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Abstract

INTRODUCTION: Alzheimer’s disease (AD) initiates years prior to symptoms, under-

scoring the importance of early detection. While amyloid accumulation starts early,

individuals with substantial amyloid burden may remain cognitively normal, implying

that amyloid alone is not sufficient for early risk assessment.

METHODS: Given the genetic susceptibility of AD, a multi-factorial pseudotime

approachwas proposed to integrate amyloid imaging and genotype data for estimating

a risk score. Validation involved association with cognitive decline and survival analy-

sis across risk-stratified groups, focusing on patients with mild cognitive impairment

(MCI).

RESULTS:Our risk score outperformed amyloid composite standardized uptake value

ratio in correlation with cognitive scores. MCI subjects with lower pseudotime risk

score showed substantial delayed onset of AD and slower cognitive decline.Moreover,

pseudotime risk scoredemonstrated strong capability in risk stratificationwithin tradi-

tionally defined subgroups such as early MCI, apolipoprotein E (APOE) ε4+MCI, APOE

ε4–MCI, and amyloid+MCI.

DISCUSSION: Our risk score holds great potential to improve the precision of early

risk assessment.

KEYWORDS
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Highlights

∙ Accurate early risk assessment is critical for the success of clinical trials.

∙ A new risk score was built from integrating amyloid imaging and genetic data.

∙ Our risk score demonstrated improved capability in early risk stratification.
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1 BACKGROUND

Alzheimer’s disease (AD) is a neurodegenerative disorder that results

in progressive and irreversible decline in cognitive performance. It

is highly heritable1 and large-scale genome-wide association studies

(GWASs) have revealed a significant set of genetic variants associ-

ated with AD.2,3 Despite the increasing number of AD patients and

elderly population at risk,4 there are so far no clinically validated

cures for AD. Instead, a recent disease-modifying medication pro-

duced only a relatively small reduction in the rate of cognitive decline,

while older medications alleviate symptoms.5 Currently, numerous

AD clinical trials are underway targeting a variety of mechanisms,

but the overall success rate of these trials remains relatively low.6

There is a growing consensus that early risk assessment is critical to

enhance the chance of success in AD trials, as it will enable the initi-

ation of timely intervention when the treatment is most likely to be

effective.7 This is, however, challenging due to the limited capability

to capture accurate risk for future decline in the earliest stages of

disease.

Amyloid plaques and neurofibrillary tangles are two pathological

hallmarks of AD identified in post mortem AD brains. Substantial evi-

dence suggests a general pattern of AD progression with amyloid

pathology preceding tau pathology.8 Furthermore, growing evidence

indicates that amyloid plaques begin to accumulate up to two decades

before the onset of clinical symptoms. Researchers have postulated

the presence of an asymptomatic early stage characterized by “silent”

amyloid beta (Aβ) accumulation.9 This hypothesis laid the foundation

for the current biological classification framework (A/T/N), which has

been used to assist with early detection, staging, and patient screen-

ing for clinical trials.10 This frameworkassigns individuals intodifferent

stages based on amyloid (A), tau pathology (T), and neurodegenera-

tion (N) captured by neuroimaging scans and cerebrospinal fluid (CSF)

measures. Particularly, amyloid plays a central role in this framework

as one of the earliest pathological features and has been widely used

in AD trials to provide biological evidence of the disease. Although Aβ
accumulation takes place on a continuum, amyloid positron emission

tomography (PET) scans are commonly dichotomized as pathological

(positive) versus normal (negative) in the current A/T/N classification

system.11 Consequently, this approach is limited in capturing the risk

of AD progression or future cognitive decline, particularly in the early

stage when all participants are simply categorized as amyloid negative

without differentiation. Recent findings from AD progression studies,

despite having different focuses such as onset prediction,12 staging,13

and temporal ordering of biomarkers,14,15 consistently showed that

the rate of cognitive decline varies among individuals with differ-

ent genetic predispositions and across disease stages, which is tightly

linkedwith brain amyloid burden. Therefore, we hypothesize that inte-

grating amyloid imaging and genotype data could enhance our ability

to estimate and stratify the risk of future progression.

In this study, we propose a multi-factorial pseudotime approach to

integrate amyloid imaging and AD GWAS findings for estimation of a

pseudo-continuous risk score. The fundamental question underlying

this approach is to estimate the risk of developing AD based on an

RESEARCH INCONTEXT

1. Systematic review: PubMed was searched for studies

investigating early risk stratification for Alzheimer’s dis-

ease (AD). However, no existing studies were found that

integrate amyloid imaging and genetic data for risk esti-

mation.

