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In the centuries following Christopher Columbus’s 1492 voyage to the Americas, transoceanic
travel opened unprecedented pathways for global pathogen circulation. Yet no biological
transfer is a single, discrete event. We use mathematical modeling to quantify historical
risk of shipborne pathogen introduction, exploring the respective contributions of journey
time, ship size, population susceptibility, transmission intensity, density dependence, and
pathogen biology. We contextualize our results using port arrivals data from San Francisco,
1850–1852, and from a selection of historically significant voyages, 1492–1918. We offer
numerical estimates of introduction risk across historically-realistic ranges of journey time
and ship population size, and show that both steam travel and shipping regimes that
involved frequent, large-scale movement of people substantially increased risk of transoceanic
pathogen circulation.

Infectious disease dynamics | Environmental History | Epidemic Modeling | Historical Geography

In the centuries following Christopher Columbus’s 1492 journey to the Americas,
transoceanic voyages opened unprecedented pathways in global pathogen

circulation. In 1962, historian Woodrow Borah described the changes that followed
as near-immediate; in his account, previously isolated regions such as the Americas
and the Pacific “received within a few decades the united impact of all the diseases
that could be spread” (1). This narrative of rapid—and inevitable— pathogen
transfer continues to shape some popular histories of global infectious disease
(2). Yet while transoceanic shipping was indeed a pivotal ecological force, the
transformations that followed took substantially longer than decades. Global
pathogen transfer was—and is—a centuries-long process.

Sixty years on, scholars in both the humanities and the sciences have charted
the slow globalization of infectious disease. In the 1970s, pioneering environmental
histories such as Alfred Crosby’s “Columbian Exchange”, Emmanuel Le Roy
Ladurie’s “microbial unification of the world”, and William McNeill’s “common
market of microbes” expanded the scope of Borah’s analyses to show that first
introductions of “Old World” pathogens into previously isolated regions spanned
one or two centuries following European arrival (3–5). Subsequent historians have
shown that pathogen exchange across the Atlantic, Pacific, and Indian oceans
occurred slowly, with some introductions causing only transient outbreaks (2, 6–
13). These outcomes were highly contingent on local human processes such as
trade, warfare, and colonialism. In parallel, disease ecologists have shown that
acute pathogens such as measles and influenza require large human populations for
endemic local establishment (14–17), and that in smaller populations, continued
circulation depends on regular introductions from “source” populations (18, 19).
These metapopulation dynamics were as critical to historical pathogen dynamics
as they are today (20–25). Throughout the eighteenth century, the city of Boston,
Massachusetts experienced decades-long intervals between smallpox outbreaks
(26, 27), while the much larger city of London experienced smallpox cases every year
since records began in 1664 (27). Sporadic introductions were, and are, extremely
impactful – particularly in populations with no prior immunity (28–30). Sustained
“microbial unification”—the transition from intermittent introduction to continuous
global circulation—required regular human movement and, with it, continued
introduction and re-introduction of pathogens.

This raises an ecological question. How easily did infectious diseases survive
the weeks- or months-long voyages necessary for transoceanic pathogen transfer
in the age of sail and steam? There is good reason to expect that transoceanic
pathogen introduction under these conditions was far from assured – particularly for
fast-burning respiratory infections such as smallpox, measles, and influenza. As late
as the 1850s, a sail voyage from Liverpool to New York City could take 5-6 weeks
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(31), while journeys from the UK to Australia could take 3-4
months (32). Between lengthy periods at sea, short infection
generation times, and intense shipboard transmission, fast-
burning “crowd diseases” could rapidly exhaust all susceptible
people on board and go extinct long before a vessel reached
port, leaving no pathogen to introduce.

We explore the mechanics of shipborne pathogen trans-
fer using the toolkit of contemporary theoretical ecology.
We present a stochastic SEIR model which quantifies the
probability of an outbreak lasting a given duration in a
closed population. We consider the relative contributions
of a broad range of factors to outbreak duration, including
pathogen natural history, transmission intensity and density
dependence, population size, and population susceptibility.
Finally, we use port arrivals data from Gold Rush-era San
Francisco, California, 1850–1852, to explore the implications
of variation in journey length, ship size, and natural history
for pathogen circulation in the specific context of the Pacific.
As part of this, we explore the impact of the advent of steam
travel in the nineteenth century – a technological revolution
that routinely cut journey times by a factor of two or more
(31–33).

The idea that many shipboard outbreaks ended long
before a vessel’s arrival is intuitive. These processes have
been considered qualitatively, both by scientists (33, 34)
and by historians (3, 10, 13, 35). Paterson et al. (36)
have also modeled the specific case of shipborne measles
introductions to Australia during the nineteenth century. A
more general quantitative analysis can offer sharper insight
into the contours of global disease history, and can aid in
building broader structural histories of infectious disease
(9, 13, 37, 38). It can also reveal new patterns in seemingly
disparate disease introductions.

Our results indicate that shipborne pathogen introductions
were neither trivial nor inevitable. Ships were not simple
pathogen vectors: they were populations. The extinction
and survival dynamics of pathogens on ships were complex
population biological processes, contingent on pathogen
natural history and host population size, composition, and
mixing patterns. Thus, the history of transoceanic disease
introduction is a story both of fundamental pathogen biology,
and of human economics, technology, and behavior. Theo-
retical modelling can reveal how these forces interacted to
shape global disease transmission.

