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Abstract 26 

Influenza A viruses (IAV) have caused more documented global pandemics in human history 27 

than any other pathogen1,2. High pathogenicity avian influenza (HPAI) viruses belonging to the 28 

H5N1 subtype are a leading pandemic risk. Two decades after H5N1 “bird flu” became 29 

established in poultry in Southeast Asia, its descendants have resurged3, setting off an H5N1 30 

panzootic in wild birds that is fueled by (a) rapid intercontinental spread, reaching South 31 

America and Antarctica for the first time4,5; (b) fast evolution via genomic reassortment6; and (c) 32 

frequent spillover into terrestrial7,8 and marine mammals9. The virus has sustained mammal-to-33 

mammal transmission in multiple settings, including European fur farms10,11, South American 34 

marine mammals12–15, and US dairy cattle16–19, raising questions about whether humans are 35 

next. Historically, swine are considered optimal intermediary hosts that help avian influenza 36 

viruses (AIV) adapt to mammals before jumping to humans20. However, the altered ecology of 37 

H5N1 has opened the door to new evolutionary pathways. Could dairy cattle, farmed mink, or 38 

South American sea lions serve as new mammalian gateways to humans? Here we explore the 39 

molecular and ecological factors driving H5N1’s sudden expansion in host range and assess the 40 

likelihood of different zoonotic pathways leading to an H5N1 pandemic.  41 

 42 
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Main  44 

In recent years, an H5N1 problem that was once mainly confined to Asia and poultry has now 45 

spread globally (Figure 1), and into new species of mammals (Figure 2), endangering wildlife, 46 

agricultural production, and human health. The problem began in 2020, when a new genotype 47 

of H5N1 viruses belonging to clade 2.3.4.4b emerged that spread rapidly in wild birds3 from 48 

Europe to Africa21–23, North America24,25, South America5,12, and the Antarctic4. At first, H5N1’s 49 

arrival in North America seemed manageable. Back in 2014, when an earlier H5 virus was 50 

introduced to North America from Asia26,27, US poultry farmers successfully eliminated the virus 51 

through intensive monitoring and culling of 50 million chickens and turkeys, ending the largest 52 

foreign animal disease outbreak in US history28,29. This time, despite culling ~90 million US 53 

domestic birds since 2022, poultry outbreaks continue to be reseeded from wild birds30. Wild 54 

birds also introduced H5N1 to dairy cattle and marine mammals. Images of seal carcasses 55 

decaying on Argentine beaches and yellow, curdled milk on H5N1-affected dairy farms show 56 

how the 2.3.4.4b H5N1 panzootic is different and previous control strategies are not working. 57 

The question is why.  58 

The panzootic 2.3.4.4b H5N1 viruses circulating in wild birds are genetically different 59 

from prior strains due to “genomic reassortment,” an evolutionary process that occurs in viruses 60 

with segmented genomes. When two or more viruses co-infect a single host, they can swap 61 

entire segments during genome replication to create novel hybrids31. The reassortment event 62 

between 2.3.4.4b H5N8 and low pathogenicity avian influenza (LPAI) viruses that generated the 63 

panzootic 2.3.4.4b H5N1 virus is believed to have occurred in Europe or central Asia around 64 

20203,21. The H5N8/LPAI reassortment event combined polymerase and surface proteins 65 

derived from different lineages (Figure 3). Subsequent H5N1/LPAI reassortment events in 66 

Europe generated the AB and BB genotypes21,32 (Figure 3). Why Europe recently became a 67 

major source of new H5 reassortants, shifting the center of H5 evolution west from Asia, is not 68 
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clear. The westward shift continued when H5N1 arrived in the Americas and reassorted with 69 

LPAIs that circulate in the Western hemisphere,6,24 creating new reassortant genotypes such as 70 

“B3.2” and “B3.13” that infected South American marine mammals and US dairy cattle, 71 

respectively (Figure 3). Understanding how this burst of new genotypes changes H5N1’s 72 

capacity to host-switch to mammals, including humans, remains an active area of research (see 73 

section below, How could H5N1 become a pandemic?).  74 

In this Perspective, we review what has been learned about IAV spillover and H5N1 75 

pandemic potential from three H5N1 case studies where evidence supports mammal-to-76 

mammal transmission, including in (a) fur farms in Europe, (b) marine mammals in South 77 

America, and (c) dairy cattle in the United States. We examine how recent changes in the 78 

ecology and molecular evolution of H5N1 in wild and domestic birds increases opportunities for 79 

spillover to mammals. We evaluate the likelihood of various evolutionary pathways that could 80 

turn H5N1 into a pandemic virus. Finally, we identify research gaps that need to be addressed 81 

to design evidence-based control strategies for HPAI in domestic poultry, livestock, and 82 

humans.  83 

 84 

The current H5N1 panzootic in mammals 85 

H5N1 often arrives silently in a new country or continent, brought by migrating aquatic wild birds 86 

that are the primary reservoir host for AIV and often do not display symptoms33 (Figure 2). An 87 

early sign of H5N1’s arrival is dead poultry25. Mass die-offs can occur in social sea birds that 88 

congregate in large dense colonies, for example gannets in Europe34 or penguins in Chile35. 89 

