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Abstract

The linear Fisher market (LFM) is a basic equi-
librium model from economics, which also has
application in fair and efficient resource alloca-
tion. First-price pacing equilibrium (FPPE) is
a model capturing budget-management mecha-
nisms in first-price auctions. In certain practi-
cal settings such as advertising auctions, there
is an interest in performing statistical inference
over these models. A popular methodology for
general statistical inference is the bootstrap pro-
cedure. Yet, for LFM and FPPE there is no ex-
isting theory for the valid application of boot-
strap procedures. In this paper, we introduce and
devise several statistically valid bootstrap infer-
ence procedures for LFM and FPPE. The most
challenging part is to bootstrap general FPPE,
which reduces to bootstrapping constrained M-
estimators, a largely unexplored problem. We are
able to devise a bootstrap procedure for FPPE
under mild degeneracy conditions by using the
powerful tool of epi-convergence theory. Exper-
iments with synthetic and semi-real data verify
our theory.

1. Introduction

The bootstrap (Efron & Tibshirani, 1994; Horowitz, 2001)
is an automatic method for producing confidence intervals
in statistical estimation. The theory of bootstrap has been
extended to many areas of statistics, such as models with
cube-root asymptotics (Cattaneo et al., 2020; Patra et al.,
2018), semi-parametric models (Cheng & Huang, 2010;
Ma & Kosorok, 2005) and so on. However, as far as we
are concerned, there is no theory of bootstrap for competi-
tive equilibrium settings.

In this paper, we study bootstrap inference in linear Fisher
market (LFM) and first-price pacing equilibrium (FPPE).
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Fisher market equilibrium model has been used in the tech
industry, such as the allocation of impressions to content in
certain recommender systems (Murray et al., 2020), robust
and fair work allocation in content review (Allouah et al.,
2022); we refer readers to Kroer & Stier-Moses (2022) for
a comprehensive review. Outside the tech industry, Fisher
market equilibria also have applications to scheduling prob-
lems (Im et al., 2017), fair course seat allocation (Othman
et al., 2010; Budish et al., 2016), allocating donations to
food banks (Aleksandrov et al., 2015), sharing scarce com-
pute resources (Ghodsi et al., 2011; Parkes et al., 2015;
Kash et al., 2014; Devanur et al., 2018), and allocating
blood donations to blood banks (McElfresh et al., 2020).

FPPE is a model for budget management in online advertis-
ing platforms. In these platforms, advertisers report adver-
tising parameters, such as target audience, conversion loca-
tions, and budgets, and then the platform creates a proxy
bidder to bid in individual auctions to maximize advertiser
utilities and manage budgets. A common way to manage
budgets is pacing, in which the platform modifies the ad-
vertiser’s bids by applying a shading factor, referred to as
multiplicative pacing. In the case where each auction is a
first-price auction, FPPE captures the outcomes of pacing-
based budget-management systems. Conitzer et al. (2022a)
introduced the FPPE notion and showed that FPPE always
exists and is unique. Moreover, FPPE enjoys lots of nice
properties such as being revenue-maximizing among all
budget-feasible pacing strategies, shill-proof (the platform
does not benefit from adding fake bids under first-price auc-
tion mechanism) and revenue-monotone (revenue weakly
increases when adding bidders, items or budget).

Given the wide range of applications of LFM and FPPE,
an inferential theory for LFM and FPPE is useful. Boot-
strap, thanks to its convenience and conceptual simplicity,
is a natural candidate as an inferential tool. However, due
to the presence of an equilibrium structure in the dataset,
the validity of bootstrap requires careful theoretical treat-
ments, and practitioners should be cautious about the use
of bootstrap when data arise from market equilibrium. For
example, in Sec 4.2 we show that in the setting of first-
price auction platforms, the traditional multinomial boot-
strap may fail to consistently estimate the distribution of
interest. Given the simplicity of resampling, it is fair to say
bootstrap has been used in auction platforms as an infer-
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ential tool. It is thus urgent to develop a statistically valid
bootstrap theory that accounts for the equilibrium effect in
the data.

Our contributions are threefold.

We characterize the full landscape of the asymptotics of
FPPE. The limit distribution of FPPE was studied in Liao
& Kroer (2023) under a strict complementarity condition.
Combining their results with a result of Shapiro (1989), we
complete the characterization of the asymptotics of FPPE
without strict complementarity, and show that it is captured
by a quadratic program. We derive a new closed-form ex-
pression for this quadratic program, and use it to derive
structural insights on the limit distribution in some special
cases. Characterizing the general case of FPPE asymptotics
is necessary in order to derive our bootstrap results, be-
cause we need to show that our bootstrapped distribution
converges to the asymptotic distribution of FPPE.

We develop bootstrap theory for LFM and FPPE. A
crucial fact for LFM and FPPE is that they both have
an Eisenberg-Gale (EG) convex program characterization,
and our bootstrap procedures rely on this program or its
quadratic approximation. For LFM we study three types of
bootstrap procedures: exchangeable bootstrap (Wellner &
Zhan, 1996), numerical bootstrap (Hong & Li, 2020) and
proximal bootstrap (Hong & Li, 2020). For FPPE the the-
ory is a bit involved. We identify a bootstrap failure when
some type of degenerate buyers are present in the market.
Then different bootstrap procedures are proposed under cer-
tain assumptions on the market structures: full expendi-
ture of budgets (I, = 0), absence of degenerate buyers
(Ig = 0), or fully general FPPE. We summarize the results
in Tables 1 and 2.

Numerical experiments demonstrate the validity of the
theory. We provide simulations and a semi-synthetic ex-
periment based on a real-time bidding dataset from iPinYou
(Liao et al., 2014).

Exchangable BS | Numerical BS | Proximal BS

v/ Thm 1 ‘/Thm7 ‘/Tth

Table 1: Results for linear Fisher market.

Notations. The notation .4"(a, X) stands for a multivariate
Gaussian distribution with mean a and covariance .

We use W = (W1,...,W}) to denote bootstrap weights
in the paper. Different distributions imposed on W corre-
spond to different bootstrap resampling schemes. In the
standard multinomial bootstrap W = (W7y,..., W;) fol-
lows a multinomial with probabilities (,...,4). In ex-
changeable bootstrap W is exchangeable: if for any per-
mutation 7 = (7y,...,m) of (1,2,...,t), the joint distri-

Num. BS | Prox. BS | new methods
. =0
(Sec 4.3) v Thm3.1| v Thm3.2
I = 0
(Sec 4.4) | X NA X NA v/ Thm 4
general
(Sec 4.5) | X NA X NA v/ Thm 6

Table 2: Results for first-price pacing equilibrium. NA
means not applicable. I, = () means full expenditure of
budgets. Iy = () means absence of degenerate buyers.

bution of 7 (W) = (W, ..., Wsg,) is the same as that of
W. Given items (7)., we let P; be the expectation oper-
ator P, f = %Zj—:l f(07). Given multinomial bootstrap
weights W and (67)., define the operator

1 t
PIf =) W-f(07). (1)
T=1

We write PP0f = %Zizlef(HT) for exchangeable
bootstrap weights.

Bootstrap Consistency Most of our results will be con-
cerned with the consistency of bootstrap procedures. To
that end, we introduce the following definition of consis-
tency. Given ¢ data points, a bootstrap estimate X is a func-
tion of the data (§7)%_, and bootstrap weights W, where
the data and weights are assumed to be independent of each
other. We say the conditional distribution of (X}); consis-

tently estimates the distribution L, denoted X, L L, if

sup [E[f(X,)[{07}1] = Ex~r[f(X)]] 20,
FEBLy

where BL; is the space of functions f : R®™ — R with
sup, |f(2)] < 1and |f(z) — f(y)] < l|lz = yll2-

We survey related work in App A.2.

2. Review of Fisher Market and FPPE

Both LFM and FPPE have a set of buyers and a set of
items being priced. Here we introduce some components
that both models share. We have n buyers and a possibly
continuous set of items © with an integrating measure dé.
For example, © = [0, 1] with df being the Lebesgue mea-
sure on [0, 1]. Both LFM and FPPE require the following
elements.

e The budget b; of buyer i. Let b = (by,...,by).

e The valuation for buyer i is a function v; € A
i.e., buyer ¢ has valuation v;(#) (value per unit sup-
ply) of item § € ©O. Let v 0 — R~
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v(0) = [v1(0),...,v,(0)]. We assume v =

max; supy v; () < oo.

e The supplies of items are given by a function s € L5°,
i.e., item 6 € © has s(0) units of supply. Without loss
of generality, we assume a unit total supply f s d9 =
1. Giveng : © — R, we let E[g] = [ ¢(0)
and Var[g] = E[g?] — (E[g])>. leen tid. d draws
{6,...,0"} from s, let Pog(-) = 130 _ g(07).

Equilibria in both LFM and FPPE are characterized by an
EG convex program. In both cases, the dual EG objective
separates into per-item convex terms

F(0,8) = maX,Bl v(

i€[n

Zb logfi. (@

and the population and sample EG objectives are

H(B) =E[F(6,5)], Hi(B)

We comment on the differential structure of f(6,3) =
max; B;v;(6) since it plays a role in later sections. Func-
tion f(3,0) is a convex function of 8 and its sub-
differential Jgf(5,6) is the convex hull of {ve;
index ¢ such that 8;v;(6) = maxy, S,vi(0)}, with e; being
the base vector in R™. When max; 3;v;(0) is attained by
a unique ¢*, the function f is differentiable. In that case,
the i-th entry of V£ (6, 8) is v;(#) for i = * and zero
otherwise.

=RhF(B). ()

2.1. Linear Fisher Markets (LFM)

In the LFM model, the goal is to divide items © in a fair and
efficient way. It is well known that the competitive equi-
librium from equal incomes (CEEI) mechanism produces
an allocation that is Pareto efficient, envy-free and propor-
tional (Nisan et al., 2007). LFM is also a useful tool for
modeling competition in an economy.

We now describe the competitive equilibrium concept.
Imagine there is a central policymaker that sets prices p(-)
for the items ©. Upon observing the prices, the buyer i
maximizes their utility subject to the budget constraint.
Their demand set is the set of bundles that are optimal un-
der the prices:

D;(p) := argmax {/vimisdG : /p:cisdﬂ < bi} .

Note that the demand set allows z; to take values greater
than one.

Of course, due to the supply constraint, if prices are too low,
there will be a supply shortage. On the other hand, if prices
are too high, a surplus occurs. A competitive equilibrium
is a set of prices and bundles such that all items are sold

exactly at their supply (or have price zero). We call such
an equilibrium the limit LFM equilibrium for the supply
function s (Gao & Kroer, 2023; Liao et al., 2023).

Definition 1 (Limit Linear Fisher Market Equilibrium).
The limit equilibrium, denoted LFM(b,v,s,0), is an
allocation-price tuple (x,p(-)) such that the following
holds.

1. Supply feasibility and market clearance: ), x; < 1
and [p(1 -, x;)sdf = 0.

2. Buyer optimality: x; € D;(p) all i.

Given the equilibrium quantities (z*,p*), let u} =
[ visx} dO be the buyer i utility, and 37 = b;/u} be the
buyer 7 inverse bang-per-buck. In an LFM, the equilibrium
quantities p*, 8%, u* are unique. Under twice differentiabil-
ity (smo; to be defined), the allocation x* is also unique.

Next we introduce the finite LFM, which models the data
we observe in a market. Let v = {6',...,0'} be ¢ i.i.d.
samples from the supply distribution s, each with supply
1/t. See App A.4 for a full definition. For a finite LFM,
let the equilibrium per-buyer inverse bang-per-bucks be de-
noted by 7.

Definition 2 (Finite LFM, informal). The finite LFM equi-

librium, denoted I_/FM is a limit LFM equilibrium where
the item set © is the finite set of observed items .

