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Hamburg, Germany SPIND (sparse-pattern indexing) is an auto-indexing algorithm for sparse
snapshot diffraction patterns (‘stills’) that requires the positions of only five
Keywords: serial crystallography; X-ray free- Bragg peaks in a single pattern, when provided with unit-cell parameters. The

electron lasers; XFEL; electron diffraction; capability of SPIND is demonstrated for the orientation determination of sparse

diffraction patterns using simulated data from microcrystals of a small inorganic
molecule containing three iodines, S-amino-2,4,6-triiodoisophthalic acid mono-
Supporting information: this article has hydrate (I3C) [Beck & Sheldrick (2008), Acta Cryst. E64, 01286], which is
supporting information at www.iucrj.org challenging for commonly used indexing algorithms. SPIND, integrated with
CrystFEL [White et al. (2012), J. Appl. Cryst. 45, 335-341], is then shown to
improve the indexing rate and quality of merged serial femtosecond crystal-
lography data from two membrane proteins, the human é§-opioid receptor in
complex with a bi-functional peptide ligand DIPP-NH, and the NTQ chloride-
pumping rhodopsin (CIR). The study demonstrates the suitability of SPIND for
indexing sparse inorganic crystal data with smaller unit cells, and for improving
the quality of serial femtosecond protein crystallography data, significantly
reducing the amount of sample and beam time required by making better use of
limited data sets. SPIND is written in Python and is publicly available under the
GNU General Public License from https:/github.com/LiuLab-CSRC/SPIND.

diffract-then-destroy; dynamical studies;
auto-indexing algorithms; Bragg peaks.

1. Introduction

The high brightness and femtosecond pulse duration of X-ray
free-electron lasers (XFELs) enabled the serial diffraction-
before-destruction paradigm (Neutze et al., 2000), which
mitigates X-ray radiation damage and allows data to be
collected from weakly scattering targets. In a typical serial
femtosecond crystallography (SFX) experiment, diffraction
patterns are recorded from tens of thousands of microcrystals
delivered sequentially across a pulsed X-ray beam [Chapman
5 e |LEN et al. (2011); see Spence (2017) for a review]. These snapshot
diffraction patterns (from individual microcrystals) corre-
. spond to reciprocal-space intensity samples that lie on the
surface of the Ewald sphere. Since each crystal is in a random
" 491,92> orientation, crystal orientations must be determined before
P2 intensities can be merged in three-dimensional reciprocal
—— space. Femtosecond XFEL pulses are too short for substantial
.l crystal rotation during exposure, so only partial reflection
3 intensities are recorded in each diffraction pattern, with
partiality determined by various factors such as X-ray band-
width and crystal shape, size, orientation and mosaicity.
SFX data analysis is challenging because of the wide
OPEN @ ACCESS variation in crystal size and mosaicity, which is confounded by
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jitter in the XFEL pulse energy and spectrum, detector
dynamic range limitations, and the random positions/orienta-
tions of crystals. Monte Carlo integration (Kirian et al., 2010)
is an effective means of producing crystallographic structure
factors by simply averaging over stochastic measurement
variations that are assumed to be completely random.
However, this approach requires a large number of patterns
(on the order of tens of thousands) in order for the average
partial reflection measurements to converge to a reliable set of
integrated Bragg intensities [see Li et al (2015) for error
metric analysis of the Monte Carlo integration approach]. This
is in contrast to conventional synchrotron crystallography in
which the molecular structure is determined using one or a few
larger crystals, using the oscillation approach where the crys-
tals are rotated through the Bragg condition during the
intensity recording to yield angle-integrated structure factors.
Post-refinement techniques for SFX data have recently been
developed that can greatly reduce the number of required
snapshot patterns to a few thousand, or a few hundred, in
favorable circumstances (White, 2014; Uervirojnangkoorn et
al., 2015; Sauter, 2015; Ginn et al., 2015). This reduces demand
on scarce XFEL beam time and sample volume.

A number of software packages have been developed
specifically for SFX or snapshot diffraction data analysis [see
Liu & Spence (2016) for a review]. An SFX data-analysis
pipeline commonly starts with data-reduction programs such
as Cheetah (Barty et al., 2014), which apply various detector
calibrations, identify diffraction peaks and produce data-
collection statistics. Patterns containing diffraction peaks are
then passed to programs such as CrystFEL (White et al., 2012)
or cctbx.xfel (Hattne et al., 2014) for high-throughput auto-
indexing and intensity merging. CrystFEL’s program
indexamajig calls subroutines wherein partial reflections are
auto-indexed and locally integrated within each two-dimen-
sional pattern. Finally, intensities from partial reflections are
merged by process_hkl (optionally including scaling and post-
refinement using partialator), which results in a set of Bragg
intensities. For each diffraction pattern, indexamajig passes
the peak positions as input arguments to auto-indexers such as
MOSFLM (Powell, 1999), DirAx (Duisenberg, 1992), or XDS
(Kabsch, 1988, 1993), or algorithms implemented directly in
indexamajig, such as asdf, felix (Beyerlein et al., 2017) and
taketwo (Ginn et al., 2016). Auto-indexing modules return a set
of lattice vectors oriented in the laboratory frame and work by
first converting Bragg reflections to three-dimensional reci-
procal-space vectors. MOSFLM or LABELIT, for example,
then projects these vectors onto a set of discrete directions
distributed about a hemisphere (Campbell, 1998; Leslie, 2006;
Powell, 1999; Steller et al., 1997; Sauter et al., 2004). If a
sufficient number of diffraction peaks from a single crystal
lattice contribute to the one-dimensional projected histogram,
its Fourier transform consists of sharp spikes if the projection
direction coincides with one of the principal axes of the
crystal. The frequency of these spikes provides lattice para-
meter information. Once principal axis candidates are iden-
tified, indexamajig predicts the possible Bragg peak positions
in the original pattern, tests for reasonable agreement with the

observed peak positions, and if the agreement is satisfactory,
the peak intensities are integrated. The result of this proce-
dure is a set of partially integrated reflection intensities and
associated Miller indices.