Birds of prey36,37 (e.g., hawks, eagles, vultures) and terrestrial carnivores7,8,38,39 (e.g., foxes, 90 

raccoons, bobcats) that scavenge dead H5N1-infected birds can die, often with neurological 91 

symptoms (Figure 2). Most mammalian cases are “dead-end” infections, with very little 92 

evidence of onward transmission to additional hosts. Laboratory experiments proved that pre-93 
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2.3.4.4b H5N1 viruses could transmit mammal-to-mammal by the respiratory route after serial 94 

passage in ferrets selected for mammalian-adapted mutations40,41. However, whether such 95 

strong selective pressures existed in any real-world field settings remained unclear. Here we 96 

describe three field settings where 2.3.4.4b viruses acquired key adaptive mutations that 97 

enabled the viruses to sustain mammal-to-mammal transmission. The 2022-2023 H5N1 98 

outbreaks on European fur farms were successfully contained by culling, the 2023 South 99 

American marine mammal-adapted virus may still be percolating, and the 2024 US dairy cattle 100 

outbreak has metastasized into an ongoing problem for cattle, poultry, and farm workers. 101 

 102 

H5N1 transmission on fur farms in Europe 103 

The first compelling evidence that H5N1 could spread mammal-to-mammal in field settings 104 

came in October 2022 from a mink farm in Spain10 (Table 1). A second larger H5N1 outbreak 105 

occurred from July - December 2023 on 71 fur farms in Finland that affected American mink (6 106 

farms), arctic foxes (64 farms), and raccoon dogs (5 farms)11,42. Known mammalian adaptations 107 

in the polymerase were found in viruses collected from the farmed animals in both countries, 108 

including mutations PB2 T271A43 on the Spanish mink farm and PB2 E627K44 in two 109 

phylogenetically distinct clusters in Finland11. Mammal-to-mammal transmission was suspected 110 

based on the close genetic relatedness of the viruses found on different farms. Experimental 111 

studies confirmed that the viruses could transmit efficiently between ferrets in direct contact45,46. 112 

Farm-to-farm transmission was thought to have occurred through movement of contaminated 113 

equipment, clothing, or infected carcasses fed to other mink11. Lingering gaps in surveillance 114 

and testing nevertheless obscure a complete picture of how much H5N1 transmission occurred 115 

within European mink farms, which were ultimately controlled by large-scale depopulation of 116 

tens of thousands of animals on infected farms42.  117 

Genetic sequencing revealed that the H5N1 viruses from the fur farm outbreaks in Spain 118 

and Finland both belong to a new reassortant H5N1 genotype “BB” (Figure 3) that emerged in 119 

https://paperpile.com/c/iMULcS/u1299+hd1zi
https://paperpile.com/c/iMULcS/RUaIv
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https://paperpile.com/c/iMULcS/OLkuF
https://paperpile.com/c/iMULcS/1o00y
https://paperpile.com/c/iMULcS/FKf20+cibD9
https://paperpile.com/c/iMULcS/1o00y
https://paperpile.com/c/iMULcS/Kn510
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2022 and caused mass die-offs in black-headed gulls throughout Europe11,21. The BB genotype 120 

contains five genome segments from H5N1 genotype AB and three segments from LPAI gull-121 

adapted H13 and H16 lineages47. Gulls are opportunistic scavengers who visit farms, 122 

undeterred by the presence of other animals, and H5N1-infected gulls may have introduced the 123 

virus into fur farms while pilfering feed from animal sheds42. The emergence of a gull-adapted 124 

H5N1 BB reassortant warrants higher biosecurity and surveillance on European mink farms. 125 

Current H5N1 surveillance largely targets dead or severely ill animals, and serosurveys would 126 

be helpful to assess on how well mink, gulls, and other species tolerate H5N1 infection and 127 

escape detection. While there have been no reported H5N1 outbreaks in mink in Poland, 128 

Europe’s largest mink producer, nor H5N1 testing, it was speculated that raw pet food sourced 129 

from mink farms could be a possible source of an H5N1 virus that killed more than 30 domestic 130 

cats in Poland in mid-2023, including some that lived entirely indoors48. The H5N1 viruses 131 

sequenced from the cats had identical mammalian adaptations49 that were not seen in avian 132 

viruses circulating in Europe at the time, raising the possibility of cryptic transmission in 133 

mammals with mild symptoms. 134 

 135 

Long-range transmission of H5N1 in South American marine mammals 136 

The arrival of a new North American reassortant H5N1 genotype (B3.2) into South America in 137 

late 2022 had a devastating impact on coastal birds and marine mammals35,50. The first H5N1 138 

fatalities in South American sea lions were reported in Peru12,51 and Chile13 in early 2023. H5N1 139 

spread down South America’s west coast from Peru and Chile to the southern tip of Patagonia 140 

and up the east coast through Argentina, Uruguay, and Brazil (Table 1), leaving a trail of sea 141 

lion carcasses. The immediate question was whether the marine mammal die-offs were linked 142 

