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sources. In recent years, the success of serial femtosecond crystallography and the

paucity of beamtime at X-ray free-electron lasers have motivated the
development of serial microcrystallography experiments at storage-ring
synchrotron sources. However, especially at storage-ring sources, if a crystal is
too small it will have suffered significant radiation damage before diffracting a
sufficient number of X-rays into Bragg peaks for peak-indexing software to
determine the crystal orientation. As a consequence, the data frames of small
crystals often cannot be indexed and are discarded. Introduced here is a method
based on the expand-maximize—compress (EMC) algorithm to solve protein
structures, specifically from data frames for which indexing methods fail because
too few X-rays are diffracted into Bragg peaks. The method is demonstrated on
a real serial microcrystallography data set whose signals are too weak to be
indexed by conventional methods. In spite of the daunting background scatter
from the sample-delivery medium, it was still possible to solve the protein
structure at 2.1 A resolution. The ability of the EMC algorithm to analyze weak
data frames will help to reduce sample consumption. It will also allow serial
microcrystallography to be performed with crystals that are otherwise too small
to be feasibly analyzed at storage-ring sources.

1. Introduction

X-ray free-electron lasers (XFELs) have catalyzed several
novel methods in biostructural science. Serial femtosecond
crystallography (SFX), arguably the most successful of these
methods so far, allows protein structure determination from
nanocrystals by using X-ray pulses only femtoseconds long so
as to outrun the damage process (Chapman et al., 2011; Boutet
et al., 2012). Although developments in detector technology,
sample delivery and data analysis have made SFX a viable
technique, its wide use is limited by the scarcity of XFEL
beamtime.

Despite the construction of XFELs worldwide, available
beamtime in the near future will still be scarce compared with
that provided by existing storage-ring synchrotron sources.
This has inspired the development of serial micro-
crystallography experiments at current storage-ring sources
(Gati et al., 2014; Stellato et al., 2014; Heymann et al., 2014;

‘ X Pras s ~ Gruner & Lattman, 2015; Botha et al., 2015; Nogly et al.,
a 2015; Roedig et al., 2016; Martin-Garcia et al., 2017). A
OPEN ACCESS serial microcrystallography experiment involves crystals
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sequentially delivered in random orientations into the X-ray
beam. To merge the diffraction patterns, each frame must be
indexed to determine the crystal orientation, which usually
requires at least 20 to 30 resolvable Bragg peaks per frame.
Since the pulse width of storage-ring sources is of the order of
picoseconds, radiation damage cannot be outrun in the same
way as at XFELs. At storage rings the exposure time per
crystal is limited by radiation damage. If the crystal is too
small, too few X-rays to determine the crystal orientation will
be diffracted prior to irreversible radiation damage. There-
fore, serial crystallography at storage-ring sources has thus far
relied on relatively large crystals. Frames with insufficient
resolvable Bragg peaks for indexing, which we call ‘sparse
frames’, are simply discarded. Proteins not bound up in large
crystals are wasted for the purpose of structure determination.

Using the expand-maximize-compress (EMC) algorithm
(Loh & Elser, 2009), we have developed an alternative
analysis approach that makes use of the sparse frames. Unlike
indexing algorithms that determine a definite orientation on a
per frame basis, the EMC algorithm models the orientation of
each frame probabilistically and reconstructs a consistent
three-dimensional intensity model using all the data frames
simultaneously. The information from a sparse frame still
contributes to the reconstruction even though the frame alone
cannot be indexed. This approach can reduce the usable
crystal size in serial microcrystallography experiments at
storage-ring sources and extract information from the sparse
frames that would otherwise have been discarded.

This work is the latest contribution from a methodical
programme to handle sparse frames. Philipp et al. (2012) and
Ayyer et al. (2014) first showed that the probabilistic modeling
of the EMC algorithm continues to hold even with just a few
photons per frame in two- and three-dimensional shadow-
graphy. Ayyer et al. (2015) subsequently applied the EMC
algorithm to sparse frames collected from a small-molecule
crystal rotated about a single axis, and Wierman et al. (2016)
further extended the study to sparse frames taken from a large
protein crystal rotated about a single axis. In order to sample a
greater portion of the rotation space, Lan et al (2017)
analyzed sparse frames taken from a large protein crystal
rotated about two orthogonal axes and developed computing
schemes to speed up the reconstruction at high resolution.

Here, we describe a step-by-step analysis using the EMC
algorithm on a real serial microcrystallography data set.
Specifically, we threw away the strong crystal diffraction
patterns and focused our analysis on the data frames that
cannot be indexed by conventional means. In contrast with the
Monte Carlo integration approach (Kirian et al., 2010), our
method uses the reconstructed crystal volumes, for all the data
frames, when building the three-dimensional intensity model.

This paper is organized as follows: Section 2 describes the
data set, the process of data reduction, and the modified
version of the EMC algorithm used to address the individual
crystal sizes and the large diffuse background scattering
arising from the lipidic cubic phase (LCP) gel used to convey
the crystals into the X-ray beam. Section 3 presents the results
of the EMC reconstruction and the protein structure solution.

