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Abstract.
Background: There are various molecular hypotheses regarding Alzheimer’s disease (AD) like amyloid deposition, tau
propagation, neuroinflammation, and synaptic dysfunction. However, detailed molecular mechanism underlying AD remains
elusive. In addition, genetic contribution of these molecular hypothesis is not yet established despite the high heritability of
AD.
Objective: The study aims to enable the discovery of functionally connected multi-omic features through novel integration
of multi-omic data and prior functional interactions.
Methods: We propose a new deep learning model MoFNet with improved interpretability to investigate the AD molecular
mechanism and its upstream genetic contributors. MoFNet integrates multi-omic data with prior functional interactions
between SNPs, genes, and proteins, and for the first time models the dynamic information flow from DNA to RNA and
proteins.
Results: When evaluated using the ROS/MAP cohort, MoFNet outperformed other competing methods in prediction per-
formance. It identified SNPs, genes, and proteins with significantly more prior functional interactions, resulting in three
multi-omic subnetworks. SNP-gene pairs identified by MoFNet were mostly eQTLs specific to frontal cortex tissue where
gene/protein data was collected. These molecular subnetworks are enriched in innate immune system, clearance of misfolded
proteins, and neurotransmitter release respectively. We validated most findings in an independent dataset. One multi-omic
subnetwork consists exclusively of core members of SNARE complex, a key mediator of synaptic vesicle fusion and
neurotransmitter transportation.
Conclusions: Our results suggest that MoFNet is effective in improving classification accuracy and in identifying multi-
omic markers for AD with improved interpretability. Multi-omic subnetworks identified by MoFNet provided insights of AD
molecular mechanism with improved details.
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INTRODUCTION

Alzheimer’s disease (AD) is an irreversible pro-
gressive neurodegenerative disorder that slowly
destroys memory and thinking skills, and ultimately
the capability of self-care. It is affecting more than
6.5 million Americans, which is expected to dou-
ble by 2050 [1]. But by far, there is no clinically
validated cure for AD; the molecular mechanism
underlying its on-set and progression is not yet estab-
lished. Two well-known pathological hallmarks of
AD are the accumulation of intercellular amyloid-
� plaques and intracellular neurofibrillary tangles. A
widely accepted hypothetical model of AD patho-
physiology starts from the early accumulation of
amyloid-� plaques, which precedes spreading of tau,
neuronal loss and manifestation of other clinical
traits by up to 30 years [2]. Given that, clearance of
amyloid plaque inside the brain has been the major
target for the development of disease modifying ther-
apies. Other molecular pathways disrupted in AD are
also frequently reported like neurotransmitter activ-
ity, neuroinflammation and synaptic plasticity [3].
To date, drugs targeting these molecular mechanisms
have largely failed in clinical trials, highlighting the
need to investigate pathways upstream of plaque and
tangle formation, or other distinct mechanisms.

Multi-omic data has been increasingly collected at
the individual level, providing a wide range of genetic
and molecular features, like single nucleotide poly-
morphism (SNPs), messenger RNAs (mRNAs), and
proteins. These data hold complementary informa-
tion which could be integrated for improved precision
in identifying risk genes and revealing molecular
mechanism related to complex diseases like AD.
They have shown great potential in advancing the
understanding of molecular mechanism underlying
complex diseases like various cancers [4]. In addition,
databases like Reactome and SNP2TFBS provide
critical prior knowledge of regulatory links between
SNPs, genes, and proteins [5, 6]. It is important to
note, however, that these previous interactions are
mostly not specific to any particular tissues, and their
tissue-specificity remains largely unknown.

