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1. Introduction

A ubiquitous problem across the sciences is solving large-scale systems of linear equa-
tions Ax = b, for which scalable and efficient iterative methods are useful when it is too
slow or infeasible to solve the system directly. Instead of solving such problems obliv-
iously, it is natural to have insights into the structural properties of the linear system
of interest, such as being approximately low-rank. Moreover, external knowledge about
trustworthy observations in the presence of corrupted measurements could be available.

Now, additional information about the structure of a linear system influences the
choice of the most suitable solver. In this work, we take an adaptive, problem-aware ap-
proach to account for various types of auxiliary information by augmenting the iterations
of a generic iterative linear solver based on a distinguished subsystem of equations.

The generic solver that we consider is the Kaczmarz algorithm [32], which is an it-
erative, row-action method for solving large-scale, typically overdetermined systems of
linear equations. It is a special case of the alternating projection method that has low
computational cost and storage per iteration, and can be used in the streaming setting
where a single row (or block of rows) of the system can be accessed at a time. Besides
its traditional applications in areas such as image reconstruction [41,28] and signal pro-
cessing [8], the Kaczmarz algorithm has recently been used as a building block for more
sophisticated methods to design linear solvers [14,19], and to address problems such as
phase retrieval [59] and tensor recovery [9].

In each iteration of the Kaczmarz algorithm, a row a; of the matrix A is selected,
and the current iterate x* is projected onto the hyperplane a;rx =b; by
b; — a]TXk a,

kL _ kg . .
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X

(1.1)

In their seminal paper, Strohmer and Vershynin [57] show that if the system of linear
equations is consistent and has unique solution x*, then the randomized Kaczmarz (RK)
algorithm, which samples each row independently with probability |la;||?/||A||% at each
iteration, converges to x* in expectation with an exponential rate (i.e. linearly) that
depends on the geometric properties of A (or more precisely, its scaled condition number
|A[lF/omin(A)):

k
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Subsequently, many variants of the randomized Kaczmarz method have been analyzed;
we defer a detailed discussion of related works to Section 2 after presenting our results.

In this paper, we propose two Kaczmarz-based algorithms that can exploit (a) ap-
prozimately low-rank structure and geometric properties of the matriz in a system of
linear equations to accelerate convergence; and (b) external knowledge about corruption-
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free equations for linear systems with arbitrary sparse corruptions to enable convergence
even in the highly corrupted regime.

1.1. Setup and notation

We consider a consistent, overdetermined (i.e. tall) system of linear equations Ax = b,
or linear system for short, where the rows of A € R™*" are denoted by aj,as,...,a, €
R™ b € R™, and m > n. We assume throughout that A has full rank, and denote
the unique solution of the linear system by x* € R™. We work in the real setting for
simplicity, but everything can be generalized to the complex setting.

Vectors, oriented as columns by default, and matrices are written in boldface. The
vector fo-norm is denoted by ||-||, and the matrix spectral and Frobenius norms are
denoted by ||-|| and ||-||p. The singular values of a matrix A € R™*™ are denoted by
Omax(A) = 01(A) > 02(A) > -+ > Opminfmn}(A) = Omin(A), and the smallest non-
+.(A). The Moore-Penrose pseudoinverse of A is

denoted by Af. We refer to the row submatrix of A (resp. subvector of b) indexed by

zero singular value is denoted by o

I C [m]:={1,2,...,m} by Ay (resp. by). The solution space A;x = by of a linear
system refers to the affine subspace {x € R" : A;x = by}.

1.2. Methods and main results

1.2.1. The SCRK method

Fix a subset Iy C [m] of indices of rows of A with mg := |Iy| < n, and denote
the remaining indices by I := [m] \ Ip. We define a variant of the RK algorithm that
confines the iterates within the solution space Aj; x = by,, which we will refer to as
the subspace constrained randomized Kaczmarz (SCRK) method. Each update of the
SCRK algorithm consists of a projection of the current iterate x* onto the solution
space A ugj1X = by ugj), where the row corresponding to j € I; is sampled according
to an input probability distribution, and can be algebraically expressed by

Xk+1 = Xk + A;OU{]}(bIOU{J} — AIOU{j}Xk)' (13)

This is essentially a block Kaczmarz update [20,45], but with Iy fixed throughout the
iterations so that the iterates are confined within the selected solution space Ay x = by,.
Reusing the same block allows for properties of the distinguished subsystem A x = by,
to be exploited, and also leads to a more efficient update formula: in Lemma 3.1, we
prove that as long as x" satisfies Aj,x* = by, and a; ¢ Range(A] ), (1.3) simplifies to

- alxk )
b; a;x Pa,

k+1 _ _k
X =X + -
[Payl|  [[Payl|’

(1.4)

where P := T — A}OAI0 is the orthogonal projector onto Null(Aj,) = Range(A] )*.
Unlike the block update (1.3), this does not require a new pseudoinverse to be computed
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at every iteration and thus can be performed faster. The SCRK method, which lever-
ages (1.4), is summarized in Algorithm 1. For concreteness, we fix a particular sampling
distribution for the rows of Aj that leads to an especially simple and interpretable
analysis. By varying the distribution, better convergence rates may be possible [21,1].
On a conceptual level, the SCRK update (1.4) is reminiscent of the usual Kaczmarz
update (1.1), with the new direction Pa; representing the “extra information” offered
by a; beyond that which is already known from being in the solution space Arx = by, .

Algorithm 1 Subspace Constrained Randomized Kaczmarz (SCRK).
1: procedure SCRK(A, b, Ip, K)

2: P=1I- AJIFOAI0 > Orthogonal projector onto Null(Aj,)

3 initialize x° = A}r"blo > Initial iterate x° solves Alaxo = by,

4 for k=1,...,K do

5 sample j € [m] \ Ip with prob. \|Paj||2/\|A11PH§; > Sample row in Ap,
T, k—1

6: xk =xk-1 4 Z)JHP%):” : Hgﬁ > Project onto A u(;3X = b u}

7 end for

8 return x¢

9: end procedure

The following result, proved in Section 3.1, shows that the SCRK method converges
linearly in expectation to the solution x* of Ax = b under minimal assumptions.

Theorem 1.1. Suppose that the rows of A are partitioned into two blocks Ay, and Ay, of
sizes mg and m — my respectively. Let P =1 — A}OAI0 be the orthogonal projector onto
Null(Ay,), and ot

min

(A, P) be the smallest non-zero singular value of A, P. Then the
SCRK iterates x* from Algorithm 1 converge to the solution X* in expectation with

k

* O—:r;in(AI P)2 *
Efx* — x| < <1||AP||F) e — x| (15)
1

In the special case that the row spaces of Ay, and Ay, are orthogonal (i.e. A LJAI1 =
0), the SCRK updates (1.4) reduce to the usual Kaczmarz updates (1.1) since Pa; = a;
for all j € I;, and hence we immediately deduce the following:

Corollary 1.2. Consider the same setup as Theorem 1.1. If AIOAI1 =0, then

+. A )2 k
E”Xk o X*”Q <(1- ern( Il) . ”XO o X*H2~ (16)
AL 117

Noisy linear systems. In Section 3.2, we prove that for inconsistent systems of linear
equations where a noisy measurement vector b # b is observed, the SCRK method
converges at the same rate up to an error horizon around the solution x* with a radius
that depends on the noise in Iy and I, as well as the geometries of A;, and Ap, P
(Theorem 3.4). This expands on a phenomenon that is known from previous analyses of
Kaczmarz methods [44,45].
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The analysis of inconsistent linear systems requires developing technical results in-
volving a two-step decomposition of the block update (1.3), which provides a partial
generalization of the two-subspace Kaczmarz method in [46] (see Remark 3.9).

Remark 1.3 (Per-iteration complezity). Each SCRK iteration can be computed in
O(mgn) flops, with calculating Pa; = a; — A}OAIOaj being the most expensive step.
This requires directly computing A}O or an orthonormal basis for Range(AIO)]' only
once, using a method based on QR decomposition or SVD. This per-iteration cost is
comparable to the O(n) flops per iteration of RK if mg is not too large. The overall
complexity is then determined by multiplying the per-iteration cost by the number of
iterations required to reach a desired error, which we will elaborate upon below.

Exploiting low-rank structure with the SCRK method. The convergence rate of the
SCRK algorithm depends on the geometric properties of A and P: Theorem 1.1 shows

that k. := k(A P)?log(1/¢) iterations suffice to achieve the relative error guarantee
E|x* — x*||? < g|x® — x*||?, where k(A,P) := ||A,P||r/ol, (AL, P) is a scaled con-

dition number of A7, P. For the same guarantee using RK, from (1.2), xk(A)?log(1/¢)
iterations are required, where k(A) := ||Al|F/omin(A).

Since k(A P) < k(A), we see that the projector P acts as a right preconditioner
for A, improving the convergence rate of SCRK compared to RK. In particular, we
can expect a significant per-iteration improvement (and hence overall advantage) if
|ALP|Fr < ||AllF or o, (A, P) > opin(A). We examine the connection between
the geometry of A and convergence rates in more detail in Section 3.3.1 to show that
the SCRK method is able to exploit approximately low-rank structure and geometric
properties of A to accelerate convergence.

We also describe how a good subset Iy of rows, if not explicitly known, can actually

be efficiently found via a connection to low-rank matrix approximation in Section 3.3.2.

SCRK on random data and dimension reduction. In a somewhat complementary set-
ting, we show that for “unstructured” matrices, the subspace constraint imposed by
the projector P acts as a form of dimension reduction that effectively increases the
aspect ratio of the system to reflect the dimensionality of the solution that remains un-
solved in Section 3.4. More precisely, we prove that when A € R™*" is drawn from a
generic class of “Gaussian-like” random matrices, the SCRK method typically converges
with a rate that is approximately 1 — 1/(n — mg) as long as the “effective aspect ra-
tio” (m — mg)/(n — my) of the system is sufficiently large (Theorem 3.17). Note that
1—1/(n—my) is the best possible rate that can be achieved by the RK algorithm (with
any sampling distribution) on a consistent (m —mg) X (n —my) linear system (see [21]).

L The projector A;JAIn can be written as QQ" where Q € R™*™ is a matrix whose columns form an

orthonormal basis of RE:Lngc(A}O)7 which can be computed in O(m%n) flops.
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1.2.2. The QuantileSCRK method

We also propose a modification of the SCRK method for solving corrupted systems
of linear equations. This setting models applications where some measurements are
corrupted by arbitrarily large errors, which may occur during the data collection, trans-
mission, and storage process due to malfunctioning sensors or faulty components (for
more examples, see [58,24]). Unlike the noisy setting above, the error horizon is not very
meaningful since significant outliers can be introduced. Hence, the aim is to converge to
the solution x* ezactly by identifying and avoiding corruptions, which may be possible
if the number of corruptions is relatively small and the system is highly overdetermined.

