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Abstract

INTRODUCTION: Alzheimer’s disease (AD) initiates years prior to symptoms, under-
scoring the importance of early detection. While amyloid accumulation starts early,
individuals with substantial amyloid burden may remain cognitively normal, implying
that amyloid alone is not sufficient for early risk assessment.

METHODS: Given the genetic susceptibility of AD, a multi-factorial pseudotime
approach was proposed to integrate amyloid imaging and genotype data for estimating
arisk score. Validation involved association with cognitive decline and survival analy-
sis across risk-stratified groups, focusing on patients with mild cognitive impairment
(MCl).

RESULTS: Our risk score outperformed amyloid composite standardized uptake value
ratio in correlation with cognitive scores. MCI subjects with lower pseudotime risk
score showed substantial delayed onset of AD and slower cognitive decline. Moreover,
pseudotime risk score demonstrated strong capability in risk stratification within tradi-
tionally defined subgroups such as early MCI, apolipoprotein E (APOE) ¢4+ MCI, APOE
g4- MCI, and amyloid+ MCI.

DISCUSSION: Our risk score holds great potential to improve the precision of early
risk assessment.

KEYWORDS
Alzheimer’s disease, imaging genetics, longitudinal association analysis, pseudotime analysis,
survival analysis

Highlights
* Accurate early risk assessment is critical for the success of clinical trials.
* A new risk score was built from integrating amyloid imaging and genetic data.

* Ourrisk score demonstrated improved capability in early risk stratification.
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1 | BACKGROUND

Alzheimer’s disease (AD) is a neurodegenerative disorder that results
in progressive and irreversible decline in cognitive performance. It
is highly heritable! and large-scale genome-wide association studies
(GWASs) have revealed a significant set of genetic variants associ-
ated with AD.23 Despite the increasing number of AD patients and
elderly population at risk,* there are so far no clinically validated
cures for AD. Instead, a recent disease-modifying medication pro-
duced only a relatively small reduction in the rate of cognitive decline,
while older medications alleviate symptoms.®> Currently, numerous
AD clinical trials are underway targeting a variety of mechanisms,
but the overall success rate of these trials remains relatively low.®
There is a growing consensus that early risk assessment is critical to
enhance the chance of success in AD trials, as it will enable the initi-
ation of timely intervention when the treatment is most likely to be
effective.” This is, however, challenging due to the limited capability
to capture accurate risk for future decline in the earliest stages of
disease.

Amyloid plaques and neurofibrillary tangles are two pathological
hallmarks of AD identified in post mortem AD brains. Substantial evi-
dence suggests a general pattern of AD progression with amyloid
pathology preceding tau pathology.® Furthermore, growing evidence
indicates that amyloid plaques begin to accumulate up to two decades
before the onset of clinical symptoms. Researchers have postulated
the presence of an asymptomatic early stage characterized by “silent”
amyloid beta (AB) accumulation.” This hypothesis laid the foundation
for the current biological classification framework (A/T/N), which has
been used to assist with early detection, staging, and patient screen-
ing for clinical trials. ? This framework assigns individuals into different
stages based on amyloid (A), tau pathology (T), and neurodegenera-
tion (N) captured by neuroimaging scans and cerebrospinal fluid (CSF)
measures. Particularly, amyloid plays a central role in this framework
as one of the earliest pathological features and has been widely used
in AD trials to provide biological evidence of the disease. Although Aj3
accumulation takes place on a continuum, amyloid positron emission
tomography (PET) scans are commonly dichotomized as pathological
(positive) versus normal (negative) in the current A/T/N classification
system.!! Consequently, this approach is limited in capturing the risk
of AD progression or future cognitive decline, particularly in the early
stage when all participants are simply categorized as amyloid negative
without differentiation. Recent findings from AD progression studies,
despite having different focuses such as onset prediction,’? staging, !

1415 consistently showed that

and temporal ordering of biomarkers,
the rate of cognitive decline varies among individuals with differ-
ent genetic predispositions and across disease stages, which is tightly
linked with brain amyloid burden. Therefore, we hypothesize that inte-
grating amyloid imaging and genotype data could enhance our ability
to estimate and stratify the risk of future progression.

