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ABSTRACT
Debugging in production cloud systems (or live debugging) 
is a critical yet challenging task for on-call developers due 
to the !nancial impact of cloud service downtime and the 
inherent complexity of cloud systems. Unfortunately, how de-
bugging is performed, and the unique challenges faced in the 
production cloud environment have not been investigated 
in detail.
In this paper, we perform the !rst !ne-grained, obser-

vational study of 93 real-world debugging experiences of 
production cloud failures in 15 widely adopted open-source 
distributed systems including distributed storage systems, 
databases, computing frameworks, message passing systems, 
and container orchestration systems. We examine each de-
bugging experience with a !ne-grained lens and categorize 
over 1700 debugging steps across all incidents. Our study pro-
vides a detailed picture of how developers perform various 
diagnosis activities including failure reproduction, anomaly 
analysis, program analysis, hypothesis formulation, informa-
tion collection and online experiments.
Highlights of our study include: (1) Analyses of the tax-

onomies and distributions of both live debugging activities
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and the underlying reasons for hypothesis forking, which
con!rm the presence of expert debugging strategies in pro-
duction cloud systems, and o"er insights to guide the training
of novice developers and the development of tools that em-
ulate expert behavior. (2) The identi!cation of the primary
challenge in anomaly detection (or, observability) for end-to-
end debugging: the collection of system-speci!c data (17.1%
of data collected). In comparison, nearly all (96%) invariants
utilized to detect anomalies are already present in existing
monitoring tools. (3) The identi!cation of the importance
of online interventions (i.e., in-production experiments that
alter system execution) for live debugging – they are per-
formed as frequently as information collection – with an
investigation of di"erent types of interventions and chal-
lenges. (4) An examination of novel debugging techniques
developers utilized to overcome debugging challenges inher-
ent to or ampli!ed in cloud systems, which o"er insights for
the development of enhanced debugging tools.
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1 INTRODUCTION
Failure diagnosis and resolution in production cloud sys-
tems (or live debugging) is notoriously di#cult and time-
consuming due to their inherent complexity: developers typ-
ically need to reason about tens of thousands of concurrent
processes executed on heterogeneous hardware devices [12].
This time-consuming procedure could delay failure resolu-
tion, extend service disruption, and result in customer frus-
tration; we collected a random sample of public incidents
from top cloud vendors and found that 62.5% of the duration
of service disruption was spent on debugging (§ 2).
Many researchers [43, 49, 57, 72, 73, 90, 99] have inves-

tigated di"erent aspects of debugging in single-node ap-
plications. Yet, live debugging in production cloud systems
remains under-examined. To the best of our knowledge, only
three recent works [48, 55, 114] have studied a few aspects
of debugging in cloud systems, but they did not study how
live debugging is performed: researchers from Microsoft
studied common root causes of production incidents and
corresponding detection and mitigation strategies [55] in
Microsoft Azure, as well as the root cause labeling given a
postmortem report [48], but they did not analyze how the
root causes are diagnosed. Zhou et al. [114] focuses on eval-
uating the e"ectiveness of information (i.e., logs and traces)
utilized in diagnosing microservice failures. None of them
provide a detailed understanding of how developers perform
various debugging activities, such as failure reproduction,
anomaly detection, program analysis, hypothesis formula-
tion, information collection and online experiments.
In this work, we perform the !rst study of !ne-grained

debugging activities in end-to-end, real-world debugging ex-
periences in production cloud systems. In particular, we collect
and analyze 93 detailed documents (e.g., blog posts) of devel-
opers’ failure diagnosis experiences in production environ-
ments of 15 widely deployed open-source distributed systems
(e.g., Cassandra [16], Spark [106], and Kubernetes [23]). In
contrast to bug reports and postmortem reports which usu-
ally document the root cause and !x of a failure, we study the
documents that rewind every diagnosis activity performed
by the developer for a production cloud incident and how
each activity changes their hypotheses. We divide each docu-
ment into !ne-grained steps according to di"erent activities
performed by the developer. This results in 1740 steps across
all cases, with an average of approximately 19 steps per case.
To ensure the quality of our analysis, we conservatively ex-
clude documents lacking detailed debugging steps and clear
descriptions of hypotheses.
Our goal is to provide a comprehensive, !ne-grained un-

derstanding of various debugging activities and respective
challenges in production cloud environments, providing

guidance for potential solutions. We focus on the follow-
ing research questions:

RQ 1. Debugging Activities. What debugging activities
do developers perform in production cloud systems? How
are they performed – what strategies and heuristics do de-
velopers adopt in each activity?

RQ 2. Challenges. What are the challenges faced in each
diagnosis activity? What are the challenges introduced by
or magni!ed in production cloud systems? What debugging
strategies do developers adopt to overcome these challenges?

RQ 3. Reasons for Forking Hypotheses. Given that the
core of debugging is to formulate and validate hypotheses,
what causes developers to formulate multiple hypotheses?

This paper makes the following contributions:
• We present the !rst study of !ne-grained debugging ac-
tivities in end-to-end, real-world debugging experiences
in production cloud systems from open-source distributed
systems. Our analysis results in a set of structured docu-
mentations and causal graphs (§ 2) of debugging experi-
ences. Our study reveals over a dozen informative !ndings
with concrete implications for new research directions to
assist debugging production cloud failures. All of our data
is available online1.

• Our study reveals taxonomies of both live debugging ac-
tivities and strategies (Table 4), as well as underlying rea-
sons for hypothesis forking (Table 7) in the production
cloud environment. Our analysis explains expert debug-
ging strategies and o"ers insights on how novice develop-
ers and debugging tools may emulate such strategies. For
instance, we !nd that expert developers tend to (in 80.4%
of cases) formulate multiple hypotheses by enumerating
immediate causes in a chosen model or considering the
correctness of the model itself. Our analysis shows how
hypothesis forking is performed (§ 4.2), as well as how
developers limit the scope of their reasoning (§ 4.3) so
that the number of immediate causes is tractable using a
variety of strategies (§ 4.4, § 6).

