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ABSTRACT

This paper presents a novel training methodology to adapt
parameters of a bank of Wiener models (BWMs), i.e., a bank
of linear filters followed by a static memoryless nonlinearity,
using full pdf information of the projected outputs and the de-
sired signal. BWMs also share the same architecture with the
first layer of a time-delay neural networks (TDNN) with a sin-
gle hidden layer, which is often trained with backpropagation.
To optimize BWMs, we develop a novel cost function called
the empirical embedding of quadratic mutual information (E-
QMI) that is metric-driven and efficient in characterizing the
statistical dependency. We demonstrate experimentally that by
applying this cost function to the proposed model, our method
is comparable with state-of-the-art neural network architec-
tures for regressions tasks without using backpropagation of
the error.

Index Terms— Wiener models, MIMO, information-
theoretic learning, empirical embedding, regression

1. INTRODUCTION

The Wiener model belongs to a class of block-oriented models
widely used in system identification for its simplicity of having
a linear dynamic block (FIR filter) followed by a static non-
linearity. It is parameterized by a set of weights in the linear
function, in spite of creating a nonlinear transfer function [1].

The parameter estimation of Wiener models is usually done
by minimizing an error measurement with mean square error
(MSE) or by maximizing the likelihood (ML) in a Bayesian
setting [2, 3].

However, a Wiener model remains a multiple-input single-
output (MISO) system, which means it only creates an one-
dimensional projection space. To go beyond this limitation,
we propose a new architecture called the bank of Wiener mod-
els (BWMs), where multiple Wiener models are constructed
in parallel as a multiple-input multiple-output (MIMO) sys-
tem. With K models in the bank, we immediately see that
this arrangement may increase the dimension of the projection
space to K as long as the outputs are linearly independent. If
we select this K-D space for nonlinear regression or adaptive
filtering, we may get better fits. In fact, BWMs created by K
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Wiener models share the same structure as the first layer of a
time-delay neural network (TDNN) [4] with K hidden units.
Neural networks use backpropagation (BP) of the error for
adaption. Without using BP, the existing method in system
identification uses particle filtering and expectation maximiza-
tion (EM) to develop an empirical optimization scheme [5, 6].
Alternatively, the BWMs structure can be trained by creating
a mixture of experts [7] employing gating functions. In this
paper, we propose a novel cost function based on information-
theoretic learning (ITL) [8] that can be optimized by gradient
ascent, which is also much faster and presents excellent accu-
racy.

Quadratic mutual information (QMI) have been broadly
used in signal processing and machine learning applications [9,
10] to create empirical loss functions that utilize the full statis-
tics to characterize the statistical dependency between the
outputs and the desired responses. In this paper, we intro-
duce a new implementation called the empirical embedding
of OMI (E-QMI) that greatly reduces the computation time in
optimizing QMI. By introducing two new types of normaliza-
tion schemes, we show that E-QMI has the full potential to
train BWMs. Experimentally we show that the BWMs trained
by E-QMI is comparable to state-of-the-art models such as a
TDNN. While TDNN uses backpropagation, our method has
only feed-forward computations.

2. QUADRATIC MUTUAL INFORMATION

We first introduce the inspiration behind our new cost function
and why it’s used to train our model.

Given samples X = {x,,}_, with x,, € RP. Suppose our
samples are sampled from a fixed distribution Py, the density
of any x in the sample space can be estimated by 7(x) =
LSV K(x — x,). A multivariate Gaussian function is
frequently used as the function K. For any x;, X; in the sample
space, it is given by:

i —x;13). (1)

1
ko(xi —x;) = ( exp(—ﬁ |

2m)P/2 . gP

The quadratic entropy estimator is derived based on this kernel
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density function, written as:

1 N N
= —logy(55 D D _kolwinzy), (@

i=1j=1

Ve(X)

which is a sample-based quantity that evaluates the ‘flatness’
of a given density function. It’s been known this estimator is
tied to Renyi’s formula of quadratic entropy.

Given sample pairs {x,,yn,})_,, where x,, € RP and
yn € R?, we define the quadratic joint entropy estimator
between X = {x,}N_  and Y = {y,}2_; as:

1 N N
—logy (52 SO ko(wi ) -

i=1 j=1

Vi(X,Y) = ko (i y;))-

3)
Recall the formula of Shannon’s mutual information, an esti-
mator that evaluates the ‘dependency’ between {x,, })__; and
{yn}2_, can be defined as:

IQ(Xv Y) = VE(X) + VE(Y) - VJ(X’ Y) “4)

This expression above is one form of the quadratic mutual
information (QMI) [11]. Another form by computing the
divergence between the joint and the marginal distributions
can be found in [9, 10].