It is well-known (Eisenberg & Gale, 1959; Gao & Kroer,
2023) that the equilibrium inverse bang-per-buck $* in
an limit (resp. finite) LFM uniquely solves the population
(resp. sample) dual EG program

B* = argmin H(B) ,
BERT

Y =argmin H;(8) .  (4)
BERT

The asymptotics of LFM were studied in Liao et al. (2023)
under twice differentiability (SMO; to be defined). Let H{ =

V2H(j3*). They show v/t(3” — B*) g, em, where

duem = A (0,5 E[VF(-, B)VE(, )3 ) . (5)

2.2. First-Price Pacing Equilibrium (FPPE)

The FPPE setting (Conitzer et al., 2022a) models an econ-
omy that typically occurs on internet advertising platforms:
the buyers (advertisers in the internet advertising setting)
are subject to budget constraints, and must participate in a
set of first-price auctions, each of which sells a single item.
Each buyer chooses a pacing multiplier 5; € [0, 1] that
scales down their bids in the auctions, and submits bids of
the form (;v;(6) for each item 6, with the goal of choosing
B such that there is no unnecessary pacing, i.e. they spend
their budget exactly, or they spend less than their budget but
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they do not scale down their bids. In the FPPE model, all
auctions occur simultaneously, and thus the buyers choose
a single (3; that determines their bid in all auctions.

Definition 3 (Limit FPPE, Gao & Kroer (2023); Conitzer
et al. (2022a)). A limit FPPE, denoted FPPE(b, v, s,0), is
the unique tuple (3,p(+)) € [0,1]" x L (©) such that there
exist x; : © — [0, 1], ¢ € [n] satisfying

1. (First-price) Prices are determined by first-price auc-
tions: for all items 0 € ©, p(8) = max; B;v;(0). Only
the highest bidders win: for all i and 0, x;(6) > 0 im-
plies B;v;(0) = maxy, Siv(6)

2. (Feasibility, market clearing) Let pay; =
J zi(0)p(0)s(0) d6.  Buyers satisfy budgets: for
all i, pay; < b;. There is no overselling: for all 6,
S xi(0) < 1. All items are fully allocated: for
all 0, p(0) > 0 implies Y z;(0) = 1.

3. (No unnecessary pacing) For all i, pay; < b; implies

Bi =1

FPPE is a hindsight and static solution concept for internet
ad auctions. Suppose we know all the items that are going
to show up on a platform. FPPE describes how we could
configure the [3;’s in a way that ensures that all buyers sat-
isfy their budgets, while maintaining their expressed valua-
tion ratios between items. Typically, the 5;’s are chosen by
a pacing algorithm that is run by the platform. FPPE has
many nice properties, such as the fact that it is a competitive
equilibrium, it is revenue-maximizing, revenue-monotone,
shill-proof, has a unique set of prices, and so on (Conitzer
et al., 2022a). We refer readers to Conitzer et al. (2022a);
Liao & Kroer (2023) for more context about the use of
FPPE in internet ad auctions.

Let 8* and p* be the unique FPPE equilibrium multipli-
ers and prices. Revenue in the limit FPPE is REV* =
[ p*(8)s(0) df . We let the leftover budget be denoted by
0 = b; — pay,. We say a buyer ¢ is degenerate if 5 =1
and §7 = 0.

In FPPE the following regularity condition is important.

Assumption 1 (scs). There are no degenerate buyers, i.e.,
B = 1implies 6} > 0.

This assumption is a strict complementary slackness condi-
tion since J; is the dual variable of 3 in the EG program
introduced below. We will study the asymptotics of FPPE
without scs. However, as we will see in Sec 4.4, condition
scs is helpful for bootstrap inference.

We let v = {0, ...,0'} be ti.i.d. draws from s, each with
supply 1/t. They represent the items observed in an auction
market. The definition of a finite FPPE is parallel to that of
a limit FPPE, except that we change the supply function to
be a discrete distribution supported on the finite set ~.

Definition 4 (Finite FPPE, informal). A finite FPPE,

ﬁP\E, is a limit FPPE where the item set is the finite set of
observed items . See App A.4 for the full definition.

It is well-known (Cole et al., 2017; Conitzer et al., 2022a;
Gao & Kroer, 2023) that 8 in a limit (resp. finite) FPPE
uniquely solves the population (resp. sample) dual EG pro-
gram

f* =argmin H(5) , 7 = argmin H¢(5), (6)
BE(0,1]™ pe(0,1]™
where the objectives H and H; is the same as Eq (4). The
difference between the LFM and FPPE convex programs is
that for FPPE we impose the constraint (0, 1]™.

The study of the asymptotics of FPPE was initiated by Liao
& Kroer (2023). Let Jrppe be the limit distribution of
VBT — %), ie.,

V(BT — B) < Jeppe - (N

They show that, with the strict complementary slackness
assumption SCs, the distribution Jgppg simplifies to

N (0, (PHP)'Cov[VF(-, B)|(PHP)),  (8)

where H = V2H(B*) and P = Diag(1(8; < 1)). We
will study the form of Jrppg assuming only twice differ-
entiability (smMo) and not scs. We will characterize Jrppe
by a random quadratic program and provide several exam-
ples. Thus, a contribution of our paper is to remove the
strict complementarity slackness assumption and character-
ize the full landscape of FPPE asymptotics.

2.3. Smoothness Assumptions

The following assumption will be made throughout the pa-
per, for both LFM and FPPE.

Assumption 2 (smM0). The EG population objective H (-)
in Eq (3) is twice continuously differentiable in a neighbor-
hood of B*.

Assumption 2 implies that the Hessian H = V2H(3*) is
positive definite. Here 8* is interpreted as the equilibrium
inverse bang-per-buck in a limit LFM, and equilibrium pac-
ing multipliers in a FPPE. See Liao & Kroer (2023); Liao
et al. (2023) for discussions of implications and concrete
examples of sMo holding.

Our research goal can now be stated as

Design bootstrap estimators of the distribution J gm
(resp. Jrppe) given the observed market equilibrium

LFM (resp. ﬂ).

Inference on other quantities that are differentiable func-
tions of [B* can be achieved by the bootstrap delta
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method (Kosorok (2008, Theorem 12.1), Vaart & Well-
ner (2023, Theorem 3.10.11)). For example, utilities
uf = b;/B; and the Nash social welfare ) .b;logu] =
>;bilog(b;/B;) are smooth functions of 5*. Revenue
J max;{B;v;(0)}s(#)d is also a smooth function of 5*.
For this reason, throughout the paper we will focus on in-
ference of 3*, i.e., the utility prices in LFM and pacing
multipliers in FPPE.

3. Bootstrapping Fisher Market Equilibrium

In this section we let 37 be the observed utility prices
in ﬂ/l(b,v, 1/t,v), where ~ consists of ¢ ii.d. draws
from supply s. As mentioned previously, g7 =
arg ming, H; (8). The target distribution we want to es-
timate is J_gm in Eq (5).

3.1. Exchangeable Bootstrap

Define the exchangeable bootstrap by

Blciem = argmin PPUF (-, B) ©

BERT
Compared with the convex program for LFM in Eq (4), the
exchangeable bootstrap replaces P, with Pfx’b. Exchange-
able bootstrap is considered a smooth alternative to the tra-
ditional multinomial bootstrap (i.e. sampling with replace-
ment) because it allows for a wider class of distributions
of bootstrap weights (Prastgaard & Wellner, 1993). Con-
cretely, we need the weights in the exchangeable bootstrap
to satisfy the following conditions.

Definition 5 (Exchangable bootstrap weights). (1) The ran-
dom vector W = (Wy,...,W})" is exchangeable. (2)
W, >0, and 3.\ _, W, = t. (3) Wy has finite (2 + ¢)
moment for some € > 0. (4) %Zf—:l W, -1 52 >0
ast — oo.

Exchangeable bootstrap incorporates many popular forms
of resampling as special cases such as the classical sam-
pling with replacement, sampling without replacement, and
normalized i.i.d. weights; see App A.3.

Theorem 1. V(8% py — 87) ~> ¢ - dLem where the con-
stant c is defined in Def 5. Proof in App D.2.

The proof of Thm 1 is complicated by the fact that the EG
objective is nonsmooth due to the max operation in Eq (9).
Establishing Thm 1 requires using the exchangeable boot-
strap empirical process theory from Prastgaard & Wellner
(1993) and Wellner & Zhan (1996) to establish a form of
stochastic differentiability (Claim 1 in appendix), and ap-
plying the Taylor expansion-type analysis for nonsmooth
objective functions from Pollard (1985).

In practice, approximate LMF equilibrium and bootstrap
estimates suffice. Eq (9) need not be solved exactly; er-

ror in the objective up to order o,(1/n) suffices, i.e.,
PR (-, B Lew) < ming PPPF (-, B) + 0,(1/n). And
[£7 only needs to be an approximate Fisher market equilib-
rium: P, F (-, 7) < ming P,F(-, 8) + 0,(1/n). The proof
of Thm 1 can be extended to account for the extra error
from approximate optimization. In App A.5 we briefly re-
view two other valid bootstrap procedures, proximal boot-
strap, and numerical bootstrap, and the consistency theory
based on Hong & Li (2020) and Li (2023). Proximal boot-
strap has the advantage of solving quadratic programs only.
However, those two methods converge at a rate slower than
1/ \/t. In contrast, exchangeable bootstrap offers flexibil-
ity in choosing bootstrap weights, enjoys a 1/+/# rate, and
does not need parameter tuning.

4. Bootstrapping FPPE

In this section we let 5” be the pacing multiplier in
ﬁ’P\E(b7 v,1/t,v), where ~ consists of ¢ ii.d. draws
from supply s.  As mentioned previously, /Y =
argmin g ;j» Hy(53). The target distribution we want to es-
timate is Jeppe in Eq (7), the limit distribution of Vi (87 —
8°).

Bootstrapping FPPE is a significantly harder problem due
to the presence of constraints in the EG program in Eq (6).
We investigate the full landscape of FPPE asymptotics, i.e.,
JrpPE, In Sec 4.1. In Sec 4.2, we show that the standard
multinomial bootstrap fails to estimate Jgppg consistently.
This also suggests that estimating Jrppg in full generality is
difficult. Because of this, we divide our study into an easier
case and the harder case. In the simpler case, we assume
that all buyers exhaust their budget; for this case we show in
Sec 4.3 that the bootstrap methods from Hong & Li (2020);
Li (2023) are valid. A more realistic case is when some
buyers do have leftover budgets. We design a bootstrap
for this case in Sec 4.4, under an additional assumption of
strong complementary slackness (scs). Finally, to complete
the picture, we present a bootstrap-based confidence region
for fully general FPPE in Sec 4.5.

4.1. The Limit Distribution of General FPPE

The limit distribution of FPPE was studied in Liao & Kroer
(2023) under Assumption Scs. In this section, we charac-
terize the full landscape of the asymptotics of FPPE with-
out strict complementarity. The convex program character-
ization in this section is a direct corollary of noticing the
connection between the results of Shapiro (1989) and Liao
& Kroer (2023). Concretely, Theorem 3.3 from Shapiro
(1989) established asymptotic distribution results for gen-
eral constrained programs under equicontinuity conditions,
and the results of Liao & Kroer (2023) imply those equicon-
tinuity conditions for the EG objective in Eq (2). This is
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how we derive the convex program characterization of the
asymptotics below. We then derive a new closed-form ex-
pression for the convex program, which allows us to ana-
lyze the asymptotic structure for several example.

