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Abstract 

Researchers and clinicians often rely on molecular assays like PCR to identify and monitor viral infections, 1 

instead of the resource-prohibitive gold standard of viral culture. However, it remains unclear when (if 2 

ever) PCR measurements of viral load are reliable indicators of replicating or infectious virus. The recent 3 

popularity of PCR protocols targeting subgenomic RNA for SARS-CoV-2 has caused further confusion, 4 

as the relationships between subgenomic RNA and standard total RNA assays are incompletely 5 

characterized and opinions differ on which RNA type better predicts culture outcomes. Here, we explore 6 

these issues by comparing total RNA, subgenomic RNA, and viral culture results from 24 studies of 7 

SARS-CoV-2 in non-human primates (including 2167 samples from 174 individuals) using custom-8 

developed Bayesian statistical models. On out-of-sample data, our best models predict subgenomic RNA 9 

positivity from total RNA data with 91% accuracy, and they predict culture positivity with 85% accuracy. 10 

Further analyses of individual time series indicate that many apparent prediction errors may arise from 11 

issues with assay sensitivity or sample processing, suggesting true accuracy may be higher than these 12 

estimates. Total RNA and subgenomic RNA showed equivalent performance as predictors of culture 13 

positivity. Multiple cofactors (including exposure conditions, host traits, and assay protocols) influence 14 

culture predictions, yielding insights into biological and methodological sources of variation in assay 15 

outcomes – and indicating that no single threshold value applies across study designs. We also show that 16 

our model can accurately predict when an individual is no longer infectious, illustrating the potential for 17 

future models trained on human data to guide clinical decisions on case isolation. Our work shows that 18 

meta-analysis of in vivo data can overcome longstanding challenges arising from limited sample sizes and 19 

can yield robust insights beyond those attainable from individual studies. Our analytical pipeline offers a 20 

framework to develop similar predictive tools in other virus-host systems, including models trained on 21 

human data, which could support laboratory analyses, medical decisions, and public health guidelines.  22 
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Author Summary 

Although viral culture is the gold-standard method to detect replicating and infectious virus, 23 

decisions in virology research, clinical diagnostics, and public health often must rely on faster, cheaper 24 

PCR assays that detect viral genetic material. Substantial scientific effort has focused on assessing whether 25 

PCR assays (and what kind of PCR assays) can accurately predict culture outcomes, often finding 26 

conflicting results. In our study, we address this long-standing question by developing a customized 27 

statistical approach to analyze a large database of non-human primates experimentally infected with 28 

SARS-CoV-2. We demonstrate that two common PCR protocols can predict viral culture results with 29 

similarly high accuracy, as long as interpretations account for other factors such as exposure conditions, 30 

demographics, and assay protocols. For example, we show that inoculated tissues are more likely to be 31 

culture-positive (for a given PCR result) on the first day post infection than all later days post infection or 32 

non-inoculated tissue on any day – a finding that will clarify interpretation of results in experimental 33 

studies. Beyond these biological findings, we also showed that our framework can accurately identify 34 

when an individual is no longer infectious, showing the potential for future versions (trained on human 35 

data) to offer an individualized approach to ending isolation. Overall, our work presents a standardized 36 

framework to quantitatively predict viral culture outcomes based on faster and cheaper assays, which can 37 

be readily adapted to any other pathogen-host system with relevant data. Our work also demonstrates the 38 

power of (Bayesian) meta-analysis, which will be essential for the new era of data sharing in virology. 39 
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Introduction  

Assays that detect and quantify the presence of viral genetic material are invaluable tools for 40 

clinicians, virologists, and epidemiologists, since they are used to identify infections, monitor individual 41 

infection trajectories, and track population-wide disease trends. The global reliance on quantitative reverse 42 

transcription-polymerase chain reaction (RT-qPCR) during the COVID-19 pandemic underscores its 43 

importance as a fast, sensitive, and relatively inexpensive mainstay of research and public health. Yet 44 

positive RT-qPCR results do not necessarily indicate active infection or viral shedding because these 45 

assays only target and quantify viral genomic material (1,2). Viral culture is the gold-standard method to 46 

detect infectious virus, but it is slow, labor-intensive, and requires niche resources like permissive cells 47 

and biosafety facilities. This precludes its use as a primary diagnostic in public health crises or even in 48 

standard clinical and research practices where speed and accessibility matter. The development of 49 

alternate methods to accurately characterize infectiousness is an active priority.  50 

Seeking a culture-free method to identify replicating virus, many studies on SARS-CoV-2 51 

developed alternative RT-qPCR assays based on coronavirus transcription mechanisms. Within host cells, 52 

coronaviruses transcribe not only full-length genomic RNA (gRNA) but also multiple subgenomic RNAs 53 

(sgRNA), which are a nested set of RNA segments that function as mRNA for translation of some 54 

structural and accessory proteins (3). Standard RT-qPCR protocols (4) typically amplify both gRNA and 55 

sgRNA simultaneously (henceforth termed a total RNA assay and abbreviated to ‘totRNA’). Since 56 

sgRNAs are only transcribed after cellular entry and are generally not packaged into mature virions (5), 57 

sgRNA-specific assays for SARS-CoV-2 were developed as a proxy for replicating virus (6), and they 58 

have been used in various contexts, including to distinguish between replicating virus and residual 59 

inoculum in animal challenge experiments (7,8). Many studies have also retrospectively analyzed clinical 60 
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samples with sgRNA assays to gauge evidence of local replication (6,9–12), but reports of using sgRNA 61 

for point-of-care clinical decisions are exceptionally rare (13).  62 

Despite the popularity of sgRNA assays, their diagnostic utility relative to totRNA or gRNA assays 63 

is debated. Based on evidence that sgRNA may degrade faster than gRNA (8), is not found in virions (5), 64 

and correlates better with viral culture results (9,10,14,15), some consider sgRNA a better indicator of 65 

recent replication and infectiousness (6,12). Others dispute these claims based on contrary findings, 66 

including evidence of similar degradation rates between sgRNA and gRNA (16–18), the discovery of 67 

membrane-associated and nuclease-resistant sgRNA (16), and analyses showing that sgRNA does not 68 

correlate better with culture outcomes (19). Studies finding that sgRNA quantities scale linearly with 69 

totRNA prompted further claims that sgRNA quantification offers no additional value relative to totRNA 70 

(17–19), and skeptics have argued that any improved correlation between sgRNA and culture likely 71 

reflects the assay’s lower sensitivity rather than true biological signal (16–18). Meanwhile, samples with 72 

large quantities of totRNA but undetectable sgRNA or unculturable virus are widely evident in the 73 

literature, especially in animal challenge experiments, but they go largely unexplained (8,20). These 74 

patterns highlight the complexity of the relationships among PCR assays and viral culture, and they 75 

underscore that our understanding of their relative trajectories during infection remains incomplete. Given 76 

their foundational importance for research and potentially for healthcare, many studies have called for 77 

better methods to interpret these assays and their interrelationships (21–24). 78 

Data limitations are central to these unresolved debates on how well PCR predicts culture and 79 

whether that varies by RNA type since the generalizability of observed patterns remains unclear. Each 80 

study’s sample size is typically quite small (e.g., often less than 100 RNA-positive samples), protocols 81 

differ between studies (e.g., PCR target genes, cell lines), patient demographics vary (e.g., hospitalized 82 

patients versus routine screening of university students), and analytical methods differ (e.g., descriptive 83 
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statistics, logistic or linear regressions). Further unexplained variation may depend on patients’ age, sex, 84 

and comorbidities, which can affect infection outcomes (25–28) but are often unaccounted for in assay 85 

comparisons. Exposure route and dose are also unknown for clinical infections, and because the true 86 

infection time is unknown, analyses of clinical data must rely on metrics like time since symptom onset 87 

(6,17,22,29,30), for which individual heterogeneity and recall bias can introduce substantial noise. Despite 88 

considerable effort to correlate RNA presence with culture outcomes, no study yet has jointly evaluated 89 

these various cofactors to identify and quantify their effects, and thus no method exists to integrate all of 90 

this information to quantitatively predict an individual’s infectiousness on a per-sample basis. Instead, 91 

public health agencies have recommended isolating until obtaining two consecutive negative tests or until 92 

ten days after an individual’s first positive test, where the latter was later revised to only five days 93 

depending on symptom severity and other risk factors (31). However, some individuals experience 94 

prolonged shedding, and many individuals cease to be infectious well before testing PCR or antigen 95 

negative (6,14,19,32). An individualized, evidence-based method to ending isolation (i.e., a precision 96 

medicine approach) could improve these practices substantially, by alleviating personal and economic 97 

burdens imposed by unnecessarily long isolation while also reducing the number of days individuals may 98 

still be infectious after release under static guidelines.  99 

In this study, we compiled and jointly analyzed a database of non-human primate (NHP) 100 

experiments, including 24 articles that reported per-sample measurements of at least two of the following 101 

assays: totRNA, sgRNA, and viral culture. This meta-analytic design enabled larger sample sizes and 102 

knowledge of variables that are unknowable with clinical data (i.e., exposure time, dose, and route), all 103 

for a gold-standard animal model of human disease (33). We developed a Bayesian hurdle model to predict 104 

the results from these disparate assays and to evaluate the effects of NHP species, demographic 105 

characteristics (age, sex), exposure conditions (dose and route), time since infection, and study protocols 106 
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(sample type, target gene, cell line, culture assay) on the relationships among assay outcomes. We first 107 

applied this method to predict sgRNA results from totRNA results, which enabled us to reconstruct their 108 

relative trajectories for all included individuals. Then, we tested the ability of both PCR assays to predict 109 

viral culture results. We characterized model performance on withheld data to evaluate predictive accuracy 110 

and generalizability, and we analyzed apparent prediction errors in the context of individual time courses 111 

to diagnose possible sources of these errors. Finally, we assessed our model’s ability to identify when an 112 

individual is no longer infectious, which we benchmarked against standard public health guidelines 113 

implemented for humans. With this work, we aimed to: (i) uncover the fundamental relationships among 114 

SARS-CoV-2 PCR assays and the presence of infectious virus, in the most human-relevant experimental 115 

model, (ii) provide a quantitative tool that can directly support the analysis, interpretation, and comparison 116 

of SARS-CoV-2 studies conducted in NHPs, and (iii) offer a standardized framework that future models 117 

can adapt to analyze relationships among disparate assays in other pathogen-host systems.  118 

Methods  

Database compilation 119 

Following many of the PRISMA guidelines for systematic literature searches (34), we constructed 120 

a comprehensive database of SARS-CoV-2 viral load and infectious virus data from non-human primate 121 

experiments (S1 Fig). To be included, articles were required to: (i) experimentally infect rhesus macaques 122 

(Macaca mulatta), cynomolgus macaques (Macaca fascicularis), or African green monkeys (Chlorocebus 123 

sabaeus) with SARS-CoV-2 (restricted to basal strains, excluding those reported with the D614G mutation 124 

or other named variant), and (ii) report quantitative or qualitative measurements of viral load (measured 125 

by RT-qPCR) or infectious virus (measured by plaque assay or endpoint titration) from at least one 126 

biological specimen for at least one individual and at least one sample time post infection. Only individuals 127 

receiving no or placebo treatments were recorded.  128 
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Of 86 studies meeting these criteria, we used the 24 articles that reported at least two of the 129 

following assays: totRNA PCR, sgRNA PCR, or viral culture (S1 Table, S1 Fig) (7,8,20,35–55). Raw 130 

data were used when available (published or obtained via email correspondence); otherwise, one author 131 

(CES) extracted data from published figures using the package ‘digitize’ (56) in R (57). Additional details 132 

of data acquisition and standardization are described in the S1 Methods. 133 

Bayesian hurdle model framework 134 

To compare disparate assays, we developed a Bayesian hurdle model with two components: (i) a 135 

logistic regression that predicts whether assay Y will fall above the limit of detection (Y>LOD) based on 136 

assay X, and (ii) a linear regression that describes the quantitative relationship between X and Y when 137 

both are measurable (Yvalue) (S2 Fig). Each component may include distinct sets of additional predictor 138 

variables (Ai and Bj, respectively). For the linear component, we incorporated hierarchical errors such that 139 

the model estimates article-specific error distributions (a) based on distributions of population average 140 

errors (σഥሻ and error standard deviations (sd). This captures potential differences in experimental noise 141 

among studies and protocols. The basic form of this model is as follows, where  and  are regression 142 

coefficients associated with the predictors noted in the subscript: 143 

 144 

Logistic 145 

𝑌வ௅ை஽~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖ሺ𝑝ሻ 146 

𝑙𝑜𝑔𝑖𝑡ሺ𝑝ሻ ൌ 𝛾 ൅  𝛿௑𝑋 ൅  ෍𝛿஺೔𝐴௜ 
௜

 147 

Linear 148 

𝑌௩௔௟௨௘~ 𝑁ሺ𝑦,𝜎௔ሻ 149 
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𝑦 ൌ 𝛼 ൅  𝛽௑𝑋 ൅  ෍𝛽஻ೕ𝐵௝
௝