2. Interpretation: Results revealed that individuals in the

preclinical and prodromal stages, such as mild cognitive

impairment, could possibly be further stratified using

pseudotime risk score. Those with higher risk score will

likely experience a faster decline in cognition alongwith a

shorter transition to AD. Targeting this group is essential

for clinical trials tomaximize treatment outcomes.

3. Future directions: These findings underscore the impor-

tance of multi-factorial approaches for assessment of AD

risk. Integration of genotype and other more accessible

early biomarkers warrants further investigation. Addi-

tional studies in more diverse populations are necessary

to improve the generalizability of risk score.

individual’s genetic profile and current distribution of amyloid in the

brain. Given that amyloid is one of the earliest pathological features

and carrying risk alleles could predispose an individual to an elevated

risk of developing AD,16 this new risk score is expected to offer signifi-

cant potential improvement for early risk assessment and facilitate the

recruitment of early-stage subjects who will be most likely to benefit

from clinical trials. We first used a similarity network fusion technique

to integrate the heterogeneous imaging and genotype data, and then

performed pseudotime analysis to generate the final risk score for

each individual. We validated our risk score by comparing longitudi-

nal cognitive changes and clinical progressions across risk groups, with

a particular focus on early-stage subjects with mild cognitive impair-

ment (MCI). This longitudinally validated scheme could improve the

precision of AD risk stratification and demonstrate the feasibility of

predicting diverse disease progressions.

2 METHODS

2.1 Participants

Data used in this study were obtained from the Alzheimer’s Dis-

ease Neuroimaging Initiative (ADNI) cohort (http://adni.loni.usc.edu/).

ADNI is a longitudinal multi-center study launched in 2003, aiming to

track the progression of AD using clinical and cognitive tests, mag-

netic resonance imaging (MRI), fluorodeoxyglucose PET, amyloid PET,

CSF, and blood biomarkers. More details can be found in previous

reports.17,18 Informed consent was obtained from all participants or

their authorized representatives.
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TABLE 1 Demographic information of all participants subjects. CN EMCI LMCI AD

Subjects CN EMCI LMCI AD

Number 259 298 208 185

Sex (M/F) 126/133 172/126 123/85 111/74

APOE status (–/+) 190/69 173/125 103/105 64/121

Amyloid (–/+) 178/79 150/147 70/136 26/157

Age (mean± std) 75.52± 6.98 72.04± 7.32 74.47± 8.41 75.51± 7.99

Educ (mean± std) 16.55± 2.61 16.13± 2.63 16.25± 2.81 15.84± 2.69

PRS (mean± std) 0.26± 0.77 0.60± 0.95 0.77± 1.01 1.14± 1.03

Abbreviations: AD, Alzheimer’s disease; APOE, apolipoprotein E; CN, cognitively normal; EMCI, early mild cognitive impairment; LMCI, late mild cognitive

impairment; PRS, polygenic risk score; std, standard deviation.

The study populationwas composed of participants from the ADNI-

1, ADNI-2, and ADNI-GO phases.19 In total, we have 950 subjects with

both genotype andamyloidPET imagingdata, including259 cognitively

normal (CN), 298 early MCI (EMCI), 208 late MCI (LMCI) and 185 AD

patients. These subjects onaveragewere followed3.47years (standard

deviation [SD] 3.11 years), with up to 6 visits (median: 2, Figure S1 in

supporting information). The average time gap between the imaging

baseline and the cognitive baseline is 1.03 months (SD 1.85 months).

Out of the 950 subjects, 773 were used to generate the disease trajec-

tory and for estimation of pseudotime as risk score. The remaining 177

subjects were kept as a test set to validate the potential of pseudotime

in early risk stratification through longitudinal association analysis and

survival analysis. Detailed demographics of the subjects are summa-

rized in Table 1. To evaluate the reliability of our results, we further

randomly picked 80% of those 773 training subjects to repeat the

analyses.

2.2 Amyloid imaging data

Downloaded amyloid imaging data has been quality controlled and

pre-processed.20 Briefly, amyloid PET with florbetapir (18F) as a

tracer was used to measure Aβ plaques inside the brain.21 For each

subject, brain regions of interest (ROIs) were defined from subject-

specific structural MRI scans, which went through segmentation

and parcellation using FreeSurfer (version 5.3). Then, each florbe-

tapir scan was co-registered to the corresponding MRI scan and the

mean florbetapir uptake within the predefined ROIs was calculated.

In this study, standardized uptake value ratio (SUVR) of 68 corti-

cal ROIs, indicating the level of amyloid deposition, were included

and further normalized using COMPOSITE_REF_SUVR (a summary

measure provided by the ADNI) as reference. Subcortical regions

were excluded for amyloid analysis because their amyloid burden

has been commonly considered non-specific and not related to AD

risk.22 More detailed image processing information can be found in

Landau et al.20 Effect of age, sex, and years of education on amy-

loid measures were regressed out with the weight derived from CN

individuals.