QMI has been broadly applied in signal processing and
machine learning [9, 10, 12]. However, to maximize QMI
as an objective function, the computation of I(X,Y) and its
gradient has O(n?) complexity. In order to ease the computa-
tional complexity, we introduce the following estimator that
instead uses batches to estimate a biased value of QMI.

3. EMPIRICAL EMBEDDING OF QUADRATIC
MUTUAL INFORMATION

Given a probability space and a fixed distribution P¢ : R%
[0, 1] of a d¢-dimensional random vector, we draw two inde-
pendent random vectors & € R% and & € R% from P. Now
we define the following quantity v as a functional of P¢:

VE([Pﬁ) = - 1Og2 [E§1~Pg,§2Nﬂ’g [ktf(fl - 52)} (5)

Given a d¢-dimensional random vector and a d,,-dimensional
random vector, let their joint distribution P¢ 1 : R% xR
[0,1] be given. Let their marginal distributions be P¢ and P,,.
We draw two pairs of random variables {£1,71 } and {&2, 72}
from Py¢ ,y. We define the quantity v; that characterizes the
joint distribution P ¢ ,v:

VJ([P{&W}) = —logy E[ks (&1 — &2) - ko (1 — 12)],

6)
where {&1,m} ~ Peyy, {&,m2} ~ Prey-

We now define the empirical embedding of quadratic mutual
information (E-QMI) as follows:

IEQ([P{g,n}) = UE([Pg) + VE([Pn) — I/J(u){&"n}). 7

While QMI characterizes the statistical dependency between
two given realizations, E-QMI characterizes the dependency
between two random vectors sampled from a certain joint
distribution. In practice, we usually have full access to the
realizations. However, we often compute the stochastic gradi-
ent with sample batches in optimization. Although we’re not
computing the exact value of QMI and its gradient, this new
objective function will greatly accelerate the training process.

4. E-QMI FOR REGRESSION TASKS

We start from the one-dimensional case. Given a pair of
random variables {x,d}, with x € RL sampled from Py
and d € R sampled from P4q. Let the joint distribution be
P¢x,a}- The goal is to learn a function f : RY — R such that
IEQ([P{f(x),d}) is maximized. Observe that IEQ([P{f(x),d})
can be written as:

TeqQ(Pis(x),ay) =
Elko (f(x1) = f(x2))] - E[ko(d1 — dz)}} (®)
Elko (f(x1) — f(x2)) - ko(d1 —d2)]

By Cauchy-Schwarz inequality, we have E[k,(f(x1) —
f(x2))]-Elko (d1—d2)] < E[kq(f(x1)—f(x2)) ko (d1—d2)].
Therefore Ipq(Pyf(x),a}) > 0 holds for any measurable and
feasible function f. However, simply maximizing /g will
be unstable, since the gain of f is not constrained and thus
Igqg is not bounded. One can constrain the norm of the
weight vector as being introduced in [11] to keep the scale
of f(x) commensurate with d. Here we introduce two new
normalization schemes for this purpose.

—logy{

4.1. Type-I normalization

We simply normalize f(x) by its standard deviation to match
the standard deviation of d to keep f(x) and d in the same
scale. Let the target standard deviation std[d] be given, we
define the corresponding new optimum as:

Ipg =sups InQ(Py s g y)- ©)
We call Igq (P ( a }) the Type-I cost function.
T st

4.2. Type-II normalization

Observe that if f(x) and d are strictly dependent and

f(x) = d, equation 8 can be written as Irq(Pyf(x),a} =
(ko (f(x1)—f(x2))
P (s f001) = — loga{ FherE=dxeih ).

If we optimize over f that satisfies Ez E;EE;:;EZ;;; =

%, then the optimum will be bounded by 1 from above. Now
we want to impose this constraint by adding a constant. By
solving the equation:

2-Elko (f(x1) = f(x2)) + 0]? (10)
= E[(ko (f(x

1) = f(x2)) + )7,
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we obtain the solution b = std[k,(f(x1) — f(x2))] —
Elk,(f(x1) — f(x2)]. For simplicity, we denote z; =
o (F(x1)— £(32)) — E ki (£ (1) — f (32))] +std i ( £ (1) —
f(XQ))] and Zy = kg(dl7d2)7|£[k(7(d17d2)]+std[l€0(d17
ds)]. We define the Type-II cost function as:

i5Q(P{f(x),a}) = —log, [[E[Zf] ) [E[de + log, [[E[Zf : Zd]]~

an
Now we have i’iEQ = sup; ipQ(P{f(x),a}y) < 1, which means
the new optimum will be bounded from above by 1.