Although not perfect, this prior knowledge could
still be leveraged as additional source of evidence
on top of multi-omics data, to improve the precision
in discovery of molecular mechanism [7, 8]. Sev-
eral recent studies have confirmed that deep learning
models informed by prior network of functional inter-
actions can lead to improved prediction performance
and model interpretability. For example, knowledge

primed neural network (KPNN) incorporated the sig-
naling pathways to improve the prediction power
of RNA-Seq data [9]. Varmole was proposed for
integration of genotype and gene expression data
with expression quantitative loci (eQTL) relation-
ships embedded into the neural network [10]. But
those deep learning models can only take single or
two types of -omics data. Another multi-omics study
utilizing prior interactions to inform the sparse logis-
tic regression [7] reported that identified SNPs and
genes are mostly eQTLs specific to the tissue where
gene expression data was collected, which resolves
the concern regarding lack of tissue-specificity in the
prior network of interactions.

In this study, we introduce an interpretable deep
learning method, multi-omic fused neural network
(MoFNet), to jointly model multi-omics data and
the prior functional interactions among proteins and
genes, and their upstream regulatory SNPs. MoFNet
is biologically wired with regulatory relationships of
SNPs, genes and proteins that are previously iden-
tified in existing literature or provided in public
databases. This structure allows MoFNet to handle
small sample size with significantly reduced model
complexity. Compared to existing knowledge-primed
models, MoFNet is capable of handling three-omics
types and at the same time explicitly model the
information flow from SNPs to genes and proteins.
We hypothesize this can better capture the dynamic
molecular process underlying AD and mitigate the
missing information in the gene/protein expression
snapshot. We incorporated a Lasso penalty to guide
MoFNet’s attention towards the information flow
within disease-relevant interactions exclusively. This
is anticipated to enhance performance in predict-
ing disease outcomes and potentially uncover more
tissue-specific molecular mechanisms. When applied
to multi-omics data in the ROS/MAP cohort, MoFNet
outperformed all other competing methods across a
comprehensive set of evaluation metrics and identi-
fied genes/proteins with significantly more functional
interactions. It returned three molecular subnet-
works in relate to innate immune system, clearance
of misfolded proteins, and neurotransmitter release
respectively.

MATERIALS AND METHODS

Multi-omic data sets

Genotype, RNA-Seq gene expression and protein
expression used for discovery were sourced from
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the Religious Orders Study (ROS) and Memory and
Aging Project (MAP) cohorts and were collected
from prefrontal cortex tissue of postmortem brains
[11], as shown in Fig. 1a. The replication data set, also
derived from the same brain tissue, was obtained from
the Mount Sinai Brain Bank (MSBB) cohort [12].
Details of two cohorts are in Supplementary Text
S1 and S2 and detailed preprocessing steps of geno-
type, RNASeq and protein expression data can be
found in Supplementary Text S3, S4, and S5. Shown
in Table 1 is the demographic information of all
participants.

Pre-screening of -omics features

Given the high dimension of genotype and
transcriptome data, this analysis was designed to
specifically target the molecular mechanism related
to the 186 peptides measured in ROS/MAP. These
peptides correspond to 126 unique proteins, which
were manually selected by the ROS/MAP team as
AD-relevant. On top of that, we took a bottom-
up approach to further narrow down the number of
SNPs and genes. This is also expected to mitigate
the effect of small sample size. First, peptides were
used as initial seeds to help select a subset of related
SNPs and genes for subsequent analysis (Fig. 1b).
In the proteomic layer, 186 peptides measured in the
ROS/MAP cohort were mapped to 126 unique genes
(gene set A), which were found to functionally inter-
act with 954 genes (gene set B) in the Reactome
database [5]. Among these 1,080 (126 + 954) genes,
743 without missing RNA-seq data were included
to represent the transcriptomic layer in our model.
In the genomic layer, we identified SNPs located on
the upstream of these 743 genes within the boundary
of 5K base pairs. To ensure the functional connec-
tion of selected SNPs and their downstream genes,
we included only SNPs significantly associated with
the transcription factor-binding activity, based on the
SNP2TFBS database [6]. Taken together, 822 SNPs,
743 genes, and 186 peptides were included for the
subsequent predictive task. The functional relation-
ships used to filter the genes and SNPs formed a
trans-omic network and will be embedded into the
architecture of MoFNet to guide the search for molec-
ular subnetworks related to AD (Fig. 1c).