In this study, we propose a multi-factorial pseudotime approach to
integrate amyloid imaging and AD GWAS findings for estimation of a
pseudo-continuous risk score. The fundamental question underlying

this approach is to estimate the risk of developing AD based on an

RESEARCH IN CONTEXT

1. Systematic review: PubMed was searched for studies
investigating early risk stratification for Alzheimer’s dis-
ease (AD). However, no existing studies were found that
integrate amyloid imaging and genetic data for risk esti-
mation.

2. Interpretation: Results revealed that individuals in the
preclinical and prodromal stages, such as mild cognitive
impairment, could possibly be further stratified using
pseudotime risk score. Those with higher risk score will
likely experience a faster decline in cognition along with a
shorter transition to AD. Targeting this group is essential
for clinical trials to maximize treatment outcomes.

3. Future directions: These findings underscore the impor-
tance of multi-factorial approaches for assessment of AD
risk. Integration of genotype and other more accessible
early biomarkers warrants further investigation. Addi-
tional studies in more diverse populations are necessary
to improve the generalizability of risk score.

individual’s genetic profile and current distribution of amyloid in the
brain. Given that amyloid is one of the earliest pathological features
and carrying risk alleles could predispose an individual to an elevated
risk of developing AD, this new risk score is expected to offer signifi-
cant potential improvement for early risk assessment and facilitate the
recruitment of early-stage subjects who will be most likely to benefit
from clinical trials. We first used a similarity network fusion technique
to integrate the heterogeneous imaging and genotype data, and then
performed pseudotime analysis to generate the final risk score for
each individual. We validated our risk score by comparing longitudi-
nal cognitive changes and clinical progressions across risk groups, with
a particular focus on early-stage subjects with mild cognitive impair-
ment (MCI). This longitudinally validated scheme could improve the
precision of AD risk stratification and demonstrate the feasibility of

predicting diverse disease progressions.

2 | METHODS
2.1 | Participants

Data used in this study were obtained from the Alzheimer’s Dis-
ease Neuroimaging Initiative (ADNI) cohort (http://adni.loni.usc.edu/).
ADNI is a longitudinal multi-center study launched in 2003, aiming to
track the progression of AD using clinical and cognitive tests, mag-
netic resonance imaging (MRI), fluorodeoxyglucose PET, amyloid PET,
CSF, and blood biomarkers. More details can be found in previous
reports.}”18 Informed consent was obtained from all participants or

their authorized representatives.
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TABLE 1 Demographicinformation of all participants subjects. CN EMCI LMCI AD

Subjects CN EMCI LMCI AD

Number 259 298 208 185

Sex (M/F) 126/133 172/126 123/85 111/74
APOE status (-/+) 190/69 173/125 103/105 64/121
Amyloid (-/+) 178/79 150/147 70/136 26/157

Age (mean =+ std) 7552+ 6.98 72.04+7.32 74.47 +8.41 7551+7.99
Educ (mean =+ std) 16.55 +2.61 16.13 +2.63 16.25+2.81 15.84 +2.69
PRS (mean + std) 0.26 +0.77 0.60 +0.95 0.77+1.01 1.14+1.03

Abbreviations: AD, Alzheimer’s disease; APOE, apolipoprotein E; CN, cognitively normal; EMCI, early mild cognitive impairment; LMCI, late mild cognitive

impairment; PRS, polygenic risk score; std, standard deviation.

The study population was composed of participants from the ADNI-
1, ADNI-2, and ADNI-GO phases.'? In total, we have 950 subjects with
both genotype and amyloid PET imaging data, including 259 cognitively
normal (CN), 298 early MCI (EMCI), 208 late MCI (LMCI) and 185 AD
patients. These subjects on average were followed 3.47 years (standard
deviation [SD] 3.11 years), with up to 6 visits (median: 2, Figure S1 in
supporting information). The average time gap between the imaging
baseline and the cognitive baseline is 1.03 months (SD 1.85 months).
Out of the 950 subjects, 773 were used to generate the disease trajec-
tory and for estimation of pseudotime as risk score. The remaining 177
subjects were kept as a test set to validate the potential of pseudotime
in early risk stratification through longitudinal association analysis and
survival analysis. Detailed demographics of the subjects are summa-
rized in Table 1. To evaluate the reliability of our results, we further
randomly picked 80% of those 773 training subjects to repeat the

analyses.