In Section 4, we compare the experimentally measured
background profile with the simulated scattering from water
and discuss possibilities for background reduction. Additional
technical details are presented in Appendices A and B.

2. Materials and methods

We tested our analysis method on a serial micro-
crystallography data set collected by Martin-Garcia et al
(2017) on the GM/CA 23-ID-D beamline at the Advanced
Photon Source (APS). The raw data consist of 304 643 frames
measured from hen egg white lysozyme microcrystals, ranging
in size from 5 to 10 pm, at room temperature. We note that this
data set is a representative subset of the data collected by
Martin-Garcia et al. (2017) (364 724 frames in total), without
any pre-selection. The crystals were sequentially delivered to
the X-ray beam in random orientations by an LCP gel injector
with a glass nozzle of 50 um inner diameter (Weierstall et al.,
2014). The data were collected by a PILATUS3 6M detector
with resolution of up to 1.75 A in the detector corners. The
detector has 2527 x 2463 square pixels, 172 x 172 um each. In
order to demonstrate the ability of our method to handle weak
crystal diffraction data, we excluded data frames with more
than 20 resolvable Bragg peaks, the empirical lower bound for
normal indexing methods to succeed. In other words, we only
considered the weak crystal diffraction patterns that were
rejected from the structure determination by Martin-Garcia et
al. (2017), which gives the 120 574 sparse frames used in our
reconstruction.

2.1. Data reduction

Our analysis started with identifying the frames containing
crystal diffraction because the crystals were randomly
distributed in the LCP gel. This process, also known as ‘hit
finding’, first locates possible Bragg peaks from the diffuse
background scatter. Our method is based on outlier detection.
In the absence of crystal diffraction, the probability that a
pixel measures a photon count, K, follows the Poisson distri-
bution, P,(K) = exp(—b)b*/K!, where b is an estimate
(described below) of the photon number at that pixel due to
the diffuse background scatter. Given b, we can identify an
outlier pixel by its photon count being too large to be
consistent with Poisson statistics. This consistency is defined
via a photon count threshold, I’Z, defined by the cumulative
probability

K
min ) " P,(K) >1—¢, (1)
K k=0

where ¢ is a small number that lets us set a false-positive rate
(see below). If the photon count measured in the pixel exceeds
the threshold K, we assume that crystal diffraction contributed
to the signal.

Since we had no prior knowledge of the background photon
numbers b, we estimated them using the following self-
consistent iterative scheme. Observing that the background
scatter is generally azimuthally symmetric about the incident
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X-ray beam, we assumed that b only depends on the frame
index k and the spatial frequency magnitude g. The initial
values of b, were obtained by averaging all photon counts in
annular regions, after the pixel-wise correction of the polar-
ization factor and solid angle. Because the number of pixels in
these annular regions ranged from 10’ to 10*, the value of ¢ in
equation (1) was set to 107> to reduce false positives arising
from statistical fluctuations. In each iteration we used the
current estimates of b, to calculate the pixel-wise background
estimates, b;;, by the relation

by = pibqk ) )

where p; is the product of the (positive) polarization factor and
the solid angle of pixel i. From the values of b, we identified
the outlier pixels and excluded them from the annular average
for b, in the next round. This procedure was repeated until
the values of b, converged, giving us a good estimate of the
background scatter and a list of outlier pixels for each data
frame.

The photon count thresholds K, defined by equation (1)
with & = 107>, are plotted in Fig. 1(a) over a range of back-
ground estimates b. Also shown is the signal-to-noise ratio
(SNR), which is defined as the ratio of K to b. We can sce that
the SNR takes on a wide range of values over b, especially
when the values of b are close to zero. Since the background
estimates in the data frames used in this study range from a
fraction to 20 photons, the threshold values defined by the
cumulative Poisson probability detects outliers in a more
consistent way than those determined by a fixed SNR. Fig. 1(b)
further illustrates this point by plotting the cumulative prob-
abilities P,(K < b x SNR) for different thresholds defined by
fixed values of the SNR. Under this definition, photon counts
greater than the threshold, b x SNR, are identified as outliers,
which may result in many false positives at small values of b. In
practice, the SNR is usually used along with other criteria that
characterize a peak in the hit-finding process.
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Figure 1

We defined a possible Bragg peak as a cluster with at least
two but no more than ten contiguous outlier pixels, because
most of the clusters have sizes smaller than five pixels. A
cluster with more than ten contiguous outlier pixels was
considered as originating from something other than a Bragg
spot and was masked out for the rest of the analysis. As
mentioned earlier, we discarded strong crystal diffraction
patterns with more than 20 possible Bragg peaks. The possible
Bragg-peak locations in the remaining data frames enabled us
to estimate the lattice parameters by constructing a one-
dimensional pseudo-powder pattern as follows: after mapping
the possible peaks to reciprocal space, we recorded the
distances between the centroids of the peaks in each data
frame. By dividing the spatial frequency magnitudes into bins
of the same size, the one-dimensional pseudo-powder pattern
was given by a histogram recording the frequencies of the
inter-peak distances in each bin. The inter-peak distances are a
more reliable source of information about the lattice geometry
than the distance from the center of the detector because of
the beamstop. By assuming a primitive tetragonal lattice to
simplify the analysis in this study, the lattice parameters were
estimated by fitting the peaks in the one-dimensional pseudo-
powder pattern.

