E − D)) � H2

m(R(E)). We mention that up to this point, we have not
utilized that D is a p-power torsion divisor.

We may repeat the argument from the previous paragraph after replac-
ing E with the likewise p-power torsion divisor E−D to obtain a surjection
H2
m(R(E − 2D)) � H2

m(R(E − D)). More generally, for any n ∈ N, we obtain
surjections

H2
m(R(E − nD))� H2

m(R(E − (n− 1)D))� · · ·� H2
m(R(E − D))� H2

m(R(E)).

Choose n so that nD = divR( f ) ∼ 0. Then there is a commutative diagram

H2
m(R(E − nD))

∼= // H2
m(R(E))

H2
m(R(E))

·f / /

·f ∼=

OO

H2
m(R(E)).

=

OO

Consequently, H2
m(R(E))= f H2

m(R(E)). The module H2
m(R(E)) is finitely

generated by Lemma 18.2.4 since R(E) is (S2) and dim R ≥ 3. By Nakayama’s
lemma, the module H2

m(R(E))= 0. Similarly, H2
m(R(E−D))= 0 because E−D

is a p-power torsion divisor. Therefore, H1
m(R(E)D) = 0 as needed since

H1
m(R(E)D) is a submodule of H2

m(R(E − D))= 0.

18.4.1 Closing Remarks on Theorems B and C

Techniques used here might be useful in proving other cases of F-pure inver-
sion of adjunction. For example, there are cases to consider whenever the
boundary divisor 1 does not have the property that ( pe

− 1)1 is integral
for sufficiently divisible e � 0. Arguments using our techniques will require
additional assumptions on the modules R(( pe

−1)1) = R(b( pe
−1)1c) for suf-

ficiently divisible e� 0. For example, one could develop a version of Lemma
18.4.1 under the additional hypothesis that b( pe

−1)(KR+D+1)c is Q-Cartier
for all sufficiently large and divisible e� 0.

Alternatively, one can consider novel roundings of the divisors ( pe
− 1)1

when defining a competing notion of an F-pure pair (R,1). For example,
Schwede defined a pair (R,1) to be sharply F-pure if for all sufficiently
divisible e� 0 the maps

R→ Fe
∗R(d( pe

− 1)1e)

are pure [19]. Sharp F-purity has a distinct advantage whenever 1 + D is
Q-Cartier:

HomR(Fe
∗R(d( pe

− 1)1e), R) ∼= Fe
∗R(−( pe

− 1)(1+ KR)).
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Regardless, there are simple counterexamples to sharp F-pure inversion of
adjunction, even if the ambient ring R is nonsingular.

Example 18.4.4 Let R = Fp[[x, y, z]], 1 = 1
p [R/(x+ yp

+ zp)], and D = V (x).
The pair (RD,1|D) is sharply F-pure, but (R,1+divR(x)) is not sharply F-pure.
To see this, first notice that [R/(x + yp

+ zp)]|D = p[RD/(y + z)]. Therefore,
1|D = [RD/(y + z)]. The pair (RD,1|D) is (sharply) F-pure. Indeed, RD is
isomorphic to the regular local ring Fp[[y, z]] and (y+ z)pe

−1
6∈ m[pe] for all e.

Observe that

d( pe
− 1)1e =

°
pe
− 1

p

§ ï
R

(x+ yp + zp)

ò
= pe−1

ï
R

(x+ yp + zp)

ò
.

In particular, the pair (R,1+D) is not sharply F-pure as (x+yp
+zp)pe−1

xpe
−1
∈

m[pe] for all e ∈ N.

We conclude this section by highlighting an application of our results (and
those of [18]) to a question of Enescu.

Question 18.4.5 (see [4, Question 3.5] and surrounding discussion) Does
there exist an excellent local F-rational ring (R,m) such that for all nonze-
rodivisors x ∈ R, the ring R/xR is not F-pure?

Example 18.4.6 By either Theorem A or [18, Theorem A], any Q-Gorenstein
isolated singularity (R,m) which is F-rational but not F-pure will provide an
affirmative answer to Question 18.4.5. In particular, the ring

R =
Å F2[x, y, z, w]

(x3 + y3 + z3 + w3)

ã(n)

m

, n ≥ 2

(where (−)(n) denotes the nth Veronese subring and m is its homogeneous
maximal ideal) is such an example by [21, Example 6.3].