Our model for corrupted linear systems is defined as follows. Let C C [m] and be €
R™ be a sparse vector of arbitrary (possibly adversarial) corruptions supported on C.
Moreover, suppose that we possess external knowledge in the form of a corruption-free
subset Iy C [m] of size mq such that (b¢)z, = 0; for example, this could reflect a set
of trustworthy measurements by a reliable source, or infallible equations arising from
physical laws. The goal is to reconstruct the solution x* of Ax = b given A, I, and the
corrupted measurements b:=b+ be.

To achieve convergence, we take inspiration from the QuantileRK method proposed
in [25], which modifies the RK algorithm so that each projection is sampled from a
set of admissible rows whose residuals |b; — a]Txk| are smaller than the ¢'" quantile of
residual sizes at each iteration for some parameter ¢ € (0,1]. This modification is based
on the heuristic that large residuals should be indicative of corrupted measurements,
and small residuals lead to small steps that cannot divert the iterate too far away from
the solution. We propose to exploit the auxiliary information by confining the iterates
of QuantileRK within the “trusted” solution space Ay x = by,. We will refer to this
procedure, summarized in Algorithm 2, as the QuantileSCRK method.

Algorithm 2 Quantile Subspace Constrained Randomized Kaczmarz (QuantileSCRK).

1: procedure QUANTILESCRK(A, b, Io, q, K)

2 P=I- AJIFUAI0 > Orthogonal projector onto Null(Ap,)
3 initialize x° = A;ubln > Initial iterate x° solves Ay, x° = by,
4 for k=1,...,K do

5: ~Yq = g-quantile {\EJ - a;xk\, j € m]\ Io} > Threshold based on residuals
6 J= {j € [m]\ Ip: |E7 - a;'.—xk\ < 'yq} > Set of admissible rows
7 sample j € J with prob. proportional to ||Pa;||? > Sample admissible row

k k-1, bj—alx"'  pa, ) ~

8: x" =x + JHPW S TPaT > Project onto A u(;3X = brug
9: end for
10: return x¢

11: end procedure

We prove the following result for QuantileSCRK, a simplified version of Theorem 4.1
that we defer the precise statement of to Section 4. It shows that for unstructured matri-
ces modeled by continuous “Gaussian-like” random matrices, the QuantileSSCRK method
robustly and efficiently converges, provided that there is enough external knowledge (in
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terms of mg) to make the effective aspect ratio (m — mg)/(n — my) large enough, and
the proportion of corrupted measurements, 5 := |C|/(m — myg), is not too large:

Theorem 1.4 (Simplified version of Theorem 4.1). Assuming that A is a continuous
“Gaussian-like” random matriz, there exist positive constants R > 1, Sy < 1, ¢1 and ¢,
which are independent of m and n, such that if (m—mg)/(n—mg) > R and § < By, then
with probability at least 1 — e~ <1(™=™0) oyer the randomness in A, the QuantileSCRK
iterates x* from Algorithm 2 converge to the solution x* with

k
Bl -l < (10 =2 ) - (1.7)
n —mo

Since we are interested in large-scale systems with m,n > 1, the values of the con-
stants ¢; and ¢g are dominated by m and n (e.g. the probability guarantee is exponentially
close to one for large m). Note that this result applies to almost-square matrices with
m = (14 0(1))n rows provided my is big enough, which lies outside the scope of existing
QuantileRK theory. Experimentally, we found that the QuantileSCRK method works
well for more general data models than described by the theory, such as when A is a

structured sparse matrix in an image reconstruction problem (see Section 5.6).

Remark 1.5.

(i) (Rejection sampling). To avoid recomputing the normalizing constant Z; =
z:je,HPajH2 in every iteration of Algorithm 2 for sampling a row from the ad-
missible set .J, which depends on x*, rejection sampling (as originally proposed
in [25]) can be used: i.e. in each iteration, a row j € I is sampled with probability
|Pa,||/||Ar, P||%, and the projection is made if and only if |b; — a]Txk| < g

(if) (Uniform sampling). It is computationally more efficient to sample rows a; uniformly
at random from I7, together with rejection sampling, in Algorithm 2. By using the
threshold 7, = ¢-quantile {|b; — aJx*|/||Pa,]|, j € I, }, which has been modified to
capture the heterogeneity of the projected row norms, instead of vy, it can be shown
that analogues of our results (e.g. Theorem 4.1 and Lemma 4.2) still hold, except
that the relevant spectral quantities come from the matrix DA, P, where D is the
diagonal matrix with entries |[Pa;||~', j € Iy, instead of A, P.

1.8. Organization

Section 2 discusses related works. Section 3 analyzes the SCRK algorithm: we prove
the convergence result (Theorem 1.1) in Section 3.1 and generalize it to the noisy setting
in Section 3.2 (Theorem 3.4). We provide several results on using the SCRK method to
exploit low-rank structure and geometric properties of A in Section 3.3. Furthermore,
we show that the subspace constraint acts as a form of dimension reduction when A
is a Gaussian-like random matrix in Section 3.4. Section 4 analyzes the QuantileSCRK
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algorithm for solving corrupted linear systems. We provide various numerical experiments
in Section 5 to complement our theoretical results, and conclude in Section 6.

2. Related works

Kaczmarz-type methods Kaczmarz-type algorithms are related to a variety of modern
algorithms in (randomized) numerical linear algebra and (stochastic) optimization. Ran-
domized Kaczmarz (RK) can be viewed as an instance of the stochastic gradient descent
(SGD) algorithm with a particular step size, which, based on this connection, has led
to new insights into both methods, such as highlighting the role of weighted sampling
for SGD [48]. Furthermore, the RK method is one of the basic representatives of the
sketch-and-project method [21], which provides a unified framework for iteratively solv-
ing linear systems — including the randomized coordinate descent method, related block
variants, and the randomized Newton method — and can also be directly extended to
non-linear optimization problems [22].

Recently, methods based on the Kaczmarz algorithm have been used in the design of
more sophisticated linear solvers. A GMRES-type solver preconditioned by randomized
and greedy Kaczmarz inner-iterations is studied in [19]. Within the sketch-and-project
framework, a randomized block Kaczmarz algorithm that uses the preconditioned con-
jugate gradient method to perform an inexact projection in each iteration is analyzed
in [14], and the method is proven to be especially computationally efficient when the
matrix A has a flat-tailed spectrum. An iterative solver that further combines these
ideas with momentum and sparse sketching matrices is analyzed in [15]. In this paper,
we focus on the randomized Kaczmarz algorithm for solving systems of linear equations.

Randomized Kaczmarz The analysis of the RK algorithm in [57] spurred many de-
velopments and variants, including randomized block Kaczmarz methods [45,42] and
Kaczmarz-Motzkin methods that combine sampling and greedy row selection [12,23]. It
is shown that the Kaczmarz method can be extended to solve least squares problems
in [62,47,38], and systems of linear inequalities in [34,5]. The duality between RK and
randomized coordinate descent (also called randomized Gauss-Seidel) has motivated a
unified description of the two methods and their extended versions [38]. By using ideas
from optimization, RK methods with varying step sizes [48], acceleration [35], and that
promote sparsity [36,53,54] have also been studied.

The SCRK method resembles the block Kaczmarz method studied in [45]: the differ-
ence is that the blocks differ by one row between iterations and thus the update simplifies
so that computing new pseudoinverses is not required. Therefore, the SCRK method can
offer a similar advantage from using blocks in an efficient manner if a “good” block Aj,
can be found (see Section 3.3 for a discussion of what a good block is, and how one might
be found). In [46,61], a two-subspace Kaczmarz method that iteratively projects onto
the solution space associated with two rows is shown to significantly outperform the RK
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method when the system has correlated rows. The SCRK method can be considered as
an extension of this idea to higher dimensional subspaces (see Remark 3.9).

The idea of constraining the iterates of the RK algorithm has also implicitly appeared
in the design of a fast solver for Laplacian systems in the theoretical computer science
literature in [33], where the row spaces of the blocks A, and Aj, are orthogonal by
construction and hence Corollary 1.2 applies. The SCRK method offers a general frame-
work for analyzing convergence when Aj;, and Aj are not orthogonal. Randomized
sketch descent methods for solving optimization problems subject to linear constraints
are also studied in [43], where in each iteration the coordinate space (corresponding to
x) is randomly sketched for dimensionality reduction and (random) projection matrices,
analogous to P, enforce the linear constraints.

Corrupted linear systems The literature on solving linear systems with arbitrary sparse
corruptions is abundant: see, e.g., [2,3,11,6,58]. Such problems are often tackled within
the compressed sensing and robust statistics literature using methods based on linear
or SDP relaxations. The closest line of work to our approach is on iterative, row-action,
corruption-avoiding algorithms. The first Kaczmarz-type method was proposed in [24],
which introduced the idea that large residuals should be indicative of corrupted equa-
tions, but makes strong restrictions on the number of corrupted measurements (scaling
sublinearly with m). The QuantileRK method, introduced in [25], utilizes quantile-based
steps based on this residual heuristic. An important bottleneck of this method is that
the linear system generally needs to be sufficiently overdetermined (i.e. m > Cn for a
large constant C') to guarantee convergence. We show that with enough external knowl-
edge (i.e. mg large enough), the QuantileSCRK method works even for almost-square
systems. Other works studying the QuantileRK method include [56,30,10]; in particular,
we adapt a deterministic sufficient condition for convergence from [56] for Quantile-
SCRK (see Lemma 4.2). Another Kaczmarz-type method based on obtaining sparse
least squares solutions is analyzed in [54] and demonstrated to be able to solve linear
systems corrupted by impulsive noise.

3. Analysis of the SCRK method

In this section, we provide theoretical analysis of the SCRK method (Algorithm 1).
Recall that P =1 — AJ}OA I, is the orthogonal projector onto Null(Aj,), which is equal
to Range(A] )+, the orthogonal complement of the row space of A, .

