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Abstract. Budget constraints are ubiquitous in online advertisement auctions. To manage 
these constraints and smooth out the expenditure across auctions, the bidders (or the platform 
on behalf of them) often employ pacing: each bidder is assigned a pacing multiplier between 
zero and one, and her bid on each item is multiplicatively scaled down by the pacing multi-
plier. This naturally gives rise to a game in which each bidder strategically selects a multiplier. 
The appropriate notion of equilibrium in this game is known as a pacing equilibrium. In this 
work, we show that the problem of finding an approximate pacing equilibrium is PPAD- 
complete for second-price auctions. This resolves an open question of Conitzer et al. [Conitzer 
V, Kroer C, Sodomka E, Stier-Moses NE (2022a) Multiplicative pacing equilibria in auction 
markets. Oper. Res. 70(2):963–989]. As a consequence of our hardness result, we show that the 
tâtonnement-style budget-management dynamics introduced by Borgs et al. [Borgs C, Chayes 
J, Immorlica N, Jain K, Etesami O, Mahdian M (2007) Dynamics of bid optimization in online 
advertisement auctions. Proc. 16th Internat. Conf. World Wide Web (ACM, New York), 531–540] 
are unlikely to converge efficiently for repeated second-price auctions. This disproves a conjec-
ture by Borgs et al. [Borgs C, Chayes J, Immorlica N, Jain K, Etesami O, Mahdian M (2007) 
Dynamics of bid optimization in online advertisement auctions. Proc. 16th Internat. Conf. World 
Wide Web (ACM, New York), 531–540], under the assumption that the complexity class PPAD 
is not equal to P. Our hardness result also implies the existence of a refinement of supply- 
aware market equilibria which is hard to compute with simple linear utilities.

Funding: This work was supported by National Science Foundation (CCF-1703925, IIS-1838154). 
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1. Introduction
Online auctions are a mainstay of the internet advertising industry. Whenever a user visits a web page or searches 
for a keyword, interested advertisers participate in an auction to win the opportunity to promote their content to the 
user. Advertisers typically participate in thousands of these online ad auctions every day and are often budget con-
strained, which makes budget management a crucial component of online advertising. This paper is concerned with 
a specific method of budget management in auctions: pacing (also known as multiplicative pacing), which has found 
use at platforms such as Facebook, where pacing is routinely employed as one of the ways to manage budgets on 
behalf of advertisers.1

Pacing involves multiplicatively scaling down bids of advertisers in order to ensure a smooth depletion of their 
budgets over the entire advertising campaign, which is comprised of a large number of individual auctions. Consider 
the setting in which a group of buyers (advertisers) participate in a series of independent second-price auctions for a 
collection of items (the opportunity to display an ad to a user). If all buyers bid their values2 in every auction, they 
might all deplete their budgets before the last auction. As a remedy, pacing associates a pacing multiplier to each 
buyer, which lies between zero and one, such that each buyer bids her value scaled down by her pacing multiplier. 
The pacing multiplier is strictly smaller than one only if the buyer would deplete her budget by bidding her true 
value in each auction.

Pacing has the desirable property that, if we fix the bids of competing buyers, then pacing allows a buyer to win 
the items which provide the best return on investment (ratio of value to price) subject to her budget constraint. In a 
recent work, Balseiro and Gur [4] exploit this property to prove the optimality of pacing for budget management: For 
a budget-constrained buyer who repeatedly participates in second-price auctions for which her values are drawn 
i.i.d. from some distribution, the optimal bidding strategy is to use pacing, both when the bids of the adversary are 
stochastic or adversarial. In other words, when considering the problem of bidding under budget constraints from 
the perspective of a single buyer, pacing is provably the best strategy to use.
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In this paper, we study the situation where every buyer uses pacing to attempt to bid optimally in second-price auc-
tions. We prove that, unfortunately, if every buyer tries to bid optimally through pacing, then the resulting dynamics 
are not likely to converge efficiently to an equilibrium. We do so by investigating the computational complexity of 
finding an equilibrium of the game in which each buyer’s strategy involves selecting a pacing multiplier, called a sec-
ond-price pacing game. The natural notion of equilibrium in this game is the pacing equilibrium (see Definition 1), which 
was introduced and shown to always exist by Conitzer et al. [18]. Conitzer et al. [18] also studied the computation of 
pacing equilibria by developing mixed-integer programming methods and applied them to real-world auction data, 
but found them plagued with poor scalability. They went on to conjecture that computing a pacing equilibrium could 
be PPAD-complete.3

Our paper resolves this open problem: it is indeed a PPAD-complete problem, and this holds for a broad class of 
approximate versions of the problem as well. This provides mathematical support for the repeatedly observed 
empirical fact that pacing-based bidding strategies often do not converge quickly, and the resulting equilibria seem 
hard to compute. These two facts are evidenced by the lack of efficient dynamics and efficient algorithms for computing 
equilibria, despite the significant attention pacing has received for more than a decade (see Section 1.4). Through our 
result, we show that multibuyer pacing is fundamentally intractable and this lack of efficient dynamics/algorithms is 
likely here to stay. Before delving deeper, we provide a short primer on PPAD for those unfamiliar with it. This can be 
safely skipped by any reader already familiar with the topic.

Like the well-known complexity class NP, PPAD (Polynomial Parity Argument in a Directed graph, introduced by 
Papadimitriou [38]) is a collection of computational problems. As with the definition of NP-hardness and 
NP-completeness, a problem is said to be PPAD-hard if it is at least as hard as every problem in PPAD; a problem is 
said to be PPAD-complete if it is contained in PPAD and is PPAD-hard. The analogy to NP extends further: the 
PPAD-hardness of a problem can be established by providing a polynomial-time reduction from a problem already 
known to be PPAD-hard. One of the quintessential PPAD-complete problems, and the one we will employ in our 
reductions, is that of computing a Nash equilibrium of a bimatrix game (Chen and Deng [11], Daskalakis et al. [20]). 
The Nash equilibrium problem has been studied extensively for decades and yet, despite much effort, no 
polynomial-time algorithm is known for it. Moreover, a recent spate of results showed that it is hard to solve, assum-
ing certain strong cryptographic assumptions (Bitansky et al. [8], Choudhuri et al. [17], Garg et al. [29], Hubacek and 
Yogev [32], Rosen et al. [39]). This has motivated the conjecture that PPAD-hard problems cannot be solved effi-
ciently. In this paper, we show that the problem of finding a pacing equilibrium is PPAD-hard. This shows that com-
puting a pacing equilibrium is hard, unless all problems in PPAD can be solved efficiently.

On the other hand, showing that a problem is in PPAD amounts to giving a polynomial-time reduction to a prob-
lem in PPAD. For this purpose we will avail ourselves of the fact that the algorithmic version of Sperner’s lemma is 
known to be in PPAD (Chen and Deng [12], Papadimitriou [38]), and reduce the problem of finding a pacing equilib-
rium to it. We refer the interested reader to Goldberg [31] and Chapter 4 of Roughgarden [40] for a survey of PPAD 
and its complete problems.

1.1. Main Contributions
We first prove that finding a pacing equilibrium is in PPAD. In particular, this implies that, when values and budgets 
of buyers are rational in the game, there always exists a pacing equilibrium in which every entry is rational and can 
be written using polynomially many bits. (In contrast, the existence proof of Conitzer et al. [18] uses a convergence 
argument, from which it is not clear whether an equilibrium with rational entries always exists.)
Theorem 1. Finding a pacing equilibrium in a second-price pacing game is in PPAD.

Next we show that the problem of finding an approximate pacing equilibrium is PPAD-hard. Our notion of approxi-
mation relaxes the definition of (exact) pacing equilibria in two ways: (i) buyers who bid close to (but not necessarily 
exactly equal to) the highest bid may also win fractions of an item; (ii) each buyer either spends most of her budget, or 
her pacing multiplier is close to one. We use two parameters δ�and γ�to capture these two relaxations quantitatively 
and such a solution is called a (δ,γ)-approximate pacing equilibrium (see Definition 2).

Theorem 2. For any constant c > 0, finding a (δ,γ)-approximate pacing equilibrium in a second-price pacing game with n 
players is PPAD-hard when δ → γ → 1=nc.

Note that, by virtue of being a relaxation, finding an approximate pacing equilibrium is in PPAD as a direct conse-
quence of Theorem 1. Similarly, the PPAD-hardness of finding an exact pacing equilibrium follows from Theorem 2. 
Therefore, both problems of finding an exact and an approximate pacing equilibrium are complete in PPAD. To the 
best of our knowledge, our results are the first PPAD-completeness results for budget-management in second-price 
auction systems such as those applied in large-scale internet advertising.
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1.1.1. Implications. Our hardness result has implications for Borgs et al. [9], in which the authors studied dynamic 
first-price and second-price auctions with budgets. They proved that pacing combined with perturbations can lead 
to efficient convergence of bidding dynamics under first-price auctions. They conjectured a similar convergence in 
the analogous second-price setting and provided experimental support for it. Our definition of approximate pacing 
equilibria (Definition 2) is able to capture their random-perturbation model, thereby bringing it under the purview of 
our hardness result Theorem 2: if such a convergence occurs in the second-price case, then it must do so inefficiently 
assuming PPAD does not have polynomial-time algorithms (see Section 3.2). Moreover, since our model also admits 
a stochastic interpretation, if all of the buyers employ some pacing algorithm for repeated second-price auctions with 
correlated value distributions and global budget constraints, then the resulting dynamics will not always converge 
efficiently to an equilibrium, assuming PPAD does not have polynomial-time algorithms. In particular, this state-
ment applies to the pacing algorithm given by Balseiro and Gur [4], which is an optimal bidding algorithm for a sin-
gle budget-constrained buyer under both adversarial and independent-stochastic competition. Informally, the 
central message here is that, when multiple budget-constrained buyers bid in a way that is optimal for them individ-
ually, the resulting dynamics will not in general stabilize to an equilibrium.

Furthermore, due to connections between pacing equilibria and supply-aware market equilibria (Conitzer et al. 
[18]) with linear utilities, our PPAD-hardness result has novel consequences when interpreted in the language of 
market equilibria: our result shows that a natural refinement of supply-aware market equilibria with linear utilities is 
PPAD-hard (finding one with prices corresponding to second-price auctions).

1.2. Techniques Used
We prove the PPAD-hardness of finding approximate pacing equilibria (Theorem 2) by giving a reduction from the 
problem of finding an ω-well-supported Nash equilibrium in win-lose bimatrix games. The second-price rule plays 
an important role in this reduction. Consider an item with two interested buyers, one of which has a much higher 
value than the other, so much so that she always wins the good in any pacing equilibrium. Then, the payment made 
by this buyer on this item is determined by the bid of the lower-valued buyer, which is equal to her value times her 
multiplier. This allows us to construct gadgets which capture Nash equilibria of any bimatrix game with pacing mul-
tipliers, by using the second-price rule to account for the expected cost of each action of a player with respect to the 
other player’s mixed strategy. A complicating factor in our proof is that pacing multipliers are always positive, 
whereas some actions are played with probability zero in a Nash equilibrium. To address this issue, we construct our 
gadgets such that they have a discontinuous behavior: there is a baseline pacing amount which corresponds to play-
ing the corresponding action with probability zero, and only larger pacing values correspond to probabilities.

To prove the PPAD-membership of finding a pacing equilibrium (Theorem 1), we reduce the problem to the algo-
rithmic version of Sperner’s Lemma. A direct reduction proves challenging due to the discontinuous way in which 
the allocation of an item varies with pacing multipliers: In a pacing equilibrium, an item can only be assigned to 
buyers whose bids are exactly equal to the highest bid. Similar issues were encountered in PPAD-membership proofs 
for market equilibrium computation (Vazirani and Yannakakis [41]). For this reason, we start by proving the PPAD- 
membership of finding approximate pacing equilibria, in which items can be allocated smoothly. Then we bootstrap 
this result to show the PPAD-membership of exact pacing equilibrium in two steps. The first step starts with an 
approximate pacing equilibrium and rounds it to obtain a pacing equilibrium in which only buyers tied for the high-
est bid on a good share it. We still allow the relaxation that each buyer can either spend most of her budget or set her 
pacing multiplier close to one. Finally, we do away with this remaining relaxation by using a LP-based technique sim-
ilar to the one used in Etessami and Yannakakis [24], Vazirani and Yannakakis [41], and Filos-Ratsikas et al. [27], 
thereby showing the PPAD-membership of finding an exact pacing equilibrium.

1.3. Pacing in Internet Advertising
To motivate pacing equilibrium as a solution concept, this section describes how the solution concept arises in prac-
tice as part of internet advertising platforms such as those operated by, for example, Facebook, Google, or Twitter. As 
discussed previously, pacing equilibrium may arise through individual buyers optimizing their spending due to 
their budget constraint. A second reason that pacing equilibrium is of practical interest is due to proxy bidders. When 
an advertiser starts a campaign, they often specify only a small set of parameters: their value for a click (or some other 
notion of converting an ad into value, say a video view), their budget, and their targeting criteria which specify the 
subset of users they are interested in (e.g., “people who surf” if the ad is for surfboards). Then, whenever an auction 
is run to determine which ads to show to a given user, the bid from a given advertiser is submitted by the proxy bid-
der acting on behalf of that advertiser. The proxy bidder calculates the value that advertiser i has for being shown to 
the user in auction j as vij → vi · CTRij, where vi is the value per click and CTRij is the estimated probability that the 
user will click on the ad. If there were no budgets, then the proxy bidder should submit the bid vij, due to the 
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truthfulness of the second-price auction. But in the presence of budgets, this may negatively affect the overall utility 
achieved by the advertiser, since they will run out of budget well before the campaign ends, and thus miss out on 
later strong bang-per-buck opportunities.

To address their budget constraints, the advertisers are typically offered one or more options for budget- 
management strategies that can be employed by the proxy bidders. Pacing as defined in this paper, via multiplicative 
bid scaling, is offered by Facebook by default (Conitzer et al. [18], Facebook [25]), and it is also offered on other plat-
forms. Intuitively speaking, the proxy bidder attempts to choose a pacing multiplier which will spend the advertiser’s 
budget evenly across the campaign length. To ensure that this will happen, the pacing multiplier is adapted over time 
using a control algorithm: the algorithm will adjust the pacing multiplier up or down depending on whether the proxy 
bidder is currently under or overspending. Since we do not consider the online aspect of the problem, the pacing equi-
librium solution concept that we study corresponds to the steady-state that this adaptive process would ideally arrive 
at (this is analogous to what was done by Balseiro et al. [3], Balseiro et al. [5], Conitzer et al. [18]). See Conitzer et al. 
[18] for a longer discussion of the pacing equilibrium model and how it relates to real-world systems.

1.4. Additional Related Work
There is a large literature on budgets in auctions, largely inspired by the internet advertising industry. Here we sur-
vey the ones most related to our paper. We start by surveying the literature on multi-item first or second-price auc-
tions with budgets and the associated equilibrium issues there, since that is the setting we study. We briefly mention 
some pointers to alternative approaches and models such as mechanism design or online matching.