In principle, we should be able to determine the lattice
parameters from the one-dimensional pseudo-powder pattern
even with no knowledge of the unit-cell type. This can be done
by an exhaustive search over combinations of lattice para-
meters from unit cells with high symmetry to those with low
symmetry. In challenging cases of crystals with low symmetry
and large unit-cell dimensions, it may be necessary to take a
separate diffraction measurement, that better resolves the
inter-peak distances, with the detector further from the
interaction point. The one-dimensional pseudo-powder
pattern in this case would be the sum of resolvable peak values
over spatial frequency magnitudes. Sample consumption
should not be a concern here, since the number of peaks
needed to populate the one-dimensional pseudo-powder
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(@) The photon count thresholds determined by equation (1) with € = 107>, The SNR is defined as the ratio of the thresholds to the background estimates.
(b) The cumulative probabilities P,(K < b x SNR) to measure a photon count K that is no larger than the thresholds b x SNR, defined by fixed values of

SNR over a range of background estimates b.
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pattern is of a similar order to the number of lattice para-
meters to be fitted (at most six). These low-resolution crystal
diffraction patterns can also be incorporated into the EMC
reconstruction to improve the statistics of Bragg intensities at
low resolution.

Finally, we completed the hit-finding process by an
exhaustive search in three-dimensional rotation space. The
centroids of the possible peaks within a low-resolution cutoff
in each frame were rotated over all rotation samples. We
considered a frame to be a ‘crystal hit’” when at least three
possible peaks matched the predicted Bragg positions within a
predefined radius, r,, at some orientation, and all such
orientations were recorded as the possible crystal orientations
of this frame. This criterion reduced the number of frames by
60% for the later analysis and narrowed down the number of
possible orientations for each frame. However, the possible
orientations for each frame are still far from unique to orient
the frames (see Section 3 for more details).

2.2. Model reconstruction

2.2.1. Signal model. The diffraction pattern of each crystal
hit can be modeled as the Poisson sample from the incoherent
sum of the crystal diffraction and the background estimates,
i.e. the average photon number due to the diffuse background
scatter. Consider data frame k that records the diffraction of a
crystal at orientation j. The average photon number ﬁ’i]‘k
measured by pixel i is given by

~

Wi = by + 0o Wy (3)

where ¢, is a scale factor proportional to the crystal volume,
the X-ray beam fluence and the travel time of the crystal
across the beam, and W;; denotes the value sampled by pixel i
from the three-dimensional crystal intensity model W at
crystal orientation j. In this study, all crystal volumes refer to
the portion of crystals illuminated by the X-ray beam over the
exposure time of a data frame. The Poisson sample from Wi]-k
gives the photon count K;; with the crystal orientation
unmeasured. Our main task in this study is to reconstruct W
and ¢, given the data K;;, and background estimates b;;.
2.2.2. EMC algorithm. We reconstructed the models W and
¢ using the EMC algorithm (Loh & Elser, 2009), which
iteratively updates the current models by maximizing the data
likelihood. Each iteration of the EMC algorithm consists of
three steps: expand (E), maximize (M) and compress (C). The
E step calculates the tomograms W;; from the current three-
dimensional intensity model W(p) by linear interpolation

W, =Y f(p—R;-q)W(p), 4)
P

where f(-) is the interpolation weight, p denotes the three-
dimensional grid points in reciprocal space, R; is the rotation
matrix that brings the laboratory frame to the crystal refer-
ence frame when the crystal has orientation j, and q; is the
spatial frequency of pixel i in the laboratory frame. We adopt
the convention |q| = 2sin(6/2)/A, where 0 is the scattering angle
and X represents the X-ray wavelength.

The M step updates the models by maximizing an expected
log-likelihood function

QW' ¢) = Py(W,9)
ijk
X [K,'k IOg(bik +pi¢;<Wi,j) - (bik +Pi‘p;<Wi,j)]'
(5)

Here, Py (W, ¢,) denotes the conditional probability that data
frame k records the diffraction of a crystal at orientation j
given the current models:

~ . ~
w; 1_[,' Wijkk exp(_Wijk)
-~ Ky -~ >
Zj’ Wy Hi VVij’li exp(_Wij’k)

where w; is the fraction of the continuous rotation group
assigned to rotation sample j. However, simultaneous updates
for W’ and ¢’ are nontrivial because they appear as products
in Q. As suggested by Loh et al. (2010), the models are instead
updated by maximizing Q with one or other of these para-
meters, W’ or ¢’, held fixed in each EMC iteration. This
alternating update rule converts the original problem into two
sets of minimizations

Wz/] = arg n‘}vi,n Zij(W, @)
ik

ij(W» ) = (©)

X [(bik +Pi§0kWi/j) — Ky log(bik +pi(pkWi,j)]’
(7)