To describe Jrppe We need to introduce a quadratic pro-
gram. Let [ = {i : 8 = 1} be the set of unpaced buyers
and I¢ = [n] \ I. We further partition I into
Iy ={i: 8 =10 >0}, Ip={i: 8 =1,6; =0} .
I, is the set of buyers with strictly positive leftover bud-
gets, whereas I are the degenerate buyers. From an opti-
mization perspective, the set I, corresponds to the strongly
active constraints in the program Eq (6), whose correspond-
ing Lagrange multipliers are strictly positive, while the set
Iy are the weakly active constraints, whose Lagrange mul-
tipliers are zero. With these notations, we note SCS is
the same as Iy = (), and that the condition that all buy-
ers exhaust their budgets is the same as I, = (). Define
h:R" — R"™,
h(&) = Ih+ 3 el5, (10)

arg min
heR™;h;=0,i1€1;h;<0,i€]y

where ||a]|2, = a"Ha. The program Eq (10) can be in-
terpreted as projecting the vector —H ¢ onto the cone
{h:h;i=0,i€li;h; <0,j € Iy} wrt. the norm ||| g¢.
The function & is continuous and positively homogeneous
of degree 1, i.e., h(t§) = th(§) for t > 0, but not neces-
sarily linear. When Iy = (), i.e., scs holds, the function
h() = —(PHP)te.

Combining Theorem 3.3 from Shapiro (1989) with the
equicontinuity results of Liao & Kroer (2023), we have that
under the SMO assumption,

drere = (A (0,Cov[VF(, 5")])) .

Below and in App A.6 we study the form of Jrppg under
some special cases by deriving closed-form expression of
the quadratic program Eq (10).

In the example below, we assume I, = () for simplic-
ity Let D = Diag(H~")Y/2,p = D-'H"'D ', Z =
—D7IHIG. where G ~ A#(0,Cov[VE(-,3%)]). Intu-
itively, p is a normalized version of the inverse of the Hes-
sian. Denote entries of Z by [Z1,. .., Z,]".

Example 1 (The case with |Io| = 1.). Let [, = (), Iy =
{1} and I¢ = {2,...,n}. Then Jeppe = —H G if Z; <
0, otherwise, if Z1 > 0, then
0
Zy — p1221
JrpPE = D : : (11)

Zn — P1nZi

Ex 1 and Ex 6 in appendix illustrate an interesting phe-
nomenon that the limit marginal distribution of the degener-
ate buyers (those with 87 = 1 and 6} = 0) is a distribution
with some probability weight at 0 and the rest on the neg-
ative reals. This makes sense intuitively since in a finite
sample, 8] — ¥ = 8] — 1 is always negative for i € .
Another feature of Jrppg is that the limit distribution of
Vt(B] — 1) is degenerate (a point mass at zero) if i € I,.
This also implies 8; — 1 = op(%) ifiel,.

4.2. Failure of Multinomial Bootstrap for FPPE

As described in Andrews (2000), standard multinomial
bootstrap might fail in constrained programs. In this sec-
tion, we show that this is the case for FPPE.

Consider a one-buyer FPPE. Let b, = 1, E[v;] =
Jvisdd = 1 and s is the supply (a probability density).
Let v = {07}, be i.id. draws from s. Let 87 be the

pacing multiplier in ﬁDP\E(b,U, 1/t,7) and 8* be that in

FPPE(D,v, s, O).

Given the observed items, let {#™*}, be the resampled
items (with replacement). For this instance, the boot-
strapped FPPE with standard multinomial weights is

B? = argmin -~ Zﬁlvl

B1€(0, 1]

—b1 10g61 . (12)

Theorem 2 (Failure of Multinomial Bootstrap). The limit
conditional distribution of \/t(3° — B7) is not equal to the
limit distribution of \/t(B8" — 3*). Proof in App D.6.

4.3. Bootstrapping FPPE with Poor Buyers

If FPPE has the additional structure that all buyers exhaust
their budgets, i.e., I} = (), we can apply the numeri-
cal bootstrap (Hong & Li, 2020) and the proximal boot-
strap (Li, 2023). Equivalently, it requires the population
EG in Eq (6) does not have strongly active constraints,
VH(B*) = 0, and the unconstrained optimum coincides
with the constrained optimum.

Under this additional structure, Eq (10) becomes
Jrepe = argmin ||h+H 'G5
hih;<0,i€],
= argmin h'G+ $h"HA (13)
h:h;<0,i€l

and G ~ A (0, E[VE(-, B)VE(-, 5*)T).

To obtain numerical bootstrap and proximal bootstrap esti-
mates, we require a smoothing parameter €; | 0 such that
€1/t — oc. Then, to get 88, rppg We solve

(1+eVt(W, —1)F(O7,.8), (14

1
arg min —
Be(0,1]" t;
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and to get ﬁgr’FPPE we solve

argmin e, (G°)"(8—87) + 38— 8% , (15)
Beo,1]™
where
G = VH(P} — P)Dp(-,87) , H = (Hpe. (16)

Here Dp (-, 37) is a deterministic element in the subdiffer-
ential 93F(+,87) !. The term G® estimates the Gaussian
random variable G in Eq (13). The numerical difference
estimator is j'\fkyg = (@i&mHt)(ﬁW), where

(6@7,779)(') = [g(- + nex +nee) — g(- — nex + nee)
—g(-+ nex — nee) + g(- — nex — ne)l/(4n?),

and H, is the finite-sample EG objective in Eq (3). In prac-
tice, both Eqgs (14) and (15) only need to be solved approx-
imately with error in the objective up to o, (e?). The prox-
imal bootstrap in Eq (15) is a bootstrap analogue of the
distribution in Eq (13).

The following theorem shows that in the budget-exhaustion
case, the numerical bootstrap and proximal bootstrap con-
verge to the correct limit distribution. The proofs can be
found in Appendices D.3 and D.5.

Theorem 3. If all buyers exhaust their budgets (I, = (),
then

3.1 € (B rppE — B7) % IrprE -

3.2 IFF B K, then ;7 (Y, rppe — 57) > drpre -

The proof proceeds by verifying conditions in Hong & Li
(2020) and Li (2023). Stochastic equicontinuity of cer-
tain processes is verified using results from Liao & Kroer
(2023).

4.4. Bootstrapping FPPE with scs

In real-world auction markets such as those at internet
companies, some fraction of buyers do have leftover bud-
gets (Conitzer et al.,, 2022b). In this section, we give a
bootstrap estimate of Jeppe under Scs, in which we allow
users to have positive leftover budgets, but rule out degen-
erate buyers. Condition SCS is equivalent to requiring that
in the population EG in Eq (6) there is no weakly active
constraints (those whose Lagrangian multipliers are zero).
Condition scs, equivalent to Iy, = (0, is realistic because
degenerate buyers are a measure-zero edge case.

! We avoid writing VF(-, 37) because in a finite FPPE there
could be ties. And when ties happen for an item 6, EG objective
B — F(0, B) is not differentiable at 37.

Choose two vanishing sequences 0; and ¢;. Define the es-
timated unpaced buyers I, = {i : 8] > 1 — &;} and the
reduced feasible set B = {3 € [0,1]" : B; = 1 fori € I} }.
The proposed bootstrap estimator is

Bl = arg min (GO (B —B87) + 31187 — ﬁ”?ﬁc )
pBeB

a7

where G and H{ are defined in Eq (16). The estimator has
a nice geometric interpretation: we add certain appropriate
noise to 37 and then project back to the reduced feasible
set B. We call ¢; the bootstrap stepsize, whose effect is
investigated in App B.

Theorem 4. Let scs hold in FPPE (Iy = (). Let §; =
1/v, e = o(1) and ep/t — oo, IFH 5 H, then ¢ (50—
B8Y) %5 Jeppe. Proofin App D.7.

The estimator in Eq (17) is proposed following ideas from
Li (2023); Cattaneo et al. (2020), where the bootstrap is in
fact approximating the random quadratic program Eq (10).
Many existing works (Geyer, 1994; Hong & Li, 2020; Li,
2023) require that strongly active constraints do not occur,
and are thus not applicable for FPPE with buyers who have
leftover budgets. As with proximal bootstrap, our approach
requires solving quadratic programs only.

We briefly remark on the techniques used to prove Thm 4.
We combine the theory of weak convergence (Vaart &
Wellner, 2023) from statistics and epi-convergence the-
ory (Rockafellar, 1970) from optimization. The reason is
that weak convergence is a powerful tool to study asymp-
totics of statistical functionals, such as the arg min func-
tion, and epi-convergence is designed for studying con-
strained programs. Such an approach dates back to Geyer
(1994) and Molchanov (2005), and more recently was used
by Parker (2019) for constrained quantile regression, and
Hong & Li (2020) and Li (2023) in the context of boot-
strap.

Both proximal bootstrap (Eq (15)) and our proposed boot-
strap (Eq (17)) require a numerical difference estimate of
the Hessian (Eq (16)). We provide a theorem to guide the
choice of differencing stepsize.

Theorem 5 (Hessian estimation, informal). Consider the

finite difference estimate defined in Eq (16) with differenc-
ing stepsize n; = o(1) and n;\/t — oo. Under regularity
conditions, ﬂA{kg — Hpp < 77,52 + ﬁ + higher order terms.
Proof in App D.4.

By setting 7 = 1/(n;\/t) we obtain the optimal choice
ne = t~1/6. The proof of Thm 5 uses empirical process
theory to handle the nonsmoothness of the EG objective.
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Figure 1: Bootstrap vs finite-sample distribution of an 8-buyer 1000-item FPPE. Values are i.i.d. uniformly distributed,
and budgets are generated randomly in a way that the first three buyers have leftover budgets. Displayed are histograms of

B,

, Bs. Purple: 100 samples of €, 1(8P — B7) according to Eq (17) given one FPPE. Yellow: 100 samples of

Vt(BY — B*). Bootstrap distribution is very similar to FPPE distribution. The similarity is significant, because to obtain
the distributions of FPPE, we need to observe multiple market equilibria, to which we usually do not have access. The
bootstrap distribution, on the other hand, is generated based on just one finite FPPE.

4.5. Confidence Regions for General FPPE

In Sections 4.3 and 4.4 we assumed either Iy or I, to be
empty sets. Now we discuss bootstrap inference without
such assumptions. We can construct a confidence region
for £* using bootstrap test inversion. Suppose we have a
scalar statistic 7'(3*,8*,6%,...,60"), and an upper bound
estimate ¢ € R of the (1 — «)-quantile of its limit distribu-
tion. Then the region {(3,0) : T(3,8,6%,...,6") < c} is
an asymptotically-valid confidence region for (5*,5*).

First, we introduce a statistic based on the Lagrangian
of the EG program. The idea of using the Lagrangian
or Karush-Kuhn-Tucker (KKT) system for inference in
constrained programs also appears in Li (2023); Hsieh
et al. (2022). Consider the sample Lagrangian L.(5,d) =
H:(B)—8"(1,—p) for 8 € (0,1]" and 0 < § < b. Define
the statistic for some x € (0, oo

T(8.0) = = jnf X(5.6.5+ 7).
X’Y(ﬂv(sa 51) = t(Lt(6/75) - Lt(ﬁya)) )

where B, = {h € R™ : ||h||2 < k}. Given a threshold
value c, the statistic 7" induces the region

C(c) = {(B,8) : T"(B,6) < ¢, 3 €[0,1]",0 < § < b} .

(18)

The region can be constructed as follows. Fix a d, and then
collect all approximate local minimizers of the Lagrangian
Li(-,0), ie., B such that L;(8,0) < infpep, Li(8 +
%, 0) + % Next, we use bootstrap to estimate the distri-
bution of T7(8*,0%).
XP(B) = (e(G")'(B = B7) + 51187 = BlIZ) /(e0)?
T = — inf X°(B).
P (8)

The function X?(-) is in fact estimating a quadratic expan-
sion of X7(8*,6*,-). Now we are ready to introduce the
confidence region. Let ¢}_,, be the conditional (1 — «)-

quantile of T°. Then a confidence region for (3*,5*) is
C7(cb_,). Let T be the limit distribution of T (3*, §*).

Theorem 6. Suppose e, = o(1), e,/t — oo, H-BH. If
the CDF of T is continuous at the (1 — «)-th quantile of
T, then liminf, , ., P((3*,6*) € CV(4_,)) > 1—a.
Proof in App D.8.

The condition on the continuity of the CDF is mild and
commonly seen in the literature. The cost that comes with
the general applicability of the confidence region C7(c%_,)
is computational. To decide whether a point (3, §) is in the
region one solves the optimization problem in Eq (18).