2.2 | Amyloid imaging data

Downloaded amyloid imaging data has been quality controlled and
pre-processed.?® Briefly, amyloid PET with florbetapir (18F) as a
tracer was used to measure Ag plaques inside the brain.2! For each
subject, brain regions of interest (ROIs) were defined from subject-
specific structural MRI scans, which went through segmentation
and parcellation using FreeSurfer (version 5.3). Then, each florbe-
tapir scan was co-registered to the corresponding MRI scan and the
mean florbetapir uptake within the predefined ROIs was calculated.
In this study, standardized uptake value ratio (SUVR) of 68 corti-
cal ROls, indicating the level of amyloid deposition, were included
and further normalized using COMPOSITE_REF_SUVR (a summary
measure provided by the ADNI) as reference. Subcortical regions
were excluded for amyloid analysis because their amyloid burden
has been commonly considered non-specific and not related to AD
risk.22 More detailed image processing information can be found in
Landau et al.2® Effect of age, sex, and years of education on amy-
loid measures were regressed out with the weight derived from CN
individuals.

2.3 | Genotype data

Quality controlled (QCed) and pre-processed genotype data were
obtained from the ADNI cohort. We focused on 31 AD risk single
nucleotide polymorphisms (SNPs) that were previously reported in
polygenic risk studies.® Polygenic risk scores derived from these 31
SNPs has been proven to effectively identify individuals at risk for AD
across age groups. Out of those, 27 SNPs were found to pass the QC
process in the ADNI cohort, and their genotype data were included for
the subsequent analysis.

2.4 | Cognitive performance

Cognitive performance has been commonly administered in clinical
routines to aid in diagnosing and monitoring the progression of AD.
As a form of validation, derived risk score was examined for associa-
tion with longitudinal cognitive data, including scores from Alzheimer’s
Disease Assessment Scale (ADAS), Mini-Mental State Examination
(MMSE), Rey Auditory Verbal Learning Test (RAVLT), and Trail Making
Test. These tests evaluate various cognitive domains such as memory,
attention, language, and executive function to assess the severity of
cognitive impairment.2* In addition, two composite scores from the
ADNI cohort were also included, ADNI-Mem for memory2° and ADNI-
EF for executive function,2é each summarized from multiple cognitive
tests. These composite scores provide a more accurate representation
of cognitive function with minimal impact of random fluctuations in

performance.

2.5 | Fusion of amyloid imaging and GWAS risk
SNPs

Amyloid imaging and genotype data are of heterogeneous types (e.g.,
categorical and continuous) and direct integration without proper
consideration could significantly bias the results. In this project, we
performed similarity network fusion to integrate information from
imaging and genotype data.?” First, two similarity networks across all
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subjects were computed using amyloid imaging data and genotype of
27 SNPs. Suppose we have n subjects {xq, X2, ..., X,}, two subject sim-
ilarity matrices will be computed: WA from amyloid imaging and W¢
from genotype of 27 risk SNPs. Both similarity matrices have dimen-
sion of nx n and are symmetric. For amyloid imaging data, similarity
between subjects was evaluated using Euclidean distance pj(x;, x;),

followed with a scaled exponential similarity kernel (Eq. 1).

2 Xiy X; 2 Xi, X;
WA = exp <_L'“j)>’ W‘? = exp<_M> (1)

Heij

Here, u is a hyper-parameter that was set to 0.5 as default and
gj helps eliminate the scaling problem (Eq. 2). p(x;, N;) is the average
distance between x; and each of its neighbors N;.

mean (p (x;, N;)) + mean (o (x;, N;)) + p (xi, X;)

&j = 3 (2)

The genetic similarity matrix WG was computed similarly as shown
in Eq. 1. The genetic distance between subjects pg(x;, x;) was calculated
using two different approaches for comparison: (1) genetic relation-
ship matrix (GRM), and (2) Euclidean distance of polygenic risk scores
(PRS) derived similarly as Desikan et al.2® GRM is the Euclidean dis-
tance calculated from the SNP information of the individuals, that is,
from the minor allele counts. The PRS is based on the genotype of 27
risk SNPs and the weight from the European International Genomics of
Alzheimer’s Project (IGAP), a large-scale GWAS of AD with 11,480,632
SNPs from 21,982 AD cases and 41,944 controls.28

WA and WC in Eq. 1 were further normalized to PA and P, respec-
tively, to ensure that each subject’s self-similarity is always higher than
its similarity to other neighbors (Eqg. 3). In addition, two local affinity
matrices $* and S¢ were generated to encode the relative similarity of
each subject to their nearest neighbors (Eqg. 3). As such, we obtained
four matrices PA, $#, P, and SC for amyloid and genotype data. Here,
PA and PS¢ were defined as full kernel, which carries the information
from one subject to all the other subjects for the amyloid and genotype
data; $* and SS were defined as the local affinity, which encodes the

information from one subject to its neighbors.