 150 

𝜎௔~ 𝑁ሺ𝜎,ഥ 𝜎௦ௗሻ 151 

 152 

We evaluated the predictive performance of multiple models with different combinations of 153 

candidate predictors, and so the ∑AiAi and ∑BjBj terms varied for each considered model. Categorical 154 

predictors with more than two classifications were treated as unordered index variables, while binary 155 

predictors were treated as indicator variables. For instances of unknown age or sex, we marginalized over 156 

all possibilities. Unless otherwise stated, we used a threshold of 50% for the logistic components when 157 

classifying a sample as predicted positive or negative. 158 

We first applied this framework to predict sgRNA from totRNA results (termed the ‘sgRNA 159 

model’). All totRNA-negative samples are predicted to be sgRNA-negative, by definition. We then 160 

predicted viral culture results from PCR data using a parallel framework (termed the ‘culture model’), 161 

with the following minor modifications: (i) we considered models depending on totRNA, sgRNA, or both 162 

as predictors, and (ii) we restricted analyses to the logistic component, given scarcity of quantitative 163 

culture results. The model predicts all RNA-negative samples are culture negative.  164 

Candidate predictor selection and prior sensitivity analyses 165 

All candidate predictors were included because of hypothesized effects on the relationships among 166 

assay results, as summarized below. We chose informative priors to rule out implausible parameter values 167 

and to reflect existing knowledge on the expected direction of individual effects (outlined in the S1 168 

Methods), where appropriate. Notably, prior predictive simulations confirmed variable but reasonable a 169 

priori expectations for these informative priors, with substantial improvement over non-informative priors 170 
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that do not reflect existing knowledge (S13 Fig). Parameter estimates for the best models were 171 

qualitatively similar between informative and non-informative priors (S13 Fig).  172 

All considered models included totRNA, sgRNA, or both as the primary predictor(s). For all 173 

models, we considered multiple demographic factors including age class, sex, and non-human primate 174 

species, given hypothesized effects on SARS-CoV-2 infection (25–27,43,58,59). Because exposure 175 

conditions can affect initial virion and totRNA quantities, we included inoculation dose (in log10 pfu) and 176 

day post infection as candidate predictors. For day post infection, we distinguished between inoculated 177 

tissues sampled on the first day versus all other days post infection, and non-inoculated tissues on any day 178 

post infection (see S11 Table for tissue-specific categorization). Because sample content and processing 179 

may vary between non-invasive (e.g., swabs) and invasive samples (e.g., whole tissues obtained at 180 

necropsy), we considered sample type as a binary predictor.  181 

We also included predictors to account for assay-specific variation. For sgRNA models, we 182 

derived a target gene predictor based on the expected number of transcripts available for amplification 183 

during each PCR protocol, given that sgRNA abundance varies by gene (60) and totRNA assays can 184 

amplify both genomic and subgenomic RNA. We distinguished between totRNA assays that amplify most 185 

(‘totRNA-high’; targeting the N gene) or few sgRNA species (‘totRNA-low’; E gene) and sgRNA assays 186 

that target highly expressed (‘sgRNA-high’; sgN) or less expressed sgRNA species (‘sgRNA-low’; sgE, 187 

sg7), resulting in four possible protocol combinations. For culture models, we used the totRNA target 188 

gene as the predictor, except for the models including only sgRNA as the primary predictor. Since viral 189 

infectivity varies among cell lines (21,61,62) and culture sensitivity differs between endpoint dilution and 190 

plaque assays (63), we included cell line and culture assay as additional predictors for culture.  191 
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Evaluating and comparing model performance  192 

To find the highest performing model for each investigation, we first used a forward search to 193 

identify the model with the best performance for each possible number of predictors. We used 10-fold 194 

cross-validation to evaluate each model’s predictive performance on withheld data, and for each stage we 195 

selected the predictor that most increased the expected log pointwise predictive density (ELPD) (64).  196 

Following convention, we considered an ELPD difference of less than 4 to be small when comparing two 197 

models (64). Of those models identified by the forward search, we selected the ‘best model’ as the one 198 

with fewest predictors that achieved similar or better performance compared to the ‘full model’ 199 

(containing all predictors) on out-of-sample (test) data for three relevant statistics: (i) ELPD, (ii) prediction 200 

accuracy (i.e., the percent of correctly classified samples for the logistic component, or the percent of 201 

samples where the observed value fell within the 50% prediction interval for the linear component), and 202 

(iii) Matthew’s correlation coefficient (65) (MCC; logistic components) or median absolute error on the 203 

posterior predictive medians (MAE; linear component). Comprehensive descriptions of model evaluation 204 

and selection are provided in the S1 Methods. 205 

Accounting for lab effects 206 

Since there are other possible sources of methodological variation among articles besides target 207 

genes, cell lines, and culture assays (e.g., RNA extraction methods, sample storage conditions), we also 208 

fit all of our best models with an additional categorical predictor to account for lab effects. To reduce the 209 

risk of overfitting, when possible, we grouped labs based on where they conducted their primate 210 

experiments to account for common elements in lab protocols (e.g., many studies that analyzed sgRNA 211 

housed their primates at BIOQUAL, Inc.). Out of all articles, we identified eight groups of labs for the 212 

sgRNA analyses and ten groups of labs for the culture analyses (S8 Table). We incorporated the lab effect 213 

as another linear predictor to the logit probability term for the logistic components or to the mean of the 214 
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normal distribution for the linear component. The error term for the linear component remained article- 215 

(not lab-) specific. We fit each of these models with the same informative priors used in the models without 216 

lab effects, and we added non-informative priors for the lab effects.  217 

Analyzing isolation end times 218 

To assess performance on clinically relevant metrics, we evaluated how well our simple and best 219 

culture models can identify when an individual is no longer infectious (i.e., no longer culture positive). 220 

We restricted these analyses to individuals with at least two samples from the respiratory tract after their 221 

first positive test from the same location and sample type. For each individual, we estimated the end of 222 

their infectious period as the midpoint between their last true observed culture positive and their next 223 

observed culture negative (S18 Fig). When this resulted in the infectious period ending on a half day, we 224 

rounded up to the nearest day, such that all individuals are assumed to be infectious from the day of their 225 

first positive test up to (but not including) the day on which they reach their calculated midpoint.  226 

We then determined their model-specific isolation end time as the earliest day on which the 227 

associated model predicted a second consecutive culture negative, to mirror the public health guideline 228 

about two consecutive negative test results. Unless otherwise stated, we used our standard threshold of 229 

50% to classify samples as predicted negative or predicted positive. We excluded the individuals for which 230 

neither model predicted a second consecutive negative, resulting in 77 total trajectories for this analysis. 231 

When only one of the two models was unable to identify such a time, we conservatively assumed that, 232 

under that model, the individual would isolate until day 10 after their first positive. We benchmarked our 233 

analyses against standard guidelines developed for COVID-19 patients, where individuals are released 234 

from isolation (i.e., assumed to no longer be infectious) on days five or ten after their first positive test 235 

(31). To compare the performance of these isolation methods, we calculated: (i) the number of days each 236 

individual spent unnecessarily isolated when they were no longer infectious (‘unnecessary isolation 237 
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days’), and (ii) the number of days they were still infectious while no longer isolating (‘non-isolated 238 

infectious days’). 239 

Computational methods and software 240 

All data preparation, analysis, and plotting were completed with R version 4.2.0 (57). Posterior 241 

sampling of the Bayesian model was performed with No-U-Turn Sampling (NUTS) via the probabilistic 242 

programming language Stan (66) using the interface CmdStanR version 0.5.2. All model fits were 243 

generated by running six replicate chains with 4000 iterations each, of which the first 2000 iterations were 244 

treated as the warmup period and the final 2000 iterations were used to generate parameter estimates. 245 

Model convergence was assessed by the sampling software using 𝑅෠, effective sample sizes, and other 246 

diagnostic measures employed by CmdStan by default. No issues were detected.   247 
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Results  

The compiled dataset includes 2167 samples from 174 individual non-human primates  248 

A comprehensive literature search for studies that challenged non-human primates with SARS-249 

CoV-2 identified 24 articles that reported per-sample measurements of at least two of the following assays: 250 

totRNA RT-qPCR, sgRNA RT-qPCR, and viral culture (S1 Fig; Tables 1, S1). Of those, 14 articles 251 

reported totRNA and sgRNA for 116 individuals and 1194 samples, and 15 articles reported viral culture 252 

and either RNA type for 90 individuals and 1315 samples. Five articles reported results for all three assays, 253 

totaling 342 such samples. 254 

The dataset includes various demographic groups, including both sexes, ages ranging from 1 to 22 255 

years old, and three non-human primate species (rhesus macaque, cynomolgus macaque, African green 256 

monkey) (Tables 1, S1). The included articles span multiple study protocols, including different target 257 

genes, cell lines, exposure conditions, sample types, and sampling times. Only studies using early SARS-258 

CoV-2 strains (i.e., excluding those reporting the D614G mutation or named variants) were included, to 259 

minimize underlying strain-specific variation. Sampling locations include the upper and lower respiratory 260 

tracts, gastrointestinal tract, and other regions.  261 
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  sgRNA &  
total RNA 

Culture & 
either RNA 

All data 
D

em
og

ra
ph

ic
s 

Species    

Rhesus macaque 640 / 78 / 11 476 / 46 / 9 1071 / 112 / 17 

Cynomolgus macaque 371 / 28 / 3 412 / 21 / 5 601 / 37 / 6 

African green monkey 183 / 10 / 1 427 / 23 / 4 495 / 25 / 4 

Age class    

Juvenile 430 / 48 / 7 290 / 33 / 7 678 / 67 / 11 

Adult 667 / 56 / 10 993 / 50 / 9 1362 / 89 / 16 

Geriatric 54 / 8 / 1 2 / 1 / 1 54 / 8 / 1 

Unknown 154 / 23 / 3 72 / 6 / 1 226 / 29 / 4 

Sex    

Female 673 / 57 / 11 803 / 47 / 12 1213 / 84 / 18 

Male 367 / 36 / 9 440 / 37 / 10 728 / 61 / 16 

Unknown 43 / 4 / 1 30 / 6 / 1 73 / 10 / 2 

S
am

pl
in

g 
&

 e
xp

os
u

re
 c

on
di

ti
on

s 

Exposure dose   

104 - <106 521 / 61 / 9 311 / 19 / 3 832 / 80 / 12 

≥106 673 / 55 / 7 1004 / 71 / 12 1335 / 94 / 14 

Exposure route   

Single 0 / 0 / 0 441 / 31 / 5 441 / 31 / 5 

Multi 1194 / 116 / 14 874 / 59 / 10 1726 / 143 / 19 

Sample type   

Invasive 311 / 45 / 6 229 / 36 / 8 432 / 65 / 10 

Non-invasive 883 / 96 / 12 1086 / 76 / 12 1735 / 146 / 21 

Sample time   

Inoc, 1 dpi 136 / 72 / 11 89 / 36 / 8 187 / 94 / 17 

Inoc, 2+ dpi 724 / 99 / 13 595 / 72 / 12 1160 / 145 / 21 

Non-Inoc, 1+ dpi 334 / 54 / 7 631 / 72 / 13 820 / 106 / 16 

A
ss

ay
 p

ro
to

co
ls

 

PCR target genes   

N 814 / 86 / 11 824 / 54 / 9 1435 / 120 / 17 

E 380 / 34 / 4 383 / 30 / 5 624 / 52 / 7 

S 0 / 0 / 0 108 / 6 / 1 108 / 6 / 1 

Culture assay    

TCID50 --- 856 / 53 / 10 856 / 53 / 10 

Plaque --- 459 / 37 / 5 459 / 37 / 5 

Cell line    

Vero E6 --- 959 / 71 / 12 959 / 71 / 12 

Vero E6/TMPRSS2 --- 191 / 8 / 2 191 / 8 / 2 

Vero 76 --- 165 / 11 / 1 165 / 11 / 1 

 Total 1194 / 116 / 14 1315 / 90 / 15 2167 / 174 / 24 
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Table 1. Dataset summary. Columns stratify by assay availability, including samples with results for 262 

sgRNA and totRNA, culture and either RNA type, and any combination of two or more included assays. 263 

Entries indicate sample sizes for the corresponding cofactor, formatted as: the number of 264 

samples/individuals/articles. Doses are grouped by total plaque forming units (though they are analyzed 265 

as a continuous variable). Target gene corresponds with the totRNA assay when available, otherwise the 266 

sgRNA assay. The full article-specific data distribution is shown in S1 Table.  267 

 268 

 269 

Fig 1. Example trajectories and distribution of samples across assay types. (A) Each column presents 270 

the totRNA (circle) and sgRNA (diamond) trajectories for the labelled individual. When available, culture 271 

results (square) are plotted above the yellow line, with yellow and grey fill indicating positive or negative 272 

culture, respectively. Samples from the upper respiratory tract (URT) are plotted above the lower 273 

respiratory tract (LRT). Dashed lines indicate reported limits of detection (plotted at 0 when unavailable). 274 

Samples with undetectable RNA are plotted below 0. Representative individuals were chosen from the 275 

full dataset. All individual trajectories are shown in  S3-S10 Figs. (B) Number of samples available in our 276 

database for the corresponding assay(s).   277 
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Total RNA quantity does not solely explain sgRNA and culture results  278 

Across individuals and samples in the database, totRNA, sgRNA, and culture trajectories exhibit 279 

patterns and challenges consistent with previous reports, including unexpected instances of sgRNA 280 

negativity and culture positivity (Figs 1A, S3-S10). Comparing PCR results, totRNA copy numbers are 281 

larger than sgRNA copy numbers when both are detectable (median difference: 1.45 log10 units) (S11A 282 

Fig), and totRNA becomes undetectable simultaneously or later in infection than sgRNA (S11D Fig), 283 

with rare exceptions for both patterns likely due to assay noise or processing errors. When both totRNA 284 

and sgRNA are detectable for a given individual, their trajectories are typically highly correlated (median 285 