Results

Basic Dynamics. Transoceanic pathogen introduction requires
a chain of infections that lasts at least as long as a ship’s
journey time. To investigate the basic dynamics of shipboard
outbreak duration, we simulate outbreaks in a fully suscep-
tible population (N = 100) using a hypothetical pathogen
which has characteristics typical of acute respiratory viruses
(mean incubation and infectiousness periods of 5 days each)
(Fig. 1). We define outbreak duration as the time until
nobody on board ship is infected with the pathogen, that is,
until E = I = 0.

Historical accounts indicate that transmission on board
ships was substantially more intense than transmission in
typical land settings (Text S1). Thus, we explore a broad
range of transmission intensities. These are summarized by
the epidemiological parameter R0, or the average number

of infections that a single person will produce in a fully-
susceptible population.

We observe three outbreak duration regimes, all of
which depend heavily on transmission intensity. Under
strongly subcritical transmission (R0 ≲ 0.8), the majority of
simulations result in no transmission beyond the index case
(Fig. 1A). These “single-generation” outbreaks last only as
long as the course of infection in a single person, in this case
an average of 10 days.

Under strongly supercritical transmission (R0 ≳ 5),
outbreaks are large and almost universally reach or exceed
the threshold for ship herd immunity, S

N
< 1

R0
(Fig. 1B).

This reliably results in 35-55 day outbreaks for the modeled
scenario, with duration steadily decreasing as R0 increases.
Occasionally, simulations under strongly supercritical R0
also result in short single- or two-generation outbreaks (Fig.
1A, 1C); these are consistent with the occurrence of minor
outbreaks due to random extinction in stochastic systems
(39, 40).

Values of R0 near criticality (0.8 ≲ R0 ≲ 5), produce the
longest outbreaks, with median duration peaking around
R0 = 2. These are made possible by extended, multi-
generational transmission chains (Fig. 1C). Yet while near-
critical conditions give rise to the longest outbreaks, they
also result in the widest range of outbreak durations. An R0
of 1 may result in outbreaks that last 150 days or more, but
median outbreak duration under these conditions is just 14
days.

Transmission intensity modulates a pathogen’s overall
introduction risk — here defined as the net probability that
at least one passenger is carrying the pathogen (i.e. in state E
or state I) upon arrival, for any given journey length. Under
strongly subcritical transmission (e.g. R0 = 0.5), introduction
risk decays rapidly with journey time, with 50% probability
of introduction at 10 days and 25% probability at 17 days
(Fig. 1D). Under strongly supercritical transmission (R0 = 8),
pathogen introduction risk is sigmoidal: introduction is near
certain (≥ 95%) for journeys of 33 days or less, then falls
rapidly for journey times exceeding this threshold. Introduc-
tion is least predictable for weakly supercritical values of R0
(R0 = 2). Here, many outbreaks end quickly due to random
extinction (Fig. 1A). Yet past this threshold, risk broadly
plateaus until much longer journey times (∼ 60 days), then
declines with a long tail. Thus, the relative introduction risk
of weakly versus strongly supercritical transmission depends
on journey length. Strongly supercritical transmission is
significantly more likely to result in pathogen introduction
for journeys of 33 days or less, since intense transmission
carries minimal risk of early extinction. But across journeys
of 40 days or more, pathogen introduction is most likely under
weakly supercritical transmission.

For real pathogens, introduction thresholds are governed
by pathogen-specific natural history, above all by the du-
rations of a pathogen’s latent and infectious periods (Fig.
1E). We explore outbreak length for influenza, measles, and
smallpox at subcritical, near-critical, and strongly super-
critical R0 (Table S1). The results demonstrate that relative
introduction risk can be often inferred from pathogen natural
history, even in the absence of shipboard R0 estimates. At any
R0, smallpox typically survives longer on board a ship than
measles, which in turn typically survives longer than influenza.
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Fig. 1. Basic Dynamics. (A) Outbreak duration, (B)
outbreak size and (C) number of transmission generations
by R0, assuming a fully-susceptible population of N = 100
and a theoretical pathogen with µE = µI = 5 days and
kE = kI = 3. Solid black lines show median outbreak
duration, outbreak size, and number of generations. Top
and bottom dashed lines respectively show 95th and 5th

percentile outbreak duration, outbreak size, and number
of generations. (D) Probability of at least one person in
state E or state I (“introduction risk”) for any given journey
time by R0, using the same population and pathogen
parameters. (E) Outbreak length distribution by R0 in a fully
susceptible population of N = 100 for influenza, measles
and smallpox, using epidemiological parameters detailed in
Table S1.

Natural history also indicates some general introduction
thresholds, which hold regardless of transmission intensity.
For example, for a ship with 100 people on board, influenza
introduction is extremely unlikely for journeys lasting longer
than 100 days, regardless of R0.