5. Experiments

We now conduct experiments to investigate the perfor-
mance of the bootstrap estimator Eq (17) in FPPE with scs
conditions. We aim to (1) verify that the bootstrap produces
a consistent estimate of the FPPE asymptotic distribution,
and (2) study the effect on the bootstrap of the stepsize pa-
rameter €, and market parameters, such as the number of
items, number of buyers, proportion of budget-constrained
buyers, and the value distributions.

Synthetic experiments. In App B.1 we consider an ideal
scenario where buyers’ values are i.i.d. draws from some
distribution, i.e., v1,...,v, ~jq Fy,. To assess the ef-
fect of the tail of the value distributions, we take F, to
be a uniform, exponential, or truncated normal distribution.
We visualize and compare two setups: 1) true resampling,
where the finite-sample distribution of v/#(37 — 3*), ob-
tained by repeatedly drawing independent FPPE instances,
and 2) bootstrap: €; ' (3> — 37) as defined in Eq (17), ob-
tained by bootstrapping only one FPPE instance. We also
vary the bootstrap stepsize €;. Experiments confirm that
our bootstrap Eq (17) is consistent, fairly robust under a
wide range of market parameters when bootstrap stepsize
is chosen appropriately.

Semi-real experiments. In App B.2 we construct realis-
tic instances from real-world auction markets based on the
iPinYou dataset (Liao et al., 2014). The dataset contains
raw log data of the bid, impression, click, and conversion
history on the iPinYou platform. From the dataset we es-
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timate the click-through rate of impressions using logistic
regression and simulate realistic advertisers’ values by per-
turbing the regression coefficients. We treat the sum of pac-
ing multipliers as the target parameter and use percentiles
of the bootstrap estimates based on Eq (17) to construct
confidence intervals. We assess the effect on the cover-
age rate of the number of items, number of advertisers, the
bootstrap stepsize €, and the proportion of unpaced buyers.
These experiments show that our bootstrap is suitable for
realistic auction markets.

6. Future Directions

A bootstrap theory for FPPE without regularity conditions
on either the buyers (e.g. Assumption 1) or the CDF as-
sumption in Thm 6 would be desirable. However, we sus-
pect that this will be a difficult task, since bootstrapping
completely general constrained convex programs remains
an open problem. Secondly, we saw in our experiments
that Hessian estimation is important for the performance of
our bootstrap methods. Thus, a better understanding of how
to perform Hessian estimation for the best performance on
real-world problems would be useful. In practice it would
also be highly desirable to have a bootstrap theory that has
some form of guarantees under nonstationary input data.
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A. Omitted Main Text
A.1. Notations

Let A = [A;;...; A,] denote the matrix constructed by stacking A; from top to bottom. Vectors are column vectors by
default. For a matrix H, a vector G, an index set I C [n], we let Hy; = (H;;)ier jer to denote the |I| x |I| matrix
consisting of entries in H, and G'1 be the subvector with entries indexed by I. We let R = [0, 00)™. Furthermore, we let

At be the Moore-Penrose pseudo inverse of a matrix A. Denote by e; the j-th unit vector.

For a measurable space (0, df), we let L? (and L% , resp.) denote the set of (nonnegative, resp.) LP functions on © w.r.t the

integrating measure d@ for any p € [1, co] (including p = 00). We treat all functions that agree on all but a measure-zero

set as the same. For a sequence of random variables {X,,}, we say X,, = O,(1) if for any ¢ > 0 there exists a finite

M, and a finite N, such that P(|X,,| > M.) < eforalln > N.. We say X,, = 0,(1) if X,, converges to zero in probability.
Symbol | Meaning

— | convergence in distribution of random vectors
~+ | weak convergence in metric space

<~ | weak conditional convergence in metric space
b,b; | budgets
pacing multipliers

e; | the ¢-th basis vector
€: | stepsize parameter in numerical bootstrap and proximal bootstrap and the proposed bootstrap Eq (17)
1y | differencing stepsize in finite-difference estimator of Hessian

0%,0F | leftover budget
d¢ | constraint slackness in the proposed bootstrap Eq (17)
D;(p) | demand set in a Fisher market
Fand D | F is the EG objective defined in Eq (2), and D a deterministic selection of subgradients

Cov(VE(,B%)) | E(VF(,5%) —E[VE(, B))(VE(, 5%) —E[VF(, 57)])"]
7 | observed item set in LFM and FPPE
G,G® | anormal random variable .4 (0, Cov(V F (-, 3*))) and its bootstrap estimate
h | the quadratic program in Eq (10)

H, ﬂff the Hessian matrix of H at 8*, and its finite-difference estimator
H, H,; | population and sample dual EG objective
I, I¢ | The set of unpaced (3; = 1) and paced buyers (8; < 1) buyers, respectively
Iy, I+ | The set of unpaced buyers with 67 = 0 and 6} > 0, respectively
JLFm, drppe | limit distributions of interest, defined in Eqs (5) and (7)
£>*(K) | the space of bounded functions f : K — R

p | price function in Fisher market and FPPE
P | matrix whose diagonal is 1(8; < 1), i € [n]

ex,b b
PP Py

expectation operators for the empirical distribution, exchangeable bootstrap distribution,
and the classical multinomial bootstrap distribution

u*,u; | equilibrium utility values in LFM and FPPE
s(+) | supply function (a probability density)
v,v;,v;(0) | valuation functions
x*,z} | equilibrium allocations in LFM and FPPE
A.2. Related Work

Statistical Inference in Equilibrium Models. Liao et al. (2023); Liao & Kroer (2023) study statistical properties of LFM
and FPPE, respectively. Wager & Xu (2021); Munro et al. (2021); Sahoo & Wager (2022) take a mean-field game modeling
approach and perform policy learning with a gradient descent method. Johari et al. (2022) study a Markov chain model
of two-sided platform and investigate the effect of bias under different market balance condition. Munro (2023) considers
global treatment effects in a market where the allocation mechanism exhibits certain structures. Different from these work,
this paper focuses on estimating the asymptotic distribution of the market equilibrium, uses bootstrap to conduct inference
and develops its statistical theory in the specific models of LFM and FPPE.
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Bootstrapping )M -estimators/mathematical programs. There is a line of research on bootstrapping M -estimators
(Lahiri, 1992; Giné, 1992; Wellner & Zhan, 1996; Bose & Chatterjee, 2001; Lee, 2012; Patra et al., 2018; Cattaneo et al.,
2020). For constrained M -estimators, one needs to be cautious about bootstrap procedures since they could produce incon-
sistent estimates of the target distribution (Andrews, 2000). Bootstrapping constrained estimators is studied in Li (2023)
and Hong & Li (2020); in these works it is assumed that there are no strongly active constraints. In the FPPE setting
strongly active constraints do occur, and we use epi-convergence theory to remedy this.

A.3. Examples of Exchangeable Bootstrap

Example 2. The multinomial bootstrap corresponds to sampling with replacement. It satisfies Def 5 with the constant
2

cc =1

Example 3. Sample without replacement. Let h = |at| be the number of samples not chosen for some o € (0,1).

Concretely, let w, = ﬁ for1 < 7 <t — handO0 otherwise. Then W is the vector of (w1, ..., w;) ordered at random

independent of data. Def 5 is satisfied with the constant ¢* = a /(1 — ).

Example 4. Li.d. weights. Let wy,...,w; be i.i.d. draws from some distribution with finite (2 4+ €) moment, and w =
%2321“’7' Define the bootstrap weights W, = w, /w. Def 5 is satisfied with the constant ¢* = Var(w)/(E[w1])?.

For more examples of exchangeable bootstrap weights we refer readers to Prestgaard & Wellner (1993) and Cheng (2015).
The wide range of bootstrap weights allowed by Def 5 provides flexibility for practical application.
A 4. Definition of Finite LFM and FPPE

Here we give a formal definition of finite LFM and FPPE. Let v] = v;(67) be the valuation for the 7’th sampled item.

Definition 6 (Finite LEM). The finite observed LFM, denoted LFM (b,v,0,7), is a allocation-price tuple (x,p) € Rtf” X
R such that the following hold:

1. Supply feasibility and market clearance: ) a7 < landy _p™(1—>",a]) =0.
2. Buyer optimality: x; € D;(p) = argmax, {>  z]v] : o)  _x]p” < b;,0 < x] < 1}, the demand set given the
prices.

Suppose we have a finite LFM equilibrium (z, p) = ﬂ/l(b, v,0 = 1/t,7). Thenu] = o>."_ aTv] is the utility of buyer
i in equilibrium, and 3] = b; /u; is the utility price of buyer 1.
Definition 7 (Finite FPPE, Conitzer et al. (2022a)). The finite observed FPPE, ﬁ(b,v,a, ), is the unique tuple
(B,p) € [0,1]™ x R, such that there exists x] € [0, 1] satisfying:

1. (First-price) For all T, p” = max; B;v]. For all i and T, x] > 0 implies 3;v] = maxy, Byvy.

2. (Supply and budget feasible) For all i, o ) _xIp™ < b,. Forall T, )", a] < 1.

3. (Market clearing) For all T, p™ > 0 implies ) x] = 1.

4. (No unnecessary pacing) For all i, oy _x]p™ < b; implies §; = 1.

A.5. Numerical Bootstrap and Proximal Bootstrap for LFM

We briefly review two valid bootstrap procedures and the consistency theory based on Hong & Li (2020); Li (2023). In this
section we only consider multinomial bootstrap weights.

Given a sequence ¢, of positive numbers converging zero, the numerical bootstrap estimator is defined as

ﬁrl:u,LFM = algg glin(Pt + V(P! — P)F (-, B)
S

t

1

= arg min — g (1+eVt(W, —1)F(67,5)
BERi t'r*l
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Theorem 7. Let ¢, = o(1) and €,v/t — co. Then €, (B4, gy — B7) > dLem.

The proof is in App D.3.

Numerical bootstrap does not offer computational benefits, since it requires solving EG programs. However, as we see in
Sec 4.3 the idea of proximal bootstrap extends to a special case of FPPE where all buyers spend their budgets. The regular
multinomial bootstrap is recovered by setting e; = 1/+/%.

To describe proximal bootstrap, we define
G* = V(P! — P)Dr(-, ")

and the numerical difference estimator of the Hessian matrix H, whose (k, £)-th entry is Hy , = (ﬁie,mHt)(ﬂv)’ where

(%%&Eg)(-) = [g(- + eex + eer) — g(- — eex + eeg) — g(- + eer, — eep) + g(- — ee, — eey)]/(4€?). And Dp(-,37) is a
deterministic element in OF (-, 87).

The proximal bootstrap estimator is defined as

o = argmin{e(GY(5 — B7) + 2187~ BI%) (19)

BER?

Theorem 8. Let e/t — oo and €; | 0. Then et_l(ﬁgr’LFM —B7) L JLEM-

The proof is in App D.5.

Proximal bootstrap is clearly computationally cheap since it only requires solving an unconstrained convex quadratic pro-
gram (as opposed to the exponential cone program for EG). On the other hand, the numerical bootstrap requires estimation
of the Hessian matrix. See Thm 5 for a discussion of stepsize selection when using finite difference methods to estimate
the Hessian.

A.6. Examples of FPPE limit distributions

Example 5 (The case with Iy = (), scs holds). Suppose |I| = k. Assume Iy = 0, I, = {1,...,k}. Let H = Hyege, a
square matrix of size (n — k) and G = Gye. Then

Irppe = [Ox1; —H 1G] (20)

which is the same as Eq (8). This agrees with the result from Liao & Kroer (2023).
Example 6 (The case with |Io| = 2.). Let Iy =0, I = {1,2} and I° = {3,...,n}. Then

DZ=-H"'G  ifZ,<0,Zy<0

0
Zy —p12Za|
D X UCZ120,ZQ*[)12Z1<0
_Zn - panI_
JrpPPE = [Z1 — p21Z5 ] ; (21)
0
D |43 —pasla| ifZy>0,7y — panZa <0
_Zn - pZnZQ_

[02><1§ —j:f_lé] o.W.
where H = Hyepe and G = Gpe. We present the derivation in App A.6.
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DERIVING CLOSED-FORM EXPRESSION FOR Jrppe

We recall a few definitions regarding the constraints. Let [ = {i : 87 = 1}, I® = [n] \ I. We further partition I into
To={i: B =1,6 > 00 Do = {i: 6 = 1,6/ =0}.

