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1. Introduction

A ubiquitous problem across the sciences is solving large-scale systems of linear equa-
tions Ax = b, for which scalable and efficient iterative methods are useful when it is too 
slow or infeasible to solve the system directly. Instead of solving such problems obliv-
iously, it is natural to have insights into the structural properties of the linear system 
of interest, such as being approximately low-rank. Moreover, external knowledge about 
trustworthy observations in the presence of corrupted measurements could be available.

Now, additional information about the structure of a linear system influences the 
choice of the most suitable solver. In this work, we take an adaptive, problem-aware ap-
proach to account for various types of auxiliary information by augmenting the iterations 
of a generic iterative linear solver based on a distinguished subsystem of equations.

The generic solver that we consider is the Kaczmarz algorithm [32], which is an it-
erative, row-action method for solving large-scale, typically overdetermined systems of 
linear equations. It is a special case of the alternating projection method that has low 
computational cost and storage per iteration, and can be used in the streaming setting 
where a single row (or block of rows) of the system can be accessed at a time. Besides 
its traditional applications in areas such as image reconstruction [41,28] and signal pro-
cessing [8], the Kaczmarz algorithm has recently been used as a building block for more 
sophisticated methods to design linear solvers [14,19], and to address problems such as 
phase retrieval [59] and tensor recovery [9].

In each iteration of the Kaczmarz algorithm, a row aj of the matrix A is selected, 
and the current iterate xk is projected onto the hyperplane aT

j x = bj by

xk+1 = xk +
bj − aT

j xk

∥aj∥
· aj

∥aj∥
. (1.1)

In their seminal paper, Strohmer and Vershynin [57] show that if the system of linear 
equations is consistent and has unique solution x∗, then the randomized Kaczmarz (RK) 
algorithm, which samples each row independently with probability ∥aj∥2/∥A∥2

F at each 
iteration, converges to x∗ in expectation with an exponential rate (i.e. linearly) that 
depends on the geometric properties of A (or more precisely, its scaled condition number 
∥A∥F /σmin(A)):

E∥xk − x∗∥2 ≤
(

1 − σmin(A)2
∥A∥2

F

)k

· ∥x0 − x∗∥. (1.2)

Subsequently, many variants of the randomized Kaczmarz method have been analyzed; 
we defer a detailed discussion of related works to Section 2 after presenting our results.

In this paper, we propose two Kaczmarz-based algorithms that can exploit (a) ap-
proximately low-rank structure and geometric properties of the matrix in a system of 
linear equations to accelerate convergence; and (b) external knowledge about corruption-
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free equations for linear systems with arbitrary sparse corruptions to enable convergence 
even in the highly corrupted regime.

1.1. Setup and notation

We consider a consistent, overdetermined (i.e. tall) system of linear equations Ax = b, 
or linear system for short, where the rows of A ∈ Rm×n are denoted by a1, a2, . . . , am ∈
Rn, b ∈ Rm, and m ≥ n. We assume throughout that A has full rank, and denote 
the unique solution of the linear system by x∗ ∈ Rn. We work in the real setting for 
simplicity, but everything can be generalized to the complex setting.

Vectors, oriented as columns by default, and matrices are written in boldface. The 
vector ℓ2-norm is denoted by ∥·∥, and the matrix spectral and Frobenius norms are 
denoted by ∥·∥ and ∥·∥F . The singular values of a matrix A ∈ Rm×n are denoted by 
σmax(A) = σ1(A) ≥ σ2(A) ≥ · · · ≥ σmin{m,n}(A) = σmin(A), and the smallest non-
zero singular value is denoted by σ+

min(A). The Moore-Penrose pseudoinverse of A is 
denoted by A†. We refer to the row submatrix of A (resp. subvector of b) indexed by 
I ⊆ [m] := {1, 2, . . . , m} by AI (resp. bI). The solution space AIx = bI of a linear 
system refers to the affine subspace {x ∈ Rn : AIx = bI}.

1.2. Methods and main results

1.2.1. The SCRK method
Fix a subset I0 ⊂ [m] of indices of rows of A with m0 := |I0| < n, and denote 

the remaining indices by I1 := [m] \ I0. We define a variant of the RK algorithm that 
confines the iterates within the solution space AI0x = bI0 , which we will refer to as 
the subspace constrained randomized Kaczmarz (SCRK) method. Each update of the 
SCRK algorithm consists of a projection of the current iterate xk onto the solution 
space AI0∪{j}x = bI0∪{j}, where the row corresponding to j ∈ I1 is sampled according 
to an input probability distribution, and can be algebraically expressed by

xk+1 = xk + A†
I0∪{j}(bI0∪{j} − AI0∪{j}xk). (1.3)

This is essentially a block Kaczmarz update [20,45], but with I0 fixed throughout the 
iterations so that the iterates are confined within the selected solution space AI0x = bI0 . 
Reusing the same block allows for properties of the distinguished subsystem AI0x = bI0

to be exploited, and also leads to a more efficient update formula: in Lemma 3.1, we 
prove that as long as xk satisfies AI0xk = bI0 and aj /∈ Range(AT

I0
), (1.3) simplifies to

xk+1 = xk +
bj − aT

j xk

∥Paj∥
· Paj

∥Paj∥
, (1.4)

where P := I − A†
I0

AI0 is the orthogonal projector onto Null(AI0) = Range(AT
I0

)⊥. 
Unlike the block update (1.3), this does not require a new pseudoinverse to be computed 
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at every iteration and thus can be performed faster. The SCRK method, which lever-
ages (1.4), is summarized in Algorithm 1. For concreteness, we fix a particular sampling 
distribution for the rows of AI1 that leads to an especially simple and interpretable 
analysis. By varying the distribution, better convergence rates may be possible [21,1].

On a conceptual level, the SCRK update (1.4) is reminiscent of the usual Kaczmarz 
update (1.1), with the new direction Paj representing the “extra information” offered 
by aj beyond that which is already known from being in the solution space AI0x = bI0 .

Algorithm 1 Subspace Constrained Randomized Kaczmarz (SCRK).
1: procedure SCRK(A, b, I0, K)
2: P = I − A†

I0
AI0 ◃ Orthogonal projector onto Null(AI0 )

3: initialize x0 = A†
I0

bI0 ◃ Initial iterate x0 solves AI0x0 = bI0
4: for k = 1, . . . , K do
5: sample j ∈ [m] \ I0 with prob. ∥Paj∥2/∥AI1P∥2

F ◃ Sample row in AI1

6: xk = xk−1 + bj−aT
j
xk−1

∥Paj∥ · Paj

∥Paj∥ ◃ Project onto AI0∪{j}x = bI0∪{j}

7: end for
8: return xK

9: end procedure

The following result, proved in Section 3.1, shows that the SCRK method converges 
linearly in expectation to the solution x∗ of Ax = b under minimal assumptions.

Theorem 1.1. Suppose that the rows of A are partitioned into two blocks AI0 and AI1 of 
sizes m0 and m −m0 respectively. Let P = I −A†

I0
AI0 be the orthogonal projector onto 

Null(AI0), and σ+
min(AI1P) be the smallest non-zero singular value of AI1P. Then the 

SCRK iterates xk from Algorithm 1 converge to the solution x∗ in expectation with

E∥xk − x∗∥2 ≤
(

1 − σ+
min(AI1P)2
∥AI1P∥2

F

)k

· ∥x0 − x∗∥2. (1.5)

In the special case that the row spaces of AI0 and AI1 are orthogonal (i.e. AI0AT
I1

=
0), the SCRK updates (1.4) reduce to the usual Kaczmarz updates (1.1) since Paj = aj

for all j ∈ I1, and hence we immediately deduce the following:

Corollary 1.2. Consider the same setup as Theorem 1.1. If AI0AT
I1

= 0, then

E∥xk − x∗∥2 ≤
(

1 − σ+
min(AI1)2
∥AI1∥2

F

)k

· ∥x0 − x∗∥2. (1.6)

Noisy linear systems. In Section 3.2, we prove that for inconsistent systems of linear 
equations where a noisy measurement vector b̂ ̸= b is observed, the SCRK method 
converges at the same rate up to an error horizon around the solution x∗ with a radius 
that depends on the noise in I0 and I1, as well as the geometries of AI0 and AI1P
(Theorem 3.4). This expands on a phenomenon that is known from previous analyses of 
Kaczmarz methods [44,45].



224 J. Lok, E. Rebrova / Linear Algebra and its Applications 698 (2024) 220–260

The analysis of inconsistent linear systems requires developing technical results in-
volving a two-step decomposition of the block update (1.3), which provides a partial 
generalization of the two-subspace Kaczmarz method in [46] (see Remark 3.9).

Remark 1.3 (Per-iteration complexity). Each SCRK iteration can be computed in 
O(m0n) flops, with calculating Paj = aj − A†

I0
AI0aj being the most expensive step. 

This requires directly computing A†
I0

or an orthonormal basis for Range(AT
I0

)1 only 
once, using a method based on QR decomposition or SVD. This per-iteration cost is 
comparable to the O(n) flops per iteration of RK if m0 is not too large. The overall 
complexity is then determined by multiplying the per-iteration cost by the number of 
iterations required to reach a desired error, which we will elaborate upon below.