Incorporating Population Size and Susceptibility. Next, we
expand our analysis beyond the unlikely scenario of one ship
with N = 100 and 100% population-level susceptibility to
consider the combined effects of ship population size, N ,
and initial proportion susceptible, S(0)

N
, on ship outbreak

duration.
In populations with some initial immunity to infection (i.e.

where S(0)
N

< 1), transmission intensity is most meaningfully
measured as a pathogen’s “effective” reproduction number,
Re. Because population immunity levels change over the
course of an outbreak, this is commonly expressed as a
function of time, i.e. Re(t). Notably, Re(t) is a linear
function of a pathogen’s basic reproduction number, R0.
Hence, Re(t) = S(t)

N
R0, with critical transmission occurring at

the threshold Re(t) = 1. We consider shipboard transmission
at t = 0, where Re(0) = S(0)

N
R0.

First, we vary the total number of people who are initially
susceptible, S(0), while holding Re(0) constant. We do so
by fixing N = 1001, choosing S(0), and back-calculating R0
to maintain the same effective rate of transmission. This
results in a roughly log-linear relationship between initial
susceptible population size and outbreak duration at near-
critical and supercritical values of Re(0) (Fig. 2A). At
Re(0) = 1.25, increasing S(0) has little influence on median
outbreak duration but substantially increases 95th percentile
outbreak duration. At Re(0) = 2, increasing S(0) increases
both median and 95th percentile outbreak times. Finally, at
Re(0) = 8, increasing S(0) dependably increases median, 5th

percentile, and 95th percentile outbreak times.
Next, we vary N as well as S(0). This opens the

question of what relationship we expect between N , S and

R0 in the unique environment on board a historical ship.
Records from the time indicate that many vessels suffered
from inadequate ventilation and extreme levels of crowding
(Text S1). On land, these conditions generally give rise to
“density-dependent” patterns of transmission, where contact
rates scale linearly with population size (R0 ∝ N). Yet
ships were also famously structured and compartmentalized
environments, which typically align with assumptions of
“frequency-dependent” transmission (Text S1); here contact
rates are assumed to remain constant, regardless of total
population size (R0 ⊥⊥ N).

In practice, we expect that effective density dependence
varied substantially according to ship layout and construction,
social norms, and pathogen-side biology. Thus we consider
three density dependence scenarios: classical density depen-
dence (R0 ∝ N), classical frequency dependence (R0 ⊥⊥ N),
and an intermediate degree of density dependence (R0 ∝
N0.5). Under each scenario, we explore the effect of initial
ship susceptibility, S(0)

N
, on median outbreak duration across

several total population sizes, N .
In all circumstances, larger and more susceptible popula-

tions generally present greater risks of pathogen introduction
across any given journey (Fig. 2B). Yet they do so in different
ways, and for different reasons.

Under classical frequency dependence, R0 = µIβfd, where
µI represents the average duration of an individual’s infectious
period and where βfd represents the average number of onward
infections that a single infected person would generate, per
day, in a fully susceptible population. Critical transmission,
Re(0) = 1, occurs at the constant threshold S(0)

N
= (µIβfd)−1.

The threshold value of S(0)
N

required for Re(0) = 1 is
independent of total ship population, N . However, for any
given S(0)

N
, ships with greater N must have a proportionally

greater number of susceptibles, S(0). Since ships with greater
S(0) experience longer outbreaks at a given supercritical
value of Re(0) (Fig. 2A), ships with greater total populations

Blackmore et al. PNAS | April 30, 2024 | vol. XXX | no. XX | 3
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Fig. 2. Effect of susceptible population size. (A)
Outbreak duration by initial susceptible population (S(0))
and effective reproduction number (Re(0)). We fix N =
1001 and back-calculate R0 for each value of S(0) to
maintain constant Re(0). As above, we base simulations
on a theoretical pathogen with µE = µI = 5 days.
Solid black lines show median outbreak duration; top and
bottom dashed lines show 95th and 5th percentile durations
respectively. Colors match those used in Fig. 1A-C and
denote single-generation outbreaks (grey), outbreaks that
reach herd immunity (red), and outbreaks that terminate
before herd immunity is achieved (blue). (B) Median
outbreak duration by ship size and by initial proportion sus-
ceptible. Rows show three density dependence scenarios:
full frequency dependence (q = 0, top row); intermediate
density dependence (q = 0.5, middle row); and full density
dependence (q = 1, bottom row). Columns show three
scenarios for transmission intensity: βfd = 0.04 (left);
βfd = 1 (middle); and βfd = 2 (right). Calculated using
µE = µI = 5 days and βdd = βfd/100 (Methods; Text
S1D)

display longer median outbreak times at Re(0) > 1 (Fig. 2B,
top row).

Under classical density dependence, R0 = µIβddN , where
βdd represents the average proportion of a given population,
N , that a single infected person would infect per day in a
fully-susceptible population. Critical transmission occurs at
the threshold S(0)

N
= (µIβddN)−1. Multiplying both sides

by a factor of N reveals that critical transmission depends
solely on initial susceptible population size: S(0) = (µIβdd)−1.
When N is large, this threshold for S(0) represents a smaller
fraction of the total population. But, in contrast to frequency-
dependent transmission, S(0) is constant at any given Re(0),
and so peak outbreak duration does not vary across ships of
different sizes. Rather, larger ship populations give rise to
near-critical and supercritical transmission at lower values of
S(0)

N
(Fig. 2B, bottom row).

