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Abstract

Influenza A viruses (IAV) have caused more documented global pandemics in human history
than any other pathogen'2. High pathogenicity avian influenza (HPAI) viruses belonging to the
H5N1 subtype are a leading pandemic risk. Two decades after H5N1 “bird flu” became
established in poultry in Southeast Asia, its descendants have resurged?, setting off an H5N1
panzootic in wild birds that is fueled by (a) rapid intercontinental spread, reaching South
America and Antarctica for the first time*5; (b) fast evolution via genomic reassortment8; and (c)
frequent spillover into terrestrial”-®2 and marine mammals®. The virus has sustained mammal-to-
mammal transmission in multiple settings, including European fur farms'%'", South American
marine mammals'?-'5, and US dairy cattle'®-9, raising questions about whether humans are
next. Historically, swine are considered optimal intermediary hosts that help avian influenza
viruses (AlV) adapt to mammals before jumping to humans?°. However, the altered ecology of
H5N1 has opened the door to new evolutionary pathways. Could dairy cattle, farmed mink, or
South American sea lions serve as new mammalian gateways to humans? Here we explore the
molecular and ecological factors driving HS5N1’s sudden expansion in host range and assess the

likelihood of different zoonotic pathways leading to an H5N1 pandemic.
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Main

In recent years, an H5N1 problem that was once mainly confined to Asia and poultry has now
spread globally (Figure 1), and into new species of mammals (Figure 2), endangering wildlife,
agricultural production, and human health. The problem began in 2020, when a new genotype
of H5N1 viruses belonging to clade 2.3.4.4b emerged that spread rapidly in wild birds® from
Europe to Africa?'-23, North America?*2%, South America®'?, and the Antarctic*. At first, HSN1’s
arrival in North America seemed manageable. Back in 2014, when an earlier H5 virus was
introduced to North America from Asia?62”, US poultry farmers successfully eliminated the virus
through intensive monitoring and culling of 50 million chickens and turkeys, ending the largest
foreign animal disease outbreak in US history?8.2°, This time, despite culling ~90 million US
domestic birds since 2022, poultry outbreaks continue to be reseeded from wild birds3°. Wild
birds also introduced H5N1 to dairy cattle and marine mammals. Images of seal carcasses
decaying on Argentine beaches and yellow, curdled milk on H5N1-affected dairy farms show
how the 2.3.4.4b H5N1 panzootic is different and previous control strategies are not working.
The question is why.

The panzootic 2.3.4.4b H5N1 viruses circulating in wild birds are genetically different
from prior strains due to “genomic reassortment,” an evolutionary process that occurs in viruses
with segmented genomes. When two or more viruses co-infect a single host, they can swap
entire segments during genome replication to create novel hybrids®'. The reassortment event
between 2.3.4.4b H5N8 and low pathogenicity avian influenza (LPAI) viruses that generated the
panzootic 2.3.4.4b H5N1 virus is believed to have occurred in Europe or central Asia around
2020%2'. The H5N8/LPAI reassortment event combined polymerase and surface proteins
derived from different lineages (Figure 3). Subsequent H5N1/LPAI reassortment events in
Europe generated the AB and BB genotypes?'3? (Figure 3). Why Europe recently became a

major source of new H5 reassortants, shifting the center of H5 evolution west from Asia, is not
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clear. The westward shift continued when H5N1 arrived in the Americas and reassorted with
LPAIs that circulate in the Western hemisphere,®?* creating new reassortant genotypes such as
“B3.2” and “B3.13” that infected South American marine mammals and US dairy cattle,
respectively (Figure 3). Understanding how this burst of new genotypes changes H5N1’s
capacity to host-switch to mammals, including humans, remains an active area of research (see
section below, How could H5N1 become a pandemic?).

In this Perspective, we review what has been learned about IAV spillover and H5N1
pandemic potential from three H5N1 case studies where evidence supports mammal-to-
mammal transmission, including in (a) fur farms in Europe, (b) marine mammals in South
America, and (c) dairy cattle in the United States. We examine how recent changes in the
ecology and molecular evolution of H5N1 in wild and domestic birds increases opportunities for
spillover to mammals. We evaluate the likelihood of various evolutionary pathways that could
turn H5N1 into a pandemic virus. Finally, we identify research gaps that need to be addressed
to design evidence-based control strategies for HPAI in domestic poultry, livestock, and

humans.