Exploiting low-rank structure with the SCRK method. The convergence rate of the 
SCRK algorithm depends on the geometric properties of A and P: Theorem 1.1 shows 
that kε := κ(AI1P)2 log (1/ε) iterations suffice to achieve the relative error guarantee 
E∥xk − x∗∥2 ≤ ε∥x0 − x∗∥2, where κ(AI1P) := ∥AI1P∥F /σ+

min(AI1P) is a scaled con-
dition number of AI1P. For the same guarantee using RK, from (1.2), κ(A)2 log(1/ε)
iterations are required, where κ(A) := ∥A∥F /σmin(A).

Since κ(AI1P) ≤ κ(A), we see that the projector P acts as a right preconditioner 
for A, improving the convergence rate of SCRK compared to RK. In particular, we 
can expect a significant per-iteration improvement (and hence overall advantage) if 
∥AI1P∥F ≪ ∥A∥F or σ+

min(AI1P) ≫ σmin(A). We examine the connection between 
the geometry of A and convergence rates in more detail in Section 3.3.1 to show that 
the SCRK method is able to exploit approximately low-rank structure and geometric 
properties of A to accelerate convergence.

We also describe how a good subset I0 of rows, if not explicitly known, can actually 
be efficiently found via a connection to low-rank matrix approximation in Section 3.3.2.

SCRK on random data and dimension reduction. In a somewhat complementary set-
ting, we show that for “unstructured” matrices, the subspace constraint imposed by 
the projector P acts as a form of dimension reduction that effectively increases the 
aspect ratio of the system to reflect the dimensionality of the solution that remains un-
solved in Section 3.4. More precisely, we prove that when A ∈ Rm×n is drawn from a 
generic class of “Gaussian-like” random matrices, the SCRK method typically converges 
with a rate that is approximately 1 − 1/(n − m0) as long as the “effective aspect ra-
tio” (m − m0)/(n − m0) of the system is sufficiently large (Theorem 3.17). Note that 
1 − 1/(n −m0) is the best possible rate that can be achieved by the RK algorithm (with 
any sampling distribution) on a consistent (m −m0) × (n −m0) linear system (see [21]).

1 The projector A†
I0

AI0 can be written as QQT where Q ∈ Rn×m0 is a matrix whose columns form an 
orthonormal basis of Range(AT

I0
), which can be computed in O(m2

0n) flops.
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1.2.2. The QuantileSCRK method
We also propose a modification of the SCRK method for solving corrupted systems 

of linear equations. This setting models applications where some measurements are 
corrupted by arbitrarily large errors, which may occur during the data collection, trans-
mission, and storage process due to malfunctioning sensors or faulty components (for 
more examples, see [58,24]). Unlike the noisy setting above, the error horizon is not very 
meaningful since significant outliers can be introduced. Hence, the aim is to converge to 
the solution x∗ exactly by identifying and avoiding corruptions, which may be possible 
if the number of corruptions is relatively small and the system is highly overdetermined.

Our model for corrupted linear systems is defined as follows. Let C ⊆ [m] and bC ∈
Rn be a sparse vector of arbitrary (possibly adversarial) corruptions supported on C. 
Moreover, suppose that we possess external knowledge in the form of a corruption-free 
subset I0 ⊂ [m] of size m0 such that (bC)I0 = 0; for example, this could reflect a set 
of trustworthy measurements by a reliable source, or infallible equations arising from 
physical laws. The goal is to reconstruct the solution x∗ of Ax = b given A, I0, and the 
corrupted measurements b̃ := b + bC .

To achieve convergence, we take inspiration from the QuantileRK method proposed 
in [25], which modifies the RK algorithm so that each projection is sampled from a 
set of admissible rows whose residuals |bj − aT

j xk| are smaller than the qth quantile of 
residual sizes at each iteration for some parameter q ∈ (0, 1]. This modification is based 
on the heuristic that large residuals should be indicative of corrupted measurements, 
and small residuals lead to small steps that cannot divert the iterate too far away from 
the solution. We propose to exploit the auxiliary information by confining the iterates 
of QuantileRK within the “trusted” solution space AI0x = bI0 . We will refer to this 
procedure, summarized in Algorithm 2, as the QuantileSCRK method.

Algorithm 2 Quantile Subspace Constrained Randomized Kaczmarz (QuantileSCRK).
1: procedure QuantileSCRK(A, ̃b, I0, q, K)
2: P = I − A†

I0
AI0 ◃ Orthogonal projector onto Null(AI0 )

3: initialize x0 = A†
I0

b̃I0 ◃ Initial iterate x0 solves AI0x0 = b̃I0
4: for k = 1, . . . , K do
5: γq = q-quantile

{
|b̃j − aT

jxk|, j ∈ [m] \ I0
}

◃ Threshold based on residuals

6: J =
{
j ∈ [m] \ I0 : |b̃j − aT

jxk| ≤ γq

}
◃ Set of admissible rows

7: sample j ∈ J with prob. proportional to ∥Paj∥2 ◃ Sample admissible row
8: xk = xk−1 + b̃j−aT

j
xk−1

∥Paj∥ · Paj

∥Paj∥ ◃ Project onto AI0∪{j}x = b̃I0∪{j}

9: end for
10: return xK

11: end procedure

We prove the following result for QuantileSCRK, a simplified version of Theorem 4.1
that we defer the precise statement of to Section 4. It shows that for unstructured matri-
ces modeled by continuous “Gaussian-like” random matrices, the QuantileSCRK method 
robustly and efficiently converges, provided that there is enough external knowledge (in 
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terms of m0) to make the effective aspect ratio (m − m0)/(n − m0) large enough, and 
the proportion of corrupted measurements, β := |C|/(m −m0), is not too large:

Theorem 1.4 (Simplified version of Theorem 4.1). Assuming that A is a continuous 
“Gaussian-like” random matrix, there exist positive constants R ≥ 1, β0 < 1, c1 and c2, 
which are independent of m and n, such that if (m −m0)/(n −m0) ≥ R and β ≤ β0, then 
with probability at least 1 − e−c1(m−m0) over the randomness in A, the QuantileSCRK 
iterates xk from Algorithm 2 converge to the solution x∗ with

E∥xk − x∗∥2 ≤
(

1 − c2
n−m0

)k

· ∥x0 − x∗∥2. (1.7)

Since we are interested in large-scale systems with m, n ≫ 1, the values of the con-
stants c1 and c2 are dominated by m and n (e.g. the probability guarantee is exponentially 
close to one for large m). Note that this result applies to almost-square matrices with 
m = (1 + o(1))n rows provided m0 is big enough, which lies outside the scope of existing 
QuantileRK theory. Experimentally, we found that the QuantileSCRK method works 
well for more general data models than described by the theory, such as when A is a 
structured sparse matrix in an image reconstruction problem (see Section 5.6).

Remark 1.5.

(i) (Rejection sampling). To avoid recomputing the normalizing constant ZJ =∑
j∈J∥Paj∥2 in every iteration of Algorithm 2 for sampling a row from the ad-

missible set J , which depends on xk, rejection sampling (as originally proposed 
in [25]) can be used: i.e. in each iteration, a row j ∈ I1 is sampled with probability 
∥Paj∥/∥AI1P∥2

F , and the projection is made if and only if |bj − aT
j xk| ≤ γq.

(ii) (Uniform sampling). It is computationally more efficient to sample rows aj uniformly 
at random from I1, together with rejection sampling, in Algorithm 2. By using the 
threshold γ̃q = q-quantile

{
|bj − aT

j xk|/∥Paj∥, j ∈ I1
}
, which has been modified to 

capture the heterogeneity of the projected row norms, instead of γq, it can be shown 
that analogues of our results (e.g. Theorem 4.1 and Lemma 4.2) still hold, except 
that the relevant spectral quantities come from the matrix DAI1P, where D is the 
diagonal matrix with entries ∥Paj∥−1, j ∈ I1, instead of AI1P.

1.3. Organization

Section 2 discusses related works. Section 3 analyzes the SCRK algorithm: we prove 
the convergence result (Theorem 1.1) in Section 3.1 and generalize it to the noisy setting 
in Section 3.2 (Theorem 3.4). We provide several results on using the SCRK method to 
exploit low-rank structure and geometric properties of A in Section 3.3. Furthermore, 
we show that the subspace constraint acts as a form of dimension reduction when A
is a Gaussian-like random matrix in Section 3.4. Section 4 analyzes the QuantileSCRK 
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algorithm for solving corrupted linear systems. We provide various numerical experiments 
in Section 5 to complement our theoretical results, and conclude in Section 6.