Balseiro et al. [5] studied budget management in second-price auctions using a fluid mean-field model, and showed 
that in this model existence is guaranteed, and closed-form solutions for equilibria are derived for certain settings (Bal-
seiro et al. [3]). studied several different pacing mechanisms for second-price auctions, including multiplicative pacing, 
and showed existence results for their setting, as well as other analytical and numerical properties (Conitzer et al. [19]). 
studied the model of Conitzer et al. [18], but with each auction using a first-price rule. There, pacing equilibrium no lon-
ger constitutes best responses, but instead has a market equilibrium interpretation. In the first-price setting, pacing equi-
libria turn out to be easy to compute, due to a direct relationship to market equilibria (Babaioff et al. [2]). studied non- 
quasi-linear agents participating in mechanisms designed for quasi-linear agents. They studied a generalization of bud-
get constraints where agents have a concave disutility in payment, and showed that a Nash equilibria exists which 
employs multiplicative scaling (Balseiro and Gur [4]). developed online learning methods for individual agents adapt-
ing their pacing multipliers over time, and showed that this converges to an equilibrium under certain stochastic inde-
pendence assumptions. Assuming PPAD ≠ P, our results can be interpreted to mean that, in the general setting which 
allows for correlation and discrete valuations, no dynamics can converge efficiently in the worst case (see Proposition 
10 of Conitzer et al. [18] for a formal statement connecting the stochastic and deterministic settings).

An alternative approach for handling budget constraints in multi-item settings is to design a mechanism that 
accounts for this explicitly (see e.g., Ashlagi et al. [1], Dobzinski and Leme [22], Dobzinski et al. [23], Goel et al. [30]). 
Another approach to budget-constrained allocation in online advertising is to treat the problem as an online match-
ing problem. This research was initiated by Mehta et al. [36], see e.g., Mehta [35] for a survey.

Our results are strongly related to the problem of computing market equilibria under a supply-aware model (see 
Section 3.2 for a discussion). There have been several PPAD-completeness results for various Fisher market models 
(without supply-awareness). However, these results are all for models with more complex utility functions, which 
give rise to the hardness (Chen and Teng [13]), and Vazirani and Yannakakis [41] showed that for additively- 
separable piecewise-linear concave utilities, finding an equilibrium in a Fisher market is PPAD-complete. Bei et al. 
[7] showed PPAD-hardness of finding market equilibria with budget-capped utilities (this is proved using a variation 
on the piecewise-linear utilities proof of Chen and Teng [13]). In the case of indivisible goods, Othman et al. [37] 
showed that finding an approximate market equilibrium is hard, even one which is guaranteed to exist (Budish [10]). 
For the Arrow-Debreu exchange economy, Chen et al. [15] showed that finding an equilibrium is PPAD-hard.

Finally, in additional to Nash equilibrium and market equilibrium, many interesting problems have been proven 
to be PPAD complete in domains like auctions (Chen et al. [14], Filos-Ratsikas et al. [28]), fair division (Deng et al. 
[21], Filos-Ratsikas et al. [27]), and optimization (Fearnley et al. [26]). Recently, Li and Tang [34] studied pacing-based 
equilibria in autobidding where each advertiser aims to maximize total value (instead of utility) subject to a Return- 
on-Investment (ROI) constraint. They show that finding such equilibria is PPAD hard for second-price auctions.

2. Model
We start with the definition of Second-price Pacing Games. In a Second-price Pacing Game (SPP game as a shorthand) 
G → (n, m, (vij), (Bi)), there are n buyers and m (indivisible) goods. Each good is sold through independent (single slot) 
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second-price auctions. We use vij ↑ 0, i ↓ [n] and j ↓ [m], to denote the value of good j to buyer i, and Bi > 0 to denote 
the budget of buyer i. We will require (1) for each j ↓ [m], vij > 0 for some i ↓ [n], and (2) for each i ↓ [n], vij > 0 for 
some j ↓ [m]. Each buyer i plays the game by picking a pacing multiplier αi ↓ [0, 1] and then bidding αivij on good j for 
each j ↓ [m].

To finish describing the game, one approach is to specify a tie-breaking rule: a rule that determines the probabilities 
with which a good is allocated among the highest bidders. However Conitzer et al. [18], showed that the choice of 
tie-breaking rule affects equilibrium existence. This motivated them to introduce an equilibrium notion called the 
pacing equilibrium, which is not concerned with any specific tie-breaking rule, but instead includes the probability 
distribution used to allocate each good as part of the equilibrium (see Definition 1). We will take a similar approach 
and work with pacing equilibrium, focusing on its computational aspects. It is worth pointing out that this only 
makes our hardness results stronger because they apply to any tie-breaking rule (such as the one used by Borgs et al. 
[9], which works via random perturbations; see Section 3.3 for a detailed discussion of the implications of our hard-
ness results).

With slight abuse of notation, we will write xij ↑ 0 to denote the fraction of good j allocated to buyer i, which, in our 
indivisible goods regime, should be interpreted to mean the probability of allocating good j to buyer i. Therefore, the 
allocation should always satisfy 

P
i↓[n]xij ↔ 1 for all j ↓ [m]. In addition, only buyers i with the highest bid for good j 

can have xij > 0 and they pay for good j under the second-price rule.
Formally, when the buyers use pacing multipliers α → (α1, : : : ,αn), we let hj(α) →maxi↓[n]αivij denote the highest bid 

on good j and pj(α) denote the second highest bid on good j, that is, pj(α) is the second largest element among 
α1v1j, : : : ,αnvnj (in particular, pj(α) → hj(α) when there is a tie for the highest bid). Only buyers who bid hj(α) can pur-
chase (fractions of) good j under the price pj(α). Thus, under an allocation x → (xij), the total payment of buyer i is 
given by 

P
j↓[m]xijpj(α), which should not exceed the budget Bi of buyer i.

Next, we define the notion of pacing equilibria (Conitzer et al. [18]) of SPP games. A pacing equilibrium consists of a 
tuple of pacing multipliers α → (αi) and an allocation x → (xij) of goods that satisfy the two conditions described above 
(i.e., only buyers with the highest bid can be allocated a good and their budgets are satisfied, as captured in (a) and 
(c) below). In addition, we require (b) the full allocation of any good with a positive bid and (d) that there is no unnec-
essary pacing: if a buyer i does not spend her whole budget, then her pacing multiplier should be one. Intuitively, 
this makes sense because if her budget is not binding, then she should participate as if each auction is a regular 
second-price auction.
Definition 1 (Pacing Equilibria). Given an SPP game G → (n, m, (vij), (Bi)), we say (α, x) with α → (αi) ↓ [0, 1]n, x → (xij)
↓ [0, 1]nm and 

P
i↓[n]xij ↔ 1 for all j ↓ [m] is a pacing equilibrium if 

(a) Only buyers with the highest bid win the good: xij > 0 implies αivij → hj(α).
(b) Full allocation of each good with a positive bid: hj(α) > 0 implies 

P
i↓[n]xij → 1.

(c) Budgets are satisfied: 
P

j↓[m]xijpj(α) ↔ Bi.
(d) No unnecessary pacing: 

P
j↓[m]xijpj(α) < Bi implies αi → 1.

We will work with an approximate version of pacing equilibria in both of our PPAD-hardness and PPAD- 
membership results.

In an approximate pacing equilibrium, we make two relaxations on (b) and (d); the two parameters used to 
capture these two relaxations are δ�and γ, respectively.
Definition 2 (Approximate Pacing Equilibria). Given an SPP game G → (n, m, (vij), (Bi)) and parameters δ,γ ↓ [0, 1), 
we say (α, x), with α → (αi) ↓ [0, 1]n, x → (xij) ↓ [0, 1]nm and 

P
i↓[n]xij ↔ 1 for all j ↓ [m], is a (δ,γ)-approximate pacing 

equilibrium of G if 
(a) Only buyers close to the highest bid win the good: xij > 0 implies αivij ↑ (1 δ)hj(α).
(b) Full allocation of each good with a positive bid: hj(α) > 0 implies 

P
i↓[n]xij → 1.

(c) Budgets are satisfied: 
P

j↓[m]xijpj(α) ↔ Bi.
(d) Not too much unnecessary pacing: 

P
j↓[m]xijpj(α) < (1 γ)Bi implies αi ↑ 1 γ.

For convenience we will write (δ,γ)-approximate PE to denote (δ,γ)-approximate pacing equilibrium, and write 
γ-approximate PE to denote (0,γ)-approximate PE. It is clear from the definition that when δ → γ → 0, 
(δ,γ)-approximate PE captures the exact pacing equilibria of a SPP game.

Remark 1. We can incorporate reserve prices in our model. Definition 1 can be extended in a natural way to 
model the presence of reserve prices (see Definition C.1). All our results continue to hold with this extension. We 
refer the reader to Appendix C for a full discussion.
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2.1. Connections to Dynamics, Best Response, and Nash Equilibrium
Before moving on to our results, we motivate the definition of pacing equilibrium by connecting it more concretely to 
practice and previous work. Consider a collection of n buyers that participate repeatedly in T second-price auctions. 
For each auction t ↓ [T], the good to be sold is drawn from a collection of m possible goods, with good j being selected 
with probability dj > 0. Moreover, suppose the value v↗ij that buyer i has for good j is given by ωijvij=dj for some vij ↑ 0, 
where ωij is drawn independently for each buyer-good pair from some continuous distribution supported over 
[1 δ, 1]. The ωij component of the value can also be thought of as a perturbation that arises from errors in estimating 
the click-through-rate (probability of a click) which is a crucial factor in determining the value of an advertiser in 
internet advertising. Finally, let B↗i denote the budget of buyer i, which is the maximum amount she is willing to 
spend over all T auctions.

Balseiro and Gur [4] prove that, if we fix the bidding strategy of the other buyers, then it is optimal for a buyer to 
use pacing-based strategy to bid. The optimal pacing-based algorithm of Balseiro and Gur [4] iteratively updates the 
pacing multiplier and satisfies the following properties: (i) If the buyer spends less than her per-period budget Bi →
B↗i=T in an iteration, her pacing multiplier is increased, and if the payment is greater than her per-period budget, then 
the multiplier is decreased; (ii) The pacing multiplier is constrained to belong to [0, 1] because bidding more than the 
value leads to negative utility. These properties are also satisfied by the algorithm proposed by Borgs et al. [9] and 
forms the basis of pacing algorithms used in practice which aim to smooth the expenditure of a buyer by evenly 
spending the budget over all auctions, that is, aim to spend the per-period budget in each period if possible. If all of 
the buyers use an algorithm that satisfies these properties, the system can only stabilize when all of the buyers satisfy 
the no-unnecessary-pacing condition.

The no-unnecessary-pacing condition and the optimality of pacing stem from strong duality, as argued in Balseiro 
et al. [5] and Balseiro and Gur [4]. We provide a brief overview of their argument here. When T is large and 
B↗i →Θ(T), as is the case in online advertising, concentration arguments kick in and the problem of repeatedly bidding 
in T auctions can be interpreted as repeatedly bidding in the following single-shot game: Each buyer wishes to maxi-
mize her expected utility (value  payment) while keeping her expenditure below Bi → B↗i=T in expectation over the 
randomness in the values (see Balseiro and Gur [4] and Balseiro et al. [5] for more details). This single-shot game cap-
tures the crux of the problem and its variants have been extensively studied in the literature (Babaioff et al. [2], Bal-
seiro et al. [3], Balseiro and Gur [4], Balseiro et al. [6]). In fact, Balseiro and Gur [4] show that, under some fairly 
stringent assumptions, their algorithm efficiently converges to an approximate pacing equilibrium of this single-shot 
game when all of the buyers employ it. But, these assumptions require independence of values across buyers and 
strong monotonicity of payments as a function of the pacing multipliers, both of which are unlikely to hold in prac-
tice. As we show in this paper, if PPAD ≠ P, then the convergence can no longer be efficient in the absence of these 
assumptions. In the rest of this subsection, we will restrict our focus to this single-shot game and connect it to SPP 
games and pacing equilibria.

Fix buyer i and let fj denote the highest bid from buyers other than i on good j. Then, the optimization problem 
faced by buyer i in the single-shot game is given by

max
b

Xm

j→1
dj · Ev↗ij, fj[(v↗ij  fj)1(b(j, v↗ij) ↑ fj)]

s:t:
Xm

j→1
dj · Ev↗ij, fj[fj · 1(b(j, v↗ij) ↑ fj)] ↔ Bi 

where b(j, ·) denotes the bidding strategy of buyer i for good j. Assume that the distribution of fj conditioned on v↗ij 
(value of buyer i for good j) is continuous. Then, using the strong-duality argument of Balseiro et al. [5] or Balseiro 
et al. [6], it can be shown that strong duality holds, where the dual problem is given by

min
µi↑0

µi · B + max
b

Xm

j→1
dj ·Ev↗ij , fj[(v↗ij  (1 +µi)fj)1(b(j, v↗ij) ↑ fj)]

→min
µi↑0

µi · B + (1 +µi) max
b

Xm

j→1
dj ·Ev↗ij, fj

v↗ij
1 +µi

 fj
 !

1(b(j, v↗ij) ↑ fj)
" #

Therefore, if µ↘i ↑ 0 is the optimal dual solution, then an optimal bidding strategy for buyer i is b(j, v↗ij) → v↗ij=(1 +µ↘i )
(i.e., to pace her value with the multiplier αi → 1=(1 +µ↘i )) since it is optimal for the inner Lagrangian optimization 
problem over b. Note that this argument does not require other buyers to use a pacing-based strategy. Thus, it estab-
lishes that a pacing-based best response always exists.
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Strong duality also implies that any optimal primal-dual solution pair satisfies complementary slackness: µ↘i → 0 if
Xm

j→1
dj ·Ev↗ij, fj[fj · 1(v↗ij=(1 +µ↘i ) ↑ fj)] < Bi:

The fixed-point argument of Balseiro et al. [5] further shows that a pacing-based Nash equilibrium exists for the 
single-shot game where all of the buyers use pacing with multipliers αi → 1=(1 +µi). Moreover, if a collection of feasi-
ble dual multipliers satisfy complementary slackness and the corresponding pacing-based strategies satisfy the bud-
get constraints, then they form a Nash equilibrium of the single-shot game described above. Now, let αi → 1=(1 +µ↘i )
be a collection of equilibrium pacing multipliers. Then, the complementary slackness condition for buyer i can equiv-
alently be written as a no-unnecessary-pacing condition: αi → 0 if

Xm

j→1
dj ·Ev↗ij , fj[fj · 1(αiv↗ij ↑ fj)] < Bi 

As a consequence, every pacing equilibrium of this single-shot game is also a Nash equilibrium, where we define a 
pacing equilibrium to be any collection of pacing multipliers that satisfy the no-unnecessary-pacing condition and sat-
isfy the budget constraint. Even if one has no interest in duality, the no-unnecessary-pacing condition is also extremely 
desirable in practice when the platform manages the budget of the buyer on her behalf—it ensures that the platform 
bids the value of the buyer on each good unless doing so would violate her budget. Thus, as outlined above, pacing 
equilibrium is an important refinement of Nash equilibrium for the single-shot game in both theory and practice.

Next, we connect pacing equilibria in single-shot games to approximate pacing equilibria in SPP games. Observe 
that, when all of the buyers use pacing to bid, fj →maxk≠iαkωkjvkj=dj. Hence, the expected payment of buyer i in this 
single-shot game can be rewritten as

E{ωij}i, j

Xm

j→1
max

k≠i
αkωkjvkj

$ %
1 ωijαivij ↑ max

k≠i
ωkjαkvkj

 !2

4

3

5

If we ignore the perturbations ωij, this is exactly the payment of buyer i in the SPP game with values vij and pacing 
multipliers αi. To account for the perturbations and connect the single-shot game to the SPP game, we can define a 
perturbed SPP game (like Borgs et al. [9]) as one in which (i) the value of buyer i for good j is given by ωijvij; (ii) each 
item is sold through second-price auction; (iii) the strategy of each buyer is her pacing multiplier αi ↓ [0, 1]; (iv) ωij are 
drawn i.i.d. from some distribution with a positive density over [1 δ, 1]; (v) each buyer wishes to maximize her 
expected utility while satisfying her budget constraint in expectation over the perturbations ( ≃ utility if the budget 
constraint is violated). We define an approximate pacing equilibrium of this perturbed SPP game as simply a collec-
tion of budget-feasible pacing multipliers that satisfy the not-too-much-unnecessary-condition (see Appendix D). 
Recall that approximate pacing equilibrium of SPP games allows for arbitrary allocation between all buyers close to 
the highest bid, and therefore includes the allocation induced by perturbations as a special case. In Appendix D, we 
use this fact to show that computing a pacing equilibrium of perturbed SPP games is harder than computing an 
approximate pacing equilibrium in (unperturbed) SPP games, and therefore PPAD-hard due to Theorem 3.