Prediction outcomes

Extracted SNP genotype, gene expression and pro-
tein expression data were used to classify AD patients

from cognitive normals (CNs). For all the participants
included in this study, their clinical diagnosis at the
time of brain tissue collection was used to indicate
their disease status. In this case, the diagnosis time
aligns with the -omics data collection time.

MoFNet: a deep multi-omic fused neural network

MoFNet is an extension from Varmole [10] and
knowledge-primed neural network (KPNN) [9]. Both
of them confirmed that deep learning informed by
prior functional interactions could lead to signifi-
cant improvement in both prediction performance
and model interpretability. However, KPNN takes
only RNA-Seq data as input and Varmole can addi-
tionally take genotype. Neither of them is capable
of taking genotype, RNA-Seq and protein expression
altogether with prior interactions. MoFNet addressed
this limitation with a novel multi-layer architecture,
as shown in Fig. 1c. The first transparent layer has
1,565 input nodes, corresponding to 822 SNPs and
743 genes respectively, and 743 output nodes, corre-
sponding to 743 enhanced genes. Links in the first
transparent layer were added if one SNP (as an input
node) is connected to one gene (as an output node) in
the prior trans-omic network. In addition, we added
links between duplicated genes nodes (i.e., gene A
node in the input and gene A node in the output). In
this case, each output gene node will have integrated
information from its upstream SNPs and its origi-
nally measured expression level. We assume that not
all upstream SNPs are equally informative and may
be specific to different tissues. Therefore, L1 regular-
ization was applied for the first transparent layer such
that output gene nodes will not integrate information
from SNPs that are not relevant to the prediction out-
comes. That is, links between irrelevant SNPs and
their downstream genes will mostly get zero weight.
For the second transparent layer, we have 929 input
nodes (i.e., 743 enhanced genes and 186 original pep-
tides), and 186 output nodes corresponding to 186
enhanced peptides. Links were added if one gene (as
an input node) is connected to one peptide (as an out-
put node) as indicated in the prior trans-omic network.
We also added links between the duplicated peptides
(i.e., peptide A node in the input and peptide A node
in the output). Taken together, the enhanced peptide
nodes, as the output of the second transparent layer,
will have integrated information from its correspond-
ing genes, their functional interactors and upstream
SNPs. After that, we have fully connected layers to
classify the AD patients from cognitive normal sub-
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Fig. 1. (a) Multi-omic data used for discovery and replication, both from prefrontal cortex tissue. (b) Steps to filter SNPs and genes using
peptides as seeds. (c) Architecture of the proposed MoFNet model, with the prior trans-omic network in (b) embedded in the first two
transparent layers.

Table 1
Demographic information of all participants

ROS/MAP MSBB
Diagnosis CN AD CN AD

Subject Number 77 56 41 80
Male/Female 35/42 22/34 21/20 23/57
Education (mean ± std.) 16.7 ± 3.2 16.8 ± 3.7 N/A N/A
Age (mean ± std.) 83.0 ± 4.5 86.3 ± 3.5 83.1 ± 8.1 85.1 ± 6.8

jects. To avoid the overfitting problem, we applied
dropout and early termination. Detailed architecture
of each layer is described below.

1. Input X1 is the concatenation of the gene expres-
sion matrix Gn×g (n samples by g genes), and
SNP genotype matrix Sn×s (n samples by s

SNPs). X
n×(g+s)
1 = [G, S] where [·] stands for

row concatenation.
2. The output from the first transparent layer Z11

has the dimension as the number of genes g.
Links in this layer indicate the prior func-
tional connections between SNPs and genes,
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and between same genes. Functional connec-
tions between SNPs and genes were encoded
in an adjacency matrix A

s×g
1 . A(i,j) = 1 indi-

cates SNP i is located upstream of gene j and
likely to affect the transcription factor binding
activity; A(i,j) = 0 otherwise. We also added
self-connections to genes by adding another
adjacency matrix A

g×g
2 , which is an iden-

tity matrix with A2(i,j) = 1. Taken these two
adjacency matrices together, the first trans-
parent layer is a ‘Biological DropConnect’
layer [10, 13]. Therefore, weight matrix of this
layer W1 has a sparse structure with a dimen-
sion of (s + g)×g. Output of this layer Z1 =
f