3.1. Simplified SCRK update formula and proof of Theorem 1.1

First, we provide a proof of how the block update (1.3) simplifies to the more inter-
pretable and computationally efficient formula (1.4).
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Lemma 3.1. Let x*+1 = x*F A;()u{j}(blou{j} —Apunx®) and P =1- A}OAIO, If x*
solves A x* =by, and Pa; # 0, then

Tk
Xk+1:Xk+bj_ajx Pa;
[Pall  [[Pa

k

Proof. We may assume b; —aJTXk # 0, otherwise x**1 = x*. Since x**! is the orthogonal

projection of x* onto the solution space A ,u(1X = brugjy, the increment z := xkHl _xk
is the solution of the following optimization problem:
1
rn]%&n §||z||2 subject to  Aj, (x* +2) =by,, aJT(xk +2z)=10;. (3.1)
ZER™

This can be solved by introducing the Lagrange multipliers A € R™ and 7 € R for the
two constraints. Since A onk = by,, the first constraint is equivalent to A,z = 0, and
thus z solves

z+AjA+7a; =0 (3.2)

whilst satisfying A7,z = 0 and ajz = b; — ajx". Since P is the orthogonal projector
onto Null(Ap,), PAIO = 0 and the first constraint is equivalent to Pz = z. Hence, pre-
multiplying (3.2) by P implies that z = —7Pa;. Furthermore, pre-multiplying (3.2) by z'
and using the constraints implies that 7 = —||z||%/(b; faijk) = —72||Pa;||?/(b; faijk).
Solving for 7 yields 7 = (b; — aijk)/||Paj||2, which completes the proof. O

Remark 3.2. From the optimization formulation (3.1), it can also be shown that the unit

direction Pa;/||Pa,| taken from x* to reach x**!

maximizes \aJTZF over all unit vectors
z € Null(Aj,). This provides a nice geometric interpretation of the SCRK update: the
direction Pa; taken to reach the solution space Aj 13X = by minimizes the angle
from the optimal direction a; for reaching the solution space aij = b; within the subspace
Null(Ay,); see Fig. 3.1 for an illustration. For an alternative algebraic proof of a more

general version of Lemma 3.1, see Remark 3.9 later.
We will now use the simplified update formula in Lemma 3.1 to prove Theorem 1.1.

Proof of Theorem 1.1. Consider the k*" iterate x*. Suppose that a; is sampled in the
next iteration (with Pa; # 0). By subtracting x* from both sides of (1.4) and noting
that ajT(xk —x*) = aJTP(xk —x*) for any j € I; since x* —x* € Null(Ay,), we have

Pa;
k+1 * T k * . J
x"TH—x*=(I-vv' ) (x"—x") forv:i=——"—.
(=) Pa|
Since vv' is an orthogonal projector, (x**! —x*) 1L vvT(x* —x*). Thus, by Pythagoras’

theorem,
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k+1
XRK

. l
. Tl Tal !

Fig. 3.1. SCRK update from the current iterate x* for reaching the vector x**! in the solution space
Hijp ={xeR": a]Tx = b;} whilst remaining within H;, = {x € R" : A;;x = by, }, compared to the RK

update for reaching x’rggl alone.

o1 =2 = ot — 2 T = )2 = ot =2 T (e - x)

By taking expectation (where each row a; is sampled with probability | Pa;|*/|| A, P||%),
conditional on all the choices up to the k' iteration, we obtain

2
[Pa,* Pa; \'
Eg[x"1 —x*|? = |x* — x*||* - R L (xF —x*)
jeh%;ﬁeo IALP|Z [Pay||
. 1 .
=[x —x*||? - WHAh (xF — x*)|12

62 )
= (1 - —== |- |x" = x"||?, where 8 := HAI P < )H
( IALPlE RN L X*||

The next step is to estimate 6 from below, which requires more care than a similar
estimate used to prove convergence of the RK method [57] since A, P has a nontrivial
nullspace. A similar case where the system matrix has a nontrivial nullspace was also
treated in [37]. First, observe that Null(A 7, P) = Null(P). Indeed, the nontrivial inclusion
Null(A,P) C Null(P) follows from the observation that A Py = 0 implies that Py €
Null(A;,)NNull(A},) = Null(A) = {0}, since A has full rank. Therefore, since x* —x* €

Null(Ay,) is orthogonal to Null(P) = Null(A, P),
xF — x* 2
0=||ALP| i Ag z|? A P)% .
H I <||Xk —X*”) - zeerﬂll&Io)” Ile mln( Iy ) (3 3)
llzl|=1

This implies the following bound for one step of the SCRK method:

* min A *
Bt -1 (1- SRR ) e
Iy F
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By iterating and taking the full expectation, this concludes the proof of Theorem 1.1. 0O

Remark 3.3. If v, is a right singular vector of A, P corresponding to the ¢*! largest
singular value o¢(A, P), it can be shown that

* af(Al *
E(xkx,v@>(1 ||A11[P||2> <x x,v@>.

This shows that the residual vector x* —x* decays fastest in the directions corresponding
to the largest singular values of A, restricted to Null(Af,). This phenomenon was proved
by Steinerberger [55] for the RK method.

3.2. SCRK convergence on inconsistent linear systems

In the general case, the measurement vector b might not be known exactly, but only
accessible through a set of noisy observations b:=b+ r, where r is an arbitrary error
vector (which is considered to be small). Similar to previous analyses of Kaczmarz meth-
ods [44,45,50], we prove that if the SCRK method is used with the noisy measurements
B, then the iterates converge to the solution x* up to an error horizon:

Theorem 3.4. Suppose that the rows of A are partitioned into two blocks Ay, and Ay, of
sizes mg and m —myq respectively, and assume that Ay, has full row rank. If X* denotes
the sequence of SCRK iterates from Algorithm 1 where the noisy measurement vector
b =b+r is used in place of b, and the initial iterate X° solves Ay, X" = BIO, then

k

~ * mln(AhP) o~ *

mmk—xn2s(l——mriw—— RO = X2 4 90 + 0
I F

where vo,v1 > 0 are given by

|m—uﬂmw
AIl )

o = 2”1'10”2 _ ||AT r; ||2 and y o=
Umin(AIO)Q Io™7o

mln (

Remark 3.5 (Error horizon). Note that 7o only depends on the noise in the measure-
ments corresponding to the fixed block Iy. In particular, if r;, = 0, then 79 = 0 and
v1 only depends on |lrz,[|?. On the other hand, if r;, = 0, then ; only depends on
|AL AL rp |2 = Yien laT Al ry,[2. Note that [aTAf ry| corresponds to the angle
between the row a; and A}o ry,; the vector A}O rj, accounts for how noise in the measure-
ments corresponding to the fixed block Aj, shifts the solution space (see Lemma 3.8a).
Finally, if r = 0, then v9 = 71 = 0 and we recover Theorem 1.1.

Remark 3.6 (Least squares). Given a set of noisy measurements B, our setup can easily be
translated to the problem of solving the inconsistent system of linear equations Ax ~ b
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in a least squares sense. In this setting, by defining x* to be the least squares solution
(i.e. x* := argmin,cgn||Ax — BH2 = ATB), and setting b := Ax* and r := b — Ax*,
Theorem 3.4 can be applied to deduce that the SCRK iterates converge to the least
squares solution up to the same error horizon.

We develop some technical results before proving Theorem 3.4. Note that with noisy
measurements lA), the relationship X* —x* € Null(A 1,) does not necessarily hold anymore.
Thus, it will be more convenient to work directly with the block update (1.3) instead.
First, we present a decomposition of the pseudoinverse A}U ; in terms of Ay and A ;.

Lemma 3.7. Let A € R™*™ and I,J C [m] be two disjoint subsets of row indices. If
Ay has full row rank, then the pseudoinverse A}UJ admits the block representation

Ajus = (A} = (A/P)TASA] | (ASP)T), (3.4)
where P =1 — A}AI is the orthogonal projection operator onto Null(Ay).

Proof of Lemma 3.7. First, we record the key algebraic property that will be used re-
peatedly:

X =XT(XX")"! for X = Ay, Ag, or AP, (3.5)

This follows since all three matrices have full row rank: Ay, by assumption, A; as its
row subset, and A ;P from the observation that if its rows were linearly dependent then
there would exist some nonzero a € R’ such that > jed aja]TP = 0, which would imply
that 3. ; aja; € Null(P) = Range(AT) and thus contradict the assumption that Ay
has full row rank. We have

A AT A/A] | AGA] A | A
TUJT ATy = = .
. (AA)T | A,AT AT, | A,y

Since A has full row rank, Ay is invertible and

(3.5) —1

AJ}UJ = A-II—UJ (AIUJA-II—UJ)
_ (AT]AT) Al + A ALRTAT AL | -A AR (3.6)
re ~RAT,A;} R ’

where R := Aj; — ALA;}AU is the Schur complement [29] of the block As. Recall
that P =1 — AJA;, and so

3.5
R =A;AT — A;JAT(A;AT)TAAT S A1 — ATAJAT = A PAT,
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which implies that

PATR ' = PAT(A,PAT)"" = (A,P)T((A,P)(A,P)) 2 (A,P)I.  (37)

Next we compute expressions for the two blocks of A}U ; in (3.6). The first block,
ATA} +AGFALRTAT A+ AT[-RAT, A}, simplifies to

Al —[~ATA; +TJATR A A} = Al - PATR 1A} &

Al — (A/P)TAAT
The second block, AT[~A; A7 ;R™Y] + AT[R™, simplifies to

[~AIA; +JATR L = PATR &)

' (A/P)".
Combining the two preceding displayed equations completes the proof. O
Next, we describe how the noise affects the geometry of the solution spaces.
Lemma 3.8. Denote the true and noisy solution spaces associated with I C [m] by
Hr={xeR": A;x=br} and 721 ={xeR": A;x=b; +r;} (3.8)

respectively. If Ay has full row rank, then H; and H; satisfy the following:

(a) Hy=H;+ Alr;.
(b) Hy —x* =Null(A;) + Al irr.
(c) The vector Alr; is orthogonal to Null(Aj).

Proof. (a ) Since A has full row rank, A [A = I. Therefore, for any x € H Hi, we have
Aj(x+ Al irr) =br+rr and so x + ATrI € ’HI Conversely, for any X € 7—[1, we have
Ar(x— Al yrr) =by. Thus, (X — ATI'[) € Hy, and so

R=X—Alry) +Alr; e Hr + Alry.

(b): Since x* € Hj, we have H;—x* = Null(A ). Together with part (a), this implies (b).
Finally, (c) follows from the fact Range(A}) = Range(AT) = Null(Ap)*. O

We will now prove Theorem 3.4 by using the expression for A;ou{j} given in
Lemma 3.7, as well as the geometry of the shifted solution spaces described by
Lemma 3.8.

Proof of Theorem 3.4. Consider the k' iterate X*. Suppose that a; is sampled in the
next iteration (with Pa; # 0 and hence A ;1 has full row rank). Then one step of
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the SCRK algorithm with noisy measurements corresponds to the projection of X* onto
the noisy solution space Hp,uy;}, namely,

=28 L AT (brugy + o) — Ao XY

We will compare xX*

denoted by

*1 with the projection of X* onto the true solution space H IoU{j}s

k+1 .