WA WG
pA — —2Zk¢,WA’H£ PG _ —ZZH,WG'HE'
U 1 L U 1 .
> J=1 2’ J=1
WA wG
—1 } € N —: ] S5 N
5’? =19 2Zen; Wy , 5? =19 2Xken; wg (3)
0, otherwise 0, otherwise

Here, N; means the K nearest neighbors (KNN) of the i-th subject.
We experimented with K from 5 to 50 but didn’t observe much differ-
ence. Therefore, it was set to default value 20 as suggested in Pearl.2?
Finally, we performed the network fusion of two similarity matrices
using a non-linear message-passing theory method.2? This is an iter-
ative process in which both matrices continue to be updated until
convergence. The final fused matrix is expected to represent the sub-

ject relationships supported by both amyloid imaging and genotype

data. Let P?_ = P" and Pf= o = P@ be the initial matrices when t = 0.
The fusion process will iteratively update two similarity matrices as fol-
lows (Eq. 4). Here, the alternating multiplication of the squared KNN
similarity in two modalities essentially combines the local information
across modalities. It helps reinforce shared information and thereby
achieves a balanced fusion of two modalities. The final fused similarity

network is simply the average of P't“Jr1 and P

;
A 1= Sa X PZ X (Sp)

PS = Sc x P2 x (Sg)" (4)

2.6 | Pseudotime analysis

From the fused similarity network, pseudotime analysis tool PHATE
was applied to learn a low-dimensional trajectory embedding in which
subjects are ordered along a two-dimensional curve (or path). The rel-
ative position of each subject on the trajectory curve was computed
as pseudotime, ranging between 0 and 1.3° This approach has been
recently applied to tau imaging data and pseudotime of each subject
was interpreted as an estimation of disease progression, but not the
risk of progression.3! In addition, this pseudotime was built on autoen-
coder neural networks that are unable to handle the integration of
heterogeneous imaging and genetic data. In this paper, we leveraged
another pseudotime analysis tool (PHATE) and repurposed it to esti-
mate the risk of progression from the fused similarity network. Briefly,
PHATE involves several key steps to learn a two-dimensional trajectory
from similarity network input. It starts with a diffusion process to learn
global relationships within the similarity network. Next, it encodes
these learned relationships using potential distance, which will finally
go through eigen decomposition to generate a two-dimensional tra-
jectory. The principal curve along the trajectory was captured using
SlingShot®233 and all subjects were projected onto the curve for esti-
mation of pseudotime, which will be leveraged as risk score. Subjects
with similar amyloid and genetic profile are well connected in the
similarity network and therefore are expected to stay close in the
trajectory curve, leading to similar pseudotime (or risk score). AD
patients were also included to set the reference end points in the
pseudotime analysis. Pseudotime values between O and 1 reflect an
individual’s similarity to AD patients in terms of both amyloid depo-
sition and genetic profiles. For those with EMCI, higher pseudotime
values suggest a greater similarity to AD patients—whether in brain
amyloid deposition, genetic profiles, or both—implying a higher risk of

progression.

2.7 | Association with cross-sectional cognitive
performance

We first assessed the pseudotime derived from integrated imaging
genetic data regarding its correlation with clinical cognitive scores

measured at baseline using a Spearman correlation. For comparison,
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we also investigated the correlation with cognitive performance for
pseudotime derived from GRM alone, pseudotime derived from amy-
loid imaging data alone, PRS from 27 risk SNPs, chronological age,
apolipoprotein E (APOE) 4 status, and amyloid composite SUVR. For
the amyloid imaging only pseudotime and GRM only pseudotime,
we used similarity matrix PA and PC calculated in Eq. 4 before the
fusion process, which further went through PHATE and SlingShot for
pseudotime estimation.