5. TRAINING A BANK OF WIENER MODELS
THROUGH E-QMI FOR REGRESSION

Now we show that these two forms of E-QMI can be used to
train the bank of Wiener models (BWMs).

Given k € {1,2...K}, an element of the bank hy, : RL —
R consists of a linear block lp, : RL — R and a nonlinear block
0 : R — R. Here K stands for the number of models and L
stands for the order of each model. Each element hg, is exactly
a Wiener model. The k-th Wiener model is parameterized by
01, = (wy, by), where w, € RL and by, € R. Given a random
vector x € R” as the input signal, the output of the k-th Wiener
model is written as hg, (x) = zg, = o(W[x + by). The
outputs of the BWMs form a vector zg, . = [Zo, , Zo,---Zoy|T-
Let the target signal d € R be given.

For regression or adaptive filtering, we first train the
BWMs with two types of E-QMI w.r.t. the desired signal. Af-
ter the model parameters are fixed, we find the best projection
of d onto the linear space spanned by zg, , by computing the
least square (LS) solution.

5.1. Type-I normalization

Following the one-dimensional case, we normalize each zg, by

1 ot / _ Zg Zg Zg
its standard deviation. Letz, = [Sld[zzl], Sld[z;] Std[sz]]
andd’' = ﬁ, we propose the following maximization prob-
lem: o .

maximize / /

{01,02...0k} EQ( {ZGI:K’d }> (12)

Let the batch size M be given, we sample two batches

{:177(%), dﬁ})}%:l and {x%), dg)}%zl from the dataset. Each

term in E-QMI and its gradient is estimated empirically by the
metric function between {z'x), dW1M_ and {z{?, d{2}M_,.
We also estimate the standard deviation empirically by

s/ [f()] = /a7 e (fala)) = F(@3))%. The pa-
rameter set {01, 0s...0 } is adapted by gradient ascent.

5.2. Type-II normalization

Followed by the one-dimensional case, we propose the follow-
ing maximization problem:

maximize

fmaximize i5Q(P(sr 24, a))-

13)

The estimation of E-QMI and the standard deviation follows
the same procedure as in Type-I.

5.3. Adaptive estimation

Estimating the standard deviation and its gradient by batches
will introduce a bias at each time step. Inspired by neural
network optimizer [13], we introduce an adaptive estimation
scheme for Type-II that greatly reduces the variance in the
training. Letk, = kg(Zszl zéi) — Zszl zéi)) and kj, =
ks(d; —d2) — Elk,(d1 —d2)] +std[k,(d1 — d2)], we denote
m, = Ek.], s, = std[k.]. Let mq = E[k]] be given. We
also write k, = k, —m, + s, and m. = E[k/, - k/}|. The
partial derivative of i g respect to 6, is as follows:

a’LEQ 1 ’ kz my akz
—__—F (=M
aek me U d md ( Sz Sy )} aek ] (14)
P - ) )
S, S8y, 8y 00y

Given t € {1,2...} for the ¢-th update of the gradient ascent.
Let the batch estimation at time ¢ be m..(t), 5, (t) and m..(t).
Let 31, B2 and S5 be given, we create a sequence 712 (t), §.(t)
and () such that ., (¢t) = B1m.(t — 1) + (1 — B1)m.(¢),
82(t) = Ba82(t — 1)+ (1 — B2)3%(t), and 1. (t) = Bare(t —
1) + (1 — B3)mec(t), where m,(0) = m.(0) = §,(0) = 0.

ma(t) _8:(1) e(t) : :
Then we use 7= 5 gy’ and T 51 to estimate equation 14.
We found that by tracking these three scalar-valued statistics,

the learning curves are smooth and consistent.

6. RESULTS

6.1. Performance on regression tasks

Now we present the results of the following two tasks:

Frequency doubler (FD): Let n € {1,2...} be given, we
have the input signal x,, = sin(0.02 - 7n) and the target signal
dy, = sin(0.04 - wn). Ths mapping from z,, to d,, is nonlinear.
The setting is simple, but it is also one important challenge
that cannot be solved by a single Wiener model.

Lorenz system (LORENZ): Given the triple {z¢, y, 2: }
generated by Lorenz system with coefficients {c = 10, p =
28,8 = 2.667} and initial states {zo = 0,y90 = 1,29 =
1.05}. Let {zy, yn, 2, } be the discrete signals sampled from
{x+t, Y+, ¢} with 100Hz. We treat x,, as the hidden state, signal
Yn as the observation and z,, as the target. The signals pro-
duced by the system is highly nonstationary, and the mapping
from y,, to z, is also highly nonlinear.