• To the best of our knowledge, our study is the !rst to quan-
tify the requirements of e"ective anomaly detection for
end-to-end debugging within production cloud environ-
ments. Despite existing monitoring tools incorporating
most (96%) necessary invariants, the collection of system-
speci!c information (17.1%) remains a primary obstacle.
In addition, we investigate potential strategies to automat-
ically collect system-speci!c information and provide a
taxonomy of unconventional invariants.

• Our study reveals that online interventions – in-production
experiments that alter system execution – are critical for

1https://github.com/zlab-purdue/socc-24-debugging-study
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debugging purposes, demonstrating their prevalence (11.3%)
to be on par with information collection (12%). We fur-
ther discuss the potential to inject knobs for intervention
automatically, as well as functionality- and performance-
preserving guarantees to mitigate risks associated with
such interventions.

• Our study reveals novel debugging techniques developers
utilized to overcome debugging challenges inherent to
or ampli!ed in cloud systems. These techniques include
leveraging concurrency indicators (unique anomalies that
indicate concurrency bugs), educated guesses of execution
frequency, and exploiting symmetry in node roles. These
!ndings o"er valuable insights for the development of
enhanced debugging tools tailored to the speci!c demands
of cloud systems.
We describe our study methodology in § 2, before present-

ing an overview of studied debugging activities and strategies
in § 3. We investigate how developers formulate hypotheses
by explanation and exploration and corresponding challenges
in § 4. § 5 details our !ndings about how developers perform
experiments. We discuss challenges inherent to or ampli!ed
by cloud systems, as well as novel debugging strategies to
overcome them in § 6. We explain related work in § 7 and
conclude in § 8.

2 METHODOLOGY
To understand the cost of debugging in production, we

!rst performed a pilot study by randomly sampling 20 public
postmortem reports from Google Cloud Platform (GCP) [21],

avg. min avg. %

Detection 29.8 10.8%
Debugging 169 62.5%
Recovery 37.2 29.2%

Total 232.8
Table 1: Incident timeline

as they typically record
timestamps indicating
when the failure is de-
tected, debugged, and
recovered from. Our
study shows that on
average, 10.8% of in-
cidents’ duration was
spent on detection, 62.5%
on debugging, and 29.2% on deployment and recovery, which
highlights the need to reduce debugging time for produc-
tion failures. Although these reports o"er valuable insights
into the high-level pattern of failure resolution processes in
production cloud environments, they lack detailed descrip-
tions of debugging steps that are essential for our study,
such as how developers formulate hypotheses and conduct
experiments.

2.1 Case Collection
To ensure that we collected representative and high-quality
debugging experiences, we adopted the following case col-
lection methodology.

System # % System # %

Cassandra 2 2.1 Kubernetes 9 9.7
FastDFS 1 1.1 MongoDB 6 6.5
Flink 2 2.1 Redis 4 4.3
HBase 6 6.5 Spark 12 12.9
HDFS 14 15.1 TiDB 2 2.1
Hive 6 6.5 Yarn 3 3.2
Kafka 15 16.1 ZooKeeper 10 10.8
etcd 1 1.1

Total 93 100.0
Table 2: Distribution of cases analyzed

As shown in Table 2, we chose a large variety of widely-
deployed, open-source distributed systems, including dis-
tributed storage systems (HDFS [22], FastDFS [105]), dis-
tributed databases and key-value stores (Cassandra [16],
HBase [18], Hive [19], ZooKeeper [64], etcd [28], Redis [35],
MongoDB [32], TiDB [36]), distributed computing frame-
works (Spark [27]), a distributed resourcemanager (YARN [98]),
distributed message passing services (Flink [17], Kafka [20]),
and a container orchestration framework (Kubernetes [23]).
For each of the above systems, we scraped the Internet

with keywords such as “debugging”, “diagnosis”, “troubleshoot-
ing”, and “postmortem”, combined with (1) the system’s
name, or (2) bug ticket identi!ers on their issue trackers.
Our scraping resulted in over 63,000 webpages. To ensure
the quality of the studied documents, we then !ltered out
webpages without detailed steps for diagnosing a failure (e.g.,
posts that only describe a failure’s root cause and !x). To en-
sure these debugging experiences happened in production,
we further !ltered out the documents which had no key-
words indicating the failure was encountered in production
(e.g., “production”, “customer”). Finally, for each blog post
in the remaining set, we found additional high-quality posts
by navigating through technical blog posts from the same
author (85% of our documents have a distinct author), as
well as recommendations on the sites where the posts were
hosted. This resulted in a total of 93 posts, that we analyzed
in detail.

Case Quality: The conservative nature of our case selec-
tion process resulted in a limited proportion (7.8%) of debug-
ging steps where the rationale for hypothesis development
was not explicitly documented.

2.2 Case Characteristics
Root Cause: As shown in Table 3, our collected cases have
diverse root causes. Temporal Distribution: 81% of these
cases happened within the past !ve years.
Though not every document mentions the scale of their

cloud and the developer’s pro!le, many mentioned that the
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Activity Mechanism

Explanation
(640)

Model Analysis
(640)

State Transition

Quantity Contribution

Exploration
(452)

Correlation
(303)

Locality

Execution Comparison
Anomaly
Detection
(149)

Event Anomaly

State Anomaly

Source Code Anomaly

Experimentation
(438)

Information
Collection (209)

Instrumentation

Probing

Online Intervention (196)

O$ine Reproduction (33)

Miscellaneous
(459)

Consultation
(103)

Internet Search

Consulting Experts

Past Experience (9) / Unspeci!ed (136)

Validation (132) / Invalidation (159)

Table 4: Overview of diagnosis activities (with # of steps)2

are more likely to document and publish challenging debug-
ging experiences and ignore trivial ones. Fortunately, this
aligns with the goal of our study – to observe and analyze
challenges in debugging. Our collected debugging experi-
ences are public posts of diagnosing failures in open-source
distributed systems. Internal documentation of debugging
experiences about proprietary systems could reveal di"er-
ent characteristics. Unfortunately, publicly available post-
mortems from companies do not usually contain enough
detail for analysis. In addition, our sampling and !ltering
are limited by our heuristics. We account for observer error
during analysis by having multiple inspectors investigate
each case, and any disagreement is discussed to reach a con-
sensus.

