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ABSTRACT

This paper presents a novel training methodology to adapt

parameters of a bank of Wiener models (BWMs), i.e., a bank

of linear filters followed by a static memoryless nonlinearity,

using full pdf information of the projected outputs and the de-

sired signal. BWMs also share the same architecture with the

first layer of a time-delay neural networks (TDNN) with a sin-

gle hidden layer, which is often trained with backpropagation.

To optimize BWMs, we develop a novel cost function called

the empirical embedding of quadratic mutual information (E-

QMI) that is metric-driven and efficient in characterizing the

statistical dependency. We demonstrate experimentally that by

applying this cost function to the proposed model, our method

is comparable with state-of-the-art neural network architec-

tures for regressions tasks without using backpropagation of

the error.

Index Terms— Wiener models, MIMO, information-

theoretic learning, empirical embedding, regression

1. INTRODUCTION

The Wiener model belongs to a class of block-oriented models

widely used in system identification for its simplicity of having

a linear dynamic block (FIR filter) followed by a static non-

linearity. It is parameterized by a set of weights in the linear

function, in spite of creating a nonlinear transfer function [1].

The parameter estimation of Wiener models is usually done

by minimizing an error measurement with mean square error

(MSE) or by maximizing the likelihood (ML) in a Bayesian

setting [2, 3].

However, a Wiener model remains a multiple-input single-

output (MISO) system, which means it only creates an one-

dimensional projection space. To go beyond this limitation,

we propose a new architecture called the bank of Wiener mod-

els (BWMs), where multiple Wiener models are constructed

in parallel as a multiple-input multiple-output (MIMO) sys-

tem. With K models in the bank, we immediately see that

this arrangement may increase the dimension of the projection

space to K as long as the outputs are linearly independent. If

we select this K-D space for nonlinear regression or adaptive

filtering, we may get better fits. In fact, BWMs created by K
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Wiener models share the same structure as the first layer of a

time-delay neural network (TDNN) [4] with K hidden units.

Neural networks use backpropagation (BP) of the error for

adaption. Without using BP, the existing method in system

identification uses particle filtering and expectation maximiza-

tion (EM) to develop an empirical optimization scheme [5, 6].

Alternatively, the BWMs structure can be trained by creating

a mixture of experts [7] employing gating functions. In this

paper, we propose a novel cost function based on information-

theoretic learning (ITL) [8] that can be optimized by gradient

ascent, which is also much faster and presents excellent accu-

racy.

Quadratic mutual information (QMI) have been broadly

used in signal processing and machine learning applications [9,

10] to create empirical loss functions that utilize the full statis-

tics to characterize the statistical dependency between the

outputs and the desired responses. In this paper, we intro-

duce a new implementation called the empirical embedding

of QMI (E-QMI) that greatly reduces the computation time in

optimizing QMI. By introducing two new types of normaliza-

tion schemes, we show that E-QMI has the full potential to

train BWMs. Experimentally we show that the BWMs trained

by E-QMI is comparable to state-of-the-art models such as a

TDNN. While TDNN uses backpropagation, our method has

only feed-forward computations.

2. QUADRATIC MUTUAL INFORMATION

We first introduce the inspiration behind our new cost function

and why it’s used to train our model.

Given samples X = {xn}Nn=1 with xn ∈ R
p. Suppose our

samples are sampled from a fixed distribution Px, the density

of any x in the sample space can be estimated by π̂(x) =
1
N

∑N
n=1 K(x − xn). A multivariate Gaussian function is

frequently used as the function K. For any xi,xj in the sample

space, it is given by:

kσ(xi − xj) =
1

(2π)p/2 · σp
exp(− 1

2σ2
· ‖xi − xj‖22). (1)

The quadratic entropy estimator is derived based on this kernel
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density function, written as:

VE(X) = − log2(
1

N2

N
∑

i=1

N
∑

j=1

kσ(xi, xj)), (2)

which is a sample-based quantity that evaluates the ‘flatness’

of a given density function. It’s been known this estimator is

tied to Renyi’s formula of quadratic entropy.

Given sample pairs {xn,yn}Nn=0, where xn ∈ R
p and

yn ∈ R
q, we define the quadratic joint entropy estimator

between X = {xn}Nn=1 and Y = {yn}Nn=1 as:

VJ(X,Y) = − log2(
1

N2

N
∑

i=1

N
∑

j=1

kσ(xi, xj) · kσ(yi, yj)).

(3)

Recall the formula of Shannon’s mutual information, an esti-

mator that evaluates the ‘dependency’ between {xn}Nn=1 and

{yn}Nn=1 can be defined as:

IQ(X,Y) = VE(X) + VE(Y)− VJ(X,Y). (4)

This expression above is one form of the quadratic mutual

information (QMI) [11]. Another form by computing the

divergence between the joint and the marginal distributions

can be found in [9, 10].