Pearson correlation coefficient: 0.92; S11C Fig). However, as is particularly common in animal challenge 286 

experiments but also reported in clinical data, totRNA-positive samples in this database are often sgRNA-287 

negative (30.0%), and totRNA quantities for these samples can be curiously large, ranging from 0.15 up 288 

to 6.38 log10 copy numbers (S11B Fig).  289 

TotRNA and culture positivity results are also often discordant, disagreeing for 39.3% of all 290 

available samples and 61.3% of all totRNA-positive samples. Up to 11.02 log10 totRNA copy numbers 291 

were quantified in a culture-negative sample, which is only 1 log10 smaller than the maximum copy 292 

numbers observed in a culture-positive sample (12.09 log10) (S11E, S11F Fig). As few as 2.06 log10 293 

totRNA copy numbers (when detectable) were noted in a culture-positive sample. As expected, totRNA 294 

typically becomes detectable earlier and remains detectable later than infectious virus, although for six 295 

individuals culture positivity preceded RNA positivity and one culture-positive individual was never 296 

totRNA-positive (S11G, S11H Fig). Considerably fewer samples with culture data also had sgRNA 297 

results (Fig 1B), so comparisons are limited, but patterns broadly parallel those for totRNA. Together, 298 

these patterns highlight that totRNA quantity cannot entirely explain sgRNA and culture outcomes. 299 

Statistical models may uncover cofactors underlying the discrepancies among these essential assays.  300 
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Predictive performance on withheld data clearly identifies the best statistical models  301 

To compare disparate assays, we developed a Bayesian hurdle model that predicts whether an 302 

assay of interest will fall above the limit of detection (the ‘logistic component’) and, if so, predicts a 303 

quantitative value for that assay (the ‘linear component’) (S2 Fig). We used stepwise forward regression 304 

with 10-fold cross-validation to evaluate predictive performance on withheld data for variable numbers of 305 

predictors. This allowed us to identify the most parsimonious model with similar or better performance 306 

on three key metrics compared to the model containing all predictors (the ‘best’ and ‘full’ models, 307 

respectively). To benchmark our analysis against prior work, we also evaluated the ‘simple model,’ for 308 

which the logistic and linear components contain PCR results as the sole predictor (i.e., it is a hurdle model 309 

comprised of a simple logistic regression and a simple linear regression).  310 

We first applied this method to predict sgRNA from totRNA assays (the ‘sgRNA model’), for 311 

which we considered species, age class, sex, exposure dose, day post infection, PCR target gene, and 312 

sample type (invasive vs. non-invasive) as candidate predictors. We then applied the logistic model 313 

framework to relate PCR results to culture positivity (the ‘culture model’), including cell line and culture 314 

assay as additional candidate predictors (see Methods for justifications). 315 

For both model types, the selection procedure clearly identified the best models (Fig 2), where 316 

each component included a unique set of predictors. These results were robust to alternate cross-validation 317 

procedures and prior distributions. Each selected model is generalizable, as shown by comparable 318 

prediction accuracy between training and test sets. See the S1 Methods for further details on model 319 

evaluation and selection.  320 
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 321 
Fig 2. Model selection criteria identify the best models. The highest performing models for each 322 

predictor number and modeling component are shown, ordered by increasing predictor numbers. Purple 323 

horizontal lines depict performance of the full model. Green vertical lines indicate the best model, chosen 324 

according to the displayed metrics. These include estimated log pointwise predictive density (ELPD), 325 

prediction accuracy, percent of samples within the 50% prediction interval, Matthews correlation 326 

coefficient (MCC), and median absolute error around the median (MAE). These were generated using test 327 

data during 10-fold cross validation. For the culture logistic component, the model with seven predictors 328 



 
 

20 
 

was not chosen because, although it outperformed the full model on MCC and prediction accuracy, it 329 

underperformed on ELPD. This is because the ELPD for the full model was larger than the ELPD for this 330 

model by more than our threshold of 4 units. Please see the Methods for more details about our selection 331 

criteria and the S1 Methods for a full description of the selection procedure. Acronyms are: T, totRNA; 332 

DPI, day post infection; SP, species; TG, target gene; ST, sample type; CELL, cell line; ASSAY, culture 333 

assay. All tested models are shown in S2-S5 Tables.  334 

Exposure dose, species, and PCR target gene improve predictions of sgRNA positivity  335 

totRNA levels clearly correlate with sgRNA positivity, but the substantial overlap in totRNA 336 

quantities measured for both sgRNA-positive and sgRNA-negative samples emphasize that other factors 337 

must influence sgRNA outcomes (Fig 3A). The best sgRNA logistic model identified exposure dose, 338 

species, and PCR target gene as key additional predictors of sgRNA positivity (Fig 2, S2 Table). This 339 

model is highly accurate, correctly classifying 91.1% of withheld samples. It outperforms the simple 340 

model both by increasing prediction accuracy and by assigning higher probabilities to correct 341 

classifications for more samples (Fig 3B). For intermediate quantities of totRNA (2-6 log10 copies), 342 

sgRNA positivity predictions differ between the simple and best models (Fig 3C), emphasizing the 343 

particular importance of accounting for cofactors in this range. The best and full models perform similarly 344 

(Fig 2). 345 

Our best model reveals insights into the three additional predictors of sgRNA outcomes: exposure 346 

dose, species, and PCR target gene. The following trends hold for model predictions across any cofactor 347 

combination when holding totRNA quantity constant: (i) individuals inoculated with larger doses have 348 

smaller chances of detecting sgRNA, (ii) African green monkeys have the smallest chance of sgRNA 349 

detection, while rhesus and cynomolgus macaques have similar predictions, and (iii) assays targeting 350 

highly-expressed sgRNA species (‘sgRNA-high’ assays) have higher chances of sgRNA detection than 351 
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those targeting less-expressed sgRNA species (‘sgRNA-low’). We refer the reader to Fig 3C for 352 

quantitative median predicted chances of sgRNA detection for a select cofactor combination, Fig 3D for 353 

qualitative variability in those predictions, and S6 Table for the associated 90% prediction intervals. In 354 

S7 Table, we also provide the 90% credible intervals for all parameters to facilitate predictions of other 355 

cofactor combinations. Columns within row groups in Fig 3C with a strong color gradient indicate 356 

substantial impacts of the associated cofactor on sgRNA predictions, and grey boxes highlight totRNA 357 

ranges where final classifications of sgRNA positivity differ within that cofactor group (for the 358 

standardized cofactor set).  359 

To determine whether any of the observed patterns could stem from lab-level methodological 360 

variation, we tested whether the findings of our best model were altered by including an additional 361 

predictor for lab effects. Some lab groups were predicted to have higher chances of sgRNA detection per 362 

totRNA quantity (S12A Fig), but performance was similar to the model without an explicit lab effect 363 

(S12B Fig). Crucially, the predicted differences among doses, species, and target genes were qualitatively 364 

unchanged between these models (S12C, S12D Fig), offering confidence in the robustness of our results.  365 

Exposure conditions, species, and PCR target gene impact expected RNA ratios  366 

sgRNA quantities scale positively with totRNA quantities, but with considerable unexplained 367 

variation (Fig 3E). Our best sgRNA linear model identified exposure dose, species, PCR target gene, and 368 

day post infection as key predictors of sgRNA quantity (note these are the same predictors as for the 369 

sgRNA logistic model, but with day post infection also included). This model performs well on withheld 370 

data, with 55.0% of observed sample values falling within the model-generated 50% prediction interval 371 

(Fig 2, S3 Table). The best model clearly outperforms the simple model, decreasing the median absolute 372 

prediction error from 0.58 to 0.43 log10 copies (Fig 3F) and increasing the correlation between observed 373 
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and median predicted values (from an adjusted R2 of 0.68 to 0.77). The best model performs marginally 374 

better than the full model, with small improvements in prediction accuracy (Fig 2).  375 

Below, we explore the effects of each selected cofactor on predicted sgRNA copy numbers. We 376 

report qualitative trends that hold across all cofactor combinations, and we refer the reader to Fig 3H for 377 

median (quantitative) predicted sgRNA copy numbers for a select cofactor combination (our ‘standardized 378 

cofactor set’, see figure legend). Variability in these predictions are presented qualitatively in Fig 3G and 379 

quantitatively (as 90% prediction intervals) in S6 Table. Credible intervals for all parameters are included 380 

in S7 Table. Similar to the logistic component, we also fit the best model with an additional predictor for 381 

lab group, which identified some modest differences in the expected sgRNA quantities among articles 382 

(S12E Fig) and had similar prediction accuracy to the model without lab effects (S12F Fig). We describe 383 

any other qualitative differences in our results between these models below, which are also visualized in 384 

S12 Fig.  385 

The best model predicts that exposure conditions and sampling time impact RNA ratios. Samples 386 

obtained from individuals inoculated with larger doses must have higher total RNA copy numbers to 387 

expect the same sgRNA quantity. Results for day post infection parallel these exposure-dependent 388 

patterns. To expect a given sgRNA quantity, totRNA copies must be highest for inoculated tissues on the 389 

first day post infection, intermediate for inoculated tissues on all later days post infection, and lowest for 390 

non-inoculated tissues on any day post infection. When we added a predictor for lab group, the effects of 391 

day post infection were qualitatively unchanged while the dose effect weakened and reversed (S12G, 392 

S12H Fig), although a substantial portion of the parameter density allowed for the original dose effect.  393 

PCR target genes also affect predictions. Conditional on totRNA quantity, totRNA-low/sgRNA-394 

high assays have the largest predicted median sgRNA quantities, followed by totRNA-low/sgRNA-low 395 

and totRNA-high/sgRNA-low assays. Quantitative sgRNA outcomes were unavailable for totRNA-396 
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high/sgRNA-high assays, so estimates were not possible for those protocols. These effects were 397 

qualitatively similar in our model with lab effects (S12G, S12H Fig). 398 

The best model also predicted that sgRNA quantities vary by species. Regardless of whether a lab 399 

effect was included, rhesus macaques and African green monkeys had highly similar predictions. 400 

Cynomolgus macaques were predicted to have lower median sgRNA quantities for any given totRNA 401 

quantity, though this effect was substantially reduced when lab effects were included. Given that only one 402 

lab group had data from both cynomolgus macaques and another species (rhesus macaques), we view this 403 

species effect as an intriguing but tentative finding that warrants further investigation.  404 
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Fig 3. The best sgRNA model captures key sources of underlying variation in PCR outcomes. (A) All available sgRNA data plotted 406 

against totRNA results (with vertical jitter), with all totRNA-negative samples plotted in the grey region (with horizontal and vertical 407 

jitter). One totRNA- and sgRNA-positive sample with -1.18 log10 totRNA copies is not visible. (B) Distribution of median model-408 

predicted chances of sgRNA detection for all available totRNA-positive samples, stratified by model type and observed outcomes. 409 

Samples right of the dashed line are correct predictions. (C) Median predicted chances of sgRNA detection for the simple model (top 410 

row) and all cofactor groups for the best model (other rows), evaluated for specific totRNA levels. Predictions were generated using the 411 

following ‘standardized cofactor set’ (which are highlighted in bold text): rhesus macaques inoculated with 5.5 log10 pfu and sampled 412 

at least two days post infection from inoculated tissues, which were processed with a totRNA-high/sgRNA-low assay. For the simple 413 

model, the grey box encloses totRNA copies where classifications differ among the simple model and any possible combination of 414 

cofactors in the best model, based on our standard prediction threshold of 50%. For all other rows, grey boxes enclose regions where 415 

classifications differ within the displayed cofactor group for the standardized cofactor set. For example, 5 log10 totRNA copies / sample 416 

is enclosed for ‘Species’ because African green monkeys are predicted to be negative while both other species are predicted to be 417 

positive. The rows for the other cofactor groups (e.g., target gene) do not influence the grey boxes for ‘Species’. (D) 300 posterior draws 418 

from the best logistic model for the standardized cofactor set, with colored lines as indicated in panel-specific legends. The dark blue 419 

line presents the simple model’s mean fit. (E) All available sgRNA data for totRNA-positive samples, where sgRNA-negative samples 420 

are plotted below 0 (with vertical jitter). (F) Distribution of median absolute errors for all sgRNA-positive samples, stratified by model 421 

type. (G) As in (D) but for the best linear component. (H) As in (C) but reporting median sgRNA copy number predictions. Grey boxes 422 

enclose regions where predicted sample quantities within the displayed cofactor group fall both above and below a common limit of 423 
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detection (1.69 log10), and otherwise follow the same rules as in panel (C). Acronyms are as follows: ‘RM’, rhesus macaque; ‘CM’: 424 

cynomolgus macaque; ‘AGM’: African green monkey; ‘Non-Inv’: non-invasive; ‘Inv.’: invasive; ‘DPI’: day post infection; ‘I, 1’: 425 

inoculated tissues sampled on day 1 post infection; ‘I, 2+’: inoculated tissues sampled any other day post infection; ‘NI, 1+’; non-426 

inoculated tissues on any day post infection; “T↑SG↑”: totRNA-high/sgRNA-high; “T↓SG↑”: totRNA-low/sgRNA-high; “T↑SG↓”: 427 

totRNA-high/sgRNA-low; “T↓SG↓”: totRNA-high/sgRNA-low.  428 



 
 