Under intermediate transmission, R0 = µI(βfdβddN)0.5.
Critical transmission occurs at the threshold S(0)

N
=

µ−1
I (βfdβddN)−0.5, and at the total susceptibility level S(0) =

N0.5µ−1
I (βfdβdd)−0.5. Under this model, larger ship popu-

lations reach critical transmission at slightly lower initial
proportions of susceptibility, have a critical S(0) that scales
sublinearly with N , and hence display slightly higher outbreak
length for any given Re(0) (Fig. 2B, middle row).

Finally, we note that regardless of density dependence,
ships with a higher rate of contact (represented either by
βfd or by βdd) require lower initial susceptibility for critical
transmission (compare across rows in Fig. 2B). Thus, ships
with higher rates of social mixing (e.g. more crowded
ships) require fewer susceptible people to achieve supercritical
transmission, regardless of total ship population size.

Thus, even in the absence of detailed reconstructions
of ship transmission patterns, we can conclude that ships
with larger, more crowded populations presented greater
risks of pathogen introduction — be this by increasing
total persistence times, decreasing the susceptibility fraction
required for critical transmission, or both. In practice, the risk
associated with larger ship populations was almost certainly
boosted further by an increased chance of carrying at least
one infected person on departure. We do not account for
this difference, instead conditioning our analysis on the
assumption that each ship departs with a single infected
individual. Yet in cases with low infection prevalence at the
port of origin, this elevated chance of having at least one
infected person on board at the time of departure would have
substantially increased net introduction risk. Thus, ships
with larger populations were both more likely to depart with
infection on board and more likely to sustain this infection
outbreak until arrival.

Historical Applications. Voyage characteristics such as jour-
ney time, population size, and population susceptibility varied
substantially across different time periods, transit routes, and
ship constructions. We explore some of this variation, and its
implications, in the context of the Pacific basin. Specifically,
we use port arrivals data for Gold Rush-era San Francisco,
1850-1852, originally collected by historian and genealogist
Louis J. Rasmussen (Fig. 3)(41–43).

While acute respiratory infections first crossed the Atlantic
ocean in the late fifteenth and early sixteenth centuries (13),
by the mid-nineteenth century pathogens such as smallpox
and measles had only recently begun to arrive across the
Pacific basin . California saw its first region-wide outbreaks
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Fig. 3. San Francisco arrivals, June 1850-June 1852. (A) Map of arrivals into San Francisco harbor, June 6th 1850 - June 9th 1852, with median journey times by ship
technology. (B) Journey time, (C) passenger number and (D) number of voyages by origin port and by ship technology. Data from Louis J. Rasmussen’s San Francisco
Passenger Lists (41–43)

of smallpox and measles in 1806 and 1838, respectively (44–
46). Smallpox was first introduced to Australia in 1788 but
did not see second introduction until 1829, while measles
appears to have arrived for the first time in 1850 (36, 47).
Several Pacific islands saw initial introductions well into the
late nineteenth century, including Hawai’i (smallpox, 1853);
Easter Island (smallpox, 1863); Fiji (measles, 1875); and
Tonga (measles, 1893) (47).

During the years 1850-1852, passengers journeyed to San
Francisco from across East Asia, Australasia, South America,
and Europe. In an era preceding reliable transcontinental
rail, ocean travel also provided one of the fastest and safest
routes from eastern North America to the newly-established
state of California (48). Median sailing times ranged from 7
days (from Oregon Territory) to 190 days (from Liverpool,
England), with considerable variation within routes (Fig.
3A-B, Table S2). Longer-range sail voyages displayed an
especially broad range of transit times. For example, sail
journeys from New York City could be as long as 283 days
(on the Primoguet) or as short as 89 days (on the Flying
Cloud — reportedly “the fastest [sail] voyage ever recorded”)
(42).

Steam travel represented a phase transition in transoceanic
pathogen circulation for several reasons. First, in most cases,
the technology dramatically reduced journey times. Median
transit times from Panama were 63 days by sail but just 20
days by steam. Meanwhile, steam reduced median journey
times from Oregon from 7 days to just 3 days (Table S2).
These shorter journey times would have increased risk of
shipborne pathogen introduction significantly.

Second, steam ships transported some of the greatest
numbers of passengers (Fig. 3C). Steamers from Panama
carried a median of 196 passengers and as many as 1,050,
compared with a median of 53 and a maximum of 287 by
sail (Table S2). Oregon steamers carried a median of 28
passengers and as many as 157, compared with a median of
4 and a maximum of just 12 by sail. Finally, steam vessels
from New York City carried a median of 111 passengers and a
maximum of 743, compared to a median of 5 and a maximum
of 160 by sail. The only sail route that could compete with
steam travel on passenger numbers was the route from Hong
Kong, which transported a median of 201 passengers and a

maximum of 553. As demonstrated above, larger passenger
numbers would have substantially increased ships’ capacity
for sustained pathogen circulation.

Finally, steam travel represented some of the most frequent
voyages (Fig. 3D), resulting in a greater cumulative risk of
pathogen introduction across any given period. Particularly
striking are the 116 steam journeys from Panama that arrived
between June 1850 and June 1852.