¢ = argmin } Py (W. )

X [(bik +pi(p;cWij) — K log(bik +Pi¢;<Wij)]-
)

Since the functions to be minimized in equations (7) and (8)
are convex, the minima can be readily found by a line search,
i.e. a simple numerical algorithm to locate minima in one
dimension (Press et al., 2007). We imposed the non-negativity
constraint on ¢} when solving equation (8) to prohibit nega-
tive crystal volume. On the other hand, negative values of W,-’,»
are allowed when solving equation (7), as a result of noise.
The C step enforces consistency between different tomo-
grams W;; by merging them to form a new three-dimensional
intensity model, W’. If the updated model is ¢’ in an iteration,
the C step is skipped and the current model, ¢, is replaced by
@' to start the next iteration. The tomograms W}; are mapped

to the updated three-dimensional intensity model, W’'(p), by

Zijf(p - Rj : CIi) [Zk ij(Wv @k)(”k]wi/j
Zi,’f(l’ - Rj : ‘Ii) [Zk ij(W’ §0k)(ﬂk] .

The tomograms W;; are weighted by >, Py (W, ¢,)¢; to reflect
the frequency of orientation j populated by the data frames
with a weight corresponding to the signal strength of the
frame. The construction of W’ completes the C step and the
iterations continue until the models converge: W >~ W’ and

p~g.

W(p) = ©)
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Figure 2

The one-dimensional pseudo-powder pattern generated from the frequency of the inter-peak distances in reciprocal space. Red dashed lines indicate
peaks predicted by a primitive tetragonal lattice with lattice parameters a = 79.1 and ¢ = 38.4 A. The peak closest to the origin represents pairs of Bragg-

peak candidates that are very close to each other. These pairs are actually

3. Results
3.1. Background estimate and hit finding

Using the method described in Section 2.1, we estimated the
pixel-wise background estimates b, and identified the outlier
pixels. Bragg-peak candidates were identified by two to ten
contiguous outlier pixels and clusters larger than this size were
masked out. Data frames with more than 20 candidate peaks
were discarded to show that the EMC algorithm is able to
reconstruct the three-dimensional crystal intensity from the
sparse data frames, where normal indexing methods, including
the one used by Martin-Garcia et al. (2017), would fail. Using
the remaining data frames, we calculated the inter-peak
distances in reciprocal space to generate the one-dimensional
pseudo-powder pattern (Fig. 2). The lattice parameters were
estimated as a = 79.1 and ¢ = 384 A assuming a primitive
tetragonal lattice.

We later rotated the candidate peaks within 4 A resolution
in each frame over all rotation samples to find the possible
crystal orientations, where at least three peaks match the
Bragg positions predicted by the lattice parameters. Data
frames with no such orientations were discarded. Rotations
were sampled by the 600-cell subdivision method at order

fragments of Bragg spots of a larger size.

n =70 (Loh & Elser, 2009), which corresponds to an angular
resolution of 0.944/n >~ 13.5 mrad. This procedure reduced the
data to 120 574 crystal-hit frames, with the statistics shown in
Fig. 3. We note that, in general, a given crystal can be in any
orientation. Practically speaking, discretization of all possible
orientations results in hundreds to thousands of possibilities as
a consequence of two factors: (i) the large angular size of low-
resolution peaks, given that high-resolution peaks may not be
resolvable due to their weak signals, and (ii) the inclusion of
peak candidates arising from multiple crystals or any source of
scatter other than protein crystals. The EMC algorithm
addresses these two issues by making use of all the available
photon count values.

3.2. EMC reconstruction

3.2.1. Low-resolution reconstruction. We began with a low-
resolution reconstruction because the computation time of the
EMC algorithm is proportional to the number of pixels and
the number of rotation samples. Pixels with a resolution higher
than 4 A were masked out in the 120 574 selected frames, and
the rotation samples for each frame were limited to the
possible crystal orientations recorded in the hit-finding
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Figure 3

Number of orientations

(a) The number of possible peaks in each crystal-hit frame. Data frames with more than 20 peaks were excluded from this study. () The number of
possible orientations for each crystal-hit frame, determined by an exhaustive search of rotation space using the identified peaks within 4 A.
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process. All photon counts within the resolution cutoff were
input to the EMC algorithm to reconstruct both the strong and
weak intensities. We seeded the three-dimensional intensity
model W with three-dimensional Gaussians of random height
at each Bragg position, and only allowed the voxels within the
predefined radius r, about the Bragg positions to be non-zero
throughout the reconstruction. The scale factors ¢, were
initialized by the average value of the identified peaks in each
frame. To achieve the highest resolution, we imposed tetra-
gonal and Friedel symmetries on the values of W after each
update to increase the SNR of the Bragg peaks. We note that
EMC reconstructions normally succeed even without
imposing symmetry (Wierman et al., 2016; Lan et al., 2017).