and represented sustained mammal-to-mammal transmission of H5N1 in marine mammals, or 143 

introduced independently from sea birds. Mammal-to-mammal transmission can be difficult to 144 

prove in the field, especially when there are few background available sequences from wild 145 

https://paperpile.com/c/iMULcS/1o00y+Vrhsm
https://paperpile.com/c/iMULcS/jzRH
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https://paperpile.com/c/iMULcS/4QOzU
https://paperpile.com/c/iMULcS/ygTuY
https://paperpile.com/c/iMULcS/cwk2t+XjxI
https://paperpile.com/c/iMULcS/mWikn+lIc0m
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birds. The strongest prior evidence for mammal-to-mammal transmission of IAVs in marine 146 

mammals comes from the 2014-2015 outbreak of low-pathogenicity H10N7 viruses affecting 147 

harbor seals in Denmark, Netherlands, and Germany52–54. An outbreak of H5N1 occurred in 148 

New England seals in June 2022, but most sequenced viruses lacked mammalian adaptations 149 

and appeared to be independent spillovers from birds9.  150 

As more H5N1 viruses were sequenced from marine mammals in South America over 151 

the course of 2023, evidence accrued in support of mammal-to-mammal transmission. Five 152 

independent research groups collected H5N1 viruses from marine mammals in Peru12, Chile13, 153 

Argentina14, Uruguay15, and Brazil55 with the same unusual combination of two mammalian 154 

adaptations in PB2, D701N and Q591K56, plus other distinctive mutations that were not present 155 

in birds. Moreover, the marine mammal viruses all formed a single clade on the phylogenetic 156 

tree, separate from wild birds and poultry. The spatial-temporal pattern of wave-like spread 157 

down the west coast and up the east coast further supported mammal-to-mammal transmission 158 

in South America. Still, little is known about the mode of transmission between marine mammals 159 

(environmental, direct contact, respiratory, oral-fecal) or which pinniped species serves as the 160 

primary host. B3.2 viruses in the marine mammal clade have been identified in South American 161 

sea lions, common dolphin, Chilean dolphin, porpoise, sea otter, fur seal, elephant seal, and 162 

one human15. The hospitalized man (A/Chile/25945/2023(H5N1)) resided near a beach with 163 

H5N1-infected animals and his virus contains the same two PB2 mammalian adaptations found 164 

in pinnipeds, consistent with environmental transmission57. Spillback of B3.2 viruses from 165 

marine mammals to wild birds was also reported in Chile13, Argentina14 and in the South 166 

Atlantic14,15, >450 kilometers off the coast of mainland South America, with no reversions seen 167 

in the mammalian-adapted PB2 mutations. It remains to be seen if wild birds will carry and 168 

potentially disperse mammalian-adapted B3.2 viruses long distance, possibly to the megafauna 169 

of Antarctica or to poultry and terrestrial mammals inland.  170 

 171 
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The 2024 H5N1 outbreak in US dairy cattle 172 

Starting in February 202411, Texas dairy farmers noticed unexplained drops in milk production in 173 

lactating cattle and thick, yellow milk, which was later accompanied by dead cats on several 174 

farms. Bovines were not considered permissive hosts for IAV, so hundreds of other potential 175 

agents were screened before H5N1 was identified as the cause of disease. All cattle viruses 176 

belong to the B3.13 genotype (Figure 3) and are positioned in a single phylogenetic clade, 177 

which supports a single introduction from wild birds into cattle that is estimated to have occurred 178 

in late 2023 or early 202416,18. Only four B3.13 genotype viruses have been identified in US 179 

wildlife (Canada goose, peregrine falcon, skunk, Figure 4) that fall outside the cattle clade16,18, 180 

suggesting this genotype is rare in wild birds. It remains unclear why B3.13, as opposed to other 181 

genotypes that are more common in birds, made the jump to cattle. Two mammalian 182 

adaptations are found in the cattle clade, but not in the ancestral B3.13 viruses in wildlife, that 183 

improve virus replication in mammals: PB2 M631L and PA K497R58,59 (Table 1).  184 

The high genetic diversity of the H5N1 virus in Texas cattle suggests the bovine B3.13 185 

outbreak originated in Texas and rapidly spread to additional states (13 total as of July 2024: 186 

Texas, New Mexico, Oklahoma, Colorado, Kansas, Idaho, Wyoming, South Dakota, Michigan, 187 

Iowa, Minnesota, Ohio, and North Carolina). In April-May 2024, more than one-third of retail 188 

pasteurized milk samples from 12 US states contained H5N1 genetic fragments that present no 189 

danger to humans, but indicate the widespread distribution of the virus in dairy cattle17. 190 