To explore possible differences in introduction risk across
each route and type of ship, we simulate influenza, measles,
and smallpox outbreaks across the full range of ship popula-
tions and journey times represented in the San Francisco
dataset (Fig. 4A). Here, contours represent pathogen
introduction risk by journey time and by total ship population,
assuming 5% population-level susceptibility and intermediate
density dependence, and calibrating transmission intensity
with reference to standard literature values and analyses of
shipboard outbreaks (Text S1D, Table S1). We overplot
individual journeys into San Francisco to assess pathogen
introduction risk across each route (Fig. 4A). We plot a
selection of routes on each panel for visual clarity. However,
the observations below concern introduction risk for all
pathogens across all routes travelled.

For select voyages we also provide numerical introduction
risk estimates for each pathogen in Table 1. Particularly
interesting are two voyages from Panama with documented
outbreaks of acute viral infections: the Gold Hunter steam
ship, which arrived in San Francisco after a 29-day voyage
with one active case of smallpox, and the Sir Charles
Napier sail ship, which experienced an outbreak of “measles,
dysentery, and fever” lasting “about three weeks” of its ninety-
day voyage.

Influenza’s relatively low R0 and extremely fast generation
period result in a very low risk of introduction into San
Francisco from any origin port except Oregon and perhaps
Panama and Hawai’i. Even then, only the fastest voyages
presented any significant risk of pathogen transfer. Had a
person with influenza been present on board the Columbia
steam ship (3 days, 74 passengers) at its time of departure
from Oregon, we estimate a 66% risk of introduction into
San Francisco (Table 1). By contrast, we estimate just a
1% risk for the Tarquina sail ship from Oregon (7 days, 11
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Fig. 4. Historical Applications. Introduction risk for influenza, measles, and smallpox by journey time and by total ship population, N , assuming 5% initial population-level
susceptibility, intermediate density dependence (q = 0.5), and µE , µI , and βfd according to consensus natural history parameters (Table S1). We back-calculate βfd as 1/µI

times a pathogen’s typical land R0, and set βdd = βfd/75 (Text S1D).(A) overplots data on San Francisco Port arrivals, June 1850 – June 1852. Here, total population (N )
represents only the passengers on board each ship, as crew data is not available. Introduction risks for all three pathogens are shown for 16 selected voyages in Table 1; these
voyages are indicated with black crosses. For the two ships with documented infectious disease outbreaks, the Gold Hunter and the Sir Charles Napier, we also performed
sensitivity analyses investigating the robustness of our predictions to different rates of transmission and population-level susceptibility (Fig. S1). (B) overplots selected historical
journeys, 1492–1918, chosen to be indicative of the broad trends in transoceanic shipping. N represents the combined totals of passengers and crew. Sources and further
data are available in Table S3. Numerical introduction risk estimates for (B) are provided in Table 2.

passengers), a 0.1% risk on the Columbus steam ship from
Panama (18 days, 420 passengers) and a 0.1% risk on the
Baltimore sail ship from Hawai’i (14 days, 29 passengers).

Measles, with longer latent and infectious periods, presents
moderate introduction risks across all journey times ≲ 40
days (Fig. 4A, Table 1) – consistent with this pathogen’s
range of durations for single-generation outbreaks (Fig. 1E)
This range includes the vast majority of journeys originating
from Oregon (by steam or sail), Hawai’i (by steam or
sail), and Panama (by steam). Additionally, we estimate
plausible introductions from Panama (by sail) and Hong
Kong, especially on ships transporting large populations.
Had the Iowa sail ship (54 days, 377 people) departed Hong
Kong with a measles patient on board, we estimate a 61%
chance of introduction despite the long journey (Table 1).
Had the Golden Gate steam ship (65 days, 458 passengers)
departed New York City with one infected passenger, we
likewise estimate a 61% introduction risk. Our results are
also consistent with reports that the Sir Charles Napier
sail ship from Panama experienced an outbreak of measles
which ended roughly 36 days before arrival; under our base
assumptions, we estimate that this vessel had just a 16%
chance of sustaining the pathogen across the duration of
its 90-day voyage. Supplementary analyses indicate measles
introduction following this voyage would have been plausible

under some circumstances, particularly if a higher proportion
of the population had been susceptible and if shipboard
transmission intensity had intermediate intensity (Fig. S1).

Smallpox has a substantially longer generation period than
either measles or influenza (µE = 12 days; µI = 17.5 days).
Consequently, journeys of ≲ 50 days present a moderate
introduction risk at any ship population size, mirroring the
introduction range described above for measles. As before,
we estimate higher introduction risks for ships with larger
populations (Table 1). Yet since smallpox is less transmissible
than measles, ships require larger population sizes to achieve
a equivalent Re(0). Thus, in some cases highly-populated
ships present a lower risk of introducing smallpox than they
did measles. For instance, had the Golden Gate departed New
York City with one infected patient on board, we estimate
just a 21% risk of smallpox introduction (Table 1). Our
results are consistent with the one documented introduction of
smallpox by ship to San Francisco during our period of study:
under base assumptions, we estimate that the Gold Hunter
had a 42% chance of arriving with at least one active case.
Supplementary analyses indicate that smallpox introduction
following this vessel’s 29-day voyage was in fact highly likely
across a wide range of conditions, even including scenarios
with no susceptible people on board besides the index case
(Fig. S1). This is intuitive; given the pathogen’s lengthy
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latent and infectious periods (we assume mean values of 12
and 17.5 days, respectively), a single case could easily last as
long as the Gold Hunter ’s period in transit (Table S1).