Finally, as we make δ�smaller, this perturbed SPP game gets closer to a true SPP game. Unfortunately, the duality- 
based existence argument of Balseiro et al. [5] and Balseiro et al. [6] breaks down when δ�→ 0 because ties are no lon-
ger a zero-probability event. The following example shows that a pacing equilibrium may not exist in this case under 
the uniform tie-breaking rule.

Example 1. Consider a setting with two buyers and one good. v11 → 1, v21 → v ⇐ 1 and B1 →≃, B2 → 1=4. Then, in 
any pacing equilibrium we have α1 → 1 because of the no-unnecessary-pacing condition. Now, if α2 ↑ 1=v, then 
buyer 2 spends at least 1/2 due to the uniform tie-breaking rule, which violates her budget. Hence, α2 < 1=v2 and 
buyer two wins nothing and spends 0, thereby violating the no-unnecessary pacing condition.

Conitzer et al. [18] show that a pacing equilibrium does exist if the ties are broken carefully, which was their 
motivation behind making the tie-breaking rule a part of the equilibrium concept. This equilibrium tie-breaking 
rule can be thought of as the limiting expected allocation in the perturbed equilibrium as δ�approaches zero. 
They also show that, in an unperturbed SPP game, if we fix the bids of other buyers and allow a buyer to pick 
her bids along with the fraction of each good she wants, it is a best-response for her to use pacing to bid because 
it allows her to win goods that yield the highest value per unit cost—using the multiplier αi ensures that a buyer 
wins a good if and only if αi times her value is greater than the second-highest bid, that is, if the value per unit 
cost is above 1=αi. In the one-shot game studied by Conitzer et al. [18], pacing may not be a best response if the 
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m good types arrive one-by-one and a buyer can change her bid to cause other buyers to drop out of later auc-
tions due to budget exhaustion. In the repeated auction setting that motivates our single-stage pacing game, the 
budget constraint is over all T auctions. Therefore, deviating in a single-stage game would not cause other adver-
tisers to drop out of that game.4 Conitzer et al. [18] also provide a discussion on the undesirable properties of 
Nash equilibria in SPP games en route to motivating pacing equilibria as a more desirable solution concept. Nev-
ertheless, we would like to note that our hardness result can be extended to Nash equilibria: In Appendix D, we 
prove that computing a Nash equilibrium of the perturbed SPP game is also PPAD-hard. We do so by showing 
that a minor modification of the game constructed in our hardness reduction for Theorem 3 only admits Nash 
equilibria that are also pacing equilibria.

3. Hardness Results
In this section we investigate the hardness of computing approximate pacing equilibria and show that the problem is 
PPAD-hard for second-price pacing games. Our most general result (Theorem 2) shows that the problem of finding a 
(δ,γ)-approximate PE in a SPP game is PPAD-hard, even when δ�and γ�are polynomially small in the number of 
players.

Our result is shown by reducing the problem of computing a Nash equilibrium in a {0, 1}-cost bimatrix game to 
that of finding a (δ,γ)-approximate PE in a corresponding SPP game. Because we wish to show the result for 
(δ,γ)-approximate PE, we must start our reduction from such approximate PE. In order to manage the resulting 
approximation factors, we are forced to introduce a number of additional bookkeeping gadgets, and correspondingly 
work with the problem of computing ω-well-supported Nash equilibria of {0, 1}-cost bimatrix games, as opposed to 
standard Nash equilibria. Taken together, all these facts lead to a longer proof that may obfuscate the main ideas 
underlying our reduction. To better highlight the key ideas in our reduction and motivate our techniques, we are 
going to start by proving that finding an exact pacing equilibrium in a SPP game is PPAD-hard, by showing a reduc-
tion from the problem of finding an exact Nash equilibrium in a {0, 1}-cost bimatrix game.

3.1. Hardness of Finding Exact Pacing Equilibria
Our reduction will be from the problem of computing a Nash equilibrium in a {0, 1}-cost bimatrix game. Let !n 
denote the set of probability distributions over [n]. The input of the bimatrix problem is a pair of cost matrices A, B ↓
{0, 1}n⇒n and the goal is to find a Nash equilibrium (x, y) ↓ !n ⇒ !n, meaning that x minimizes cost given y, that is, 
xTAy ↔ x̂TAy for all x̂ ↓ !n, and similarly y minimizes cost given x, that is, xTBy ↔ xTBŷ for all ŷ ↓ !n. Equivalently, (x, 
y) is a Nash equilibrium if xi > 0 for any i ↓ [n] implies that 

P
j Aijyj ↔

P
j Akjyj for all k ↓ [n], and yj > 0 for any j ↓ [n]

implies that 
P

i xiBij ↔
P

i xiBik for all k ↓ [n]. This problem is known to be PPAD-complete (Chen et al. [16]).
Given a {0, 1}-cost bimatrix game (A, B) with A, B ↓ {0, 1}n⇒n, we would like to construct an SPP game G in time 

polynomial in n, such that every exact PE of G can be mapped back to a Nash equilibrium of the bimatrix game (A, B) 
in polynomial time.

Before proceeding further, we informally describe some important aspects of the construction to provide some 
intuition. First, in the SPP game G, we will encode the pair (x, y) of mixed strategies in !n using pacing multipliers. 
For each player p ↓ {1, 2} in the bimatrix game (A, B) and each (pure) strategy s ↓ [n], there will be a corresponding 
buyer C(p, s) in the SPP game G, whose pacing multiplier α(C(p, s)) will be used to encode the probability with which 
player p plays strategy s in the bimatrix game (A, B). For now, take x to be the distribution obtained by normalizing 
α(C(1, s)), that is, xt → α(C(1, t))=Ps α(C(1, s)), and define y similarly using α(C(2, s)); we will discuss the issues with 
this proposal and ways to fix them momentarily.

Second, in order to capture the best response condition of Nash equilibria, we need to encode the cost borne by 
player p ↓ {1, 2} when playing a given strategy s ↓ [n] against the mixed strategy of the other player. For simplicity, 
let us focus on p → 1. We will create a set of n expenditure goods E(1, s)1, : : : , E(1, s)n for each pure strategy s of player 1. 
We will set buyer C(1, s)’s value at 1 for each of the expenditure goods E(1, s)1, : : : , E(1, s)n. Additionally, each buyer 
C(2, t) will value E(1, s)t at νAst, where ν → 1=(16n) is set to be so small that C(1, s) always wins all the goods 
E(1, s)1, : : : , E(1, s)n under any PE of G. This means that, in any PE with multipliers α(C(p, s)), buyer C(1, s) pays a total 
of ν

P
t α(C(2, t))Ast for the expenditure goods E(1, s)1, : : : , E(1, s)n, which captures player 1’s cost for playing strategy 

s in (A, B), when player 2 uses the mixed strategy that plays each t with probability defined by α(C(2, t)) after 
normalization.

Finally we need to make sure that the best response condition of Nash equilibria holds for a strategy pair (x, y) 
obtained from multipliers α(C(p, s)) in any PE of G, that is, only best-response strategies are played with positive 
probability. This poses a challenge because pacing multipliers are never zero in a pacing equilibrium, so we can’t use 
them directly to encode probabilities in x and y (which need to be zero for strategies which are not best responses). To 
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get around this issue, we will use thresholds to encode entries of (x, y) using α(C(p, s)). More formally, we add a 
threshold buyer and a set of threshold goods to G to make sure that α(C(p, s)) ↑ 1=2 in any PE of G. This allows us to 
encode x by normalizing α(C(1, s)) 1=2 and y by normalizing α(C(2, s)) 1=2. The most challenging part of the con-
struction is to have buyers/goods work together to ensure that both α(C(1, s)) 1=2 and α(C(2, s)) 1=2, s ↓ [n], are 
not identically zero. We accomplish this by creating a set of normalization goods for each buyer C(p, s), with the prop-
erty that each buyer C(p, s) spends approximately 

Pn
t→1 α(C(p, t)) on her normalization goods. This, in combination 

with a carefully chosen budget and the ‘No unnecessary pacing’ condition, ensures that {α(C(p, s)) 1=2}s are not 
identically zero. Then, we can follow the plan described in the last paragraph to encode the cost of player p playing s 
using the expenditure of buyer C(p, s) on E(p, s)1, : : : , E(p, s)n, with careful calibration via the use of thresholds. This 
finally helps us enforce the best response condition of Nash equilibria on (x, y) in (A, B) by comparing total expendi-
tures of buyers C(p, s) and using implications from such comparisons.

We now formally define the SPP game G in the next section, and then the following sections show the hardness 
result based on G.

3.1.1. The SPP Game. The game G has the following set of goods: 
• Normalization goods: n goods {N(p, s)1, : : : , N(p, s)n} for each p ↓ {1, 2} and s ↓ [n].
• Expenditure goods: n goods {E(p, s)1, : : : , E(p, s)n} for each p ↓ {1, 2} and s ↓ [n].
• Threshold goods: 1 good T(p, s) for each p ↓ {1, 2} and s ↓ [n].
Set ν → 1=(16n). The set of buyers in G is defined as follows, where we write V(·, ·) to denote the value of a good 

(the second component) to a buyer (the first component): 
• Buyer C(p, s), p ↓ {1, 2} and s ↓ [n]: C(p, s) has positive values for the following goods: 

 Normalization goods: V(C(p, s), N(p, s)i) → 2 for all i ↓ [n] \ {s};
V(C(p, s), N(p, s)s) → 1; and V(C(p, s), N(p, t)s) → 1 for all t ↓ [n] \ {s}.
 Threshold good T(p, s): V(C(p, s), T(p, s)) → 2n4.
 Expenditure goods: V(C(p, s), E(p, s)i) → 1 for all i ↓ [n].

For p → 1: V(C(1, s), E(2, t)s) → νBst for all t ↓ [n].
For p → 2: V(C(2, s), E(1, t)s) → νAts for all t ↓ [n].
For p → 1, the budget of C(1, s) is n=2 + n4 + 1=4 ν+Pt↓[n]νAst=2;
For p → 2, the budget of C(2, s) is n=2 + n4 + 1=4 ν+Pt↓[n]νBts=2.
• Threshold Buyer T: T has positive values only for the following goods: 

 Threshold goods: V(T, T(p, s)) → n4 for each p ↓ {1, 2} and s ↓ [n].
 Expenditure goods: V(T, E(1, s)t) → νAst=2 and V(T, E(2, s)t) → νBts=2 for all s, t ↓ [n].

T has budget n7 (high enough so that α(T) → 1 in any PE).
• Dummy buyers D(p, s), p ↓ {1, 2} and s ↓ [n]: The budget of D(p, s) is ν�and she only values the normalization 

good N(p, s)s at V(D(p, s), N(p, s)s) → 1.
See Figure 1 and Figure 2 for a pictorial representation of the valuation structure. It is clear from the definition of G 

that it can be constructed from (A, B) in polynomial time.

3.1.2. Structure of Pacing Equilibria of G. With the definition of G in place, we start by showing some auxiliary 
structural results on the PE of G; these will be used to construct strategies for the bimatrix game. Let E be a PE of the 
SPP game G. We will use α(b) to denote the pacing multiplier of buyer b in E. Observe that, from the definition of pac-
ing equilibria, we can conclude that α(T) → 1 in E; otherwise T needs to spend all her budget of n7, which is 

Figure 1. Normalization goods for p ↓ {1, 2} and s → 3, when n → 5. 

Notes. A buyer having a nonzero value for a good is represented by a line connecting the two. Solid line denotes a value of 1 and dotted line 
denotes a value of 2.
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impossible given that no buyer has value more than 2n4 for any good. The following lemma establishes bounds on 
α(C(p, s)) in E.
Lemma 1. For each p ↓ {1, 2} and s ↓ [n], 1=2 ↔ α(C(p, s)) < 1 and α(D(p, s)) → α(C(p, s)).

Suppose for some p ↓ {1, 2} and s ↓ [n], we have α(C(p, s)) < 1=2. Then C(p, s) doesn’t win any part of threshold 
good T(p, s). Observe that she has value at most 2 for every other good. Given that there are only O(n2) goods in G, 
she cannot possibly spend all her budget (which is ”(n4)). Here, we have used the fact that the payment is smaller 
than her bid on every item that she wins because of the second-price auction format, which in turn is always smaller 
than her value. This contradicts the assumption that E is a PE of G. Therefore, α(C(p, s)) ↑ 1=2.

Next we prove α(D(p, s)) → α(C(p, s)). Suppose α(D(p, s)) > α(C(p, s)) for some p ↓ {1, 2} and s ↓ [n]. Then, buyer 
D(p, s) wins all of good N(p, s)s at price α(C(p, s)) ↑ 1=2 because D(p, s) and C(p, s) both value N(p, s)s at 1, and the rest 
of the buyers have zero value for it. This violates her budget constraint and leads to a contradiction. Therefore, 
α(D(p, s)) ↔ α(C(p, s)). Moreover, if α(D(p, s)) < α(C(p, s)) (which implies α(D(p, s)) < 1) then her expenditure is zero. 
This violates the no unnecessary pacing condition. Hence, α(D(p, s)) → α(C(p, s)) must hold. Observe that, in particu-
lar, this means that the price of N(p, s)s is α(C(p, s)).

Finally suppose α(C(p, s)) → 1 for some p ↓ {1, 2}, s ↓ [n]. Then she wins the following goods: 
• All of normalization goods N(p, s)t for each t ≠ s because C(p, s) has the higher value for them, and she spends 

at least 1/2 on each of them because α(C(p, t)) ↑ 1=2 by the first part of the proof.
• Part of normalization good N(p, s)s by spending at least 1 ν. This is because N(p, s)s has
• price 1, she shares it with D(p, s), and buyer D(p, s) only has budget ν.
• All of threshold good T(p, s) by spending n4 because she has the higher value.
• All of expenditure good E(p, s)t, for each t ↓ [n], by spending at least νAst=2 if p → 1 and νBts=2 if p → 2 because 

she has the higher value.
Hence, the total expenditure of C(p, s) is at least (n 1)=2 + 1 ν+ n4 +Pt νAst=2 if p → 1 and at least (n 1)=2 +

1 ν+ n4 +Pt νBts=2 if p → 2. In both cases, the budget constraint is violated, leading to a contradiction. Therefore, 
the lemma holds.

The above lemma implies that every C(p, s) is paced in E (i.e., α(C(p, s)) < 1), thereby implying that their total 
expenditures must exactly equal their budgets. Additionally, we have the following corollary which will be used in 
the proof of Lemma 3.

Corollary 1. For each p ↓ {1, 2} and s ↓ [n], C(p, s) spends exactly α(C(p, s)) ν�on N(p, s)s.
Next let x↗s → α(C(1, s)) 1=2 and y↗s → α(C(2, s)) 1=2 for each s ↓ [n]. The following lemma will allow us to nor-

malize x↗ and y↗ to obtain probability distributions x and y.
Lemma 2. The following inequalities hold: 

P
s↓[n]x↗s > 0 and 

P
s↓[n]y↗s > 0.