QMI has been broadly applied in signal processing and

machine learning [9, 10, 12]. However, to maximize QMI

as an objective function, the computation of I(X,Y) and its

gradient has O(n2) complexity. In order to ease the computa-

tional complexity, we introduce the following estimator that

instead uses batches to estimate a biased value of QMI.

3. EMPIRICAL EMBEDDING OF QUADRATIC

MUTUAL INFORMATION

Given a probability space and a fixed distribution Pξ : R
dξ 7→

[0, 1] of a dξ-dimensional random vector, we draw two inde-

pendent random vectors ξ1 ∈ R
dξ and ξ2 ∈ R

dξ from Pξ . Now

we define the following quantity νE as a functional of Pξ:

νE(Pξ) = − log2 Eξ1∼Pξ,ξ2∼Pξ
[kσ(ξ1 − ξ2)]. (5)

Given a dξ-dimensional random vector and a dη-dimensional

random vector, let their joint distribution P{ξ,η} : R
dξ×R

dη 7→
[0, 1] be given. Let their marginal distributions be Pξ and Pη.

We draw two pairs of random variables {ξ1, η1} and {ξ2, η2}
from P{ξ,η}. We define the quantity νJ that characterizes the

joint distribution P{ξ,η}:

νJ(P{ξ,η}) = − log2 E[kσ(ξ1 − ξ2) · kσ(η1 − η2)],

where {ξ1, η1} ∼ P{ξ,η}, {ξ2, η2} ∼ P{ξ,η}.
(6)

We now define the empirical embedding of quadratic mutual

information (E-QMI) as follows:

IEQ(P{ξ,η}) = νE(Pξ) + νE(Pη)− νJ(P{ξ,η}). (7)

While QMI characterizes the statistical dependency between

two given realizations, E-QMI characterizes the dependency

between two random vectors sampled from a certain joint

distribution. In practice, we usually have full access to the

realizations. However, we often compute the stochastic gradi-

ent with sample batches in optimization. Although we’re not

computing the exact value of QMI and its gradient, this new

objective function will greatly accelerate the training process.

4. E-QMI FOR REGRESSION TASKS

We start from the one-dimensional case. Given a pair of

random variables {x,d}, with x ∈ R
L sampled from Px

and d ∈ R sampled from Pd. Let the joint distribution be

P{x,d}. The goal is to learn a function f : R
L → R such that

IEQ(P{f(x),d}) is maximized. Observe that IEQ(P{f(x),d})
can be written as:

IEQ(P{f(x),d}) =

− log2{
E[kσ(f(x1)− f(x2))] · E[kσ(d1 − d2)]

E[kσ(f(x1)− f(x2)) · kσ(d1 − d2)]
}.

(8)

By Cauchy-Schwarz inequality, we have E[kσ(f(x1) −
f(x2))]·E[kσ(d1−d2)] ≤ E[kσ(f(x1)−f(x2))·kσ(d1−d2)].
Therefore IEQ(P{f(x),d}) ≥ 0 holds for any measurable and

feasible function f . However, simply maximizing IEQ will

be unstable, since the gain of f is not constrained and thus

IEQ is not bounded. One can constrain the norm of the

weight vector as being introduced in [11] to keep the scale

of f(x) commensurate with d. Here we introduce two new

normalization schemes for this purpose.

4.1. Type-I normalization

We simply normalize f(x) by its standard deviation to match

the standard deviation of d to keep f(x) and d in the same

scale. Let the target standard deviation std[d] be given, we

define the corresponding new optimum as:

I∗EQ = supf IEQ(P{
f(x)

std[f(x)]
, d

std[d]
}
). (9)

We call IEQ(P{
f(x)

std[f(x)]
, d

std[d]
}
) the Type-I cost function.

4.2. Type-II normalization

Observe that if f(x) and d are strictly dependent and

f(x) = d, equation 8 can be written as IEQ(P{f(x),d} =

P{f(x),f(x)}) = − log2{E[kσ(f(x1)−f(x2))]
2

E[kσ(f(x1)−f(x2))2]
}.