_ ok At o
X=X AL o (brugy — Auin XY

Step 1. Exact computations. Note that
§k+1 Cx* = (XkJrl o X*) + Ayou{j}rfou{j}v
and A;OU{j}rloU{j} 1 (xFl—x*) € Null(A7,uy;1) by Lemma 3.8c. By using Pythagoras’
theorem twice (and orthogonality of the true Kaczmarz projections), we have

85— x| = [ = x| + ALy oI

= 85— X2~ AL Arug & =X 2 + AL T P (3:9)

By using Lemma 3.7 with I = Iy and J = {j}, we can simplify the last two terms: firstly,

Paja Al P ryr,
Al or o= < T T8 aj —
toulgy v} = \Agy = ey | TP ) \

Paj

— AT _aTAl Al
=Ajry, +(rj—ajA;ry) Pas|"

(3.10)
Next, since X% — x* — A}Orlo € Null(Af,) (from Lemma 3.8b) is a fixed point for P,

r
Pa]- 710
Pa; T(gk *
g a; (X" —x*)

(Pa;)T(xF —x* — Al rp,) _ Pa,
[ Pay|] [Pay|l

TAt
Pajaj AIO
Pa; |

t ok _ ey _
AIOU{j}AIOU{j}<X -x") = <A}0 -

= A}OI']O +

(3.11)

Furthermore, by Lemma 3.8c, A}OI‘I0 1 Pa; € Null(Ay,), which implies that the two
summands in both (3.10) and (3.11) are orthogonal. Hence, we can further expand (3.9)
to show that ||XF+! — x*||? is equal to

2

(Pa,)T(xF —x* — Al ry,)
. =t AL e 17+

[Pay]|

rj —al Al vy, |2
[Pa,||

%5 — x*)|2 — | AL rp|? -
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By canceling identical terms and taking the expectation, conditional on all the choices
of the algorithm up to the k" iteration (similar to the proof of Theorem 1.1), we obtain

”All (X - x" _A}0r10)||2 Hrll_AllAJ;OrIOHQ

Ek §k+1 * 2 X* 2
| IF = 1" =7l [ALPIE JALP[

(3.12)

Step 2. Spectral bounds. Recall that Null(Ay, P) = Null(P) from the proof of The-

orem 1.1. Since X* — x* — A;OI‘IO € Null(Ayp,), which is orthogonal to Null(P) =
Null(A, P), arguing as in (3.3) shows that

HAI1 (X -x" _AT I‘[O)H2>0'mm(A[1 ) ”X -x" _A1I.Or10|‘2'

By expanding the square, ||x*¥ — x* — A}OI'IOHZ is equal to [|x* — x*[|2 + ||A1701‘10||2 -
2zt~ x')TA] 1y, Since Al = AT, (Ar,AL)~! and Ag, (& x) =1y,

2
ok Tt [z, ||
(X" —x™) Ajry, = rIO(AIOA ) ey, < m.

Hence, we can bound the second term of (3.12) from below by

§
|ALP (X —x _AforIO)HQ rmn(AIl ) Hﬁk _X*HQ + HAT rr HQ _ 2”1‘10”2
HA11PHF - ||A11P||%7‘ Lo Umin(AIO)Q '

By instating the definitions of vy and 1, we have shown that

- . opn (AP . o in(ALP)?
Epl|M —x*|* < (1 ~TIAL P PIHQ IRF - xr)1? + “IAPE (vo+71)- (3.13)
I F

By iterating (3.13), we deduce that E||x* — x*||? is upper bounded by

k i
(AflP) ) S0 2 ( AhP) ) (AflP)
1— mm x*||2 + 1— mm . mln 1 4 72).
(- ) % Z APz ) lage
We conclude by bounding the geometric series by ||Ar,P||% /o (A, P)%. O

Remark 3.9. A natural generalization of the SCRK update (1.3) is to project onto the
solution space A usx = by,us, where J C [m]\ Iy is a block of row indices disjoint from
Iy with |J| > 1:

xhtl = xk + AJ;OUJ(bIQUJ - AjouJXk). (314)

Assuming that A,y has full row rank, Lemma 3.7 implies that (3.14) can be computed
by the following two-step procedure (which does not require x* to satisfy A x* = by,):
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(1) Project x* onto the solution space Aj,x = by, to obtain y*:
yk = xF + Ajl-o(blo - A[(]Xk).

(2) Compute the new measurements 3; := b —AJA.}O b;, € RIVI, then project y* onto
the solution space A jx = by whilst remaining in the solution space of Ay ,x = by,

for xF+1:
XM =y* + (ASP)(B, — (AsP)Y").
In particular, by restricting to a single row J = {j} and imposing the condition
A[()Xk = by,, we recover the simplified update formula (1.4), which provides an al-

ternative algebraic proof of Lemma 3.1.

By further restricting to the special case I = {i}, the two-step procedure above reduces
to an update of the two-subspace Kaczmarz method of [46]. Thus, the SCRK method
can be seen as a partial generalization of the two-subspace Kaczmarz method, except
that the subset I is fixed throughout the iterations to exploit specific features of the
block Aj,, and similar results concerning coherence with respect to more general subsets
of equations can be obtained (see Remark 3.13).

Finally, while all the convergence results in this paper are stated for the case |J| =1,
we believe that similar techniques can be extended to the case of |J| > 1.

3.3. Ezploiting structure with the SCRK method

In this section, we discuss how the SCRK method can exploit approximately low-rank
structure and geometric properties of the data matrix A to accelerate convergence. For
simplicity, we will restrict our attention to the noiseless case. Our goal is to study the
per-iteration convergence rate (i.e. with k = 1). First, note that the SCRK rate (1.5) is
as good as the RK rate (1.2). Indeed,

of (AL,P)= min |[Apz|= min [|Az| > min [|Az| = omn(A), (3.15)
z€Null(Ap,) zeNull(A ) ﬂZEHR”I
llz]|=1 llzl|=1 zl=

and A7, P|E < [P AL [% < [|A[l%. Therefore,

+ 2 . 2
1— o—min(‘AIl:P) <1-— Umln(A)

IALPE — A%

(3.16)

However, since each SCRK iteration requires more computation (as discussed in Re-
mark 1.3), we would like to understand when the SCRK method is advantageous to RK
overall. In the following, we first examine what features of the matrices A and Ay, lead
to such an advantage in Section 3.3.1. Furthermore, we discuss how a good subset I of
rows, if not explicitly given, can actually be efficiently found when A has approximately
low-rank structure in Section 3.3.2.
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3.83.1. Geometry of the matriz and convergence rates

As highlighted by (3.16), either [|A;,P||% < ||A||% or o (AL, P) > omin(A) leads
to significant per-iteration advantage of SCRK over RK. We describe two specific moti-
vating examples of systems with such structure before generalizing our observations in
Corollary 3.12 below. For these examples, consider an arbitrary (m — mg)-dimensional
subspace U of R™. Let {uy,...,Wn,} and {Cmo+1;Cmo+2,- -, Cn} be orthonormal bases

for U and U~ respectively, and ¢ ~ 0 be a small positive constant.

Example 3.10 (0. (A;,P) > 0uin(A)). This can happen if the equations in the se-

min

lected block Aj, are almost collinear, but the system AP with projected rows is

well-conditioned. Let @ := m%) Yo u;, and A € R™ ™ be the matrix where the first
mg rows are given by a; := (1 —¢)U+eu;, j = 1,...,mp, and the remaining rows are
Crmgt1s- - -»Cn- Choose Iy = [mg] so that P is the orthogonal projection onto /~. Then

of (AL P)=1>>¢> opin(A). Indeed, if e; is the i*" standard basis vector, then

min

omin(A) = min  [ATx|| < HATL\/;Q)

= — ll2|| =E.
xeR™:||x||=1

‘_i”u
NG 1

Furthermore, since the rows of A7, P form an orthonormal basis for ¢+, for any unit
n

vector x = Y ae; in U, we have |[Anx|? = Y . a7 = 1, and hence

O—rJrrlin(AhP) = minxelx{l:HxH:l”AIlX” =1
Example 3.11 (| A, P||% < ||A||%). This can happen if the block A, is highly correlated
with the remaining rows (a;);jer,. Let A € R™*" be the matrix where the first mo rows

are ui, ..., Up,, and the remaining rows are a; := (1 — €)v; +ec;, where v; is any unit
vector in U, for j =mg +1,...,n. Choose Iy = [myg], so that Range(A}ro) =U and P is
the orthogonal projection onto U+. Then Pa; = ec; and ||Pa;|| = ¢ < 1 = ||a;|| for all

j € In, and hence || A, Pl =30, [Payl* <2377 [lay]|* = 2| All%.

j€h
The calculations in the preceding example, together with Theorem 1.1 and (3.15),
generalize to the following result:

Corollary 3.12. Consider the same setup as Theorem 1.1, and assume that for some
6 €[0,1),

[Pay |*

- <1—06% foralljel. (3.17)
[lay]]

Then the SCRK iterates x* converge to x* in expectation with

k

* 1 UmiH(A)2 *

IEka -x ||2 < (1 1o AL . ||x0 - x ||2 (3.18)
F
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Remark 3.13. Since P is the orthogonal projection onto Range(A] )+, [[Pa;||?/||a;||* =
sin? 0; where 6, is the principal angle between the subspaces Range(a;) and Range(A}-O).
Therefore, the quantity J in (3.17) measures the coherence between the row space of the
fixed block A, and each of the remaining rows (a;);er,. A value of ¢ close to one means
that the principal angles are uniformly small; i.e. all of the a; are close to the row space
of Ay, and offer little new information by themselves. By projecting each row with P,
the shared information is effectively modded out, and thus each SCRK iteration is able
to make more meaningful progress towards the solution.

In particular, if we take A7, = a] to be a single row and assume that ||la;|| = 1 = ||a;|],
then ||Pa;||> = 1 — |a]a;|?, where |a]a;| is the correlation between a; and a;. It is
shown in [46] that the two-subspace Kaczmarz method, which iteratively projects onto
the solution space associated with two random rows, significantly improves upon RK if
A has highly correlated rows. Thus, Corollary 3.12 quantifies a similar phenomenon for
the SCRK method for higher dimensional subspaces.

3.8.2. Sampling rows to find a good subspace

Previously, we showed that bounds of the form ||[A;,P||% < ||A|% using a specific
choice of rows I imply significant improvements in the convergence rate of the SCRK
method over randomized Kaczmarz. However, what if we are not explicitly given a good
set Iy, even though there is latent low-rank structure in A — in the sense that the matrix
has r < n dominant singular values — that can be exploited? We begin by considering
a motivating hypothetical example where the row span of Ay, is able to align perfectly
with the leading right singular subspace.

Example 3.14 (|[A,P|% < [[A[|F). Let A,y = U(T)E(T)V(TT) be the best rank-r ap-
proximation of A (with respect to [|-||r), where X,y = diag(c1(A),...,0.(A)) is the
diagonal matrix of the top r singular values of A, and the columns of V(,) € R"*" and
U,y € R™*" contain the corresponding right and left singular vectors. Suppose that the
row span of Ay, equals Range(V ). Then

IALP|F = [|AP|} = |PAT|E = [AT - PHAT|E = [AT Al IR = > 0i(A)*
i=r+1

If the top r singular values of A are much larger than the rest, then ||A, P||% is much
smaller than [[A|% = Y0 0i(A)2.