2.3 Genotype data

Quality controlled (QCed) and pre-processed genotype data were

obtained from the ADNI cohort. We focused on 31 AD risk single

nucleotide polymorphisms (SNPs) that were previously reported in

polygenic risk studies.23 Polygenic risk scores derived from these 31

SNPs has been proven to effectively identify individuals at risk for AD

across age groups. Out of those, 27 SNPs were found to pass the QC

process in the ADNI cohort, and their genotype data were included for

the subsequent analysis.

2.4 Cognitive performance

Cognitive performance has been commonly administered in clinical

routines to aid in diagnosing and monitoring the progression of AD.

As a form of validation, derived risk score was examined for associa-

tionwith longitudinal cognitive data, including scores fromAlzheimer’s

Disease Assessment Scale (ADAS), Mini-Mental State Examination

(MMSE), Rey Auditory Verbal Learning Test (RAVLT), and Trail Making

Test. These tests evaluate various cognitive domains such as memory,

attention, language, and executive function to assess the severity of

cognitive impairment.24 In addition, two composite scores from the

ADNI cohort were also included, ADNI-Mem formemory25 and ADNI-

EF for executive function,26 each summarized from multiple cognitive

tests. These composite scores provide a more accurate representation

of cognitive function with minimal impact of random fluctuations in

performance.

2.5 Fusion of amyloid imaging and GWAS risk
SNPs

Amyloid imaging and genotype data are of heterogeneous types (e.g.,

categorical and continuous) and direct integration without proper

consideration could significantly bias the results. In this project, we

performed similarity network fusion to integrate information from

imaging and genotype data.27 First, two similarity networks across all
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subjects were computed using amyloid imaging data and genotype of

27 SNPs. Suppose we have n subjects {x1, x2,… , xn}, two subject sim-

ilarity matrices will be computed: WA from amyloid imaging and WG

from genotype of 27 risk SNPs. Both similarity matrices have dimen-

sion of n × n and are symmetric. For amyloid imaging data, similarity

between subjects was evaluated using Euclidean distance 𝜌A(xi, xj),

followedwith a scaled exponential similarity kernel (Eq. 1).

WA
ij = exp

(
−
𝜌
2
A

(
xi, xj

)
𝜇𝜀i,j

)
, WG

ij = exp

(
−
𝜌
2
G

(
xi, xj

)
𝜇𝜀i,j

)
(1)

Here, μ is a hyper-parameter that was set to 0.5 as default and

𝜀ij helps eliminate the scaling problem (Eq. 2). 𝜌(xi, Ni) is the average

distance between xi and each of its neighborsNi.

𝜀ij =
mean (𝜌 (xi, Ni)) +mean

(
𝜌
(
xj, Nj

))
+ 𝜌

(
xi, xj

)
3

(2)

The genetic similarity matrixWG was computed similarly as shown

in Eq. 1. The genetic distance between subjects 𝜌G(xi, xj) was calculated

using two different approaches for comparison: (1) genetic relation-

ship matrix (GRM), and (2) Euclidean distance of polygenic risk scores

(PRS) derived similarly as Desikan et al.23 GRM is the Euclidean dis-

tance calculated from the SNP information of the individuals, that is,

from the minor allele counts. The PRS is based on the genotype of 27

risk SNPs and theweight from the European International Genomics of

Alzheimer’s Project (IGAP), a large-scaleGWASofADwith 11,480,632

SNPs from 21,982 AD cases and 41,944 controls.28

WA and WG in Eq. 1 were further normalized to PA and PG, respec-

tively, to ensure that each subject’s self-similarity is always higher than

its similarity to other neighbors (Eq. 3). In addition, two local affinity

matrices SA and SG were generated to encode the relative similarity of

each subject to their nearest neighbors (Eq. 3). As such, we obtained

four matrices PA, SA, PG, and SG for amyloid and genotype data. Here,

PA and PG were defined as full kernel, which carries the information

from one subject to all the other subjects for the amyloid and genotype

data; SA and SG were defined as the local affinity, which encodes the

information from one subject to its neighbors.

PAij =
⎧⎪⎨⎪⎩

WA
ij

2
∑

k≠i W
A
ij

, j ≠ i

1

2
, j = i

, PGij =
⎧⎪⎨⎪⎩

WG
ij

2
∑

k≠i W
G
ij

, j ≠ i

1

2
, j = i

SAij =
⎧⎪⎨⎪⎩

WA
ij

2
∑

k∈Ni
WA

ik

, j ∈ Ni

0, otherwise
, SGij =

⎧⎪⎨⎪⎩
WG

ij

2
∑

k∈Ni
WG

ik

, j ∈ Ni

0, otherwise
(3)

Here, Ni means the K nearest neighbors (KNN) of the i-th subject.