The current H5N1 panzootic in mammals

H5N1 often arrives silently in a new country or continent, brought by migrating aquatic wild birds
that are the primary reservoir host for AV and often do not display symptoms3? (Figure 2). An
early sign of H5N1’s arrival is dead poultry?®. Mass die-offs can occur in social sea birds that
congregate in large dense colonies, for example gannets in Europe®* or penguins in Chile®.
Birds of prey3¢%7 (e.g., hawks, eagles, vultures) and terrestrial carnivores”83839 (e.g., foxes,
raccoons, bobcats) that scavenge dead H5N1-infected birds can die, often with neurological
symptoms (Figure 2). Most mammalian cases are “dead-end” infections, with very little

evidence of onward transmission to additional hosts. Laboratory experiments proved that pre-
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2.3.4.4b H5N1 viruses could transmit mammal-to-mammal by the respiratory route after serial
passage in ferrets selected for mammalian-adapted mutations*®4!. However, whether such
strong selective pressures existed in any real-world field settings remained unclear. Here we
describe three field settings where 2.3.4.4b viruses acquired key adaptive mutations that
enabled the viruses to sustain mammal-to-mammal transmission. The 2022-2023 H5N1
outbreaks on European fur farms were successfully contained by culling, the 2023 South
American marine mammal-adapted virus may still be percolating, and the 2024 US dairy cattle

outbreak has metastasized into an ongoing problem for cattle, poultry, and farm workers.

H5N1 transmission on fur farms in Europe
The first compelling evidence that HSN1 could spread mammal-to-mammal in field settings
came in October 2022 from a mink farm in Spain'® (Table 1). A second larger H5N1 outbreak
occurred from July - December 2023 on 71 fur farms in Finland that affected American mink (6
farms), arctic foxes (64 farms), and raccoon dogs (5 farms)'"42. Known mammalian adaptations
in the polymerase were found in viruses collected from the farmed animals in both countries,
including mutations PB2 T271A*3 on the Spanish mink farm and PB2 E627K** in two
phylogenetically distinct clusters in Finland''. Mammal-to-mammal transmission was suspected
based on the close genetic relatedness of the viruses found on different farms. Experimental
studies confirmed that the viruses could transmit efficiently between ferrets in direct contact*546.
Farm-to-farm transmission was thought to have occurred through movement of contaminated
equipment, clothing, or infected carcasses fed to other mink'". Lingering gaps in surveillance
and testing nevertheless obscure a complete picture of how much H5N1 transmission occurred
within European mink farms, which were ultimately controlled by large-scale depopulation of
tens of thousands of animals on infected farms42.

Genetic sequencing revealed that the H5N1 viruses from the fur farm outbreaks in Spain

and Finland both belong to a new reassortant HSN1 genotype “BB” (Figure 3) that emerged in
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2022 and caused mass die-offs in black-headed gulls throughout Europe''2'. The BB genotype
contains five genome segments from H5N1 genotype AB and three segments from LPAI gull-
adapted H13 and H16 lineages*’. Gulls are opportunistic scavengers who visit farms,
undeterred by the presence of other animals, and H5N1-infected gulls may have introduced the
virus into fur farms while pilfering feed from animal sheds?*?>. The emergence of a gull-adapted
H5N1 BB reassortant warrants higher biosecurity and surveillance on European mink farms.
Current H5N1 surveillance largely targets dead or severely ill animals, and serosurveys would
be helpful to assess on how well mink, gulls, and other species tolerate H5N1 infection and
escape detection. While there have been no reported H5N1 outbreaks in mink in Poland,
Europe’s largest mink producer, nor H5N1 testing, it was speculated that raw pet food sourced
from mink farms could be a possible source of an H5N1 virus that killed more than 30 domestic
cats in Poland in mid-2023, including some that lived entirely indoors*¢. The H5N1 viruses
sequenced from the cats had identical mammalian adaptations*® that were not seen in avian
viruses circulating in Europe at the time, raising the possibility of cryptic transmission in

mammals with mild symptoms.