Finally, we use these analyses to inform the plausibility of
ship-borne pathogen transfer across a selection of historical
voyages, chosen to reflect the variety of shipping routes,
technologies, and practices between the 15th and 20th

centuries (Fig. 4B, Table S3). For these analyses we again
assume a 5% rate of susceptibility, although in practice we
expect this rate varied significantly by location, time period
and ship population.

Under these assumptions, early transatlantic voyages
of exploration could plausibly have introduced measles or
smallpox to their places of arrival (Fig. 4B, Table 2).
We estimate a 24% chance of measles introduction and
an equal chance of smallpox introduction had Christopher
Columbus’s 1492 voyage on Santa María (35 days, 41 people)
departed with one case of either pathogen on board. We
estimate a 2% risk of measles introduction and 4% risk of
smallpox introduction on John Cabot’s 1497 exploration on
the Matthew (54 days, 20 people). Introduction risks for both
pathogens were substantially higher on the transatlantic slave
trade ship Diana, which carried 443 enslaved people and crew
from Îles del Los, off the coast of West Africa, to Curaçao,
in the Caribbean: a 67% risk for measles and a 35% risk
for smallpox, had one person been infected at the time of
departure.

Meanwhile, the lengthy journey times of the Empress of
China trade ship (184 days), which traveled from New York
City to present-day Macao, and the America convict ship (180
days), which traveled from the United Kingdom to Australia,
suggest a compelling explanation for the substantially later
introduction of smallpox and measles to the South Pacific.
Even with 175 passengers, a voyage such as the America’s
is outside the range of plausible introduction for all three
pathogens.

Table 1. Numerical introduction risk estimates for influenza,
measles, and smallpox across selected voyages to San Francisco,
1850-1852

Pathogen Introduction Risk
From Type Days N Influenza Measles Smallpox

New York Sail 195 17 <0.001 <0.001 <0.001
New York Steam 65 458 <0.001 0.611 0.207
Valparaíso Sail 59 16 <0.001 0.010 0.036
Valparaíso Sail 101 175 <0.001 0.053 0.013
Panama* Sail 90 211 <0.001 0.160 0.057
Panama† Steam 29 163 <0.001 0.556 0.422
Panama Steam 18 420 0.001 0.813 0.749
Oregon Steam 3 74 0.656 0.996 >0.999
Oregon Sail 7 11 0.095 0.931 0.979
Hawai’i Sail 40 142 <0.001 0.399 0.254
Hawai’i Sail 14 29 0.001 0.692 0.817
Sydney Sail 112 28 <0.001 <0.001 <0.001
Sydney Sail 83 142 <0.001 0.076 0.032
Hong Kong Sail 56 47 <0.001 0.040 0.047
Hong Kong Sail 54 377 <0.001 0.613 0.224

* This vessel, the Sir Charles Napier, experienced an outbreak of “measles,
dysentery, and fever” which lasted “about three weeks”. 36 passengers died,
with the final death occurring 54 days into the voyage (49) (Table S4; Fig. S1).

† This vessel, the Gold Hunter, arrived in San Francisco with one active
smallpox case. The patient was isolated on arrival (50). (Table S4; Fig.
S1)

Table 2. Numerical introduction risk estimates for influenza, measles,
and smallpox across selected historical voyages, 1492-1918

Pathogen Introduction Risk
Vessel Days N Influenza Measles Smallpox

Santa María 35 41 <0.001 0.242 0.235
Matthew 54 20 <0.001 0.021 0.044
Sea Venture 53 150 <0.001 0.318 0.160
Mayflower 66 127 <0.001 0.145 0.073
Diana 41 443 <0.001 0.667 0.345
Empress of China 184 34 <0.001 <0.001 <0.001
America 180 175 <0.001 <0.001 0.001
HMAT Boonah 17 1095 0.005 0.905 0.823

Our analyses indicate that by far the greatest introduction
risk of smallpox and measles – and the only plausible influenza
introduction – came from fast, highly-populated ships such
as the WW1 troop ship HMAT Boonah (1,095 passengers
and crew), here undertaking a 17-day journey from South
Africa to Australia. Had this ship departed with one infected
person on board, it would have had a 0.5% risk of introducing
influenza, an 82% chance of introducting measles and a
91% chance of introducing smallpox to its destination. This
combination of fast transit and extremely large passenger
populations substantially increased both the magnitude of
introduction risk for moderately fast-burning pathogens (such
as measles and smallpox) and expanded the range of potential
introduction to include pathogens (such as influenza) with
much faster life cycles.

Discussion

Many stories of transoceanic pathogen transfer have focused
heavily on early colonial European seafaring. Our analysis
indicates that introductions of smallpox and, to a lesser
extent, measles from Europe to the Americas via early
colonial voyages was plausible, but by no means guaranteed.
Depending on weather, these journeys could last just 5–
10 weeks (51), which is a reasonable time frame for these
pathogens to persist on board a ship. In these contexts,
overall pathogen introduction rates likely depended more
on population-side factors – for example, the density of
susceptible people, or the rate at which ships departed
with active infection(s) on board – than on the precise
epidemiological parameters aboard ships. By contrast, our
model shows that early transatlantic introductions of faster-
burning pathogens such as influenza were unlikely, as were
introductions of any acute pathogen on longer journeys such
as sail voyages to the Pacific (32).