2. Related works

Kaczmarz-type methods Kaczmarz-type algorithms are related to a variety of modern 
algorithms in (randomized) numerical linear algebra and (stochastic) optimization. Ran-
domized Kaczmarz (RK) can be viewed as an instance of the stochastic gradient descent 
(SGD) algorithm with a particular step size, which, based on this connection, has led 
to new insights into both methods, such as highlighting the role of weighted sampling 
for SGD [48]. Furthermore, the RK method is one of the basic representatives of the 
sketch-and-project method [21], which provides a unified framework for iteratively solv-
ing linear systems – including the randomized coordinate descent method, related block 
variants, and the randomized Newton method – and can also be directly extended to 
non-linear optimization problems [22].

Recently, methods based on the Kaczmarz algorithm have been used in the design of 
more sophisticated linear solvers. A GMRES-type solver preconditioned by randomized 
and greedy Kaczmarz inner-iterations is studied in [19]. Within the sketch-and-project 
framework, a randomized block Kaczmarz algorithm that uses the preconditioned con-
jugate gradient method to perform an inexact projection in each iteration is analyzed 
in [14], and the method is proven to be especially computationally efficient when the 
matrix A has a flat-tailed spectrum. An iterative solver that further combines these 
ideas with momentum and sparse sketching matrices is analyzed in [15]. In this paper, 
we focus on the randomized Kaczmarz algorithm for solving systems of linear equations.

Randomized Kaczmarz The analysis of the RK algorithm in [57] spurred many de-
velopments and variants, including randomized block Kaczmarz methods [45,42] and 
Kaczmarz-Motzkin methods that combine sampling and greedy row selection [12,23]. It 
is shown that the Kaczmarz method can be extended to solve least squares problems 
in [62,47,38], and systems of linear inequalities in [34,5]. The duality between RK and 
randomized coordinate descent (also called randomized Gauss-Seidel) has motivated a 
unified description of the two methods and their extended versions [38]. By using ideas 
from optimization, RK methods with varying step sizes [48], acceleration [35], and that 
promote sparsity [36,53,54] have also been studied.

The SCRK method resembles the block Kaczmarz method studied in [45]: the differ-
ence is that the blocks differ by one row between iterations and thus the update simplifies 
so that computing new pseudoinverses is not required. Therefore, the SCRK method can 
offer a similar advantage from using blocks in an efficient manner if a “good” block AI0

can be found (see Section 3.3 for a discussion of what a good block is, and how one might 
be found). In [46,61], a two-subspace Kaczmarz method that iteratively projects onto 
the solution space associated with two rows is shown to significantly outperform the RK 
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method when the system has correlated rows. The SCRK method can be considered as 
an extension of this idea to higher dimensional subspaces (see Remark 3.9).

The idea of constraining the iterates of the RK algorithm has also implicitly appeared 
in the design of a fast solver for Laplacian systems in the theoretical computer science 
literature in [33], where the row spaces of the blocks AI0 and AI1 are orthogonal by 
construction and hence Corollary 1.2 applies. The SCRK method offers a general frame-
work for analyzing convergence when AI0 and AI1 are not orthogonal. Randomized 
sketch descent methods for solving optimization problems subject to linear constraints 
are also studied in [43], where in each iteration the coordinate space (corresponding to 
x) is randomly sketched for dimensionality reduction and (random) projection matrices, 
analogous to P, enforce the linear constraints.

Corrupted linear systems The literature on solving linear systems with arbitrary sparse 
corruptions is abundant: see, e.g., [2,3,11,6,58]. Such problems are often tackled within 
the compressed sensing and robust statistics literature using methods based on linear 
or SDP relaxations. The closest line of work to our approach is on iterative, row-action, 
corruption-avoiding algorithms. The first Kaczmarz-type method was proposed in [24], 
which introduced the idea that large residuals should be indicative of corrupted equa-
tions, but makes strong restrictions on the number of corrupted measurements (scaling 
sublinearly with m). The QuantileRK method, introduced in [25], utilizes quantile-based 
steps based on this residual heuristic. An important bottleneck of this method is that 
the linear system generally needs to be sufficiently overdetermined (i.e. m ≥ Cn for a 
large constant C) to guarantee convergence. We show that with enough external knowl-
edge (i.e. m0 large enough), the QuantileSCRK method works even for almost-square 
systems. Other works studying the QuantileRK method include [56,30,10]; in particular, 
we adapt a deterministic sufficient condition for convergence from [56] for Quantile-
SCRK (see Lemma 4.2). Another Kaczmarz-type method based on obtaining sparse 
least squares solutions is analyzed in [54] and demonstrated to be able to solve linear 
systems corrupted by impulsive noise.

3. Analysis of the SCRK method

In this section, we provide theoretical analysis of the SCRK method (Algorithm 1). 
Recall that P = I − A†

I0
AI0 is the orthogonal projector onto Null(AI0), which is equal 

to Range(AT
I0

)⊥, the orthogonal complement of the row space of AI0 .

3.1. Simplified SCRK update formula and proof of Theorem 1.1

First, we provide a proof of how the block update (1.3) simplifies to the more inter-
pretable and computationally efficient formula (1.4).
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Lemma 3.1. Let xk+1 = xk + A†
I0∪{j}(bI0∪{j} − AI0∪{j}xk) and P = I − A†

I0
AI0 . If xk

solves AI0xk = bI0 and Paj ̸= 0, then

xk+1 = xk +
bj − aT

j xk

∥Paj∥
· Paj

∥Paj∥
.

Proof. We may assume bj−aT
j xk ̸= 0, otherwise xk+1 = xk. Since xk+1 is the orthogonal 

projection of xk onto the solution space AI0∪{j}x = bI0∪{j}, the increment z := xk+1−xk

is the solution of the following optimization problem:

min
z∈Rn

1
2∥z∥

2 subject to AI0(xk + z) = bI0 , aT
j (xk + z) = bj . (3.1)

This can be solved by introducing the Lagrange multipliers λ ∈ Rn and τ ∈ R for the 
two constraints. Since AI0xk = bI0 , the first constraint is equivalent to AI0z = 0, and 
thus z solves

z + AT
I0λ + τaj = 0 (3.2)

whilst satisfying AI0z = 0 and aT
j z = bj − aT

j xk. Since P is the orthogonal projector 
onto Null(AI0), PAT

I0
= 0 and the first constraint is equivalent to Pz = z. Hence, pre-

multiplying (3.2) by P implies that z = −τPaj . Furthermore, pre-multiplying (3.2) by zT

and using the constraints implies that τ = −∥z∥2/(bj−aT
j xk) = −τ2∥Paj∥2/(bj−aT

j xk). 
Solving for τ yields τ = (bj − aT

j xk)/∥Paj∥2, which completes the proof. !

Remark 3.2. From the optimization formulation (3.1), it can also be shown that the unit 
direction Paj/∥Paj∥ taken from xk to reach xk+1 maximizes |aT

j z̃|2 over all unit vectors 
z̃ ∈ Null(AI0). This provides a nice geometric interpretation of the SCRK update: the 
direction Paj taken to reach the solution space AI0∪{j}x = bI0∪{j} minimizes the angle 
from the optimal direction aj for reaching the solution space aT

j x = bj within the subspace 
Null(AI0); see Fig. 3.1 for an illustration. For an alternative algebraic proof of a more 
general version of Lemma 3.1, see Remark 3.9 later.

We will now use the simplified update formula in Lemma 3.1 to prove Theorem 1.1.

Proof of Theorem 1.1. Consider the kth iterate xk. Suppose that aj is sampled in the 
next iteration (with Paj ̸= 0). By subtracting x∗ from both sides of (1.4) and noting 
that aT

j (xk − x∗) = aT
j P(xk − x∗) for any j ∈ I1 since xk − x∗ ∈ Null(AI0), we have

xk+1 − x∗ =
(
I − vvT) (xk − x∗) for v := Paj

∥Paj∥
.

Since vvT is an orthogonal projector, (xk+1−x∗) ⊥ vvT(xk−x∗). Thus, by Pythagoras’ 
theorem,
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Fig. 3.1. SCRK update from the current iterate xk for reaching the vector xk+1 in the solution space 
H{j} = {x ∈ Rn : aT

jx = bj} whilst remaining within HI0 = {x ∈ Rn : AI0x = bI0}, compared to the RK 
update for reaching xk+1

RK alone.

∥xk+1 − x∗∥2 = ∥xk − x∗∥2 − ∥vvT(xk − x∗)∥2 = ∥xk − x∗∥2 −
∣∣vT(xk − x∗)

∣∣2 .

By taking expectation (where each row aj is sampled with probability ∥Paj∥2/∥AI1P∥2
F ), 

conditional on all the choices up to the kth iteration, we obtain

Ek∥xk+1 − x∗∥2 = ∥xk − x∗∥2 −
∑

j∈I1:Paj ̸=0

∥Paj∥2

∥AI1P∥2
F

·

∣∣∣∣∣

( Paj

∥Paj∥

)T
(xk − x∗)

∣∣∣∣∣

2

= ∥xk − x∗∥2 − 1
∥AI1P∥2

F

∥AI1P(xk − x∗)∥2

=
(

1 − θ2

∥AI1P∥2
F

)
· ∥xk − x∗∥2, where θ :=

∥∥∥∥AI1P
( xk − x∗

∥xk − x∗∥

)∥∥∥∥ .