2.8 | Longitudinal association analysis

Significant changes in cognitive test performance typically do not
appear until MCI stages, at which time amyloid deposition may have
been present for years. Further, the rate of cognitive decline in MCI
is quite variable even in those at similar levels of impairment. Thus,
it would be ideal if we could estimate the expected cognitive change
in an earlier stage and more accurately so that effective interventions
could potentially be applied. Toward this end, we investigated whether
imaging genetics-based pseudotime time (i.e., risk score) is associated
with rate of cognitive decline in MCI groups, including EMClIs and
LMCls. Leveraging the cognitive test scores across follow-up visits, we
examined the association of baseline pseudotime with longitudinal cog-
nitive performance using a linear mixed model (LLM),3* with formula

shown as

Memory_scores ~ years * group + years_from_baseline

+ sex + education + (years | RID) (5)

In the random slopes model, it is assumed that individuals vary
in terms of their changes (slope) in the mean response over time.
Here, years from baseline was modeled as a random effect, and sub-
groups (pseudotime > 0.5/ < 0.5, ¢4 carriers/non-carriers, amyloid + ,
or EMCI/LMCI) were treated as fixed effects. We used Ime4 to fit the
LMM and ImerTest package®° to obtain the P value, which helps deter-
mine whether there is a significant interaction between subgroups and
time in predicting cognitive performance. This analysis allows us to
assess whether the rate of change in cognitive performance differs sig-
nificantly across different subgroups, providing insights into potential

subgroup-specific trajectories of cognitive decline.

2.9 | Survival analysis

We conducted a Cox proportional hazard model®¢ to explore whether
MCI subgroups stratified by fused pseudotime exhibit different risks
of developing AD. The event of interest is defined as the conversion
from MCI to AD, and censoring occurs for MCI subjects if they did
not convert to AD by the last visit. We used the survival package in
R37 to perform the Cox regression. This package provides functions
to estimate survival curves and conduct statistical tests, allowing us

to obtain a P value to quantify the difference in risk of developing AD

THE JOURNAL OF THE ALZHEIMER'S ASSOCIATION

between subgroups of subjects. We assessed the ability of pseudotime
(> 0.5/ < 0.5) in early risk stratification and compared it to tradi-
tional subgroup classification including APOE ¢4 carriers/non-carriers,
amyloid +, and diagnostic groups.

3 | RESULTS
3.1 | Pseudotime risk score

The fused similarity matrix, which captures the subject relationship
supported by both amyloid imaging data and genotype data of AD
risk SNPs, was projected into a two-dimensional trajectory embed-
ding using PHATE, in which subjects were ordered along a principal
curve (Figure 1A). Slingshot was applied to capture the principal curve
of the low-dimensional embedding and to project each subject onto
the principal curve. The relative position of each subject on the prin-
cipal curve was computed as pseudotime, ranging between O and
1 (Figure 1B). A significant difference of pseudotime was observed
across diagnosis groups (Figure 1C for training subjects and Figure 1D
for test subjects). Estimated pseudotime was low in CN, and higher
in EMCI and LMCI groups. AD patients were found with significantly
higher pseudotime compared to all other diagnosis groups, indicating
high genetic risk and severity in amyloid deposition. The pseudotime
derived from amyloid+PRS showed inconsistent performance across
randomly sampled training subjects and was therefore excluded from

further analysis.

3.2 | Association with cross-sectional cognitive
performance

As shown in Figure 2, we found that pseudotime derived from amyloid
imaging data alone was more significantly associated with base-
line MMSE, RAVLT, and composite memory scores than the amyloid
composite SUVR. Associations with ADAS scores were comparable
between amyloid pseudotime and amyloid composite SUVR. While
AD PRS and APOE ¢4 status showed reasonable correlation with cog-
nitive performance, we did not observe any significant correlation
with cognition for pseudotime derived from GRM alone. Pseudotime
derived from the fused similarity network demonstrated the high-
est correlation with all cognitive scores, particularly the ADAS and
memory composite scores, suggesting the complementary contribu-
tion of amyloid imaging and AD risk SNPs on cognitive function. It
is worth noting that amyloid composite SUVR is the driving factor
of AD diagnosis in the current AT framework. Therefore, our result
suggests the great potential of fused pseudotime score as a supple-
ment of the current AT framework for more precise risk stratification
and prediction of disease progression. A detailed scatter plot of these
correlations can be found in Figure S2 in supporting information. For
fused pseudotime and amyloid pseudotime, we further tested the sig-
nificance of difference between the correlations with cognitive scores