We show 
P

s x↗s > 0. The proof of 
P

s y↗s > 0 is completely analogous. Suppose 
P

s x↗s → 0. Then, α(C(1, s)) → 1=2 for 
all s ↓ [n] because α(C(1, s)) → 1=2 by Lemma 1. We argue below that C(1, 1) violates the no-unnecessary-pacing 
condition.

To see this, observe C(1, 1) only wins a nonzero fraction of the following goods, and spends: 
• At most 1/2 on each normalization good N(1, 1)t, t ↓ [n], because the highest competing bid is 1/2 on these goods.
• At most n4 on the threshold good T(1, 1) because that is the highest competing bid.
• At most νA1t on each expenditure good E(1, 1)t, t ↓ [n], because that is the highest possible competing bid.
Hence, the total expenditure of C(1, 1) is at most n=2 + n4 +Pt νA1t, which is strictly less than her budget of 

n=2 + n4 + 1=4 ν+Pt νA1t=2, a contradiction. w

Figure 2. (Color online) All the expenditure goods for which buyer C(1, 1) has a nonzero value, when n → 4. 

Notes. A buyer having a nonzero value for a good is represented by a line connecting the two. Solid lines denote a value of 1 and dotted lines 
denote values which are smaller than ν → 1=(16n).
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3.1.3. Extracting Bimatrix Game Equilibria from G. Now, we are ready to define the mixed strategies (x, y) for the 
bimatrix game (A, B). Set player 1’s mixed strategy x to be xs → x↗s=

P
i x↗i and player 2’s mixed strategy y to be 

ys → y↗s=
P

i y↗i . These are valid mixed strategies because of Lemmas 1 and 2. The next lemma shows that (x, y) is indeed 
a Nash equilibrium of (A, B).

Lemma 3. (x, y) is a Nash equilibrium for the bimatrix game (A, B).

Suppose there are s, s↘ ↓ [n] such that xs > 0 but 
P

t Astyt >
P

t As↘tyt (the proof for y is analogous). Using xs > 0, 
buyer C(1, s) spends nonzero amounts on the following goods: 

• α(C(1, t)) on the normalization good N(1, s)t for each t ≠ s because C(1, s) has a bid strictly greater than 1, 
which is the value and an upper bound on the bid of C(1, t).

• α(C(1, s)) ν�on the normalization good N(1, s)s because she shares the good with D(1, s) who has a budget 
of ν.

• n4 on the threshold good T(1, s) because her bid is strictly greater than n4.
• α(C(2, t)) · νAst on the expenditure good E(1, s)t for each t ↓ [n].
Therefore, the total expenditure of buyer C(1, s) is given by

X

t↓[n]
α(C(1, t))+n4 ν+

X

t↓[n]
α(C(2, t)) · νAst

→
X

t↓[n]
α(C(1, t)) + n4 ν+

X

t↓[n]
νAst=2 +

X

t↓[n]
ytνAst 

Note that the RHS above after replacing s with s↘:
X

t↓[n]
α(C(1, t)) + n4 ν+

X

t↓[n]
νAs↘t=2 +

X

t↓[n]
ytνAs↘t 

is an upper bound for the total expenditure of buyer C(1, s↘) (no matter whether xs↘ > 0 or not).
As a result, the total expenditure of C(1, s) minus that of C(1, s↘) is at least

X

t↓[n]
νAst=2 +

X

t↓[n]
ytνAst

 !

 
X

t↓[n]
νAs↘t=2 +

X

t↓[n]
ytνAs↘t

 !

>
X

t↓[n]
νAst=2 

X

t↓[n]
νAs↘t=2 

using the assumption that 
P

t Astyt >
P

t As↘tyt. On the other hand, the budget of C(1, s) minus that of C(1, s↘) is equal 
to the RHS above. This is a contradiction because both buyers should have their total expenditures equal to their bud-
gets. This finishes the proof of the lemma.

Thus, given a {0, 1}-cost bimatrix game (A, B), we have defined an SPP game G which satisfies the following prop-
erties: (i) G can be constructed in polynomial time; (ii) any PE E of G can be used to construct a Nash equilibrium (x, 
y) of (A, B) in polynomial time. As a result, the problem of finding an exact pacing equilibrium in a second-price pac-
ing game is PPAD-hard.

3.2. Hardness of Finding Approximate Pacing Equilibria
We next state our main hardness result, which extends the PPAD-hardness of finding pacing equilibria to the 
approximate case of finding (δ,γ)-approximate pacing equilibria.
Theorem 3. The problem of computing a (δ,γ)-approximate PE of an SPP game G → (n, m, (vij), (Bi)) with δ → γ → 1=n7 is 
PPAD-hard.

The proof is relegated to Appendix A. It uses similar ideas but entails more involved bookkeeping to incorporate 
approximations introduced in (δ,γ)-approximate PE. Theorem 2 follows from Theorem 3 by standard padding argu-
ments (i.e., adding dummy buyers to the game).

3.3. Implications of the Hardness Result
Before concluding this section, we discuss some implications of our hardness results. In Borgs et al. [9], the authors 
introduced a natural bidding heuristic for optimizing the utility of budget-constrained agents who repeatedly partici-
pate in day-long auction campaigns for m items, where the set of agents and items remains the same every day. The 
heuristic maintains a pacing multiplier for each agent, which is increased by a small amount if the buyer ran out of 
her daily budget before the end of the previous day, and decreased otherwise. They use random perturbation to 
avoid instabilities, which gives an agent who bids close to the highest bid a fraction of the item in expectation. If we 
ignore the intraday temporal aspects of their model, their setting can be thought of as repeatedly playing the 
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perturbed SPP game from Section 2.1 every day. In Theorem 1 of Borgs et al. [9], they prove that their heuristic 
efficiently converges for first-price auctions. Furthermore, they conjecture the convergence of the heuristic for 
second-price auctions to pacing multipliers which satisfy the following conditions: (i) Every agent runs out of her 
daily-budget close to the end of the day; (ii) Every agent either spends most of her daily budget or has a pacing multi-
plier close to one. In Theorem D.1 of Appendix D, we show that Theorem 3 implies that computing an approximate 
pacing equilibrium of the perturbed SPP game is also PPAD hard. As a consequence, if PPAD ≠ P, then ALGO-
RITHM 1 of Borgs et al. [9] does not always converge efficiently for second-price auctions, that is, the number of 
days/time-steps required for convergence cannot scale as a polynomial function of the input size and (1=δ, 1=γ) in 
the worst-case. In other words, we have shown that theorem 1 of Borgs et al. [9] cannot be extended to second-price 
auctions in any way that maintains efficient convergence unless PPAD → P, thereby making progress toward their 
open conjecture.

Moreover, recall from Section 2.1 that if all of the buyers employ pacing algorithms, like the one proposed by Bal-
seiro and Gur [4], and the resulting dynamics converge, then they will converge to an approximate pacing equilib-
rium. Our hardness result (Theorems 3 and D.1) implies that there exists a (correlated) value distribution such that 
the algorithm of Balseiro and Gur [4], which is optimal for a single buyer against an adversarial/stochastic competi-
tion, does not converge efficiently to an equilibrium when employed by all the buyers, unless PPAD→P.

Our hardness results are also pertinent to the relationship between pacing equilibria and market equilibria. In 
proposition 5 of Conitzer et al. [18], the authors show that every pacing equilibrium in a second-price pacing game 
has an equivalent supply-aware market equilibrium with linear utilities, where supply-aware means that the buyers 
are aware of the supplies of each item and choose their demand set accordingly. Thus, the relationship between pac-
ing equilibria and market equilibria, in combination with Theorem 3, implies that there exists a refinement of the set 
of supply-aware market equilibria with linear utilities which is PPAD-hard to compute.

4. Existence of Pacing Equilibria and Membership in PPAD
We prove Theorem 1 in this section, that is, the problem of finding a pacing equilibrium of an SPP game is in PPAD. 
One consequence of this result is that every SPP game with rational values vij and budgets Bi has a pacing equilibrium 
(α, x) with rational entries.

Our plan is as follows. We first introduce a restricted version of approximate pacing equilibria called smooth 
(δ,γ)-approximate PE (see Definition 3), which will only be used in Section 4.1. We prove in Section 4.1 that the prob-
lem of finding a smooth (δ,γ)-approximate PE (when δ�and γ�are input parameters encoded in binary) is in PPAD. 
Given that the smooth version (Definition 3) is a restriction of (δ,γ)-approximate PE (Definition 2), this implies that 
the problem of computing a (δ,γ)-approximate PE is in PPAD.

Next we give in Section 4.2 an efficient algorithm that can round any (δ,γ=2)-approximate PE into a γ-approximate 
PE when δ�is sufficiently small. This, combined with the PPAD-membership of (δ,γ)-approximate PE, shows that the 
problem of computing γ-approximate PE is also in PPAD.

Finally we show in Section 4.3 that, when γ�is sufficiently small, any γ-approximate PE of G can be used to build a 
linear program which can then be solved to obtain an exact pacing equilibrium of G. It follows that the problem of 
computing an exact pacing equilibrium is in PPAD.

4.1. PPAD Membership of Computing (!,")-Approximate Equilibria
We start with the definition of smooth (δ,γ)-approximate PE. It is a refinement of (δ,γ)-approximate PE in which the 
pacing multipliers (αi) fully determine the allocations (xij). Note that this is not the case for (δ,γ)-approximate PE in 
general: potentially there can be (δ,γ)-approximate PE with identical multipliers but different allocations. The 
smooth version we consider below, on the other hand, specifies the allocations as continuous functions of 
multipliers.
Definition 3 (Smooth Approximate Pacing Equilibria). Given an SPP game G → (n, m, (vij), (Bi)) and two parameters 
δ ↓ (0, 1),γ ↓ [0, 1), we say that (α, x) with α → (αi) ↓ [0, 1]n, x → (xij) ↓ [0, 1]nm and 

P
i↓[n]xij ↔ 1 for all j ↓ [m] is a 

smooth (δ,γ)-approximate PE of G if 
(a) Only buyers close to the highest bid win the good and the allocation x is completely specified by α: For each 

i ↓ [n] and j ↓ [m], xij (as a function of α) is given by

xij(α) :→ [αivij (1 δ)hj(α)]+P
r↓[n] [αrvrj (1 δ)hj(α)]+

where [y]+ is y if y ↑ 0 and 0 otherwise. (We assume by default that 0=0 → 0.)
(b) Budgets are satisfied: 

P
j↓[m]xij(α)pj(α) ↔ Bi.
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(c) Not too much unnecessary pacing: 
P

j↓[m]xij(α)pj(α) < (1 γ)Bi implies αi ↑ 1 γ.
Observe from the definition that, if (α, x) is a smooth (δ,γ)-approximate PE of an SPP game G, then it must be a 

(δ,γ)-approximate PE of G as well. Therefore, the PPAD membership of computing a smooth (δ,γ)-approximate 
PE in an SPP game implies directly the PPAD membership for (δ,γ)-approximate PE. A similar statement holds 
for establishing their existence.

The main tools we will use are Sperner’s Lemma and the search problem it defines.

4.1.1. High-Dimensional Sperner’s Lemma. We review Sperner’s lemma. Consider a (n 1)-dimensional simplex 
S → {Pn

i→1 αivi |αi ↑ 0,
Pn

i→1 αi → 1}, where v1, : : : , vn are n vertices of S. A triangulation of S is a partition of S into smal-
ler subsimplices such that any two subsimplices either are disjoint or share a full face of a certain dimension. A Sper-
ner coloring T of a triangulation of S is then an assignment of n colors {1, : : : , n} to vertices of the triangulation (union 
of the vertices of subsimplices that make up the triangulation) such that 

• Vertices of the original simplex S each receive a different color: T(vi) → i for each i ↓ [n].
• Vertices on each face of S are colored using only the colors of the vertices defining that face: For any vertex u →P
i βivi in the triangulation, we have T(u) ≠ j if βj → 0.
A panchromatic subsimplex of T is one in the triangulation whose vertices have all the n colors.

4.1.2. Sperner’s Lemma. Every Sperner coloring T of any triangulation of S has a panchromatic subsimplex.
Before proceeding with the formal proof of PPAD membership (with its added burden of rigorously attending to 

complexity-theoretic details), we provide an informal argument for the existence of smooth (δ,γ)-approximate PE 
which forms the basis of its PPAD membership proof. Let G be an SPP game and S be the standard simplex S → {β →
(β1, : : : ,βn) |βi ↑ 0,

P
i βi → 1} from now on. We will assign a color to each point β ↓ S (informally) as follows: Con-

struct a pacing multiplier αi(t) → tβi for each i ↓ [n], where t is a scalar. Increase t, starting at 0, and instruct each buyer 
i ↓ [n] to say “Stop” when either αi(t) → 1 or 

P
j xij(α(t))pj(α(t)) → Bi happens. Color β�with k if buyer k is the first to 

say “Stop” (with tie breaking done arbitrarily, e.g., taking the smallest such k).
Let t↘(β) be the value of t at which some buyer says “Stop” for the first time. Then the buyer that says “Stop” first is 

either spending her budget or is not paced, that is, she satisfies both the budget constraint (b) and the ‘No unneces-
sary pacing’ condition (c) (see Definition 1). Now, by taking a triangulation of S, it is easy to verify that the coloring 
described above induces a Sperner coloring and thus, Sperner’s lemma implies the existence of a panchromatic sub-
simplex Q. It follows from our coloring that every buyer says “Stop” at one of the vertices of Q and hence, every 
buyer satisfies (b) and (c) of Definition 1 at one of its vertices. By proving the Lipschitzness of t↘(β) and the total 
expenditures of buyers, both as functions of β, we show that when the triangulation is fine enough, any point β�in a 
panchromatic subsimplex yields a (δ,γ)-approximate PE of G.

With the blueprint of the proof in place, we now proceed with the formal proof that places the problem of comput-
ing smooth (δ,γ)-approximate PE in PPAD. Let S be the standard simplex as above, and we consider Kuhn’s triangu-
lation of S (Deng et al. [21], Kuhn [33]). Given any ω > 0 with 1=ω�being an integer, Kuhn’s triangulation uses Sω�as its 
vertices, where Sω�consists of all points β ↓ S whose coordinates βi are integer multiples of ω. Kuhn’s triangulation 
also has the property that any two vertices of a subsimplex of the triangulation has '≃-distance at most 2ω.

A proof of the following PPAD membership result can be found in Etessami and Yannakakis [24] (see the proof of 
item 2 of Proposition 2.2; note that on p. 2548 they reduce the problem they are interested in to the problem of finding 
a panchromatic subsimplex in a Sperner coloring over Kuhn’s triangulation and then show the latter is in PPAD):
Theorem 4. Given a Boolean circuit5 that encodes a Sperner coloring T : Sω⇑ [n] of Kuhn’s triangulation for some ω�and 
n, the problem of finding a panchromatic subsimplex is in PPAD.

We prove the PPAD membership of the problem of finding a smooth (δ,γ)-approximate PE by giving a 
polynomial-time reduction to the problem described in Theorem 4. Given an SPP game G → (n, m, (vij), (Bi)) and para-
meters δ�and γ�(which we assume without loss of generality that δ,γ < 1=4), we set the parameter ω�to be

ω → min(Bmin, 1)
2 |G | =δ
& ’10, 000 · γ2 

where Bmin :→ mini↓[n]Bi and |G | denotes the number of bits needed to represent G. We define a coloring 
T : Sω⇑ [n], following ideas described in the sketch of existence above, and prove that T satisfies the following 
properties:
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Lemma 4.
1. T is a Sperner coloring;
2. Every panchromatic subsimplex of T in the triangulation can be used to compute a smooth (δ,γ)-approximate PE of the 

SPP game G in polynomial time.
3. There is a polynomial-time algorithm that outputs T(β) on inputs G, ω, δ�and β ↓ Sω.