Let A (resp. B) be a matrix whose rows are e}, i € I, (resp. i € Ip). So Aisa|l;| x n matrix and B is |Ip| X n.

A combinatorial expression of Jgppg is available. One can solve the quadratic program Eq (10), which contains linear
inequality constraints, by solving at most 270! linearly constrained programs. First, one create a candidate linearly con-
strained program by turning some inequality constraints to be equality ones, and then record the optimal objective value.
Then the smallest value out of all 270! candidate programs must be the same as the original program.

Given G, let ; and h; be the optimal value and the optimal solution to the program

min (h+ HIG)"H(h +H'G) st [4;Bj]h = 0. (22)
cR™
Here B; consists of some (possibly zero) rows of B, j = 1,..., 2ol

The program Eq (22) is just projecting the vector —H~'G onto the linear subspace spanned by I'; = [4; B;] w.r.t. the
norm ||-|[3¢. With this geometric interpretation, it is easy to write down the solution. Define the projection matrix P; =
I —H'T5(T; 3 'T})~'T;. Then the closed-form expressions for Q; and h; are

I(I = P))HGFe = (HHG)THTHIT)) I (HTG)
-PHG,

Qj
hj

Then it is obvious that
Irpre = hj(c) = —Pjo)H'G 23)

where j(G) = argmin;{Q; : Bh; < 0}. Equivalently,

JrpPE = (24)
ollol ollol
> - (n(th <0) [] 1(Q; < Qcor Bhy £ 0)) PHG (25)
j=1 =1

a random vector of length n. Only one of the term will be selected for each realization of G. The representation allows us
to derive the exact distribution in some cases.

Omitted details in Ex 6. We show J in Eq (24) reduces to the claimed expression Eq (21).

Consider the programs

min (h+ H'G) H(h + H'G)

hERn

subject to no constraints Q1)
or subject to h'e; = 0 (Q2)
or subject to h'ey = 0 (@Q3)
or subjectto he; = 0, h'es = 0 (Qq)

For ) the optimal solution is by = —H~1G.
For D2, the optimal value is Q2 = (H1G)"e1(e]H ter) " Le](H1G) = (GTHter)?/(H1)3, = Z? and the optimal
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solution hs is

hy = —[I —H tey(e]H ey te]]HIG
0
(H N 1
_ | B 316
(31), _
(%*1)111 1
0
Zy — p1221
Zn - plnzl
where we recall Z = —D*H~'G = [Zy,...,Z,]". For Q3, the optimal value is Z3 and the optimal solution hs is the

third display in Eq (21).
For (Y4, the optimal solution hy is the fourth display in Eq (21).

We consider the indicator part for j = 2 in Eq (24), i.e., the expression

4
1(Bhy < 0) H (Q2 < Qq or Bhy £ 0)

Then B = [61,62] Note Bh1 = Zl/\/ 11722/\/ Bh2 = [0 Z2 pngﬂT, Bhg = [Zl - p12Z2,O]T.
Obviously, both @2, Q3 > @1, and both @2, @3 < Q4. It can be shown

1(Bhy < 0)1(Q1 > Q2 or Bhy £ 0)1(Q3 > Q2 or Bhz £ 0)1(Q4 > Q2 or Bhy £ 0)
= 1(Bhy < 0)1(Bh1 £ 0)1(Qs > Qs or Bh £ 0) x 1

=1(Zy — p12Z1 <0)1(Zy > 0)1(Z3 > Z? or Z1 — p12Zs > 0) almost surely
=1(Zy — p12Z1 < 0)1(Z; > 0) almost surely,

where the last equality follows by a case-by-case analysis. The indicator parts for j = 1, 3,4 are analyzed similarly. O

B. Experiments
B.1. Simulation: Verify Bootstrap Consistency for FPPE

In this section we verify the consistency of our bootstrap estimators, and investigate the effect of the bootstrap stepsize €;
(in Eq (17)) on the quality of bootstrap approximation in FPPE on fully synthetic data.

We consider an 8-buyer FPPE instance with 100 items sampled with i.i.d. values. Budgets of buyers are selected so that the
first three buyers are unpaced (5 = 1). This is to model the fact that in reality there could be buyers with leftover budgets.
We use dual averaging (Xiao, 2010; Gao & Kroer, 2020; Liao et al., 2022) to compute the limit FPPE pacing multiplier *.
Finite FPPEs are computed with MOSEK. We draw 100 finite FPPEs and obtain the finite FPPE distribution by plotting the
histogram of /(3 — 3*). We call this true resampling, which would not be possible in practice. Finally, we then generate
a single FPPE and resample 100 bootstrapped (’s according to Eq (17), obtaining the bootstrap distribution estimate. To
experiment with different tail behaviors for values, we run three sets of experiments: uniform, exponential and truncated
normal values. We also vary the choice of bootstrap stepsize e, = ¢t~ .

Results In Figures 2 to 4 we present the finite-sample distribution of 37 and 3°. Each column corresponds to the pacing
multiplier of a buyer, and each row corresponds to a choice of d. First, we observe that with a suitable choice of d, the
bootstrap distribution is a good approximation to that of finite FPPE with true resampling. For buyers with 8 = 1 the
proposed bootstrap is able to correctly identify them. For buyers with 87 < 1, bootstrap correctly captures the range and the
shape of the distribution. This result is significant, because to obtain the distributions of FPPE, we need to observe multiple
market equilibria, to which we usually do not have access. The bootstrap distribution, on the other hand, is generated based
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on just one finite FPPE. Second, we also observe that if €; is too large (d too small), the quality of approximation degrades.
In particular, in the bottom rows of plots for uniform and normal values, bootstrap tends to ignore the right part of the
distribution of finite FPPEs.

VE(BY —B*) vs &7 (B> - BY),8 buyers, 1000 items, uniform values, 100 FPPEs, 100 bootstraps, & =t~¢

d=0.40
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Figure 2: Comparison of Bootstrap and FPPE finite item distribution.

B.2. Semi-Real Data
In this section we apply our bootstrap estimator to a real-world dataset, the iPinYou dataset (Liao et al., 2014).

The data. The iPinYou dataset (Liao et al., 2014) contains raw log data of the bid, impression, click, and conversion
history on the iPinYou platform in the weeks of March 11-17, June 815 and October 19-27. We use the impression
and click data of 5 advertisers on June 6, 2013, containing a total of 1.8 million impressions and 1,200 clicks. As in the
main text, let ¢ € {1,2,3,4,5} index advertisers (buyers) and let 7 index impressions/users (items in FPPE terminology).
The five advertiser are labeled by number and their categories are revealed: 1459 (Chinese e-commerce), 3358 (software),
3386 (international e-commerce) and 3476 (tire). From the raw log data, the following dataset can be extracted. The
response variable is a binary variable cLick] € {0, 1} that indicates whether the user clicked the ad or not. The relevant
predictors include a categorical variable ADEXCHANGE of three levels that records from which ad-exchange the impression
was generated, a categorical variable REGION of 35 levels indicating provinces of user IPs, and finally 44 boolean variables,
USERTAG’s, indicating whether a user belongs to certain user groups defined based on demographic, geographic and other
information. We select the top-10 most frequent user tags and denote them by USERTAG, . . ., USERTAG1g € {0, 1}. Both
ADEXCHANGE and USERTAG are masked in the dataset, and we do not know their real-world meanings.

Simulate advertisers with logistic regression. The raw data contains only five advertisers. In order to simulate more realistic
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VEBY-B*) vs £7 (B> — BY),8 buyers, 1000 items, exponential values, 100 FPPEs, 100 bootstraps, & =t~
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Figure 3: Comparison of Bootstrap and FPPE finite item distribution.

advertiser values, we fit a logistic regression and then perturb the fitted coefficients to generate more advertisers. We posit
the following logistic regression model for click-through rates (CTRs). For a user 7 that saw the ad of advertiser ¢, the click
process is governed by

1
CTR] = P(cLick] =1|0") = —————
7 ( 7 | ) 1 +exp(w2—67—>
0™ = [1, ADEXCHANGEy, ADEXCHANGE3, REGIONy, . . ., REGIONg5, USERTAGH, . . ., USERTAG ] € {1} x {0,1}4°

where the weight vectors w; € R*7 are the coefficients to be estimated from the data. Note that ADEXCHANGE; and REGION;
are absorbed in the intercept. By running 5 logistic regressions, we obtain regression coefficients wy, ws, ..., ws. To
visualize the fitted regression, in Figure 5 we show the estimated click-through rate distributions of the five advertisers. The
diagonal plots are the histogram of CTRs, and the off-diagonal panels are the pair-wise scatter plots of CTRs. To generate
more advertisers, we take a convex combination of the coefficients w;’s, add uniform noise, and obtain a new parameter,
say w’. Given an item, the CTR of the newly generated advertisers will be m. The limit value distribution in
Def 3 is the historical distribution of the simulated advertisers’ predicted CTRs of the 1.8 million impressions.

Experiment setup. In this section we aim to produce confidence interval of the sum )3 with the bootstrap estimator
Eq (17). Firstly, the sum equals n times the average price-per-utility of advertisers, a measure of efficiency of the system.
Secondly, since most quantities in FPPE, such as revenue and social welfare, are smooth functions of pacing multipliers,
being able to perform inference about a linear combination of /3’s indicates the ability to infer first-order estimates of those
quantities.
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VE(BY —B*) vs £71(B? — BY),8 buyers, 1000 items, normal values, 100 FPPEs, 100 bootstraps, & =t~
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Figure 4: Comparison of Bootstrap and FPPE finite item distribution.

The estimator requires an initial consistent estimate of the Hessian matrix, which is implemented with finite difference in
Eq (16) with differencing stepsize e = ¢t =04, The estimator also requires a bootstrap stepsize ¢, = t~%. We try d over the
grid {0.4,0.3,0.2,0.1,0.05}.

An experiment has parameters (¢,n,d, ). Here t € {100, 300,500} is the number of items and n € {10, 20, 30, 50} the
number of advertisers. Parameter d is the exponent of the bootstrap stepsize, and « € {0.1,0.3,0.5} is the proportion of
advertisers that are not budget-constrained (i.e., 8 = 1). To control « in the experiments, we select budgets as follows. Give
infinite budgets to the first |n | advertisers. Initialize the rest of the advertisers’ budgets randomly, and keep decreasing
their budgets until their pacing multipliers are strictly less than 1. For the experiment (¢, n,d, ), we first compute the
pacing multiplier in the limit market using dual averaging (Xiao, 2010; Gao et al., 2021; Liao et al., 2022). In one simulation
of the experiment (¢,n,d, ), we sample one FPPE by drawing values from the limit value distribution. Now given
one FPPE, we generate bootstrapped pacing multipliers {3%!,. .., %8} by Eq (17). We calculate the set of sums S =
{sP1,...,s" B} where s = Zzﬂf’l and so on. To obtain a confidence interval with nominal coverage 95%, we let ¢, u be
the 2.5% and 97.5% percentiles of S. We report the coverage rate and the width of [¢, u| in Table 3. We perform B = 100
bootstrap replications in each simulation. The reported coverage rate for an experiment with parameters (¢,n,d, «) is
averaged over 100 simulations.