We experimented with K from 5 to 50 but didn’t observe much differ-

ence. Therefore, it was set to default value 20 as suggested in Pearl.29

Finally, we performed the network fusion of two similarity matrices

using a non-linear message-passing theory method.29 This is an iter-

ative process in which both matrices continue to be updated until

convergence. The final fused matrix is expected to represent the sub-

ject relationships supported by both amyloid imaging and genotype

data. Let PAt = 0
= PA and PGt = 0

= PG be the initial matrices when t = 0.

The fusion processwill iteratively update two similaritymatrices as fol-

lows (Eq. 4). Here, the alternating multiplication of the squared KNN

similarity in two modalities essentially combines the local information

across modalities. It helps reinforce shared information and thereby

achieves a balanced fusion of two modalities. The final fused similarity

network is simply the average of PAt+1 and PGt+1.

PAt+1 = SA × PGt × (SA)
T

PGt+1 = SG × PAt × (SG)
T

(4)

2.6 Pseudotime analysis

From the fused similarity network, pseudotime analysis tool PHATE

was applied to learn a low-dimensional trajectory embedding in which

subjects are ordered along a two-dimensional curve (or path). The rel-

ative position of each subject on the trajectory curve was computed

as pseudotime, ranging between 0 and 1.30 This approach has been

recently applied to tau imaging data and pseudotime of each subject

was interpreted as an estimation of disease progression, but not the

risk of progression.31 In addition, this pseudotimewas built on autoen-

coder neural networks that are unable to handle the integration of

heterogeneous imaging and genetic data. In this paper, we leveraged

another pseudotime analysis tool (PHATE) and repurposed it to esti-

mate the risk of progression from the fused similarity network. Briefly,

PHATE involves several key steps to learn a two-dimensional trajectory

from similarity network input. It starts with a diffusion process to learn

global relationships within the similarity network. Next, it encodes

these learned relationships using potential distance, which will finally

go through eigen decomposition to generate a two-dimensional tra-

jectory. The principal curve along the trajectory was captured using

SlingShot32,33 and all subjects were projected onto the curve for esti-

mation of pseudotime, which will be leveraged as risk score. Subjects

with similar amyloid and genetic profile are well connected in the

similarity network and therefore are expected to stay close in the

trajectory curve, leading to similar pseudotime (or risk score). AD

patients were also included to set the reference end points in the

pseudotime analysis. Pseudotime values between 0 and 1 reflect an

individual’s similarity to AD patients in terms of both amyloid depo-

sition and genetic profiles. For those with EMCI, higher pseudotime

values suggest a greater similarity to AD patients—whether in brain

amyloid deposition, genetic profiles, or both—implying a higher risk of

progression.

2.7 Association with cross-sectional cognitive
performance

We first assessed the pseudotime derived from integrated imaging

genetic data regarding its correlation with clinical cognitive scores

measured at baseline using a Spearman correlation. For comparison,
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we also investigated the correlation with cognitive performance for

pseudotime derived from GRM alone, pseudotime derived from amy-

loid imaging data alone, PRS from 27 risk SNPs, chronological age,

apolipoprotein E (APOE) ε4 status, and amyloid composite SUVR. For

the amyloid imaging only pseudotime and GRM only pseudotime,

we used similarity matrix PA and PG calculated in Eq. 4 before the

fusion process, which further went through PHATE and SlingShot for

pseudotime estimation.

2.8 Longitudinal association analysis

Significant changes in cognitive test performance typically do not

appear until MCI stages, at which time amyloid deposition may have

been present for years. Further, the rate of cognitive decline in MCI

is quite variable even in those at similar levels of impairment. Thus,

it would be ideal if we could estimate the expected cognitive change

in an earlier stage and more accurately so that effective interventions

could potentially be applied. Toward this end, we investigated whether

imaging genetics–based pseudotime time (i.e., risk score) is associated

with rate of cognitive decline in MCI groups, including EMCIs and

LMCIs. Leveraging the cognitive test scores across follow-up visits, we

examined theassociationofbaselinepseudotimewith longitudinal cog-

nitive performance using a linear mixed model (LLM),34 with formula

shown as

Memory_scores ∼ years ∗ group + years_from_baseline

+ sex + education + (years |RID) (5)

In the random slopes model, it is assumed that individuals vary

in terms of their changes (slope) in the mean response over time.