3 DEBUGGING ACTIVITY OVERVIEW
Our analysis reveals a large variety of debugging activities
and strategies performed in production clouds. In this section,
we give an overview of the categorization (Table 4).

The core task of debugging is to !nd the hypothesis that
adequately illustrates the sequence of events that leads to
the failure symptom. This allows the developer to modify
the system execution in such a way that the e"ects of the
2Developers occasionally mention multiple activities in the same sentence.
In these cases, we did not separate the sentence into distinct steps for each
activity, but labeled the step with multiple activities. This leads to steps
belonging to multiple categories.

failure can be mitigated, and completely prevented in future
executions. As shown in Table 4, developers develop their
hypotheses mainly through explanation and exploration, and
verify them through experimentation.

Explanation: Explanation (or model analysis) refers to
when the developer analyzes source code or state machine
style mental models to identify causes of events and states
or causal links between them. Causal relationships adopted
by developers include state transition causality [79], and
quantity contribution.
Exploration: Developers often search relevant sources

of information for clues that could indicate possible causes
for the failure, without having a concrete causal relationship
in mind (the possible causes are often examined later with
explanation). Such exploration is typically performed with a
combination of correlation to identify potential causes follow-
ing locality or comparing multiple executions, and anomaly
detection over events, program states, and source code.
Experimentation: To facilitate both exploration and

explanation, developers perform a variety of experiments,
which fall under three categories: information collection, whereby
the developer probes system state and functionality or traces
execution by instrumenting the system; online interventions
thatmodify system execution in the production environment;
and o"ine reproduction of failures.
Miscellaneous: Developers also perform consultation –

online search through search engines or on issue trackers,
and consulting experts. If the developer comes up with a
hypothesis without explaining how or states that they had
observed a similar symptom previously, we label the step
with unspeci!ed and past experience respectively. We have
omitted a consultation section in this paper, as our analysis
did not yield signi!cantly new !ndings compared to exist-
ing research. Lastly, developers validate and invalidate their
hypotheses through repeatedly performing all the aforemen-
tioned activities. These steps allow us to perform the analysis
on reasons for hypothesis forking (§ 4.2).

4 HYPOTHESIS FORMULATION
“When you have eliminated all which is impossi-
ble, whatever remains, however improbable, must
be the truth.”

— Arthur Conan Doyle, The Adventure of the
Blanched Soldier

This Sherlock Holmes quote captures the essence of hy-
pothesis development strategies observed in this study –
expert developers consider possible causes exhaustively, and
validate them rigorously.

In this section, we !rst investigate the mechanisms devel-
opers employ for explanation and exploration. We then ana-
lyze their reasoning strategies which determine the breadth
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and depth of explanations and explorations, revealing two
key strategies: (1) a broad consideration of potential causes,
and (2) a tendency to focus explanation on a limited scope
informed by experimental evidence.We identify general chal-
lenges in explanation and exploration, including the broad
range of possible causes, as well as unique invariants and
system-speci!c data required for e"ective anomaly detection.
Our data also reveals challenges speci!c to cloud systems,
which we discuss in detail in subsequent sections.

4.1 Mechanisms of Hypothesis Formulation
In this section, we present the mechanisms of hypothesis
formulation and their distribution. While largely intuitive,
these mechanisms are essential for obtaining a holistic view
of the entire debugging process.

Causal Relationship (%)
State Transition 70.8
Quantity Contribution 29.2
Table 5: Explanation Steps

4.1.1 Explanation. A ma-
jor portion (36.8%) of a de-
veloper’s debugging pro-
cess is in the explana-
tion of events and states.
The mechanism of expla-
nation is characterized by the type of causal relationship uti-
lized in the explanation. In particular, we observe two types
of causal relationships, namely state transitions and quantity
contributions, in the proportions shown in Table 5. State tran-
sitions (or events) denote transitions between states in a state
machine model of the system. They include both source code
level transitions such as control %ow and data %ow, as well
as state transitions at a higher level of abstraction. Quantity
contribution steps involve enumerating what contributes to
a quantity metric such as memory size, execution time, or
other program quantities.

Correlation Mechanism (%)

Locality Spatial Locality 60.7
Temporal Locality 27.1

Execution Comparison Common Denominator 9.2
Delta Identi!cation 9.6

Table 6: Exploration step distribution. Some steps may fall
under multiple categories.

4.1.2 Exploration. Anothermajor (26% of all steps) approach
to identify potential causes for events and states is explo-
ration: exploring relevant sources of information (oftenwithin
logs and metrics of dependent components) for anomalies
that could be correlated with and possibly causing the failure.
We examine the mechanism of correlation here, and defer
a detailed discussion of anomaly detection to § 4.4 as the

primary challenge of anomaly detection lies in the policy of
selecting relevant invariants and data.

As shown in Table 6, to correlate anomalies with the fail-
ure, developers often search for anomalies in the systemwith
the intuitive assumption that anomalous behavior located
nearby (following Locality) may be the cause. Spatial local-
ity refers to when developers examine events with a small
spatial distance measured by the number of intermediate
dependent components (e.g., nodes, systems), to the e"ect.
We distinguish this from pure explanation, since develop-
ers do not reason about a speci!c state transition between
the components but rather leverage their dependencies for
correlation. Temporal locality refers to searching for abnor-
malities in recent logs or metrics close to when the failure
happened (i.e., within a small temporal distance). Developers
also compare failing and successful executions to !nd anom-
alies relevant to a failure (Execution Comparison). We
label a step with common denominator if it focuses on iden-
tifying a shared characteristic of multiple execution paths,
pieces of data, or nodes, and we label a step with delta iden-
ti!cation if it focuses on comparing successful and failing
executions to identify any di"erences between them.