This data-analysis pipeline has been used for high-
resolution structure determination in both SFX and synchro-
tron serial crystallography (Nogly et al, 2016; Standfuss &
Spence, 2017). However, a significant portion of SFX
diffraction patterns, especially those from difficult-to-crystal-
lize macromolecules such as membrane proteins, only have a
small number of identifiable Bragg peaks because of small
crystal size, crystal disorder, scattering from air and sample-
delivery medium, and detector noise, which decrease the
signal-to-noise ratio (SNR). Time-resolved SFX requires small
crystals because the extinction length of the optical-pump
laser is typically on the order of 10 um, while the temporal
resolution of mix-and-inject SFX (to study ligand binding, for
example) is limited by mixing and diffusion rates, and hence
also benefits from smaller crystal size (Schmidt, 2013). The
narrow (though spiky) bandwidth of XFELs based on self-
amplified spontaneous emission (SASE) and the stillness of
crystals during the ultrafast exposures in SFX also limits the
number of Bragg spots that intersect the Ewald sphere. In
addition, inorganic crystals typically have very small unit cells
and so give rise to sparse patterns with fewer Bragg peaks in
the same resolution shell than most protein crystals. Existing
auto-indexing algorithms that are based on one-dimensional
Fourier transforms typically require that each pattern consist
of 20 [or even more (Campbell, 1998)] accurately identified
Bragg peaks to yield a reliable crystal orientation. The
development of auto-indexing algorithms for sparse patterns
with fewer peaks would greatly increase SFX data utilization
for such challenging cases with low resolution, and for samples
with very small unit cells. Here we take sparse to mean that
there are few Bragg spots, rather than weak Bragg intensities.

In this paper, we present a new algorithm, SPIND (sparse-
pattern indexing), designed to index patterns with sparse data,
achieve faster and more accurate structure-factor measure-
ments, and reduce measurement time, sample consumption
and cost. The use of angles between scattering vectors, as well
as their lengths, is a strong constraint, as described in Methods.
SPIND has the merit of a low false-positive rate and hence a
high level of effectiveness as well as efficiency, which is
demonstrated on extremely sparse patterns simulated from
inorganic crystals and experimental SFX data from
membrane-protein microcrystals. Two alternative auto-
indexing algorithms for sparse patterns have been developed
recently. Maia et al. (2011) developed a compressive sensing-
based auto-indexing algorithm for sparse diffraction patterns
in serial femtosecond nanocrystallography in which lattice
reconstruction is reformulated as an L1 minimization (basis
pursuit) problem. The algorithm was shown to efficiently
reconstruct a three-dimensional lattice and its orientation
from a simulated noise-free sparse diffraction pattern without
prior knowledge of the unit cell. The use of multiple three-
dimensional fast Fourier transforms renders the algorithm
computationally expensive in its current form, but incorpor-
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ating additional algorithms designed for sparse data should
substantially increase its speed. Additionally, the indexing
ambiguity arising from mirror symmetries of the lattice
remains to be resolved, and the algorithm is yet to be
demonstrated on experimental data or in the presence of
noise. An alternative auto-indexing algorithm for sparse SFX
diffraction patterns from crystals with small unit cells, which
depends on known lattice parameters, was demonstrated by
Brewster ef al. (2015) on amyloid peptide nanocrystal data.
The approach consists of three steps: (1) assign each peak all
possible Miller indices corresponding to its resolution, (2)
resolve the ambiguities in Miller-index assignment (e.g. from
lattice symmetry or semi-overlapping powder rings) and (3)
calculate basis vectors and refine crystal orientation, itera-
tively. The Bron-Kerbosch algorithm (Cazals & Karande,
2008) is used to determine the maximum-clique of a graph in
which all found peaks, with each of their candidate Miller
indices, are represented as individual nodes. For each pair of
peaks, the differences between calculated and observed inter-
peak distances in reciprocal space (for each candidate Miller
index) are represented as edges, so Bragg peaks that cannot be
simultaneously accounted for by one orientation matrix are
not connected in the graph. An advantage of the graphic
maximum-clique algorithm is its tolerance to false peaks, but
for very sparse patterns (five Bragg peaks), the determined
unit-cell accuracy is on the order of 10%.

2. Methods

Here we describe the algorithm for indexing patterns
containing very few Bragg peaks, which we refer to as SPIND.
If peaks are sparsely distributed in each pattern, their
periodicity is difficult to identify via Fourier methods. The
proposed algorithm therefore utilizes prior knowledge of unit-
cell parameters. The algorithm works as follows (see Fig. 1 for
a flowchart). For each pattern:

(a) Bragg peaks are identified and their positions, inten-
sities, SNRs, resolution and the camera length are written to a
plain text file.