Here, years from baseline was modeled as a random effect, and sub-

groups (pseudotime ≥ 0.5/ < 0.5, ε4 carriers/non-carriers, amyloid ± ,

or EMCI/LMCI) were treated as fixed effects. We used lme4 to fit the

LMMand lmerTest package35 to obtain the P value, which helps deter-

minewhether there is a significant interaction between subgroups and

time in predicting cognitive performance. This analysis allows us to

assess whether the rate of change in cognitive performance differs sig-

nificantly across different subgroups, providing insights into potential

subgroup-specific trajectories of cognitive decline.

2.9 Survival analysis

We conducted a Cox proportional hazard model36 to explore whether

MCI subgroups stratified by fused pseudotime exhibit different risks

of developing AD. The event of interest is defined as the conversion

from MCI to AD, and censoring occurs for MCI subjects if they did

not convert to AD by the last visit. We used the survival package in

R37 to perform the Cox regression. This package provides functions

to estimate survival curves and conduct statistical tests, allowing us

to obtain a P value to quantify the difference in risk of developing AD

between subgroups of subjects.We assessed the ability of pseudotime

(≥ 0.5/ < 0.5) in early risk stratification and compared it to tradi-

tional subgroup classification including APOE ε4 carriers/non-carriers,

amyloid± , and diagnostic groups.

3 RESULTS

3.1 Pseudotime risk score

The fused similarity matrix, which captures the subject relationship

supported by both amyloid imaging data and genotype data of AD

risk SNPs, was projected into a two-dimensional trajectory embed-

ding using PHATE, in which subjects were ordered along a principal

curve (Figure 1A). Slingshot was applied to capture the principal curve

of the low-dimensional embedding and to project each subject onto

the principal curve. The relative position of each subject on the prin-

cipal curve was computed as pseudotime, ranging between 0 and

1 (Figure 1B). A significant difference of pseudotime was observed

across diagnosis groups (Figure 1C for training subjects and Figure 1D

for test subjects). Estimated pseudotime was low in CN, and higher

in EMCI and LMCI groups. AD patients were found with significantly

higher pseudotime compared to all other diagnosis groups, indicating

high genetic risk and severity in amyloid deposition. The pseudotime

derived from amyloid+PRS showed inconsistent performance across

randomly sampled training subjects and was therefore excluded from

further analysis.

3.2 Association with cross-sectional cognitive
performance

As shown in Figure 2, we found that pseudotime derived from amyloid

imaging data alone was more significantly associated with base-

line MMSE, RAVLT, and composite memory scores than the amyloid

composite SUVR. Associations with ADAS scores were comparable

between amyloid pseudotime and amyloid composite SUVR. While

AD PRS and APOE ε4 status showed reasonable correlation with cog-

nitive performance, we did not observe any significant correlation

with cognition for pseudotime derived from GRM alone. Pseudotime

derived from the fused similarity network demonstrated the high-

est correlation with all cognitive scores, particularly the ADAS and

memory composite scores, suggesting the complementary contribu-

tion of amyloid imaging and AD risk SNPs on cognitive function. It

is worth noting that amyloid composite SUVR is the driving factor

of AD diagnosis in the current AT framework. Therefore, our result

suggests the great potential of fused pseudotime score as a supple-

ment of the current AT framework for more precise risk stratification

and prediction of disease progression. A detailed scatter plot of these

correlations can be found in Figure S2 in supporting information. For

fused pseudotime and amyloid pseudotime, we further tested the sig-

nificance of difference between the correlations with cognitive scores

using the cocor package,38 which provides a comprehensive statistical
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7824 HE ET AL.

F IGURE 1 A, Subjects were ordered along a two-dimensional progression trajectory learned from PHATE, which took the input as the fused
similarity network. B, Pseudotime of each subject is estimated as the relative position on the trajectory, ranging from 0 to 1. C, Pseudotime
distribution across diagnosis groups for training data. D, Pseudotime distribution across diagnosis groups for testing data. ***: P ≤ 0.001, ****: P ≤

0.0001. AD, Alzheimer’s disease; CN, cognitively normal; EMCI, early mild cognitive impairment; GRM, genetic relationshipmatrix; LMCI, late mild
cognitive impairment

F IGURE 2 Spearman correlation with clinical cognitive performance. Memory and executive function on the right end are two composite
scores. AD, Alzheimer’s disease; ADAS, Alzheimer’s Disease Assessment Scale; APOE, apolipoprotein E; GRM, genetic relationshipmatrix; MMSE,
Mini-Mental State Examination; PRS, polygenic risk score; RAVLT, Rey Auditory Verbal Learning Test

comparison of correlations accounting for the overlap between sam-

ples and correlation between variables. For all six cognitive scores

that showed differential correlation with fused pseudotime and amy-

loid pseudotime, we tested whether correlation from fused pseu-

dotime is greater than that from amyloid pseudotime. As shown

in Table S1 in supporting information, we found that the improved

correlation observed with fused pseudotime, although modest, are

all statistically significant, particularly for ADAS-13 (P = 2.65e-14),

RAVLT delayed recall (P = 1.57e-13), and composite memory score

(P= 9.09e-09).