The virus likely spread by transport of infected cattle or equipment (Figure 4)16,60–62. High viral 191 

titers in milk and the virus’s mammary tissue tropism suggest a role for milk in 192 

transmission60,61,63. Large numbers of infectious particles are generated when milk is expressed 193 

from the udder. Contaminated milking machinery is thought to be an important mode of H5N1 194 

transmission between cattle from the same farm61 (Figure 4). However, respiratory tract 195 

infection has not been ruled out.  196 

https://paperpile.com/c/iMULcS/G3sFk+zwhpZ
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Bovine-origin H5N1 viruses have been detected in other species, including domestic 197 

cats, alpacas, wild birds that congregate in barns (e.g., grackles, blackbirds), terrestrial 198 

mammals (e.g., foxes, raccoons, mice), and poultry16,18,19,60 (Figure 4). Spillover from cattle to 199 

domestic barn cats likely occurs through ingestion of contaminated, unpasteurised milk19. 200 

Scavenging dead birds is also a way for cats to become infected, along with foxes, raccoons, 201 

and other carnivores. It is less clear how wild birds, alpacas, or poultry became infected, 202 

although fomite transmission, possibly involving workers’ clothing and equipment, has been 203 

suggested. As of July 26, 2024, 13 documented human cases have been identified in 204 

association with the B3.13 bovine strain, including four dairy workers from Texas, Michigan, and 205 

Colorado and nine Colorado poultry workers infected by chickens carrying the bovine strain64 206 

(Figure 4). Human infections present primarily as conjunctivitis65, similar to past H7 human 207 

infections in the Netherlands66,67. Less than 20 human cases of 2.3.4.4b H5N1 viruses have 208 

been documented in Europe and the Americas since 202068, which is a low number compared 209 

to the 145 H5N1 human cases recorded in Asia and Egypt in 2015, where infections were often 210 

acquired from poultry in live animal markets or when backyard flocks were defeathered69. 211 

Accordingly, the CDC’s Influenza Risk Assessment Tool (IRAT) and WHO’s TIPRA estimate a 212 

low pandemic risk for H5N1 2.3.4.4b viruses70. Note that these tools assess current risk and do 213 

not consider H5N1’s evolutionary potential going forward, including the range of directions 214 

H5N1 could mutate, host-switch, or reassort, based on decades of prior observations of IAV. 215 

 216 

How could H5N1 become a pandemic? 217 

For an influenza virus to start a pandemic it must fulfill two key criteria. First, the virus’s main 218 

attachment glycoprotein, haemagglutinin (HA) (Figure 5A), must be antigenically novel and 219 

poorly recognized immunologically by a large fraction of the human population. All 17 HA 220 

subtypes71 (Figure 5B) maintained in wild aquatic birds meet the first criterion. Antigenic novelty 221 
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https://paperpile.com/c/iMULcS/ZYfvQ
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is especially high for subtypes such as H5 that never circulated in humans and to which there is 222 

only limited evidence for cross-subtype immunity. Many AIVs can replicate and cause disease in 223 

mammalian hosts without prior adaptation, but few achieve the second criterion: efficient 224 

transmission between humans, with a reproductive number exceeding one72. Experimental 225 

research shows that AIV must change in at least three ways to support transmission among 226 

mammals73. The first change is in the viral polymerase (PB2, PB1, and PA proteins) that helps 227 

the virus exploit mammalian host machinery to replicate. A second change must occur in HA to 228 

help the virus bind strongly to cell surface receptors abundant in the human upper respiratory 229 

tract (URT). The third change must stabilize the HA protein to tolerate lower pH to prevent 230 

destruction of the virus when transiting between hosts through the air74. Several other virus 231 

adaptations have been described that also likely modulate pandemic potential75–77.  232 

 233 

Mammalian adaptations arise readily in the polymerase 234 

All viruses must commandeer resources from host cells to copy their genomes. At least four 235 

mutations in the AIV polymerase PB2 protein allow the virus to use mammalian ANP32 236 

proteins78, histone chaperone proteins that helps synthesize viral RNA in the cell’s nucleus to 237 

produce new viruses: E627K44,79, Q591K/R56, D701N and M631L56,58,80. The evolutionary barrier 238 

to this AIV adaptation appears to be low, as these PB2 mutations emerged rapidly and 239 

repeatedly following H5N1 spillover to mammals: M631L16 in cattle, E627K42 in several Finnish 240 

mink farms, and Q591K and D701N12 in South American marine mammals. The T271A PB2 241 

mutation seen in Spanish mink is also suspected to be involved in mammalian adaptation, but 242 

its phenotype is less characterized.  243 

 244 

Evolutionary constraints on HA 245 

To gain entry into host cells, most influenza viruses attach via the HA protein to carbohydrates 246 

on the cell surface that are decorated with sialic acid receptors. These receptors come in 247 

https://paperpile.com/c/iMULcS/CfPee
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https://paperpile.com/c/iMULcS/5SKR7+3rfL3+X6yoQ
https://paperpile.com/c/iMULcS/G3sFk
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different forms and have different distributions in birds, humans, and other mammalian species 248 

(Figure 5B). The α2,3-linked form is abundant in avian tissues81, the bovine mammary gland82, 249 

the human lower respiratory tract (LRT),83 and the human eye (conjunctiva).84 While the 250 

documented human spillovers of cattle-derived H5N1 have mostly involved conjunctivitis, prior 251 