Results. For an appropriate choice of d € [0.2,0.3], the finite-sample coverage rate agrees with the nominal coverage
95%. Although our theory suggests that as long as d < 1/2, the bootstrapped distribution is asymptotically consistent,
parameter d does affect finite-sample coverage. Too small a d (for example, 0.10 or 0.05) results in over-coverage and
a large d results in under-coverage. We also observe that for d = 0.4 and n = 50, the finite-sample coverage rate is
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undesirable for item size ¢ = 100. Reassuringly, it increases to a nominal coverage of 95% as item size increases. We
also see that the width of the confidence interval decreases as the number of items increases while maintaining nominal
coverage. This is expected since the interval width decreases at a rate of 1/+/¢. Finally, for appropriately chosen d and
item size ¢, the proportion of unpaced advertisers « does not affect finite-sample coverage rates, which demonstrates the
robustness of the proposed bootstrap estimator.
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C. Review of Weak Epi-Convergence

The Hoffman-Jgrgensen weak convergence theory is a powerful tool to study the asymptotics convergence of statistical
functional, especially the argmin functional. To apply the theory to specific applications, one needs to instantiate it with a
metric space, usually a space of functions, verify continuity or some form of differentiability of the statistical functional and
the weak convergence of certain processes, and then finally invoke continuous mapping theorem or functional delta method.
Common choices of metric spaces include the space of bounded functions (on some metric space) with the uniform metric
(Van der Vaart, 2000; Kosorok, 2008; Billingsley, 2013), the space of locally bounded functions on R™ with the topology of
uniform convergence on compacta (Kim & Pollard, 1990) or the topology of induced by the hypi-semimetric (Biicher et al.,
2014), the space of positive signed measures or point measures on the real line with an appropriate metric (Resnick, 2008),
the space of bounded real-valued continuous functions on R™ with the usual sup-norm (Giné & Nickl, 2008), or the space
of cadlag (left limit right continuous) functions on R with the Skorohod J; metric (Skorokhod, 1956; Pollard, 2012). To
study asymptotics of constrained minimizers, a suitable choice of metric space is the space of extended real-valued lower
semi-continuous functions with the metric that induces the topology of epi-convergence. Such an approach dates back to
Geyer (1994) and Molchanov (2005), and used in Chernozhukov & Hong (2004) for nonregular models and Chernozhukov
et al. (2007) for set estimation, and more recently is used by Parker (2019) for constrained quantile regression, and Hong
& Li (2020) and Li (2023) in the context of bootstrap.

To begin with, we introduce the concept of epi-convergence and its probabilistic extensions. Consider

%, ={f:R" — R: fis proper lower semi-continuous (Isc)},
€ = {A: Ais anonempty closed set in R"}.

For f : R" — R, we letepi f = {(z,v) € R"*!: f(x) < v} be its epi-graph. Also for C' a nonempty closed subset of
R"*1 and a point v € R™, let de(v) = inf{||u — v||2 : u € C'} be the distance of v to the set C, and for nonempty sets
A and B, define d,(A, B) = max {|da(v) — dp(v)| : ||[v]|2 < p}. Define the Attouch-Wets metric on €., 1 by

daw(A, B) = /0 d,(A, B) exp(—p)dp (26)

And for f,g € %, define the metric dep; (f,9) = daw(epi f,epig). In .7, the topology induced by daw is equiva-
lent to Wijsman topology and the topology of Painlevé-Kuratowski set convergence (Romisch, 2004). The metric space
(€S, daw) is complete and separable (Rockafellar & Wets, 2009, Theorem 4.42, Proposition 4.45). Also, the metric
space (.2, depi ) is complete and separable (Rockafellar & Wets, 2009, Theorem 7.58). We say a sequence of functions
fi € £, epi-converges to f € L, if depi (ft, f) — 0.

Definition 8 (Epi-convergence in probability). Let Z; : Q x R" — Rand Z : Q2 x R" — R be random Isc, extended

real-valued functions. We write Z, =Py Zin probability if for any € > 0 it holds P(w : depi (Z¢(w, +), Z(w,)) >€) = Oas
t — oo.

Definition 9 (Epi-convergence in distribution, Knight (1999)). We say Z; 2z if for any closed rectangles Ry, ..., Ry

with open interiors RY, ..., Ry, it holds the random vector (infg; Z;(-),j = 1,.. .,k)i> (infgr;, Z(-),j = 1,...,k) and
(infR; Zi(),j=1,...,k) A (inR? Z(),j=1,...,k), or equivalently, for any real numbers a1, . .., a,
P ( inf Z(u)>aq,---, inf Z(u) > ak>

u€R, u€ Ry,

<liminfP | inf Z <+, inf Z

< limin (ulean (u) > ar, ) nf t(u)>ak>

<l P( inf Z;(u) > ay,---, inf Z;(u) >

< 1iri>sogp (u1€nRi (u) > aq, ’ulenRg (u) > ak>

<P inf Z(u) > <o« inf Z(u) >

<P (nf 2002 a1 inf 20> 0 )

By Corollary 2.4 from Pflug (1991), Z; 2 Z s equivalent to the weak convergence of epi Z; to epi Z in the metric space
((gyn+1, dAW)
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Estimated values from logistic regression
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Figure 5: Click-through rate (in 0.01%) distributions from logistic regression.
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The following lemma is Slutsky’s theorem (Kosorok, 2008, Theorem 7.15) specialized to the space (.Z5,, depi )-
Lemma 1. Let (Zy)i, (Yi): and Z be random Isc, extended real-valued functions and Y be a deterministic element in %,,.
IfY; —> Y in probability and Z, L 7. Then Zi+Y; R Z+Y.

We also introduce a bootstrap version of weak epi-convergence following Section 2.2.3 in Kosorok (2008). A bootstrap
version of continuous mapping theorem can also be stated (Hong & Li, 2020).

Definition 10 (Conditional weak epi-convergence in probability). Let BL denote the space of Lipschitz functions f :
(&, daw) — R with Lipschitz parameter equal 1, i.e., sup |f| < 1 and |f(z) — f(y)| < daw (z,y). And suppose Z; =
Zy(X, W) is defined on a product probability space, where W represents bootstrap weights, and X represents data. The
process Z converges to Z in the sense of weak epi-convergence conditionally in probability if sup ;c gy, [Ew [f(Z:)|X] —
E[f(Z)]| — 0 in probability, along with certain measurability conditions.

D. Proofs
D.1. Stochastic Equicontinuity Results for the EG Objective

Let ¢, = o(1) and K be a compact set. Let Dp (0, 5) € OF (0, 5) be a deterministic element of the subgradient. Note by
sMo D3.(-) = Dg(-,8*) = VF(-, 5*). We also let F(3) = F(-,3). Note that in the following claims, we do not need
VH(B*) = 0. They work for any 8* at which H is continuously differentiable in a neighborhood.

Claim 1.
sup (P, — P)(F(B* + eth) — F(B%) — eth" D () = op(er/ V)

heK
SEIF;(P:X’Z’ — P)(F(B* + eh) — F(B*) — eh" D () = op(er/ V1)
Proof of Claim 1. Letry p(-,8) = F(-,8) — F(-,8*) — D3 (-)"(8 — B%).

By smo there is a neighborhood of 8*, say N, on which H is differentiable. Then for any 8 € N, the set {6 : 5 —
f(8, B) differentiable at 3} is measure one. Choose ¢ large enough so that the ball {8 : || — 8*|l2 < &} is contained in
N. By a mean value theorem for locally Lipschitz functions, (Clarke, 1990, Theorem 2.3.7), it holds (P; — P)(F(83) —
F(B*)) = ¢7(8 — B*) where ¢ € (P, — P)F () and 3 lies on the segment joining 8 and 3*. By 3 € N, it holds
¢ = (P, — P)Dp(-, 3). Then the desired claim is equivalent to

sup (P = P)rire(,8)
1p—pla<s Sz llB = B*l2
(Pt — P)(DF(vﬁN) - DF(>B*))T<B - B*)

= sup T
18=5*ll2<5: 8 =52

< sup VP = P)(Drp( ) = Dp(-, 89))ll2 = 0p(1) 27)
|1B—B*[l2<6¢

where the last equality is due to Liao & Kroer (2023).

The assumption on the bootstrap weights (Def 5) implies that a bootstrap version of Eq (27) holds, i.e.,
SUp| 5 g+ ,<s, V(P P — P)(Dp(-,8) — Dp(-, *))|l2 = 0,(1) (Wellner & Zhan, 1996, Lemma 4.1). The same

argument goes through for the proof of bootstrap differentiability. We finish the proof of the lemma. O
Claim 2.
sup (P = P)(F(8" + eth) = F(B" + ¢5)) = op(et/ V1)
[|h—s|l2=0(1),s,he K
sup (P! = P)(F(B" + ech) = F(B" + e15)) = oplet/ V1)

lh=sll2=0(1),s,h€ K
Proof. This is implied by Claim 1. O
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Claim 3.

sup P(F(B" + k) = F(B") = h D" () = RT3h) = opea/ Vi + )
€

Proof. Letrs,p(h) = F( 8" + h) — F(-, ) = Dp(-, 8°)7h — 1h3h.
Split the LHS by supy, | P2, r(e:h)| < supy, |Pro p(eth)| + supy, |(Py — P)ra r(e:h)|. The first term is o(e7) by twice
differentiability. The second term is bounded by 0, (¢;/+/%) as in Claim 1. O

Notations in the proof sections. Define the demeaned and the centered function F(-,B) = F(-,8) — E[F(6,8)] and
F(-,8) = F(-,8) — F(-, B*). Let H*(B) = P?F (-, B) be the bootstrapped EG objective.
D.2. Proof of Thm 1

Proof of Thm 1. In the proof, we use 3° to denote the exchangeable bootstrap estimator Eq (9) and use P/ to denote the
bootstrap empirical operator with exchangeable weights (Def 5).

Step 1. Show 8° 2 3*. The consistency of the bootstrap estimator is implied by uniform convergence of H®(-) to H(-)
and uniqueness of 8*. For proof, we refer readers to the proof of Theorem 3.5 from Giné (1992).

Step 2. Show 8° — 8* = O, (1//1).

Define
AY =3P, — P)Dr(-, 57),
A’ =H NP} — P)Dp(-,B%).

Letrip(,8) = F(-,8) = F(-, ") = Dp(-)"(8 — B%), Di(-) = Dp(:, ) = VF(-, B7).
We begin with the optimality of 3° and then apply the definition of . For ease of notation, we let F'(3) = F(-,3). We
have

0> PP (F (") = F(87)
= (P = P+ P, = P)(F(8") = F(8")) + P(F(8") — F(87))
= (A" + A)H(B" - B*) + P(F(B") — F(8")) (28)
+ (PP = P+ Py — Pyryp(-, 8°)

> (A" + AT +0p(1)"(B" = B7) + e 18" = 873 (29)
where in the last inequality we used (i) (P&" — P,)ry g (-, 8%) = Op(% + 18 = B*[12) - [I18° = B*|l2 = 0p(1)||18° — B2
by Claim 1, (i) (P; — P)r1.7(-, 8°) = 0,(1)|8° — B*||2 by Claim 1, and (iii) 8 — PF(-, 3) is locally strongly convex
at 3*, and so there is a neighborhood of 3* and a constant ¢ > 0 such that P(F(3) — F(8*)) > c||3 — 8*||3 for all 3

in this neighborhood. The expression Eq (29) now becomes 0 > O, (t~/2)||8° — 8*|la + ¢||3* — 5*||2. Since the case
B — B* = 0 can be easily excluded, we divide both sides by ||3° — 3*||2 and conclude that (3° — 8*) = O, (1/+/1).

Step 3. Find the asymptotic distribution. Since 3° is the minimizer of PP"F over R7, defining F/(8) = F(-, 8)— F(-, %),
we have

02 PPO(R(Y) — F(AY+ A7+ 5°))
= (B~ P+ (B = P(F(8") ~ F(AY + A7 + %) + P(F(8") ~ F(A" + A7+ 5°))
= (AP ATIE — 5 — (A4 AT) + 8 — 87 — 1A+ AV
+ (P = P) + (P, = P)](r1,p (- 8°) = rip (5 A"+ A7 4 §7))

= 2IA% + A7 4 (8 — B3 + 0p(1/1)
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where in the last line we used (i) (PF" — P)r1p(-, B) = o0,(1/t) for any random 3 such that 8 = B* + O,(1//%)
by Claim 1, (i) (P, — P)r1 r(-,8) = o0,(1/t) for any random j such that 3 = * + O,(1/+/t) by Claim 1, and (iii)
PF(B) = 38 — B*II3¢ + o(l|3 — B*13) for 3 — p* due to VH(5*) = 0.