To rapidly obtain a rough estimate of W, we fixed the values
of ¢, and only updated W in the first few iterations. Subse-
quently, we alternated the updates between W and ¢ until the
models converged. Depending on the crystal concentration in
the sample-delivery medium, a data frame may record
diffraction signals from multiple crystals. Since our algorithm
assumes that each crystal-hit frame only contains a single
crystal, we had to reject multi-crystal frames to avoid
compromising the reconstruction. This task was completed
using the converged probability distribution Pj,. When a data
frame has non-negligible probabilities at two independent
orientations j; and j,, which cannot be related by the crystal
point-group symmetry, it is likely that the diffraction signals
were scattered from two different crystals. With probabilities
greater than 0.05 considered non-negligible, a data frame has
1.02 independent orientations on average. We identified 528
multi-crystal frames and excluded them, together with the
2142 frames with ¢, = 0, from the later analysis. Using the
remaining 117 904 single-crystal frames, we updated W for a
few more iterations by fixing the values of ¢, until the new
convergence was reached.

Fig. 4(a) shows the central slice of the reconstructed three-
dimensional intensity model, W, perpendicular to the / axis of

(a)
10°
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10?

10!

10°

Figure 4

- N
o o

Percentage (%)
S

the crystal. Each spot represents the integrated value of a
Bragg peak in arbitrary units. After dividing the reconstructed
values of ¢, by the beam fluence and the crystal exposure time,
we obtained crystal-volume estimates for the single-crystal
frames. In order to put these on an absolute scale, we further
rescaled their values so that the largest crystal has a size of
10 pm, the value reported by Martin-Garcia et al. (2017). The
resulting crystal-volume distribution has 73% of the frames
with a crystal volume below 100 um’ (Fig. 4b). Since our
analysis excluded frames with more than 20 peaks, which
generally have larger crystal sizes, this distribution represents
the upper limit of the crystal volume illuminated by the X-ray
beam.

3.2.2. High-resolution reconstruction. Based on the low-
resolution models, we extended our reconstruction to high
resolution using data up to 2 A. We initialized the three-
dimensional intensity model W by three-dimensional Gaus-
sians of random height at each Bragg position, and replaced
the voxel values within 4 A resolution with the low-resolution
three-dimensional intensity model. To reduce the computation
time for the high-resolution reconstruction, we implemented
the local update scheme of the EMC algorithm. This scheme
limits the rotation samples searched for each data frame to
those neighboring the orientations that were given a non-
negligible probability in the low-resolution reconstruction
(Lan et al., 2017). Here the orientation sampling was set at
order n = 140, which corresponds to an angular resolution of
6.7 mrad. The update was limited to the three-dimensional
intensity model W, because we believe the values of ¢, are
reliably determined by the low-resolution peaks. Tetragonal
and Friedel symmetries were imposed after each update of W
to increase the SNR of the Bragg peaks. Fig. 5 shows the
central slice of W perpendicular to the / axis of the crystal, on
the same scale as Fig. 4(a). The uncertainties of the integrated
intensities were estimated following the procedure described
in Appendix A.

(b)

(&)

0 10 102 10
crystal volume (umd)

(a) The central slice of the low-resolution three-dimensional intensity model, W, perpendicular to the / axis of the crystal. Each spot represents an
integrated Bragg peak in arbitrary units, with the negative reflections thresholded to zero for rendering. (b) The reconstructed crystal-volume
distribution for the single-crystal frames. The values of the crystal volume were rescaled so that the largest crystal size is 10 pm.
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Figure 5
The central slice of the high-resolution three-dimensional intensity
model, W, perpendicular to the / axis of the crystal, on the same scale as
Fig. 4(a). Negative reflections were thresholded to zero for rendering.

We evaluated the reproducibility of the reconstruction
using CC,;,, the correlation coefficient between two sets of
Bragg intensities reconstructed independently from two
halves of the data frames. The values of CC,/,, were calculated
as follows. The 117 904 single-crystal frames were separated
into two halves, from which we carried out two independent
reconstructions. The reciprocal space was then divided into
shells with equal spacing, and the correlation coefficients CCy,
were computed between the unique reflections from the two
reconstructions in each shell. As shown in Fig. 6, the positive
values of CC,,, throughout the spatial frequency magnitudes
validate the reproducibility of our approach. The values of
CCy), can be further used to estimate another correlation
coefficient, CC*, through the relation

. [ 2CC, \'"?
ccr = (—2) (10)
1+ CCy),

where CC* measures the correlation between the recon-
structed intensities and the underlying true signals (Karplus &
Diederichs, 2012). The resolution of the reconstruction is
conventionally determined at the value where CC* drops to
0.5, which corresponds to 2.1 A in our case.