The next step is to estimate θ from below, which requires more care than a similar 
estimate used to prove convergence of the RK method [57] since AI1P has a nontrivial 
nullspace. A similar case where the system matrix has a nontrivial nullspace was also 
treated in [37]. First, observe that Null(AI1P) = Null(P). Indeed, the nontrivial inclusion 
Null(AI1P) ⊆ Null(P) follows from the observation that AI1Py = 0 implies that Py ∈
Null(AI0) ∩Null(AI1) = Null(A) = {0}, since A has full rank. Therefore, since xk−x∗ ∈
Null(AI0) is orthogonal to Null(P) = Null(AI1P),

θ =
∥∥∥∥AI1P

( xk − x∗

∥xk − x∗∥

)∥∥∥∥
2
≥ min

z∈Null(AI0 )
∥z∥=1

∥AI1z∥2 = σ+
min(AI1P)2. (3.3)

This implies the following bound for one step of the SCRK method:

Ek∥xk+1 − x∗∥2 ≤
(

1 − σ+
min(AI1P)2
∥AI1P∥2

F

)
· ∥xk − x∗∥2.



J. Lok, E. Rebrova / Linear Algebra and its Applications 698 (2024) 220–260 231

By iterating and taking the full expectation, this concludes the proof of Theorem 1.1. !

Remark 3.3. If vℓ is a right singular vector of AI1P corresponding to the ℓth largest 
singular value σℓ(AI1P), it can be shown that

E
〈
xk − x∗,vℓ

〉
=

(
1 − σℓ(AI1P)2

∥AI1P∥2
F

)k

·
〈
x0 − x∗,vℓ

〉
.

This shows that the residual vector xk−x∗ decays fastest in the directions corresponding 
to the largest singular values of AI1 restricted to Null(AI0). This phenomenon was proved 
by Steinerberger [55] for the RK method.

3.2. SCRK convergence on inconsistent linear systems

In the general case, the measurement vector b might not be known exactly, but only 
accessible through a set of noisy observations b̂ := b + r, where r is an arbitrary error 
vector (which is considered to be small). Similar to previous analyses of Kaczmarz meth-
ods [44,45,50], we prove that if the SCRK method is used with the noisy measurements 
b̂, then the iterates converge to the solution x∗ up to an error horizon:

Theorem 3.4. Suppose that the rows of A are partitioned into two blocks AI0 and AI1 of 
sizes m0 and m −m0 respectively, and assume that AI0 has full row rank. If x̂k denotes 
the sequence of SCRK iterates from Algorithm 1 where the noisy measurement vector 
b̂ = b + r is used in place of b, and the initial iterate x̂0 solves AI0 x̂0 = b̂I0 , then

E∥x̂k − x∗∥2 ≤
(

1 − σ+
min(AI1P)2
∥AI1P∥2

F

)k

· ∥x̂0 − x∗∥2 + γ0 + γ1,

where γ0, γ1 ≥ 0 are given by

γ0 = 2∥rI0∥2

σmin(AI0)2
− ∥A†

I0
rI0∥2 and γ1 =

∥rI1 − AI1A†
I0

rI0∥2

σ+
min(AI1P)2

.

Remark 3.5 (Error horizon). Note that γ0 only depends on the noise in the measure-
ments corresponding to the fixed block I0. In particular, if rI0 = 0, then γ0 = 0 and 
γ1 only depends on ∥rI1∥2. On the other hand, if rI1 = 0, then γ1 only depends on 
∥AI1A†

I0
rI0∥2 =

∑
j∈I1

|aT
j A†

I0
rI0 |2. Note that |aT

j A†
I0

rI0 | corresponds to the angle 
between the row aj and A†

I0
rI0 ; the vector A†

I0
rI0 accounts for how noise in the measure-

ments corresponding to the fixed block AI0 shifts the solution space (see Lemma 3.8a). 
Finally, if r = 0, then γ0 = γ1 = 0 and we recover Theorem 1.1.

Remark 3.6 (Least squares). Given a set of noisy measurements b̂, our setup can easily be 
translated to the problem of solving the inconsistent system of linear equations Ax ≈ b̂
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in a least squares sense. In this setting, by defining x∗ to be the least squares solution 
(i.e. x∗ := arg minx∈Rn∥Ax − b̂∥2 = A†b̂), and setting b := Ax∗ and r := b̂ − Ax∗, 
Theorem 3.4 can be applied to deduce that the SCRK iterates converge to the least 
squares solution up to the same error horizon.

We develop some technical results before proving Theorem 3.4. Note that with noisy 
measurements b̂, the relationship x̂k−x∗ ∈ Null(AI0) does not necessarily hold anymore. 
Thus, it will be more convenient to work directly with the block update (1.3) instead. 
First, we present a decomposition of the pseudoinverse A†

I∪J in terms of AI and AJ .

Lemma 3.7. Let A ∈ Rm×n and I, J ⊆ [m] be two disjoint subsets of row indices. If 
AI∪J has full row rank, then the pseudoinverse A†

I∪J admits the block representation

A†
I∪J =

(
A†

I − (AJP)†AJA†
I (AJP)†

)
, (3.4)

where P = I − A†
IAI is the orthogonal projection operator onto Null(AI).

Proof of Lemma 3.7. First, we record the key algebraic property that will be used re-
peatedly:

X† = XT(XXT)−1 for X = AI∪J , AI , or AJP. (3.5)

This follows since all three matrices have full row rank: AI∪J by assumption, AI as its 
row subset, and AJP from the observation that if its rows were linearly dependent then 
there would exist some nonzero α ∈ R|J| such that 

∑
j∈J αjaT

j P = 0, which would imply 
that 

∑
j∈J αjaj ∈ Null(P) = Range(AT

I ) and thus contradict the assumption that AI∪J

has full row rank. We have

AI∪JAT
I∪J =

(
AIAT

I AIAT
J

(AIAT
J)T AJAT

J

)
=:

(
AII AIJ

AT
IJ AJJ

)
.

Since AI has full row rank, AII is invertible and

A†
I∪J

(3.5)= AT
I∪J

(
AI∪JAT

I∪J

)−1

=
(
AT

I AT
J

)
(

A−1
II + A−1

II AIJR−1AT
IJA−1

II −A−1
II AIJR−1

−R−1AT
IJA−1

II R−1

)
,

(3.6)

where R := AJJ − AT
IJA−1

II AIJ is the Schur complement [29] of the block AII . Recall 
that P = I − A†

IAI , and so

R = AJAT
J − AJAT

I (AIAT
I )−1AIAT

J
(3.5)= AJ [I − A†

IAI ]AT
J = AJPAT

J ,
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which implies that

PAT
JR−1 = PAT

J(AJPAT
J)−1 = (AJP)T((AJP)(AJP)T)−1 (3.5)= (AJP)†. (3.7)

Next we compute expressions for the two blocks of A†
I∪J in (3.6). The first block, 

AT
I [A−1

II + A−1
II AIJR−1AT

IJA−1
II ] + AT

J [−R−1AT
IJA−1

II ], simplifies to

A†
I − [−A†

IAI + I]AT
JR−1AJA†

I = A†
I − PAT

JR−1AJA†
I

(3.7)= A†
I − (AJP)†AJA†

I .

The second block, AT
I [−A−1

II AIJR−1] + AT
J [R−1], simplifies to

[−A†
IAI + I]AT

JR−1 = PAT
JR−1 (3.7)= (AJP)†.

Combining the two preceding displayed equations completes the proof. !

Next, we describe how the noise affects the geometry of the solution spaces.

Lemma 3.8. Denote the true and noisy solution spaces associated with I ⊂ [m] by

HI = {x ∈ Rn : AIx = bI} and ĤI = {x ∈ Rn : AIx = bI + rI} (3.8)

respectively. If AI has full row rank, then HI and ĤI satisfy the following:

(a) ĤI = HI + A†
IrI .

(b) ĤI − x∗ = Null(AI) + A†
IrI .

(c) The vector A†
IrI is orthogonal to Null(AI).

Proof. (a): Since AI has full row rank, AIA†
I = I. Therefore, for any x ∈ HI , we have 

AI(x + A†
IrI) = bI + rI and so x + A†

IrI ∈ ĤI . Conversely, for any x̂ ∈ ĤI , we have 
AI(x̂ − A†

IrI) = bI . Thus, (x̂ − A†
IrI) ∈ HI , and so

x̂ = (x̂ − A†
IrI) + A†

IrI ∈ HI + A†
IrI .

(b): Since x∗ ∈ HI , we have HI−x∗ = Null(AI). Together with part (a), this implies (b). 
Finally, (c) follows from the fact Range(A†

I) = Range(AT
I ) = Null(AI)⊥. !

We will now prove Theorem 3.4 by using the expression for A†
I0∪{j} given in 

Lemma 3.7, as well as the geometry of the shifted solution spaces described by 
Lemma 3.8.