Long-range transmission of H5N1 in South American marine mammals

The arrival of a new North American reassortant HSN1 genotype (B3.2) into South America in
late 2022 had a devastating impact on coastal birds and marine mammals355°, The first H5N1
fatalities in South American sea lions were reported in Peru'2%" and Chile'3 in early 2023. H5N1
spread down South America’s west coast from Peru and Chile to the southern tip of Patagonia
and up the east coast through Argentina, Uruguay, and Brazil (Table 1), leaving a trail of sea
lion carcasses. The immediate question was whether the marine mammal die-offs were linked
and represented sustained mammal-to-mammal transmission of H5N1 in marine mammals, or
introduced independently from sea birds. Mammal-to-mammal transmission can be difficult to

prove in the field, especially when there are few background available sequences from wild
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birds. The strongest prior evidence for mammal-to-mammal transmission of IAVs in marine
mammals comes from the 2014-2015 outbreak of low-pathogenicity H10N7 viruses affecting
harbor seals in Denmark, Netherlands, and Germany®>-54, An outbreak of H5N1 occurred in
New England seals in June 2022, but most sequenced viruses lacked mammalian adaptations
and appeared to be independent spillovers from birds®.

As more H5N1 viruses were sequenced from marine mammals in South America over
the course of 2023, evidence accrued in support of mammal-to-mammal transmission. Five
independent research groups collected H5N1 viruses from marine mammals in Peru'?, Chile'3,
Argentina', Uruguay'®, and Brazil®® with the same unusual combination of two mammalian
adaptations in PB2, D701N and Q591K5%¢, plus other distinctive mutations that were not present
in birds. Moreover, the marine mammal viruses all formed a single clade on the phylogenetic
tree, separate from wild birds and poultry. The spatial-temporal pattern of wave-like spread
down the west coast and up the east coast further supported mammal-to-mammal transmission
in South America. Still, little is known about the mode of transmission between marine mammals
(environmental, direct contact, respiratory, oral-fecal) or which pinniped species serves as the
primary host. B3.2 viruses in the marine mammal clade have been identified in South American
sea lions, common dolphin, Chilean dolphin, porpoise, sea otter, fur seal, elephant seal, and
one human'®. The hospitalized man (A/Chile/25945/2023(H5N1)) resided near a beach with
H5N1-infected animals and his virus contains the same two PB2 mammalian adaptations found
in pinnipeds, consistent with environmental transmission®’. Spillback of B3.2 viruses from
marine mammals to wild birds was also reported in Chile'3, Argentina’ and in the South
Atlantic'15, >450 kilometers off the coast of mainland South America, with no reversions seen
in the mammalian-adapted PB2 mutations. It remains to be seen if wild birds will carry and
potentially disperse mammalian-adapted B3.2 viruses long distance, possibly to the megafauna

of Antarctica or to poultry and terrestrial mammals inland.
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The 2024 H5N1 outbreak in US dairy cattle

Starting in February 2024", Texas dairy farmers noticed unexplained drops in milk production in
lactating cattle and thick, yellow milk, which was later accompanied by dead cats on several
farms. Bovines were not considered permissive hosts for IAV, so hundreds of other potential
agents were screened before HSN1 was identified as the cause of disease. All cattle viruses
belong to the B3.13 genotype (Figure 3) and are positioned in a single phylogenetic clade,
which supports a single introduction from wild birds into cattle that is estimated to have occurred
in late 2023 or early 202468, Only four B3.13 genotype viruses have been identified in US
wildlife (Canada goose, peregrine falcon, skunk, Figure 4) that fall outside the cattle clade®.'8,
suggesting this genotype is rare in wild birds. It remains unclear why B3.13, as opposed to other
genotypes that are more common in birds, made the jump to cattle. Two mammalian
adaptations are found in the cattle clade, but not in the ancestral B3.13 viruses in wildlife, that
improve virus replication in mammals: PB2 M631L and PA K497R5%% (Table 1).

The high genetic diversity of the HS5N1 virus in Texas cattle suggests the bovine B3.13
outbreak originated in Texas and rapidly spread to additional states (13 total as of July 2024
Texas, New Mexico, Oklahoma, Colorado, Kansas, Idaho, Wyoming, South Dakota, Michigan,
lowa, Minnesota, Ohio, and North Carolina). In April-May 2024, more than one-third of retail
pasteurized milk samples from 12 US states contained H5N1 genetic fragments that present no
danger to humans, but indicate the widespread distribution of the virus in dairy cattle'".