4.2 Hypothesis Forking
In this section, we analyze one aspect of developers’ debug-
ging strategy – how broadly they reason in explanation and
exploration, by answering the question: what factors con-
tribute to the number of hypotheses that developers form? In
particular, we examine the steps where developers form mul-
tiple hypotheses – a process we refer to as hypothesis forking
because it forks multiple branches in our causal graphs (§ 2)
– and analyze the underlying reasons.

Table 7 shows all the reasons we observed for hypothe-
sis forking with their de!nitions. These reasons re%ect the
classes of hypotheses that developers consider to explain a
target when debugging – the developers then exhaustively
enumerate possible causes in the class until the correct one
is identi!ed.

F!"#!"$ 1. In 80.4% of cases, developers formulated
multiple hypotheses by enumerating the immediate
causes of a target in a model or suspecting the correct-
ness of the model itself.

For a given target state or event to be explained, developers
choose a model (an abstract state machine model or source
code model), and enumerate all possible immediate causes
with respect to that model. For example, the Data Flow cate-
gory refers to immediate assignment statements to a state in
the source code, Partial Failure Modes refer to the di"erent
failure condition checks (e.g., connectivity check, disk size
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Hypothesis Forking Reasons (%)

Blackbox Reasoning Enumerating faults in (1) dependent components, (2) environment, (3) input/load, (4) con!g, or (5) code. 44.6

Multiple

Execution Paths

Data Flow Enumerating possible data%ows. 3.6
Partial Failure Modes Enumerating partial failure conditions (e.g., partitioned, disk full) for one or multiple nodes. 4.5
Failure Recovery Enumerating (1) recovery executed but failed or (2) recovery did not happen. 5.4
Missing Event Enumerating occurrence locations of a missing event and conditions leading to its omission. 7.1
Opaque Error Enumerating intractable immediate causes for an error (e.g., who sent a SIGKILL). 1.8
Network Messages Enumerating faults in (1) sending, (2) receipt, or (3) delivery of messages. 2.7
Concurrency Enumerating process/thread interleavings. 0.9
Other Enumerating multiple relatively long execution paths leading to a state/event. 17.0

Slow
Performance

Channel Delay Enumerating (1) saturated bandwidth, (2) broken channel, or (3) delay in endpoint. 2.7
Operation Delay Enumerating delay due to (1) slow single operation or (2) too many operations. 0.9
Contributors Enumerating which subset in a sequence of operations contributes most to the delay. 7.1
Timeout Limit Enumerating (1) performance should be optimized or (2) timeout limit should be increased. 1.8

Large

Quantity

Addition/Removal Enumerating (1) frequent addition or (2) infrequent removal causing the large quantity. 5.4
Quantity Limit Enumerating (1) some quantity should be reduced or (2) the quantity limit should be increased. 5.4
Contributors Enumerating which subset of quantity is abnormally large. 3.6

Dynamism Reasoning about dynamic network/cluster con!guration and component dependency in microservices. 1.8

Irrelevant Anomaly Correlating an irrelevant anomaly (i.e., noise) with the failure. 6.2

Incorrect Model Reasoning with incorrect speci!cation of underlying components. 1.8

(In)Validation Mistake Invalidated a hypothesis incorrectly that was later proven correct (or vice versa). 0.9

Table 7: Reasons for the formation of multiple hypotheses. A single target may have multiple reasons for branching (e.g., if
they considered di"erent models). Reasons inherent to or ampli!ed by cloud systems are bolded.

check) returning the same error (e.g., bad node) in source
code, Concurrency refers to the distinct possible interleav-
ings around the critical section. These immediate causes can
be obtained mechanically (and can be systematically taught
to a novice developer) by choosing the appropriate model
and tracking the state transitions. Though these immediate
causes could in theory be di#cult to analyze due to the large
and sometimes unbounded number of enumerations, we !nd
that developers generally limit the scope of their reasoning
until the number of immediate causes is tractable, at which
point they explore them exhaustively. Strategies developers
use to limit the scope and scale are discussed in § 4.3 and
§ 6. We illustrate a subset of the reasons for forking with
examples here.
hdfs-6 [1] is an example in which the developer enumer-

ates Partial Failure Modes of nodes in a cluster. As shown
in Figure 2, developers are diagnosing why an HDFS NameN-
ode could not !nd a suitable DataNode to replicate its data
(i.e., chooseTargets() returns an empty list). At lines 7-9,
various failure conditions are checked for each DataNode,
such as unavailability, limited node capacity, and overload.
The developer formulates hypotheses for all of these possible
failure conditions, and validates them by manually checking
these failure conditions in situ.
An extreme example is an Opaque Error, in which an

error appears to be “opaque” to a developer due to an in-
tractable number of immediate static or dynamic causes. In

1 Node[] chooseTargets(int nReplicas) {

2 Node[] targets;

3 while (nReplicas > 0) { // replicas needed

4 Node node = chooseNextRandom ();

5 if (node == NULL) // checked all nodes

6 break;
7 if (node.space < limit

8 || !node.isAvailable ()

9 || node.load > threshold)

10 continue; // exclude a ``bad '' node

11 targets.add(node);

12 nReplicas --;

13 }

14 return targets;

15 }

Figure 2: Simpli!ed code snippet for hdfs-6 [1]

spark-1 [81], the developer was explaining an InterruptedEx-
ception, which is an exception thrown by threads when they
are interrupted by other threads in Java. In this case, the
number of possibilities appeared intractable to the developer
due to the large number of Java threads (jobs) from di"erent
services on the servers running Spark. It took more than a
week for the developer to exhaustively analyze anomalies
and identify the error-inducing thread in YARN.
Developers also reason exhaustively about possible mis-

takes in their reasoning, such as using an Incorrect Model
and (In)Validation Mistakes. For example, in hdfs-4 [14],
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the developer was debugging a NullPointerException of an
object retrieved from a list. They !rst assumed the list data
structure was thread-safe, but later refuted this model after
exhaustively con!rming that all insertions into the list are
non-null.