Note that in general, such a subset of rows does not exist in A. This raises the following
question: can we efficiently find a small subset Iy of rows of A so that the row span of
A, is a good approximation of the top r-dimensional right singular subspace of A7 This
is known as the problem of finding an approximate CX decomposition in the randomized
numerical linear algebra literature. Algorithms have been proposed that sample rows of
A according to their Euclidean norms [16] or their leverage scores (£;);c[m) [17], where
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¢; is the squared f3 norm of the 7t row of U(,, using the same notation as the example
above (for more details, see [39]). The following summarizes guarantees for these two
sampling schemes proved in [17,4] and [16]:

Theorem 3.15 (Theorem 1 [17] and [4]; Theorem 4 [16]). Suppose that ¢ rows of A are
independently sampled, where row j is selected with probability p; in each trial. Let Iy be
the set of indices of the sampled rows, and P be the orthogonal projection onto Null(Ap,).

(i) If pj = ;/r and ¢ = O(rlogr/e?), then with probability at least 0.9,

n

IAP| < (1 + o)A - AplE =(1+¢) Z ai(A)%. (3.19)

1=r+1
(ii) If p; = |la;|I?/||Al|% and ¢ = O(r/e?), then with probability at least 0.9,

IAP|% < |A = A7 +ellAlF = (1+2) Y ai(A)?+2> ai(A) (3.20)
i=r+1 i=1

Theorem 3.15 implies that sampling ¢ ~ rlogr rows of A produces a subspace that
tames the leading r singular values of A with high probability. In practice, it has been
observed that a modest oversampling factor (i.e. ¢ is a small constant times r) usually suf-
fices [17]. The relative-error bound (3.19) is better than the additive-error bound (3.20);
however it is more costly because it requires the estimation of the leverage scores (see,
e.g., [18,26]). By combining Theorem 3.15 and (3.15) with the SCRK convergence result
(Theorem 1.1), we deduce the following;:

Corollary 3.16. Suppose that Iy C [m] contains mo = O(rlogr /) rows of A, randomly
sampled according to the leverage scores of A relative to its best rank-r approximation as
described in Theorem 3.15, and partition A into blocks Ay, and Ay with I; = [m]\ Io.
Then with probability at least 0.9 over the sampling of Iy, the SCRK iterates x* satisfy

A ) e
(L+e) 30,y 0i(A)? '

Bl — x| < (1

Thus, if the rank of A is effectively less than r (in the sense Y7 ., 0:(A)? < [|A[|F),
then the SCRK method with iterates constrained to the solution space corresponding
to mg = O(rlogr) randomly sampled rows significantly improves upon RK. Note that
similar results are known for the sketch-and-project method [13]. Moreover, the effective
rank of a large-scale matrix A can be estimated in a data-driven manner by sketching [40].
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3.4. SCRK on random data and dimension reduction

Previously, we discussed how the SCRK method accelerates the iterative solver when
the matrix A has approximately low-rank structure. In this section, we consider a some-
what complementary setting to study the effect of the subspace constraint when A s
unstructured and homogeneous: namely, when A is drawn from a class of generic ran-
dom matrices (precisely defined below) whose rows behave like independent standard
Gaussian vectors. Such a matrix is typically well-conditioned as long as its aspect ratio
m/n is large enough, and hence the corresponding linear system is easily solved using
randomized Kaczmarz. However, for almost-square systems with an aspect ratio close to
one, the convergence rate is far from optimal.

First, we review some definitions from probability theory (we refer to [60] for more
details). If a € R™ is a random vector, we say that a is mean-zero if E [a] = 0, and a
is isotropic if E [aaT| = I. We say that a scalar random variable X is K -subgaussian
if its subgaussian norm || X |y, := infi>o{E [exp(X?/t?) < 2]} is bounded by K > 0;
informally, this means that X concentrates around its mean with a light, exponen-
tially decaying tail. Furthermore, a random vector a is K-subgaussian if all of its
one-dimensional marginals are K-subgaussian: [[al|y, := sup,cgrn,|,=11(z; @)y, < K.

As before, we will continue to assume that A has full rank (almost surely). For our
model, we will allow A7, € R™0%™ to be arbitrary, and we assume that A;, € R(m—mo)xn

is a random matrix that satisfies the following:

Al. The rows of A, are independent, mean-zero, isotropic, and K-subgaussian random
vectors.

The canonical example for our model is a standard Gaussian matrix Ay, whose entries
are independent standard normal random variables. In this special case, exact computa-
tions are often possible. More generically, Assumption A1 models unstructured matrices
containing homogeneous data (that is centered and isotropic) with light tails.

Our main result in this section shows that for such matrices, the subspace constraint
imposed by P acts as a form of dimension reduction, typically resulting in a near-optimal
convergence rate of approximately 1 —1/(n —mg) as long as the “effective aspect ratio”
(m —myg)/(n — mgp), which may be much larger than m/n, is large enough.

Theorem 3.17. Suppose that the rows of A are partitioned into two blocks Ay, and A,
of sizes my and m —my respectively, where A, is arbitrary and Ay, is a random matriz
that satisfies Assumption A1. There exists constants ¢, R > 0 (only depending on K)
such that if

m — mo
n —mo
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then for any € € (0,1), with probability at least 1 — 3 exp {—052 (1 — 5) (m — mo)}

r

over the randomness in Ay, , the SCRK iterates x* satisfy

2 k

1—¢)? R 1

Ellt — x| < 1—%(1— —)- L) peoxp @
3 r n—mo

In the special case where Ay, is standard Gaussian, this result holds with R = 1.

The values of R and ¢ depend on the precise distributional properties of the random
matrix, and are, importantly, independent of m and n. Note that for tall, large-scale
systems with m,n > 1 and r > 1, the requirement r > R is not difficult to meet, and
taking € ~ 0 shows that the convergence rate is approximately 1 — 1/(n — mg) with a
probability guarantee that is exponentially close to one.

3.4.1. Proof of Theorem 3.17

To study the typical convergence rate with a random matrix, we will obtain tail
bounds for o, (A;,P) and ||Af, P||%. The first lemma is deterministic, and shows that
instead of studying the non-zero singular values of the (m — mg) x n matrix A, P, we
can study the singular values of a thinner (m —mg) x (n — mg) matrix after rotating.

Lemma 3.18. Let X € R"™*™ be a matriz, and P € R™ "™ be an orthogonal projection
onto a d-dimensional subspace of R™. Suppose that the columns of Q € R™"*¢ form an
orthonormal basis for Range(P). Then the non-zero singular values of XP € R™*™ and
XQ € R™*? gre the same.

Proof. Note that P = QQT. Let XQ = UXVT be a compact singular value decompo-
sition of XQ, which means that ¥ is a square diagonal matrix containing the rank(X)
non-zero singular values of XQ, and U,V are rectangular matrices with orthonormal
columns. Observe that XP = UX(V/)T where V' := QV also has orthonormal columns.
This allows us to conclude the desired result since the non-zero singular values of XP
are presented in the same matrix 3. O

The following probabilistic result shows that the smallest non-zero singular value of
A1, P can be lower bounded with very high probability.

Lemma 3.19. Let P be an orthogonal projection onto a fized (n — mg)-dimensional sub-
space. Suppose that the random matriz Ay, € RU™=m0)X" satisfies Assumption A1. Then
there exists an absolute constant C' > 0 such that for all s > 0, with probability at least
1-— Qe_sz(m_m‘)), the smallest and largest non-zero singular values of Ar, P satisfy

ohn(ALP) > Vm —mg — CK?(Vn—mg + s\/m —mo)  and
Omax (AL, P) < vVm —mg + CK?*(v/n — mg + sv/m — mg).
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In the case where Ay, is Gaussian, the inequalities hold with CK? replaced by one.

Proof. Let Q € R(m—m0)x(n=mo) he a matrix whose columns form an orthonormal basis
for Range(P). By Lemma 3.18, the smallest and largest non-zero singular values of
AP € Rm=m0)xn and B := A, Q € Rm=m0)x(n=m0) are equal. It can be directly
checked that the rows of B are also independent, mean-zero, isotropic, K-subgaussian
random vectors in R®~™°. Hence, using a standard tail bound for the extremal singular
values oyin(B) and opax(B) of the random matrix B (see [60, Theorem 4.6.1]) implies
the claimed inequalities. In the Gaussian case, the precise constants can be computed
using Gaussian concentration tools (see [60, Corollary 7.3.3, Exercise 7.3.4]). O

Remark 3.20. The minimum restricted singular value of random matrices has also been
studied in the context of universality laws for randomized dimension reduction in [49].
If the entries of Aj, are independent random variables satisfying some mild regularity
conditions, then [49, Theorem II] establishes that o, (Aj, P) =~ /m —mgo — Cy/n —myg
with high probability since Range(P) is a (n — mg)-dimensional subspace in R™. Thus,

ot (A, P) is of comparable order for a wide class of distributions. However, the maxi-

min

mum restricted singular value is not necessarily universal.

Next, our goal is to obtain tail bounds for |Ar,P[|% = 3, [Pa;]|*. In the setting
where the rows a; of A, are mean-zero, K-subgaussian random vectors, it is proved
in [31] that the Euclidean norms ||a;|| are O(Ky/n)-subgaussian. The next lemma states
that the norms of the projected vectors |Pa,|| are O(K+/n — mg)-subgaussian.

Lemma 3.21. Let a be a mean-zero, K-subgaussian random vector in R", and P be an
orthogonal projection onto a fized d-dimensional subspace. Then the subgaussian norm
of ||Pa|| is bounded by CK~/d for some absolute constant C > 0.

The proof uses the following geometric observation about unit spheres of subspaces,
which we record for later reference. We say that N is an e-net of aset S CR"if N C S
and every point in S is within distance ¢ of some point in A. It is known that there
exists an e-net of the d-dimensional unit sphere S?! := {x € R? : |x|| = 1} with
cardinality bounded by (1 + 2/¢)¢ for any d (see, e.g., [60, Corollary 4.2.13]). Thus, if
U is a d-dimensional subspace of R™, then by identifying ¢/ = R? (using the fact that
rotations are isometries) and obtaining a net of S¥~!, we deduce the following:

Lemma 3.22. Let U be a d-dimensional subspace of R™. Then for any € > 0, there exists
an e-net N of U N S™~ 1 with cardinality IN'| < (1 +2/¢).

Proof of Lemma 3.21. The proof is similar to the proof of [31, Lemma 1]; we provide it
for completeness. First, it can be checked that Pa is also a mean-zero K-subgaussian
random vector. Next, by Lemma 3.22, we can fix a 1/2-net A/ of Range(P) N S™~! with
cardinality |N| < 5"~ ™0 By using these observations, we will show that
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P(|Pal >1t) < 2¢~1"/(W0KZ(n=mo)) g1 411 ¢ > 0. (3.22)

Indeed, for any realization of Pa, there exists v € N such that H IIE_ZH - VH <1/2, and

we can write

Pa

Pa |Pal]
[Pall = (v.Pa) + (o = v.Pa) < (v, Pa) + | 22— v| - [P < v.Pay + 1520
[Pal [Pal 2

to deduce that |Pa|| < 2(v,Pa). Therefore, because (v,Pa) is a mean-zero, K-
subgaussian random variable, a union bound implies that for all ¢ > 0,

t
P(|[Pal| >¢) <P (3V eN :(v,Pa) > 5) < Mo L o=t/ (AK?)