The PPAD membership of computing a smooth (δ,γ)-approximate PE in an SPP game follows directly by combining 
Theorem 4 and Lemma 4.

We now give the definition of the coloring T : Sω⇑ [n]. Let β → (β1, : : : ,βn) be a vertex of Sω. Set αi(t) → tβi, where t 
is a positive scalar. As discussed earlier, we set the color T(β) of β�by increasing t, starting at 0, and instructing each 
buyer i to say “Stop” when either αi(t) → 1 or

X

j↓[m]
xij(α(t)) · pj(α(t)) → Bi:

The color T(β) of β�is set to be k ↓ [n] if buyer k is the first buyer to say “Stop” (with arbitrary tie breaking, e.g., by tak-
ing the smallest such k).

More formally, recall that for t > 0,

xij(α(t)) →
[tβivij  (1 δ)maxk tβkvkj]+P
r[tβrvrj  (1 δ)maxk tβkvkj]+

→ [βivij  (1 δ)maxk βkvkj]+P
r[βrvrj  (1 δ)maxk βkvkj]+

→ xij(β), 

which does not depend on t. Also, for t ↑ 0, pj(α(t)) → tpj(β), where we write pj(β) to denote the second largest ele-
ment among β1v1j, : : : ,βnvnj. For each buyer i ↓ [n], define

ti(β) → min 1
βi

, BiP
j xij(β)pj(β)

( )

, 

where the first term is +≃ if βi → 0 and the second term is +≃ if 
P

j xij(β)pj(β) → 0. Note that ti(β) is exactly the value 
of t at which buyer i would say “Stop” in the informal coloring procedure described earlier. Given our assumption of 
Bi > 0, we have ti(β) > 0 for all i ↓ [n]. Additionally, define t↘(β) →mini↓[n]ti(β). Given that βi’s sum to 1, we have that 
t↘(β) ↔ n because βi ↑ 1=n for some i ↓ [n]. We record the discussion as the following lemma:

Lemma 5. For every β ↓ Sω�we have 0 < t↘(β) ↔ n.
Finally, the color T(β) of β ↓ Sω�is set to be the smallest i ↓ [n] such that ti(β) → t↘(β). We are now ready to prove 

Lemma 4.

Proof of Lemma 4. Part (3) of Lemma 4 follows from the description of T. To prove part (1) (T is a Sperner color-
ing), consider a vertex β ↓ Sω�on the facet of S opposite to the vertex ei, that is, βi → 0. Hence, ti(β) →≃, which by 
Lemma 5 implies that T(β) ≠ i given that t↘(β) ↔ n.

To prove part (2), we show that if q is a vertex of any panchromatic subsimplex of T, then (α, x) must be a 
smooth (δ,γ)-approximate PE of G where α → t↘(q) · q and x → (xij) has xij → xij(q).

First it follows from the definition of t↘(β) and xij(β) that αi ↓ [0, 1] and xij ↓ [0, 1]. Conditions (a) and (b) of Defi-
nition 3 also trivially hold for all vertices of the triangulation. It suffices to prove (c) for all i ↓ [n], which means 
the complementarity condition that either αi ↑ 1 γ�or the expenditure of buyer i is at least (1 γ)Bi. Fix an arbi-
trary i ↓ [n].

For this purpose we note that given the subsimplex is panchromatic, it has a vertex q↗ such that T(q↗) → i, which 
implies that if we used q↗ to define α↗ and x↗ (i.e., α↗ → t↘(q↗) · q↗ and x↗ij → xij(q↗)), then they would satisfy the above 
complementarity condition for buyer i with γ → 0. The following claim shows that both the multiplier t↘(β) · βi 
and the total expenditure of buyer i:

X

j↓[m]
xij(β) · pj t↘(β) · β

& ’
→ t↘(β)

X

j↓[m]
xij(β) · pj(β)

are smooth as functions of β. Intuitively this allows us to use the complementarity condition for buyer i at q↗ to show 
that the same condition holds at q approximately given that ⇓q q↗⇓≃ ↔ 2ω�(as a property of subsimplices in Kuhn’s 
triangulation).
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Claim 1. Let L → (2 |G | =δ)10, 000. Then for any panchromatic subsimplex S0 of T and buyer i ↓ [n], the following Lipschitz 
conditions hold for all β,β↗ ↓ S0:

t↘(β) · βi  t↘(β↗) · β↗i
(( (( ↔ L · ⇓β β↗⇓≃ and

t↘(β)
X

j↓[m]
xij(β) · pj(β) t↘(β↗)

X

j↓[m]
xij(β↗) · pj(β↗)

((((((

((((((
↔ L · ⇓β β↗⇓≃

We use Claim 1 to finish the proof of the lemma and consign the claim’s proof to Appendix B. Given T(q↗) → i, one of 
the following two cases holds: 

• t↘(q↗) · q↗i → 1, which by Claim 1 and our choice of ω�implies
αi → t↘(q) · qi ↑ 1 2Lω ↑ 1 γ�

• t↘(q↗)Pj xij(q↗)pj(q↗) → Bi, which in combination with Claim 1 and our choice of ω�implies that the expenditure 
of buyer i exceeds (1 γ)Bi:

t↘(q)
X

j↓[m]
xij(q) · pj(q) ↑ Bi 2Lω ↑ Bi Bminγ ↑ (1 γ)Bi:

Since i ↓ [n] was arbitrary, this finishes the proof that (α, x) is a smooth (δ,γ)-approximate PE. w

4.2. PPAD Membership of Computing "-Approximate PE
Consider an SPP game G → (n, m, {vij}i, j, {Bi}i). As before, we will use |G | to denote the number of bits required to rep-
resent G. The main result of this subsection shows that (informally) when δ�is small enough, any (δ,γ=2)-approximate 
PE of G can be efficiently rounded to a γ-approximate PE. It follows from the PPAD membership of (δ,γ)-approximate 
PE established in the previous subsection that the problem of computing a γ-approximate PE is in PPAD as well.

Before presenting the rounding algorithm, we motivate the main idea behind it. Observe that the major difference 
between (δ,γ)-approximate PE and γ-approximate PE is the ability of buyers that don’t have the highest bid to win 
the good in the former. In order to round a (δ,γ↗)-approximate PE (α↘, x↘) to obtain a γ-approximate PE (α↗, x↗) of G 
(where γ↗ → γ=2 in the rest of this subsection), we set x↗ → x↘ and need to round α↘ to α↗ to ensure that all the winners 
are tied for the highest bid and at the same time, the multiplier and total expenditure of each buyer changes only 
slightly.

We now present an informal argument that demonstrates how this is achieved in our rounding algorithm when 
there are only two buyers (n → 2). Define the set of all valuation ratios

Ṽ → var
vbr

: a, b ↓ [n], r ↓ [m] such that var, vbr > 0
$ %

:

Set δ�to be small enough: for all y, z ↓ V with yz > 1, we have (1 δ)2yz > 1. Consider a (δ,γ↗)-approximate PE (α↘, x↘). 
Assume without loss of generality that there is a good j such that α↘1v1j → cjα↘2v2j and 1 δ ↔ cj ↔ 1=(1 δ). If no such 
good j exists then every good is fully allocated to the buyer with the highest bid because only bidders with bids 
greater than (1 δ) times the highest bid can win the item in a (δ,γ↗)-approximate PE, and thus, (α↘, x↘) is already a 
γ↗-approximate PE. We show that after scaling the pacing multiplier of buyer 2 from α↘2 to cjα↘2 (and letting α↗ →
(α↘1, cjα↘2) be the new multipliers), (α↗, x↘) satisfies the property that x↘i' > 0 for any i and '�implies buyer i has the high-
est bid for good '. This is trivially true for good ' → j given that the two buyers are now tied on good j. The remaining 
goods can be divided into two categories and we argue about each one separately: 

• Consider good '�such that α↘1v1' → c'α↘2v2'�and c'�satisfies either c' < 1 δ�or c' > 1=(1 δ). Given that we only 
changed the multiplier of buyer 2 by a factor of 1 δ ↔ cj ↔ 1=(1 δ), the highest bidder does not change. More-
over, the highest bidder won the entire good in the (δ,γ↗)-approximate PE because 1 δ ↔ cj ↔ 1=(1 δ) and con-
tinues to do so in the (δ,γ↗)-approximate PE because the allocation does not change.

• Consider a good '�such that α↘1v1' → c'α↘2v2'�and c'�satisfies (1 δ) ↔ c' ↔ 1=(1 δ). Then, we can write 
α↘1=α

↘
2 → cj(v2j=v1j) → c'(v2'=v1'), which implies (cj=c')(v2j=v1j)(v1'=v2') → 1. Observe that cj=c' ↓ [(1 δ)2, 1=(1 δ)2]. 

Thus, by our choice of δ, we get (v2j=v1j)(v1'=v2') → 1, which implies cj → c'. Hence, both buyers are tied in good '.
To finish the proof that (α↗, x↘) is a γ-approximate PE, it suffices to show that the budget constraint and the not too 

much unnecessary pacing condition still hold approximately after the small scaling of α↘2. In the rest of this subsec-
tion, we extend the aforementioned line of reasoning to design a rounding algorithm for the general setting, and 
prove its correctness.
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Building on Ṽ defined above, we can define the set of valuation ratio products
V → {y1y2: : :yk : k ↓ [2n]and yi ↓ Ṽ for each i ↓ [k]}, 

that is, V consists of all products of no more than 2n numbers from Ṽ . Given G and γ ↓ [0, 1) (with γ↗ → γ=2), we 
choose δ ↓ [0, 1) to be small enough to satisfy the following two conditions: 

(1 δ)2n
> (1 γ↗) and (1 δ)2n

z > 1 for all z ↓ V such that z > 1.

Algorithm 1 (Rounding Algorithm)
Initialize: Graph G → (V, E) with V → [n] and E → ⇔; α → α↘
While there exists a good j ↓ [m] and a buyer i ↓ Wj such that αivij < hj(α), that is, i does not have the highest 

bid on j but wins a positive fraction of it: 
1. Pick k, i ↓ [n] and j ↓ [m] such that i ↓ Wj and αivij < αkvkj → hj(α)
2. Set αa ↖ (hj(α)=αivij) ·αa for every buyer a ↓ CG(i)
3. Set E ↖ E ↙ {{i, k}} and I({i, k}) → j

Return: α↗ :→ (1 δ)2n
α

It suffices to set δ�to be 1=2N where N is polynomial in |G | and log(1=γ).
Let (α↘, x↘) be a (δ,γ↗)-approximate PE of G → (n, m, (vij), (Bi)), where γ↗ → γ=2 and δ�satisfies the two conditions 

above. We will use Wj to denote the winners of the good j under x↘: Wj consists of buyers i with x↘ij > 0. Moreover, 
recall that hj(α) denotes the highest bid on good j when the pacing multipliers are given by α. Our rounding algo-
rithm is presented in Algorithm 1. The polynomial reduction then follows from the following performance guarantee 
of the rounding algorithm, which we prove in the rest of the subsection:

Lemma 6 (Correctness). The rounding algorithm takes (α↘, x↘), δ�and G as input and runs in polynomial time. Let α↗ be 
the tuple of multipliers returned by the rounding algorithm. Then (α↗, x↘) is a γ-approximate PE of G.

The rounding algorithm maintains an undirected graph G over vertices [n] as buyers. G starting out with an empty 
edge set and edges are added according to Algorithm 1 to keep track of the rounding-updates performed on α. We 
use CG(i) to denote the connected component of i in the graph G. The algorithm also maintains an edge labeling I(·)
that maps each edge of the graph G to a good j ↓ [m] (which intuitively is the good that caused the creation of this 
edge). We remark that the labeling I(·) is only relevant for the analysis of the algorithm below. Now, we proceed to 
prove Lemma 6.

Lemma 7. Suppose in the t0 iteration of the while loop, {i, k} is the edge that was just added to G with I({i, k}) → j, then at 
the end of this iteration we have CG(i) → CG(k) and

αi
αk
→ vkj

vij
: ( # ) 

Moreover, (#) holds for all iterations t ↑ t0.
We prove the lemma using induction on the iterations on the while loop. For the base case t → t0, note that (#) holds 

at the end of the iteration due to Step 2 of Algorithm 1. Moreover, since edge {i, k} is added to G in Step 3, we also 
have CG(i) → CG(k) at the end of iteration t0. Moreover, since no edges are removed during the run of Algorithm 1, 
{i, k} ↓ E for iterations after t0, and hence CG(i) → CG(k) at the end of all iterations t ↑ t0. Suppose (#) holds at the end of 
iteration t  1 for some t 1 ↑ t0. Then, either both αi and αk will both be updated identically or neither of them will 
be updated because CG(i) → CG(k), thereby maintaining (#). This completes the induction and establishes the lemma.

Next we prove that at the end of each iteration, bids for the same good from buyers in the same component of G are 
either tied or not very close.

Lemma 8. After each iteration of the while loop, and for each good j ↓ [m], all buyers from the same connected component of 
G are either tied for j, or their bids for j are multiplicatively separated by a factor larger than (1 δ)2n

.

Let G be the current graph and a, b ↓ [n] be two buyers in the same connected component of G. Assuming αavaj >
αbvbj for some j ↓ [m], we show below that (1 δ)2n

αavaj > αbvbj from which the lemma follows. Given that a and b 
are connected in G, we write {a, i1}, {i1, i2}, : : : , {iL, b} to denote a path from a to b in G with L < n. Then, using Lemma 
7, we can write

1 >
αbvbj

αavaj
→ vbj

vaj
· αi1
αa

αi2
αi1

αi3
αi2
: : :
αb
αiL

→ vbj

vaj
· vaI({a, i1})
vi1I({a, i1})

vi1I({i1, i2})
vi2I({i1, i2})

: : :
viLI({iL, b})
vbI({iL, b})

Chen, Kroer, and Kumar: The Complexity of Pacing for Second-Price Auctions 
2124 Mathematics of Operations Research, 2024, vol. 49, no. 4, pp. 2109–2135, © 2023 INFORMS 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.o

rg
 b

y 
[1

28
.5

9.
17

8.
16

2]
 o

n 
08

 M
ay

 2
02

5,
 a

t 1
3:

04
 . 

Fo
r p

er
so

na
l u

se
 o

nl
y,

 a
ll 

rig
ht

s r
es

er
ve

d.
 



Hence, αavaj=αavbj ↓ V and αavaj=αbvbj > 1. Therefore, our choice of δ�implies that

(1 δ)2n
· αavaj

αbvbj
> 1, 

as required. w

Initially (in α↘) we have every i ↓ Wj has α↘i vij ↑ (1 δ)hj(α↘) (given that (α↘, x↘) is a (δ,γ↗)-approximate PE). The 
next lemma shows that, at the end of each iteration, αivij of every i ↓ Wj (note that Wj is always defined using the orig-
inal allocation x↘) remains not far from hj(α).
Lemma 9. After t iterations of the while loop, every j ↓ [m] and i ↓ Wj satisfy

αivij ↑ (1 δ)2t
· hj(α):

The proof follows from induction. The base case of t → 0 follows from definition.
Suppose the statement holds after (t 1) iterations, and let’s focus on some j ↓ [m] and i ↓ Wj during the t-th itera-

tion. By our inductive hypothesis, we have

αivij ↑ (1 δ)2t 1
· hj(α)

before the start of the t-th iteration. On the other hand, note that all changes to α�occur in step 2 of the while loop, and 
moreover, all such changes result in an increase of some entries of α. It also follows from the inductive hypothesis 
and the choices of k, i, j in step 1 of the while loop that entries of α�can only go up by a multiplicative factor of at most 
1=(1 δ)2t 1

. Therefore, after the t-th iteration, we have

αivij ↑ (1 δ)2t 1
· (1 δ)2t 1

· hj(α) → (1 δ)2t
· hj(α):

This completes the induction step. w

Lemmas 8 and 9 imply that, in each of the first n iterations of the while loop, buyers i and k picked in step 1 must 
belong to different connected components of G. As a result, there are at most n  1 iterations of the while loop given 
that we merge two connected components in each loop. On the one hand, this implies that the rounding algorithm 
terminates in polynomial time. On the other hand, at the termination of the while loop, for every good j ↓ [m], we 
have αivij → hj(α) for all i ↓ Wj, that is, every winner of j under x↘ has the highest bid for j.