(b) The two-dimensional peak positions on the detector are
converted to three-dimensional reciprocal vectors that start
from the beam center (treated as a 000 reflection) using the
experimental geometry.

(c) The best five peaks (or more) are chosen from the peak
list according to intensity, SNR or resolution (these can be
chosen by the user). In principle, any number of peak pairs
greater than two can be used to determine the crystal orien-
tations. Indexing reliability increases with the number of pairs
used, as discussed later. However, the computation time scales
roughly as N? {the number of pairs scales as N!/[2(N — 2)!]
where N is the number of peaks}. We found that five peaks
(ten peak pairs) is a good compromise between indexing yield
and computational time.

(d) For each of the ten pairs, the two vector lengths and
angle between the pair are calculated [see Fig. 2(a)].

(e) For a large set of discretized crystal orientations, a
reference table is created that contains the expected lengths,

ratio of the lengths, and angles between vectors for all possible
pairs (within a certain resolution limit). This reference table is
based on prior knowledge of the unit cell and is calculated
only once in the whole process of indexing.

(f) The set of observed vector lengths, ratios of lengths (in
case the geometry needs refinement), and angles corre-
sponding to each of the ten pairs of peaks are compared with
the entries in the reference table. Whenever a match is found
between a given observed peak pair and an entry in the
reference table (within a preset mismatch tolerance), the
reference-table entry (i.e. crystal orientation) is considered to
be a solution candidate and added to a solution pool. One
solution pool, with multiple entries, is created for each of the
ten peak pairs.

(g) If all reciprocal vectors correspond to the same crystal
orientation, the true solution for the crystal orientation must
be in the intersection of all ten solution pools (Fig. 2b). This is
a strong constraint that effectively eliminates spurious solu-
tion candidates in one step without implementing other opti-
mization and clustering algorithms such as in the work by
Brewster et al. (2015). However, this constraint is sensitive to
peaks not belonging to a single lattice, which will require
development of approaches for eliminating false peaks used
for indexing. The indexing ambiguity that occurs in cases
where the symmetry of Bravais lattice is higher than the space-
group symmetry is not resolved here. Several algorithms have
been designed and tested to resolve this type of indexing-
ambiguity problem, in particular for serial crystallography
data (Brehm & Diederichs, 2014; Liu & Spence, 2014).

(h) For very sparse patterns, if a single orientation is found
in the intersection, it is used to predict peak locations. If the
distance between predicted and found peaks of the same
Miller index (in three-dimensional reciprocal space) is within
the tolerance threshold, the peaks are tagged as matched. By
default, this threshold is half of the distance to the nearest
Bragg peak. If the predicted peaks match all found peaks in
the experimental pattern, the solution is accepted; otherwise,
the pattern is considered un-indexable and rejected.

() For diffraction patterns containing more spots: all
candidate orientations (from all solution pools) are used to
predict peak locations. The quality of the orientation candi-
date solution is scored by the number of predicted peaks
matching observed peaks (for all peaks, not just those used for
indexing), the percentage of peaks matched (a higher
percentage of matched peaks is required if the total number of
peaks is low) and the determined lattice centering.

3. Results and discussions

3.1. Simulating and indexing sparse patterns from inorganic
microcrystals

In order to test the ability of SPIND to index sparse
diffraction patterns, we simulated 400 diffraction patterns
from 5-amino-2,4,6-triiodoisophthalic acid monohydrate (I3C)
crystals (Beck & Sheldrick, 2008) at random orientations. A

74 Chufeng Li et al.

+ SPIND: a reference-based auto-indexing algorithm

IUCr) (2019). 6, 7284



research papers

rejection
module

peak detection final solution

(HKL+orientation)

common solution

(intersection set)

peak lists

proposed solution best solution

(highest score)

peak prediction for all
solutions
reciprocal vectors

gRy e solution pool

(orientation matrix+HKL)

match with found
peaks?

prior knowledge of
latice

choose best 5 peaks

peak prediction

calculate vector lengths
and angle for 10 pairs

Look-up table

external rejection
(vector length, angle, ratio)

matching

Figure 1

Flowchart of the SPIND indexing algorithm. The five best peaks in each pattern selected based on
user-chosen criteria, such as SNR, are used for indexing. The blue boxes refer to prior knowledge and
the table is calculated once. The green boxes are steps carried out for each pattern. The (red)
rejection module refers to steps (g) to ().
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Figure 2

Illustration for SPIND auto-indexing algorithm. (a) A diffraction pattern recorded by Cornell-SLAC
hybrid Pixel Array Detector (CSPAD) (Herrmann er al, 2013; Hart et al., 2012), with a few
exaggerated peaks for illustrative purposes. Five peaks are selected to form ten vector pairs. The
vector lengths, ratio of lengths and angles between the vectors are then calculated for the ten pairs for
matching with a reference based on a priori knowledge of the unit cell (within some mismatch
tolerance). (b) Rejection module for eliminating spurious solution candidates, based on the constraint
that all peak pairs share the same crystal orientation. The solution must lie in the intersection of the

after adding noise terms]. The SPIND
algorithm obtained correct crystal
orientations and Miller indices for all
400 patterns. This implementation of
SPIND (written in MATLAB R2014b;
The MathWorks Inc., Natick, MA,
USA) required millisecond computa-
tional time on a Mac 2.7 GHz Intel
Core i7. In addition to the fast
computation time, the orientation was
determined with high accuracy. A
typical example from the 400 patterns
that were indexed successfully is
shown in Fig. 3(c), where the orienta-
tion was determined with an accuracy
of around 0.1°.