18.5 Manivel’s Trick

Recall the following theorem on deformation of F-purity.

Theorem 18.5.1 ([18]) Let (R,m, k) be a local F-finite Q-Gorenstein ring of
prime characteristic p> 0. Suppose that x ∈ m is a nonzerodivisor such that
R/xR is (G1), (S2), and F-pure. Then R is F-pure.

We will demonstrate in this section how a special case of Theorem A follows
from Theorem 18.5.1 using a variant of a trick due to Manivel [14].
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Proof of Theorem A when R is F-finite and 1 = 0 Assume now that (R,m, k)
is an F-finite Q-Gorenstein local ring of prime characteristic p, and x ∈ m

is a nonzerodivisor such that R/xR is (G1) and (S2), and so that R/xR is F-
pure. Suppose n ∈ Z> 0 is relatively prime to p and consider the module finite
extension ring Un := R[Y ]/(Y n

− x). Note first that Un is reduced, as Un is
generically étale over R. Also, Un is a free R-module of rank n, from which it
follows that Un remains (S2) and f is a nonzerodivisor on Un. Consequently, if
y denotes the image of Y in Un, y is also a nonzerodivisor on Un, and moreover
Un/(y) = R/xR is (S2), (G1), and F-pure. Since HomR(Un, R) ∼= Un, for exam-
ple, by taking the projection onto the R-factor corresponding to yn−1, we also
see that Un is (G1) as it is Gorenstein over the Gorenstein locus of R. Similarly,
Un remains Q-Gorenstein. By Theorem 18.5.1 (applied to the localizations at
the finitely many maximal ideals of Un), it follows that Un is F-pure.

Letting n = p+ 1, consider the following diagram:

R F∗R

Up+1 F∗Up+1.

1 7→yp

17→F∗xp−1

F∗17→F∗y

1 7→F∗1
α

β

γ

δ

To see that this commutes, note that we have

δ(γ (1)) = δ(F∗xp−1) = F∗x
p−1y = F∗y

( p+1)( p−1)y = F∗y
p2

and also

α(β(1)) = α(yp) = ypα(1) = ypF∗1 = F∗y
p2

.

Since Up+1 is F-pure, the bottom rightward arrow α is a split inclusion of
Up+1-modules, hence also of R-modules. The left downward arrow β is also a
split inclusion of R-modules. It follows that the composite mapping α ◦ β =
δ ◦ γ is a split inclusion of R-modules, and so in particular γ is as well. By
definition, we see that the pair (R, divR(x)) is F-pure.

Remark 18.5.2 One can also apply Manivel’s original trick in the the preced-
ing alternate proof of Theorem A when R is F-finite and 1 = 0 proof instead.
With the same notation as in the first paragraph of the proof, instead consider
the commutative diagram

https://doi.org/10.1017/9781009396233.019 Published online by Cambridge University Press

https://doi.org/10.1017/9781009396233.019


On F-Pure Inversion of Adjunction 343

R Fe
∗R

Un Fe
∗Un

17→yn−1

17→Fe
∗x

(1−1/n)( pe
−1)

Fe
∗17→Fe

∗y
n−1

17→Fe
∗1

β

α

γ

δ

where e � 0 is sufficiently large and divisible so that n|( pe
− 1). Since Un

is F-pure, the bottom rightward arrow α is a split inclusion of Un-modules,
hence also of R-modules. The left downward arrow β is also a split inclusion
of R-modules. It follows that the composite mapping α ◦ β = δ ◦ γ is a split
inclusion of R-modules, and so in particular γ is as well. By definition, we see
that the pair (R, (1 − 1/n)divR(x)) is F-pure. Letting n → ∞ and using [8,
Theorem 4.9], it follows that (R, divR(x)) is F-pure.

References

[1] Y. Aoyama, Some basic results on canonical modules, Kyoto J. Math. 23 (1983),
no. 1, 85–94.
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