The virus likely spread by transport of infected cattle or equipment (Figure 4)'6.69-62. High viral
titers in milk and the virus’s mammary tissue tropism suggest a role for milk in
transmission®-61.63_ | arge numbers of infectious particles are generated when milk is expressed
from the udder. Contaminated milking machinery is thought to be an important mode of H5N1
transmission between cattle from the same farm®' (Figure 4). However, respiratory tract

infection has not been ruled out.
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Bovine-origin H5N1 viruses have been detected in other species, including domestic
cats, alpacas, wild birds that congregate in barns (e.g., grackles, blackbirds), terrestrial
mammals (e.g., foxes, raccoons, mice), and poultry'6.18.19.60 (Figure 4). Spillover from cattle to
domestic barn cats likely occurs through ingestion of contaminated, unpasteurised milk™®.
Scavenging dead birds is also a way for cats to become infected, along with foxes, raccoons,
and other carnivores. It is less clear how wild birds, alpacas, or poultry became infected,
although fomite transmission, possibly involving workers’ clothing and equipment, has been
suggested. As of July 26, 2024, 13 documented human cases have been identified in
association with the B3.13 bovine strain, including four dairy workers from Texas, Michigan, and
Colorado and nine Colorado poultry workers infected by chickens carrying the bovine strain®
(Figure 4). Human infections present primarily as conjunctivitis®®, similar to past H7 human
infections in the Netherlands®¢67. Less than 20 human cases of 2.3.4.4b H5N1 viruses have
been documented in Europe and the Americas since 202098, which is a low number compared
to the 145 H5N1 human cases recorded in Asia and Egypt in 2015, where infections were often
acquired from poultry in live animal markets or when backyard flocks were defeathered®.
Accordingly, the CDC’s Influenza Risk Assessment Tool (IRAT) and WHO'’s TIPRA estimate a
low pandemic risk for HSN1 2.3.4.4b viruses’®. Note that these tools assess current risk and do
not consider H5N1’s evolutionary potential going forward, including the range of directions

H5N1 could mutate, host-switch, or reassort, based on decades of prior observations of IAV.

How could H5N1 become a pandemic?

For an influenza virus to start a pandemic it must fulfill two key criteria. First, the virus’s main
attachment glycoprotein, haemagglutinin (HA) (Figure 5A), must be antigenically novel and
poorly recognized immunologically by a large fraction of the human population. All 17 HA

subtypes”' (Figure 5B) maintained in wild aquatic birds meet the first criterion. Antigenic novelty
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is especially high for subtypes such as H5 that never circulated in humans and to which there is
only limited evidence for cross-subtype immunity. Many AlVs can replicate and cause disease in
mammalian hosts without prior adaptation, but few achieve the second criterion: efficient
transmission between humans, with a reproductive number exceeding one’?. Experimental
research shows that AlV must change in at least three ways to support transmission among
mammals’3. The first change is in the viral polymerase (PB2, PB1, and PA proteins) that helps
the virus exploit mammalian host machinery to replicate. A second change must occur in HA to
help the virus bind strongly to cell surface receptors abundant in the human upper respiratory
tract (URT). The third change must stabilize the HA protein to tolerate lower pH to prevent
destruction of the virus when transiting between hosts through the air’4. Several other virus

adaptations have been described that also likely modulate pandemic potential™>-77.

Mammalian adaptations arise readily in the polymerase

All viruses must commandeer resources from host cells to copy their genomes. At least four
mutations in the AlV polymerase PB2 protein allow the virus to use mammalian ANP32
proteins’®, histone chaperone proteins that helps synthesize viral RNA in the cell’s nucleus to
produce new viruses: E627K*79 Q591K/R%, D701N and M631L5%:%880. The evolutionary barrier
to this AlV adaptation appears to be low, as these PB2 mutations emerged rapidly and
repeatedly following H5N1 spillover to mammals: M631L"¢ in cattle, E627K?*? in several Finnish
mink farms, and Q591K and D701N"2 in South American marine mammals. The T271A PB2
mutation seen in Spanish mink is also suspected to be involved in mammalian adaptation, but

its phenotype is less characterized.