We claim that this implies (3.22). If t? < 4log(5)K?(n —my), then (3.22) trivially holds.
Otherwise, if t? = 41og(5)K?(n — myg) + s for s > 0, then

En—mo e—tz/(4K2) — e—s/(4K2) < e—s/(GIOg(S)Kz(n—mo)) < 2e—t2/(10K2(n—m0)).

Thus, the tail bound (3.22) holds for all ¢ > 0, which implies that (by, e.g., [60, Propo-
sition 2.5.2]), ||Pal| has subgaussian norm bounded by CK/n —mg for some absolute
constant C' > 0. 0O

Lemma 3.23. Consider the same setup as Lemma 3.19. Then there exists an absolute
constant ¢ > 0 such that for all e > 0, with probability at least 1 —efcmin{s’g}(m*m‘))/l(él,

IALP|[F < (1+¢€)(m —mo)(n — m). (3.23)

Proof. Since P is an orthogonal projection onto an (n — mg)-dimensional subspace and
a; is isotropic, using the cyclic property of trace implies that for all j € Iy,

E|Pa;|* =E [tr(a;rPaj)] = tr(E [aja;r] P) =tr(P) =n — mo.
Therefore,
E|ALP|F=E | ) [Pay|*| = L] E[Pai|* = (m —mo)(n —mq).
jel

Now, the random variables ||Pa;|| are independent and, by Lemma 3.21, O(K\/n — my)-
subgaussian. Hence, by centering and Bernstein’s inequality [60, Theorem 2.8.1], there
exists an absolute constant ¢ > 0 such that
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P ([|ALP|E = (m —mo)(n —mo) > t)

<e ¢ min r t
<p [ -
=GP\ T (m —mg)(n—mg)2’ n—mo

for all t > 0. By choosing ¢t = e(m — mg)(n — mg), we obtain (3.23). O

The main result of this section now easily follows from the tail bounds for A, P.

Proof of Theorem 3.17. Suppose that the random matrix A, P satisfies the events in
Lemma 3.19, using s = ¢ (1 — CTIf # and relabeling C2K* by R, and Lemma 3.23. If
this occurs, which holds with the claimed probability after simplifying, the convergence
result (3.21) then directly follows from the SCRK convergence result, Theorem 1.1. O

4. Analysis of the QuantileSCRK algorithm

In this section, we consider the QuantileSCRK method for solving corrupted linear
systems (Algorithm 2). Recall that in our model, we are given a corrupted measurement
vector b := b + be, where be is a sparse vector of arbitrary corruptions supported on
C C [m], as well as a corruption-free subset Iy C [m] of size mg such that (b¢);, = 0.
Our goal is to reconstruct the solution x* of the linear system Ax = b.

Our main result in this section is Theorem 4.1, which shows that the QuantileSCRK
method is able to converge robustly and efficiently when A is an unstructured random
matrix as long as the effective aspect ratio (m — mg)/(n — my) is tall enough and the
proportion of corrupted measurements |C|/(m —mg) is not too large. Specifically, we con-
sider the class of “Gaussian-like” random matrices previously considered in Section 3.4,
and assume that Ay, is a random matrix that satisfies Assumption Al in addition to
the following continuity assumption:

A2. Each row of Ay, either has a log-concave distribution” or has independent entries
with bounded probability densities.?

The class of log-concave distributions is a generalization of the standard Gaussian dis-
tribution that allows for some dependence between the entries of a random vector; for
example, the uniform distribution over any convex body in R" is log-concave. For more
details and examples, we refer to [52].

Assumption A2 is essentially needed for technical reasons for our proof of Theorem 4.1.
Empirically, convergence is observed even if A has random discrete entries [25], or if A
is a structured, sparse matrix in an imaging problem (see Section 5.6). The assumption

2 A log-concave distribution in R™ has a probability density f that satisfies f(Ax + (1 — \)y) >
FE) M F(y) > for all A € [0,1] and x,y € R™.
3 By scaling, we may assume without loss of generality that the densities are bounded by one.
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of having independent coordinates with bounded densities in each row was previously
considered in [25], and we extend the model by allowing for log-concave distributions.
We can now state our main result:

Theorem 4.1. Suppose that the rows of A are partitioned into blocks Ay, and Ay, of
sizes mo and m — mg respectively, where Ay, is arbitrary and Ay, is a random matriz
that satisfies Assumptions A1 and A2. Suppose that the corrupted measurement vector
b=Db+be is observed, (be)r, = 0, and a quantile parameter g € (0,1) is fized. There
exist constants By € (0,1) and R > 1 (only depending on q and K ) such that if

m — my

>R and ﬂ::i

n —mo m —mo

< Bo, (4.1)

then for some constants c1,cq > 0 (only depending on q, (8, and K ), with probability at
least 1 — 6e=<1(m=m0) oyer the randomness in A;,, the QuantileSCRK iterates x* from

Algorithm 2 converge to the solution x* in expectation with

k
Bl -l < (10 2 ) - (42)
n—mo

As mentioned previously, the values of the constants ¢; and ¢y are dominated in
large-scale systems with m,n > 1, and the requirement (m — mg)/(n — mg) > R is not
difficult to meet if the system is tall and there is enough external knowledge (i.e. m > n,
mo > 1). In addition, we believe that it should be possible to obtain sharper theoretical
estimates for By and R.

The strategy to prove Theorem 4.1 is to combine a deterministic sufficient condition
for the convergence of QuantileSCRK, adapting a result for QuantileRK proved by [56],
with probabilistic results for the spectra of the projected random matrix Ay P. First,
we define some spectral quantities that will be needed. For a € (0, 1], define

O—I,min(A11P> = inf O'+~ ((AhP)T) (43)
(T =a(m =mo)
For simplicity, we will assume throughout that a(m — mg) is an integer. This quantity,
which represents the uniform minimum singular value over all row submatrices of A, P
with a(m—mg) rows, has appeared in previous analyses of the QuantileRK algorithm [25,
56], and quantifies whether there are any poorly-conditioned row submatrices that are
particularly susceptible to corruptions. Similarly, define

Lo = sup (AL, P)r|%. (4.4)
TCh
|T|=a(m—mg)
Together, (4.3) and (4.4) provide a uniform upper bound for the scaled condition numbers
of all row submatrices of Ay, P possibly containing the uncorrupted, admissible rows
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(i.e. whose residuals are smaller than the quantile threshold). This is the key step which
guarantees that the expected improvement from moving in an uncorrupted direction
offsets the expected deterioration caused by a corruption.

4.1. A deterministic condition for convergence

The following lemma provides a deterministic condition that guarantees the conver-
gence of the QuantileSCRK algorithm for any arbitrary sparse corruption vector be,
which may be of independent interest. This is adapted from a similar condition for con-
vergence of the QuantileRK algorithm that was proved by Steinerberger [56].

Lemma 4.2. Recall that C C I; are the indices of the corrupted measurements, and 3 =
IC|/(m — myg). Suppose that f < g < 1— . Define

1 + 2 2 ﬂ /B
= (ALP)" —omax(ALP — + 24— , 4.
O‘Iuﬂ quﬁ {Uq—ﬁ,mln( I ) g ( I ) <1 —q + 1— q ( 5)

A, P) is defined in (4.3), and Zy_p in (4.4). If Cy g > 0, or equivalently,

or . . (A, P)?
spminALPY B, [ B (4.6)
Umax(AllP)2 1- q 1- q

then the QuantileSCRK iterates x* from Algorithm 2 converge to the solution X* in

+
where O-qfﬁ,min(

expectation with
E|[|x* —x*[|* < (1= Cyp)" - [Ix° —x*|*. (4.7)

The proof of Lemma 4.2 follows the same strategy as [56] with a minor improvement
in the condition (4.6) for convergence. For completeness, we provide the full details.

Proof. Consider the iterate x*. Recall that J = J(g, k) is the set of indices of the
admissible rows that satisfy |b; — aJTxk| < v = g-quantile {|b; — a]Txk\ :j € I}, with
|J| = g(m — myg). Let S := C N J be the indices of the corrupted yet admissible rows,
which satisfies 0 < |S] < B(m — mg). Recall that the row j is sampled from J with
probability equal to ||Pa;||?/Z,;, where Z; := Z:jEJHPajH2 is the normalizing constant.
Conditional on all the choices up to the k' iteration, we have

: 3 eslPay :
Exlx"+ - x| = [1 - FES T Epens T P (49)
¥ es/Pay? N
+ 2R ey IxH - x|, (49)

Zy
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where Ejcgy denotes the expectation further conditional on j € S, and similarly for
E{jessy- We proceed to estimate the two summands (4.8) and (4.9) individually.

Step 1: Lower bounding the improvement from selecting an uncorrupted equation.
Conditional on sampling an admissible, uncorrupted equation j € J\ S, the improvement
is given by one step of the SCRK method applied to the row submatrix (A7, P)n g. Thus,
by Theorem 1.1,

A 2
mm(( Iy )J\S) ) . ||Xk—X*H2.

Egjenslx ! —x2 < (1
bens) > enslPa?

Since |J\ S| > (¢ — B)(m — myg), by using the definition of O’q g.min(ALP) in (4.3)
together with the fact that adding rows to a matrix can only increase its minimum
singular value, we obtain the following upper bound for the first term (4.8):

o ||Pal|? of (A, P)?
(1 o Z]ES” ]” > . ||Xk _ X*||2 _ q—B,Inm( Iy ) . ka _ X*”Q. (410)

Z Zy

Step 2: Upper bounding the deterioration from selecting a corrupted equation. The
second term (4.9) represents the possible deterioration from selecting a corrupted yet
admissible row that may take x* further away from the solution x*. By expanding the
square, it is equal to

> eslIPay? [Payl> ||, . bi—ajx’
5 —X +72Pa]
Zr = YeslPail [Pa|
- JPasl? 1
e D g LSy Al 2 Y0l Py T )
ZJ ZJ,
JES ]ES
Z s” aJ” - *
gﬂeTu - ||2+—\S|vq qu\/w I(ALP)c(x" —x*)], (4.11)

where the definition of the quantile v, and Cauchy-Schwarz is used for the inequality.