Rearranging gives t||A” + A7 + (8° — 8*)||3 = 0,(1). Next, using 87 — 8* = =AY + 0,(1/+/t) (Liao & Kroer, 2023)
we have

VE(B® = B7) = —VIA" + 0,(1)

By an exchangeable bootstrap CLT (Praestgaard &  Wellner, 1993), we know +/tA? e
HAN(0,E[VF(-,8)VF(-,3*)7]) conditional on almost all data sequence vy, where c is the constant defined in
Def 5. This concludes the proof. O

D.3. Proof of Numerical Bootstrap (Thm 7 and Thm 3.1)

Theorem 7. Let ¢; = o(1) and €;v/t — oo. Then €, (B4, gy — B7) > dLem.

Proof of Thm 7. We verify the assumptions in Theorem 4.1 of the numerical bootstrap paper (Hong & Li, 2020).

For Thm 7, let B = R%} |, 3 be Bgu’LFM, and S* be the equilibrium pacing multiplier in Fisher market. We restate the

assumptions in Theorem 4.1 of (Hong & Li, 2020) in our notations.
(i) Hy(8") <infp Hy + 0p(1/t), and HY (%) < infp Hf 4 0}(c7).
(ii) 875 B* and B° — B7 = 0% (1).
(iii) B* is an interior point of B.
(iv) The class {F(-,8) — F(-,8*) : ||8 — B*||2 < R} is uniformly manageable.
(v) H is twice differentiable at 3* with positive definite Hessian J.
(vi) The limit X(s,t) = lim, o SE[(F(, 3* +es) — F(-, %)) (F(-, B* + et) — F(-, 3*))] exists for each s, t.

(vii) Forall § > 0itholds lim o E[(F (-, * + es) — F(-, B*))L(|F (-, B* + €s) — F(-, %)| > §)] = 0, where F(-,B) =
F(,8) — E[F(0, 8)].

(viii) Let Gg(-) = sups_g,<r |[F (-, 8) — F(-, *)|. As R — 0, E[G%] = O(R?).
(ix) Vte; — coand e | 0.
(x) E[GLZ1(RGR > n)] = o(R?) forall n > 0.

(xi) There is a neighborhood of 3* such that E[|F'(-, 8) — F(-,3)|] = O(||3 — B'||3) for 3, 3’ in this neighborhood.

Implicit in the paper, it is also required that the gradient of the population objective is zero at optimum. This is true for
Fisher market.

We now verify these conditions. Condition (i) holds because we consider exact minimizers. Condition (ii): The 37 —3* 20
part has been verified in Liao & Kroer (2023). It remains to show the 3° — 37 5o part. Since 3 +— PPF(-, B) converges to
H in probability pointwise and that 3 — P/ F(-, 3) is convex, it holds that the convergence is uniform over compact sets.
By uniqueness of 3* it holds 3° 2 B*. Condition (iii) naturally holds for the linear Fisher market. Condition (iv) requires
that there is an Ry > 0 such that the function class {F'(-, 5) — F(-,8*) : |8 — 8*|l2 < R} is uniformly manageable for
all R < Ry. It holds because the class {6 — f(6,0) — f(6,8*) : 8 € B} is uniformly manageable, which is verified in
Liao & Kroer (2023). Condition (v) is assumed in smMO. In condition (vi) the function X is the covariance kernel for some
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Gaussian process. We show X(s,t) = s"E[VE(., 5*)VF(-, 3*)|t = s'E[VF(-, 3*)VF(-, *)7]t. By the dominated
convergence theorem, we can pass the limit inside the expectation and obtain

WmE[(F (8" + et) = F(.3)(F(, 8 +es) = F(-.57)]/e

Condition (vii): by dominated convergence theorem we can move the limit inside expectation.

i | XI5 4 es) = PO ARG+ e9) = )] > )
<[l [£(FC 57+ €)= FCADLIFCB" 4 e9) = FC 5] > 0]

< LlsloB[lmL(F (-, 8* +es) = F(, 8] > 8)] = 0

where the last equality holds because 5 — F'(6, ) is continuous for all . Now we show conditions (viii) and (x).
Consider the set []""_; [8;/2, 1]. On this set, for all 6, the function 3 — F'(6, ) is Lipschitz with parameter L = v + 2\/n
w.r.t. £ norm. So for R small enough the ball {8 : || — 8*||]2 < R} is contained in the set [ ,[3F/2,1]. The
first requirement follows by noting E[G%] < L?R? = O(R?). The second requirement follows from the arguments
limp_yo E[%]I(RGR > n)] < E[L? - limg 0 1(Gr > n/R)] = 0 where the last equality holds due to G being
bounded for R small enough. Condition (ix) requires that e:\/t — oo, which is assumed. Condition (xi): Inspecting the
proof this condition is used to show Claim 2, which we proved separately.

Now we can invoke Theorem 4.1 from Hong & Li (2020) and conclude egl(ﬂngFM - pB7) L Iem. O

Proof of Thm 3.1. For Thm 3.1, let B = [0,1]". Let B° refer to BSU’FPPE, and 8* be the equilibrium pacing multiplier
in FPPE. As before, it is implicitly assumed in Hong & Li (2020) that the gradient of H equals zero at 8*. This is true
for FPPE if and only if all buyers spend their budgets. Theorem 4.2 from Hong & Li (2020) requires that all conditions
stated above except (i) and (iii) hold, and that 5* uniquely minimizes H over B, which is true in FPPE. Now we can

invoke Theorem 4.2 from Hong & Li (2020) and conclude ¢, (8L, rpE — B7) %, Jrppe. Note that under the assumption
that all buyers spend their budgets, the limit distribution simplifies to Jrppe = argmin, - G"h + %hTﬂ{h where G ~

N (0,E[VF(-, 85)VF(-,85))and C = {h € R" : h; < 0,3 € I} O
D.4. Proof of Thm 5 and formal statement

Below we start by giving a more formal version of Thm 5 and then prove it.

Theorem 9 (Hessian estimation). Assume H (-) is four times continuously differentiable in a neighborhood of 3*. Consider
the finite difference estimate defined in Eq (16) with differencing stepsize n; = o(1) and ny\/t — oo. For some intermediate

quantity Hyy, it holds Hyp — Fre = 0,(n? + ﬁ) + OP(%) E[(Fre — Hie)?] = O(nf + %) +o(nt + %) where
the O, (1/+\/t) part does not depend on 1. Proof in App D.4.

Proof of Thm 5 and Thm 9. The proof follows the idea in Lemma 2 from Cattaneo et al. (2020). The main difference is
their result is for cube-root asymptotics, while our setting is the usual square-root asymptotics. Define

Hpe = ($ie,mHt)(ﬁ*)’ Hie(B) = (ﬁiz,mH)(ﬁ)
Then UA{M — j:fkg = R + S where
R = Hyop — Fpe — Hie(B7) + Hie(87) = ﬁie,m[(Ht — H)(87) = (Hy — H)(8%)], S =Hpe(B7) = Hre(5).

It will be shown that (i) R = 0, (1/(v/tn:)), (i) S = Op(%) +0,(n?), and (iii) E[(Hp, — Fre)?] = O(n} + %) +o(nt+

1
n?)-
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To show (i), by Claim 2,

! tSlTlp(Pt = P)(F(, " +time) — F (-, 8% +tans)) = 0p(1) (30)

where the supremum runs over the set Ty = {(¢1,t2) = |[t1]], [|t2]] < M, ||t1 — t2|| < d;} for some M > 0 and d; | 0.
Alternatively, the claim Eq (30) can be proved following the proof of Theorem 4.1 from Hong & Li (2020) or Lemma 4.6
from Kim & Pollard (1990). With this bound, letting § = (87 — 8*)/n: = 0p(1), terms such as

(Pe = P)(E(, 87 +me(en +e)) = F (87 4 ne(ex + er)))
= (P = P)(EC, " +ne(d e+ e0) = F( 8" +m(en +eq)))

< Sup(Py = PY(F( 8" + tam) = F(, 5"+ tam)
= Op(nt/\/i)

can be upper bounded as above. And so R = %op(m/\/f) = 0,(1//tn?).

To show (ii), by Taylor’s theorem, S = (VsV3,H (8)|=p+)" (87 — B*) + 0p(n?) = Op(%) + 0, (1), and the O, (1/+/1)
term does not involve 7.

Finally, to show (iii), we calculate the bias and variance of F(y. Letd(-) = F(-, 8" + m(ex +er)) — F(-, B° + m(—ex +

er)) — F(-, 8% + ni(ex —er)) + F(-, 85+ ni(—er, — ep)). Then Hyp = ﬁPtd(). For the bias, following the proof of
t

Lemma 2 from Cattaneo et al. (2020), by Taylor’s theorem,

. 1
E[Hke — Hie] = E(VivieH(ﬁ*) + ViV H(B*)ni + o(n})

To see this, let g(¢) = H(B* + eh) — H(B*). Then g(0) = 0. Also let 7((8) = V2H (). Now ¢V (¢) = VH(B* +
eh)"h, g (e) = h"H(B* + eh)h, g (e) = S0 h2RTV 3 Hii (B* + €h) + 23, hihjh"V s H(B* + €h), and g =
S WERTVEI (B + eh)h + 23, hih hTVAH(B* + €h)h.

For the variance, note Var(J() = Tai7r Var(d() = 1gaEld()?] + O(1/t). Next,

1<j

n EI(F (-, 8% + m(en +ee) = F(, 8%)%] = (ex + eo) "E[VE(, 5°)%%(ex + eq)

and so E[d(-)?] = ©(n?). Conclude that

Var(Ftee) = O(—1) + O(L/1).

tn?

D.5. Proof of Proximal Bootstrap (Thm 8 and Thm 3.2)

Proof of Thm 8. As t — 0o, e, (8° — B7) = —H LG with probability approaching 1 due to ¢, = o(1) and e;v/f — c.
Next, G* = VH(P} — P)Dp(-,87) = VUP — P)(Dr(-,87) — Dr (- 8%)) + VHP} — P)Dr( %) = VH(P} -
P)Dgp (-, %) + 0p(1) i>JV(O,E[VF(~,ﬁ*)VF(~,ﬁ*)T]) conditional on data, by Wellner & Zhan (1996, Lemma 4.1).

Also H 2 % and by continuity of matrix inverse, H~! 2 1. We conclude ¢; ' (3° — 37) converges in distribution to
JLem conditionally in probability. O

Proof of Thm 3.2. We present proof following the idea in the working paper of Li (2023). In fact, most of the conditions
required in that paper have been established in Liao & Kroer (2023), such as stochastic equicontinuity of certain processes.

