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Figure 1. Dynamic HTML generation workload latency using two optimizing runtimes. Experiment shows the performance
di"erence produced by taking a premature snapshot (as existing solutions do) and an ideal snapshot. These benchmarks were
repeatedly invoked for about 2500 requests, since convergence took up to approximately that number of requests.

are key to achieving acceptable performance in high-level
languages, and disabling them signi!cantly degrades perfor-
mance [23].

Unfortunately, the design of today’s serverless platforms
is at odds with modern language runtimes for two main rea-
sons and e"ectively prevents serverless platforms from using
resources e#ciently. First, serverless functions are stateless,
hence, serverless platforms are designed to discard function
state, including the JIT state, after each invocation. Second,
serverless platforms serve many function invocations across
many workers, spanning multiple customers and applica-
tions. As a result, each container individually might only see
a few invocations throughout its lifetime, a fundamentally
ine#cient scenario for mature language runtimes.
In contrast, modern language runtimes are better suited

to host a single long-running application where code is con-
tinuously pro!led and optimized. Figure 1 shows how a typ-
ical serverless workload (HTML page rendering), from the
SeBS [24] benchmark suite, can take on the order of two thou-
sand successive requests to converge to optimal performance,
far beyond the typical serverless worker lifetime.1 In fact,
we observe the same e"ect for entirely di"erent workloads
and JIT runtimes (see §5), demonstrating the importance of
runtime optimizations for e#ciently executing high-level
code in the cloud. Worse, the stateless nature of serverless
implies that with every new worker, all previous runtime
optimizations are lost, requiring past optimizations to be
wastefully re-computed each time. This results in signi!cant
missed performance gains, as seen in previous work [23].
In order to address this challenge, researchers and prac-

titioners have turned to checkpoint-restore approaches to
retain the code optimizations generated by language run-
times. Checkpoint-restore allows serverless platforms to take
1Serverless workers are typically evicted due to inactivity after a platform-
speci!c timeout, e.g., 10 minutes in AWS Lambda. Moreover, a recent
study [58] revealed that only →25% of functions receive more than one
invocation under 10 minutes, meaning that many containers will only ever
see a single invocation.

a snapshot of a function’s state to be later restored in order
to serve a new function invocation. Checkpointing a worker
(function instance) can happen at any stage of the function
execution, for instance, after the code has been loaded into
memory, after code compilation, or even after the function
has been executed a few times. In fact, we !nd that the tim-
ing of when to checkpoint the state of a function is critical
to achieving acceptable performance after restoring it (see
§2).

Even though the decision of when to checkpoint a function
can have a signi!cant impact on the performance of the
application after restoring it, no solution currently proposes
a technique to decide when to checkpoint a function. In fact,
existing solutions that use checkpoint-restore use a single
prede!ned threshold to decide when to checkpoint [15, 27,
59, 61], typically after runtime initialization and before the
!rst function invocation, or after the !rst invocation. We
show that neither of these approaches is su#cient to capture
runtime optimizations that maximize performance (see §2).

In this paper, we propose P!"#$%"!#, a snapshot orches-
trator that ensures that new containers start with a fully
optimized version of each serverless function. P!"#$%"!#
learns the best moment to checkpoint each function by tak-
ing snapshot samples over a con!gurable period of time.
P!"#$%"!# targets rapid convergence and continuous learn-
ing, the latter of which provides resilience to perturbations
in serverless function input (see §5). Finally, P!"#$%"!#
allows cloud providers to control the snapshot storage and
network overheads incurred during the learning period, and,
hence, control the cost-performance trade-o".

To show the performance bene!ts of P!"#$%"!#, we eval-
uated it with a set of 13 representative serverless function
benchmarks from the ServerlessBench [71], FaasDom [46],
and SeBS [24] benchmark suites and previous papers [23],
using realistic values of serverless worker eviction rates [58],
function invocation frequencies, and variance in workload
latencies. We !nd that P!"#$%"!# can provide cost-e#cient
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[Preparation] Deploy any function using faas-cli deploy

–image=USER/workload –name=workload

[Execution] Copy the script cost-analysis/table4.py
to the pod created by OpenFaaS. Next, attach to the pod using
kubectl exec -it $pod_name – /bin/sh and run the
script within the pod. Copy the JSON emitted by the program
to a !le that can be used for the analysis.

[Results] If required, this can be done for all functions.
However, for convenience, a result JSON !le has been attached
from our evaluation run. The results provide the numbers for
the checkpoint, restore, and snapshot overheads presented in
Table 4.

Experiment (E3): [10 human-minutes + 10 compute-
minutes]: This experiment quanti!es the number of requests
needed for Pronghorn to reach an optimal snapshot state.

[Preparation] The evaluation run will produce the necessary
inputs for this experiment.

[Execution] To compute and display the results, simply
execute the cost-analysis/evaluation_cost.ipynb

notebook.

[Results] The output obtained from the notebook can be
directly compared with Table 4 of the paper.

Experiment (E4): [10 human-minutes + 10 compute-
minutes]: This experiment allows evaluating the storage and
network bandwidth usage of Pronghorn.

[Preparation] The data collected for E2 will produce the
necessary inputs for this experiment.

[Execution] To compute and display the results, simply run
the cost-analysis/table_5.py notebook.

[Results] The output obtained from the notebook can be
directly compared with Table 5 of the paper.
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