(
X1

(
W1 � [

AT
1 , AT

2

]T
)

+ b1

)
where � is

the Hadamard product, (·)T is the matrix trans-
pose operator, and b1 is the bias term.

3. The second transparent layer resembles the
structure of the second part of the prior trans-
omic network, i.e., the functional connections
between genes and proteins. The input of this
layer is the concatenation of the protein expres-
sion (e.g., peptides) data X

n×p
2 (n samples by

p peptides) and output of the first transparent
layer Z11, i.e., Z1 = [X2, Z11]. The output of
the second transparent layer Z2 has a dimen-
sion of the number of peptides. Weight of
this layer W2 has a dimension of (g + p)×p.
The adjacency matrix A

g×p
3 indicates the func-

tional connections between genes and proteins,
where A3(i,j) = 1 if gene i encodes protein j
itself or the functional interactor of protein j;
A3(i,j) = 0, otherwise. Similarly, we added self-
connections between peptides with an identity
adjacency matrix A

p×p
4 where A4(i,j) = 1. The

output of the second transparent layer is Z2 =
f

(
Z1

(
W2 � [

AT
3 , AT

4

]T
)

+ b2

)
, where b2 is

the bias term.
4. Three fully connected hidden layers Zl index

by l ∈ {3 · · · L − 1} were used together with
a sigmoid function in the last layer. ZL =
σ (ZL−1WL + bL), where bL is the bias term.

1. Finally, we use binary cross-entropy loss to
quantify the classification error: L (y, ŷ) =
−1

/
n

∑n
i=1 yi log (ŷi) + (1 − yi) log (1 − ŷi).

Due to the small sample size, 5-fold cross val-
idation was applied with grid search to tune the
parameters. Details of parameter tuning and final
parameters can be found in the Supplementary Text
S6.

Model interpretation

MoFNet can be interpreted in two ways. First, with
L1 penalty, only a few links in the first two lay-
ers will get non-zero weight. Secondly, each node
will obtain an importance score using integrated gra-
dient, a common method to interpret deep learning
models [14, 15]. Importance score of each node mea-
sures how much the prediction outcome will change
in case of unit change in that node. It is a relative mea-
sure for prioritizing the contribution of SNPs, genes,
and proteins. The higher the importance score, the
larger effect the feature has on the final prediction.
Link weight and node importance score will be used
to prune prior network and return subnetworks that
contribute the most to the disease outcome.

Performance evaluation

To evaluate the effectiveness of the proposed
MoFNet, we compared its performance against ran-
dom forest and four other logistic regression based
classification models, using modularity, elastic net,
GraphNet and Lasso as penalty terms respectively
[16–19]. These sparse logistic regression models
were selected because they are designed for both
classification and feature selection. Classic classifica-
tion models, such as support vector machine (SVM)
and k nearest neighbor (KNN), do not select fea-
tures, and therefore are not included for comparison.
For the proposed MoFNet, we also evaluated its
isoforms structured using shuffled prior trans-omic
networks. In total, we repeated shuffling three times
and reported the average performance. Two different
shuffling strategies were applied: with and without
self-connections for gene and protein nodes (e.g., link
between gene A node in layer 1 and gene A node
in layer 2). Modularity constrained logistic regres-
sion (M-logistic) was implemented using Matlab and
GraphNet was implemented using R package [20].
Elastic net constrained logistic regression, traditional
logistic regression with lasso penalty, and random for-
est were implemented using the Python scikit-learn
package [21]. To provide an unbiased comparison,
partition of subjects in all training and testing set was
kept identical for all methods. Grid search and 5-fold
cross validation for all methods were used to select
optimal parameters.