H5N1 cases in humans infected the LRT, which likely contributed to severe disease85. To 252 

transmit efficiently by the respiratory route, influenza viruses must replicate in the URT86,87. 253 

Therefore, a major evolutionary hurdle for AIVs to gain pandemic potential is the need to mutate 254 

the HA receptor-binding domain to switch receptor binding to glycans with α2,6-linked sialic 255 

acids, which are abundant in the human URT88.  256 

Compared to adaptation of the polymerase, change in the HA receptor binding 257 

phenotype appears to be more constrained for H5N1 viruses. Mutations that allow binding to 258 

α2,6-linked receptors have been identified in lab experiments: N224K41,89, L22641,89,90 and 259 

G228S90. Combinations of these mutations are needed for efficient airborne transmission in 260 

ferrets, a model for humans40,41. Crucially, these mutations have not arisen widely during any 261 

H5N1 outbreak, even where we might expect there to be strong selective pressure91, such as in 262 

farmed mink10,42 that have a high proportion of α2,6-linked receptors in the URT92. Human-like 263 

α2,6-linked receptors also appear to be present in the bovine mammary gland93, although 264 

possibly not in a form that can be utilized by H5N182, and there does not appear to be strong 265 

selective pressure for H5N1 in bovines to use human-like α2,6-linked sialic acids94–96. However, 266 

an HA substitution in bovine appears to expand H5N1’s α2,3-linked binding breadth94, and 267 

continued monitoring of molecular changes in receptor binding sites is warranted. 268 

The third property of AIVs known to influence pandemic potential is HA stability. HA, like 269 

nearly all viral glycoproteins, is synthesized in a meta-stable form. Exposure to acidic pH 270 

triggers changes in HA needed to complete viral entry into cells by fusing host and viral 271 

membranes during endocytosis97. However, HA is easily triggered prematurely, which destroys 272 

viral infectivity. To efficiently transmit human-to-human, HA needs to be stable and triggered 273 
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only at more acidic pH so it survives the acidic microenvironment of airborne particles and 274 

mammalian respiratory secretions41,42. Mutations impacting HA stability occur throughout the 275 

protein89, making this phenotype difficult to predict based on sequence alone. Thus, while 276 

current evidence does not suggest the HA stability of panzootic H5N1 has changed98, this 277 

phenotype requires close monitoring in clusters of mammalian cases that might be associated 278 

with airborne spread such as in sea lions15, mink45 and cattle16. 279 

Although the requirement for several mutations in the polymerase, HA, and other genes 280 

to occur in tandem make the evolution of a pandemic virus less likely99, genomic reassortment 281 

provides an evolutionary shortcut100,101. To retain antigenic novelty, the reassortant virus would 282 

need to retain the avian H5 while acquiring other genome segments. Therefore, a key constraint 283 

in the evolution of pandemic viruses is that HA receptor binding and stability must evolve 284 

through mutation alone. 285 

 286 

Risk of H5N1 reassortment with mammal viruses  287 

Horses102, dogs103,104, pigs105, humans106, poultry107, and wild birds33 are long-time reservoir 288 

hosts for IAV (Figure 5B). Fortunately, the mammalian species infected by 2.3.4.4b H5N1 289 

viruses (e.g., mink, marine mammals, bovines, foxes, raccoons, domestic cats, Figure 2) are 290 

not. Influenza D viruses are enzootic in cattle, but this virus is too distinct from IAV for 291 

reassortment to occur108. There is some serological evidence of sporadic IAV infections in cattle 292 

over the years, but these appear to be rare and never sustained109. Turkeys110 and farmed 293 

mink111 have α2,6-linked sialic acids112,113 that make them susceptible to human and swine 294 

viruses114, but human and swine-origin viruses are not maintained in turkeys or mink long-term. 295 

Marine mammals are frequent spillover hosts for AIV115, but these LPAIs also are generally not 296 

maintained long-term.  Mammalian wildlife tend to be incidental hosts, whereas intensive 297 

farming is more likely to promote viral amplification, endemicity, and evolution. Thus, the 298 
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present host range of H5N1 limits opportunities for reassortment with other mammalian adapted 299 

viruses.  300 

However, this could change. As autumn approaches in the Northern hemisphere, so 301 

does the influenza season. A farm worker coinfected with H5N1 and a human seasonal virus 302 

presents an opportunity for avian and human IAVs to reassort and combine many of the traits 303 

needed to spread efficiently in humans, as occurred prior to the 1957 H2N2 and 1968 H3N2 304 

pandemics31. H5N1 spillover into swine, which appear to be suitable hosts for H5N1 in 305 

experimental studies116,117, would present additional opportunities for reassortment105,118, as 306 

exemplified by the triple-reassortant swine-origin H1N1 pandemic virus from 20092. Influenza 307 

spillover from cattle to swine is a known possibility because it already occurs in this direction for 308 

influenza D viruses, in the United States as well as other countries119. The continued absence of 309 

H5N1 in US swine is highly fortunate.  310 

 311 

Should the West vaccinate poultry for H5N1? 312 

The prospect of H5N1 becoming enzootic in Europe and the Americas is a turning point for 313 