using the cocor package,?® which provides a comprehensive statistical
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FIGURE 1 A, Subjects were ordered along a two-dimensional progression trajectory learned from PHATE, which took the input as the fused
similarity network. B, Pseudotime of each subject is estimated as the relative position on the trajectory, ranging from O to 1. C, Pseudotime
distribution across diagnosis groups for training data. D, Pseudotime distribution across diagnosis groups for testing data. ***: P < 0.001, ****: P <
0.0001. AD, Alzheimer’s disease; CN, cognitively normal; EMCI, early mild cognitive impairment; GRM, genetic relationship matrix; LMCI, late mild

cognitive impairment
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FIGURE 2 Spearman correlation with clinical cognitive performance. Memory and executive function on the right end are two composite
scores. AD, Alzheimer’s disease; ADAS, Alzheimer’s Disease Assessment Scale; APOE, apolipoprotein E; GRM, genetic relationship matrix; MMSE,
Mini-Mental State Examination; PRS, polygenic risk score; RAVLT, Rey Auditory Verbal Learning Test

comparison of correlations accounting for the overlap between sam-
ples and correlation between variables. For all six cognitive scores
that showed differential correlation with fused pseudotime and amy-
loid pseudotime, we tested whether correlation from fused pseu-
dotime is greater than that from amyloid pseudotime. As shown
in Table S1 in supporting information, we found that the improved
correlation observed with fused pseudotime, although modest, are
all statistically significant, particularly for ADAS-13 (P = 2.65e-14),
RAVLT delayed recall (P = 1.57e-13), and composite memory score
(P=9.09e-09).

3.3 | Longitudinal association with cognitive
changes

LMMs were applied to investigate the association of the fused pseu-
dotime risk score with rate of cognitive decline (Figure 3). First, we
examined the association of fused pseudotime with longitudinal cog-
nitive changes in MCI training subjects. Among all cognitive scores,
ADAS-13 and composite memory score exhibited significantly dif-
ferent progression rate in the two pseudotime subgroups (> 0.5 or
< 0.5). MClI subjects with pseudotime > 0.5 showed a significantly
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FIGURE 3 Differential rate of cognitive decline in MCl training subjects stratified by fused pseudotime (A), diagnostic groups (B), APOE ¢4
status (C), and amyloid positivity (D). Significant longitudinal association was only observed for ADAS13 score (top) and composite memory score
(bottom). AD, Alzheimer’s disease; ADAS, Alzheimer’s Disease Assessment Scale; ADNI, Alzheimer’s Disease Neuroimaging Initiative; APOE,
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faster decline in ADAS-13 (P = 0.001) and composite memory scores
(P = 9.17e-05), compared to those with pseudotime < 0.5 (Figure 3A).
Similarly, a significant difference in rate of cognitive decline was also
observed in subgroups from dichotomous classification of amyloid (i.e.,
amyloid +), but with much less significant results (Figure 3D). Diag-
nostic subgroups EMCI/LMCI and APOE ¢4 status are not associated
with any longitudinal cognitive change (Figure 3B-C). The detailed
summary statistics of the linear mixed model are in Table S2 in sup-
porting information. Next, we performed a longitudinal association
analysis in CN/EMCI subjects, which didn’t yield any significant find-
ings. We also repeated the longitudinal association analysis twice
for both MCls and CN/EMCls by randomly sampling 80% of training
subjects and obtained similar results (Figure S3 in supporting informa-
tion). Additionally, we conducted a longitudinal analysis using amyloid
pseudotime. This approach generally showed similar performance to
fused pseudotime, but with less statistical significance (Figure S4 in
supporting information).

3.4 | Survival analysis

We further evaluated the performance of fused pseudotime in risk
stratification of MCI training subjects, combining EMCls and LMCls,
and compared to conventional stratification criteria such as diagnosis
of APOE &4 status and amyloid positivity (Figure 4). As expected, EMCI
and LMCl subjects showed distinct risk of developing AD (P = 1.26e-05;
Figure 4B). APOE ¢4+ MClIs exhibited a faster progression to AD com-
pared to APOE ¢4- MCls (P = 5.73e-05; Figure 4C). Amyloid-positive
MCls showed a remarkably accelerated disease progression trajectory
(P=0.002; Figure 4D). Compared to these well-established subgroups,

fused pseudotime unveiled distinct subgroups within the MCI pop-
ulation with further improved differentiation of survival risk with a
significantly lower P value (P = 7.03e-07; Figure 4A).