To investigate the robustness of the
indexing algorithm in the presence of
lattice inhomogeneity or inaccurate
guiding-cell constants, an additional
set of 400 I3C diffraction patterns was
simulated with random Gaussian fluc-
tuations in lattice constants about the
mean values with 0.5% standard
deviation. SPIND indexing was
carried out using 11 different guiding
unit cells with varying o« angle values
and lengths of b and ¢ basis vectors.
The o angle of the guiding cell was
varied from 80 to 110° symmetrically
around the nominal value of 90°, with
the length of the b and ¢ basis vectors
adapted such that the volume of the
cell is invariant (same as the nominal
cell used to simulate the diffraction
patterns) to maintain a consistent
average density of the Bragg orders as
a control factor. The number of
indexed patterns decreased as the
guiding cell deviated incrementally

solution pools, provided that the peaks are from a single crystal.

unit cell with a =9.02, b =15.73, c=18.82 A, a=p=y=90°a
photon energy of 9.61 keV, 0.5 pum beam radius, 110 x
110 pm?* detector pixel size, and 53.2° maximum scattering
angle at a working distance of 0.07 m were used for diffrac-
tion-pattern simulations. The three-dimensional profile of the
reciprocal lattice points was modeled as Gaussians taking into
account 1 pum crystal size and structure factors. The intensities
were calculated from the three-dimensional Gaussian profile
and the excitation error, defined as the distance between the
Ewald sphere (corresponding to monochromatic X-ray beam
of 9.61 keV photon energy) and the center of the reciprocal
lattice point projected in the beam direction. Poisson noise
and background scattering were included such that only three
to five Bragg peaks were identifiable in each pattern [see
Figs. 3(a) and 3(b) for a representative pattern before and

from the nominal cell (Fig. 4a). In this

test, the peak indexing rate appears at
the o angle values of 89 and 91°, which is most likely attri-
butable to the random fluctuations in lattice constants
combined with the limited size of the diffraction data set. To
validate this argument, the distribution of the three-dimen-
sional reciprocal-space distances between the predicted and
the found positions for the paired peaks from all indexed
patterns were obtained for the o angle values of 90, 91, 92 and
93° (Fig. 4b). The most probable value of the distance between
the predicted and the observed peak positions is minimized
when o = 90° and increases consistently as the « value incre-
mentally deviates from 90°. In addition, the total number of
paired peaks also drops as the guiding cell deviates from the
nominal. In accordance with the symmetry of the orthor-
hombic I3C lattice, the indexing rate and distance discrepancy
for paired peaks are also essentially symmetric about o = 90°.
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For this reason, only half of the distribution statistics, corre-
sponding to « > 90°, are shown in Fig. 4(b) for visual clarity.
The abrupt drops of the paired-peak population at 0.01 A 'in
Fig. 4(b) arise from this same cut-off value set for the peak-
match judgment [step (k) in the Methods section]. The
indexing rate drops to approximately 25% at o = 87, 93° which
shows a £3° tolerance range for the uncertainty or inaccuracy
in the guiding-cell constants. The indexing rate drops rapidly
further to 0.5% at o = 85, 95° and goes to 0 beyond 10° of
deviation. This low false-positive indexing rate verifies the
reliability of the SPIND rejection module. These indexing
statistics using guiding cells that deviate incrementally from
the nominal have demonstrated the robustness of the SPIND
indexing algorithm to the lattice inhomogeneity, a wide
tolerance range for the guiding-cell constants and low false-
(?'5"4’ positive indexing rate when the target lattice cell is clearly

i distinguishable from the guiding cell. Furthermore, it is
. (1.2.8) worthwhile to point out that the guiding cell, as well as other
indexing parameters such as error tolerance and threshold
i values (see the Methods section), can be updated iteratively by
i . (1:1,9) using indexing statistics (see Fig. 4 as an example) as feedback.
: ; Individual pattern-based lattice refinement, together with this
(0'5.5) iterative updating of the guiding cell and indexing parameters
are part of ongoing development.

(@)

; (1.24)
a1 . Toe32)

©-23) (1,3-4)

Figure 3

Simulated I3C patterns indexed by SPIND. (a) Simulated sparse
diffraction pattern from an I3C crystal in the orientation specified by
Euler angles —10.4676, 46.9022, 139.1443. (b) Poisson noise and random
background noise added to (a), so only three Bragg peaks were complex
identifiable (circled). (c¢) The indexing result by SPIND using only the . . .
three peaks (in (b). ”}h(e Bietermined cr%lstal orier}lltation is at Efler ai]lgles To demonstrate the algorithm on protein serial crystal-

of —10.5713, 46.8855, 139.2000. The peaks were predicted from the  lography data, SPIND was used to index serial X-ray

3.2. Indexing SFX data from a G-protein-coupled receptor

determined orientation and Miller indices were given for Bragg peaks. diffraction data from microcrystals of a G-protein-coupled
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Figure 4 @ @