HPAI and new control strategies are needed, including vaccination. Currently, there is no oral 314 

H5N1 vaccine that could be mass administered to wildlife, similar to the rabies vaccine120. 315 

Influenza vaccines are licensed for poultry that reduce disease burden, but do not prevent 316 

infection and have varying degrees of success121. China’s large-scale national vaccination 317 

program in poultry has been credited with controlling H5 and H7 and reducing zoonosis122,123. 318 

However, vaccination campaigns have been less successful in controlling H6N2 in South Africa 319 

or H5N2 in Mexico, which recently reported a zoonotic case124. One concern is that vaccines 320 

could make HPAI harder to control by fostering silent spread and/or accelerating antigenic 321 

evolution in poultry125,126,127. Major poultry exporters in Europe, Brazil, and the United States are 322 

reluctant to use influenza vaccines in poultry or cattle because products from vaccinated 323 

animals are subject to international trade restrictions. For example, when France became the 324 
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first EU country to vaccinate domestic ducks for H5N1 in 2023, the United States banned duck 325 

products from France and all its trade partners, based on the perceived risk that vaccinated 326 

birds with subclinical infections could introduce H5N1 into the country.  327 

As H5N1 becomes enzootic in wild birds globally, pressure is mounting to revisit trade 328 

restrictions designed for a different era. The World Organization of Animal Health (WOAH) 329 

issued a statement in 2023 that vaccinating poultry for influenza “should not be a barrier to safe 330 

trade”128. However, countries need to intensively monitor IAV populations in poultry and keep 331 

vaccine strains up to date, similar to what is done in humans129. There is hope that some day in 332 

the future the NIH will succeed in its ambitious plan to develop new influenza vaccine platforms 333 

for humans that broadly protect against all genetically diverse IAV strains130, providing more 334 

effective vaccine platforms for animal influenza vaccines as well. However, these products are 335 

still in early stages of research.    336 

 337 

Can H5N1 be eliminated in US dairy cattle?  338 

Two features of the H5N1 outbreak in bovine make eradication feasible. First, most 339 

transmission appears to occur through a defined pathway via milking machinery61 instead of the 340 

more diffuse respiratory route. Hygiene and biosecurity improvements could potentially break 341 

transmission. Second, spillover from wild birds into dairy cattle appears to be rare16,18. If US 342 

dairy farmers could manage to eliminate the current H5N1 outbreak through a combination of 343 

biosecurity, testing, quarantine, real-time genomic epidemiology, and possibly vaccination 344 

and/or culling, the virus may not return from wild birds. However, six months into the outbreak, 345 

the proverbial cow may already be out of the barn. 346 

US dairy farmers have not previously dealt with IAV or deadly bovine diseases like 347 

rinderpest and bluetongue that shaped cattle biosecurity across other continents in recent 348 

decades131. Previous generations of US cattle producers eradicated foot-and-mouth disease by 349 

rapidly sharing epidemiological data132. During the 2024 H5N1 outbreak in bovines, months of 350 
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missing data (Figure 6) leave researchers, veterinarians, and policy makers in the dark. Without 351 

data, it is not possible to identify the source of new outbreaks through phylodynamic analysis. 352 

H5N1 is a reportable disease in poultry, but not mammals, and the USDA requires H5N1 testing 353 

only in lactating cattle prior to interstate movement. Poultry farmers must depopulate the entire 354 

flock, sometimes millions of birds, each time B3.13 spills over from bovines, but there are no 355 

requirements for dairy farms to even test for the disease. In July 2024, Colorado became the 356 

first state to require weekly testing for H5N1 in bulk milk tanks on dairy farms133. 357 

 358 

Human H5N1 cases 359 

US public health agencies have tested over 200 people who were exposed to H5N1 infected 360 

animals between March 24, 2024 - July 26, 2024134 and identified 13 confirmed cases. A small 361 

serosurvey for H5N1 antibodies in dairy and poultry workers in Michigan found no asymptomatic 362 

infections among the 35 people tested135. However, it is not clear how many exposed workers 363 

from the 171 H5N1-infected dairy herds have not been tested134. Veterinarians visiting H5N1-364 

infected dairy farms anecdotally reported suspected human cases that never received testing, 365 

including workers with and without direct contact with cattle, raising questions about whether 366 

any limited human-to-human occurred. Limited human-to-human spread of earlier H5N1 strains 367 

occurred in Asia but reproductive numbers always remained below one136. Even short chains of 368 

human-to-human transmission raise the risk of virus adaptation to humans, particularly when 369 

multiple mutations or co-infection with seasonal viruses are needed99,137 Picking up rare 370 

transmission chains requires intensive contact tracing among workers, family members, and 371 

other contacts. For example, CDC’s investigation of a 2012 zoonotic outbreak of IAV in US 372 

children competing show pigs at agricultural fairs identified suspected human-to-human 373 

transmission in a child’s daycare138. Agricultural fairs are already underway this summer across 374 

the US, bringing dairy cattle into the same environment where zoonotic spillover of IAV routinely 375 

occurs from swine139. Some fairs are requiring lactating dairy cattle to be tested for H5N1 before 376 
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arrival and/or canceling the milking demonstrations. How much H5N1 testing is done in humans 377 

or wastewater at fairs remains to be seen. 378 

 379 

Prospects for the Future 380 

Stocks of H5 vaccine that are antigenically related to circulating 2.3.4.4b viruses are available 381 

and could be produced at scale using mRNA platforms if H5N1 begins spreading in humans140. 382 