Step 3: Bounding the g-quantile of a sample. Since any uncorrupted row a; with
j € I \ C satisfies a;rx* = b;, we have

b — a]Txk = a]T(x* —xF) = (Pa;)T(x* — xF),
recalling that x* — x* € Null(Ay,). Since there are at least (1 — q)(m — mg) — (B(m —
mo) —|S]) = (1 — g — B)(m — myp) + |S| uncorrupted equations in I; whose residuals are
larger than ~,, we have
2
(1=g=A)(m—mo) +1S)77 < Y [bj —alx"P < Y |(Pay)T(x" —x")

JEL\C j€l
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= [|ALP(x" — x")[* < omax(ALP)? - [[x" — x|,

Therefore, the g-quantile of the sizes of the residuals can be bounded by

v

gmaX(AI1P) . H k

¢ < —x*|. 4.12
V(m—mo)(1—q—pB)+18] | 2

Step 4: Conclude. Combining (4.10) and (4.11) with the bound on -, shows that the
expected relative improvement Ej||x*+! — x*||2/||x* — x*||? is upper bounded by

1She  29/ISTI(ALP) x—x>|>

1
1—— ot (A P)? —
2o i smntaner - [

|S‘ 'G"max(iAIl]?)2 2 |S‘ 'O-maX(AhP)Q

0+ 0+15

)

(4.13)

where 0 := (m — mg)(1 — g — ). Now, we can upper bound Z; by Z,_s from (4.4).
Next, consider the function f(z) = 57 + \39\{%’ and observe that f(|S|) appears in the
upper bound (4.13). Since f'(z) > 0 for all z > 0, the upper bound is increasing in |S]|.
Because |S| < 8(m —my), we conclude that the most pessimistic bound, independent of

|S| and J (and hence k), is obtained by setting |S| = B(m — myg), which implies that

Egllx* 1 —x*||2 < (1 — Cypp) - IXF —x*||?,  where C, 4 is defined in (4.5).

To ensure that the mean squared error contracts after each step, it suffices for C, 5 to be
positive: this is exactly secured by the condition (4.6). By iterating, we obtain (4.7). O

Note that Lemma 4.2 only provides a sufficient condition for convergence in the worst
case (see [56] for further discussion). Empirically, convergence is observed for larger values
of B because the corruptions are quickly detected and trapped beyond the threshold. The
dependence on |S] in (4.13) shows that if the number of admissible, corrupted equations
is small, then far less is demanded of the spectral quantities of Ay, P for the mean
squared error to contract. For similar reasons, the QuantileRK method also empirically
outperforms currently available theoretical convergence guarantees [25,10].

4.2. Proof of Theorem /.1

To prove Theorem 4.1, our strategy will be to show that the ratio of omax(Ar,P)
and aq s, min (A1, P) is of the same order with high probability. Together with the con-
dition (4.6) for convergence in Lemma 4.2, this implies that the QuantileSCRK method
will efficiently converge if the proportion of corruptions is small enough.



J. Lok, E. Rebrova / Linear Algebra and its Applications 698 (2024) 220-260 249

First, we show that 0;_ P min (A, P) can be lower bounded with high probability as
long as the effective aspect ratio (m —mg)/(n — mg) is tall enough. This is proved using

a similar technique as [25, Proposition 3.4].

Lemma 4.3. Let P be an orthogonal projection onto a fized (n—myg)-dimensional subspace,
a € (0,1], and Aj, € RUP=m0)X" be o random matriz that satisfies Assumptions Al
and A2. Then there exist absolute constants C,0 > 0 such that if

m—mo _ 24 360(1 + CK?)
> 1 _— 4.14
n—my  « °8 ( a3/? ’ (4.14)
then with probability at least 1 — 3e~*(m—m0)/24
N a3/2
. . Lo —
THCl% Umln((AI1P)T) = 39 Vim —mg. (415)

IT|=a(m=mao)
Proof. Recall that S"~! = {x € R™ : ||x|| = 1} denotes the unit sphere. By Lemma 3.22,
we can fix an e-net N of Range(P) N S"~! with cardinality |[A] < (3/)"~™° for some
e € (0,1] to be chosen later. Fix any T C I; with |T| = a(m — myg). Since for any

z € Range(P) N S"7!, there exists x € A such that ||z — x| < e, using the reverse
triangle inequality and ||(Ar, P)r|| < ||A, P|| implies that

min =

Tomin (AR P)7) > zeRangiI(llﬁ)mSn—l”(AIIP)T)ZH 2 inf [[(Ar,P)r)z]| - el Ar, Pl (4.16)

Firstly, by Lemma 3.19 (with s = 1), we have that with probability at least 1—2e~("=70),

|ALP|| < (14 CK?)/m —mg. (4.17)

Next, our goal is to define an event & on which a good bound for infxenr||[(ALP)r)z||
that is independent of T holds. More precisely, for every j € I; and x € N, define the
“bad” event

& = {l{a;,x) [ < a/(40)},

where 6 is some constant to be specified later. Let £* be the “good” event where less than
a(m —mg)/2 of the events (£);jer, occur, and £ := [, .- E*. Observe that (Pa;,x) =
(a;,Px) = (a;j,x) since x € Range(P). Therefore, on &, at least half of the rows of
(A, P)r have nontrivial correlation with any x € N, which implies that

3/2

) . alm—mg) a2 o)
A I(AnP)rx| = il jEZT|<Paj’X>22\/ 2 162~ ep VMO

(4.18)
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To balance (4.17) and (4.18), we choose ¢ = o*/2/(120(1 + CK?)). Therefore, if both
events € and (4.17) hold, then (4.16) implies that the desired bound (4.15) holds.

It remains to bound the probability of the event £, for which we will combine an anti-
concentration result with a Chernoff bound. By using either [51, Theorem 1.2] if the row
a; has independent entries with bounded densities (with 6 > 2v/2), or [7, Theorem 8]
if a; has a log-concave distribution (increasing the value of 6 based on the absolute
constant in this result), we deduce that P (£¥) < a/4 for all j € I,. Hence, a standard
Chernoff bound implies that P (£X) > 1 — e~@(m=m0)/12 for all x € N, and a union
bound shows that £ fails to hold with probability less than

7Oé(m — mo) 3 O‘(”L — mo) —a(m—mg)/24
. - 7 < — — — < 0
IV - exp ( B ) < exp ((n myg) log (5) B <e )

where the condition (4.14) is used for the final inequality. Combining this with the
probability bound for (4.17) to hold completes the proof. 0O

Next, the following lemma bounds Z,_g from above with high probability.

Lemma 4.4. Let P be an orthogonal projection onto a fized (n—myg)-dimensional subspace,
a € (0,1], and Aj, € RU"=m0)X" pe g random matriz that satisfies Assumptions Al

and A2. Then there exists an absolute constant ¢ > 0 such that with probability at least
1— efcoz(m,f'mo)/l(4
)

sup  [[(ALP)r]% < (2 n K; log (g)) a(m — mo)(n — mo). (4.19)

Proof. For all fixed T' C I with |T| = a(m —my), Lemma 3.23 applied to the submatrix
(A, P)r implies that there exists an absolute constant ¢ > 0 such that for all € > 0,

P (”(AIlP)T”%‘ 2 (1 4 a)a(m o mg)(n o mO)) S e—cmin{a2,a}a(m—mo)/K4'

Hence, by a union bound over all (a(rfn__%)o)) < ex(m=mo)log(e/a) guch subsets T, we

deduce that the probability that the event (4.19) does not hold is not greater than
exp {—a(m —my) (5 —log (£))} for € > 1. In particular, choosing ¢ = 1+ KT4 log (£)

leads to the claimed probability guarantee. O

By combining our tail bounds for op.x (A, P) and a;_ 5.min

(A, P) as well as Z,_g,
we can now prove Theorem 4.1.

Proof of Theorem 4.1. In this proof, the various constants of the form c¢;,Cq,... that
appear only depend on K. By Lemma 3.19, oynax (A, P) < C1y/m — mg with probability
at least 1 — 2e—1(m=70) By Lemma 4.3, 0. (AL, P) > Colq— B)/?\/m — mg with

g—f,min
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probability at least 1 — 3e~¢2(@=8)(m=mo) " given that the condition (4.1) is satisfied.
Therefore, if both of these events hold, then

Ugfﬂ,min(AhP)z > (CQ>2 (q B ﬂ)B

Umax(A11P)2 61

Hence, by Lemma 4.2 we deduce that the QuantileSCRK algorithm converges if

Co\? B | B
<a) (q—ﬁ)3>qu+2 qu

Since ¢ is fixed and the right-hand side can be made arbitrarily small by decreasing 3, it
follows that this condition is satisfied as long as 3 is sufficiently small. Finally, Lemma 4.4
implies that Z,_s < C, 5(m —mg)(n—myg) with probability at least 1 —e~c3(a=F)(m=mo)
for some constant Cj; g > 0 that only depends on ¢, 3, and K. If all of these events hold,
then Lemma 4.2 implies that QuantileSCRK converges with the claimed rate (4.2). The
proof is completed after simplifying the probability bound. 0O

5. Numerical experiments

In this section, we present numerical experiments that demonstrate various features
of the SCRK method (Algorithm 1) and the QuantileSCRK method (Algorithm 2).
For the plots with random, simulated data that follow, the lines represent the median
over 200 trials, and the shaded regions indicate the 0.1- and 0.9-quantiles around the
corresponding medians. The log relative error refers to the quantity log(||x* —x*||/||x° —
x*|)). The experiments were performed on a MacBook Air M1 with 8GB RAM using
Python 3.11.

5.1. SCRK method for systems with correlated rows

In Fig. 5.1, we compare the performance of the SCRK method on a system with
highly correlated rows for various sizes mg of Iy. It is known that RK performs poorly
in this setting [45,46]. The entries of A € R?000x1.000 ar6 independently and uniformly
distributed on [0.9,1.1], and the solution x* € R1:9% is a standard Gaussian vector. The
same initial iterate starting in the solution space corresponding to the biggest block (i.e.
mo = 200) is used for each variation.

As predicted by Corollary 3.12, the SCRK method with Iy as the first mg rows
of A outperforms RK for any mg > 1 since the pairwise row correlations of A are
bounded from below. Moreover, increasing my increases the rate of convergence (see
Theorem 3.17). However, since increasing mg leads to heavier iterations and a higher
initial cost from computing A];O (see Remark 1.3), the optimal block size for a given
target error and time budget is not necessarily the largest as highlighted by Fig. 5.1
(right).