27 
 

 429 

Fig 4. The best sgRNA model reconstructs individual trajectories with high accuracy. Each panel 430 

includes the data for one randomly selected individual sampled from either the upper respiratory (URT) 431 

or lower respiratory tract (LRT), including observed totRNA (circle), observed sgRNA (diamond), and 432 

median predicted sgRNA (triangle) quantities. Detection limits are plotted as dashed lines in the 433 

corresponding color when available, otherwise grey lines are plotted at zero. All undetectable samples are 434 

plotted below zero. See S3-S5 Figs for all individuals. 435 

The sgRNA model accurately reconstructs individual viral load trajectories  436 

To further analyze performance, we reconstructed individual viral load trajectories using the best 437 

sgRNA model (Figs 4, S3-S5). The model correctly predicted the timing of the first and last observed 438 

sgRNA positive for 90.1% (n=219/243) and 72.8% (n=177/243) of all individual- and (non-invasive) 439 

sample-specific trajectories with at least two sampling times, respectively (S14 Fig). Notably, 70.0% 440 

(n=170/243) of those trajectories were predicted without a single misclassification. The distribution of 441 

predicted sgRNA quantities was highly similar to the distribution of observed sgRNA quantities (median 442 

differences of estimated means: -0.04 log10 units; 90% Credible Interval [CI]: -0.18, 0.08; S1 Methods) 443 
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but highly dissimilar to observed totRNA values (-0.79; 90%CrI: -0.92, -0.66), offering further confidence 444 

in the model’s excellent performance. 445 

Total RNA and sgRNA are both suitable predictors of viral culture  446 

To determine which PCR assay best predicts viral culture, we compared models including totRNA, 447 

sgRNA, or both as predictors of culture positivity. We first evaluated performance only on samples with 448 

quantitative results for both assays and for models with no additional cofactors, for which totRNA, 449 

sgRNA, and both had similar prediction accuracy (S9 Table). Because few samples had both sgRNA and 450 

culture outcomes (Fig 1B), we imputed median sgRNA predictions where needed, using the best 451 

performing sgRNA model. On this full dataset, all three models also performed similarly well, though 452 

totRNA showed some evidence of better predicting culture positive samples. We then ran our model 453 

selection procedure on totRNA and sgRNA separately for all available data, which resulted in highly 454 

similar prediction accuracy for both best models, though the model using totRNA was more parsimonious, 455 

with two fewer predictors (S4, S5 Tables). Given this parsimony and the lack of reliance on imputed 456 

sgRNA values, plus the lack of evidence that sgRNA is a superior predictor, we based further analyses 457 

solely on totRNA.  458 

Demography, exposure conditions, and assay protocols resolve disparities in culture results  459 

We next sought to predict culture positivity from totRNA results using the logistic model 460 

framework. The best model contained day post infection, inoculation dose, age class, species, culture 461 

assay, cell line, and PCR target gene as predictors, and it correctly classifies 84.7% of withheld data (Fig 462 

2; S4, S9 Tables). It outperforms the simple model by correctly predicting an additional 7.0% of culture 463 

positive samples and by assigning higher probabilities for true classifications (Fig 5B; S15A Fig). The 464 

difference in performance is especially pronounced at intermediate totRNA quantities (6-8 log10), which 465 
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often occur during the critical transition between culture positive and negative states (i.e., in clinical terms, 466 

at the end of the infectious period). For these samples, the best model correctly predicts an additional 467 

23.3% of culture positives (S15B Fig) and often with much higher confidence (S15C Fig). Strikingly, 468 

culture predictions can differ between the simple and best models for all considered quantities of totRNA 469 

(0-12 log10 copies) (Fig 5C), highlighting the benefit of accounting for cofactors when predicting culture 470 

outcomes across all totRNA quantities. The best model performs similarly to the full model (Fig 2; S4 471 

Table). 472 

In the text below, we explore the effects of each selected cofactor on culture outcomes. Given the 473 

high dimensionality of these predictions, we report qualitative trends that hold across cofactor 474 

combinations, and we refer the reader to Fig 5C for median predicted chances of positive culture for a 475 

select combination of cofactors (i.e., our ‘standardized cofactor set’, see figure legend). Columns in Fig 476 

5C with a strong color gradient indicate dramatic impacts of the associated cofactor on culture predictions, 477 

and grey boxes highlight totRNA ranges where final classifications differ within that cofactor group (for 478 

the standardized cofactor set). These ranges differ for other cofactor combinations. We present the 479 

variability of our results (for the standardized cofactor set) qualitatively in Fig 5D and quantitatively (as 480 

90% prediction intervals) in S10 Table. In S7 Table, we provide the medians and 90% credible intervals 481 

for all parameters to facilitate predictions of other cofactor combinations.  482 

To determine whether unmodelled differences among labs could explain any of the observed 483 

patterns, we fit our best culture model with an additional term for lab effects. Some groups of labs were 484 

predicted to have higher overall chances of culture positivity per totRNA quantity (S16A Fig), but overall 485 

prediction accuracy was similar to the model without a lab effect (S16B Fig). There was some additional 486 

variation in the parameter estimates for the model with a lab effect, but the qualitative findings for all 487 

cofactors were consistent across both models (S16C, S16D Fig).  488 
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Exposure conditions had substantial impacts on culture predictions. Individuals inoculated with 489 

larger doses have smaller probabilities of obtaining successful culture for any given totRNA quantity. 490 

Interestingly, in contrast with results predicting lower sgRNA (per totRNA quantity) in inoculated tissues 491 

(Fig 3G, 3H), the culture model predicts that inoculated tissues sampled on the first day post infection 492 

have the highest probabilities of being culture positive per totRNA quantity. Inoculated tissues on later 493 

days post infection and all non-inoculated tissues are much less likely to be culture positive, with 494 

substantial overlap in the predicted probabilities of those two groups. 495 

Multiple demographic factors also affect culture outcomes. Predictions for juvenile and adult age 496 

classes largely overlap, but geriatric individuals have substantially higher predicted chances of successful 497 

culture for the same viral load. This difference was reduced, though still clearly apparent, when including 498 

a lab effect. However, few samples from geriatric individuals were available (Table 1), and so these results 499 

should be interpreted cautiously. Predictions also vary based on species: the chances of successful culture 500 

for some viral load are smallest for cynomolgus macaques compared to rhesus macaques and African 501 

green monkeys, where the latter two species have highly similar predictions.  502 

Assay conditions also influence culture outcomes, as expected. The model predicts that VeroE6-503 

TMPRSS2 cells have the highest chance of positive culture, followed by VeroE6 and Vero76 cells. 504 

TCID50 assays are predicted to have higher sensitivity than plaque assays, and the chances of culture 505 

positivity (for a given viral load) are higher for PCR protocols targeting Spike (S) than for those targeting 506 

the Nucleocapsid (N) or Envelope (E) genes.   507 
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Fig 5. The best culture model captures key sources of underlying variation in culture outcomes. (A) 509 

All available culture data plotted against totRNA results (with vertical jitter), with all totRNA-negative 510 

samples plotted in the grey region (with horizontal and vertical jitter). (B) Distribution of median model-511 

predicted chances of positive culture for all totRNA-positive samples, stratified by model type and 512 

observed outcomes. Samples right of the dashed vertical line are correct predictions. (C) Median predicted 513 

chance of positive culture for the simple model (top row) and all cofactor groups included in the best 514 

model (other rows) for totRNA copies (evaluated at integer values, starting at 0). Predictions were 515 

generated using the following ‘standardized cofactor set’ (which are highlighted in bold text): adult rhesus 516 

macaques inoculated with 5.5 log10 pfu and sampled at least two days post infection from inoculated 517 

tissues, where PCR targets the Nucleocapsid gene and culture uses plaque assays with VeroE6 cells. Grey 518 

boxes enclose regions where classifications differ within the cofactor group for the standardized cofactor 519 

set, as described for Fig 3C. For the simple model, it encloses regions where classifications differ between 520 

the simple model and any possible combination of cofactors. (D) 300 posterior draws from the best model 521 

for the standardized cofactor set, with colored lines as indicated in panel-specific legends. The dark blue 522 

line presents the simple model’s mean fit. Acronyms are as described in Fig 3, plus the following: E6, 523 

VeroE6; E6-SS2, VeroE6-TMPRSS2; and 76, Vero76 cells.  524 
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Individual trajectories uncover sources of culture prediction errors 525 

Although our best culture model exhibits remarkable 84.7% accuracy on withheld data, we 526 

analyzed our predictions further to identify potential causes and implications of existing errors. 64.1% 527 

(n=116/181) of all incorrect predictions were false negatives, of which a curious 11.2% (n=13/116) were 528 

PCR negative. Even excluding these totRNA-negative samples, totRNA copies for false negative samples 529 

were substantially smaller than for true positives (median difference of estimated population means: -2.83 530 

log10 units; 90%CrI: -3.13, -2.53) but more similar to true negatives (median difference: 0.57; 90%CrI: 531 

0.27, 0.87). These RNA-low but culture-positive samples could be explained by PCR or sample processing 532 

issues resulting in the amplification of less RNA (e.g., sample degradation), or by culture contamination. 533 

Similarly, totRNA copy numbers for false positive predictions were substantially larger than for true 534 

negatives (median difference: 3.05; 90%CrI: 2.74, 3.36) but were similar to true positives (median 535 

difference: -0.35, 90%CrI: -0.66, -0.04). Culture insensitivity could explain these RNA-high but culture-536 

negative samples.  537 

We further characterized errors by analyzing performance in the context of individual trajectories 538 

for (non-invasive) samples with at least two sampling times (Figs 6, S7-S9, S17). Overall, the best model 539 

correctly predicted 58.3% (n=120/206) of these trajectories without a single culture misclassification, 540 

compared to only 47.6% (n=98/206) by the simple model. Within all trajectories, the best model made a 541 

total of 131 errors in predicting culture status of individual samples, while the simple model made 171 542 

errors. We categorized these errors into four types: (i) samples obtained on the first or last sampling day 543 

(termed an ‘edge’), (ii) samples obtained as culture results transition between positive and negative states 544 

(‘transition’), (iii) samples where observed culture results change for one sampling time despite 545 

surrounding instances of the opposite classification (‘data blip’), and (iv) samples where culture 546 

predictions change for one sampling time despite surrounding instances of the opposite classification 547 

(‘prediction blip’). Notably, while edge errors are difficult to analyze, given limited information from 548 
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surrounding time points, transitions may reflect sample quality and assay sensitivity interacting to drive 549 

noisy outcomes for samples with intermediate RNA or virion quantities.   550 

When considering all prediction errors, we find that edge errors are the most common for both the 551 

best (n=51/131; 38.9%) and simple (n=78/171; 45.6%) models. Transition errors, however, are of 552 

particular interest, given that the shift from positive to negative states determines the end of infectivity. 553 

The best model made 44 transition errors (n=44/131; 33.6%), while the simple model made 49 transition 554 

errors (n=49/171; 28.7%). We then calculated how many edge errors could also be considered transition 555 

errors, and once again we found that the best model made fewer such errors (23 vs. 34). Thus, model 556 

accuracy at this critical point during infection is improved by accounting for key covariates. 557 

For the best model, data blips are less common (n=19/131; 14.5%) than edge and transition errors, 558 

and all except one data blip are observed culture positives surrounded by culture negatives (leading to 559 

false-negative prediction errors) (Figs 6B, S17A). Eight of these samples co-occur with increases in 560 

totRNA quantities from the previous sampling time, suggesting they may reflect true local replication 561 

(e.g., as in rebound cases). The remaining instances accompany decreases in totRNA quantities, where 562 

sample contamination could drive spurious culture positivity or PCR processing issues could result in 563 

RNA underestimates. Prediction blips are the least common (n=17/131; 13.0%), of which 70.6% 564 

(n=12/17) are false negatives that often have lower totRNA quantities than the previous sampling time 565 

(Figs 6B, S17B). These could be explained by sample quality or PCR processing issues resulting in RNA 566 

underestimates, which is particularly plausible for instances where totRNA levels increase in the next 567 

sampling time. In contrast, false positive prediction blips primarily occur after sharp increases and high 568 

quantities of totRNA, and all occur for plaque assays. Given our model predicts lower sensitivity for 569 

plaque assays, these errors could reflect failed culture, though RNA overestimates could also explain this 570 

pattern.   571 
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 572 

Fig 6. Error analysis reveals potential causes of culture prediction errors. (A) Each row shows culture 573 

results for one individual-sample trajectory that contains at least one instance of the panel-specific error 574 

type. Trajectories may appear in multiple panels if they contain multiple error types, though trajectory 575 

ordering is inconsistent. Red outlines highlight samples with the denoted error type. (B) TotRNA values 576 

over time for each error type, all invasive samples, and all correctly classified non-invasive samples (‘no 577 
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error’). In (A) and (B), yellow squares indicate culture positives and grey indicates culture negatives. 578 

Squares with black outline are correctly classified, while those with no or red outline are incorrectly 579 

classified. The data blip individual on day 21 post infection has another sample available at a later 580 

timepoint, so it is not considered an ‘edge.’  581 

The best culture model shows potential for accurate, individualized isolation practices 582 