More recently, the story of transoceanic pathogen transfer
has been told as one of technological innovation. Our work
supports and extends Cliff and Haggett (33)’s argument that
steam technology transformed rates of transoceanic pathogen
transfer. Steam ships travelled more quickly, could carry
greater numbers of passengers and, in the case of Gold Rush-
era San Francisco, made more frequent voyages. Under the
right conditions, this could have increased both the rate
and the geographic range of transoceanic pathogen transfer
substantially (Fig. 4A; Table 1).

However, steam travel was not unique in enabling global
pathogen circulation. Our analysis confirms longstanding
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arguments by historians that processes which involved large-
scale people-movement—for example war, migration, or the
transatlantic slave trade—were enormously significant for
global pathogen ecology (8, 9, 52, 53). In the case of 1850s
California, ship population size could easily have been the
difference between plausible introduction and epidemiological
isolation. In 1852, two ships sailed from Hong Kong, the
Catalpa and the Iowa. Both displayed similar transit times
into San Francisco: 60 days and 54 days, respectively (41, 42).
Yet while the Catalpa carried “Chinese merchandise, rice,
cordage, and assorted goods” – along with one solitary
passenger – the Iowa brought “377 unidentified in steerage”,
likely Chinese people bound for California’s gold fields (54).
As our analyses show, the presence of 377 people on board
transformed the Iowa’s capacity to sustain outbreaks of
smallpox and measles across the journey from Hong Kong to
San Francisco (Fig. 4A; Table 1).

Our study specifically considers a small subset of human
pathogens, chosen both for their historical impact and
because they permit simple modeling approaches. Historical
scholarship, together with recent advances in paleogenomic
sequencing, demonstrates that transoceanic shipping enabled
the diffusion of a much broader range of diseases (12, 55, 56).
These include pathogens with food-, water- and fomite-borne
transmission (e.g. cholera, Salmonella) (55, 57); pathogens
with vector-borne transmission (e.g. malaria, yellow fever,
West Nile virus) (12, 56, 58–60); pathogens with multi-
species transmission (e.g. plague, tuberculosis) (56, 61, 62);
and pathogens which infected only non-human animals (e.g.
rinderpest, foot-and-mouth disease) (63, 64). Transoceanic
shipping also shaped the global dissemination of broad range
of plant and animal species; recent scholarship suggests
that these processes were likewise shaped by the speed
and volume of transoceanic shipping, as well by trade of
specific commodities (65–68). A full understanding of these
introductions will require modified modeling approaches and
likely additional historical data. This issue is also pertinent
to smallpox, for which the extent of fomite transmission is
unclear. Recent research indicates that orthopoxviruses can
remain viable on surfaces for weeks (69). The World Health
Organization’s smallpox eradication campaign found that
fomites caused only a small minority of outbreaks (70), but
in the context of historical pathogen circulation even rare
introductions can be impactful (28–30).

Several additional questions require further consideration.
One concerns the mechanics of shipboard transmission. Little
is known concerning either the density dependence or the
intensity of transmission on board historical vessels (Text
S1). Our analysis points to several strong qualitative
patterns, which are robust across a broad range of parameters.
Crowded ships with larger and more susceptible populations
presented greater risks regardless of the precise form of density
dependence (Fig. 2). Similarly, broad ranges for plausible
outbreak duration can be inferred from pathogen natural
history, even without knowing shipboard R0 (Fig. 1E). More
refined quantitative predictions will depend on the specifics of
particular ships and voyages, and will require further research
into shipboard transmission dynamics. We have used our
model to map the possible effects of assumptions regarding
density dependence and transmission intensity across a range
of plausible parameters (Fig. S1–S4).

A second question concerns the extent of shipboard
population structure. Ships were famously hierarchical envi-
ronments, and highly compartmentalized populations may
have prolonged ship outbreaks. Captains or surgeons may
also have manipulated population structure in response to
outbreaks, for example through case isolation, quarantine, or
disembarkation of known or suspected infections. While pop-
ulation structure almost certainly shaped outbreak duration,
incorporating these effects is challenging in the absence of
high-resolution outbreak data from a given ship. Moreover, on
ships with poor ventilation or hygiene practices, transmission
could plausibly have been homogeneous regardless of social
behaviours or most medical interventions.

Our work sheds light on how shipboard transmission dy-
namics shape introduction risk, but reconstructing historically
accurate circulation rates would require more information
regarding pathogen dynamics in source populations. This
matters for inferring likely immunity rates in ship populations,
which our model shows can have a large impact on estimated
risks (Fig. S5). It also matters for assessing the probability
of at least one infected individual on board ship at the
point of departure. Longitudinal mortality data exists
for diseases such as smallpox and measles, especially in
European and North American contexts, with particularly
well-preserved time series in the London Bills of Mortality
(27, 71). Reconstructing historical prevalence and immunity
landscapes from these sources is difficult, but is critical for
estimating realistic pathogen transfer rates pre-20th century
contexts.