252 J. Lok, E. Rebrova / Linear Algebra and its Applications 698 (2024) 220-260

01 «§ 0
_2- _27

N

s _,]

UJ

2 1

B 61

> — RK —— RK(N/A)

o —— me=1 67 mo=1 (1.924)

S 8] o me=10 —a— mp=10 (2.359)

—6— mp=50 (2.316)
—e— m=100 (2.431)
—e— mp=200 (2.542)

—6— mp=50
=101 o~ my=100
—e— mp=200
-124 . . . . . . —10 . . ,
0 10000 20000 30000 40000 50000 60000 0.0 0.5 1.0 1.5 2.0
Iterations Time elapsed (seconds)

Fig. 5.1. Performance of SCRK on a system with highly correlated rows for various sizes mo of Ay, . (Left)
Log relative error at each iteration. (Right) Log relative error against time elapsed, including the initial cost
of precomputing A}rn for each mg. The time taken to reach a log relative error of less than —8 is reported
in brackets (N/A indicates that this was not reached in 30 seconds).
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Fig. 5.2. Performance of SCRK on a coherent system with low-rank structure using a “perfect” block (with
mo = 20) and a randomly sampled block (with mo = 100) as described in the main text. The two-subspace
Kaczmarz method [46] and randomized block Kaczmarz method [45] (with two block sizes) are also included.
(Left) Log relative error at each iteration. (Right) Log relative error against time elapsed, not including
the initial costs of precomputing pseudoinverses for SCRK and block Kaczmarz. The time taken to reach
a log relative error of less than —8 is reported in the brackets (N/A indicates that this was not reached in
30 seconds).

5.2. SCRK method for systems with low-rank structure

In Fig. 5.2, we consider the performance of the SCRK method on a structured matrix
A € R2000x1,000 *constructed as in Example 3.11. The first r = 20 rows of A are
normalized standard Gaussian vectors. The remaining m — r rows (a;);>, are equal to
a; := (1 —¢)a’ +ec;, where € = 0.1, a) is sampled from {ai,...,a,}, and c; is sampled
from span({ay,...,a,})* and normalized; i.e. a; mainly consists of a row from the
special top block plus some noise in the orthogonal direction. The solution x* € R!-000
is a standard Gaussian vector.

The SCRK algorithm is run with two choices of Ij: the first uses the “perfect” block
of size mo = 20 with the rows {a;,...,a,} that generate the coherence structure. The

second variant uses a block of my = 5r = 100 rows of A sampled (without replacement)
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Fig. 5.3. Convergence paths for the SCRK (with Iy equal to the first mo = 25 rows) and RK methods on a
noisy system. The dashed/dotted lines indicate the predicted error horizons ¢ + 1 from Theorem 3.4 and
¥ = ||I‘H2/Cfmin(A)2 from [44] respectively.

uniformly at random. This represents the case where the source of coherence is unknown,
but sampling the effective rank of A (with an appropriate oversampling factor) should
find a good block Aj, as predicted by Theorem 3.15. Indeed, Fig. 5.2 shows that both
choices of I converge effectively: the dramatic improvement in the per-iteration conver-
gence rate of SCRK over RK shown by the left plot is explained by the (inverse) scaled
condition number o, (A, P)/|ALP|r = 9.33 x 1073 of A, P with mg = 20 (and
similarly 9.56 x 10~3 with mgo = 100) being significantly larger than the corresponding
quantity omin(A)/||AllF = 3.29 x 107> for A (see Section 3.3).

The two-subspace Kaczmarz method [46] and randomized block Kaczmarz method [45]
(using equally-sized blocks of size 20 and 40 chosen uniformly at random, and precom-
puted pseudoinverses) are also included. The same initial iterate as SCRK with my = 20
is used. It is known that these algorithms perform well in systems with highly correlated
rows, such as the one previously considered in Fig. 5.1. However, Fig. 5.2 shows that the
effectiveness of two-subspace Kaczmarz and block Kaczmarz with blocks of size 20 that
are “too small” is impeded by the coherence structure of A.

On the other hand, block Kaczmarz with blocks of size 40 that are “large enough”
(relative to r = 20 for this problem) converges effectively. While Fig. 5.2 (left) shows
that it converges with a greater per-iteration rate than SCRK (since it effectively uses
40 new rows in each iteration instead of just one), Fig. 5.2 (right) shows that the lighter
iterations of the SCRK method actually make it more efficient on a time basis.

5.8. SCRK method for noisy systems

In Fig. 5.3, we consider the performance of the SCRK algorithm on a noisy system
to demonstrate the validity of the error horizon predicted by Theorem 3.4. The rows
of A € R390x100 are independent normalized standard Gaussian vectors, the solution
x* € R19 is a standard Gaussian vector, and the entries of the noise vector r are
independently and uniformly distributed on [—0.01,0.01].
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Fig. 5.4. Performance of the QuantileSCRK method, given a corruption-free block of size mg, compared to the
QuantileRK method [25] on Gaussian systems with different aspect ratios and ¢ corrupted measurements.
(Left) Log relative error after k iterations for various values of the quantile parameter g. (Right) Convergence
paths using the best quantile parameters qrk and gscrxk-

5.4. QuantileSCRK algorithm

In Fig. 5.4, we compare the performance of the QuantileSCRK and QuantileRK [25]
methods on Gaussian systems A with different aspect ratios, where the measurements
are corrupted by a sparse vector with ¢ non-zero entries independently and uniformly
distributed on [—1,1]. The rows of A are independent normalized standard Gaussian
vectors, and the solution x* is a standard Gaussian vector.

Tall systems are considered in Fig. 5.4a, where 100/500 = 20% (resp. 100/480 =~
20.8%) of the rows of A (resp. Ay, ) correspond to corrupted measurements. These plots
replicate the finding that the QuantileRK method converges effectively for tall, Gaussian-
like matrices even in the presence of numerous corruptions [25], and also show that
exploiting information about corruption-free measurements using the QuantileSCRK
method accelerates convergence (see Theorem 4.1).

Almost-square systems are considered in Fig. 5.4b, where 10/130 =~ 7.7% (resp.
10/55 = 18.2%) of the rows of A (resp. Ay, ) correspond to corrupted measurements. It is
clear that the QuantileRK method is unable to make any progress in this setting. On the
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Fig. 5.5. Solving a discretized differential equation for a line in the plane given two sets of inconsistent initial
conditions as described in the main text. (Left) 50 outputs after 10,000 iterations of QuantileSCRK with
g = 0.65 (translucent gray lines); 38 out of the 50 converged to Line 1 (in the sense |ALine 1%x® —brLine 1 1P
10~3). (Right) 50 outputs after 10,000 iterations of the QuantileSCRK algorithm with ¢ = 0.3 (translucent
orange lines); 45 out of the 50 converged to Line 2.

other hand, the QuantileSCRK method converges for ¢ around 0.8, which demonstrates
that exploiting external knowledge in the form of a large block A, corresponding to

corruption-free measurements can enable convergence in such challenging settings.
5.5. Systems of differential equations with inconsistent initial conditions

We consider the problem of numerically solving a system of differential equations given
competing data for the initial conditions as another application of the QuantileSCRK
method. After discretization via a finite difference scheme, two types of equations arise:
the first describe the underlying law and can be considered to be known exactly, and
the second type encode the initial conditions, which can be obtained from real data
with potentially faulty measurements. Thus, the problem can be viewed as one about
detecting and disregarding the “corrupted” equations coming from inconsistent initial
conditions, given that the majority of the equations of the first type can be “trusted”.

In Fig. 5.5, we consider the linear system obtained from discretizing the differential
equation ¢” = 0 for a line illustrate this idea. The top 98 x 100 block is a Toeplitz matrix
with entries 1, —2,1 along the diagonal before normalization, which we take to be Ay, .
We consider two sets of initial conditions corresponding to two lines: Line 1 being y = x
with 10 initial conditions, and Line 2 being y = 25 — z/2 with 5 initial conditions.

The plots show that solving this system using least squares or QuantileRK produces
poor solutions. However, using QuantileSCRK with a careful choice of the quantile pa-
rameter enables convergence to one line or the other as the algorithm is able to find a
set of consistent initial conditions: when ¢ = 0.65, QuantileSCRK converges to Line 1 a
majority of the time (left), and when ¢ = 0.3, QuantileSCRK converges to Line 2 instead
(right). We also observed that the initial iterate x° has a significant biasing effect on
which solution is preferred for convergence.
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Fig. 5.6. Reconstructions of the Shepp-Logan phantom from A € R*500%2:500 554 b € R*%9 with ¢ = 1,125
corruptions as described in the main text. The QuantileSCRK method, given a corruption-free block Aj,
of size mo = 500, and the QuantileRK method were both run using ¢ = 0.7 for 60m = 270, 000 iterations,
obtaining a final £5 error ||x® — x||2 of 3.47 and 6.85 respectively.

5.6. CT image reconstruction

Finally, we investigate the performance of QuantileSCRK on a realistic dataset. We
consider the Shepp-Logan phantom, generated using the Air Tools 1T package [27] with
parameters N = 50 (the image is N x N), § = {0,2,4,...,178} (angles used), and
p = 50 (number of parallel rays). The image is encoded by the measurement matrix
A € R*500x2500 and measurements b € R*%0 A subset I of my = 500 rows of A
was randomly chosen to be corruption-free (e.g. corresponding to trustworthy measure-
ments), and a random set of ¢ = 1,125 of the remaining measurements were corrupted
by quantities uniformly distributed in [2, 6] to produce the corrupted measurements b.

In Fig. 5.6, we show various reconstructions given A and the corrupted measurements
b. It is clear that the least squares solution of the corrupted linear system is very poor.
The QuantileRK method, initialized from zero, achieves a noisy reconstruction that does
not recover the fine details. Using the QuantileSCRK method with the corruption-free
block Aj, achieves the best reconstruction, even though a significant proportion (25%)
of the measurements have been corrupted.

6. Conclusion and future directions

In this paper, we introduced the subspace constrained randomized Kaczmarz (SCRK)
method for solving consistent, overdetermined systems of linear equations Ax = b, which
provides a framework for studying the dynamics of the randomized Kaczmarz algorithm
when the iterates are confined to a selected solution space A x = by,. We described the
convergence rate of the SCRK method in terms of the spectral properties of the matrix
A, P, where P is the orthogonal projector onto Null(Aj,). We also demonstrated, both
theoretically and empirically, how the SCRK method can exploit approximately low-rank
structure to accelerate convergence.

We also proposed the QuantileSCRK method for solving corrupted linear systems,
which is able to exploit external knowledge about corruption-free subsystems. In addi-
tion to theoretical convergence analysis, we demonstrated numerically that it is able to
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converge for almost-square corrupted linear systems, where existing iterative methods are
ineffective, and that it can be useful for solving differential equations with inconsistent
initial conditions and image reconstruction from significantly corrupted measurements.

The framework of subspace constrained iterations raises many possible future direc-
tions. For example, since our analysis showed that the SCRK updates simplify to a
version of the usual Kaczmarz updates with skewed step directions and the projector P
acts as a right preconditioner for A to improve the convergence rate, it seems plausible
that similar ideas could be applied to related solvers such as the sketch-and-project algo-
rithm [21] or iterative projection methods for solving systems of linear inequalities [34,5].
It would also be interesting to develop and analyze a QuantileSCRK method in which
the trusted solution space is built up adaptively in a data-driven way, based on the in-
formation accumulated during the iteration process, which could lead to an effective way
for solving corrupted linear systems even in the absence of external knowledge.
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