More importantly, fused pseudotime also demonstrated strong
capability in further stratifying MCI subgroups. EMCls with pseudo-
time > 0.5 demonstrated significantly poorer survival outcomes than
those with pseudotime < 0.5 (P = 0.011; Figure 4E). In addition, we
found that APOE e4+ MCls with lower levels of fused pseudotime expe-
rienced a significantly delayed onset of AD (P = 0.006; Figure 4F). For
MCls that are APOE ¢4-, a lower level of pseudotime is also associated
with significantly lower risk of developing AD (P = 0.003; Figure 4G).
Last, a similar level of risk stratification by fused pseudotime was also
observed within amyloid-positive MCls (P=0.012; Figure 4H). Survival
analysis was not conducted within the amyloid-negative subgroup due
to insufficient subjects who progressed to AD.

Similarly, we also evaluated the performance of fused pseudotime
in risk stratification of CN and EMCI subjects and compared to con-
ventional stratification criteria such as diagnosis of APOE ¢4 status
and amyloid positivity (Figure 41-P). The event for the survival anal-
ysis was defined as the conversion from CN/EMCI to LMCI/AD, and
censorship was applied to CN/MCI subjects who did not convert up
to their last visit. While neither diagnosis subgroups nor amyloid pos-
itivity subgroups showed a significant difference (Figure 4J, L), APOE
¢4+ CN/EMCIs exhibited a faster progression to AD compared to
APOE ¢4- CN/EMCls (P = 0.017; Figure 4K). High- and low-fused
pseudotime again successfully stratified CNs/EMCls into subgroups
with differential risk of progression (P = 0.003; Figure 4l). More-
over, fused pseudotime further identified high-risk CN/EMCI subjects
from pre-defined subgroups like APOE ¢4+ CN/EMCIs (P = 0.026;
Figure 4N), and amyloid-positive CN/EMClIs (P = 0.037; Figure 4P),
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FIGURE 4 Differential progression risk of MCl subjects (Row 1-2) and CN/EMCI subjects (Row 3-4). Row 1: MCls stratified by (A) pseudotime
derived from integration of amyloid imaging and candidate SNPs, (B) diagnosis, (C) APOE &4 status, and (D) amyloid positivity. Row 2: pseudotime
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implying its potential in preclinical risk stratification. Additionally, we
performed survival analysis using amyloid pseudotime. Like the lon-
gitudinal analysis, amyloid pseudotime yielded results comparable to
fused pseudotime. However, fused pseudotime showed a much higher
hazard ratio and demonstrated improved effectiveness in capturing
amyloid-positive MCls and CN/EMCls with higher progression risk
(Figure S4). For MCls and CN/EMCls, we repeated the survival anal-
ysis with random subsampling of training subjects and observed similar
performance as shown in Figures S5 and Sé in supporting information,
which confirmed the reliability of our results.

3.5 | Validation on test subjects

We validated the above observed association and risk stratification
using test subjects not involved in the trajectory learning (Figure 5). For
those 177 testing subjects, one at a time, each test subject was included
in the training dataset to calculate the pseudotime risk. We com-
pared the pseudotime of training subjects before and after retraining
with each test subject, and only observed minimal differences (average
correlation > 0.999, mean absolute error: 0.000359 + 0.000292). Sub-
sequently, longitudinal association analysis and survival analysis were
performed on the test subjects. All test subjects were divided into two
subgroups: those with pseudotime > 0.5 and those with pseudotime
< 0.5. Starting from MCls, we stratified them as EMCI/LMCI, APOE ¢4
carriers/non-carriers, and amyloid +. Consistent with earlier observa-
tion in the training data, individuals with elevated fused pseudotime
exhibited a notably faster decline in composite memory score com-
pared to those with lower pseudotime (Figure 5A; P=0.036). However,
we didn’t observe any notable difference in rate of cognitive decline
for subgroups delineated by diagnosis, ¢4 status, and amyloid positiv-
ity (Figure 5B-D). The detailed summary statistics about the LMM is
in Table S3 in supporting information. In the survival analysis (Figure
5E-H), subgroups defined by fused pseudotime exhibited a notable
difference of progression risk (P =0.002; Figure 5E), in which MCl indi-
viduals with higher fused pseudotime were observed with elevated risk
of developing AD throughout the follow-up period.