Although our model is trained on NHP data and cannot be applied directly to humans, we sought 583 

to illustrate the potential clinical utility of such a framework. To do so, we assessed the simple and best 584 

models’ ability to identify when an individual is no longer infectious (i.e., no longer culture positive). For 585 

all available individuals (n=77), we determined their (model-specific) isolation end times as the earliest 586 

day on which the associated model predicted a second consecutive culture negative (S18 Fig). Because 587 

the time between consecutive tests increases over the course of infection (S19 Fig), there is an implicit 588 

bias towards longer isolation times for individuals that test positive longer and hence are observed less 589 

frequently during the period that they lose infectiousness. To account for this bias, we also ran analyses 590 

for a hypothetical ‘perfect’ model that identifies culture status correctly for every sample, and so it always 591 

releases individuals from isolation on the day of their true second consecutive culture negative. For further 592 

comparison, we included two standard public health guidelines for SARS-CoV-2, which release all 593 

individuals from isolation on days five or ten after their first positive (31).  594 

We found that, across all procedures, the best model resulted in the smallest number of days that 595 

individuals were unnecessarily isolating while no longer infectious (Fig 7A), with an especially large 596 

reduction compared to the ten-day protocol (126 vs. 510 days). We then considered the number of days 597 

on which individuals were not isolating but still infectious. If no isolation practices were used, there would 598 

be 260 such days. No individual was infectious up to day ten after the first positive test, and so the ten-599 

day protocol was the only one with zero non-isolated infectious days (Fig 7B). The simple model had the 600 
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largest number of non-isolated infectious days (65 days), followed by the best model (60 days), the five-601 

day procedure (37 days), and the perfect model (34 days). Upon further investigation, many of these non-602 

isolated infectious days arose from 16 individuals that showed evidence of rebound infection, which we 603 

defined as at least one known culture negative occurring between two known culture positives (S18 Fig). 604 

Of these 16 individuals, many of them (n=6/16; 37.5%) had their final culture positive before day 5 (“early 605 

rebound”), which thus did not affect the performance of the five-day protocol but did penalize the best 606 

and simple models despite them accurately identifying many intermittent culture negatives. All protocols 607 

(except for the ten day procedure) were also affected by the 10 individuals that had their final culture 608 

positive on or after day 5 (“late rebound”; n=10/16; 62.5%). When we excluded any rebound individuals, 609 

the best model and the five-day procedure differed by only three non-isolated infectious day (20 vs. 17 610 

days).  611 

To further compare the protocols, we also evaluated their ability to identify the first time that 612 

individuals experienced a true (observed) second consecutive culture negative. For these analyses, we 613 

excluded the 12 individuals where this never occurred. We classified the protocols based on whether they 614 

accurately identified this time (‘Correct’) or whether the predicted time occurred before (‘Early’) or after 615 

(‘Late’) the known time. The best model was correct for the most individuals (n=30/65; 46.2%; Fig 7E; 616 

S18 Fig), with the exception of the perfect model that by definition classifies all individuals correctly. The 617 

simple model only classified 30.8% (n=20/65) of individuals correctly, which is 15.4% (n=10/65) fewer 618 

individuals than the best model. The best model also generated 10.8% (n=7/65) fewer early predictions, 619 

which is a particularly important improvement given the public health cost of premature release from 620 

isolation. We also analyzed the confidence with which the two models identified the first two consecutive 621 

true negatives. The best model misclassified fewer of these samples as culture positive (difference: 622 
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n=7/130; 5.4%), and it was equally or more confident (by up to 36.4%) in the correct prediction for 80.0% 623 

of the samples (n=104/130; Fig 7D). 624 

Finally, we investigated the sensitivity of our results to the threshold probability at which samples 625 

are predicted to be culture positive. We sequentially decreased this probability from 50% (our standard 626 

threshold) to a more conservative 10%, which increased the number of samples predicted to be culture 627 

positive. Because the five- and ten-day protocols are discrete rules, varying thresholds do not affect their 628 

metrics. For the best and simple models (Fig 7E; green bars and blue dots, respectively), lower thresholds 629 

increased the number of unnecessary isolation days, though notably the best model always had fewer days 630 

than the simple model. Lower thresholds also resulted in substantially fewer non-isolated infectious days, 631 

and both the simple and best models can outperform the five-day protocol (Fig 7F). Notably, lowering 632 

this threshold reduced the number of rebound individuals that are prematurely released from isolation. 633 

Although the simple model appeared to outperform the best model on the number of infectious days, this 634 

reduction actually resulted from the simple model failing to identify a second consecutive negative more 635 

often than the best model for all threshold values (e.g., 64.6% vs. 51.9% of individuals for a 10% 636 

threshold). This causes more individuals to default (by our assumption) to the ten-day procedure, thus also 637 

decreasing the number of non-isolated infectious days. Overall, the best model provides the most accurate 638 

and customizable approach – offering the potential to tune predictions to minimize non-isolated infectious 639 

days or to minimize unnecessary isolation days, depending on context and local priorities. 640 
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 641 

Fig 7. The best culture model captures the end of infectiousness better than existing approaches. (A) 642 

The cumulative days unnecessarily isolated by all individuals (histogram, left axis) and the distribution of 643 

individual days unnecessarily isolated (points, right axis) for the ten-day, five-day, simple, best, and 644 

perfect protocols. Individuals that were isolated for too few or the exact number of days are not shown. 645 

(B) The cumulative days that individuals were still infectious after the end of isolation (histogram, left 646 

axis) and the distribution of days that individuals were still infectious (points, right axis) for all the 647 

protocols in panel A. Transparency shows the classification of individual trajectories as either showing no 648 

indication of a rebound (darkest), indication of a late rebound (medium, day 5 after the first positive test 649 

or later), or indication of an early rebound (lightest, before day 5 after the first positive test). Rebound 650 

individuals are indicated by red points. Individuals that were not still infectious are not displayed. (C) 651 

Performance of each protocol on identifying the true (observed) time of the second consecutive culture 652 

negative for all individuals where this occurred. ‘Correct’ (darkest, bottom) includes all individuals for 653 

which the protocol exactly identified the second consecutive negative. ‘Early’ (medium, middle) includes 654 

all individuals where the prediction occurred before the true time, while ‘Late’ (lightest, top) includes all 655 



 
 

40 
 

individuals where the prediction occurred after the true time. The perfect model is not shown, as by 656 

definition it is 100% correct. (D) Comparison of the culture positive probabilities predicted for the simple 657 

and best models on both samples from the first true instance of consecutive negatives. The right panel 658 

shows the raw predicted probabilities for each model. The left panel shows the per-sample difference 659 

between those probabilities for the simple and the best model, where the best model is more confident in 660 

the upper region (i.e., it has smaller predicted probabilities of being culture positive) and the simple model 661 

is more confident in the lower region. (E) The cumulative days unnecessarily isolated by all individuals 662 

(green histogram, left axis) and the distribution of individual days unnecessarily isolated (green points, 663 

right axis) for five different threshold probabilities at which a sample is considered culture positive. The 664 

best model results are displayed in the green bars (cumulative) and by the green points (individuals). The 665 

horizontal lines show the results for the five- and ten-day procedures, with the same colors as in (A). The 666 

blue points and connecting lines show the cumulative days for the simple model. (F) As in panel E, except 667 

displaying the number of days individuals were still infectious after the end of isolation. Red points are 668 

rebound individuals.   669 
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Discussion 

In this study, we developed a generalizable model to infer the results of one virological assay from 670 

another. By applying this framework to our compiled database of non-human primate experiments on 671 

SARS-CoV-2, we generated highly accurate predictions of sgRNA and culture results from standard PCR 672 

protocols. These analyses allowed us to answer foundational questions about whether totRNA and sgRNA 673 

assays are fundamentally interchangeable and what factors drive the complicated relationships between 674 

PCR and culture outcomes. Our best models identify key sources of biological and methodological 675 

variation (including exposure conditions, demographics, and assay protocols), across which predictions 676 

varied widely. We showed that because standard, single regression models (like our ‘simple models’) 677 

ignore this variation, they could incorrectly infer culture outcomes for samples with totRNA copy numbers 678 

spanning twelve orders of magnitude; our biologically-informed multiple regression models showed 679 

substantial gains in accuracy and precision. Our findings highlight the importance of accounting for the 680 

influence of cofactors on viral load and culture positivity – no single threshold value applies across study 681 

designs.  682 

We addressed the unresolved debate about the relative merit of sgRNA to predict culture outcomes 683 

by conducting the first comprehensive analysis of a large dataset of controlled exposures. We found no 684 

clear evidence that sgRNA outperforms totRNA, and instead we found that both infer culture outcomes 685 

with high accuracy when accounting for key biological covariates. Given these results and that we can 686 

reconstruct sgRNA trajectories from totRNA outcomes with high accuracy, underlying cofactors may 687 

explain previously observed differences in the relative predictive capacity of totRNA and sgRNA (10,14). 688 

Future studies could prospectively measure all three assays (ideally with quantitative culture) to confirm 689 

and extend our findings, though notably our model achieved a remarkable 85% accuracy in predicting 690 
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culture outcomes and our error analysis showed that many prediction errors may have arisen from 691 

upstream data issues (see below).  692 

Our models characterize many biological patterns hypothesized (or known) based on previous 693 

experimental work on SARS-CoV-2, including the effects of exposure conditions on sgRNA and culture 694 

outcomes. In particular, we find that larger exposure doses increase the totRNA copy numbers associated 695 

with predicting culture positivity and detectable sgRNA. This suggests that the amplification of residual 696 

(inoculum-derived) genomic RNA may explain curious instances of sgRNA- or culture-negative samples 697 

with large totRNA copies, substantiating concerns in the animal challenge literature that inoculation 698 

procedures can directly influence viral detection and quantification (7). Interestingly, when we included a 699 

lab effect, our best sgRNA model predicted that (for any given totRNA quantity) larger doses would 700 

increase or have no effect on sgRNA quantities. This pattern could arise from two dueling effects of the 701 

inoculation procedure, whereby larger doses may increase (at least initial) sgRNA production, but 702 

inoculum-derived and newly produced gRNA could mask this effect. Future experimental work could test 703 

this hypothesis by directly comparing a range of doses.  704 

The amplification of residual inoculum may also explain differences predicted between inoculated 705 

and non-inoculated tissues, where exposed tissues tend to have larger totRNA quantities than non-exposed 706 

tissues for any given sgRNA value, particularly on the first day post infection. Inoculum effects on totRNA 707 

quantity appear to linger throughout infection, given that sgRNA predictions for exposed tissues on later 708 

days post infection fall between predictions for exposed tissues on the first day and non-exposed tissues 709 

on all days. Interestingly, the chance of positive culture (for a given totRNA value) is highest for exposed 710 

tissues sampled on the first day post infection, which is consistent with detection of lingering inoculum-711 

derived virions. In contrast to sgRNA, culture predictions for exposed tissues on all later days post 712 

infection are highly similar to non-exposed tissues. These patterns are consistent with most inoculated 713 
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virions having infected cells, dispersed to other tissues, or been cleared by the immune system within the 714 

first two days of infection, whereas the high stability of RNA (at least in human respiratory fluids 715 

monitored ex vivo (67)) could enable its prolonged detection.  716 

Our work showed that the relationships between virological assays were also shaped by host 717 

demographic factors. Primate species affected all relationships we considered, where cynomolgus 718 

macaques were predicted to have the lowest sgRNA:totRNA ratio and the smallest chance of positive 719 

culture per totRNA quantity. African green monkeys and rhesus macaques have highly similar predictions 720 

for sgRNA:totRNA ratios and chances of positive culture. Curiously, African green monkeys also have 721 

the smallest chance of sgRNA detection per totRNA quantity, but only one study (8) reported totRNA and 722 

sgRNA outcomes for this species. Our models did not identify age-mediated effects on sgRNA outcomes 723 

but did predict that geriatric animals have the highest chances of positive culture per totRNA quantity. 724 

Sex did not influence either sgRNA or culture outcomes. While these results may reflect differing 725 

susceptibility, disease severity, or infection kinetics among non-human primate species and age classes, 726 

as has been previously suggested (26,28,43,58,59,68), sample sizes were limited for African green 727 

monkeys and geriatrics, so these patterns should be interpreted cautiously. Also, given the complexity of 728 

viral fitness, cellular processes, and immune responses, inference on the cause of demographic-specific 729 

differences is difficult without mechanistic theory. Mathematical models of the cellular life cycle (69) 730 

may uncover processes that explain the stoichiometric differences we observed among RNA types and 731 

virions. 732 

Assay protocols had clear impacts on model predictions. PCR target gene was a consistent factor 733 

in our best models, with effects aligned with known differences in RNA quantities. We find that totRNA 734 

protocols targeting the Spike (S) gene must amplify less totRNA than those targeting the Envelope (E) or 735 

Nucleocapsid (N) genes to predict the same chance of positive culture. This likely reflects that totRNA 736 
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assays targeting S will amplify only sgS and no other sgRNA species (because it is the most upstream 737 

sgRNA), whereas the others amplify multiple sgRNA species and thus will have inherently higher per-738 

sample totRNA copy numbers. Notably, this result does not imply that spike assays better predict 739 

infectivity. Different genes simply require different RNA quantities to expect the same chance of culture 740 

positivity, and so other considerations should motivate choice of target gene (e.g., selecting target 741 

sequences that are conserved across variants). Similar reasoning can explain observed differences in 742 

sgRNA outcomes, where sgRNA protocols amplifying the highly-expressed sgN have higher chances of 743 

detecting sgRNA (per totRNA quantity) and also larger sgRNA:totRNA ratios than protocols amplifying 744 

the less-expressed sgE and sg7 species. For viral culture, our model predicts VeroE6-TMPRSS2 cells have 745 

the highest chance of detecting infectious virus (per totRNA quantity), which is concordant with the 746 

importance of TMPRSS2 for SARS-CoV-2 cellular entry (62) and agrees with experiments showing 747 