The effect of inaccurate guiding unit cells on SPIND indexing rates and peak-prediction accuracy demonstrated on simulated I3C snapshot diffraction
patterns. (a) Number of indexed patterns as a function of the o angle of the guiding cell (o = 90° is nominal). (b) Distribution of distance discrepancy in
three-dimensional reciprocal space between found and predicted peaks for matched peak pairs using guiding cells with different « angle values. The
legend shows the o angle of the guiding cell. The center of the distribution shifts to larger values as « deviates further from the nominal value of 90°. The
same trend was observed for values of « < 90° (omitted for clarity). The results demonstrate the robustness of the algorithm to the lattice inhomogeneity,
a wide tolerance range for the guiding-cell constants and low false-positive indexing rate when the target lattice cell is clearly distinguishable from the
guiding cell. The indexing rate can be used as an indicator for the accuracy of the reference unit cell.
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Table 1 used for the original processing

Parameters for hit finding of DOR data set using Cheetah (Fenalti et al., 2015). (Fenalti et al., 2015). The indexing

Peak was attempted by MOSFLM 7.2.0

No. of Minimum no.  No. of intensity Peak Peak No. of (using prior unit-cell parameters and
frames of peaks pixels threshold SNR search finder hits found lattice t inf i foll db

collected per frame per peak (ADU) threshold  region algorithm  (hit rate %) a‘ 1ce type inlorma lon)’ 0 O“fe y

DirAx, and finally MOSFLM without

1967539 15 2-40 40 4 70-700 pixels 8 125458 (5.9) any prior information. For a fair

from center . . ..

comparison of the indexing rate and

accuracy of SPIND on SFX data, the

DOR data were reprocessed using

Table 2 one indexing method at a time rather

Parameters for auto-indexing of DOR SFX data using indexamajig, calling DirAx, MOSFLM and

SPIND as subroutines.

than combinations thereof [the latter
was the approach in the work by

Unit-cell tolerance Radii of

indexamajig (vector-search

peak integration

Fenalti et al. (2015) and (White, Barty
et al, 2016). The auto-indexing
methods that are compared in this

No. of

Reference orientation tolerance and background indexed patterns

Indexer cell refinement in SPIND) rings (pixels) (indexing rate %)
DirAx Yes Yes 5%, 1.5° 3,4,5 65015 (51.8)
MOSFLM  Yes Yes 5%, 1.5° 3,4,5 57687 (45.9)
MOSFLM  No Yes 5%, 1.5° 3,4,5 57413 (45.7)
SPIND Yes Yes 5%, 1.5° 3,4,5 67204 (53.5)

3 x10'm™,

3¢, reference

resolution > 8 A)
SPIND Yes No 5%, 1.5° 3,4,5 118514 (94.4)

3x10m™,

3°, reference
resolution > 8 A)

work are SPIND, DirAx, and
MOSFLM (with and without lattice
type and unit-cell input). Also, the
refinement option was toggled on
and off in indexamajig to investigate
the effect of the pattern filtering after
SPIND auto-indexing on the quality
of merged data.

The  data  processing  was

Table 3
Merging statistics from DOR SFX data using partialator.

The values in the parentheses are for the highest-resolution shell (2.8-2.7 A)

No. of No. of

Indexing patterns  crystals Resolut%on Ripiit

method used merged range (A) (%) CcC* SNR

DirAx 65015 64918 34.3-2.7 11.9 0.9982 6.3
-refine (0.7069)

MOSFLM 57687 57597 34.3-2.7 12.6 0.9979 6.1
-refine (0.6803)

MOSFLM 57413 57309 34.3-2.7 12.1 0.9980 6.2
-nolatt (0.6704)
-refine

SPIND 67204 67067 34.3-2.7 11.7 0.9981 6.5
-refine (0.6992)

SPIND 118514 116198  34.3-2.7 14.7 0.9973 5.8
-norefine (0.5978)

receptor (GPCR) complex, the human §-opioid receptor in
complex with a bi-functional peptide ligand DIPP-NH2
(referred to as DOR henceforth) collected at the Coherent
X-ray Imaging (CXI) endstation of the Linac Coherent Light
Source (LCLS) (Fenalti et al., 2015; Liang et al., 2015).

We used the diffraction patterns from the data set ID 40 in
the Coherent X-ray Imaging Data Bank [CXIDB, Maia
(2012)]. For CXIDB 40, the LCLS raw data, containing over
1 967 530 detector frames, were reduced using Cheetah for hit
finding, leaving 125458 diffraction patterns from DOR
microcrystals. Indexing and intensity integration were
performed with CrystFEL 0.6.2 (White, Barty et al, 2016),
based on the same indexamajig and partialator parameters as

performed using the scripts deposited

in CXIDB ID 40 with minimal

necessary changes to keep the consistency for comparison
between different indexing methods. A slightly larger unit cell
than the published one was found to give more symmetric
unit-cell distributions (see Fig. S1 in the Supporting infor-
mation) and higher indexing rates, so the updated unit cell was
used for all DOR indexing tests, with a = 160.10, b = 91.64, ¢ =
99.05 A, B = 92.22°. The other parameters used for data
processing in this work are summarized in Tables 1 and 2. In
general, the number of indexed patterns using SPIND algo-
rithm increases with the resolution limit that the reference
table is generated to [step (e) in the Methods]. However,
increasing the resolution limit of the reference table also
results in longer computing time and higher demands on
memory. Therefore, an optimal resolution limit of 8 A was
chosen after several trials to balance between the indexing
rate and the computation time. Similarly, the tolerance
threshold for reciprocal-vector search [step (f)] was set to be
3 x 10’ m~ ! and 3° based on the performance of several trials.
To evaluate the performance of SPIND alongside other
indexing methods, the merged data quality metrics — SNR,
multiplicity, and two metrics of data precision: CC* (Karplus
& Diederichs, 2012) and R,;; (White, Kirian ef al., 2012) — are
summarized in Table 3 and plotted in Fig. 5. Compared with
MOSFLM or DirAx individually, SPIND yielded the highest
indexing rate (53.5%) with the orientation refinement option
on in indexamajig (see Table 3), and 94.4% without the
refinement. The refinement module in indexamajig of
CrystFEL acts as a filter for the indexed patterns (White,
Mariani et al., 2016) by conserving only the patterns where the
predicted peaks match the observed peaks sufficiently well

IUCr) (2019). 6, 72-84

Chufeng Li et al.