For the CN/EMCI test subjects, no significant association was
observed between fused pseudotime and longitudinal cognitive
changes (Figure 5I-L). Subgroups defined by fused pseudotime, but
not the other factors (Figure 5N-P), exhibited a notable difference
of progression risk (P = 0.002; Figure 5M), in which individuals with
higher pseudotime were observed with elevated risk of developing AD

throughout the follow-up period.

4 | DISCUSSION

In this study, we introduced a novel multi-factorial pseudotime
approach to derive an AD risk score through integration of hetero-
geneous amyloid imaging and genotype data. Pseudotime analysis
translates a fused similarity network into a pseudo-continuous risk

score for each subject, reflecting not only its genetic predisposition

THE JOURNAL OF THE ALZHEIMER'S ASSOCIATION

but also severity in amyloid imaging. Compared to an amyloid com-
posite SUVR, PRS, or pseudotime derived from amyloid or genotype
alone, fused pseudotime exhibited a modest but statistically signifi-
cant improvement in association with both individual clinical cognitive
scores and two composite scores for memory and executive func-
tion. This result suggests the complementary contribution of amyloid
imaging and genetics data in cognitive function. Compared to amy-
loid composite SUVR, pseudotime derived from brain-wide amyloid
showed either stronger or comparable correlation with cognitive per-
formance in most clinical tests, which validated the effectiveness of
pseudotime in capturing the AD progression.

In addition, fused pseudotime outperformed traditional stratifica-
tion strategies like APOE €4 status, amyloid positivity, and diagnosis and
exhibited significantly improved differentiation power in stratifying
MCI subjects with accelerated cognitive decline. Given that cognitive
performance is part of current clinical routines to evaluate AD progres-
sion, yet substantial changes often do not manifest until late stages,3?
strong association of baseline pseudotime risk with longitudinal cogni-
tive changes suggests its great clinical promise for early detection and
subtyping of progression. Moreover, subjects with higher fused pseu-
dotime at baseline exhibit substantially shorter transition time to the
onset of AD, which is observed not only within MCI subjects but also
EMCIs, APOE ¢4 carriers, APOE ¢4 non-carriers, and amyloid-positive
subgroups. In other words, fused pseudotime can effectively iden-
tify individuals at higher risk within previously established subgroups,
which could enable more precise targeting of participants during clin-
ical trial recruitment. When applied to test subjects, it was observed
that comparable levels of differentiation can also be extended to cog-
nitively normal individuals, suggesting the significant promise of fused
pseudotime for early risk assessment. In both longitudinal and survival
analyses, amyloid pseudotime demonstrated performance close to
fused pseudotime, highlighting the benefits of pseudotime approaches.
However, amyloid pseudotime by itself is less effective in stratifying
progression among amyloid-positive MCls or CN/EMCls and showed
a lower hazard ratio, which underscores the importance and value of
incorporating genetic information. Taken together, these findings sug-
gest that studies of preclinical and prodromal AD could benefit from
using the fused pseudotime as risk score instead of separating groups
simply by APOE 4 status or amyloid positivity. This score could enable
clinical trials to better pinpoint individuals at elevated risk, further
facilitating early intervention and enhancing treatment outcomes.

The study has several limitations that merit future consideration.
First, using similarity networks as input requires re-training a new
model to predict the risk of each new patient. While our findings indi-
cate that retraining with one additional test subject at a time does not
impact the training outcomes, new supervised training methods that
can be directly applied to new patients are critical to facilitate clinical
use. Second, due to limited data sets with both amyloid imaging and
genotype data, we were only able to validate the findings using test
subjects excluded from trajectory learning. Participants included in this
analysis are White only, therefore limiting the generalizability of these
data to the population at large. This study could be further enhanced

with larger and more diverse samples when they are available. In
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addition, pseudotime analysis methods themselves are so far limited
in handling longitudinal follow-up data, which could provide additional
support to the learned progression trajectory and lead to improved
precision of pseudotime risk score. Finally, despite some debate, sub-
stantial evidence suggests that changes in CSF amyloid levels may
precede detectable amyloid accumulation on PET scans.*® Therefore,
pseudotime derived from integration of amyloid PET and genotype may
be still not optimal for early risk stratification. While CSF amyloid is
invasive and hard to administer in clinical trials, there is potential for
exploring the integration of genotype and other more accessible blood
biomarkers, especially with growing evidence of early changes in blood
metabolites and proteins.#142
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