Proof of Theorem 3.4. Consider the kth iterate x̂k. Suppose that aj is sampled in the 
next iteration (with Paj ̸= 0 and hence AI0∪{j} has full row rank). Then one step of 
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the SCRK algorithm with noisy measurements corresponds to the projection of x̂k onto 
the noisy solution space ĤI0∪{j}, namely,

x̂k+1 = x̂k + A†
I0∪{j}(bI0∪{j} + rI0∪{j} − AI0∪{j}x̂k).

We will compare x̂k+1 with the projection of x̂k onto the true solution space HI0∪{j}, 
denoted by

xk+1 := x̂k + A†
I0∪{j}(bI0∪{j} − AI0∪{j}x̂k).

Step 1. Exact computations. Note that

x̂k+1 − x∗ = (xk+1 − x∗) + A†
I0∪{j}rI0∪{j},

and A†
I0∪{j}rI0∪{j} ⊥ (xk+1−x∗) ∈ Null(AI0∪{j}) by Lemma 3.8c. By using Pythagoras’ 

theorem twice (and orthogonality of the true Kaczmarz projections), we have

∥x̂k+1 − x∗∥2 = ∥xk+1 − x∗∥2 + ∥A†
I0∪{j}rI0∪{j}∥2

= ∥x̂k − x∗∥2 − ∥A†
I0∪{j}AI0∪{j}(x̂k − x∗)∥2 + ∥A†

I0∪{j}rI0∪{j}∥2.(3.9)

By using Lemma 3.7 with I = I0 and J = {j}, we can simplify the last two terms: firstly,

A†
I0∪{j}rI0∪{j} =

(
A†

I0
− PajaT

jA
†
I0

∥Paj∥2
Paj

∥Paj∥2

)(
rI0
rj

)

= A†
I0

rI0 + (rj − aT
j A†

I0
rI0) ·

Paj

∥Paj∥2 . (3.10)

Next, since x̂k − x∗ − A†
I0

rI0 ∈ Null(AI0) (from Lemma 3.8b) is a fixed point for P,

A†
I0∪{j}AI0∪{j}(x̂k − x∗) =

(
A†

I0
− PajaT

jA
†
I0

∥Paj∥2
Paj

∥Paj∥2

)(
rI0

aT
j (x̂k − x∗)

)

= A†
I0

rI0 +
(Paj)T(x̂k − x∗ − A†

I0
rI0)

∥Paj∥
· Paj

∥Paj∥
. (3.11)

Furthermore, by Lemma 3.8c, A†
I0

rI0 ⊥ Paj ∈ Null(AI0), which implies that the two 
summands in both (3.10) and (3.11) are orthogonal. Hence, we can further expand (3.9)
to show that ∥x̂k+1 − x∗∥2 is equal to

∥x̂k − x∗∥2 − ∥A†
I0

rI0∥2 −

∣∣∣∣∣
(Paj)T(x̂k − x∗ − A†

I0
rI0)

∥Paj∥

∣∣∣∣∣

2

+∥A†
I0

rI0∥2+
|rj − aT

j A†
I0

rI0 |2
∥Paj∥2 .



J. Lok, E. Rebrova / Linear Algebra and its Applications 698 (2024) 220–260 235

By canceling identical terms and taking the expectation, conditional on all the choices 
of the algorithm up to the kth iteration (similar to the proof of Theorem 1.1), we obtain

Ek∥x̂k+1 − x∗∥2 = ∥x̂k − x∗∥2 −
∥AI1P(x̂k − x∗ − A†

I0
rI0)∥2

∥AI1P∥2
F

+
∥rI1 − AI1A†

I0
rI0∥2

∥AI1P∥2
F

.

(3.12)
Step 2. Spectral bounds. Recall that Null(AI1P) = Null(P) from the proof of The-

orem 1.1. Since x̂k − x∗ − A†
I0

rI0 ∈ Null(AI0), which is orthogonal to Null(P) =
Null(AI1P), arguing as in (3.3) shows that

∥AI1P(x̂k − x∗ − A†
I0

rI0)∥2 ≥ σ+
min(AI1P)2 · ∥x̂k − x∗ − A†

I0
rI0∥2.

By expanding the square, ∥x̂k − x∗ − A†
I0

rI0∥2 is equal to ∥x̂k − x∗∥2 + ∥A†
I0

rI0∥2 −
2(x̂k − x∗)TA†

I0
rI0 . Since A†

I0
= AT

I0
(AI0AT

I0
)−1 and AI0(x̂k − x∗) = rI0 ,

(x̂k − x∗)TA†
I0

rI0 = rT
I0(AI0AT

I0)
−1rI0 ≤ ∥rI0∥2

σmin(AI0)2
.

Hence, we can bound the second term of (3.12) from below by

∥AI1P(x̂k − x∗ − A†
I0

rI0)∥2

∥AI1P∥2
F

≥ σ+
min(AI1P)2
∥AI1P∥2

F

(
∥x̂k − x∗∥2 + ∥A†

I0
rI0∥2 − 2∥rI0∥2

σmin(AI0)2
)
.

By instating the definitions of γ0 and γ1, we have shown that

Ek∥x̂k+1 − x∗∥2 ≤
(

1 − σ+
min(AI1P)2
∥AI1P∥2

F

)
· ∥x̂k − x∗∥2 + σ+

min(AI1P)2
∥AI1P∥2

F

(γ0 + γ1) . (3.13)

By iterating (3.13), we deduce that E∥x̂k − x∗∥2 is upper bounded by

(
1 − σ+

min(AI1P)2
∥AI1P∥2

F

)k

· ∥x̂0 − x∗∥2 +
k−1∑

i=0

(
1 − σ+

min(AI1P)2
∥AI1P∥2

F

)i

· σ
+
min(AI1P)2
∥AI1P∥2

F

(γ1 + γ2).

We conclude by bounding the geometric series by ∥AI1P∥2
F /σ

+
min(AI1P)2. !

Remark 3.9. A natural generalization of the SCRK update (1.3) is to project onto the 
solution space AI0∪Jx = bI0∪J , where J ⊆ [m] \I0 is a block of row indices disjoint from 
I0 with |J | ≥ 1:

xk+1 = xk + A†
I0∪J(bI0∪J − AI0∪Jxk). (3.14)

Assuming that AI0∪J has full row rank, Lemma 3.7 implies that (3.14) can be computed 
by the following two-step procedure (which does not require xk to satisfy AI0xk = bI0):
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(1) Project xk onto the solution space AI0x = bI0 to obtain yk:

yk = xk + A†
I0

(bI0 − AI0xk).

(2) Compute the new measurements βJ := bJ −AJA†
I0

bI0 ∈ R|J|, then project yk onto 
the solution space AJx = bJ whilst remaining in the solution space of AI0x = bI0

for xk+1:

xk+1 = yk + (AJP)†(βJ − (AJP)yk).

In particular, by restricting to a single row J = {j} and imposing the condition 
AI0xk = bI0 , we recover the simplified update formula (1.4), which provides an al-
ternative algebraic proof of Lemma 3.1.

By further restricting to the special case I = {i}, the two-step procedure above reduces 
to an update of the two-subspace Kaczmarz method of [46]. Thus, the SCRK method 
can be seen as a partial generalization of the two-subspace Kaczmarz method, except 
that the subset I0 is fixed throughout the iterations to exploit specific features of the 
block AI0 , and similar results concerning coherence with respect to more general subsets 
of equations can be obtained (see Remark 3.13).

Finally, while all the convergence results in this paper are stated for the case |J | = 1, 
we believe that similar techniques can be extended to the case of |J | > 1.

3.3. Exploiting structure with the SCRK method

In this section, we discuss how the SCRK method can exploit approximately low-rank 
structure and geometric properties of the data matrix A to accelerate convergence. For 
simplicity, we will restrict our attention to the noiseless case. Our goal is to study the 
per-iteration convergence rate (i.e. with k = 1). First, note that the SCRK rate (1.5) is 
as good as the RK rate (1.2). Indeed,

σ+
min(AI1P) = min

z∈Null(AI0 )
∥z∥=1

∥AI1z∥ = min
z∈Null(AI0 )

∥z∥=1

∥Az∥ ≥ min
z∈Rn

∥z∥=1

∥Az∥ = σmin(A), (3.15)

and ∥AI1P∥2
F ≤ ∥P∥2∥AI1∥2

F ≤ ∥A∥2
F . Therefore,

1 − σ+
min(AI1P)2
∥AI1P∥2

F

≤ 1 − σmin(A)2
∥A∥2

F

. (3.16)

However, since each SCRK iteration requires more computation (as discussed in Re-
mark 1.3), we would like to understand when the SCRK method is advantageous to RK 
overall. In the following, we first examine what features of the matrices A and AI0 lead 
to such an advantage in Section 3.3.1. Furthermore, we discuss how a good subset I0 of 
rows, if not explicitly given, can actually be efficiently found when A has approximately 
low-rank structure in Section 3.3.2.
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3.3.1. Geometry of the matrix and convergence rates
As highlighted by (3.16), either ∥AI1P∥2

F ≪ ∥A∥2
F or σ+

min(AI1P) ≫ σmin(A) leads 
to significant per-iteration advantage of SCRK over RK. We describe two specific moti-
vating examples of systems with such structure before generalizing our observations in 
Corollary 3.12 below. For these examples, consider an arbitrary (m −m0)-dimensional 
subspace U of Rn. Let {u1, . . . , um0} and {cm0+1, cm0+2, . . . , cn} be orthonormal bases 
for U and U⊥ respectively, and ε ≈ 0 be a small positive constant.