The classification accuracy and the Area Under
the Receiver Operating Characteristic (ROC) Curve
(AUC) were utilized as primary metrics. Addi-
tionally, F1 score, precision, and specificity were
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employed for a comprehensive assessment of the
model’s performance.

RESULTS

Comparison of prediction performance

Shown in Fig. 2 is the performance of MoFNet
and other competing methods on test data set. Due to
imbalanced case and controls, we reported not only
accuracy and AUC, but also F1 score, precision, and
specificity metrics to give a comprehensive compari-
son of performance. In particular, F1 score combines
precision and sensitivity (recall) into a single metric,
and has been widely used as a major evaluation metric
for imbalanced data sets. The proposed MoFNet con-
sistently outperforms other competing models, with
highest accuracy, specificity, AUC, and F1-score,
indicating its capability in handling the imbalanced
data set as well. The MoFNet using shuffled trans-
omic network without self-connections remained
the worst across all evaluation metrics, which was
expected. The MoFNet using shuffled trans-omic net-
work with self-connections scored the second-best.
This suggests that the prediction performance of
MoFNet was predominantly driven by the genotype,
gene expression and protein expression that were
originally measured. And indeed, integrated informa-
tion from functional interactors provided additional
information to further enhance the prediction perfor-
mance.

Multi-omic molecular subnetworks in related to
AD

We examined the set of SNPs, genes and/or
proteins contributing to the final prediction and
their functional connections in the prior network.
Among all competing methods, modularity and
elastic net constrained logistic regression models
identified SNPs, genes, and proteins with a few
known functional connections, but not enough to
form subnetworks. Multi-omic features selected by
other competing methods mostly scattered around
the prior network with little known functional con-
nections. In contrast, MoFNet returned multi-omic
molecular subnetworks connecting a set of SNPs with
genes and proteins. These subnetworks were obtained
by pruning the prior network using link coefficients
and node importance scores (details in Supplemen-
tary Text S7). Final pruned multi-omic network has
169 multi-omic features (32 proteins, 80 genes, and

57 SNPs), with 3 major connected components (i.e.,
subnetworks) (Fig. 3). Here, node size is made pro-
portional to its importance score. The larger the node
size, the more it contributes to the predicted diag-
nosis. Similarly, edge width is proportional to the
weight taken from the transparent layers of MoFNet.
The thicker the edge is, the more information flow
occurs from SNPs to genes or from genes to pro-
teins. As expected, nodes with top importance scores
are mostly proteins since they integrated information
from SNPs and genes. One peptide of Apolipopro-
tein E (APOE), a strong risk factor for AD [22], was
also identified by MoFNet but not part of top 3 con-
nected components. This is likely due to its limited
functional connections in the prior network.

Component-1 has 24 SNPs, 34 genes and 21
proteins, including the amyloid precursor protein
APP and its corresponding gene. In particular, pep-
tide APP 2 has the maximum degree, and peptide
Tau AT8 has a high importance score indicating its
significant contribution to the predicted diagnosis
of each subject. AT8 and AT100, shown at the end
of tau peptides, are antibodies used to recognize
tau protein phosphorylated at Ser202/Thr205 and
Thr212/Ser214 respectively [23, 24]. Our result also
identified other phosphorylated forms of tau to be
highly predictive of AD, such as those captured by
antibodies PHF1, 12E8, and 77G7 [25, 26]. Several
studies have demonstrated that the presence of phos-
phorylated tau detected by AT8 or AT100, is strongly
correlated with the presence of neurofibrillary tan-
gles in AD brains [27, 28]. Activation of NLRP3
inflammasome is speculated to promote the forma-
tion of neurofibrillary tangles and the accumulation
of abnormal tau AT8 in the brain [29].