A related question concerns the contribution of partly-
immune individuals to pathogen circulation within a given
population. The ability of partly-immune people to be
infected and transmit infection has long been recognized
as an important driver of influenza (72) and smallpox (70)
epidemiology. Partial immunity also provides a compelling
explanation for recent resurgences in mumps (73) and pertus-
sis (74, 75). Moreover, it is plausible that the contribution
to transmission from partly-immune individuals was more
significant on board a ship than it was on land, due to
extended exposures or large infectious doses. This possibility
– and the influence of partial immunity on outbreak duration
more broadly – require further investigation.

Our model offers a general assessment of outbreak duration
in a closed population, which holds significance beyond
historical systems. Understanding infection persistence in
discrete subpopulations is critical for studying pathogen
circulation in any system with limited host connectivity,
from wildlife populations (76, 77) to agricultural biosecurity
(78, 79) to human populations distributed across regions
(17, 80).

These findings carry important historical implications,
connect to present-day disease dynamics, and may, some day,
inform interplanetary risk of pathogen spread. Centuries
before the present-day upheaval of air travel (80–82) and
large-scale human re-locations (83) combined to transform
global pathogen ecology. Yet this process was almost certainly
lengthy, geographically uneven, and contingent on complex
interplays between technology, shipping practices, and specific
pathogen biology. This presents a rich avenue for collabora-
tion between ecologists, epidemiologists, historians, and social
scientists. How do social, economic and technological forces
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combine to shape global pathogen ecology – and with what
consequences along the way for the world’s people, places,
and pathogens?

Materials and Methods

We simulate shipboard outbreaks using a stochastic SEIR model
(Text S3). We implement continuous-time stochastic simulations
in R with the Gillespie Algorithm, using the package GillespieSSA
(84). All simulations assume a single index case in state E at the
time of departure. We define outbreak duration as the time until
both state E and state I contain zero individuals.

To achieve a more realistic depiction of the time course
of infection, we use the Linear Chain Trick to make dwell
times in state E and state I Erlang-distributed (85). For all
simulations, we use shapes kE = kI = 3 and rates kE/µE and
kI/µI for states E and I respectively. This technique gives
a unimodal distribution with a long right-hand tail, such that
disease progression is relatively constrained in most individuals,
but occasional individuals experience substantially longer periods
of incubation or infectiousness (86). We assume that state E is
pre-symptomatic and that initially infected individuals could board
ship at any point during this period, randomly assigning index
cases across sub-states E1, E2, ..., EkE

at the point of departure.
Our model also tracks infection across pathogen generations,

when needed. The In infectious individuals from generation n
produce new exposed individuals En+1, which represent the (n +
1)st generation of infections.

To account for uncertainty and variation in the density
dependence of shipboard contact rates, our model uses a flexible
depiction of density dependence encoded by the equation:

R0 = µI(βddN)q(βfd)1−q

R0 is the pathogen’s basic reproduction number on board a given
ship. This represents the average number of infections that an
infected person generates in a fully-susceptible population, where
µI is the average period of infectiousness. The density dependence
of transmission is adjusted with the parameter q, with q = 1
representing classical density-dependent transmission (R0 ∝ N),
q = 0 representing classical frequency-dependent transmission
(R0 ⊥⊥ N), and 0 < q < 1 representing intermediate density
dependence (R0 ∝ Nq). The parameters βdd and βfd modulate
the intensity of transmission under each density dependence pole

— intuitively, the proportion (βdd) and the raw number (βfd) of
people on board ship that a single infected individual will infect
per day, on average, in a fully-susceptible population.

In analyses where N is constant and where we do not explore
the effect of density dependence, we set q = 1 such that R0 = βddN ;
we then back-calculate βdd from R0 and N . Mathematically, this
is equivalent to setting q = 0 with βfd fixed at βfd = βddN .

For analyses where N varies, we infer βfd from literature values
of R0 and µI (Table S1) and set βdd = βfd/c. Here, c is a constant
representing the population size at which βdd and βfd would be
equal. In main text analyses, we set c = 100. We explore
alternative values of c, as well as a range of q values, in Figs.
S2–S4.

Historical Data. To provide real-life context for our theoretical
results, we collected data on ship arrivals into the port of San
Francisco between June 6 1850 and June 19 1852 from volumes
I, II and III of genealogist and historian Louis. J. Rasmussen’s
reference book San Francisco Ship Passenger Lists (41–43). We
recorded the port of origin, the ship type, the journey time, and
the number of passengers for ships originating from seven locations:
Hawai’i; Hong Kong; Oregon Territory; New York City; Sydney,
Australia; Valparaíso, Chile; and Liverpool, England. In the few
cases where Rasmussen reports ships making multiple stops at
one or more of these locations in the course of their voyage, we
record both the journey time into San Francisco from a ship’s port
of origin and, where available, journey times into San Francisco
from the intermediate port(s). We exclude ships where substantial
numbers of people (N > 10) boarded during a voyage, as our
model does not account for changes in population size subsequent
to the initial point of departure.

For almost all ships, Rasmussen provides passenger numbers
but not numbers of crew. We assume that in most cases, crew
(i) represented a small proportion of a ship’s total population; (ii)
were, as professional sailors, more likely to possess immunity to
common maritime infections, and so represented an even smaller
proportion of a ship’s susceptible people. Thus, in the absence
of crew size data, analyses considering population size of vessels
arriving into San Francisco approximate N as the total number of
passengers on board each ship.
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