Evolutionary constraints on HA
To gain entry into host cells, most influenza viruses attach via the HA protein to carbohydrates
on the cell surface that are decorated with sialic acid receptors. These receptors come in

10
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different forms and have different distributions in birds, humans, and other mammalian species
(Figure 5B). The a2,3-linked form is abundant in avian tissues®', the bovine mammary gland®?,
the human lower respiratory tract (LRT),%% and the human eye (conjunctiva).8 While the
documented human spillovers of cattle-derived H5N1 have mostly involved conjunctivitis, prior
H5N1 cases in humans infected the LRT, which likely contributed to severe disease®. To
transmit efficiently by the respiratory route, influenza viruses must replicate in the URT?®687,
Therefore, a major evolutionary hurdle for AlVs to gain pandemic potential is the need to mutate
the HA receptor-binding domain to switch receptor binding to glycans with a2,6-linked sialic
acids, which are abundant in the human URT®.

Compared to adaptation of the polymerase, change in the HA receptor binding
phenotype appears to be more constrained for H5N1 viruses. Mutations that allow binding to
02,6-linked receptors have been identified in lab experiments: N224K*1:89 | 226418990 gnd
G228S%. Combinations of these mutations are needed for efficient airborne transmission in
ferrets, a model for humans*%4'. Crucially, these mutations have not arisen widely during any
H5N1 outbreak, even where we might expect there to be strong selective pressure®’, such as in
farmed mink'%42 that have a high proportion of a2,6-linked receptors in the URT®2. Human-like
02,6-linked receptors also appear to be present in the bovine mammary gland®3, although
possibly not in a form that can be utilized by H5N182, and there does not appear to be strong
selective pressure for H5N1 in bovines to use human-like a2,6-linked sialic acids®-%. However,
an HA substitution in bovine appears to expand H5N1’s a2,3-linked binding breadth®, and
continued monitoring of molecular changes in receptor binding sites is warranted.

The third property of AlVs known to influence pandemic potential is HA stability. HA, like
nearly all viral glycoproteins, is synthesized in a meta-stable form. Exposure to acidic pH
triggers changes in HA needed to complete viral entry into cells by fusing host and viral
membranes during endocytosis®”. However, HA is easily triggered prematurely, which destroys
viral infectivity. To efficiently transmit human-to-human, HA needs to be stable and triggered
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only at more acidic pH so it survives the acidic microenvironment of airborne particles and
mammalian respiratory secretions*'42, Mutations impacting HA stability occur throughout the
protein®, making this phenotype difficult to predict based on sequence alone. Thus, while
current evidence does not suggest the HA stability of panzootic HSN1 has changed®, this
phenotype requires close monitoring in clusters of mammalian cases that might be associated
with airborne spread such as in sea lions'®, mink*® and cattle’®.

Although the requirement for several mutations in the polymerase, HA, and other genes
to occur in tandem make the evolution of a pandemic virus less likely®®, genomic reassortment
provides an evolutionary shortcut'1%", To retain antigenic novelty, the reassortant virus would
need to retain the avian H5 while acquiring other genome segments. Therefore, a key constraint
in the evolution of pandemic viruses is that HA receptor binding and stability must evolve

through mutation alone.

Risk of H5N1 reassortment with mammal viruses

Horses'%?, dogs'93-194, pigs'%%, humans'%, poultry’®”, and wild birds3? are long-time reservoir
hosts for IAV (Figure 5B). Fortunately, the mammalian species infected by 2.3.4.4b H5N1
viruses (e.g., mink, marine mammals, bovines, foxes, raccoons, domestic cats, Figure 2) are
not. Influenza D viruses are enzootic in cattle, but this virus is too distinct from IAV for
reassortment to occur'®®. There is some serological evidence of sporadic IAV infections in cattle
over the years, but these appear to be rare and never sustained'. Turkeys''® and farmed
mink'"" have a2,6-linked sialic acids''?''3 that make them susceptible to human and swine
viruses'', but human and swine-origin viruses are not maintained in turkeys or mink long-term.
Marine mammals are frequent spillover hosts for AIV''®, but these LPAIs also are generally not
maintained long-term. Mammalian wildlife tend to be incidental hosts, whereas intensive

farming is more likely to promote viral amplification, endemicity, and evolution. Thus, the
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present host range of H5N1 limits opportunities for reassortment with other mammalian adapted
viruses.