Identified SNPs are largely tissue-specific
expression quantitative trait loci (eQTL)

We investigated the functional effect of all
SNPs in 3 major components on the downstream
transcriptome level. In the Brain eQTL Almanac
(BRAINEAC) database [30], 50 out of 53 SNPs
were found significant as eQTL in the frontal cortex
region; the rest 3 SNPs were not found. That means,
variations in these SNPs are associated with gene
expression levels. Further, we examined whether
those SNPs are eQTLs of their directly connected
genes in Fig. 3. Among all 50 SNP-gene pairs in
Fig. 3, 29 of them have been identified to have
significant associations in the frontal cortex tissue
(links highlighted as blue in Fig. 3). Top signif-
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Fig. 2. Performance comparison of MoFNet and other competing methods on test data set. Three MoFNet models were evaluated, structured
with prior multi-omic network, shuffled prior network with self-connections and shuffled prior network without self-connections respectively.

icant associations between SNPs and genes from
component-1 were listed in Supplementary Table 1.
Most significant information flow was found between
VAMP2 gene and its two upstream SNPs, rs4792267
and rs59511744. According to GeneHancer [31],
both SNPs are located in a promoter/enhancer
region that interacts with genes lysine demethylase
6B (KDM6B), CST telomere replication complex
component 1 (CTC1), phosphoribosylformylglyci-
namidine synthase (PFAS), and period circadian
regulator 1 (PER1). These four genes play essen-
tial roles in regulation of synaptic plasticity, telomere
maintenance, neurotoxicity, and circadian rhythm
respectively, all of which are strong correlates of AD
[32–35].

Enriched cell types

We further estimated the cell types related to
altered genes and proteins using cell type specific
marker genes. Those marker genes usually have
selectively high expression in specific cell types, but
not in others. Based on CellMarker database [36], we
examined all the genes and proteins from 3 major net-
work components to check whether they are marker
genes of any cell type. As shown in Supplemen-
tary Figure 2, genes/proteins identified by MoFNet
are mostly marker genes for astrocyte, microglia,
and neuronal cells. Detailed list of marker genes in
each component is shown in Supplementary Table 2.
Astrocytes are known to provide support and nour-
ishment to neurons, while microglia cells protect
against threats and remove damaged cells [37]. Both

astrocytes and microglia are glial cells mediating
the neuroinflammation, which has been viewed as
a “double-sword” in AD [38]. Cross-talk between
astrocyte and microglia has been recently suggested
as a potential target for therapeutic intervention in
AD [39].

Pathway enrichment analysis

For all the genes and proteins in 3 major network
components, we performed enrichment analysis in
Reactome pathways using g:Profiler [5, 40]. Shown
in Fig. 4 is the map of all enriched Reactome
pathways, falling into eight functional groups [41,
42]. Top pathways enriched by genes and proteins
in component-1 include notch1 NLR (NOD-like
receptors) signaling, eph ephrin cells, release neu-
rotransmitter cycle, and caspase mediated cleavage.
NLR signaling pathways are known to be associ-
ated with the inflammatory response in AD [43].
Emerging evidence suggests that Eph-Ephrin signal-
ing is associated with both synaptic dysfunction and
immune dysregulation, which in turn promotes the
progression of AD [44]. Dysregulation of neurotrans-
mitter release has been involved in the development
of AD by affecting neural communication and plas-
ticity, which will possibly lead to the death of nerve
cells [45]. Lastly, caspase-mediated cleavage of tau is
viewed as an early pathological event triggering tan-
gle pathology as a critical toxic moiety underlying
neurodegeneration [46, 47].

Component-2 is a subnetwork centered around
protein FBXO2 (F-box protein 2). It is closely related
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Fig. 3. Molecular subnetworks (with number of nodes ≥ 2) from pruned prior network using the link weights and node importance scores
from MoFNet. Node size is proportional to importance score. Link width is proportional to the link weight. Blue links represent SNP-gene
pairs where the SNP is a known eQTL of its connected gene in frontal cortex tissue. Suffix of each protein indicates different peptides.

to ubiquitination & proteasome degradation as part of
antigen processing (adjusted p = 1.808e–51) [5, 40].
Neuronal death in AD has a strong connection with
misfolded proteins that aggregate within the brain,
e.g. amyloid and tau tangles. Ubiquitination and pro-
teasome degradation is one of the two major pathways
that help get rid of unwanted cells or misfolded pro-

teins to prevent their accumulation and to maintain
the health of a cell [48].