3.3 Longitudinal association with cognitive
changes

LMMs were applied to investigate the association of the fused pseu-

dotime risk score with rate of cognitive decline (Figure 3). First, we

examined the association of fused pseudotime with longitudinal cog-

nitive changes in MCI training subjects. Among all cognitive scores,

ADAS-13 and composite memory score exhibited significantly dif-

ferent progression rate in the two pseudotime subgroups (≥ 0.5 or

≤ 0.5). MCI subjects with pseudotime ≥ 0.5 showed a significantly
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HE ET AL. 7825

F IGURE 3 Differential rate of cognitive decline inMCI training subjects stratified by fused pseudotime (A), diagnostic groups (B), APOE ε4
status (C), and amyloid positivity (D). Significant longitudinal association was only observed for ADAS13 score (top) and composite memory score
(bottom). AD, Alzheimer’s disease; ADAS, Alzheimer’s Disease Assessment Scale; ADNI, Alzheimer’s Disease Neuroimaging Initiative; APOE,
apolipoprotein E; CN, cognitively normal; EMCI, early mild cognitive impairment; LMCI, late mild cognitive impairment

faster decline in ADAS-13 (P = 0.001) and composite memory scores

(P = 9.17e-05), compared to those with pseudotime ≤ 0.5 (Figure 3A).

Similarly, a significant difference in rate of cognitive decline was also

observed in subgroups from dichotomous classification of amyloid (i.e.,

amyloid ±), but with much less significant results (Figure 3D). Diag-

nostic subgroups EMCI/LMCI and APOE ε4 status are not associated

with any longitudinal cognitive change (Figure 3B-C). The detailed

summary statistics of the linear mixed model are in Table S2 in sup-

porting information. Next, we performed a longitudinal association

analysis in CN/EMCI subjects, which didn’t yield any significant find-

ings. We also repeated the longitudinal association analysis twice

for both MCIs and CN/EMCIs by randomly sampling 80% of training

subjects and obtained similar results (Figure S3 in supporting informa-

tion). Additionally, we conducted a longitudinal analysis using amyloid

pseudotime. This approach generally showed similar performance to

fused pseudotime, but with less statistical significance (Figure S4 in

supporting information).

3.4 Survival analysis

We further evaluated the performance of fused pseudotime in risk

stratification of MCI training subjects, combining EMCIs and LMCIs,

and compared to conventional stratification criteria such as diagnosis

of APOE ε4 status and amyloid positivity (Figure 4). As expected, EMCI

andLMCI subjects showeddistinct riskof developingAD (P=1.26e-05;

Figure 4B). APOE ε4+MCIs exhibited a faster progression to AD com-

pared to APOE ε4– MCIs (P = 5.73e-05; Figure 4C). Amyloid-positive

MCIs showed a remarkably accelerated disease progression trajectory

(P= 0.002; Figure 4D). Compared to thesewell-established subgroups,

fused pseudotime unveiled distinct subgroups within the MCI pop-

ulation with further improved differentiation of survival risk with a

significantly lower P value (P= 7.03e-07; Figure 4A).

More importantly, fused pseudotime also demonstrated strong

capability in further stratifying MCI subgroups. EMCIs with pseudo-

time ≥ 0.5 demonstrated significantly poorer survival outcomes than

those with pseudotime ≤ 0.5 (P = 0.011; Figure 4E). In addition, we

found thatAPOE ε4+MCIswith lower levels of fused pseudotime expe-

rienced a significantly delayed onset of AD (P = 0.006; Figure 4F). For

MCIs that are APOE ε4–, a lower level of pseudotime is also associated

with significantly lower risk of developing AD (P = 0.003; Figure 4G).

Last, a similar level of risk stratification by fused pseudotime was also

observedwithin amyloid-positiveMCIs (P=0.012; Figure 4H). Survival

analysis was not conducted within the amyloid-negative subgroup due

to insufficient subjects who progressed to AD.