However, this could change. As autumn approaches in the Northern hemisphere, so
does the influenza season. A farm worker coinfected with H5N1 and a human seasonal virus
presents an opportunity for avian and human IAVs to reassort and combine many of the traits
needed to spread efficiently in humans, as occurred prior to the 1957 H2N2 and 1968 H3N2
pandemics®'. H5N1 spillover into swine, which appear to be suitable hosts for H5SN1 in
experimental studies''®"7 would present additional opportunities for reassortment'05118 as
exemplified by the triple-reassortant swine-origin H1N1 pandemic virus from 20092. Influenza
spillover from cattle to swine is a known possibility because it already occurs in this direction for
influenza D viruses, in the United States as well as other countries''®. The continued absence of

H5N1 in US swine is highly fortunate.

Should the West vaccinate poultry for H5N1?

The prospect of H5N1 becoming enzootic in Europe and the Americas is a turning point for
HPAI and new control strategies are needed, including vaccination. Currently, there is no oral
H5N1 vaccine that could be mass administered to wildlife, similar to the rabies vaccine'?.
Influenza vaccines are licensed for poultry that reduce disease burden, but do not prevent
infection and have varying degrees of success''. China’s large-scale national vaccination
program in poultry has been credited with controlling H5 and H7 and reducing zoonosis'?%123,
However, vaccination campaigns have been less successful in controlling HGN2 in South Africa
or H5N2 in Mexico, which recently reported a zoonotic case'*. One concern is that vaccines
could make HPAI harder to control by fostering silent spread and/or accelerating antigenic
evolution in poultry'25126.127 Maijor poultry exporters in Europe, Brazil, and the United States are
reluctant to use influenza vaccines in poultry or cattle because products from vaccinated
animals are subject to international trade restrictions. For example, when France became the
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first EU country to vaccinate domestic ducks for H5N1 in 2023, the United States banned duck
products from France and all its trade partners, based on the perceived risk that vaccinated
birds with subclinical infections could introduce H5N1 into the country.

As H5N1 becomes enzootic in wild birds globally, pressure is mounting to revisit trade
restrictions designed for a different era. The World Organization of Animal Health (WOAH)
issued a statement in 2023 that vaccinating poultry for influenza “should not be a barrier to safe
trade”'?8, However, countries need to intensively monitor IAV populations in poultry and keep
vaccine strains up to date, similar to what is done in humans'?®. There is hope that some day in
the future the NIH will succeed in its ambitious plan to develop new influenza vaccine platforms
for humans that broadly protect against all genetically diverse IAV strains'*, providing more
effective vaccine platforms for animal influenza vaccines as well. However, these products are

still in early stages of research.

Can H5N1 be eliminated in US dairy cattle?

Two features of the H5N1 outbreak in bovine make eradication feasible. First, most
transmission appears to occur through a defined pathway via milking machinery®! instead of the
more diffuse respiratory route. Hygiene and biosecurity improvements could potentially break
transmission. Second, spillover from wild birds into dairy cattle appears to be rare'®'8. If US
dairy farmers could manage to eliminate the current HSN1 outbreak through a combination of
biosecurity, testing, quarantine, real-time genomic epidemiology, and possibly vaccination
and/or culling, the virus may not return from wild birds. However, six months into the outbreak,
the proverbial cow may already be out of the barn.

US dairy farmers have not previously dealt with IAV or deadly bovine diseases like
rinderpest and bluetongue that shaped cattle biosecurity across other continents in recent
decades'®'. Previous generations of US cattle producers eradicated foot-and-mouth disease by
rapidly sharing epidemiological data'?. During the 2024 H5N1 outbreak in bovines, months of
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missing data (Figure 6) leave researchers, veterinarians, and policy makers in the dark. Without
data, it is not possible to identify the source of new outbreaks through phylodynamic analysis.
H5N1 is a reportable disease in poultry, but not mammals, and the USDA requires H5N1 testing
only in lactating cattle prior to interstate movement. Poultry farmers must depopulate the entire
flock, sometimes millions of birds, each time B3.13 spills over from bovines, but there are no
requirements for dairy farms to even test for the disease. In July 2024, Colorado became the

first state to require weekly testing for H5SN1 in bulk milk tanks on dairy farms 3.