Component-3 is a small subnetwork centered
around protein STX1A 1, SNAP25 2, STXBP 1, and
gene VAMP2. They are the major components of the
SNARE complex, which medicates the fusion pro-
cess of synaptic vesicles and play an essential role
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Fig. 4. Map of Reactome pathways enriched by all the genes and proteins identified by MoFNet, in total forming 8 functional groups. Each
node is a pathway and node size is proportional to the number of member genes. Link width is proportional to the number of genes shared
between pathways. Node color indicates the significance of each pathway.

in the cross talk between neurons and glia [49, 50].
Top pathways enriched by these genes form a func-
tional group related to neurotransmitter release cycle
in Fig. 4. More specifically, most of them are involved
in the gamma amino butyric acid (GABA) syn-
thesis, release, reuptake, and degradation (adjusted
p = 9.532e–11). GABA has been found to have sig-
nificantly reduced levels in severe cases of AD [51].
Selective inhibition of astrocytic GABA synthesis or
release is suggested as a potential therapeutic strategy
for treating memory impairment in AD [52].

Enriched cell types

Replication analysis was performed using the
genotype, RNA-Seq gene expression, and protein
expression from the Mount Sinai Brain Bank cohort.
Due to different protein quantification methods, pep-
tides in MSBB can’t be directly matched to those in
ROS/MAP. Therefore, we included all the peptides
that belong to the 126 unique proteins in ROS/MAP.
Across all the SNPs, genes and proteins used in dis-
covery analysis, we found 107 peptides, 648 genes,
and 695 SNPs in 121 MSBB participants. With the
optimal hyperparameters learned on training set, we
obtained 82% accuracy on testing data set, compa-
rable to the performance on the ROS/MAP data. We

followed the same procedure as discovery analysis
to select the optimal cut-off threshold (0.01) and
pruned the prior transomic network. Finally, 116 out
of 313 features identified using ROS/MAP data were
replicated, i.e., 56.9% for proteins, 29.6% for genes
and 23.6% for SNPs respectively. The overall repli-
cation rate was 48.6% for component-1 and 50%
for component-3. Specifically, 75% of proteins and
64.7% of genes in component-1 were confirmed in
the MSBB cohort. Component-2 is least replicated in
which we only found 50% of SNPs. Overall, we were
able to validate a lot more proteins than genes and
SNPs, which is as expected since in MoFNet proteins
integrated information from functionally connected
SNPs and genes.

DISCUSSION

We proposed a new deep trans-omic network
fusion model MoFNet to not only integrate multi-
omic data but also model the information flow from
DNA to RNA and proteins. Incorporating the prior
trans-omic interactions into the multi-omic data,
MoFNet demonstrated superior performance over all
other state-of-art methods in that it captures both
interactions and individual markers associated with
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AD, giving rise to molecular subnetworks for eas-
ier interpretation of associated molecular mechanism.
Trans-omic paths from SNP to gene and then pro-
tein identified by MoFNet suggested that AD may be
partly the result of genetic variations due to their cas-
cading effects on the downstream transcriptome and
proteome levels. Although none of the prior func-
tional connections was extracted in a tissue specific
manner, eQTL analysis showed that MoFNet can
accurately capture those tissue specific relationships
between SNPs and genes.