The next lemma shows that the α↗ returned by the rounding algorithm is close to α↘.
Lemma 10. Let α↗ be the tuple of multipliers returned by the rounding algorithm. Then

(1 δ)2n
α↘ ↔ α↗ ↔ α↘:

By Lemma 9, in iteration t of the while loop, each entry of α�either stays the same or increases multiplicatively by a 
factor of at most 1=(1 δ)2t 1

. As there are at most n  1 iterations of the while loop, we have for every i ↓ [n]:

(1 δ)2n
·α↘i ↔ α↗i :→ (1 δ)2n

·αi ↔ (1 δ)2nYn 1

t→1

1
(1 δ)2t 1 · α↘i ↔ α↘i :

This finishes the proof of the lemma.
We are now ready to prove Lemma 6.

Proof of Lemma 6. We have already shown that the algorithm runs in polynomial time. Assuming that (α↘, x↘) is 
a (δ,γ↗)-approximate PE of G, we show that (α↗, x↘) is a γ-approximate PE of G by establishing conditions (a)-(d) 
of Definition 2. Using Lemma 10, we have α↗ ↓ [0, 1]n. Condition (a) has already been established earlier using 
Lemmas 8 and 9. Condition (b) holds because we kept the same allocation x↘ and given how we obtain α↗ from 
α↘, the set of goods j with hj(α↘) > 0 is the same as that in α↗. Condition (c) follows easily from Lemma 10. So it 
suffices to verify that (d) holds with γ.

To see this we have for each buyer i ↓ [n] that either α↘i ↑ 1 γ↗ or 
P

j x↘ijpj(α↘) ↑ (1 γ↗)Bi. For the former case, 
we have from Lemma 10 that

α↗i ↑ (1 δ)2n
· (1 γ↗) > (1 γ↗)2 ↑ 1 γ�

using (1 δ)2n
> 1 γ↗ from the choice of δ�and that γ → 2γ↗. For the latter case, it follows from Lemma 10 and our 
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choice of δ�that

pj(α↗) ↑ (1 δ)2n
· pj(α↘) > (1 γ↗) · pj(α↘)

for all j ↓ [m]. Here we have used the fact that pj((1 δ)2n
α↘) → (1 δ)2n

pj(α↘) and pj(α) ↑ pj(α̃) whenever α ↑ α̃. As a 
result, the total expenditure of buyer i in (α↗, x↘) is

X

j↓[m]
x↘ij · pj(α↗) > (1 γ↗)

X

j↓[m]
x↘ij · pj(α↘) ↑ (1 γ↗)2Bi ↑ (1 γ)Bi:

Therefore, we have shown that (α↗, x↘) is a γ-approximate PE of G. w

4.3. PPAD Membership of Computing Exact Pacing Equilibria
In the last subsection we showed that the problem of finding a γ-approximate PE of a second-price pacing game G is 
in PPAD. Finally we show in this subsection that the problem of finding an exact equilibrium of a pacing game is also 
in PPAD. To this end, we show that when γ�is small enough (though with bit length polynomial in |G |), any 
γ-approximate PE(α↗, x↗) of G can be “rounded” into an exact equilibrium by solving a linear program defined using 
support information extracted from (α↗, x↗). This technique is similar to the one used in Etessami and Yannakakis 
[24], Vazirani and Yannakakis [41], and Filos-Ratsikas et al. [27]. For this purpose we recall the following fact about 
linear programs:

Fact 1. There is a polynomial r(·) with the following property. Let LP be a linear program that minimizes a non-
negative variable γ. Then an optimal solution of LP has either γ�→ 0 or γ ↑ 1=2r( |LP | ), where |LP | denotes the 
number of bits needed to represent LP:

Given a γ-approximate PE (α↗, x↗) of G → (n, m, (vij), (Bi)) (for some sufficiently small γ�to be specified later), we 
extract from (α↗, x↗) the following support information: 

1. I↗ ∝ [n] consists of buyers i ↓ [n] who are almost unpaced, that is, α↗i ↑ 1 γ. Given that (α↗, x↗) is a γ-approxi-
mate PE, condition (d) of Definition 2 implies that

X

j↓[m]
x↗ijpj(α↗) ↑ (1 γ)Bi, for all i ∉ I:

2. For each j ↓ [m], W↗
j is the set of buyers i ↓ [n] with x↗ijpj(α↗) > 0 (which implies α↗i vij → hj(α↗)). These are buyers 

who win good j and pay a positive amount for it.
3. For each j ↓ [m], let sj ↓ [n] be the smallest index i such that α↗i vij → hj(α↗), that is, sj is the smallest index among 

the buyers who have the highest bid in good j.
4. For each j ↓ [m], let tj ↓ [n] be the smallest index i ≠ sj such that α↗i vij → maxk≠sjα

↗
kvkj (so we have that 

α↗tj
vtjj → pj(α↗)).
On the other hand, given any I ∝ [n], W → (Wj ∝ [n] : j ↓ [n]), s → (sj ↓ [n] : j ↓ [m]), and t → (tj ↓ [n] : j ↓ [m]), we 

use LP(I, W, s, t) to denote the following linear program on n + nm + 1 variables α → (αi : i ↓ [n]), q → (qij : i ↓ [n], j ↓
[m]) and τ�(where each variable qij captures the amount buyer i pays for good j):

minimize τ
τ ↑ 0,αi ↓ [0, 1], qij ↑ 0 for all i ↓ [n] and j ↓ [m]
qij → 0 for all j ↓ [m] and i ∉Wj
αsj vsjj ↑ αkvkj for all j ↓ [m] and k ↓ [n]
αtj vtjj ↑ αkvkj for all j ↓ [m] and k ≠ sj ↓ [n]

(a) αivij ↑ αsj vsjj for all j ↓ [m] and i ↓ Wj

(b)
X

k↓[n]
qkj → αtj vtjj for all j ↓ [m]

(c)
X

j↓[m]
qij ↔ Bi for all i ↓ [n]

(d) αi ↑ 1 τ for all i ↓ I and
X

j↓[m]
qij ↑ (1 τ)Bi for all i ∉ I 

Here, (a) ensures that the buyers in Wj have the highest bid on good j; (b) ensures that the total payment of all 
buyers for good j is equal to the second highest bid; (c) ensures that the budgets are satisfied; and (d) ensures that 
the not-too-much-unnecessary-pacing condition is satisfied. The lemma below follows directly from the defini-
tion of γ-approximate PE and the way I↗, W↗, s↗ and t↗ are extracted from (α↗, x↗).
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Lemma 11. Suppose (α↗, x↗) is a γ-approximate PE of G. Then (α↗, q↗,γ) is a feasible solution to the linear program 
LP(I↗, W↗, s↗, t↗), where q↗ → (q↗ij) with q↗ij → x↗ijpj(α↗).

On the other hand, the next lemma shows that if LP(I, W, s, t) has a feasible solution (α, q, 0) for some I, W, s and t, 
then (α, x) is an exact pacing equilibrium, where x → (xij) and xij → qij=pj(α) if pj(α) > 0; when pj(α) → 0 we set xsjj → 1 
and xij → 0 for all other i.
Lemma 12. If (α, q, 0) is a feasible solution to LP(I, W, s, t), then (α, x) is an exact equilibrium.

Let (α, q, 0) be a feasible solution to LP(I, W, s, t). Set α�to be the pacing multipliers of buyers in G and define the allo-
cation x → (xij) as above. Then, the LP constraints imply that the highest bid on good j is hj(α) → αsj vsjj and the second 
highest bid is pj(α) → αtj vtjj. Next we note that, in the latter case, the constraints of the LP force the set of winners 
{i |xij > 0} of good j ↓ [m] to be a subset of Wj. This is because xij > 0 implies qij > 0 and qij → 0 for all i ∉Wj. Now, it is 
straightforward to see that constraints (a)-(d), in combination with τ�→ 0, imply that (α, x) satisfies the corresponding 
conditions (a)-(d) of Definition 1. w

Given the definition of LP(I, W, s, t), there is a polynomial r↗(·) such that
max

I,W, s, t
|LP(I, W, s, t) | ↔ r↗( |G | ):

Now we can set γ�to be smaller than 1=2r(r↗( |G | )) (with bit length still polynomial in |G | ). To finish the proof of Theo-
rem 1, we let (α↗, x↗) be a γ-approximate PE of G. It follows from Lemma 11 that (α↗, q↗,γ) is a feasible solution to 
LP(I↗, W↗, s↗, t↗). Next it follows from Fact 1 that this linear program has a feasible solution (α, q, 0) and the latter can 
be computed in polynomial time. Lemma 12 shows that (α, x), which can be computed in polynomial time, is a pacing 
equilibrium of G.

5. Conclusion
We studied the computational complexity of pacing equilibria in second-price pacing games with multiplicative pac-
ing. Our results show that finding a pacing equilibrium, whether exact or approximate, is a PPAD-complete problem. 
As discussed previously, these results close the open problem from Conitzer et al. [18] on the complexity of pacing 
equilibria, and make progress toward resolving the conjecture of Borgs et al. [9] by showing that their dynamics is 
unlikely to converge efficiently in second-price auctions. More generally, our results show that algorithms for 
budget-smoothing in auctions, an important problem for internet advertising, cannot be expected to efficiently find 
even approximate pacing equilibria in the worst case.

There are several interesting future questions and implications to investigate based on our work. Perhaps most 
importantly, we would like to understand exactly when budget-smoothing becomes hard. As discussed in the litera-
ture review (Balseiro and Gur [4]), developed regret minimization algorithms for the case of i.i.d. and continuous sto-
chastic valuations. Yet our results imply that for general correlated valuations convergence cannot occur efficiently. 
The question is now which types of correlated stochastic valuations admit efficient algorithms, and which types are 
hard. It would also be interesting to understand whether other methods of budget smoothing (such as those dis-
cussed by Balseiro et al. [3]) lead to PPAD-complete equilibrium problems as well.

In the direction of positive results, our PPAD membership proof suggests that complementary pivoting may be a 
fruitful research direction for computing pacing equilibria. This is especially pertinent because approaches based on 
mixed-integer programming seem to scale poorly (Conitzer et al. [18]).
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Appendix A. Proof of Theorem 3
Consider a {0, 1}-cost n ⇒ n bimatrix game (A, B) and let ω → 1=n. Recall that an ω-well-supported Nash equilibrium is a 
pair (x, y) ↓ !n ⇒ !n such that xi > 0 for any i ↓ [n] implies that 

P
j Aijyj ↔

P
j Akjyj + ω for all k and yj > 0 for any j ↓ [n]

implies 
P

i xiBij ↔
P

i xiBik + ω for all k ↓ [n].
In this section we show how to construct an SPP game G with 4n + 1 buyers from the bimatrix game (A, B) in time 

polynomial in n such that every (δ,γ)-approximate PE of G, where δ → γ → ω=n6, can be mapped back to an ω-well-sup-
ported Nash equilibrium of (A, B) in polynomial time. Theorem 2 follows from the PPAD-completeness of the problem 
of finding an ω-well-supported Nash equilibrium in a {0, 1}-cost bimatrix game with ω → 1=n (Chen et al. [16]).

The SPP game G contains the following goods: 
• Normalization goods: n goods {N(p, s)1, : : : , N(p, s)n} for each p ↓ {1, 2} and s ↓ [n].
• Expenditure goods: n goods {E(p, s)1, : : : , E(p, s)n} for each p ↓ {1, 2} and s ↓ [n].
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• Threshold goods T(p, s) for each p ↓ {1, 2} and s ↓ [n].
Set ν → 1=(16n). The set of buyers in G is defined as follows: 
• Buyer C(p, s), p ↓ {1, 2} and s ↓ [n]: C(p, s) has positive values for the following goods: 

— Normalization goods: V(C(p, s), N(p, s)i) → 16 for all i ↓ [n] \ {s};
V(C(p, s), N(p, s)s) → 1; and V(C(p, s), N(p, t)s) → 1 for all t ↓ [n] \ {s}.

— Threshold good T(p, s): V(C(p, s), T(p, s)) → 2n4.
— Expenditure goods: V(C(p, s), E(p, s)i) → 1 for all i ↓ [n].

For p → 1: V(C(1, s), E(2, t)s) → νBst for all t ↓ [n].
For p → 2: V(C(2, s), E(1, t)s) → νAts for all t ↓ [n].
For p → 1, the budget of buyer C(1, s) is n=2 + n4 + 1=4 +Pt↓[n]νAst=2;
For p → 2, the budget of buyer C(2, s) is n=2 + n4 + 1=4 +Pt↓[n]νBts=2.
• Threshold Buyer T: T has positive values only for the following goods: 

— Threshold goods: V(T, T(p, s)) → (1 δ)n4 for each p ↓ {1, 2} and s ↓ [n].
— Expenditure goods: V(T, E(1, s)t) → νAst=2 and V(T, E(2, s)t) → νBts=2 for all s, t ↓ [n].

Buyer T has budget n7.
• Dummy buyer D(p, s), p ↓ {1, 2} and s ↓ [n]: The budget of D(p, s) is ν�and she only values the normalization good N(p, s)s: 

V(D(p, s), N(p, s)s) → 1.
Let E be a (δ,γ)-approximate PE of the game G. We will use α(·) to denote pacing multipliers of buyers in E. Observe 

that, from the definition of approximate pacing equilibria, we must have α(T) ↓ [1 γ, 1]. The following lemma estab-
lishes bounds on pacing multipliers of other buyers.

Lemma A.1. For each p ↓ {1, 2} and s ↓ [n], we have

(1 δ)2

2 ↔ α(C(p, s)) ↔ 7
8 and (1 δ) ·α(C(p, s)) ↔ α(D(p, s)) ↔ α(C(p, s))

1 δ :

Suppose for some p ↓ {1, 2} and s ↓ [n], we have α(C(p, s)) < (1 δ)2=2. Then C(p, s) doesn’t win any part of the threshold 
good T(p, s). Observe that she has value at most 16 for every other good. Given that there are only O(n2) goods in G, she 
cannot possibly spend all her budget (which is ”(n4)). This contradicts the assumption that E is an approximate PE. 
Therefore, we have α(C(p, s)) ↑ (1 δ)2=2 for each p ↓ {1, 2} and s ↓ [n].

Next we prove the inequality about α(D(p, s)). Suppose (1 δ)α(D(p, s)) > α(C(p, s)) for some p ↓ {1, 2} and s ↓ [n]. Then, 
D(p, s) wins all of good N(p, s)s at price α(C(p, s)) ↑ (1 δ)2=2. This violates her budget constraint and leads to a contradiction. 
Hence α(D(p, s)) ↔ α(C(p, s))=(1 δ). Moreover, if α(D(p, s)) < (1 δ)α(C(p, s)) (which implies α(D(p, s)) < 1 δ → 1 γ) then 
her expenditure is zero. This violates the no unnecessary pacing condition. Hence the inequality about α(D(p, s)) must hold. 
Observe that, in particular, this means that the price of N(p, s)s is between (1 δ)α(C(p, s)) and α(C(p, s))=(1 δ).