L%&&’" 1. The key to successful debugging is the ex-
haustive enumeration of all mutually exclusive imme-
diate causes in a carefully chosen model.

As the developer in kube-6 [82] says, “While debugging
any issue, all components across the stack should be suspects.
Ruling out EKS as a possible culprit led to us wasting a lot of
valuable time.” Any ignorance of a possible cause could lead
to a signi!cant cost of time. Though such a breadth-!rst-
search style of debugging has been discussed before [99]
in the context of test failure debugging, we show that it is
critical in debugging production cloud failures and provide
a taxonomy in Table 7 as to how Lesson 1 may be realized at
the scale of cloud failures and used to guide the training of
novice developers, as well as the development of debugging
tools.

In addition, the reasons for hypothesis forking re%ect the
challenges for debugging. Though many of the listed reasons
have been investigated (e.g., missing events [107, 108]), many
challenges unique to or ampli!ed by cloud environments
(in bold in Table 7) persist. We discuss developers’ novel
debugging strategies to address them in § 6.

4.3 Scale of Explanation
Exhaustively enumerating all possible causes, especially in
explanation using model analysis, is di#cult, as evidenced
by extreme examples such as opaque errors. In this section,
we analyze another aspect of developers’ debugging strategy
– what is the scale of explanation performed by developers?
This encompasses the scope of source code examined and
the depth of causal relationships investigated.

We performed two analyses: (1) in code-level explanation
steps, we analyzed how much source code was used for
reasoning in each case; (2) in explanation steps at a higher
level of abstraction, we counted the number of causal links
in each explanation step (e.g., causal links formed by RPCs,
cross-component data %ow) by querying our data using an
LLM tool [29], which we then cross-veri!ed manually.
In the !rst analysis, we found that developers reasoned

about, on average 95 lines of code per case (that they men-
tioned in their experiences). In the second analysis, we found
that developers reasoned about a few transitions (avg. 3.5
per step) in every explanation step, before switching to other
debugging activities (developers often resort to anomaly de-
tection for hints, or perform experiments to validate their
hypotheses).

L%&&’" 2. Frequent veri!cation of hypotheses is the
key to scalable yet systematic debugging.

The results of our analyses are indicative of the phenom-
enon that developers perform veri!cation of hypotheses
frequently to keep their reasoning within a tractable scope,
though we acknowledge that our analysis methods are bi-
ased by the developers’ reporting. Frequent veri!cation [58]
has been discussed as an expert debugging strategy in the
test debugging context, however, our analysis is the !rst to
con!rm its existence in live debugging of production cloud
failures.

4.4 Anomaly Detection
“The little things are in!nitely the most impor-
tant.”

— Arthur Conan Doyle, A Case of Identity
Existing research on anomaly detection in cloud systems

has predominantly focused on failure detection [92]. To the
best of our knowledge, our study provides the !rst analysis of
anomaly detection for the purpose of end-to-end debugging,
which includes both anomalies utilized for failure detection
and anomalies developers collected adaptively for root cause
localization and repair.
Developers detect anomalies by checking collected data

against mental models of the correct behavior of the system,
according to invariants. In this section, we examine the data
and invariants used in anomaly detection. To understand
the challenges in anomaly detection, we categorize data into
system-agnostic (e.g., metrics such as load, CPU utilization,
or the presence of error logs) and system-speci!c (e.g., val-
ues concerning system-speci!c data structures in memory)
data and invariants as conventional and unconventional in-
variants depending on whether popular monitoring systems
such as Prometheus [85] and DataDog [46] implement them
by default (e.g., threshold-based anomaly detection, simple
time series analyses). For example, zoo-12 [37] involved the
occurrence of a high number of Zookeeper znodes [38] –
a traditional invariant (threshold based anomaly detection)
broken on system-speci!c data. In hive-4 [5], the developer
noticed the anomaly of one process being alive, and another
process being dead (where it would not have been anoma-
lous for either of these to have been true independently)
– an example of an unconventional invariant observed on
system-agnostic data (process liveness).
As shown in Table 8, developers look for anomalies in

a variety of sources of information. While anomalies are
mostly (82.9%) observed in system-agnostic data such as
logs (34.7%) and monitoring metrics (29.7%), about one-sixth
(17.1%) are system-speci!c internal state and events, which
are harder to collect.
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Category Data Compared (%)

Events Errors 13.2
Exceptions 10.1
Warnings 3.7
Crashes 0.9
Log Frequency 3.1
Other Logs 4.6
Locking Behavior 0.9
Other System Speci!c Events 7.6

State Con!g 2.4
Input/Input-metadata 1.5
Process/Thread State 8.9
System Speci!c State 9.5
Metrics 29.7
Output/Output-metadata 4.0

Table 8: Categories of data compared for exploration

Invariant Type Data Invariant Rule (%)

Runtime Invariant
State

Existence 2.5
Relation 6.3
Expected Value 36.3

Events Unexpected Events 34.8
Missing Events 1.8

Static Invariant (in source code) 3.5

Table 9: Invariants distribution (over all exploration steps)

Unconventional Inv. Examples
Static Invariant Missing statement, unintended APIs.
Process State Relation Two processes need to be alive

simultaneously.
Data Consistency Data/metadata consistency.
Numerical Delta Abnormal delta of two variables.
Temporal Distance Abnormally distant/close in time.
Equality Two variables are equal/unequal.

Table 10: Unconventional Invariants

Invariant Data

System-Agnostic System-Speci!c

Conventional 79.5% 16.5%
Unconventional 3.4% 0.6%

Table 11: Cross section of anomaly data and invariants

Table 9 shows our categorization of invariants: (1) runtime
invariants including existence and expected values of states,
the occurrence of events (a missing event is an anomaly, as is
an unexpected event such as an exception), as well as more

complex relationships between states and events; (2) static
invariants refer to abnormal patterns in the source code (i.e.,
the source code showed incorrect behavior according to the
developer’s own system model). We consider the existence
and expected values of states, the occurrence of speci!c
events, and time series patterns as conventional invariants,
since they are default metrics and detection strategies in
popular monitoring frameworks. On the other hand, static
invariants, and a subset of runtime invariants, are considered
unconventional (Table 10).
We performed a cross-analysis of anomaly data and the

runtime invariants (without static invariants) as shown in
Table 11.