Human H5N1 cases

US public health agencies have tested over 200 people who were exposed to H5N1 infected
animals between March 24, 2024 - July 26, 2024'3* and identified 13 confirmed cases. A small
serosurvey for HSN1 antibodies in dairy and poultry workers in Michigan found no asymptomatic
infections among the 35 people tested'®. However, it is not clear how many exposed workers
from the 171 H5N1-infected dairy herds have not been tested'4. Veterinarians visiting H5N1-
infected dairy farms anecdotally reported suspected human cases that never received testing,
including workers with and without direct contact with cattle, raising questions about whether
any limited human-to-human occurred. Limited human-to-human spread of earlier HSN1 strains
occurred in Asia but reproductive numbers always remained below one'3. Even short chains of
human-to-human transmission raise the risk of virus adaptation to humans, particularly when
multiple mutations or co-infection with seasonal viruses are needed®'37 Picking up rare
transmission chains requires intensive contact tracing among workers, family members, and
other contacts. For example, CDC'’s investigation of a 2012 zoonotic outbreak of IAV in US
children competing show pigs at agricultural fairs identified suspected human-to-human
transmission in a child’s daycare'38. Agricultural fairs are already underway this summer across
the US, bringing dairy cattle into the same environment where zoonotic spillover of IAV routinely
occurs from swine'3°. Some fairs are requiring lactating dairy cattle to be tested for H5N1 before
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arrival and/or canceling the milking demonstrations. How much H5N1 testing is done in humans

or wastewater at fairs remains to be seen.

Prospects for the Future

Stocks of H5 vaccine that are antigenically related to circulating 2.3.4.4b viruses are available
and could be produced at scale using mMRNA platforms if HSN1 begins spreading in humans'4.
The severity of a future H5N1 pandemic remains unclear. Recent human infections with H5N1
2.3.4.4b viruses have a substantially lower case fatality rate compared to prior H5N1 outbreaks
in Asia, where half of people with reported infections died'#'. The milder symptoms in US
farmers have been attributed to the route of infection through the eye® and absence of viral
pneumonia in the lung. Whether B3.13 viruses cause less severe disease in humans or whether
mild cases are simply under-detected in Asia is unclear due to case ascertainment bias'#2.
Older people appear to have partial immunity to H5N1 due to childhood exposure (“imprinting”)
to seasonal HIN1 and H2N2 viruses, whereas younger people born since the 1968 H3N2
pandemic may be more susceptible to severe disease in a H5N1 pandemic'43. Some degree of
cross-reactivity between H5N1 and the avian-origin N1 neuraminidase that has circulated in
humans since the 2009 pandemic may also provide partial protection’#. At the same time,
symptoms and disease severity could change if B3.13 viruses further adapt to infect the
respiratory tract'4°.

Going forward, we know more about H5N1’s global distribution (Figure 1), non-human
host range (Figure 2), and genetic diversity (Figure 3) than virtually any other zoonotic
pathogen. Still, most H5N1 testing is conducted in dead or severely ill animals. One lesson from
the COVID-19 pandemic is that symptomatic cases that result in severe disease are clinically
important, but unobserved subclinical infections can be important in transmission and fuel
epidemics at a population level#8. The H5N1 panzootic has been defined by powerful visuals of
beaches littered with sea lion carcasses or barns of ill dairy cows wasting away after going off
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feed. But what keeps scientists up at night is the possibility of unseen chains of transmission
silently spreading through farm worker barracks, swine barns, or developing countries, evolving
under the radar because testing criteria are narrow, government authorities are feared, or
resources are thin. A second lesson from the COVID-19 pandemic is not to underestimate the
importance of human behavior, culture, and economic context. New technologies like mMRNA
vaccines, next-generation sequencing, and CRISPR-Cas diagnostics provide rapid, flexible

tools for outbreak response, but are of little use when they are not allowed on the farm.
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Figure Legends

Figure 1. Geographical distribution of HPAI H5 viruses sampled in birds and mammals,
1996-2023. Red shading indicates countries with HPAI H5 virus sequences available on the

GISAID database, specifically from the A/goose/Guangdong/1/1996(H5N1) (“Gs/Gd”) lineage
that emerged in China in 1996. Green (human) and yellow (non-human mammals) circles are
sized in proportion to the number of H5 GISAID sequences from that country and time period.