Model parameters: Let the model order be L, and the
number of models be K. We compare the BWMs trained by
Type-I (T-I) and Type-II (T-II) with TDNN trained by back-
propagation and MSE. TDNN has one single hidden layer with
K units and an input dimension L. We fix {L = 3, K = 3}
for FD when using TDNN and T-II, and {L = 10, K = 3}
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when using T-I for stabler results. We fix {L = 10, K = 3}
for LORENZ. We use adaptive estimation in section 5.3 for T2,
and Adam optimizer [13] otherwise. We fix hyperparamters
B1 = 0.9, B2 = 0.999 and S5 = 0.999. The learning rate is
selected from {0.01,0.1,1} to produce the best score. The
result is shown below.

Table 1. The results of regression tasks

LORENZ FD
MSE | EQMI (T-1) | EQMI (T-1T) | MSE (<10~ %) | EQMI (I-T) | EQMI (T-1T)
TDNN 0.017 | 0.156 0.784 8.0 0222 0.999
BWMs (T-1) | 0.022 | 0.164 0.763 7.0 0.225 0.999
BWMs (T-II) | 0017 | 0.157 0.791 78 0222 0.999

As can be seen, BWMs trained by E-QMI are very compet-
itive to TDNN trained by BP. Our methodology avoids using
BP and takes full advantage of the pdf information between
the processed input signal and the desired response. MSE is
unable to to train an MIMO system because it only finds the
best linear projection onto the space, i.e, the Wiener solution.
Also notice that the second linear projection layer created for
T-1I is close to equal weighting, while the LS solution is com-
puted when using T-I and it’s not equal weighting. It also
shows that both E-QMI quantities can be used to evaluate the
model performance. Another point to make is that the units of
MSE is the error power, while the units of E-QMI are bits.

6.2. Illustrative comparisons

Here we present three illustrative comparisons to show the
advantages of our method.

(1) Speed test: Given a dataset with one-dimensional sam-
ples, we compute the exact value of QMI with a subset with
N samples. Then we sample two batches with N samples to
compute E-QMI using equation 7. The figure below shows the
speed comparison using an Intel 17-8550U CPU.

6F T T T -
—— QMI estimator

5F === E-QMI estimator ]

4F

N h | 1
0 2000 4000 6000 8000 10000
Sample size

Fig. 1. Speed test of E-QMI.

(2) Effectiveness of E-QMI: We construct a sequence of
Gaussian distribution pairs with their correlation ranging from
-1 to 1. We first evaluate the variance of estimating E-QMI in
this setting using multiple batches, where each batch contains
1000 samples. We also compare the value given by E-QMI
with and without normalization to show that they all effectively
characterize the dependency between two distributions.

R LOE o B
-—— Estimated E-QMI osh -== E-QMI(Type-I) ]
0.09 _ b : E-QMI(Type-I)
i 0.6F ]
L
0.08 .
0.07F .
1 1 1
0 1000 2000 e
Batches Correlation

(a) The variance is small, and the total (b) All three quantities characterize
time for computing 2000 batches is the statistical dependency between dis-
around 0.3 second. tributions

Fig. 2. We show that E-QMI is both accurate and effective.

(3) Loss surfaces: We compare the loss surfaces given by
MSE and E-QML. For display, we creat a toy example where
z1 = sin(7n/500) and 25 = cos(wn/500) for n € {1,2...}.
We create a target signal d = sigmoid(xz; + x2). Let the
model be y = sigmoid(w; - 1 + ws - x2), we compare the
loss surface of this system identification problem respect to
wy and we. For Type-I and Type-1I, we take negative log
value of E-QMI. The red cross in the figure shows the optimal
parameters w; = 1,ws = 2. We found that both E-QMI
quantities preserve the global optimum.

L L i
05 1.0 L5 2.0

(c) Type-II

(a) MSE

(b) Type-1 (o = 0.4)

Fig. 3. Comprison of loss surfaces given by MSE and E-QMI.
We also found that Type-II is more invariant to the kernel
size o while Type-I is more sensitive to o.

7. CONCLUSION

This paper shows a way to train a bank of Wiener models
(BWMs) with a cost function called the empirical embedding
of quadratic mutual information (E-QMI) that utilizes the full
statistics of the model outputs and the desired signal. We
show that our approach provides equivalent performance to a
single-hidden-layer TDNN trained with backpropagation. We
found out that it is important to normalize the outputs of the
BWNMs for stable learning. Our empirical embedding method-
ology to estimate the E-QMI loss function is much faster and
well behaved than the previous method of estimating QMI in
information-theoretic learning literature. This methodology
opens new avenues to adapt BWMs and may have an important
impact in machine learning of sequential data streams.
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