VeroE6-TMPRSS2 cells are more permissive to infection than VeroE6 cells (21,61). In accordance with 748 

our results, prior work has also shown that VeroE6 cells are more sensitive than Vero76 cells, which is 749 

likely related to increased TMPRSS2 expression in VeroE6 cells (70). Our model also predicts that 750 

TCID50 assays are more likely to detect infectious SARS-CoV-2 than plaque assays, agreeing with 751 

standard assay conversions (71) and prior experimental work (63).  752 

Although we developed this model to analyze SARS-CoV-2 in non-human primates, our results 753 

showed many similarities with patterns previously noted in humans. Multiple studies have found that, 754 

depending on the dataset, human-derived samples with around 5-9 log10 RNA copies had a 50% chance 755 

of being culture positive (6,19,28,72). The prediction from our analogous model without cofactors falls 756 

within this range (7 log10 totRNA copies). Other work has found evidence of age-dependent increases in 757 

infectious virus shedding (73) or in culture probability on any day rescaled to the time since peak viral 758 

load (28). Both of these findings are consistent with, although not directly comparable to, our result that 759 
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geriatric NHPs have higher probabilities of culture positivity per totRNA quantity. Another study also 760 

discovered that the ratios of RNA to culturable virus differed substantially throughout infection (74). We 761 

unfortunately did not have sufficient quantitative culture information to obtain a similar ratio, but their 762 

findings agree with our observation that (for any given totRNA quantity) sgRNA copy numbers and 763 

culture probability vary by day post infection. Finally, we observed no culture positive (non-invasive) 764 

samples from the respiratory tract more than seven days after an individual’s first positive test, and so the 765 

public health guidelines of isolating for five or ten days (31) performed remarkably well on our dataset, 766 

despite being designed for an entirely different host species. Collectively, these concordances further 767 

underscore that non-human primates are an excellent model system for human SARS-CoV-2 infection.  768 

By analyzing our culture predictions for individual trajectories, we identified potential causes of 769 

prediction errors. Many occurred during transition periods when viral replication slows or begins (i.e., 770 

when infectivity changes). During this crucial phase, our best culture model clearly outperformed the 771 

simple model by making fewer mistakes. In any case, during these periods, assay readouts will depend 772 

strongly on sample quality and assay sensitivity, so additional caution in interpreting culture outcomes is 773 

warranted. Beyond this, while we expect some errors due to complex and non-stationary biological effects, 774 

many errors are also consistent with PCR or culture processing issues. Sample quality, preservation 775 

methods, and storage conditions can substantially impact the quantification of RNA copy numbers and 776 

the detection of infectious virus (75,76). PCR issues resulting in the amplification of less RNA may 777 

explain curious culture-positive samples with low or no detectable RNA (generating false negative 778 

predictions), while culture insensitivity may explain some culture-negative samples with especially large 779 

RNA quantities (i.e., false positives). Alternatively, sample contamination or sample swapping could 780 

cause elevated RNA levels or spurious culture positivity, where the latter is particularly plausible for ‘data 781 

blips’ of a single culture positive surrounded by a series of culture negatives, although these could reflect 782 
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brief, intermittent replication. In any case, if we assume our model predictions were correct for at least 783 

some of these suspect samples (or else if we exclude them from accuracy calculations entirely), our culture 784 

model’s true accuracy would be higher than 85%. 785 

With this study, we demonstrated the utility and feasibility of meta-analyses and Bayesian 786 

statistical techniques for virological studies, which will become increasingly important tools under new 787 

data sharing mandates (77). Multiple factors enabled us to rigorously analyze our aggregate database: (i) 788 

PCR results were reported as RNA copy numbers, which are internally standardized (as opposed to 789 

unstandardized Ct values) (75), (ii) processing techniques and viral concentrations per reported sample 790 

volume are consistent within each study, (iii) many articles reported results for multiple cofactors, and 791 

(iv) we accounted for any additional between-study variation by including article-level hierarchical error 792 

rates when possible. To evaluate whether any of the observed patterns could be explained by unmodelled 793 

methodological differences among articles, we also ran our best models with an additional predictor for 794 

lab effects. Reassuringly, we found that all of our results were qualitatively unchanged between the models 795 

with and without lab effects (with one minor exception, discussed above), offering confidence in the 796 

robustness of our results. Under typical analytical approaches, our investigations would have required one 797 

study to generate the data for all protocols, samples, and demographics of interest, which would be time 798 

and resource prohibitive. Crucially, our approach did not require the generation of new data, which is 799 

especially important for non-human primate models where ethical principles (78,79) and constrained 800 

supply (80,81) demand principled data reuse whenever possible.  801 

Although the concordances noted between prior work and our results offer confidence in our 802 

models’ performance, our study has limitations. Multiple source articles did not report age class or sex, 803 

requiring our model fits to marginalize over all possibilities. Consequently, parameter estimates for age 804 

and sex may underestimate their effects. This underscores the importance of comprehensive reporting, 805 
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especially for animal challenge experiments where using previously collected data would increase 806 

adherence to the 3R principles (78). Also, few articles reported results for both sgRNA and culture, so 807 

some of our investigations relied on imputed sgRNA values. Prospective data on all three assays and more 808 

comprehensive data panels across cofactors would enable deeper exploration of the predictive capacity of 809 

totRNA and sgRNA for viral culture. Finally, while some cofactors were not selected for inclusion in our 810 

best models, we cannot exclude the possibility that their effects exist but were not evident or were masked 811 

by other predictors. Because covariate coverage relied on different studies in different labs, it remains 812 

possible that lab or study effects impacted our results even though we found no evidence of this when 813 

including lab-specific predictor variables. Some covariate effects may have also been absorbed into our 814 

article-level error or lab effect terms. Despite these limitations, our analysis (and similar analyses) can 815 

help prioritize resource allocation, so future experiments can more easily adopt the gold-standard approach 816 

of testing model-based findings in head-to-head comparisons under fixed conditions.  817 

While the quantitative results of our models should not be used directly to predict culture results 818 

for any host-pathogen system besides non-human primates and SARS-CoV-2, the general framework 819 

could be adapted easily to generate similar predictions for other host species, other viruses, or other assays. 820 

For example, our model could be modified to robustly compare the relationships among antigen tests, 821 

PCR, and viral culture, which has recently garnered interest (14,15,82,83) and would benefit from the 822 

increased sample size and cofactor coverage possible with meta-analytical treatment. Notably, when 823 

applying the framework to other scenarios, careful model development is still necessary, especially given 824 

that different viruses and assays may have other defining characteristics that could affect their 825 

relationships, which should influence the choice of candidate cofactors.  826 

We believe our framework also shows particular promise for future development to support 827 

clinical diagnostics. Beyond the fact that our model trained on NHP data recapitulated many patterns 828 
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previously observed in humans, we also demonstrated its excellent performance on clinically relevant 829 

metrics. Relative to the five- or ten-day isolation protocols outlined by public health agencies (31), our 830 

best model substantially reduced unnecessary isolation time (relative to the ten-day rule), and it reduced 831 

the risk of releasing individuals while still infectious (relative to the 5-day rule). Our best model also 832 

clearly outperformed the simple model on both of these metrics, in addition to correctly classifying more 833 

sequential culture negative samples and with markedly higher confidence, all of which could be crucial 834 

improvements in public health settings. In fact, because sampling frequency decreased over the course of 835 

infection in our data, our results likely underestimate the potential improvements achievable in humans 836 

where sampling can be more frequent. To realize the clinical potential of this approach, however, the 837 

model framework must be trained on human data. This would involve some model modifications, 838 

including the consideration of other cofactors such as viral variant, prior infection, vaccination history, 839 

disease severity, and co-morbidities. Outside the very rare context of human challenge trials, the model 840 

will also need to function without knowledge of exposure dose, route, or exact timing (requiring the use 841 

of a proxy such as time since symptom onset or first positive test). If such a model performs well, then it 842 

would offer a straightforward, standardized pipeline to predict whether an individual is infectious based 843 

on SARS-CoV-2 PCR results, which is a clear need (9,17,19,21–24). To further increase prediction 844 

accuracy, future work could also modify the framework to capitalize on individual-specific trajectories 845 

for patients undergoing regular screening (e.g., by incorporating a mechanistic modeling component (73)). 846 

Once the modeling pipeline is established, it could be readily tailored to any other pathogen with sufficient 847 

clinical data, either to improve management strategies of existing viruses or even to help characterize and 848 

contain an emerging one. With these tools, public health officials and clinicians would be better-equipped 849 

to weigh transmission risk with medical resource availability and economic burden to designate evidence-850 

based (and pathogen-specific) hospital discharge criteria and public health guidelines.  851 
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By assembling and analyzing a large database that captures infection patterns described in the 852 

clinical and animal challenge literature, we demonstrated that highly accurate RNA-based culture 853 

predictions are possible with our statistical framework. By using non-human primate data, we were able 854 

to identify underlying effects of exposure conditions, which would be impossible for humans without 855 

experimental challenge trials (of which only one exists for SARS-CoV-2, to date (84)). Consequently, our 856 

model offers the first set of explicit quantitative guidelines on interpreting SARS-CoV-2 assay outcomes 857 

in light of exposure conditions, which has direct implications for analyzing non-human primate 858 

experiments and thus could affect human health by improving interpretations of crucial preclinical trials 859 

for human vaccines and therapeutics. We propose our method as a standardized framework to conduct 860 

assay comparisons, whether for individual virology experiments, clinical diagnostic settings, qualitative 861 

literature syntheses, or quantitative meta-analyses. Such approaches for data aggregation and (meta-862 

)analysis are vital and powerful tools for an era of increasing data-sharing, with untapped potential to 863 

develop translational applications and to guide further research into fundamental mechanisms. 864 
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Supplementary Legends 1114 

S1 Methods. Additional methodological detail, including database compilation, prior justifications, 1115 

performance analysis, model selection, and prediction generation. 1116 

 1117 

S1 Fig. Screening and selection procedure for database compilation. We created this figure by 1118 

adapting the template flowchart provided in Moher et al. 2009, which offers guidelines and resources for 1119 

systematic reviews and meta-analyses. We incorporated all of their suggested steps for reporting the 1120 

results of systematic literature searches, but all of the substantive content (e.g., numbers, exclusion 1121 

reasons) is based entirely on our literature search. Additional detail on the screening procedure is provided 1122 

in the S1 Methods. 1123 

 1124 

S2 Fig. Schematic diagram of generalizable hurdle model predicting assay Y from a more sensitive 1125 

assay X. Predictors are grey, model components are green, and predictions are red (positive) or blue 1126 

(negative). If assay X falls below the limit of detection (< LOD), assay Y is also predicted to fall below 1127 

the limit of detection. (Note that this particular assumption may not hold for all assay relationships, and 1128 

modeling adjustments may need to be made in these scenarios.) If assay X falls above the limit of detection 1129 

(> LOD), then the value of assay X is passed as a predictor to the logistic component of the hurdle model, 1130 

which uses a set of additional covariates Ai to predict whether assay Y falls above or below the LOD. If 1131 

the posterior probability of assay Y falling above the limit of detection is less than some assigned threshold 1132 

C (P(Y > LOD) < C), then the model predicts assay Y falls below the LOD. Otherwise, the model predicts 1133 

assay Y falls above the LOD. Note that the probability cut-off value C should be selected to balance false 1134 

positive and false negative rates as appropriate to investigator aims. In this study, we used a standard value 1135 

of C=0.5. For samples predicted to fall above the LOD, the linear model component will generate a 1136 



 
 

59 
 

predicted value of assay Y (Ypredict) based on another set of covariates (Bj). If Ypredict is larger than the 1137 

reported LOD for assay Y, the model will return the predicted value. Created with BioRender.com. 1138 

 1139 

S3 Fig. Individual viral load trajectories in the upper respiratory tract, including sgRNA predictions 1140 

generated by the best sgRNA model. Each panel corresponds with one individual and one non-invasive 1141 

sample type, indicated in the top right of each panel. Only individuals with both total RNA and sgRNA 1142 

results for at least two days post infection are plotted. Some individuals were sampled from multiple 1143 

locations in the upper respiratory tract, in which case they are plotted as neighboring panels. Each line and 1144 

the accompanying points track the individual’s total RNA (dark blue, circle), observed sgRNA (light blue, 1145 

diamond), and median predicted sgRNA (green, triangle) trajectories. For some individuals (e.g., 1146 

KS_2021C), multiple RT-qPCR assays targeting different genes were run on the same sample, which are 1147 

plotted as distinct panels. All samples observed or predicted to fall below the limit of detection are plotted 1148 

below 0 at set values for visual clarity (totRNA: -0.5, observed sgRNA: -0.75, predicted sgRNA: -1). 1149 

When available, the limits of detection (LOD) or quantification (LOQ) for PCR assays are plotted as 1150 

dotted lines in the assay-specific color. When both the LOD and LOQ were available, only the LOD is 1151 

plotted. In instances where the total RNA and sgRNA assay LOD are equal, only the sgRNA line is visible. 1152 

No instances exist in this dataset where the LOD or LOQ is only available for one RNA type. 1153 

 1154 

S4 Fig. Individual viral load trajectories in the lower respiratory tract, including sgRNA predictions 1155 

generated by the best sgRNA model. Each panel corresponds with one individual and one non-invasive 1156 

sample type, indicated in the top right of each panel (‘BAL’: bronchoalveolar lavage). Only individuals 1157 

with both total RNA and sgRNA results for at least two days post infection are plotted. Each line and the 1158 

accompanying points track the individual’s total RNA (dark red, circle), observed sgRNA (orange, 1159 
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diamond), and median predicted sgRNA (yellow, triangle) trajectories. For some individuals (e.g., 1160 