MoFNet identified several AD-relevant molecular
subnetworks connecting SNPs, genes and proteins,
providing a zoomed-in view of possible AD molec-
ular mechanism. Component-3 consists exclusively
of SNARE (soluble N-ethylmaleimide-sensitive fac-
tor attachment protein receptor) complex priming the
synaptic vesicle fusion for neurotransmitter release,
including synaptobrevin (also known as vesicle-
associated membrane protein 2 (VAMP2)) on the
synaptic vesicle, syntaxin 1 (STX1A/STX1B) on the
plasma membrane, and SNAP25. These three func-
tions together with STXBP1 to bring the membranes
of synaptic vesicle and plasma membrane into appo-
sition and to enable neurotransmission [49]. The
SNARE complex is necessary not only for neuron-
neuron communication but also neuron-glia and
glia-glia communication [50].

Interestingly, for component-1, enrichment results
using EnrichR are also highly relevant to synap-
tic functions, in addition to signaling pathways and
immune system [53]. More specifically, 23 out of
34 genes in component-1 are involved in immune
system (adjusted p = 2.289e – 14), 25 in signaling
transduction (adjusted p = 1.034e – 15), 14 in axon
guidance (adjusted p = 2.235e – 12) and 14 in synap-
tic function (aggregated from all enriched synaptic
GO terms with adjusted p ≤ 0.05). Out of 14 synap-
tic function related genes, 10 of them are involved in
both immune system and signal transduction and 7
of them are related to neuron axon guidance. This
suggests that synaptic function is an integral part
of immune response and signal transduction. Top
signaling pathways enriched by component-1 like
Notch pathways, NTR (neurotrphin) signaling path-
ways, and NGF (nerve growth factor) are all activated
by their corresponding receptors located in the cell
membrane. SNARE complex in component-3 along
with GTPase will help merge endocytic vesicles that
transport these receptors to the plasma membrane
[54], which agrees with previous findings that notch
signaling is likely regulated by intracellular vesi-

cle trafficking [54]. These signaling pathways play
essential role in normal development of neurons and
glia and mediating their cross-talk [55].

Synaptic dysfunction is among the earliest changes
of AD, even before the accumulation of mis-
folded protein aggregates and neuronal loss [56–58].
Synapse loss in postmortem brains is a strong cor-
relate with cognitive decline [59, 60]. Yet, the
connection of synapse dysfunction with amyloid and
tau pathology is not fully understood. Synapse is the
place where amyloid-� peptides are generated and
is the target of the toxic amyloid-� oligomers [61].
Oligomeric amyloid-� is found to co-localize with
Apolipoprotein E4 protein, which is associated with
significant increase of amyloid-� at synapses [62]. A
recent study reported the interaction of tau in neuron
with STX1A, a member of the SNARE complex, sug-
gesting the localization of tau at sites of presynaptic
vesicle fusion [63].

Taken together, both amyloid and tau are likely to
localize at the presynaptic vesicle and have domain-
specific interactions with synaptic vesicle-associated
proteins, interfering with synaptic vesicle function in
the early stage of AD. Also, considering that all these
genes are preferably expressed in brain according to
GTEx [64, 65] and are mostly markers of astrocyte,
microglia and neurons (Fig. 4), such interference of
synaptic function could possibly cause disruption in
neuron-neuron or neuron-glia cross talk and further
lead to neuronal and synapse loss in AD. Further
investigation of these identified genes/proteins could
possibly help decipher the mechanisms underlying
synaptic dysfunction in AD, and ultimately inform
therapeutic strategies to modify AD progression.

We proposed a new deep multi-omic fusion net-
work to leverage the information flow in prior
functional interactions to improve the prediction per-
formance and model interpretability. When applied
to AD multi-omic data, MoFNet achieved promising
performance in identifying molecular subnetworks
associated to AD, along with the upstream regulatory
SNPs. These findings have been mostly replicated
in an independent dataset, confirming the robustness
of the MoFNet even with limited sample size. It’s
also important to note that while our prior network is
not tissue specific, MoFNet is capable of identifying
functional interactions that are specific to the tissue
where the omics data is collected, which underscores
the great potential of this method. As such, MoFNet
offers a significant opportunity to advance our under-
standing of disease molecular mechanisms in AD and
beyond.
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