Similarly, we also evaluated the performance of fused pseudotime

in risk stratification of CN and EMCI subjects and compared to con-

ventional stratification criteria such as diagnosis of APOE ε4 status

and amyloid positivity (Figure 4I-P). The event for the survival anal-

ysis was defined as the conversion from CN/EMCI to LMCI/AD, and

censorship was applied to CN/MCI subjects who did not convert up

to their last visit. While neither diagnosis subgroups nor amyloid pos-

itivity subgroups showed a significant difference (Figure 4J, L), APOE

ε4+ CN/EMCIs exhibited a faster progression to AD compared to

APOE ε4– CN/EMCIs (P = 0.017; Figure 4K). High- and low-fused

pseudotime again successfully stratified CNs/EMCIs into subgroups

with differential risk of progression (P = 0.003; Figure 4I). More-

over, fused pseudotime further identified high-risk CN/EMCI subjects

from pre-defined subgroups like APOE ε4+ CN/EMCIs (P = 0.026;

Figure 4N), and amyloid-positive CN/EMCIs (P = 0.037; Figure 4P),

 15525279, 2024, 11, D
ow

nloaded from
 https://alz-journals.onlinelibrary.w

iley.com
/doi/10.1002/alz.14244, W

iley O
nline Library on [08/05/2025]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



7826 HE ET AL.

F IGURE 4 Differential progression risk ofMCI subjects (Row 1-2) and CN/EMCI subjects (Row 3-4). Row 1:MCIs stratified by (A) pseudotime
derived from integration of amyloid imaging and candidate SNPs, (B) diagnosis, (C) APOE ε4 status, and (D) amyloid positivity. Row 2: pseudotime
can further stratifyMCI subjects with differential survival risk within groups like (E) EMCIs, (F) APOE ε4+MCIs, (G) APOE ε4–MCIs, and (H)
amyloid positiveMCIs. Row 3: CN/EMCIs stratified by (I) pseudotime derived from integration of amyloid imaging and candidate SNPs, (J)
diagnosis, (K) APOE ε4 status, and (L) amyloid positivity. Row 4: differential survival risk across pseudotime groups within (M) EMCIs, (N) APOE
ε4+CN/EMCIs, (O) APOE ε4– CN/EMCIs, and (P) amyloid positive CN/EMCIs. AD, Alzheimer’s disease; ADNI, Alzheimer’s Disease Neuroimaging
Initiative; APOE, apolipoprotein E; CN, cognitively normal; EMCI, early mild cognitive impairment; HR, hazard ratio; LMCI, late mild cognitive
impairment; MCI, mild cognitive impairment
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implying its potential in preclinical risk stratification. Additionally, we

performed survival analysis using amyloid pseudotime. Like the lon-

gitudinal analysis, amyloid pseudotime yielded results comparable to

fused pseudotime. However, fused pseudotime showed a much higher

hazard ratio and demonstrated improved effectiveness in capturing

amyloid-positive MCIs and CN/EMCIs with higher progression risk

(Figure S4). For MCIs and CN/EMCIs, we repeated the survival anal-

ysiswith random subsampling of training subjects and observed similar

performance as shown in Figures S5 and S6 in supporting information,

which confirmed the reliability of our results.

3.5 Validation on test subjects

We validated the above observed association and risk stratification

using test subjects not involved in the trajectory learning (Figure 5). For

those177 testing subjects, one at a time, each test subjectwas included

in the training dataset to calculate the pseudotime risk. We com-

pared the pseudotime of training subjects before and after retraining

with each test subject, and only observedminimal differences (average

correlation> 0.999, mean absolute error: 0.000359± 0.000292). Sub-

sequently, longitudinal association analysis and survival analysis were

performed on the test subjects. All test subjects were divided into two

subgroups: those with pseudotime ≥ 0.5 and those with pseudotime

≤ 0.5. Starting from MCIs, we stratified them as EMCI/LMCI, APOE ε4
carriers/non-carriers, and amyloid ±. Consistent with earlier observa-

tion in the training data, individuals with elevated fused pseudotime

exhibited a notably faster decline in composite memory score com-

pared to thosewith lower pseudotime (Figure 5A;P=0.036). However,

we didn’t observe any notable difference in rate of cognitive decline

for subgroups delineated by diagnosis, ε4 status, and amyloid positiv-

ity (Figure 5B-D). The detailed summary statistics about the LMM is

in Table S3 in supporting information. In the survival analysis (Figure

5E-H), subgroups defined by fused pseudotime exhibited a notable

difference of progression risk (P= 0.002; Figure 5E), in whichMCI indi-

vidualswith higher fusedpseudotimewere observedwith elevated risk

of developing AD throughout the follow-up period.

For the CN/EMCI test subjects, no significant association was

observed between fused pseudotime and longitudinal cognitive

changes (Figure 5I-L). Subgroups defined by fused pseudotime, but

not the other factors (Figure 5N-P), exhibited a notable difference

of progression risk (P = 0.002; Figure 5M), in which individuals with

higher pseudotime were observed with elevated risk of developing AD

throughout the follow-up period.