Finally suppose α(C(p, s)) > 7=8 for some p ↓ {1, 2}, s ↓ [n]. Then she wins: 
• All of normalization good N(p, s)t, for each t ≠ s, by spending at least (1 δ)2=2 on each of them because α(C(p, t)) ↑

(1 δ)2=2 by the first part of the proof.
• Part of normalization good N(p, s)s by spending at least (1 δ)(7=8) ν. This is because N(p, s)s has price at least (1 

δ)(7=8) and buyer D(p, s) only has budget ν.
• All of threshold good T(p, s) by spending α(T)(1 δ)n4 ↑ (1 δ)2n4 (using γ → δ).
• All of expenditure good E(p, s)t, for each t ↓ [n], by spending at least α(T)νAst=2 if p → 1 and α(T)νBts=2 if p → 2.
Hence, the total expenditure of C(p, s) when p → 1 is at least

(1 δ)2 · n 1
2 + (1 δ) · 7

8 ν+ (1 δ)2n4 + (1 δ)
X

t↓[n]
νAst=2 

which is strictly higher the budget (using δ → 1=n7). The same also holds for p → 2. In both cases, the budget constraint is 
violated, leading to a contradiction. Therefore, the lemma holds. w

In particular, the above lemma implies that the total expenditure of each buyer C(p, s) is at least (1 γ)-fraction of her 
budget (and of course is also bounded from above by her budget). We also get the following corollary:

Corollary A.1. For each p ↓ {1, 2} and s ↓ [n], the expenditure of C(p, s) on N(p, s)s lies in the following interval [(1 δ)
α(C(p, s)) ν,α(C(p, s)) (1 δ)ν]

Next, we define two vectors x↗ and y↗ with

x↗s → {α(1, s) (α(T)=2)}+ and y↗s → {α(2, s) (α(T)=2)}+
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for each s ↓ [n], where a+ denotes max{a, 0}. The following lemma will allow us to normalize x↗ and y↗ to obtain valid proba-
bility distributions.

Lemma A.2. The following inequalities hold: 
P

s x↗s > 1=8 and 
P

s y↗s > 1=8.

We prove 
P

s x↗s > 1=8. The proof of 
P

s y↗s > 1=8 is analogous. Suppose that 
P

s x↗s ↔ 1=8. Then, buyer B(1, 1) only wins a 
non-zero fraction of the following goods, and spends: 

• At most α(C(1, t)) on each normalization good N(1, 1)t for each t ↓ [n]. The total expenditure is
X

t↓[n]
α(C(1, t)) ↔ nα(T)=2 +

X

t↓[n]
x↗t ↔ n=2 + 1=8:

• At most (1 δ)n4 on the threshold good T(1, 1).
• At most νA1t on each expenditure good E(1, 1)t, t ↓ [n].
Hence, the total expenditure of buyer C(1, 1) is at most n=2 + 1=8 + (1 δ)n4 +Pt νA1t, which is strictly less than her 

budget, a contradiction. w

Now, we are ready to define the mixed strategies (x, y) for the bimatrix game (A, B). Set player 1’s mixed strategy x to 
be xs → x↗s=

P
i x↗i and player 2’s mixed strategy y to be ys → y↗s=

P
i y↗i . These are valid mixed strategies because of Lemma 1

and Lemma 2. The next lemma shows that (x, y) is indeed an ω-well-supported Nash equilibrium of (A, B).

Lemma A.3. (x, y) is an ω-well-supported Nash equilibrium of the bimatrix game (A, B).

Assume there are s, s↘ ↓ [n] such that xs > 0 but 
P

t Astyt >
P

t As↘tyt + ω; the proof for y is analogous. Using xs > 0, buyer 
C(1, s) spends non-zero amounts on the following goods: 

• α(C(1, t)) on the normalization good N(1, s)t for each t ≠ s.
• at least (1 δ) · α(C(1, s)) ν�on the normalization good N(1, s)s.
• α(T) · (1 δ)n4 on the threshold good T(1, s).
• max{α(C(2, t)),α(T)=2} · νAst on the expenditure good E(1, s)t for each t ↓ [n].
Therefore, the total expenditure of buyer C(1, s) is at least

X

t↓[n]
α(C(1, t)) δ · α(C(1, s)) ν+α(T) · (1 δ)n4 +

X

t↓[n]
max{α(C(2, t)),α(T)=2} · νAst

→
X

t↓[n]
α(C(1, t)) δ ·α(C(1, s)) ν+ α(T) · (1 δ)n4 +α(T)

X

t↓[n]
νAst=2 + ν

X

t↓[n]
ytAst:

On the other hand, buyer C(1, s↘) spends (without assuming xs↘ > 0): 
• α(C(1, t)) on the normalization good N(1, s↘)t for each t ≠ s↘.
• at most α(C(1, s↘)) (1 δ)ν�on the normalization good N(1, s↘)s↘ .
• at most α(T) · (1 δ)n4 on the threshold good T(1, s↘).
• max{α(C(2, t)),α(T)=2} · νAs↘t on the expenditure good E(1, s↘)t for each t ↓ [n].
Therefore, the total expenditure of buyer C(1, s↘) is at most

X

t↓[n]
α(C(1, t)) (1 δ)ν+ α(T) · (1 δ)n4 +α(T)

X

t↓[n]
νAs↘t=2 + ν

X

t↓[n]
ytAs↘t:

Using the assumption that 
P

t Astyt >
P

t As↘tyt + ω, we have that the total expenditure of C(1, s) minus that of C(1, s↘), 
denoted by (‡1), is at least

 δ · α(C(1, s)) δν+α(T) ·
X

t↓[n]
νAst=2 

X

t↓[n]
νAs↘t=2

 !

+ ων ↑ α(T) ·
X

t↓[n]
νAst=2 

X

t↓[n]
νAs↘t=2

 !

+ ων=2 

using ων⇐ δ. On the other hand, the budget of C(1, s) minus that of C(1, s↘), denoted (‡2), is
X

t↓[n]
νAst=2 

X

t↓[n]
νAs↘t=2:

Using α(T) ↑ 1 γ�and γ → 1=n7, we have (‡1) ↑ (‡2) + ων=3. However, the total expenditure of C(1, s) is at most her bud-
get and the total expenditure of C(1, s↘) is at least (1 γ)-fraction of her budget. Given that the budget of C(1, s↘) is O(n4), 
we also have

(‡1) ↔ (‡2) + γ · O(n4) → (‡2) + O(1=n3), 
a contradiction because ων → ”(1=n2). w

Theorem 3 follows from the PPAD-hardness of finding an ω-well-supported Nash equilibrium in a {0, 1}-cost bimatrix 
game (Chen et al. [16]).
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Appendix B. Proof of Claim 1
Before stating the proof of Claim 1, we state and prove the following useful lemma.

Lemma B.1. If β ↓ S is labelled i, then βi ↑ min 1
n , Bmin

2nvmax

n o
.

Without loss of generality, we will prove the lemma for i → 1. Suppose β ↓ S is labelled 1 according to the above proce-
dure. First, β1 > 0 follows as a direct consequence. Furthermore, as maxiβi ↑ 1=n and 

P
i βi → 1, we get t↘(β) → t1 ↔ n. We 

consider the two possible binding cases which can define t1. If t1 → 1=β1, then β1 ↑ 1=n, and thus the lemma holds. On the 
other hand, if t1 → B1P

j x1jpj(β)
, then 

P
j xijpj(β) > 0 and

B1 → t1
X

j
x1jpj(β) ↔ n

X

j: xij>0
max

i
βivij ↔ n

X

j: xij>0

β1v1j

(1 δ) ↔ n
X

j

β1v1j

(1 δ)

where the second inequality follows from the definition of (δ,γ)-approximate pacing equilibrium. Therefore, β1 ↑min 
1
n , (1 δ)B1P

j v1j

$ %
. w

Proof of Claim 1. Let Bmin → mini↓[n]Bi, Bmax →maxi↓[n]Bi, vmax →maxi, jvij and vmin → mini, j:vij>0vij. In this proof, we will use 
the following facts: if f, g are Lipschitz functions with Lipschitz constants Lf, Lg, then 

(a) f + g is Lipschitz with constant Lf + Lg
(b) max{f , g} is Lipschitz with constant max{Lf , Lg}.
(c) If | f | , |g | ↔M, then fg is Lipschitz with constant M(Lf + Lg).
Define yij : S⇑ R as yij(β) → [βivij  (1 δ)maxkβkvkj]+. Using facts (a) and (b), we can write

|yij(β) yij(β↗) | ↔ 2vmax⇓β β↗⇓≃
Consider β ↓ S0 and i ↓ [n]. As S0 is panchromatic, there exists β↗ ↓ S0 such that T(β↗) → i. By Lemma B.1, we get

β↗i ↑ min 1
n , Bmin

2nvmax

$ %

Then, using the definition of ω, we get the following equivalent statements:

βi ↑
1
2 min 1

n , Bmin
2nvmax

$ %
�

1
βi
↔ U :→ 2 max n, 2nvmax

Bmin

$ %

Hence, for β,β↗ ↓ S0, we have
1P

r yrj(β)
 1P

r yrj(β↗)

((((

(((( →
P

r yrj(β↗) 
P

r yrj(β)P
r yrj(β)

P
r yrj(β↗)

((((

((((

↔ 2nvmaxU2

δ2v2
min

· ⇓β β↗⇓≃

Using fact (c), for β,β↗ ↓ S0, we can write

|xij(β) xij(β↗) | ↔max vmax, U
δvmin

$ %
2vmax + 2nvmaxU2

δ2v2
min

" #

· ⇓β β↗⇓≃

Set U → max vmax, U
δvmin

n o
2vmax + 2nvmaxU2

δ2v2
min

h i
. Also, note that for β,β↗ ↓ S,

|pj(β) pj(β↗) | ↔ vmax⇓β β↗⇓≃
For β,β↗ ↓ S0, combining the above Lipschitz conditions using facts (a) and (c) yields

X

j
xij(β)pj(β) 

X

j
xij(β↗)pj(β↗)

(((((

((((( ↔ mvmax(U + vmax)⇓β β↗⇓≃

Set W :→mvmax(U + vmax). Define

P↘ :→ i ↓ [n]
(((((′β ↓ T s:t: BiP

j xij(β)pj(β)
<

1
βi

( )

For i ↓ P↘ and β ↓ S0, we can write BiP
j xij(β)pj(β)

< 1
βi
↔U, which implies 1P

j xij(β)pj(β)
↔ U

Bmin
.

Therefore, for β,β↗ ↓ S0 and i ↓ P↘, we have

BiP
j xij(β)pj(β)

 BiP
j xij(β↗)pj(β↗)

(((((

((((( ↔ Bmax
U2

B2
min

W⇓β β↗⇓≃ ↔
BmaxU2W

B2
min

⇓β β↗⇓≃
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Also, for β,β↗ ↓ S0 and i ↓ [n], we have
1
βi
 1
β↗i

((((

(((( ↔U2⇓β β↗⇓≃

Note that for β ↓ T, we can rewrite t↘(β) as follows

t↘(β) →min min
i↓[n]

1
βi

, min
i↓P↘

min 1
βi

, BiP
j xij(β)pj(β)

( )( )

Using fact (b), for β,β↗ ↓ T,

| t↘(β) t↘(β↗) | ↔ 2n max U2, BmaxU2L
B2

min

$ %
⇓β β↗⇓≃

Therefore, for i ↓ [n], total payment made by buyer i is Lipschitz for β ↓ S0:
X

j
xij(β)t↘(β)pj(β) 

X

j
xij(β↗)t↘(β↗)pj(β↗)

(((((

(((((

↔max nvmax, n{ } W + 2n max U2, BmaxU2W
B2

min

$ % !
⇓β β↗⇓≃

Hence, the claim holds because

max{nvmax, n} W + 2n max U2, BmaxU2W
B2

min

$ % !
↔ L → 2 |G |

δ

 !10, 000 

Appendix C. Incorporating Reserve Prices
Consider the setting in which each item j has a reserve price rj. Now, a buyer wins a good j only if her bid is the highest 
bid hj(α) and it is greater than or equal to the reserve rj. Moreover, the price of good j is the maximum of the second 
highest bid pj(α) and its reserve price rj. In the presence of reserve prices, we will use Hj(α) :→max{hj(α), rj} to denote the 
winning threshold of good j and Pj(α) :→max{pj(α), rj} to denote the price of good j. The next example illustrates that one 
needs to be careful in the way one extends the definition of pacing equilibrium (Definition 1) to model the presence of 
reserves.

Example C.1. There is one buyer and one good. The buyer values the good at 4 and has a budget of 1. The goods has a 
reserve price of 2. If she bids strictly less than 1/2, then she does not win any part of the good. On the other hand, if we 
assume that she wins the entire good upon bidding 1/2 or higher, then she violates her budget upon doing so. This sug-
gests that a pacing equilibrium might not even exist if we extend it naively to the setting with reserves. Instead, we will 
take the approach that, in a pacing equilibrium, the seller may decide to not sell a fraction of a good if the highest bid is 
equal to the reserve price of that good. With this new definition, we can see that a pacing equilibrium does in fact exist, 
namely, when the buyer has a pacing multiplier of 1/2 and wins 1/2 of the item.

Inspired by the above example, we define pacing equilibrium for the setting with reserves.

Definition C.1. (Pacing Equilibria with Reserves). Given an SPP game with reserves G → (n, m, (vij), (Bi), (rj)), we say (α, x)
with α → (αi) ↓ [0, 1]n, x → (xij) ↓ [0, 1]nm and 

P
i↓[n]xij ↔ 1 for all j ↓ [m] is a pacing equilibrium if 

(a) Only buyers above the winning threshold win the good: xij > 0 implies αivij → Hj(α).
(b) Full allocation of each good for which the highest bid exceeds the reserve price: hj(α) > rj implies 

P
i↓[n]xij → 1.

(c) Budgets are satisfied: 
P

j↓[m]xijPj(α) ↔ Bi.
(d) No unnecessary pacing: 

P
j↓[m]xijPj(α) < Bi implies αi → 1.

Next, we extend our PPAD-membership result to the setting with reserves.

Theorem C.1. Finding a pacing equilibrium in a SPP game with reserves is in PPAD.

Consider a pacing game with reserve prices G and the corresponding pacing game without reserve prices G↗. Add an 
auxiliary buyer a to G↗ who values good j at rj for all j ↓ [m] and has a budget large enough to ensure that her pacing 
multiplier is always 1 in every pacing equilibrium (this can be achieved by setting her budget to be the sum of all values 
{vij} and reserve prices {rj}). We will call this updated game G↗

+. The theorem follows from the simple observation that if 
we find a pacing equilibrium (α, x) for G↗

+ and disregard the terms corresponding to the auxiliary buyer, then we get a 
pacing equilibrium (α a, x a) for G. This is because, in any pacing equilibrium of G↗

+, the auxiliary buyer has a multiplier 
of 1 and hence bids rj on good j for all j ↓ [m]. Moreover, any amount that the auxiliary buyer wins in (α, x) can be 
thought of as being not sold by the seller. As (α, x) satisfies Definition 1, it is straightforward to check that (α a, x a) satis-
fies Definition C.1. w
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We conclude this section by noting that our hardness results extend directly to the setting with reserves because it 
reduces to the setting without reserves when rj → 0 for all goods j ↓ [m].