Example 3.10 (σ+
min(AI1P) ≫ σmin(A)). This can happen if the equations in the se-

lected block AI0 are almost collinear, but the system AI1P with projected rows is 
well-conditioned. Let u := 1

m0

∑m0
i=1 ui, and A ∈ Rn×n be the matrix where the first 

m0 rows are given by aj := (1 − ε)u + εui, j = 1, . . . , m0, and the remaining rows are 
cm0+1, . . . , cn. Choose I0 = [m0] so that P is the orthogonal projection onto U⊥. Then 
σ+

min(AI1P) = 1 ≫ ε ≥ σmin(A). Indeed, if ei is the ith standard basis vector, then

σmin(A) = min
x∈Rn:∥x∥=1

∥ATx∥ ≤
∥∥∥∥A

T (e1 − e2)√
2

∥∥∥∥ = ε√
2
∥u1 − u2∥ = ε.

Furthermore, since the rows of AI1P form an orthonormal basis for U⊥, for any unit 
vector x =

∑n
i=m0+1 αici in U⊥, we have ∥AI1x∥2 =

∑n
i=m0+1 α

2
i = 1, and hence 

σ+
min(AI1P) = minx∈U⊥:∥x∥=1∥AI1x∥ = 1.

Example 3.11 (∥AI1P∥2
F ≪ ∥A∥2

F ). This can happen if the block AI0 is highly correlated 
with the remaining rows (aj)j∈I1 . Let A ∈ Rn×n be the matrix where the first m0 rows 
are u1, . . . , um0 , and the remaining rows are aj := (1 − ε)vj + εcj , where vj is any unit 
vector in U , for j = m0 + 1, . . . , n. Choose I0 = [m0], so that Range(AT

I0
) = U and P is 

the orthogonal projection onto U⊥. Then Paj = εcj and ∥Paj∥ = ε ≪ 1 = ∥aj∥ for all 
j ∈ I1, and hence ∥AI1P∥2

F =
∑

j∈I1
∥Paj∥2 ≤ ε2 ∑m

j=1∥aj∥2 = ε2∥A∥2
F .

The calculations in the preceding example, together with Theorem 1.1 and (3.15), 
generalize to the following result:

Corollary 3.12. Consider the same setup as Theorem 1.1, and assume that for some 
δ ∈ [0, 1),

∥Paj∥2

∥aj∥2 ≤ 1 − δ2 for all j ∈ I1. (3.17)

Then the SCRK iterates xk converge to x∗ in expectation with

E∥xk − x∗∥2 ≤
(

1 − 1
1 − δ2 · σmin(A)2

∥A∥2
F

)k

· ∥x0 − x∗∥2. (3.18)
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Remark 3.13. Since P is the orthogonal projection onto Range(AT
I0

)⊥, ∥Paj∥2/∥aj∥2 =
sin2 θj where θj is the principal angle between the subspaces Range(aj) and Range(AT

I0
). 

Therefore, the quantity δ in (3.17) measures the coherence between the row space of the 
fixed block AI0 and each of the remaining rows (aj)j∈I1 . A value of δ close to one means 
that the principal angles are uniformly small; i.e. all of the aj are close to the row space 
of AI0 and offer little new information by themselves. By projecting each row with P, 
the shared information is effectively modded out, and thus each SCRK iteration is able 
to make more meaningful progress towards the solution.

In particular, if we take AI0 = aT
i to be a single row and assume that ∥ai∥ = 1 = ∥aj∥, 

then ∥Paj∥2 = 1 − |aT
i aj |2, where |aT

i aj | is the correlation between ai and aj . It is 
shown in [46] that the two-subspace Kaczmarz method, which iteratively projects onto 
the solution space associated with two random rows, significantly improves upon RK if 
A has highly correlated rows. Thus, Corollary 3.12 quantifies a similar phenomenon for 
the SCRK method for higher dimensional subspaces.

3.3.2. Sampling rows to find a good subspace
Previously, we showed that bounds of the form ∥AI1P∥2

F ≪ ∥A∥2
F using a specific 

choice of rows I0 imply significant improvements in the convergence rate of the SCRK 
method over randomized Kaczmarz. However, what if we are not explicitly given a good 
set I0, even though there is latent low-rank structure in A – in the sense that the matrix 
has r ≪ n dominant singular values – that can be exploited? We begin by considering 
a motivating hypothetical example where the row span of AI0 is able to align perfectly 
with the leading right singular subspace.

Example 3.14 (∥AI1P∥2
F ≪ ∥A∥2

F ). Let A(r) := U(r)Σ(r)VT
(r) be the best rank-r ap-

proximation of A (with respect to ∥·∥F ), where Σ(r) = diag(σ1(A), . . . , σr(A)) is the 
diagonal matrix of the top r singular values of A, and the columns of V(r) ∈ Rn×r and 
U(r) ∈ Rm×r contain the corresponding right and left singular vectors. Suppose that the 
row span of AI0 equals Range(V(r)). Then

∥AI1P∥2
F = ∥AP∥2

F = ∥PAT∥2
F = ∥AT − P⊥AT∥2

F = ∥AT − AT
(r)∥2

F =
n∑

i=r+1
σi(A)2.

If the top r singular values of A are much larger than the rest, then ∥AI1P∥2
F is much 

smaller than ∥A∥2
F =

∑n
i=1 σi(A)2.

Note that in general, such a subset of rows does not exist in A. This raises the following 
question: can we efficiently find a small subset I0 of rows of A so that the row span of 
AI0 is a good approximation of the top r-dimensional right singular subspace of A? This 
is known as the problem of finding an approximate CX decomposition in the randomized 
numerical linear algebra literature. Algorithms have been proposed that sample rows of 
A according to their Euclidean norms [16] or their leverage scores (ℓj)j∈[m] [17], where 



J. Lok, E. Rebrova / Linear Algebra and its Applications 698 (2024) 220–260 239

ℓj is the squared ℓ2 norm of the jth row of U(r), using the same notation as the example 
above (for more details, see [39]). The following summarizes guarantees for these two 
sampling schemes proved in [17,4] and [16]:

Theorem 3.15 (Theorem 1 [17] and [4]; Theorem 4 [16]). Suppose that c rows of A are 
independently sampled, where row j is selected with probability pj in each trial. Let I0 be 
the set of indices of the sampled rows, and P be the orthogonal projection onto Null(AI0).

(i) If pj = ℓj/r and c = O(r log r/ε2), then with probability at least 0.9,

∥AP∥2
F ≤ (1 + ε)∥A − A(r)∥2

F = (1 + ε)
n∑

i=r+1
σi(A)2. (3.19)

(ii) If pj = ∥aj∥2/∥A∥2
F and c = O(r/ε2), then with probability at least 0.9,

∥AP∥2
F ≤ ∥A − A(r)∥2

F + ε∥A∥2
F = (1 + ε)

n∑

i=r+1
σi(A)2 + ε

r∑

i=1
σi(A)2. (3.20)

Theorem 3.15 implies that sampling c ≈ r log r rows of A produces a subspace that 
tames the leading r singular values of A with high probability. In practice, it has been 
observed that a modest oversampling factor (i.e. c is a small constant times r) usually suf-
fices [17]. The relative-error bound (3.19) is better than the additive-error bound (3.20); 
however it is more costly because it requires the estimation of the leverage scores (see, 
e.g., [18,26]). By combining Theorem 3.15 and (3.15) with the SCRK convergence result 
(Theorem 1.1), we deduce the following:

Corollary 3.16. Suppose that I0 ⊂ [m] contains m0 = O(r log r/ε2) rows of A, randomly 
sampled according to the leverage scores of A relative to its best rank-r approximation as 
described in Theorem 3.15, and partition A into blocks AI0 and AI1 with I1 = [m] \ I0. 
Then with probability at least 0.9 over the sampling of I0, the SCRK iterates xk satisfy

E∥xk − x∗∥2 ≤
(

1 − σn(A)2
(1 + ε)

∑n
i=r+1 σi(A)2

)k

· ∥x0 − x∗∥2.

Thus, if the rank of A is effectively less than r (in the sense 
∑n

i=r+1 σi(A)2 ≪ ∥A∥2
F ), 

then the SCRK method with iterates constrained to the solution space corresponding 
to m0 = O(r log r) randomly sampled rows significantly improves upon RK. Note that 
similar results are known for the sketch-and-project method [13]. Moreover, the effective 
rank of a large-scale matrix A can be estimated in a data-driven manner by sketching [40].
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3.4. SCRK on random data and dimension reduction

Previously, we discussed how the SCRK method accelerates the iterative solver when 
the matrix A has approximately low-rank structure. In this section, we consider a some-
what complementary setting to study the effect of the subspace constraint when A is 
unstructured and homogeneous: namely, when A is drawn from a class of generic ran-
dom matrices (precisely defined below) whose rows behave like independent standard 
Gaussian vectors. Such a matrix is typically well-conditioned as long as its aspect ratio
m/n is large enough, and hence the corresponding linear system is easily solved using 
randomized Kaczmarz. However, for almost-square systems with an aspect ratio close to 
one, the convergence rate is far from optimal.