4 DISCUSSION

In this study, we introduced a novel multi-factorial pseudotime

approach to derive an AD risk score through integration of hetero-

geneous amyloid imaging and genotype data. Pseudotime analysis

translates a fused similarity network into a pseudo-continuous risk

score for each subject, reflecting not only its genetic predisposition

but also severity in amyloid imaging. Compared to an amyloid com-

posite SUVR, PRS, or pseudotime derived from amyloid or genotype

alone, fused pseudotime exhibited a modest but statistically signifi-

cant improvement in association with both individual clinical cognitive

scores and two composite scores for memory and executive func-

tion. This result suggests the complementary contribution of amyloid

imaging and genetics data in cognitive function. Compared to amy-

loid composite SUVR, pseudotime derived from brain-wide amyloid

showed either stronger or comparable correlation with cognitive per-

formance in most clinical tests, which validated the effectiveness of

pseudotime in capturing the AD progression.

In addition, fused pseudotime outperformed traditional stratifica-

tion strategies likeAPOE ε4 status, amyloid positivity, anddiagnosis and

exhibited significantly improved differentiation power in stratifying

MCI subjects with accelerated cognitive decline. Given that cognitive

performance is part of current clinical routines to evaluateADprogres-

sion, yet substantial changes often do not manifest until late stages,39

strong association of baseline pseudotime risk with longitudinal cogni-

tive changes suggests its great clinical promise for early detection and

subtyping of progression. Moreover, subjects with higher fused pseu-

dotime at baseline exhibit substantially shorter transition time to the

onset of AD, which is observed not only within MCI subjects but also

EMCIs, APOE ε4 carriers, APOE ε4 non-carriers, and amyloid-positive

subgroups. In other words, fused pseudotime can effectively iden-

tify individuals at higher risk within previously established subgroups,

which could enable more precise targeting of participants during clin-

ical trial recruitment. When applied to test subjects, it was observed

that comparable levels of differentiation can also be extended to cog-

nitively normal individuals, suggesting the significant promise of fused

pseudotime for early risk assessment. In both longitudinal and survival

analyses, amyloid pseudotime demonstrated performance close to

fused pseudotime, highlighting the benefits of pseudotime approaches.

However, amyloid pseudotime by itself is less effective in stratifying

progression among amyloid-positive MCIs or CN/EMCIs and showed

a lower hazard ratio, which underscores the importance and value of

incorporating genetic information. Taken together, these findings sug-

gest that studies of preclinical and prodromal AD could benefit from

using the fused pseudotime as risk score instead of separating groups

simply by APOE ε4 status or amyloid positivity. This score could enable

clinical trials to better pinpoint individuals at elevated risk, further

facilitating early intervention and enhancing treatment outcomes.

The study has several limitations that merit future consideration.

First, using similarity networks as input requires re-training a new

model to predict the risk of each new patient. While our findings indi-

cate that retraining with one additional test subject at a time does not

impact the training outcomes, new supervised training methods that

can be directly applied to new patients are critical to facilitate clinical

use. Second, due to limited data sets with both amyloid imaging and

genotype data, we were only able to validate the findings using test

subjects excluded from trajectory learning. Participants included in this

analysis areWhite only, therefore limiting the generalizability of these

data to the population at large. This study could be further enhanced

with larger and more diverse samples when they are available. In
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7828 HE ET AL.

F IGURE 5 Validation results of longitudinal association and survival analyses on test subjects. A-D, Rate of decline in compositememory score
acrossMCI subgroups delineated by fused pseudotime, diagnosis, APOE ε4 status, and amyloid positivity. E-H, Progression risk ofMCI subgroups
delineated by pseudotime, diagnosis, APOE ε4 status, and amyloid positivity. I-L, Rate of decline in composite memory score across CN/EMCI
subgroups delineated by pseudotime, diagnosis, APOE ε4 status, and amyloid positivity. M-P, progression risk of CN/EMCI subgroups delineated by
pseudotime, diagnosis, APOE ε4 status, and amyloid positivity. AD, Alzheimer’s disease; ADNI, Alzheimer’s Disease Neuroimaging Initiative; APOE,
apolipoprotein E; CN, cognitively normal; EMCI, early mild cognitive impairment; HR, hazard ratio; LMCI, latemild cognitive impairment;MCI, mild
cognitive impairment
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addition, pseudotime analysis methods themselves are so far limited

in handling longitudinal follow-up data, which could provide additional

support to the learned progression trajectory and lead to improved

precision of pseudotime risk score. Finally, despite some debate, sub-

stantial evidence suggests that changes in CSF amyloid levels may

precede detectable amyloid accumulation on PET scans.40 Therefore,

pseudotimederived from integrationof amyloidPETandgenotypemay

be still not optimal for early risk stratification. While CSF amyloid is

invasive and hard to administer in clinical trials, there is potential for

exploring the integration of genotype and other more accessible blood

biomarkers, especially with growing evidence of early changes in blood

metabolites and proteins.41,42
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