KS_2021C), multiple RT-qPCR assays targeting different genes were run on the same sample, which are 1161 

plotted as distinct panels. All samples observed or predicted to fall below the limit of detection are plotted 1162 

below 0 at set values for visual clarity (totRNA: -0.5, observed sgRNA: -0.75, predicted sgRNA: -1). 1163 

When available, the limits of detection (LOD) or quantification (LOQ) for PCR assays are plotted as 1164 

dotted lines in the assay-specific color. When both the LOD and LOQ were available, only the LOD is 1165 

plotted. In instances where the total RNA and sgRNA assay LOD are equal, only the sgRNA line is visible. 1166 

No instances exist in this dataset where the LOD or LOQ is only available for one RNA type. 1167 

 1168 

S5 Fig. Individual viral load trajectories in the gastrointestinal and other systems, including sgRNA 1169 

predictions generated by the best sgRNA model. Each panel corresponds with one individual and one 1170 

non-invasive sample type, indicated in the top right of each panel. Only individuals with both total RNA 1171 

and sgRNA results for at least two days post infection are plotted. Each line and the accompanying points 1172 

track the individual’s total RNA (dark purple, circle), observed sgRNA (dark pink, diamond), and median 1173 

predicted sgRNA (light pink, triangle) trajectories. All samples observed or predicted to fall below the 1174 

limit of detection are plotted below 0 at set values for visual clarity (totRNA: -0.5, observed sgRNA: -1175 

0.75, predicted sgRNA: -1). When available, the limits of detection (LOD) or quantification (LOQ) for 1176 

PCR assays are plotted as dotted lines in the assay-specific color. When both the LOD and LOQ were 1177 

available, only the LOD is plotted. In instances where the total RNA and sgRNA assay LOD are equal, 1178 

only the sgRNA line is visible. No instances exist in this dataset where the LOD or LOQ is only available 1179 

for one RNA type. 1180 

 1181 
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S6 Fig. Individual viral loads for invasive samples, including sgRNA predictions generated by the 1182 

best sgRNA model. Each panel corresponds with one individual, indicated with text in the panel (day 1183 

post infection: individual). Each point presents the total RNA (circle), observed sgRNA (diamond), and 1184 

predicted sgRNA (triangle) values. All samples observed or predicted to fall below the limit of detection 1185 

are plotted below 0 at set values for visual clarity (totRNA: -0.5, observed sgRNA: -0.75, predicted 1186 

sgRNA: -1). When available, the limits of detection (LOD) or quantification (LOQ) for PCR assays are 1187 

plotted as dotted lines in the assay-specific color. When both the LOD and LOQ were available, only the 1188 

LOD is plotted. In instances where the total RNA and sgRNA assay LOD are equal, only the sgRNA line 1189 

is visible. No instances exist in this dataset where the LOD or LOQ is only available for one RNA type. 1190 

 1191 

S7 Fig. Individual culture trajectories in the upper respiratory tract. Each panel corresponds with 1192 

one individual and one non-invasive sample type, indicated in the top right of each panel. Only individuals 1193 

with culture results for at least two days post infection are plotted. Culture data are plotted as squares 1194 

above the yellow line at 10 log10 copies. Yellow squares are culture positive samples, while grey squares 1195 

are culture negative. Squares outlined in black are correct predictions, squares with no outline are incorrect 1196 

predictions. We did not generate predictions for the culture samples outlined in blue, as they do not have 1197 

available totRNA results. We also plot observed total RNA values (circle) and observed sgRNA values 1198 

(diamond), otherwise we plot predicted median sgRNA values generated by our best sgRNA model 1199 

(triangle). Some individuals were sampled from multiple locations in the upper respiratory tract, in which 1200 

case they are plotted as neighboring panels. All samples observed or predicted to fall below the limit of 1201 

detection are plotted below 0 at set values for visual clarity (totRNA: 0, sgRNA: -1). When available, the 1202 

limits of detection (LOD) or quantification (LOQ) for PCR assays are plotted as dotted lines in the assay-1203 

specific color. When both the LOD and LOQ were available, only the LOD is plotted. In instances where 1204 
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the total RNA and sgRNA assay LOD are equal, only the sgRNA line is visible. No instances exist in this 1205 

dataset where the LOD or LOQ is only available for one RNA type. Individuals from one study cannot be 1206 

included in this figure due to a data sharing agreement.  1207 

 1208 

S8 Fig. Individual culture trajectories in the lower respiratory tract. Each panel corresponds with one 1209 

individual and one non-invasive sample type, indicated in the top right of each panel. Only individuals 1210 

with culture results for at least two days post infection are plotted. Culture data are plotted as squares 1211 

above the yellow line at 10 log10 copies. Yellow squares are culture positive samples, while grey squares 1212 

are culture negative. Squares outlined in black are correct predictions, squares with no outline are incorrect 1213 

predictions. We did not generate predictions for the culture samples outlined in blue, as they do not have 1214 

available totRNA results. We also plot observed total RNA values (circle) and observed sgRNA values 1215 

(diamond) when available, otherwise we plot predicted median sgRNA values generated by our best 1216 

sgRNA model (triangle). Some individuals were sampled from multiple locations in the lower respiratory 1217 

tract, in which case they are plotted as neighboring panels. All samples observed or predicted to fall below 1218 

the limit of detection are plotted below 0 at set values for visual clarity (totRNA: 0, sgRNA: -1). When 1219 

available, the limits of detection (LOD) or quantification (LOQ) for PCR assays are plotted as dotted lines 1220 

in the assay-specific color. When both the LOD and LOQ were available, only the LOD is plotted. In 1221 

instances where the total RNA and sgRNA assay LOD are equal, only the sgRNA line is visible. No 1222 

instances exist in this dataset where the LOD or LOQ is only available for one RNA type. 1223 

 1224 

S9 Fig. Individual culture trajectories in the gastrointestinal and other systems. Each panel 1225 

corresponds with one individual and one non-invasive sample type, indicated in the top right of each panel. 1226 

Only individuals with culture results for at least two days post infection are plotted. Culture data are plotted 1227 
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as squares above the yellow line at 10 log10 copies. Yellow squares are culture positive samples, while 1228 

grey squares are culture negative. Squares outlined in black are correct predictions, squares with no outline 1229 

are incorrect predictions. We also plot observed total RNA values (circle) and observed sgRNA values 1230 

(diamond) when available, otherwise we plot predicted median sgRNA values generated by our best 1231 

sgRNA model (triangle). Some individuals were sampled from multiple locations, in which case they are 1232 

plotted as neighboring panels. All samples observed or predicted to fall below the limit of detection are 1233 

plotted below 0 at set values for visual clarity (totRNA: 0, sgRNA: -1). When available, the limits of 1234 

detection (LOD) or quantification (LOQ) for PCR assays are plotted as dotted lines in the assay-specific 1235 

color. When both the LOD and LOQ were available, only the LOD is plotted. In instances where the total 1236 

RNA and sgRNA assay LOD are equal, only the sgRNA line is visible. No instances exist in this dataset 1237 

where the LOD or LOQ is only available for one RNA type. Individuals from one study cannot be included 1238 

in this figure due to a data sharing agreement. 1239 

 1240 

S10 Fig. Individual culture data for invasive samples. Each panel corresponds with one individual, 1241 

indicated with text in the panel (day post infection: individual). Culture data are plotted as squares above 1242 

the yellow line at 10 log10 copies. Yellow squares are culture positive samples, while grey squares are 1243 

culture negative. Squares outlined in black are correct predictions, squares with no outline are incorrect 1244 

predictions. We did not generate predictions for the culture samples outlined in blue, as they do not have 1245 

available totRNA results. We also plot the observed total RNA (circle) and observed sgRNA (diamond) 1246 

values when available, otherwise we plot predicted median sgRNA values generated by our best sgRNA 1247 

model (triangle). Color corresponds to the organ system from which the tissue was obtained (URT, upper 1248 

respiratory tract; LRT, lower respiratory tract; GI & Other, gastrointestinal and other systems). All 1249 

samples observed or predicted to fall below the limit of detection are plotted below 0 at set values for 1250 
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visual clarity (totRNA: 0, sgRNA: -1). When available, the limits of detection (LOD) or quantification 1251 

(LOQ) for PCR assays are plotted as dotted lines in the assay-specific color. When both the LOD and 1252 

LOQ were available, only the LOD is plotted. In instances where the total RNA and sgRNA assay LOD 1253 

are equal, only the sgRNA line is visible. No instances exist in this dataset where the LOD or LOQ is only 1254 

available for one RNA type. 1255 

 1256 

S11 Fig. Statistics relating PCR and culture results. (A) Difference between total RNA and sgRNA 1257 

copy numbers when both are detectable, stratified by target gene predictor with the following acronyms: 1258 

“T↑SG↑”: totRNA-high/sgRNA-high; “T↓SG↑”: totRNA-low/sgRNA-high; “T↑SG↓”: totRNA-1259 

high/sgRNA-low; “T↓SG↓”: totRNA-high/sgRNA-low. No totRNA-high/sgRNA-high data was available 1260 

for this investigation. (B) Total RNA copy numbers for all sgRNA negative samples, stratified by target 1261 

gene as in (A). (C) Pearson correlation coefficients between total RNA and sgRNA copy numbers when 1262 

both are detectable, for all individual-sample trajectories with at least three sampling days where both 1263 

were positive. (D) Comparison of the timing of the first negative results from total RNA and sgRNA 1264 

assays for each available individual-sample trajectory (dpi: day post infection). (E) Total RNA copy 1265 

numbers (when detectable) for all culture positive samples, stratified by culture assay type. (F) Total RNA 1266 

copy numbers (when detectable) for all culture negative samples, stratified by culture assay type as in (E). 1267 

(G) Comparison of the timing of the first negative results from total RNA and culture assays for each 1268 

available individual-sample trajectory. (H) Comparison of the timing of the first positive results from total 1269 

RNA and culture assays for each individual-sample trajectory. For panels (A), (B), (C), (E), and (F), the 1270 

purple dashed line indicates the median for the full distribution (i.e., not stratified by assay or target gene). 1271 

For panels (D), (G), and (H), the size of each circle indicates the number of individuals with the indicated 1272 

observation. Individuals in the ‘None’ column were never negative (D, G) or positive (H) for total RNA. 1273 
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Individuals that were never sgRNA negative (D), culture negative (G), or culture positive (H) are not 1274 

plotted. 1275 

 1276 

S12 Fig. Results from the best sgRNA model with an additional predictor for lab group. (A) The 1277 

predicted chances of sgRNA detection for three key totRNA quantities (3 log10, blue; 5 log10, salmon; 7 1278 

log10, red), across the eight available lab groups and for the standard cofactor set. The article(s) included 1279 

in each group are provided in S8 Table. Each point is one out of 200 samples generated for each lab group, 1280 

with transparency to show the density of points. (B) As in Fig 3B, with additional predictions from the 1281 

model including a lab effect (‘Lab’, grey). (C and D) As in Fig 3C and 3D, except showing the results 1282 

from the model including a lab effect. (E) The predicted quantities of sgRNA for a sample with 5 log10 1283 

totRNA copies, across the eight available lab groups and for the standard cofactor set. (F) As in Fig 3F, 1284 

with additional predictions from the model including a lab effect (‘Lab’, grey). (G and H) As in Fig 3G 1285 

and 3H, except showing the results from the model including a lab effect. In panels C, D, G and H, the 1286 

predictions are not specific to a particular lab group (i.e., we set the lab effect term to zero to extract 1287 

general patterns across all labs).  1288 

 1289 

S13 Fig. Sensitivity analyses comparing informative (blue) and non-informative (red) priors. (A) 1290 

Each line presents an expected model fit generated by sampling the indicated prior distributions. 1291 

Informative priors are outlined in the Methods and S1 Methods. All parameters were given a N(0,1) prior 1292 

for all non-informative investigations. Informative priors much better represent a priori understanding of 1293 

the relationships between total RNA copy numbers and both sgRNA and culture outcomes. (B) Each panel 1294 

compares the final parameter estimates obtained for the corresponding best model using the different prior 1295 

types (red: non-informative; blue: informative), where each row is a distinct parameter. Acronyms are as 1296 
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described in Figs 3, 4, and 5. Note that in many instances parameters estimates are almost perfectly 1297 

overlapping, so only the non-informative (red) priors are visible.  1298 

 1299 

S14 Fig. Error analysis for the best sgRNA model. (A) Individual-specific sgRNA trajectories, where 1300 

each row presents one individual. These are stratified by whether the model misclassifies any samples for 1301 

that individual (“Some errors”) or whether the model makes no misclassifications (“No errors”). In both 1302 

(A) and (B), yellow circles indicate positive samples and grey indicates negative samples. Circles with a 1303 

black outline correspond with correctly classified samples, while no outline indicates incorrectly classified 1304 

samples. (B) Scatterplot of all samples with sgRNA results, stratified by the elements of a confusion matrix 1305 

and colored as in (A). The x-axis tracks the day post infection and the y-axis plots log10 total RNA copy 1306 

numbers. Samples in the grey shaded region along the bottom present all samples where total RNA was 1307 

undetectable. (C) Histograms of all samples grouped by the elements of a confusion matrix, where log10 1308 

total RNA copy numbers per sample is plotted on the y-axis. Bins located in the grey shaded region along 1309 

the bottom (labelled “<LOD”) include all totRNA-negative samples. 1310 

 1311 

S15 Fig. Additional performance comparisons between the simple and best culture models. (A) 1312 