If we optimize over f that satisfies
E[kσ(f(x1)−f(x2))]

2

E[kσ(f(x1)−f(x2))2]
=

1
2 , then the optimum will be bounded by 1 from above. Now

we want to impose this constraint by adding a constant. By

solving the equation:

2 · E[kσ(f(x1)− f(x2)) + b]2

= E[(kσ(f(x1)− f(x2)) + b)2],
(10)
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we obtain the solution b = std[kσ(f(x1) − f(x2))] −
E[kσ(f(x1) − f(x2)]. For simplicity, we denote zf =
kσ(f(x1)−f(x2))−E[kσ(f(x1)−f(x2))]+std[kσ(f(x1)−
f(x2))] and zd = kσ(d1−d2)−E[kσ(d1−d2)]+std[kσ(d1−
d2)]. We define the Type-II cost function as:

iEQ(P{f(x),d}) = − log2
[

E[zf ] · E[zd]
]

+ log2
[

E[zf · zd]
]

.

(11)

Now we have i∗EQ = supf iEQ(P{f(x),d}) ≤ 1, which means

the new optimum will be bounded from above by 1.

5. TRAINING A BANK OF WIENER MODELS

THROUGH E-QMI FOR REGRESSION

Now we show that these two forms of E-QMI can be used to

train the bank of Wiener models (BWMs).

Given k ∈ {1, 2...K}, an element of the bank hθk : R
L →

R consists of a linear block lθk : R
L → R and a nonlinear block

σ : R → R. Here K stands for the number of models and L

stands for the order of each model. Each element hθk is exactly

a Wiener model. The k-th Wiener model is parameterized by

θk = (wk, bk), where wk ∈ R
L and bk ∈ R. Given a random

vector x ∈ R
L as the input signal, the output of the k-th Wiener

model is written as hθk(x) := zθk = σ(wᵀ

kx + bk). The

outputs of the BWMs form a vector zθ1:K = [zθ1 , zθ2 ...zθK ]ᵀ.

Let the target signal d ∈ R be given.

For regression or adaptive filtering, we first train the

BWMs with two types of E-QMI w.r.t. the desired signal. Af-

ter the model parameters are fixed, we find the best projection

of d onto the linear space spanned by zθ1:K by computing the

least square (LS) solution.

5.1. Type-I normalization

Following the one-dimensional case, we normalize each zθk by

its standard deviation. Let z′θ1:K = [
zθ1

std[zθ1
] ,

zθ2

std[zθ2
] ...

zθK

std[zθK
] ]
ᵀ

and d′ = d

std[d] , we propose the following maximization prob-

lem:
maximize
{θ1,θ2...θK}

IEQ(P{z′

θ1:K
,d′}) (12)

Let the batch size M be given, we sample two batches

{x(1)
m , d

(1)
m }Mm=1 and {x(2)

m , d
(2)
m }Mm=1 from the dataset. Each

term in E-QMI and its gradient is estimated empirically by the

metric function between {x(1)
m , d

(1)
m }Mm=1 and {x(2)

m , d
(2)
m }Mm=1.

We also estimate the standard deviation empirically by

std′[f(x)] =

√

1
2M

∑M
m=1(f(x

(1)
m )− f(x

(2)
m ))2. The pa-

rameter set {θ1, θ2...θK} is adapted by gradient ascent.

5.2. Type-II normalization

Followed by the one-dimensional case, we propose the follow-

ing maximization problem:

maximize
{θ1,θ2...θK}

iEQ(P{
∑

K
k=1 zθk

,d}). (13)

The estimation of E-QMI and the standard deviation follows

the same procedure as in Type-I.

5.3. Adaptive estimation

Estimating the standard deviation and its gradient by batches

will introduce a bias at each time step. Inspired by neural

network optimizer [13], we introduce an adaptive estimation

scheme for Type-II that greatly reduces the variance in the

training. Let kz = kσ(
∑K

k=1 z
(1)
θk

− ∑K
k=1 z

(2)
θk

) and k′
d =

kσ(d1−d2)−E[kσ(d1−d2)]+ std[kσ(d1−d2)], we denote

mz = E[kz], sz = std[kz]. Let md = E[k′
d] be given. We

also write k′
z = kz − mz + sz and mc = E[k′

z · k′
d]. The

partial derivative of iEQ respect to θk is as follows:

∂iEQ

∂θk
= − 1

mc
E
[

[k′
d +md · (

kz

sz
− mz

sz
− 1)]

∂kz

∂θk

]

+
1

sz
E[(

kz

sz
− mz

sz
)
∂kz

∂θk
].

(14)

Given t ∈ {1, 2...} for the t-th update of the gradient ascent.

Let the batch estimation at time t be m̃z(t), s̃z(t) and m̃c(t).
Let β1, β2 and β3 be given, we create a sequence m̂z(t), ŝz(t)
and m̂c(t) such that m̂z(t) = β1m̂z(t− 1) + (1− β1)m̃z(t),
ŝ2z(t) = β2ŝ

2
z(t− 1)+ (1−β2)s̃

2
z(t), and m̂c(t) = β3m̂c(t−

1) + (1 − β3)m̃c(t), where m̂z(0) = m̂c(0) = ŝz(0) = 0.