A more direct validation of our reconstruction comes from
the comparison of our reconstructed intensities with those
calculated from the indexed peaks using the Monte Carlo
integration approach by Martin-Garcia et al. (2017). Dividing
the reciprocal space into shells of equal spacing, we calculated
the correlation coefficient between the unique peaks from the
two sets of Bragg intensities in each shell. Also shown in Fig. 6,
the correlation coefficient stays well above zero until the
resolution cutoff of 2.1 A, which demonstrates the consistency
between the Bragg intensities solved from the two different
approaches. When the indexed peaks sufficiently sample

1.0
08
o
S 0.6
(&)
c
S
= 041
© — CGyp
g 02 — cc*
O CCemc vs. indexed 2.1 A 1
0.0— : ' ' |
0.1 0.2 0.3 0.4 0.5
q=2sin(6/2)/x (A7)
Figure 6

The correlation coefficients that validate the quality of our reconstruc-
tion. The values of CC,,, show the correlation between Bragg intensities
reconstructed independently from two halves of the data frames. Using
equation (10), the values of CC*, the correlation coefficient between
reconstructed intensities and the underlying true signals, are estimated
from the values of CC,,. The other -correlation coefficient,
CCeme vs. indexed» Measures the consistency between our reconstructed
intensities and those obtained by Martin-Garcia et al. (2017) from the
indexed frames.

crystals of various shapes, sizes and orientations, the Bragg
intensities computed by the Monte Carlo method would in
principle correspond to the true signals. In that case, the curve
of the correlation coefficient calculated here should move
towards the curve of CC* in Fig. 6.

3.3. Model building, refinement and structure solution

Model-building and refinement steps were carried out in a
manner similar to those performed by Martin-Garcia et al.
(2017), with the intent of validating the EMC approach by a
direct comparison with the structure solved from the
indexed frames, PDB entry Suvj. The French—Wilson correc-
tion (French & Wilson, 1978) was executed to estimate the
structure-factor magnitudes from the reconstructed weak or
negative Bragg intensities. The phases of the structure factors
were built from the same template as used by Martin-Garcia et
al. (2017), PDB entry 4zix (Fromme et al, 2015), using
molecular replacement with MOLREP (Vagin & Teplyakov,
2010).

The structure solution was then iteratively refined and
inspected using REFMACS (Kovalevskiy et al., 2018) in the
CCP4 suite (Potterton et al, 2018) and Coot (Emsley &
Cowtan, 2004), respectively. The structure was refined to 2.1 A
resolution, with Ryon/Riee Of 22.2%/28.2%, an average B
value of 39.8 A2, and root-mean-square deviations (r.m.s.d.s)
for bonds and angles of 0.013 A and 1.21°, respectively. Most
of the side-chain conformations were determined exactly,
though some solvent-exposed side chains show multiple
conformations. A sodium atom was added, as judged by the
electron density within the known octahedral coordination of
the four residues of the sodium ion (see also Fig. 9). The
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Table 1
The refinement statistics of our structure solution and the structure
solved by Martin-Garcia et al. (2017) (PDB entry 5uvj).

EMC Suvj
Resolution (A) 22.52-2.10 35.00-2.05
Reflections 7417 7164
Atoms 1019 1023
Protein atoms 1002 1002
Water, ligands and ions 17 21
Ryor/ Reree (%) 22.2/28.2 22.8/26.8
R.m.s.d.s for bonds (A) 0.013 0.013
R.m.s.ds for angles (%) 1.211 1.306
Average B value (A?) 39.8 34.9
Ramachandran plot statistics (%)
Favored 96.3 97.6
Allowed 13 2.4
Disallowed 0 0
Rotamer outliers 0.93 1

refinement statistics for the EMC-reconstructed structure
solution and the structure solved by Martin-Garcia et al
(2017) are summarized in Table 1 for comparison.

3.4. Structural comparison with PDB entry 5uvj

In this section, we compare our structure solution with the
structure solved from the indexed frames by Martin-Garcia et
al. (2017; PDB entry Suvj). The electron-density maps of the
structures were analyzed and rendered using PyMOL
(Schrodinger LLC, 2015). Fig. 7 shows ribbon representations
of the backbone chains of our molecular model (blue) and the
structure of Suvj (red). The C, atoms between the two struc-
tures have an r.m.s.d. of 0.131 A, which is visible as an occa-
sional change between the red and blue colors along the
backbone chain. Deviations greater than this value occur
mostly in the solvent-exposed regions, with a maximum
deviation of 0.337 A. The r.m.s.d. value for the entire protein

Figure 7

Superposition of the ribbon representations of the backbone chains of
our structure solution (blue) and the structure of 5uvj (red) solved by
Martin-Garcia et al. (2017), showing insignificant differences in structure.
The C, atoms between the two structures have an r.m.s.d. of 0.131 A.
Deviations greater than this occur mostly in the solvent-exposed regions,
with a maximum deviation of 0.337 A, though the deviations are only
apparent by occasional changes in color from red to blue along the
backbone.