Distribution of the differences between the predicted probabilities of both models for all totRNA-positive 1313 

samples, stratified by whether the sample was culture positive (yellow) or negative (grey). Samples on the 1314 

right side of the dashed blue line were predicted with higher confidence by the best model, while those on 1315 

the left side were predicted with higher confidence by the simple model. (B) Distribution of median model-1316 

predicted chances of positive culture for intermediate totRNA-positive samples (6-8 log10 copies), 1317 

stratified by model type and observed outcomes. Samples right of the dashed vertical line are correct 1318 
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predictions. The colored text gives the percent of samples that are correctly classified by each model. (C) 1319 

As in panel A, except only for intermediate totRNA-positive samples (6-8 log10 copies). 1320 

 1321 

S16 Fig. Results from the best culture model with an additional predictor for lab group. (A) The 1322 

predicted chances of culture positivity for three key totRNA quantities (3 log10, blue; 7 log10, salmon; 1323 

11 log10, red), across the ten available lab groups and for the standard cofactor set. The article(s) included 1324 

in each group are listed in Table S8. Each point is one out of 200 samples generated for each lab group, 1325 

with transparency to show the density of points. (B) As in Fig 5B, with additional predictions from the 1326 

model including a lab effect (‘Lab’, grey). (C and D) As in Fig 5C and 5D, except showing the results 1327 

from the model including a lab effect. In panels C and D, the predictions are not specific to a particular 1328 

lab group (i.e., we set the lab effect term to zero to extract general patterns across all labs).  1329 

 1330 

S17 Fig. Viral load and culture trajectories for individuals with data blip (A) or prediction blip (B) 1331 

error types. Panel-specific errors are indicated with red outlines. All other samples with prediction errors 1332 

have no outline. Correct predictions are outlined in black. Yellow squares indicate known culture positive 1333 

samples, while grey squares indicate known culture negative samples. Text in the upper right corner of 1334 

each panel indicates the ID name and sample type of the individual from whom the data was derived. All 1335 

totRNA-negative samples are plotted below the grey dashed line at zero. Note that individual NN_#5412 1336 

has an additional (true negative) sample available on a later day post infection, which is not shown for 1337 

visual clarity. Six trajectories from one study cannot be included in this figure due to a data sharing 1338 

agreement.  1339 

 1340 
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S18 Fig. Isolation end times predicted by the simple (A) and best (B) culture models. Each row is a 1341 

unique individual, and each panel displays all individuals included in the isolation analyses. The results 1342 

of all samples after every individual’s first positive test (PCR or culture) are displayed, where culture 1343 

positive samples are yellow and negative samples are grey. Each individual’s last culture positive and 1344 

their subsequent culture negative times are plotted with more intensity for better visualization. For each 1345 

individual, their isolation end time is shown with colored, filled diamonds (i.e., the time of their second 1346 

consecutive predicted culture negative test). When isolation end time could not be determined by the 1347 

model (i.e., the model did not predict a second consecutive negative), we conservatively set that 1348 

individual’s end time to day 10. Each individual’s first predicted negative is shown by an empty diamond, 1349 

and the true (observed) time of their second consecutive negative is shown with a small red point. With 1350 

yellow lines, we show the time range that we consider each individual to be infectious, based on the data, 1351 

which ranges from their first total RNA positive day up to the midpoint between their first culture negative 1352 

test after their last observed culture positive test. For individuals with no observed negative after their last 1353 

positive, we conservatively assumed their next observed negative to be day 10. With dashed red lines, we 1354 

also indicate which individuals show evidence of a rebound infection (i.e., the individuals with at least 1355 

one culture negative occurring between two culture positives). Finally, we use colored vertical lines to 1356 

display the days on which the five- and ten-day protocols would release individuals from isolation.  1357 

 1358 

S19 Fig. Days between consecutive tests relative to the number of days since the first positive test. 1359 

The size of the point shows the number of samples at the given coordinate. The marginal histograms show 1360 

the distribution of points along each individual axis.  1361 

 1362 
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S1 Table. Summary of articles included in the dataset. Multiple rows for an individual article are 1363 

included when the study involved multiple species and/or multiple exposure doses. In all columns, U 1364 

indicates the detail is unknown. Sample sizes (N) are presented in the following format: number of 1365 

available datapoints (number of individuals). Species abbreviations are as follows: RM, rhesus macaque; 1366 

CM, cynomolgus macaque; AGM, African green monkey. Age class presents the standardized 1367 

assignments according to our protocol (S1 Methods), and the abbreviations are: J, juvenile; A, adult; G, 1368 

geriatric. Individuals inoculated via multiple routes are indicated by exposure routes joined by commas, 1369 

where the abbreviations are: AE, aerosol; IT, intratracheal; IN, intranasal; IG, intragastric; OC, ocular; 1370 

OR, oral. Exposure dose is presented as log10 plaque forming units, and an adjoining * indicates the dose 1371 

was originally reported as TCID50, so those values were converted using the standard method described 1372 

in the S1 Methods. NI indicates non-invasive sample types (i.e., swabs, biofluids, BAL), while I indicates 1373 

invasive tissue samples obtained at necropsy. Sample location distinguishes between the following 1374 

systems: URT, upper respiratory tract; LRT, lower respiratory tract; GI, gastrointestinal tract; and Other, 1375 

all other locations. Sample time presents the days post infection with available samples according to our 1376 

DPI predictor, where 1: 1 dpi, inoculated tissues, 2: 2+ dpi, inoculated tissues, 3: any dpi, non-inoculated 1377 

tissue (further categorization information is in S9 Table). PCR target genes are stratified by total RNA 1378 

(totRNA) and sgRNA. The level of the target gene predictor for the sgRNA model follows the sgRNA 1379 

gene in parentheses: (1) totRNA-high/sgRNA-high, (2) totRNA-low/sgRNA-high, (3) totRNA-1380 

high/sgRNA-low, and (4) totRNA-low/sgRNA-low. The cell lines used for culture are indicated when 1381 

available, with SS2 as an abbreviation for TMPRSS2. An adjoining † indicates the use of a TCID50 assay, 1382 

while no symbol indicates a plaque assay. 1383 

 1384 
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S2 Table. Extended sgRNA logistic model performance comparisons. Models are ordered by 1385 

increasing number of predictors, with the simplest (l1), best (l4.2), and full (l8.1) models noted in bold. 1386 

We report expected log pointwise predictive density (ELPD) generated by 10-fold cross validation (cross-1387 

validation columns), where larger ELPD indicates better performance. ELPD difference indicates the 1388 

difference between ELPDs of the given model and the model with the largest ELPD (in this case model 1389 

l6.1, though this is not our ‘best model’). The PSIS-LOO approximation columns present statistics 1390 

generated by running Pareto-Smoothed Importance Sampling approximate leave-one-out cross validation, 1391 

including ELPD and ELPD difference as above. The prediction columns indicate the percent of samples 1392 

(stratified by training and test sets) for which posterior predictions generated by 10-fold cross validation 1393 

correctly classified them as below or above the limit of detection (i.e., where the per-sample posterior 1394 

predictive distributions exhibited at least a probability of 0.5 for the true, observed classification). MCC 1395 

is the Matthews correlation coefficient. Note that all models included total RNA as a predictor, even 1396 

though it is not specified in the predictor column. Standard error (SE) is shown in parentheses following 1397 

all relevant statistics.  1398 

 1399 

S3 Table. Extended sgRNA linear model performance comparisons. Models are ordered by increasing 1400 

number of predictors, with the simplest (f1), best (f5.1), and full (f8.1) models noted in bold. We report 1401 

expected log pointwise predictive density (ELPD) generated by 10-fold cross validation (cross-validation 1402 

columns), where larger ELPD indicates better performance. The top logistic model was run in tandem 1403 

with all tested linear components, so the ELPD reported here reflects the sum of the ELPD for the top 1404 

logistic and the considered linear components. ELPD difference indicates the difference between ELPDs 1405 

of the given model and the model with the largest ELPD (in this case model l5.1, the ‘best model’). The 1406 

PSIS-LOO approximation columns present statistics generated by running Pareto-Smoothed Importance 1407 
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Sampling approximate leave-one-out cross validation, including ELPD and ELPD difference. Standard 1408 

error (SE) is shown in parentheses following all relevant statistics. We also used multiple metrics to assess 1409 

model predictions, which are all stratified by performance on training versus test data sets and were 1410 

generated by 10-fold cross validation. MAE is the median difference between the observed value and the 1411 

posterior predictive median (i.e., median absolute error around the median) for all samples with sgRNA 1412 

above the LOD, and this metric was also scaled by one standard deviation (Scaled). ‘% within 50% PI’ 1413 

and ‘% within 95% PI’ columns indicate the percent of sgRNA positive samples where the true, observed 1414 

value fell within the sample-specific 50% and 95% prediction intervals, respectively. Note that all models 1415 

included total RNA as a predictor, even though it is not specified in the predictor column.  1416 

 1417 

S4 Table. Extended culture model performance comparisons with totRNA as the primary predictor. 1418 

Models are ordered by increasing number of predictors, with the simplest (c1), best (c8.1), and full (c10.1) 1419 

models noted in bold. We report expected log pointwise predictive density (ELPD) generated by 10-fold 1420 

cross validation (cross-validation columns), where larger ELPD indicates better performance. ELPD 1421 

difference indicates the difference between ELPDs of the given model and the model with the largest 1422 

ELPD (in this case model l9.2, though this is not our ‘best model’). The PSIS-LOO approximation 1423 

columns present statistics generated by running Pareto-Smoothed Importance Sampling approximate 1424 

leave-one-out cross validation, including ELPD and ELPD difference. The prediction column indicates 1425 

the percent of samples (stratified by training and test sets) for which posterior predictions generated by 1426 

10-fold cross validation correctly classified them as below or above the limit of detection (i.e., where the 1427 

per-sample posterior predictive distributions exhibited at least a probability of 0.5 for the true, observed 1428 

classification). MCC is the Matthews correlation coefficient. Standard error (SE) is shown in parentheses 1429 

following all relevant statistics. 1430 
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 1431 

S5 Table. Extended culture model performance comparisons with sgRNA as the primary predictor. 1432 

Models are ordered by increasing number of predictors, with the simplest (c1) and best/full (c10.1) models 1433 

noted in bold. We report expected log pointwise predictive density (ELPD) generated by 10-fold cross 1434 

validation (cross-validation columns), where larger ELPD indicates better performance. ELPD difference 1435 

indicates the difference between ELPDs of the given model and the model with the largest ELPD (in this 1436 

case model c10.1, our ‘best model’). The PSIS-LOO approximation columns present statistics generated 1437 

by running Pareto-Smoothed Importance Sampling approximate leave-one-out cross validation, including 1438 

ELPD and ELPD difference. The prediction column indicates the percent of samples (stratified by training 1439 

and test sets) for which posterior predictions generated by 10-fold cross validation correctly classified 1440 

them as below or above the limit of detection (i.e., where the per-sample posterior predictive distributions 1441 

exhibited at least a probability of 0.5 for the true, observed classification). MCC is the Matthews 1442 

correlation coefficient. Standard error (SE) is shown in parentheses following all relevant statistics. 1443 

 1444 

S6 Table. 90% prediction intervals for the best sgRNA model. These intervals correspond with the 1445 

predictions in Fig 3C and 3H. 1446 

 1447 

S7 Table. Parameter estimates for the best models. These were generated for the models without a lab 1448 

effect. 1449 

 1450 

S8 Table. Articles grouped into labs based on where the primate study was conducted. The group 1451 

number used to display lab effects in S12A, S12E, and S16A Figs are provided in the first column. The 1452 

number for culture analyses (C) precedes the one for the sgRNA analyses (SG). 1453 
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 1454 

S9 Table. Performance comparison of culture models using totRNA, sgRNA, or both as the primary 1455 

predictor(s). Statistics are stratified by predictor(s) and the dataset used for fitting, including the full 1456 

dataset (based on sgRNA predictions; ‘all data’) and the subset containing only samples with known 1457 

sgRNA and totRNA results (‘data subset’). Prediction accuracy reflects aggregate performance on test 1458 

data across the full 10 train-test folds, stratified by all available samples (Overall), only known positive 1459 

samples, and only known negative samples. MCC corresponds to the Matthews correlation coefficient. 1460 

Note that we do not report ELPD because these models were fit with different quantities of data and so 1461 

ELPD is not comparable. * includes imputed data. † includes data with observed sgRNA outcomes but no 1462 

observed totRNA outcomes.  1463 

 1464 

S10 Table. 90% prediction intervals for the best culture model. These intervals correspond with the 1465 

predictions in Fig 5C. 1466 

 1467 

S11 Table. Categorization of inoculated versus non-inoculated sample locations per exposure route. 1468 

For every inoculation route, only the tissues with data available for that route are displayed. Because fluid 1469 

is administered in the trachea for intratracheal (IT) inoculations, which is connected directly to the 1470 

bronchioles, we include bronchus as an exposure tissue for IT inoculations. We also consider BAL an 1471 

inoculated tissue for IT exposures since this procedure collects fluid from similar areas where the 1472 

inoculum is administered. Exposure route abbreviations are: AE, aerosol; IT, intratracheal; IN, intranasal; 1473 

IG, intragastric; OC, ocular; OR, oral.  1474 