F!"#!"$ 2. The majority (79.5%) of anomalies can
be detected with conventional invariants and system-
agnostic data. The remainder (20.5%) require system-
speci!c data or unconventional invariants.

Implications: Existing anomaly detection techniques should
be able to automate the majority (79.5%) of anomaly detec-
tion performed by the developers. On the other hand, the
remainder (20.5%) requires system-speci!c data or unconven-
tional invariants, rendering widely adopted anomaly detec-
tion techniques insu#cient. Among the unconventional in-
variants, Process State Relation and Data Consistency present
a lower barrier to adoption due to the well-de!ned scope
of the required data. Conversely, Numerical Delta, Equality,
and Temporal Distance pose a greater challenge due to the
pervasive nature of the data involved. Static Invariants are
also challenging due to the many varied suspicious code pat-
terns. Since the system-speci!c data utilized in exploration
are collected through Information Collection in experimenta-
tion, we discuss the potential to adaptively collect this data
with low overhead, in § 5.

5 EXPERIMENTATION
Developers perform experiments, namely, information col-
lection, online interventions in the production environment,
and o$ine reproductions, to verify and develop their hy-
potheses.

5.1 Information Collection
Developers collect additional information when existing run-
time information (e.g., logs, metrics) are insu#cient to di-
agnose the failure. An Information Collection (IC) step is
one that involves instrumentation to trace execution of the
program as it re-executes failure paths, or interactive prob-
ing of the system to collect information while the system
is in a buggy state. We present the collection methods and
information collected in Table 12a and Table 12b.
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%uentd subsystem of a Kubernetes deployment to run out
of memory, the developer mentions, “Unfortunately, I do
not have access to the log !les from right before the issue
occurred anymore, and do not have a way to dig deeper at
this time”.

F!"#!"$ 3. In 8% of all information collection steps,
the additional collected information existed in the orig-
inal failure execution but was wiped out, often due to
automated recovery.

The other challenge is the sheer variety in the number
of tools of which knowledge is required to obtain all the
information needed to debug or diagnose a failure. Across
all cases studied, we identi!ed 72 unique tools used, with
an average of 1 tool per case, going as high as 8 for a case
such as kube-3 [4], for a failure that spanned Kubernetes, a
Docker daemon, and systemd.

5.2 Online Interventions
“Observation is a passive science, experimentation
an active science.”

— Claude Bernard

When the developer has constructed a hypothesis for the
root cause, they often come up with interventions – actions
that actively change the execution of the system, includ-
ing restarting nodes or processes, updating software, code
changes, and con!guration changes – to !x the root cause or
mitigate its consequences, in addition to con!rming or ruling
out their hypothetical causal chains that lead to the symptom.

F!"#!"$ 4. The prevalence of online interventions
(11.3%) is on par with information collection (12%),
highlighting its signi!cant role in live debugging.

A simple step in hdfs-11 [9] demonstrates the e"ective-
ness of interventions in debugging. When the developer is
debugging a performance issue in JournalNode writes, they
say, “In order to further determine whether it is a problem
with the JN service itself, we decided to restart the JN service
to see if the JN lag phenomenon can disappear.” When they
restarted it, they found the problem still existed and ruled
out a JournalNode fault as the cause.
Many interventions are performed after a developer is

fairly con!dent of the hypothesis, where the intervention
serves merely as a con!rmation (e.g., deploying a !x or
workaround with high con!dence) instead of a debugging
aid. We investigate how many interventions served a signi!-
cant diagnostic purpose as in hdfs-11 [9] above. In particular,

Category Example E"ects Total (%)

Con!guration
U: 53%, C: 47%

Disable logging
Swap/Disable modules
Change timeout/retry con!g
Horizontal scaling
Resource changes
Swap out storage
Reduce load
Other system-speci!c

45.4

Admin/User
Command
U: 54%, C: 46%

Kill process
Skip/Delete data
Perform failover
Reduce load
Others system-speci!c

13.3

Upgrade
U: 62%, C: 38%

Upgrade modules 8.2

Restart
U: 82%, C: 18%

Restart component
Perform failover
Reclaim memory/resources

22.4

Source Code
U: 19%, C: 81%

Skip corrupt data
Swap algorithms
Disable/deprecate functionality
Enforce timeout for function
Others system-speci!c

18.4

Hardware
U: 0%, C: 100%

Replace network switch 1.0

Table 13: Category of interventions. U and C denote whether
an intervention was performed with a hypothesis that was
“Uncon!rmed” and “Con!rmed” respectively.

we labeled intervention steps as using “Uncon!rmed” hy-
potheses of the root cause if the developer did not have
a plan using the intervention to eliminate the failure, and
“Con!rmed” if they were deploying a !x or workaround to
eliminate the failure with high con!dence.

F!"#!"$ 5. Over half (51.5%) of interventions were per-
formed when developers were clearly unsure of their
hypothesis, indicating that they actively use interven-
tions as a debugging aid.

The result shows most interventions are performed for
diagnosis purposes instead of con!rmation purposes. The ex-
act behaviors tested by interventions are shown in Table 13.