The severity of a future H5N1 pandemic remains unclear. Recent human infections with H5N1 383 

2.3.4.4b viruses have a substantially lower case fatality rate compared to prior H5N1 outbreaks 384 

in Asia, where half of people with reported infections died141. The milder symptoms in US 385 

farmers have been attributed to the route of infection through the eye65 and absence of viral 386 

pneumonia in the lung. Whether B3.13 viruses cause less severe disease in humans or whether 387 

mild cases are simply under-detected in Asia is unclear due to case ascertainment bias142. 388 

Older people appear to have partial immunity to H5N1 due to childhood exposure (“imprinting”) 389 

to seasonal H1N1 and H2N2 viruses, whereas younger people born since the 1968 H3N2 390 

pandemic may be more susceptible to severe disease in a H5N1 pandemic143. Some degree of 391 

cross-reactivity between H5N1 and the avian-origin N1 neuraminidase that has circulated in 392 

humans since the 2009 pandemic may also provide partial protection144. At the same time, 393 

symptoms and disease severity could change if B3.13 viruses further adapt to infect the 394 

respiratory tract145. 395 

Going forward, we know more about H5N1’s global distribution (Figure 1), non-human 396 

host range (Figure 2), and genetic diversity (Figure 3) than virtually any other zoonotic 397 

pathogen. Still, most H5N1 testing is conducted in dead or severely ill animals. One lesson from 398 

the COVID-19 pandemic is that symptomatic cases that result in severe disease are clinically 399 

important, but unobserved subclinical infections can be important in transmission and fuel 400 

epidemics at a population level146. The H5N1 panzootic has been defined by powerful visuals of 401 

beaches littered with sea lion carcasses or barns of ill dairy cows wasting away after going off 402 
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feed. But what keeps scientists up at night is the possibility of unseen chains of transmission 403 

silently spreading through farm worker barracks, swine barns, or developing countries, evolving 404 

under the radar because testing criteria are narrow, government authorities are feared, or 405 

resources are thin. A second lesson from the COVID-19 pandemic is not to underestimate the 406 

importance of human behavior, culture, and economic context. New technologies like mRNA 407 

vaccines, next-generation sequencing, and CRISPR-Cas diagnostics provide rapid, flexible 408 

tools for outbreak response, but are of little use when they are not allowed on the farm.  409 

 410 

  411 
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Figure Legends 833 

 834 

Figure 1. Geographical distribution of HPAI H5 viruses sampled in birds and mammals, 835 

1996-2023. Red shading indicates countries with HPAI H5 virus sequences available on the 836 

GISAID database, specifically from the A/goose/Guangdong/1/1996(H5N1) (“Gs/Gd”) lineage 837 

that emerged in China in 1996. Green (human) and yellow (non-human mammals) circles are 838 

sized in proportion to the number of H5 GISAID sequences from that country and time period. 839 

The source of the map is supplied by Natural Earth.    840 

 841 

Figure 2. Multi-host ecology of H5N1 clade 2.3.4.4b since 2020. Wild aquatic birds (ducks, 842 

geese, swans) are the natural reservoir hosts for H5N1. Arrows indicate spillover into other host 843 

species. Cyclic arrows indicate sustained H5N1 transmission in that host species. New 844 

mammalian H5N1 hosts with sustained transmission are highlighted yellow (South American 845 

marine mammals), green (US dairy cattle), and blue (European mink), with arrows shaded the 846 

same colors depicting spillovers from those mammalian outbreaks into additional species, 847 

possibly via unsampled intermediaries. Animals with red names indicate host species for which 848 

IAV has been detected for the first time (based on genetic sequence data, not serology).        849 

 850 
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Figure 3. Genomic reassortment events in birds leading up to four H5N1 spillover events 851 

in mammals. Each oval represents a genotype, with eight bars representing the eight segments 852 

of the IAV genome, ordered from longest to shortest: PB2, PB1, PA, HA, NP, NA, MP, NS. Each 853 

segment is shaded by lineage. Solid black arrows indicate donors during genomic reassortment 854 

events. Broken black arrows indicate intercontinental migration events. Red arrows indicate 855 

spillover events into mammals.  856 

 857 

Figure 4. Leading hypotheses for the source and spread of the H5N1 outbreak in bovines. 858 