Appendix D. Perturbed Second-Price Pacing Games
Before stating and proving the results, we define the relevant equilibrium notions. For a perturbed pacing game 
(n, m, (vij), (Bi),δ), let p↗ij(α) denote the expected payment made by buyer i on good j when the buyers use multipliers 
α ↓ [0, 1]n. Moreover, let xij(α) be the probability of buyer i winning good j when the buyers use the multipliers α.

Definition D.1. Consider a perturbed SPP game (n, m, (vij), (Bi),δ). Then, α ↓ [0, 1]n is a pacing equilibrium of the perturbed 
SPP if: 

• Budgets are satisfied: 
Pm

j→1 p↗ij(α) ↔ Bi

• No unnecessary pacing: If 
Pm

j→1 p↗ij(α) < Bi, then αi → 1
Moreover, α ↓ [0, 1]n is an γ-approximate pacing equilibrium of the perturbed SPP if: 

• Budgets are satisfied: 
Pm

j→1 p↗ij(α) ↔ Bi

• Not too much unnecessary pacing: If 
Pm

j→1 p↗ij(α) < (1 γ)Bi, then αi ↑ (1 γ)vij

Theorem D.1. Computing a γ-approximate pacing equilibrium of a perturbed SPP game (n, m, (vij), (Bi),δ) is PPAD-hard when 
δ → γ → 1=n8.

First observe that

(1 γ)(1 δ) → (1 n 8)2 → 1 + n 16  2n 8 ↑ 1 n 7 

We will prove the theorem by reducing from the problem of computing approximate pacing equilibria of SPP games. 
Consider an SPP game G → (n, m, (vij), (Bi)). Define a perturbed SPP game G↗ → (n, m, (vij), (B↗i ),δ) such that B↗i → (1 δ)Bi. Let 
α�be a γ-approximate pacing equilibrium of the perturbed SPP game G↗. Then, as ωij ↓ [1 δ, 1], we get that

(1 δ)xij(α)pj(α) ↔ p↗ij(α) ↔ xij(α)pj(α) ∀i ↓ [n], j ↓ [m] (D.1) 

where, as earlier, pj(α) denotes the second highest bid in an SPP game when the buyers use multipliers α). To complete the 
proof, it suffices to show that (α, x(α)) is a (δ,γ↗)-approximate pacing equilibrium of the SPP game G for γ↗ → 1=n7. We estab-
lish the required properties below: 

(a) As ωij ↓ [1 δ, 1], xij(α) > 0 only if αivij ↑ (1 δ)maxk↓[n]αkvkj
(b) Full allocation of each good with positive bid: This follows directly from the allocation rules of a second-price auction.
(c) Budgets are satisfied: α�being budget feasible for the perturbed SPP game G implies

Xm

j→1
p↗ij(α) ↔ B↗i → (1 δ)Bi 

for all i ↓ [n]. As p↗ij(α) ↑ (1 δ)xij(α)pj(α), we get 
Pm

j→1 xij(α)pj(α) ↔ Bi as required.
(d) Not too much unnecessary pacing: Suppose 

Pm
j→1 xij(α)pj(α) < (1 γ↗)Bi for some buyer i ↓ [n]. Then, using (D.1), we get

Xm

j→1
p↗ij(α) <

(1 γ↗)
(1 δ) · (1 δ)Bi →

(1 γ↗)
(1 δ) B↗i ↔ (1 γ)B↗i 

where we have used (1 γ)(1 δ) ↑ (1 n 7) → (1 γ↗). Now, as α�is a γ-approximate equilibrium of the perturbed SPP 
game G↗, we get αi ↑ 1 γ ↑ 1 n 7 → 1 γ↗.

Hence, we have shown that (α, x(α)) is a (δ,γ↗)-approximate pacing equilibrium for the SPP game G, where δ ↔ n 7 and 
γ↗ → n 7. As the perturbed SPP game G↗ can be constructed from the SPP game G in polynomial time, the theorem fol-
lows from Theorem 3. w

Let the expected utility of buyer i in a perturbed SPP game under multipliers α�be denoted by ui(α), i.e.,

ui(α) → E{ωij}i, j

Xm

j→1
vijωij  max

k≠i
αkvkjωkj

 !
1 αivijωij ↑max

k≠i
αkvkjωkj

 !2

4

3

5

Definition D.2. Consider a perturbed SPP game (n, m, (vij), (Bi),δ). A vector of pacing multipliers α�is called a Nash equi-
librium of this game if for each i ↓ [n] and α↗i such that 

Pm
j→1 p↗ij(α↗i ,α i) ↔ Bi, we have ui(αi,α i) ↑ ui(α↗i ,α i).

Lemma D.1. Consider a perturbed SPP game (n, m, (vij), (Bi),δ) and let α�be a Nash equilibrium of this game. If 
Pm

j→1 p↗ij(α) < Bi 
and αi < 1, then 

Pm
j→1 p↗ij(α) →

Pm
j→1 p↗ij(1,α i).

Suppose α�is a Nash equilibrium of the game but not a pacing equilibrium, and buyer i satisfies 
Pm

j→1 p↗ij(α) < Bi and 
αi < 1. For contradiction, suppose 

Pm
j→1 p↗ij(α) <

Pm
j→1 p↗ij(1,α i). Now, as the distribution of ωij is continuous, x ∞⇑ pij(x,α i)
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is a continuous non-decreasing function. By the Intermediate Value Theorem, there exists α↘i ↓ (αi, 1) such that
Xm

j→1
p↗ij(α↘i ,α i) ↔ Bi:

Now, observe that buyer i wins good j if and only if
α↘i vijωij ↑ max

k≠i
αkvkjωkj 

Therefore, vijωij ↑ p↗ij(α↘i ,α i)=α↘i . As α↘i < 1, we get that

ui(α↘i ,α i) ui(αi,α i) ↑
1
α↘i

·
Xm

j→1
p↗ij(α↘i ,α i) 

Xm

j→1
p↗ij(αi,α i)

2

4

3

5 > 0 

This contradicts the fact that α�is a Nash equilibrium. Hence, the Lemma holds. w

Corollary D.1. Consider a perturbed SPP game (n, m, (vij), (Bi),δ) and let α�be a Nash equilibrium of this game. If 
Pm

j→1 p↗ij(1, 
α i) >

Pm
j→1 p↗ij(α), then we have 

Pm
j→1 p↗ij(α) → Bi. Furthermore, as a consequence, if 

Pm
j→1 p↗ij(1,α i) > Bi, then 

Pm
j→1 p↗ij(α) → Bi.

Theorem D.2. Computing a Nash equilibrium of a perturbed SPP game (n, m, (vij), (Bi),δ) is PPAD-hard when δ → 1=n8.

Let G be the SPP game constructed in Appendix A for the proof of Theorem 3. Like the proof of Theorem D.1, define a 
perturbed SPP game G↗ → (n, m, (vij), (B↗i ),δ) such that B↗i → (1 δ)Bi. Moreover, define an auxiliary perturbed SPP game 
G↗↗ → (n + 1, m + 1, (vij), (B↗i ),δ) by adding one more buyer and one more good to G↗. We denote the new buyer by T↘ and 
the new good by S. Buyer T↘ has value 1 for good S, that is, V(T↘, S) → 1 and does not value any other good. She has a 
budget of n7 (large enough to never be binding). The only other buyer who has a nonzero value for S is the Threshold 
buyer T, who has a value of 1, that is, V(T, S) → 1.

We begin by showing that every Nash equilibrium of G↗↗ is also a pacing equilibrium. Let α�be a Nash equilibrium of 
G↗↗. As a first step, we show that α(T) → α(T↘) → 1. We do so by ruling out the other cases: 

1. If α(T) < α(T↘), then buyer T can strictly increase her utility by setting α(T) → 1 as this allows her to win a strictly larger 
fraction of good S.

2. Similarly, if α(T↘) < α(T), then buyer T↘ can strictly increase her utility by setting α(T↘) → 1 as this allows her to win a 
strictly larger fraction of good S.

3. If α(T) → α(T↘) < 1, then buyer T can strictly increase her utility by setting α(T) → 1 as this allows her to win a strictly larger 
fraction of good S.

For every other buyer in G↗↗, we use Corollary D.1 to show that they exactly spend their budget.
If α(C(p, s)) ↔ (1 δ)=2, then the buyer C(p, s) wins no part of the threshold good T(p, s) and spends strictly less than 

her budget because she has value at most 16 for all of the other goods and there are at most O(n2) such goods compared 
with her budget which is ”(n2): On the other hand, she can win all of the threshold good T(p, s) by setting α(C(p, s)) → 1 
and spend strictly more. Hence, by Corollary D.1, we get that she exactly spends her budget, which is a contradiction. 
Therefore, α(C(p, s)) ↑ (1 δ)=2.

Consider a dummy buyer D(p, s). If we set α(D(p, s)) → 1, then she wins at least half of the normalization good N(p, s)s 
at a price of at least α(C(p, s)) which violates her budget of 1=(16n). Thus, Corollary D.1 implies that she exactly spends 
her budget under the Nash equilibrium α.

Consider buyer C(p, s). If we set α(C(p, s)) → 1, she wins: 
• All of normalization good N(p, s)t, for each t ≠ s, by spending at least (1 δ)=2 on each of them because α(C(p, t)) ↑

(1 δ)=2 by the earlier part of the proof.
• Part of normalization good N(p, s)s by spending at least (1 δ) ν. This is because N(p, s)s has price at least (1 δ) and 

buyer D(p, s) only has budget ν.
• All of threshold good T(p, s) by spending at least α(T)(1 δ)n4 → (1 δ)n4.
• All of expenditure good E(p, s)t, for each t ↓ [n], by spending at least α(T)νAst=2 if p → 1 and α(T)νBts=2 if p → 2.
Hence, the total expenditure of C(p, s) when p → 1 is at least

(1 δ) · n 1
2 + (1 δ) · ν+ (1 δ)n4 +

X

t↓[n]
νAst=2 

which is strictly higher than her budget. Similar statement holds for p → 2. Therefore, Corollary D.1 implies that buyer 
C(p, s) exactly spends her budget.

Hence, we have shown that every buyer either has her multiplier equal to 1 or exactly spends her budget, which 
means that α�is a pacing equilibrium. Moreover, from our construction of G↗↗ from G↗, we get that the restriction of α�to 
the buyers other than T↘ is a pacing equilibrium for the game G↗. This is because only the Threshold buyer T is affected 
by this change and her multipliers satisfies α(T) → 1 and she spends strictly less than her budget. Finally, as we showed 
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in the proof of Theorem D.1, (α, x(α)) is a (δ,γ)-approximate pacing equilibrium of the SPP game G where δ → γ → 1=n7. 
Invoking Theorem 3 completes the proof. w

Endnotes
1 See https://www.facebook.com/business/help/1754368491258883?id=561906377587030.
2 Bidding your value is a dominant strategy in second price auctions without budgets.
3 While we cite the 2021 journal version of that paper, the conjecture was made first in the 2017 arXiv version of that paper. It was also pub-
lished in their 2018 conference version of the paper, which appeared at the Conference on Web and Internet Economics (WINE) that year.
4 One can imagine a strategy where a buyer consistently bids higher in an attempt to run other buyers out of budget early with the goal of 
winning goods for cheap later on. Although interesting, an analysis of these strategies would require studying a complicated incomplete- 
information extensive-form game, which is not the focus of this work. Moreover, in practice, these pacing algorithms are predominantly 
implemented by platforms who have no incentive to take advantage of some advertisers on behalf of other ones. Finally, while such strate-
gies may seem appealing in toy examples, in a large-scale market, where the budget of an individual advertiser is small relative to the whole 
market, such an approach is unlikely to be possible.
5 The circuit has O(nlog(1=ω)) input variables to encode a point of Sω�and has ∈log n∋ output gates to encode the output of the Sperner color-
ing T.

References
0[1] Ashlagi I, Braverman M, Hassidim A, Lavi R, Tennenholtz M (2010) Position auctions with budgets: Existence and uniqueness. The BE 

J. Theoret. Econom. 10(1):1–32.
0[2] Babaioff M, Cole R, Hartline JD, Immorlica N, Lucier B (2021) Non-quasi-linear agents in quasi-linear mechanisms (extended abstract). 

Lee JR, ed. 12th Innovations in Theoret. Comput. Sci. Conf. (ITCS 2021), Leibniz International Proceedings in Informatics (LIPIcs), vol. 185 
(Schloss Dagstuhl–Leibniz-Zentrum für Informatik, Dagstuhl, Germany), 84:1–84:1.

0[3] Balseiro S, Kim A, Mahdian M, Mirrokni V (2021) Budget-management strategies in repeated auctions. Oper. Res. 69(3):859–876.
0[4] Balseiro SR, Gur Y (2019) Learning in repeated auctions with budgets: Regret minimization and equilibrium. Management Sci. 

65(9):3952–3968.
0[5] Balseiro SR, Besbes O, Weintraub GY (2015) Repeated auctions with budgets in ad exchanges: Approximations and design. Management 

Sci. 61(4):864–884.
0[6] Balseiro SR, Kroer C, Kumar R (2022) Contextual standard auctions with budgets: Revenue equivalence and efficiency guarantees. Proc. 

23rd ACM Conf. Econom. Comput. (ACM, New York), 476–476.
0[7] Bei X, Garg J, Hoefer M, Mehlhorn K (2016) Computing equilibria in markets with budget-additive utilities. Sankowski P, Zaroliagis C, 

eds. 24th Annual Eur. Sympos. Algorithms (ESA 2016), Leibniz International Proceedings in Informatics (LIPIcs), vol. 57 (Schloss 
Dagstuhl–Leibniz-Zentrum fur Informatik, Dagstuhl, Germany), 8:1–8:14.

0[8] Bitansky N, Paneth O, Rosen A (2015) On the cryptographic hardness of finding a Nash equilibrium. Guruswami V, ed. IEEE 56th 
Annual Sympos. Foundations Comput. Sci. (FOCS) (IEEE, Piscataway, NJ), 1480–1498.

0[9] Borgs C, Chayes J, Immorlica N, Jain K, Etesami O, Mahdian M (2007) Dynamics of bid optimization in online advertisement auctions. 
Proc. 16th Internat. Conf. World Wide Web (ACM, New York), 531–540.

[10] Budish E (2011) The combinatorial assignment problem: Approximate competitive equilibrium from equal incomes. J. Political Econom. 
119(6):1061–1103.

[11] Chen X, Deng X (2006) Settling the complexity of two-player Nash equilibrium. 2006 47th Annual IEEE Sympos. Foundations Comput. Sci. 
(FOCS’06) (IEEE, Piscataway, NJ), 261–272.

[12] Chen X, Deng X (2009) On the complexity of 2d discrete fixed point problem. Theoret. Comput. Sci. 410(44):4448–4456.
[13] Chen X, Teng SH (2009) Spending is not easier than trading: On the computational equivalence of Fisher and Arrow-Debreu equilibria. 

Dong Y, Du D-Z, eds. Algorithms and Computation (Springer, Berlin, Heidelberg), 647–656.
[14] Chen X, Kroer C, Kumar R (2021) Throttling equilibria in auction markets. Feldman M, Fu H, Talgam-Cohen I, eds. Web and Internet 

Econom. – 17th Internat. Conf. (WINE), Lecture Notes in Computer Science, vol. 13112 (Springer, Cham, Switzerland), 551.
[15] Chen X, Paparas D, Yannakakis M (2017) The complexity of non-monotone markets. J. ACM. 64(3):1–56.
[16] Chen X, Teng SH, Valiant P (2007) The approximation complexity of win-lose games. Proc. 18th Annual ACM-SIAM Sympos. Discrete Algo-

rithms (SIAM, Philadelphia), 159–168.
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