+ SPIND: a reference-based auto-indexing algorithm 77



research papers

while discarding the others, resulting in a reduced indexing
rate. The multiplicity from DirAx-refine is slightly higher than
that from SPIND-refine, while the overall SNR is lower
(Fig. 5). SPIND-refine has the highest overall figures-of-merit
— SNR, Ry, and cC (Karplus & Diederichs, 2012) — in all
resolution shells. These self-consistency figures-of-merit along
with the Wilson plots (Fig. 6) for the merged data sets from
different indexing methods verify the general reliability of the
SPIND indexing algorithm and its applicability to serial
protein crystallography data processing. (Otherwise, the
figures-of-merit would become worse as patterns that are
incorrectly indexed are merged towards the structure-factor
list.) The B factors [calculated by TRUNCATE in CCP4
(French & Wilson, 1978)] were between 48 A2 (MOSFLM-
nolatt-refine) and 60 A> (SPIND-norefine). Moreover, the
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additional patterns indexed using SPIND and the improved
figures-of-merit indicate the potential capability of mining
more data for structure determination, and hence improving
the data efficiency, by including this new algorithm in the serial
crystallography data analysis routine.

By enabling indexing of patterns with much fewer peaks,
SPIND-norefine yields much higher multiplicity [see
Fig. S2(b) in the Supporting information], at the cost of other
figures-of-merit (Fig. 5). The Bragg reflection profile radius
(for each crystal) calculated by indexamajig is a measure of the
excitation errors of matched peaks and thus serves as a
measure of the accuracy of the determined orientation. The
modal value of the reflection profile radii when using SPIND-
norefine is the same as for the other indexing methods
(Fig. 5d), indicating SPIND orientation determination is
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indexamajig. See Fig. S2(a) for full range of reflection profile radii and Fig. S2(b) for reflection multiplicity in merged data sets in the Supporting
information. The keywords ‘refine’ and ‘norefine’ represent the on and off status of the lattice-refinement option in indexamajig in the indexing process.
‘nolatt’ represents that the reference cell and lattice type were not used as input for indexing (but were used as constraints for the indexing solution).
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Wilson plots for the merged DOR data sets from different indexing
methods. The linearity in the 0.06 to ~0.13 A~? region and the
consistency between all indexing methods confirm the quality of the
merged data sets.

sufficiently accurate for these patterns without the refinement
module in indexamajig. However, 10% of the patterns had an
insufficient number of matched peaks as determined by
indexamajig, and the reflection profile radius was not updated
from the default value of 0.02 x 10° m™" [see Fig. S2(a) in the
Supporting information]. Removal of these patterns improved
the SNR (and the CC*, marginally) in lower-resolution bins.
The majority of DOR patterns were of lower resolution (see
Fig. S3 in the Supporting information), and SPIND-norefine
was able to index a larger portion of these [see Fig. S3(f) in
the Supporting information], with high accuracy indicated by
the small reflection profile radii [see Fig. S4(b) in the
Supporting information]. It is possible the lower overall
quality of the merged SPIND-norefine data set is caused by
the inclusion of potentially anisomorphous crystals (from the
lower-resolution crystal batch), or lack of orientation and unit-
cell refinement.

3.3. Indexing SFX data from chloride ion-pumping rhodopsin
microcrystals

Serial crystallographic data were collected from chloride-
pumping rhodopsin (CIR) microcrystals at CXI, LCLS. Over
1200 000 raw frames were collected in about 3 h. Cheetah
identified 105 050 patterns as crystal hits with at least ten
peaks per pattern with SNR > 8. After several rounds of
geometry and lattice-cell refinement, 3414 patterns were
indexed using CrystFEL, giving an indexing rate of approxi-
mately 3%, with a monoclinic unit cell where a = 103.45, b =
50.28, ¢ = 69.38 A, and B =109.7°. Merging these 3414 indexed
patterns led to a structure solution (based on molecular
replacement) but with low figures-of-merit. This was attrib-
uted to the small number of indexed diffraction patterns
(especially for a membrane protein) and poor diffraction

quality in the higher-resolution range (the average multiplicity
drops below 15 for resolution greater than 6 A).