The most likely routes of H5N1 transmission between wildlife, domestic animals, and humans 859 

are inferred from currently available genomic and epidemiological data.  860 

 861 

Figure 5. How IAVs adapt to new host species. (A) Molecular features of IAV that are known 862 

to impact host range. vRNP = viral ribonucleoprotein, which includes the PB2, PB1 and PA 863 

polymerase proteins, the nucleoprotein, and viral RNA. (B) Wild aquatic birds are the natural 864 

reservoir for IAV, maintaining 17 HA subtypes71 that occasionally spill over into other species 865 

and can establish new host-specific lineages (black arrows). Lighter gray front indicates 866 

subtypes that have gone extinct. Less than one year of data is available for recent H5N1 867 

spillovers (red arrows). The main form of sialic acid receptor that HA binds in different hosts is 868 

indicated as alpha-2,3 or alpha-2,6. The full complexity of glycans that act as IAV receptors 869 

across species is not depicted, although differentiation between upper (a-2,6) and lower (a-2,3) 870 

respiratory tract receptors for swine and humans is shown. Other IAV hosts that experience 871 

sporadic outbreaks without long term sustained transmission are listed on the right side of panel 872 

B.  873 

 874 

Figure 6. Number of published influenza virus genome sequences collected May 15, 2024 875 

- July 22, 2024. Bars indicate the number of influenza viruses collected from humans and 876 

https://paperpile.com/c/iMULcS/Td5KJ
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animals in recent months (May 15, 2024 - July 22, 2024) that are available in the GISAID 877 

database (downloaded July 22, 2024). The number does not include viral sequences submitted 878 

to SRA for which the collection date is unknown. 879 

 880 

Table 1. H5N1 clade 2.3.4.4b outbreaks in mammals. A summary of six H5N1 clade 2.3.4.4b 881 

outbreaks in mammals that infected at least 10 animals and occurred during 2022 - 2024, 882 

ordered by time. The strength of evidence for mammal-to-mammal transmission is based on (a) 883 

phylogenetic clustering of viruses collected from mammals together in a single clade, separate 884 

from avian viruses; (b) whether viruses from mammals have the same mammalian adaptations 885 

in PB2; and (c) the availability of well-sampled genetic sequence data. The primary control 886 

strategy is listed as of June 2024.  887 

 888 

 889 
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Index species 
Domestic 

or wild 
Date Duration Location 

Suspected 

source 

H5N1 

genotype 

Reported 

animal 

deaths 

Control 

strategy 

PB2 

mammalian 

adaptations 

Mammal-to-

mammal 

transmission 

Spillover to 

other species 

Zoonotic 

cases 

(detected) 

Ref 

Harbor (Phoca 

vitulina) and gray 

(Halichoerus 

grypus) seals 

wild June 2022 
< 1 

month 

Maine, 

USA 

wild 

seabirds 

Panzootic 

H5N1 

2.3.4.4b 

10 none 
E627K             

(1 virus) 
Unlikely none none 9 

American mink 

(Neovison vison) 
domestic 

October 

2022 

< 1 

month 

Galicia, 

Spain 
gulls 

Gull 

reassortant 

genotype 

BB 

>50,000 

depopulated 
depopulation T271A 

Likely, within 

farm 
none none 10 

South American 

sea lion (Otaria 

flavescens) 

wild 

February - 

November 

2023 (may 

be ongoing) 

> 8 

months 

(possibly 

ongoing) 

South 

America 

(Argentina, 

Brazil, 

Chile, Peru, 

Uruguay) 

wild 

seabirds 

American 

LPAI 

reassortant 

B3.2 

>10,000 none 
Q591K 

D701N 

Likely, across 

5 countries 

elephant seal, 

fur seal, 

Chilean 

dolphin,  

porpoise, 

human 

1 
12-

15 

Cat (Felis catus) domestic June 2023 
< 1 

month 
Poland 

raw pet 

food 

Eurasian 

LPAI 

reassortant 

CH 

<50 none 
K526R 

E627K 
Unlikely none none 48 

American mink 

(Neovison vison) 
domestic 

July - 

December 

2023 

6 months Finland gulls 

Gull 

reassortant 

genotype 

BB 

70 farms 

depopulated 
depopulation E627K 

Likely, 

between farms 

Arctic foxes, 

raccoon dogs 
none 

11, 

42 



Dairy cattle        

(Bos taurus) 
domestic 

February 

2024 - 

present 

>7 

months 

(ongoing) 

13 US 

states (CO, 

IA, ID, KS, 

MI, MN, 

NC, NM, 

OH, OK, 

SD, TX, 

WY) 

wild birds 

American 

LPAI 

reassortant 

B3.13 

Unknown 

(>50) 

Test lactating 

cattle before 

interstate 

movement; 

Quarantine 

infected 

cows 

M631L Extensive 

Domestic cat, 

raccoon, fox, 

poultry, wild 

birds, alpaca, 

human 

13 

16, 

18, 

19, 

60 

 

Table 1. H5N1 clade 2.3.4.4b outbreaks in mammals. A summary of seven H5N1 clade 2.3.4.4b outbreaks in mammals that infected at least 10 animals. The strength of 

evidence for mammal-to-mammal transmission is based on (a) phylogenetic clustering of viruses collected from mammals together in a single clade, separate from avian viruses; 

(b) whether viruses from mammals have the same mammalian adaptations in PB2; and (c) the availability of well-sampled genetic sequence data. The primary control strategy is 

listed as of June 2024.  
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