Then we use
m̂z(t)
1−βt

1
,

ŝz(t)√
1−βt

2

, and
m̂c(t)
1−βt

3
to estimate equation 14.

We found that by tracking these three scalar-valued statistics,

the learning curves are smooth and consistent.

6. RESULTS

6.1. Performance on regression tasks

Now we present the results of the following two tasks:

Frequency doubler (FD): Let n ∈ {1, 2...} be given, we

have the input signal xn = sin(0.02 ·πn) and the target signal

dn = sin(0.04 · πn). Ths mapping from xn to dn is nonlinear.

The setting is simple, but it is also one important challenge

that cannot be solved by a single Wiener model.

Lorenz system (LORENZ): Given the triple {xt, yt, zt}
generated by Lorenz system with coefficients {σ = 10, ρ =
28, β = 2.667} and initial states {x0 = 0, y0 = 1, z0 =
1.05}. Let {xn, yn, zn} be the discrete signals sampled from

{xt, yt, zt} with 100Hz. We treat xn as the hidden state, signal

yn as the observation and zn as the target. The signals pro-

duced by the system is highly nonstationary, and the mapping

from yn to zn is also highly nonlinear.

Model parameters: Let the model order be L, and the

number of models be K. We compare the BWMs trained by

Type-I (T-I) and Type-II (T-II) with TDNN trained by back-

propagation and MSE. TDNN has one single hidden layer with

K units and an input dimension L. We fix {L = 3,K = 3}
for FD when using TDNN and T-II, and {L = 10,K = 3}

3152

Authorized licensed use limited to: University of Florida. Downloaded on May 09,2025 at 04:13:30 UTC from IEEE Xplore.  Restrictions apply. 





8. REFERENCES

[1] Alex Simpkins. System identification: Theory for the

user. IEEE Robotics & Automation Magazine, 19(2):95–

96, 2012.

[2] Anna Hagenblad and Lennart Ljung. Maximum likeli-

hood estimation of wiener models. In Proceedings of the

39th IEEE Conference on Decision and Control (Cat. No.

00CH37187), volume 3, pages 2417–2418. IEEE, 2000.

[3] Anna Hagenblad. Aspects of the identification of Wiener

models. Citeseer, 1999.

[4] Alex Waibel, Toshiyuki Hanazawa, Geoffrey Hinton,

Kiyohiro Shikano, and Kevin J Lang. Phoneme recog-

nition using time-delay neural networks. IEEE Trans-

actions on Acoustics, Speech, and Signal Processing,

37(3):328–339, 1989.

[5] Stuart Gibson and Brett Ninness. Robust maximum-

likelihood estimation of multivariable dynamic systems.

Automatica, 41(10):1667–1682, 2005.

[6] Adrian Wills, Thomas B. Schön, Lennart Ljung, and

Brett Ninness. Identification of hammerstein–wiener

models. Automatica, 49(1):70–81, 2013.

[7] Irwin W Sandberg, James T Lo, Craig L Fancourt, Jose C

Principe, Shigeru Katagiri, and Simon Haykin. Non-

linear dynamical systems: feedforward neural network

perspectives, volume 21. John Wiley & Sons, 2001.

[8] Jose C. Principe. Information theoretic learning: Renyi’s

entropy and kernel perspectives. Springer Science &

Business Media, 2010.

[9] Shujian Yu, Matthew Emigh, Eder Santana, and Jose C.

Principe. Autoencoders trained with relevant information:

Blending shannon and wiener’s perspectives. In 2017

IEEE International Conference on Acoustics, Speech and

Signal Processing (ICASSP), pages 6115–6119. IEEE,

2017.

[10] Dongxin Xu and Jose C. Principe. Training mlps layer-

by-layer with the information potential. In IJCNN’99.

International Joint Conference on Neural Networks. Pro-

ceedings (Cat. No. 99CH36339), volume 3, pages 1716–

1720. IEEE, 1999.

[11] Luis G. Sanchez Giraldo and Jose C. Principe. Informa-

tion theoretic learning with infinitely divisible kernels.

arXiv preprint arXiv:1301.3551, 2013.

[12] Austin J. Brockmeier, John S. Choi, Evan G. Kriminger,

Joseph T Francis, and Jose C. Principe. Neural decoding

with kernel-based metric learning. Neural Computation,

26(6):1080–1107, 2014.

[13] Diederik P. Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. arXiv preprint arXiv:1412.6980,

2014.

3154

Authorized licensed use limited to: University of Florida. Downloaded on May 09,2025 at 04:13:30 UTC from IEEE Xplore.  Restrictions apply. 