Let B = [0, 1]". Let 8° refer to ngFPPE, and 8* be the equilibrium pacing multiplier in FPPE. It is assumed in Li (2023)
that the gradient of H equals zero at 3*. This is true for FPPE if and only if all buyers spend their budgets, i.e., I, = 0.
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Step 1. Show 3° % *. Since €, — 0 and G* = O, (1), we have ¢,G® = 0,(1). Then for each 3 € R

(G + 2187 — Bl + x(8 € [0.1]")
1

= 51 81 (8 € 011 + (G5 + (5 - (8 - 57+ 157 - 571

= 218" = Bl + x(8 € [0,1]") + 0,(1)

Lo n
5 518" = Bli3c + x(8 € 0,1]")
By convexity, it implies uniform convergence on compact sets in probability. Since 8* uniquely minimize 8 — ||f* —
B2, + x(B € [0,1]™), we conclude 5° 2 5* (Newey & McFadden, 1994, Theorem 2.7).
Step 2. Identify the limit distribution of 3°. Note that when I, = 0, E[VF(-,3*)] = 0. Define X;(h) = (G*)"(h +

g) + 3llh + @H% We first show X;(h) ~» GTh + $h"Hh in (>°(K) for any compact K C R", where

G ~ N(0,E[VF(-,5)VF(-,5*)"]). The proof is identical to the proof of Claim 4 and is omitted here. Next, by a
change of variable h = ¢, *(8 — 3*), the inclusion 3 € [0, 1] becomes & € ([0,1]™ — 3*)/e;, and

1
he([0,1]"—B%) /es heR™ s <0,i€ o

where the last equality uses I, = ) and thus ([0, 1] — 8*) /e LN {h € R™ : h; <0,i € Ip}. We conclude the proof of
Thm 3.2. =
D.6. Proof of Thm 2

The limit FPPE is 3} = 1 and 0} = 0. The observed FPPE is 3] = min{1,1/0'} where o' = 13" _ v;(07). The
bootstrapped FPPE Eq (12) is 4% = min{1, 1/2*} where o** = %Zizlvl(m’b).

First, we derive the limit distribution of the observed FPPE. We have
1 . _ d .
\/i(ﬁ? -1)= s mm{\/i(l —2"),0} % min{Z,0} = JrppeE.
where Z ~ .4 (0, Var(v1)). In the above we used ¢ 2 E[v1] = 1, Slutsky’s Theorem, v/£(1—7") 4 7. and the continuous
mapping theorem.

Now we analyze the limit distribution of the bootstrapped FPPE. Define the set A, = {limsup, v/#(1 — v*) > ¢} for any
¢ > 0. By the law of the iterated logarithm,

V(1 —ot)
P( 1 —=1) =1
< I?Ligp v2loglogt > ’

and thus P(A,) = 1 forall 0 < ¢ < occ. Note that it holds o%* — 15 0 and v/£(o"* — 5) % .4 (0, Var(v;)) conditional on
observed items (by triangular-array versions of the law of large numbers and the central limit theorem, see Theorem 2.2.6
and Theorem 3.4.10 from Durrett (2019)). On the event A.., we can choose a subsequence {t } , such that /¢ (1—v%*) >
c for all k. Now let ¢ be an element of this subsequence. Then we have

VH(BE — B]) = VE(min{1,1/5%*} — min{1,1/5'})
> Vt(min{1,1/5"%} — 1)
= % min{0, V(o' — o8 +1 — %)}
> % min{0, vV#(a* — 7% + ¢}
<4 min{0, Z + ¢} > min{0, Z},

where we used Slutsky’s theorem for the convergence in probability. The last inequality is strict with strictly positive proba-
bility. We conclude that the standard multinomial bootstrap \/f(,é’b — [37) fails to converge to the desired distribution Jrppe.
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D.7. Proof of Thm 4
Proof of Thm 4. Define the estimated critical cone
1- 5

t

C={h:h;= fori € I}

Recall under scs the critical cone is C = {h € R" : h; = 0,7 € I }.

Step 1. We show that the critical cone is correctly estimated in the sense that
x(- € 6’) E>><( € C) in probability 31)

The claim is equivalent to d 4y (é, C) % 0, where d 4y is defined in Eq (26). For any € > 0, the event {d 41/ (6, C) > €}
is equivalent to {1, # I, }. First we bound P(I # I.).
P(Iy # 1) =P3i e 1,1 —8) >0, orJi € I°,1 — 8 < &)
<Y PA-B]>8)+ Y P(1—B <d)

i€l iele

Fori e Iy,by 8] — 1= op(%), we have P(1 — 3] > &) = P(0,(1) > §;\/t) — 0 since §;v/t — ¢ > 0. Fori € I¢,
since 87 —1 < 0,P(1— 8] <) =P(BF =B <Bf —1+6;) =P(op(1) < BF —1+ ;) — 0by d; | 0. We conclude
P(I; # I) — 0 and so x(- € C) =2 x(- € C) in probability.

Step 2. Next, we show 5° 5 5*. Since ¢; — 0 and G = O,,(1), we have €,G® = 0,(1). Then for each § € R”

1 ~
b 2
GG+ 5187 — BI% +x(8 € B)
1

— 51~ BB x5 € B+ (G + (5 - BB - ) + 518" - 1% )

1. ~
= 518" = Bl% + x(8 € B) + 0,(1)
1 *
5 5l18" = Bll3c +x(8 € B))
where B’ = {8 € [0,1]™ : 8; = 1,i € I}. By convexity, it implies uniform convergence on compact sets in probability.
Since 3* uniquely minimize ||3* — 8|3, + x(8 € B), we conclude 8”2 3* (Newey & McFadden, 1994, Theorem 2.7).
Step 3. Identify the limit distribution of 3°.
Note ¢, (8" = 87) = &, (8" = B) + ¢, (8" — B7) = &, (8" — 8*) + 0,(1), it suffices to show ;' (8" — 3*) < Jrppe.

First with a change of variable h = ¢; ! (f — 3*) and so ¢; * (3 — B7) = h+¢; *(B* — B7), dividing the objective function
by €7, the bootstrap estimator in Eq (17), with probability approaching one, can be written as

Bb_ﬁ* :argmin{(Gb)T(h—l—ﬁ*;ﬂv 5*_57

€t heR™ €t

1 ~
45l = e )

=X, (h)
Claim4. X,(h) ~ (¥£)G™h + $h"Hh in (°°(K) for any compact K C R™.

By Knight (1999), we know convergence in distribution with respect to the topology of uniform convergence on compact

sets implies weak epi-convergence, and so X LG h+ %hTﬂ'Ch. Combining X; LG h+ %hTiHh, Eq (31) and Lemma 1,
we have

N\ epi 1
Xo(h) +x(h € C)= G"h+ S ||hll3c + x(h € C)
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The above implies conditional weak epi-convergence in probability of the processes h — X;(h) + x(h € C ). A bootstrap
version of the continuous mapping theorem can be stated for conditional weak epi-convergence in probability (Hong & Li,

2020). Then ¢; (3> — 3*) % arg min, . GTh + Lh™Hh, which is exactly Jrppe. O
Proof of Claim 4. First, we show for any compact set K € R",
1
sup [Xy(h) = ((G")"h + 5 1hll3)| = op(1) (32)
heK

Note the LHS can be upper bounded by
*\ _— 1 * — 17 *\ _— A7
(G)(BY = B7)er " + 5187 = B7ll3ce ™ + sup hH(B = B7)e,* + sup hT(H — FOh

We just need to show (G°)"(8Y — %) = op(er), |87 — B*ll5 = op(€f) and supg WH(BY — B*) = op(e) and
supg |WTHh — h™Hh| = o,(1) (Thm 5). This holds by G* = O,(1), 87 — B* = O,(1/V), |H — H|j2 = o0p(1)
and 1/v/t = o(e;).

Next we show for any compact K C R”,
b\T 1 2 T 1 2 . s}
(G°)'h + §||h|\ﬁwG h+§||h||9{ in £°°(K) (33)

where G ~ A4 (0, Cov(V F(-, 3%))). It suffices to show G® % G and H B H. In Thm 5 is has been shown that 3 — H =
0p(1). Note G* = V{(P — P;)Dp(+, 87) = V(P! = P.)(Dp (-, 87) = Dp(-, 8*)) + VH(P} — i) Dp (-, B*) = V(P! -
P)Dr(-, %) + 0p(1) by Wellner & Zhan (1996, Lemma 4.1). We conclude G° 4 Gand X, ~ hTG + 1 h"Hh. To show
conditional convergence 5, one can use arguments analogous to Theorem 2.9.6 in Van der Vaart (2000). [

D.8. Proof of Thm 6

Proof of Thm 6. Let T be the conditional limit distribution of 7%, and 7> be the limit distribution of 77 (3*, 6*). The
proof relies on the following result. For two real-valued random variables X and Y, we say X is stochastically dominated
by Y, denoted X <y YVifP(X >2z) <P(Y > z)forallz € R.

Theorem 10. For all x € (0,00), T <. T»*. When x = oo, T>® = T">,

We recall a result regarding quantiles.

Lemma 2 (Lemma 21.1 from Van der Vaart (2000)). Let F(z) = P(X < z) be the CDF of a real-valued random variable
X. And let F~Y(p) = inf(z € R : F(x) > p) for p € (0,1) be the quantile. Then F(F~1(p)) > pforp € (0,1). Equality
holds if F is continuous at F~1(q).

Recall the following condition

the CDF of T° is continuous at the (1 — «)-th quantile of 7°°°. (34)

Let ¢1_,, be the (1 — «)-th quantile of 7°°. Then Lemma 2 implies that P(T>° < ¢1_,_.) > 1 — a — e for all € > 0 small
enough. The assumption in Eq (34) implies P(T° < ¢;_,) =1 — .

For any € > 0, let A be the event {7y : P(T® < ¢;_o|7) — (1 — a) < €}. Let ¢}_, be that the (1 — a)-th quantile of 7°
conditional on .

First we show P(A) — 1. By T%> >, T° we know P(T*>® < ¢;_,) <P(T>® < ¢1_4) = 1 — a. Then

P(A°) =P(P(T* < ¢1-a|7) — (1 —a) > ¢)
SPP(TP <c1aly) —P(T"® <c10) >€) =0
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due to T? & T°°_ Under event A, we have ¢;_o_. < ¢}_,. Tosee thisnote P(T>®° < ¢t |7) >P(T* <& ) —e>
1 — a — €. Then

=P(T7(6%,6") < }_,)

> P(T7(8*,6%) < ], A)

> ]P)(T’Y(ﬁ*a 6*) < Cl—a—e A)

>P(T7(8%,0") < ci—a-c) —P(A°) > 1—a—e+0(1)
where the last line follows from P(T7(8*,6*) < ¢1—q—c) 2> P(T° < c¢1—q—¢) > 1 —a—cand P(A°) — 0. Since ¢ > 0
is arbitrary, we conclude lim inf P((3*,8*) € C7(c4_,)) > 1 — «a. O

Proof of Thm 10. We study the asymptotic distributions of 77 (8*, 6*) and T°. Recall VH (3*) = —d*.
Step 1. We will show

t(Le(B" + 55,07) = Le(B",67)) ~ h'G + %hTth
in £°°(K) for any compact K C R".
HLe(B" + J5,6%) — Ly(B,07))
U+ ) — B + ()
— VP, — P)Y(VE( ) h + %hTth +o0,(1)
WG+ %hTH{h in £ (K)

where G ~ A4(0,Cov(VEF(-,5%))), 0p(1) term is uniform over h € K by Claim 3. Applying a continuous mapping
theorem

(B, 0%) = — Inf +(L(B" + ) = Lu(BY))

i (G"h + hTJ-Ch) =T
heB,.

Step 2. In Claim 4, we have shown
b o* p T 1 T
X°(B8* + eth)~ G h+ ih Fh
in />°(K) for any compact K € R™. Next we study the asymptotic distribution of 7°.

Tb = — inf X°
o5 (8)

=— inf  X"(B"+eh
he(®}—p7) /e (5" +ech)

1
S — inf (GTh+ =h"Hh) =: T®>
heRrn 2
where the last line follows due to 5* lying in the interior of R”, and a bootstrap version of continuous mapping theorem;

see Theorem 10.8 in Kosorok (2008). We can see for each draw of GG, we have the dominance relationship Tho0 > T We
conclude the (1 — «)-quantile of 7% is greater than or equal to that of 7.

The claim that when x = oo, T? & T is obvious.
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Remark 1. One could also use the statistic

0<6<b,67 (1, —B)=0

TV(B) = inf (Lt(ﬂ, 5) — hiélﬂgn Li(B + h/ V1, 5))

and the region {8 € (0,1]" : T7(B) < ¢} to do inference on just 3. Noting T7(8*) < L:(5*,6*) — infrep, L:(B* +
h/+\/t,8*), we can estimate an upper bound of the quantile of its limit distribution by bootstrap. [
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