5.2.1 Automated Interventions for Debugging. Our analysis
(Table 13) reveals opportunities to perform automated online
interventions for debugging purposes.
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1 Node[] chooseTargets(int nReplicas , Type t) {

2 Node[] targets;

3 while (nReplicas > 0) { // replicas needed

4 Node node = chooseNextRandom(t);

5 if (node == NULL) // checked all nodes

6 break;
7 targets.add(node);

8 nReplicas --;

9 }

10 return targets;

11 }

12 Node chooseNextRandom(Type t) {

13 Node[] candidates;

14 for (Node n : allNodes ()) {

15 if (n.hasStorageType(t)) // grabs a lock

16 candidates.add(n);

17 }

18 return random(candidates);

19 }

Figure 6: Simpli!ed code snippet for hdfs-15 [13]

the cache read. Option (g) is more aggressive, dropping any
reads that are not in the cache entirely. Between all of the
options, the developers can narrow down the cause to any
of the single code paths.
Implication: Our analysis reveals the need for, and feasibil-
ity of knob injection to increase the diagnosability of cloud
systems in production. Frameworks that can safely inject
more !ne-grained knobs make it much easier to evaluate
hypotheses in production. Existing work and tools make use
of interventions, mainly fault injection [33, 41, 84] among
others [51]. However, these works either serve the purpose
of testing, or are not suited for production use.

5.2.3 Safety Concerns in Interventions. Performing inter-
ventions in production environments inherently comes with
certain risks, evidenced by 2.6% of documented interventions
having negative consequences.

F!"#!"$ 9. Interventions may have negative conse-
quences (2.6% of interventions); these consequences are
crucial to avoid for production systems.

We demonstrate how this happened in hdfs-15 [13] (Fig-
ure 6). The developer is diagnosing a performance delay in
the chooseTargets() function, which iterates through all
nodes in the cluster and randomly picks nReplicas nodes
with speci!ed node type t. It invokes the hasStorageType()
function at line 15, which grabs a lock and releases it. The
developer formulated one hypothesis – the frequent lock
acquisition was causing the delay – and removed the lock
operation. However, it made things worse and completely

overloaded their NameNode. It was because the actual cause
– too many loop iterations at line 3 due to not enough good
nodes of type t – con%icted with their hypothesis in such
a way that the intervention based on their hypothesis – re-
moving the lock – saturated the NameNode CPU by iterating
through all nodes in the cluster repeatedly.
Implication: Before performing an intervention in produc-
tion (or injecting a knob), it is crucial to assess the risk of
potential negative consequences if, instead, an alternative
hypothesis is true. Risk assessment should be performed for
any online intervention. This is a unique requirement com-
pared to intervention-based o$ine test failure debugging
tools [51], which are free to perform arbitrary executionmod-
i!cations. hdfs-15 [13] hints the feasibility of an automated
risk assessment tool: Figure 6 is simpli!ed from 150 lines
of code, which is potentially feasible for program analysis
techniques, such as symbolic execution, to analyze execution
paths, formulate hypotheses, and predict consequences.

5.3 O"line Reproduction
O$ine failure reproduction is one of the most important [42]
prerequisites for successful debugging, yet a well-known
challenging task for production failures.

F!"#!"$ 10. Most (78.5%) failures were completely
diagnosed online. Among all cases reproduced o"ine
(21.5%), half (10.8%) were reproduced after the root
cause was diagnosed.

Bettenburg et al. [42] shows that most (80%) single-node
application failures are diagnosed given reported reproduc-
tion steps. In comparison, reproduction is mostly (89.2%)
unavailable before the root cause is diagnosed for produc-
tion cloud system failures. This calls for better support for
live debugging techniques, such as adaptive information col-
lection and automated knob injection for interventions as
discussed previously. It alsomotivates research on record and
replay [54, 77], automated o$ine reproduction [110] tech-
niques to overcome bottlenecks such as recording overhead
and path explosion when analyzing long execution traces.

F!"#!"$ 11. About a !fth (17.9%) of the successful re-
productions requires ad-hoc modi!cations to the source
code in order to enforce timing constraints.

As shown in Table 14, in the successful reproductions, we
study what special conditions developers enforce or simu-
late, including faults, timing constraints, and software or
hardware heterogeneity.
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Condition Cases (%)

Fault 17.9
Timing 28.6
Heterogeneity 3.6
Table 14: Special cond.

We !nd that special tim-
ing constraints are enforced
either through ad-hoc mod-
i!cations to the source code
(17.9%) or stress testing
(10.7%). For example, kafka-
6 [15] required a speci!c
condition to be held: a partition should not have a leader
for a speci!c period of time. To enforce this in o$ine repro-
duction, they modi!ed a heartbeat timer to not check for a
leader.
Implication: Enforcing timing constraints through a gen-
eral interface is needed for easy reproduction of cloud fail-
ures. Tools like IMUnit [67] and CONCURRIT [50] provide
domain-speci!c languages to specify and enforce thread
scheduling constraints for multi-threaded applications. Simi-
lar techniques are necessary to specify and enforce network
message scheduling constraints for distributed systems.

6 CLOUD-RELATED CHALLENGES AND
NOVEL DEBUGGING STRATEGIES

In this section, we discuss challenges inherent to or ampli-
!ed by production cloud environments, as evidenced by our
analysis of hypothesis forking reasons (§ 4.2), and present
developers’ novel debugging strategies to address such chal-
lenges.

F!"#!"$ 12. Challenges ampli!ed in the production
cloud environment account for a major portion (black-
box reasoning (44.6%) and concurrency (0.9%)) of the
hypothesis forking reasons. Meanwhile, unique fea-
tures of distributed systems such as distributed partial
failure modes, automated failure recovery, network
message across nodes, as well as dynamic network and
component dependency in microservices, constitute a
non-trivial portion (14.4%).

6.1 Partial Failures
In our dataset, most failures are partial or gray failures [63,
78]: they did not involve the complete stop or crash of a
process, hardware failure, or failure of a network link. This is
re%ected in the hypothesis forking reasons namely blackbox
reasoning at component boundaries, reasoning about partial
failure modes, failure recovery, and network messages.
Developers address these challenges by collecting infor-

mation on component boundaries and failure recovery logic
to perform anomaly detection. Such information is often
not available, as evidenced by a developer’s quote – “Find-
ing when the NameNode failed over was surprisingly hard.
Tools like Grafana and SmartSense don’t seem to track this

out of the box” (kube-4 [8]). In fact, we !nd that 9.6% of
information collection steps collect inter-component data.
Though existing works [63, 78] have improved observability
at component boundaries to detect partial failures, collect-
ing information about failure recovery and partial failure
conditions have yet to be investigated.