To understand what caused the 3% low indexing rate,
statistics including peak intensity and number of peaks per
pattern were obtained for all the crystal hits. A strong corre-
lation between the number of peaks per pattern and the
indexing rate was found as shown in Fig. 7(a). For patterns
that consist of more than 100 peaks, the indexing rate is above
~30% (CrystFEL 0.6.2), while it drops significantly for the
patterns with fewer peaks. Furthermore, as shown by the
distribution of number of peaks per pattern (Fig. 7a), a large
portion of the patterns that are identified as crystal hits consist
of only ten to 30 peaks. This ineffectiveness and low efficiency
in auto-indexing the patterns with a small number of peaks led
to the low indexing rate of 3%. To improve the indexing rate
for patterns that consist of few peaks, the SPIND algorithm
was applied to this data set. The indexing rates from all
indexing methods are summarized and compared in Fig. 7(b).
The SPIND algorithm increased the indexing rate slightly, to
4% if using the refinement feature in indexamajig (labeled
SPIND-refine in the figures), and to 54% without the refine-
ment feature. MOSFLM indexed 3.1% of the patterns using
refinement and 3.5% without the refinement step. SPIND
orientation solutions were chosen based on scoring the
candidate orientations as described in the Methods [step (i)].

Lattice and orientation refinement in indexamajig requires
that more than nine peaks match the predicted peak positions
well, from the lowest resolution, with a smooth gradient in
excitation error for later refinement. Patterns are regarded as
unindexed if this criterion is not met. This contributes to the
abrupt reduction in indexing rate when the refinement is
included in the analysis of the data set since it consists of a
significant portion of patterns with few peaks. Fig. 8(a) shows a
representative diffraction pattern that is successfully indexed
by both MOSFLM and SPIND. Almost all patterns indexed
by MOSFLM were also indexed by SPIND (with consistent
crystal orientations). Patterns that MOSFLM could index but
SPIND failed to index were found to be multi-crystal patterns.
SPIND indexed more patterns that were not indexed using
MOSFLM, and an example is shown in Fig. 8(b). It should be
noted that the pattern in Fig. 8(b) has fewer peaks than that in
Fig. 8(a). This observation is consistent with the correlation
between indexing rate and number of peaks per pattern
identified in Fig. 7(a), and validates the capability and effec-
tiveness of the SPIND algorithm in indexing patterns with
fewer peaks in this data set.

The CIR data sets were merged with partialator (version
0.6.3), excluding reflections with pixel values > 13 200 ADU,
push-res = 1.0, with three iterations of scaling and no partiality
refinement, resulting in high SNR and CC’, but limited
completeness at high resolution (making the CC* and SNR
misleading in those resolution bins), as shown in Figs. 9 and S5
in the Supporting information.

The Wilson plots are linear to ~2 A for all indexing
methods (Fig. 9d). SPIND-refine performed the best overall,
with a higher indexing rate, slightly higher SNR, CC" and
smaller modal reflection profile radius (Fig. 9). The inclusion
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Statistics of CIR data set. (a) Distribution of number of peaks per pattern. Most patterns contained ten to 30 peaks, and were not indexed using
MOSFLM (gray bars, ~100 000 patterns). Histograms from SPIND-refine and MOSFLM-refine fit within the yellow distribution and are omitted for
clarity. (b) Comparison of indexing rates using MOSFLM and SPIND with the lattice-refinement option in indexamajig enabled and disabled. The
lattice-refinement feature requires that more than ten found peaks match their predicted peak positions with a small excitation error (that increases
smoothly with resolution) (White, Barty et al., 2016). Patterns are discarded (not indexed) if this criterion is not met. This contributes to the abrupt cut in
indexing rate from using SPIND-norefine to SPIND-refine since this data set consists of a significant portion of patterns with few peaks (fewer than five).

X O O

peak mosflm spind

Figure 8

Representative indexed diffraction patterns from the CIR data set,
recorded on the CSPAD. (a) indexable by both MOSFLM and SPIND,
(b) indexable only by SPIND. Identified peaks are marked by red crosses,
and peak positions predicted from the orientation matrix given by
MOSFLM and SPIND are marked with cyan and green circles,
respectively. The overlapping cyan and green circles in (a) correspond
to the same Miller indices, thus confirming the consistency of the indexing
results between SPIND and MOSFLM.

of a large number of low-resolution patterns by SPIND-
norefine yielded a higher SNR and CC" in the lowest resolu-
tion shell, but performed worse at medium and high resolu-
tion. To understand the contrasted behavior between low- and
high-resolution ranges, the histograms of the apparent
diffraction resolution that is estimated by CrystFEL per
pattern for different indexing methods are compared with the
resolution histogram of the found peaks (Fig. 10). The reso-
lution distributions of the patterns indexed by SPIND are

consistent with that of all found peaks, showing clustering in
both low- and high-resolution ranges, while other indexing
methods favor more high-resolution patterns. The peak in the
low resolution range tails at about 1.2 nm™" in Figs. 10(d) and
10(e) explains the significant increase in SNR in the lowest
resolution bin (Fig. 9b). The kink in the SPIND-norefine
Wilson plot (Fig. 9d, yellow line) around 0.15 A2 s probably
caused by the imperfect scaling of intensities from two distinct
crystal batches, judging by their diffraction resolution (see
resolution histograms in Fig. 10e), which is likely to be indi-
cative of anisomorphism between the two crystallization
batches. The accuracy or orientations determined by SPIND-
norefine can be inferred by the small reflection profile radii,
showing again that SPIND, even without orientation refine-
ment, did determine accurate orientations for the majority of
the patterns.