C »H d

Figure 8

Superpositions of the four disulfide bonds (yellow) between our structure
solution (light red) and the structure of Suvj (light blue) solved by Martin-
Garcia et al. (2017). (a) Cys6-Cys127, (b) Cys30-Cys115, (¢) Cys64-Cys80
and (d) Cys76-Cys94. The average deviation for the atoms of the thiol
groups is 0.12 A. Changes are mostly insignificant, and only apparent in
splits from light red to light blue.

molecule between the two structures is 0.138 A, with a
maximum deviation of 0.338 A. More specifically, Fig. 8
displays the disulfide bonds (yellow) within two superimposed
structures, the EMC-reconstructed one (light red) and that of
PDB entry Suvj (light blue), showing insignificant deviations
between the structures within the more radiation-damage-
prone bonds. The average deviation for the atoms of the thiol
groups is 0.12 A. Fig. 9 shows the 2F, — F, electron-density

£ ¥
Figure 9
The 2F, — F_ electron-density map (blue) contoured around the sodium-
ion binding pocket, where F, represents the observed structure-factor
magnitudes, and both F. and the phases were calculated from the initial
model for phasing (PDB entry 4zix). Also shown is the alignment of our
structure solution (yellow) and the structure of Suvj (red) solved by
Martin-Garcia et al. (2017). Small deviations are seen more clearly
between the structures near the solvent-exposed regions in the yellow and
red representations. Waters are seen as red crosses, the sodium ion as a
gray cross, and the residues coordinating the sodium atom (Ser60, Cys64,
Arg71 and Ser72) as red dashes. The oxygen atoms (in red) seen near the
top of the figure have the largest displacement of 0.13 A among all the
atoms shown.
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map in blue mesh, where F, represents the observed structure-
factor magnitudes, and both F, and the phases were calculated
from the initial model for phasing, PDB entry 4zix. Also
shown is the superposition of our structure solution (yellow)
and that of PDB entry 5uvj (red) around the sodium-ion
binding pocket. The largest discrepancy in atomic displace-
ments (with a deviation up to 0.33 A) comes from the solvent-
exposed side chains.

4. Discussion

The major source of error that limits the quality of our
reconstruction is the high background scatter from the LCP
gel. Here the error refers to the statistical error arising from
background intensity fluctuations, which becomes substantial
and severe for weak reflections. From the estimated X-ray
beam size (different beam sizes of 5, 10 or 20 um were used at
different times during the data collection), the diameter of the
LCP gel column (50 pm) and the reconstructed crystal
volumes (Fig. 4b), we can estimate the total number of
photons scattered by LCP to be tens to thousands of times
more than that scattered by the crystal in each data frame. In
Fig. 10, we compare the scattering profiles of LCP and water.
The scattering profile of LCP was estimated by the average of
the azimuthally symmetric background obtained in Section
2.1. Since the X-ray beam size and detector exposure time
were varied in different periods of beamtime, the background
signals in each frame were rescaled before the average to have
a nominal beam size of 10 um and a detector exposure time of
0.1 s. Under the same experimental conditions, we simulated
the scattering profile from a water column of 50 pm diameter
using the experimentally measured pair-distribution function
(Narten & Levy, 1971; Skinner et al., 2013). In contrast with
water, LCP scatters a large number of photons within 3 A
resolution.

The high background scattering from LCP has motivated
a search for sample-delivery media that scatter fewer

10 — LCP
—— water

photon
= )

01 0.2 03 1 0.4 05
q=2sin(d/2)/X (A7)

Figure 10

The scattering profiles of LCP and water, which were generated by the
weighted average of the background estimates obtained in Section 2.1
and simulation, respectively. The shaded region is within one standard
deviation of the average scattering profile of LCP. The large standard
deviation is mainly caused by jittering of the LCP stream.

background photons. For example, Conrad et al. (2015) used
agarose to reduce background scattering, although the
agarose stream tends to be unstable under ambient pressure.
On the other hand, the sodium carboxymethyl cellulose
(NaCMC) and poly(ethylene oxide) (PEO) reported by
Kovacsova et al. (2017) and Martin-Garcia et al. (2017),
respectively, produce stable streams and lower background
scattering than LCP, and therefore may be good substitutes for
LCP. Another option for background reduction is to use the
fixed-target approach. As demonstrated recently by Roedig et
al. (2016) and Owen et al. (2017), rapid data collection can be
achieved by fast scanning through micro-patterned silicon
chips mounted with protein microcrystals. Nevertheless, the
challenge of the chip methods is to avoid preferential crystal
orientations. Other possible methods include microcrystal
droplets deposited on low-background tape carriers (Fuller et
al., 2017).

The structure solved by the EMC approach using sparse
frames compares very well with the structure solved by
Martin-Garcia et al. (2017) using indexed frames. Small
discrepancies in atomic positions between the two structures
reside mainly on the solvent-exposed side chains, and can be
attributed to multiple conformers. The higher average B value
of our structure suggests that the data frames we used may
have come from less ordered and possibly more weakly
diffracting crystals, which are exactly the features we expect
from sparse frames.

The ability to analyze sparse crystal diffraction data allows
the use of very small or weakly diffracting protein crystals at
storage-ring synchrotron sources. In order to keep these
crystals within the safe radiation dose, the resulting diffraction
patterns usually contain insufficient photons for the normal
indexing methods to succeed. From our previous proof-of-
concept studies, reconstruction is feasible for crystal sizes as
small as 1-2 ym within a tolerable radiation dose, given
sufficient reduction of background scattering (Wierman et al.,
2016; Lan et al., 2017). The successful application of the EMC
algorithm to data collected from such small crystals will be a
great advance in protein structure determination at storage-
ring sources, and at the same time will ease the high demands
for XFEL beamtime. An extension to include polychromatic
data, where only 1% of the frames are needed due to the 100-
fold increase in X-ray energy bandwidth, could dramatically
reduce the amount of sample needed as well as the compu-
tation time. Continued development of lower-background
microcrystal carrier methods would facilitate the application
of our method.