In some cases, partial failures manifest as components of
a certain type failing, while others of that type do not. An
interesting strategy developers adopted in this scenario is
utilizing the symmetry of nodes, and patterns derived from
them. In 14.3% of execution comparison steps in exploration,
developers utilized symmetry among replicated data and
nodes to !nd common or di"ering properties as potential
causes. In hdfs-11 [9], the developer observes di"erences in
latency between multiple JournalNodes to a NameNode, to
determine whether the NameNode is faulty or not.

6.2 Concurrency
The most ingenious strategies we observed were adopted
by developers when debugging concurrency issues, allow-
ing them to short-circuit their reasoning. When searching
backwards from a failure, developers rarely consider con-
currency issues initially. Instead, they utilize unique indica-
tors for concurrency issues – speci!c patterns in runtime
data that are suspected to be a result of concurrency issues
such as data races and message reordering. These include
shared variables with unusual values (hive-6 [24], hbase-
1 [94]), observations of simultaneous exceptions from
di"erent threads (hdfs-4 [14], fastdfs-1 [3]), observing un-
expected timing relationships between logs from dif-
ferent threads (in the case of hdfs-6 [1], the developers
observed seemingly unrelated logs between threads perform-
ing copy and delete happening simultaneously, repeatedly),
or using a “magic number” as a concurrency indicator
(as mentioned in hbase-1 [94]). In the last case, the devel-
oper observed a consistent delta of 33 in the o"sets, which
are expected to be random. They perceptively identi!ed this
number as the size of an HBase block header – and suspected
a concurrency bug resetting the read o"set as the potential
root cause. These indicators allow developers to consider
causal explanations involving interactions between multi-
ple threads on an as-needed basis, rather than considering
all possible thread interleavings right from the beginning.
Figure 7 shows an example of how developers tracked from
multiple errors in di"erent threads to the problematic shared
variable in fastdfs-1 [3].

F!"#!"$ 13. Developers use concurrency indicators as
clues that they should search for interleaved execution
paths in a small scope.
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6.5 Dynamism
Microservice systems exhibit the phenomenon of dynamism;
complex and continuously changing environments due to the
ability to quickly scale, swap out independent components
or services, and develop user-de!ned architectures and appli-
cations. This leads to several unique challenges in debugging,
as the dependencies in the system are ever-changing. One
such challenge was faced in kube-1 [61], wherein an IP as-
signed to the Load Balancer was changed dynamically, and
the change did not propagate to other nodes and pods, which
caused the developer to need to look for anomalies in net-
work data, and infer why connectivity that should have been
present was not. In kube-6 [82], developers encountered a
situation where di"erent containers were placed in di"erent
Virtual Private Clouds, due to con!guration changes, which
led to a loss of connectivity between di"erent services. While
dynamism has been considered and used to develop tools
for debugging [115], more complex dynamism patterns such
as the relationship between the network con!gurations of
di"erent instances as in the case of kube-6 [82] above are yet
to be examined deeply.

7 RELATEDWORK
We present related work in studies on debugging, studies on
cloud failures, and debugging tools for cloud failures.

7.1 Studies on debugging
The debugging procedure has been studied extensively, in
many di"erent contexts [43, 49, 57, 72, 73, 90, 99, 114]. Most
studies rely on gathering anecdotes [49], conducting inter-
views with, or passing out questionnaires to developers
[73, 114] or students [72, 99]. More closely, the work by Zhou
et al. [114] studies debugging procedures in microservice sys-
tems – however, it focuses on a coarser characterization of
the steps involved, and the e"ectiveness of log based strate-
gies on debugging. The work by Böhme et al. [43] studies
debugging by professional developers in more detail, and
derives its results from a user study of developers debugging
local, single machine failures. Studying cloud production
incidents leads to a di"erent set of !ndings, especially those
on experimentation, that are not observed when debugging
local programs. Recently, researchers from Microsoft studied
common root causes of production incidents and root cause
labeling given a postmortem report [48] in Microsoft Azure,
but they did not analyze how the root causes are diagnosed.

7.2 Studies on cloud failures
Failures in production cloud systems have been explored
widely [59, 68, 71, 75, 78, 87, 103, 112], studying the charac-
teristics of bugs, their manifestations, !xes, and so on, with
some works focusing on speci!c categories of bugs such as

performance [68], concurrency [71], partial failure [78] and
upgrade [112] bugs. However, they do not study the actual
debugging steps taken to diagnose or debug the failures.

7.3 Debugging tools for cloud failures
There is extensive research [40, 44, 83, 104] on debugging
tools for single-node applications. Debugging techniques for
cloud failures are mostly based on log analysis [39, 110, 113],
distributed tracing [52, 53, 80, 91], anomaly analysis [47, 93,
96, 102, 109], and statistical debugging (along with collect-
ing targeted information) [56, 70, 76, 95]. Others focus on
utilizing special hardware support [69, 70], and checkpoint-
ing strategies [97]. Our study complements these tools by
showing what information is required to make their analyses
more accurate.
Recently, there is work on failure reproduction [45, 110],

failure minimization [89], root cause localization [70, 104,
111], as well as interactive debugging [54, 77] for distributed
systems. Our study complements them by discovering chal-
lenges not addressed and strategies not utilized in these tools.

8 CONCLUSION
This paper presents the !rst in-depth, observational study
of live debugging in production cloud systems. We provide
taxonomies of a variety of activities and strategies performed
when debugging. We identify unique challenges faced in di-
agnosing production cloud failures and developers’ novel
debugging techniques to !ght against them. In addition, we
quantify the requirement of e"ective anomaly detection for
end-to-end debugging, and analyze the usage of interven-
tions for live debugging.
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