The refinement module in indexamajig optimizes and
refines the lattice constants and crystal orientation for each
indexed pattern by minimizing the residuals between the
experimental peak positions and the peak positions that are
predicted from the orientation matrix given by the auto-
indexer. Therefore, for SPIND-norefine and the 3-ring
integration method (White et al., 2012) that is usually adopted
for intensity integration using indexamajig, the background,
signal and noise are incorrectly estimated since the predicted
peak positions may not match the observed peak positions in
the higher-resolution range without lattice refinement. The
addition of an orientation refinement module requiring fewer
peaks will improve merging statistics from SPIND at higher
resolution than demonstrated here, if not limited by crystal
quality.
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Figures-of-merit for the CIR data set indexed with various indexing algorithms. (a) CC*, (b) SNR, (c) reflection profile radii and (d) Wilson plots. The
keywords ‘refine’ and ‘norefine’ represent the on and off status of the lattice-refinement option in indexamajig of CrystFEL in the indexing process.
SPIND-refine has better figures of merit for this data set than the other methods. Small modal reflection profile radii indicate that orientation determined
by SPIND is often more accurate than MOSFLM with and without orientation refinement.

3.4. Software availability, usage and performance

The algorithm development and prototype test of SPIND
were first conducted in MATLAB. For compatibility and
portability, SPIND includes recently updated features
designed for protein serial crystallography and is publicly
available under the GNU General Public License from https://
github.com/LiuLab-CSRC/SPIND. For the user’s conve-
nience, CrystFEL, with SPIND integrated as an alternative
indexing module callable from indexamajig, is also available
from the repository. The CrystFEL data-analysis pipeline
incorporating SPIND is shown in Fig. 11. It is recommended
to use MOSFLM and DirAx etc. for auto-indexing first and

then apply SPIND to improve the indexing rate based on the
reference unit cell given by previous indexers.

The computation time and required memory are mainly
determined by two factors. (1) the length of the structure-
factor list used to generate the reference table. The compu-
tation time and required memory roughly follows N*, where N
denotes the number of Bragg reflections included in the
reference structure-factor list. (2) Error-tolerance threshold in
the vector-searching process (see the Methods section). Larger
threshold values generally lead to longer computation time.
Auto-indexing using SPIND can be very time and memory
demanding for protein crystallography because of the large
number of Bragg reflections used in the reference list. In
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Resolution histograms for the CIR data set. (a) Resolution distribution of found peaks for all crystal hits, and distributions of apparent diffraction
resolution determined by indexamajig after indexing by (b) MOSFLM-refine, (c) MOSFLM-norefine, (d) SPIND-refine and (e) SPIND-norefine. The
additional patterns indexed by SPIND are mostly in the lower-resolution region (around 1 nm™") which is consistent with the resolution distribution of
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Figure 11
Schematic SFX data-analysis pipeline integrating SPIND to CrystFEL.

principle, the reference structure-factor list is generated only
for the resolution range where most of the experimental peaks
fall, to minimize the memory needs and computation time. In
addition, the vector-tolerance threshold can be set to be small
first, and then be adjusted to be larger to increase the indexing
rate with a longer but reasonable computation time. SPIND
also supports parallel computation using multiple CPUs. As an

example, the computation time to auto-index a subset of 4962
patterns from the DOR SFX data set was around 12 core
hours (Intel Xeon E5-2680 v3 at 2.5 GHz).

4. Conclusions

Diffraction patterns that consist of a small number of peaks
often take up a significant portion of the whole data set in
serial protein crystallography. The insufficient number of
peaks along with the poor diffraction quality make these
patterns difficult to analyze using the Fourier transform-based
algorithms. In order to utilize these data and increase the data
efficiency, we have developed a new auto-indexing algorithm,
SPIND. 1t is based on identifying the Miller indices of five
peaks chosen from each pattern by comparison with the
reference unit cell.

The algorithm was tested first using simulated diffraction
data from I3C microcrystals in random orientations and with
random fluctuations in lattice constants. All 400 simulated
sparse I3C patterns were auto-indexed successfully using only
three to five Bragg peaks per pattern. Each pattern was auto-
indexed in milliseconds, to an accuracy of 0.1° in the Euler
angle defining the crystal orientation. This shows the robust-
ness of the algorithm to lattice inhomogeneity and distortions.
SPIND was then shown to perform as well as established auto-
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indexers MOSFLM and DirAx, slightly improving the
indexing of SFX data from microcrystals of a GPCR complex
(CXIDB ID 40). The SNR and self-consistency figures of
merit all slightly improved over the whole resolution range by
using SPIND with orientation refinement in indexamajig.
Finally, SPIND was used to improve a data set from CIR
crystals. The indexing rate using MOSFLM was around 3%
because of the insufficient number of peaks in most of the
patterns, along with poor diffraction quality. Even without
orientation refinement in indexamajig (which requires at least
ten Bragg spots), SPIND improved the merged data quality in
the lower resolution range by indexing additional patterns of
low resolution. However, the overall resolution limit of the
whole data set was ultimately limited by the low diffraction
quality of the crystals.

These results demonstrate that SPIND can index serial
microcrystal diffraction patterns with very few Bragg reflec-
tions (e.g. inorganic microcrystals with small unit cells), and
improve the quality of membrane-protein SFX data. The
growing adoption of serial crystallography methods at
synchrotron beamlines, using continuous injection of a stream
of microcrystals across the beam and fast recording (Standfuss
& Spence, 2017), as well as micro-electron diffraction from
inorganic and macromolecular microcrystals, will also benefit
from the algorithm described here. SPIND is actively being
developed to include an optimized search algorithm, multi-
crystal indexing, orientation refinement and more features for
improving protein SFX indexing. It is written in Python and is
publicly available from https:/github.com/LiuLab-CSRC/
SPIND.
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