The source of the map is supplied by Natural Earth.

Figure 2. Multi-host ecology of H5N1 clade 2.3.4.4b since 2020. Wild aquatic birds (ducks,
geese, swans) are the natural reservoir hosts for H5N1. Arrows indicate spillover into other host
species. Cyclic arrows indicate sustained H5N1 transmission in that host species. New
mammalian H5N1 hosts with sustained transmission are highlighted yellow (South American
marine mammals), green (US dairy cattle), and blue (European mink), with arrows shaded the
same colors depicting spillovers from those mammalian outbreaks into additional species,
possibly via unsampled intermediaries. Animals with red names indicate host species for which

IAV has been detected for the first time (based on genetic sequence data, not serology).
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Figure 3. Genomic reassortment events in birds leading up to four H5N1 spillover events

in mammals. Each oval represents a genotype, with eight bars representing the eight segments
of the IAV genome, ordered from longest to shortest: PB2, PB1, PA, HA, NP, NA, MP, NS. Each
segment is shaded by lineage. Solid black arrows indicate donors during genomic reassortment
events. Broken black arrows indicate intercontinental migration events. Red arrows indicate

spillover events into mammals.

Figure 4. Leading hypotheses for the source and spread of the H5N1 outbreak in bovines.
The most likely routes of H5N1 transmission between wildlife, domestic animals, and humans

are inferred from currently available genomic and epidemiological data.

Figure 5. How IAVs adapt to new host species. (A) Molecular features of IAV that are known
to impact host range. vVRNP = viral ribonucleoprotein, which includes the PB2, PB1 and PA
polymerase proteins, the nucleoprotein, and viral RNA. (B) Wild aquatic birds are the natural
reservoir for IAV, maintaining 17 HA subtypes’! that occasionally spill over into other species
and can establish new host-specific lineages (black arrows). Lighter gray front indicates
subtypes that have gone extinct. Less than one year of data is available for recent HSN1
spillovers (red arrows). The main form of sialic acid receptor that HA binds in different hosts is
indicated as alpha-2,3 or alpha-2,6. The full complexity of glycans that act as IAV receptors
across species is not depicted, although differentiation between upper (a-2,6) and lower (a-2,3)
respiratory tract receptors for swine and humans is shown. Other 1AV hosts that experience
sporadic outbreaks without long term sustained transmission are listed on the right side of panel

B.

Figure 6. Number of published influenza virus genome sequences collected May 15, 2024
- July 22, 2024. Bars indicate the number of influenza viruses collected from humans and
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animals in recent months (May 15, 2024 - July 22, 2024) that are available in the GISAID
database (downloaded July 22, 2024). The number does not include viral sequences submitted

to SRA for which the collection date is unknown.

Table 1. H5N1 clade 2.3.4.4b outbreaks in mammals. A summary of six HSN1 clade 2.3.4.4b
outbreaks in mammals that infected at least 10 animals and occurred during 2022 - 2024,
ordered by time. The strength of evidence for mammal-to-mammal transmission is based on (a)
phylogenetic clustering of viruses collected from mammals together in a single clade, separate
from avian viruses; (b) whether viruses from mammals have the same mammalian adaptations
in PB2; and (c) the availability of well-sampled genetic sequence data. The primary control

strategy is listed as of June 2024.
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Table 1. HS5N1 clade 2.3.4.4b outbreaks in mammals. A summary of seven H5N1 clade 2.3.4.4b outbreaks in mammals that infected at least 10 animals. The strength of
evidence for mammal-to-mammal transmission is based on (a) phylogenetic clustering of viruses collected from mammals together in a single clade, separate from avian viruses;

(b) whether viruses from mammals have the same mammalian adaptations in PB2; and (c) the availability of well-sampled genetic sequence data. The primary control strategy is

listed as of June 2024.
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