First, we review some definitions from probability theory (we refer to [60] for more 
details). If a ∈ Rn is a random vector, we say that a is mean-zero if E [a] = 0, and a
is isotropic if E

[
aaT] = I. We say that a scalar random variable X is K-subgaussian

if its subgaussian norm ∥X∥ψ2 := inft>0{E
[
exp(X2/t2) ≤ 2

]
} is bounded by K > 0; 

informally, this means that X concentrates around its mean with a light, exponen-
tially decaying tail. Furthermore, a random vector a is K-subgaussian if all of its 
one-dimensional marginals are K-subgaussian: ∥a∥ψ2 := supz∈Rn:∥z∥=1∥⟨z,a⟩∥ψ2 ≤ K.

As before, we will continue to assume that A has full rank (almost surely). For our 
model, we will allow AI0 ∈ Rm0×n to be arbitrary, and we assume that AI1 ∈ R(m−m0)×n

is a random matrix that satisfies the following:

A1. The rows of AI1 are independent, mean-zero, isotropic, and K-subgaussian random 
vectors.

The canonical example for our model is a standard Gaussian matrix AI1 whose entries 
are independent standard normal random variables. In this special case, exact computa-
tions are often possible. More generically, Assumption A1 models unstructured matrices 
containing homogeneous data (that is centered and isotropic) with light tails.

Our main result in this section shows that for such matrices, the subspace constraint 
imposed by P acts as a form of dimension reduction, typically resulting in a near-optimal 
convergence rate of approximately 1 − 1/(n −m0) as long as the “effective aspect ratio” 
(m −m0)/(n −m0), which may be much larger than m/n, is large enough.

Theorem 3.17. Suppose that the rows of A are partitioned into two blocks AI0 and AI1

of sizes m0 and m −m0 respectively, where AI0 is arbitrary and AI1 is a random matrix 
that satisfies Assumption A1. There exists constants c, R > 0 (only depending on K) 
such that if

r := m−m0
n−m0

≥ R,



J. Lok, E. Rebrova / Linear Algebra and its Applications 698 (2024) 220–260 241

then for any ε ∈ (0, 1), with probability at least 1 − 3 exp
{
−cε2

(
1 −

√
R
r

)
(m−m0)

}

over the randomness in AI1 , the SCRK iterates xk satisfy

E∥xk − x∗∥2 ≤

⎛

⎝1 − (1 − ε)2
1 + ε

(
1 −

√
R

r

)2

· 1
n−m0

⎞

⎠
k

· ∥x0 − x∗∥2. (3.21)

In the special case where AI1 is standard Gaussian, this result holds with R = 1.

The values of R and c depend on the precise distributional properties of the random 
matrix, and are, importantly, independent of m and n. Note that for tall, large-scale 
systems with m, n ≫ 1 and r ≫ 1, the requirement r ≥ R is not difficult to meet, and 
taking ε ≈ 0 shows that the convergence rate is approximately 1 − 1/(n − m0) with a 
probability guarantee that is exponentially close to one.

3.4.1. Proof of Theorem 3.17
To study the typical convergence rate with a random matrix, we will obtain tail 

bounds for σ+
min(AI1P) and ∥AI1P∥2

F . The first lemma is deterministic, and shows that 
instead of studying the non-zero singular values of the (m −m0) × n matrix AI1P, we 
can study the singular values of a thinner (m −m0) × (n −m0) matrix after rotating.

Lemma 3.18. Let X ∈ Rm×n be a matrix, and P ∈ Rn×n be an orthogonal projection 
onto a d-dimensional subspace of Rn. Suppose that the columns of Q̄ ∈ Rn×d form an 
orthonormal basis for Range(P). Then the non-zero singular values of XP ∈ Rm×n and 
XQ̄ ∈ Rm×d are the same.

Proof. Note that P = Q̄Q̄T. Let XQ̄ = UΣVT be a compact singular value decompo-
sition of XQ̄, which means that Σ is a square diagonal matrix containing the rank(X)
non-zero singular values of XQ̄, and U, V are rectangular matrices with orthonormal 
columns. Observe that XP = UΣ(V′)T where V′ := Q̄V also has orthonormal columns. 
This allows us to conclude the desired result since the non-zero singular values of XP
are presented in the same matrix Σ. !

The following probabilistic result shows that the smallest non-zero singular value of 
AI1P can be lower bounded with very high probability.

Lemma 3.19. Let P be an orthogonal projection onto a fixed (n −m0)-dimensional sub-
space. Suppose that the random matrix AI1 ∈ R(m−m0)×n satisfies Assumption A1. Then 
there exists an absolute constant C > 0 such that for all s > 0, with probability at least 
1 − 2e−s2(m−m0), the smallest and largest non-zero singular values of AI1P satisfy

σ+
min(AI1P) ≥

√
m−m0 − CK2(

√
n−m0 + s

√
m−m0) and

σmax(AI1P) ≤
√
m−m0 + CK2(

√
n−m0 + s

√
m−m0).
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In the case where AI1 is Gaussian, the inequalities hold with CK2 replaced by one.

Proof. Let Q̄ ∈ R(m−m0)×(n−m0) be a matrix whose columns form an orthonormal basis 
for Range(P). By Lemma 3.18, the smallest and largest non-zero singular values of 
AI1P ∈ R(m−m0)×n and B := AI1Q̄ ∈ R(m−m0)×(n−m0) are equal. It can be directly 
checked that the rows of B are also independent, mean-zero, isotropic, K-subgaussian 
random vectors in Rn−m0 . Hence, using a standard tail bound for the extremal singular 
values σmin(B) and σmax(B) of the random matrix B (see [60, Theorem 4.6.1]) implies 
the claimed inequalities. In the Gaussian case, the precise constants can be computed 
using Gaussian concentration tools (see [60, Corollary 7.3.3, Exercise 7.3.4]). !

Remark 3.20. The minimum restricted singular value of random matrices has also been 
studied in the context of universality laws for randomized dimension reduction in [49]. 
If the entries of AI1 are independent random variables satisfying some mild regularity 
conditions, then [49, Theorem II] establishes that σ+

min(AI1P) ≈ √
m−m0−C

√
n−m0

with high probability since Range(P) is a (n −m0)-dimensional subspace in Rn. Thus, 
σ+

min(AI1P) is of comparable order for a wide class of distributions. However, the maxi-
mum restricted singular value is not necessarily universal.

Next, our goal is to obtain tail bounds for ∥AI1P∥2
F =

∑
j∈I1

∥Paj∥2. In the setting 
where the rows aj of AI1 are mean-zero, K-subgaussian random vectors, it is proved 
in [31] that the Euclidean norms ∥aj∥ are O(K√

n)-subgaussian. The next lemma states 
that the norms of the projected vectors ∥Paj∥ are O(K√

n−m0)-subgaussian.

Lemma 3.21. Let a be a mean-zero, K-subgaussian random vector in Rn, and P be an 
orthogonal projection onto a fixed d-dimensional subspace. Then the subgaussian norm 
of ∥Pa∥ is bounded by CK

√
d for some absolute constant C > 0.

The proof uses the following geometric observation about unit spheres of subspaces, 
which we record for later reference. We say that N is an ε-net of a set S ⊆ Rn if N ⊆ S

and every point in S is within distance ε of some point in N . It is known that there 
exists an ε-net of the d-dimensional unit sphere Sd−1 := {x ∈ Rd : ∥x∥ = 1} with 
cardinality bounded by (1 + 2/ε)d for any d (see, e.g., [60, Corollary 4.2.13]). Thus, if 
U is a d-dimensional subspace of Rn, then by identifying U ∼= Rd (using the fact that 
rotations are isometries) and obtaining a net of Sd−1, we deduce the following:

Lemma 3.22. Let U be a d-dimensional subspace of Rn. Then for any ε > 0, there exists 
an ε-net N of U ∩ Sn−1 with cardinality |N | ≤ (1 + 2/ε)d.