Extracting weak signals from diffuse background scattering
is not a task just limited to serial microcrystallography. When
crystals are disordered, continuous diffraction of the protein
molecules arises between the Bragg peaks (Ayyer et al., 2016;
Meisburger et al., 2017). Separating this continuous diffraction
from background scattering becomes nontrivial when the
signals are Poisson-limited. The analysis scheme recently
developed by Chapman et al. (2017) subtracts the azimuthally
symmetric background from the diffraction signal using the
‘noisy Wilson distribution’. It would be interesting to adapt the
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EMC algorithm to this noisy Wilson distribution to analyze
unindexable diffraction patterns collected from disordered
crystals. Another application lies in single-particle imaging
(SPI), where each measurement is composed of the contin-
uous diffraction of a randomly oriented bioparticle super-
imposed on background noise. If the statistical model for the
intensity distribution in SPI is known, this information can be
incorporated into the EMC algorithm to reconstruct simulta-
neously the three-dimensional intensity of the bioparticle and
the initially unknown background.

5. Conclusion

In this study, we have developed an approach to analyze a
serial microcrystallography data set whose signals are too
noisy to be considered by the prior state of the art. In parti-
cular, weak crystal diffraction signals can be extracted from
diffuse background scattering to form a three-dimensional
intensity volume. This approach reduces sample consumption
by making use of all the available data frames. We have
demonstrated that a protein structure can be solved from the
data frames that are discarded by the current analysis work-
flow. The partial reflections are assembled by rescaling the
crystal diffraction signals in each data frame with the recon-
structed crystal volumes. The reconstruction of the crystal-
volume distribution may also be useful for the development of
sample-injection technology.

The source code for the EMC analysis approach is available
at https://github.com/tI578/EMC-for-SMX under the terms of
version 3 of the GNU General Public License (GPLv3). A
tutorial on the implementation details of the code can be
found at https:/github.com/tl578/EMC-for-SMX/wiki.

APPENDIX A
Uncertainty estimation

We estimate the uncertainties of the integrated intensities
from the measurement K;; by error propagation. Let vector y
be a set of functions of vector x. Their covariance matrices, A,
and A, can be related by the formula of error propagation,

Ay =TAJT", 1n

where J denotes the Jacobian matrix of y. When x and y are
related by an implicit function, f(x, y) = 0, the Jacobian matrix

is given by
(T (o
—‘<ay> (ax)' (12

From equation (7), the implicit function that relates W;; and
Kik is

P e bik/(Pi‘Pk)"‘Wi/j ’

the derivative of the function to be minimized with respect to
W, Since W}, is a scalar in equation (13), the Jacobian matrix

of W{j becomes a row vector with length Ng,,, the number of
data frames, and its kth element is given by

T = P , / > Py K —. (19
bu/(Pips) + Wi = [bi /(i) + W,'/]

The covariance matrix of the measurement, A[K[k}, is a diag-
onal matrix of size Ngaa X Naara, With the diagonal terms being
the photon counts Kj; as a result of Poisson statistics. Substi-
tuting these matrices into equation (11), we obtain
the variance of W;j, denoted U%V,.

The values of interest are the uncertainties of the integrated
intensities, I, = Zpe{pw} W' (p), where {p,.;} represents the
three-dimensional grid points within the predefined radius 7,
for the Bragg peak labeled by indices skl From equation (9),

the variance of W'(p) is given by
Z,j,-[f(l’ —-R;- (li) (Zk P/‘k(pk)]ZU%Vl’j
[Zijf(p - Rj : qi) (Zk ij(/’k)]z

Here, we assume that the tomogram values Wj; contributing to
the same Bragg peak are independent variables. This
assumption is based on the observation that each data frame
only has non-negligible probabilities at a few orientations on
convergence, so the values of Wj; with different indices are
mostly sampled by different data frames. For the same reason,
we also assume that the values W(p) for p, even sampling the
same Bragg peak, are independent variables. The variance of

I, 1s hence given by

Tt = Z G%V’(p)' (16)

PP}

2 _
Owp) =

(15)

APPENDIX B
Computational details

The reconstruction was performed on an Amazon Elastic
Compute Cloud (EC2) instance r4.16xlarge, which has 64
virtual CPUs and 488 GB memory. The low-resolution
reconstruction used 120 574 data frames with a resolution
cutoff of 4 A, which give a data size of 570 GB. The high-
resolution reconstruction used 117 904 selected single-crystal
frames with a resolution of up to 2 A, which give a data size of
2.3 TB. The low-resolution reconstruction, high-resolution
reconstruction and calculation of CC* took 41, 25 and 68 h,
respectively.
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