Proof of Lemma 3.21. The proof is similar to the proof of [31, Lemma 1]; we provide it 
for completeness. First, it can be checked that Pa is also a mean-zero K-subgaussian 
random vector. Next, by Lemma 3.22, we can fix a 1/2-net N of Range(P) ∩ Sn−1 with 
cardinality |N | ≤ 5n−m0 . By using these observations, we will show that
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P (∥Pa∥ ≥ t) ≤ 2e−t2/(10K2(n−m0)) for all t ≥ 0. (3.22)

Indeed, for any realization of Pa, there exists v ∈ N such that 
∥∥∥ Pa
∥Pa∥ − v

∥∥∥ ≤ 1/2, and 
we can write

∥Pa∥ = ⟨v,Pa⟩ +
〈 Pa
∥Pa∥ − v,Pa

〉
≤ ⟨v,Pa⟩ +

∥∥∥∥
Pa
∥Pa∥ − v

∥∥∥∥ · ∥Pa∥ ≤ ⟨v,Pa⟩ + ∥Pa∥
2

to deduce that ∥Pa∥ ≤ 2 ⟨v,Pa⟩. Therefore, because ⟨v,Pa⟩ is a mean-zero, K-
subgaussian random variable, a union bound implies that for all t ≥ 0,

P (∥Pa∥ ≥ t) ≤ P

(
∃v ∈ N : ⟨v,Pa⟩ ≥ t

2

)
≤ 5n−m0 · e−t2/(4K2).

We claim that this implies (3.22). If t2 ≤ 4 log(5)K2(n −m0), then (3.22) trivially holds. 
Otherwise, if t2 = 4 log(5)K2(n −m0) + s for s > 0, then

5n−m0 · e−t2/(4K2) = e−s/(4K2) ≤ e−s/(6 log(5)K2(n−m0)) ≤ 2e−t2/(10K2(n−m0)).

Thus, the tail bound (3.22) holds for all t ≥ 0, which implies that (by, e.g., [60, Propo-
sition 2.5.2]), ∥Pa∥ has subgaussian norm bounded by CK

√
n−m0 for some absolute 

constant C > 0. !

Lemma 3.23. Consider the same setup as Lemma 3.19. Then there exists an absolute 
constant c > 0 such that for all ε > 0, with probability at least 1 −e−cmin{ε,ε2}(m−m0)/K4 ,

∥AI1P∥2
F ≤ (1 + ε)(m−m0)(n−m0). (3.23)

Proof. Since P is an orthogonal projection onto an (n −m0)-dimensional subspace and 
aj is isotropic, using the cyclic property of trace implies that for all j ∈ I1,

E∥Paj∥2 = E
[
tr(aT

j Paj)
]

= tr(E
[
ajaT

j

]
P) = tr(P) = n−m0.

Therefore,

E∥AI1P∥2
F = E

⎡

⎣
∑

j∈I1

∥Paj∥2

⎤

⎦ = |I1| · E∥Pa1∥2 = (m−m0)(n−m0).

Now, the random variables ∥Paj∥ are independent and, by Lemma 3.21, O(K√
n−m0)-

subgaussian. Hence, by centering and Bernstein’s inequality [60, Theorem 2.8.1], there 
exists an absolute constant c > 0 such that
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P
(
∥AI1P∥2

F − (m−m0)(n−m0) ≥ t
)

≤ exp
(
− c

K4 min
{

t2

(m−m0)(n−m0)2
,

t

n−m0

})

for all t ≥ 0. By choosing t = ε(m −m0)(n −m0), we obtain (3.23). !

The main result of this section now easily follows from the tail bounds for AI1P.

Proof of Theorem 3.17. Suppose that the random matrix AI1P satisfies the events in 
Lemma 3.19, using s = ε 

(
1 − CK2

√
r

)
1

CK2 and relabeling C2K4 by R, and Lemma 3.23. If 
this occurs, which holds with the claimed probability after simplifying, the convergence 
result (3.21) then directly follows from the SCRK convergence result, Theorem 1.1. !

4. Analysis of the QuantileSCRK algorithm

In this section, we consider the QuantileSCRK method for solving corrupted linear 
systems (Algorithm 2). Recall that in our model, we are given a corrupted measurement 
vector b̃ := b + bC , where bC is a sparse vector of arbitrary corruptions supported on 
C ⊆ [m], as well as a corruption-free subset I0 ⊆ [m] of size m0 such that (bC)I0 = 0. 
Our goal is to reconstruct the solution x∗ of the linear system Ax = b.

Our main result in this section is Theorem 4.1, which shows that the QuantileSCRK 
method is able to converge robustly and efficiently when A is an unstructured random 
matrix as long as the effective aspect ratio (m − m0)/(n − m0) is tall enough and the 
proportion of corrupted measurements |C|/(m −m0) is not too large. Specifically, we con-
sider the class of “Gaussian-like” random matrices previously considered in Section 3.4, 
and assume that AI1 is a random matrix that satisfies Assumption A1 in addition to 
the following continuity assumption:

A2. Each row of AI1 either has a log-concave distribution2 or has independent entries 
with bounded probability densities.3

The class of log-concave distributions is a generalization of the standard Gaussian dis-
tribution that allows for some dependence between the entries of a random vector; for 
example, the uniform distribution over any convex body in Rn is log-concave. For more 
details and examples, we refer to [52].

Assumption A2 is essentially needed for technical reasons for our proof of Theorem 4.1. 
Empirically, convergence is observed even if A has random discrete entries [25], or if A
is a structured, sparse matrix in an imaging problem (see Section 5.6). The assumption 

2 A log-concave distribution in Rn has a probability density f that satisfies f(λx + (1 − λ)y) ≥
f(x)λf(y)1−λ for all λ ∈ [0, 1] and x, y ∈ Rn.
3 By scaling, we may assume without loss of generality that the densities are bounded by one.
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of having independent coordinates with bounded densities in each row was previously 
considered in [25], and we extend the model by allowing for log-concave distributions.

We can now state our main result:

Theorem 4.1. Suppose that the rows of A are partitioned into blocks AI0 and AI1 of 
sizes m0 and m −m0 respectively, where AI0 is arbitrary and AI1 is a random matrix 
that satisfies Assumptions A1 and A2. Suppose that the corrupted measurement vector 
b̃ = b + bC is observed, (bC)I0 = 0, and a quantile parameter q ∈ (0, 1) is fixed. There 
exist constants β0 ∈ (0, 1) and R ≥ 1 (only depending on q and K) such that if

m−m0
n−m0

≥ R and β := |C|
m−m0

≤ β0, (4.1)

then for some constants c1, c2 > 0 (only depending on q, β, and K), with probability at 
least 1 − 6e−c1(m−m0) over the randomness in AI1 , the QuantileSCRK iterates xk from 
Algorithm 2 converge to the solution x∗ in expectation with

E∥xk − x∗∥2 ≤
(

1 − c2
n−m0

)k

· ∥x0 − x∗∥2. (4.2)

As mentioned previously, the values of the constants c1 and c2 are dominated in 
large-scale systems with m, n ≫ 1, and the requirement (m −m0)/(n −m0) ≥ R is not 
difficult to meet if the system is tall and there is enough external knowledge (i.e. m ≫ n, 
m0 ≫ 1). In addition, we believe that it should be possible to obtain sharper theoretical 
estimates for β0 and R.

The strategy to prove Theorem 4.1 is to combine a deterministic sufficient condition 
for the convergence of QuantileSCRK, adapting a result for QuantileRK proved by [56], 
with probabilistic results for the spectra of the projected random matrix AI1P. First, 
we define some spectral quantities that will be needed. For α ∈ (0, 1], define

σ+
α,min(AI1P) := inf

T⊆I1
|T |=α(m−m0)

σ+
min((AI1P)T ). (4.3)

For simplicity, we will assume throughout that α(m −m0) is an integer. This quantity, 
which represents the uniform minimum singular value over all row submatrices of AI1P
with α(m −m0) rows, has appeared in previous analyses of the QuantileRK algorithm [25,
56], and quantifies whether there are any poorly-conditioned row submatrices that are 
particularly susceptible to corruptions. Similarly, define

Zα := sup
T⊆I1

|T |=α(m−m0)

∥(AI1P)T ∥2
F . (4.4)

Together, (4.3) and (4.4) provide a uniform upper bound for the scaled condition numbers 
of all row submatrices of AI1P possibly containing the uncorrupted, admissible rows 
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(i.e. whose residuals are smaller than the quantile threshold). This is the key step which 
guarantees that the expected improvement from moving in an uncorrupted direction 
offsets the expected deterioration caused by a corruption.

4.1. A deterministic condition for convergence

The following lemma provides a deterministic condition that guarantees the conver-
gence of the QuantileSCRK algorithm for any arbitrary sparse corruption vector bC , 
which may be of independent interest. This is adapted from a similar condition for con-
vergence of the QuantileRK algorithm that was proved by Steinerberger [56].

Lemma 4.2. Recall that C ⊆ I1 are the indices of the corrupted measurements, and β =
|C|/(m −m0). Suppose that β < q < 1 − β. Define

Cq,β := 1
Zq−β

{
σ+
q−β,min(AI1P)2 − σmax(AI1P)2

(
β

1 − q
+ 2

√
β

1 − q

)}
, (4.5)

where σ+
q−β,min(AI1P) is defined in (4.3), and Zq−β in (4.4). If Cq,β > 0, or equivalently,

σ+
q−β,min(AI1P)2

σmax(AI1P)2 >
β

1 − q
+ 2

√
β

1 − q
, (4.6)

then the QuantileSCRK iterates xk from Algorithm 2 converge to the solution x∗ in 
expectation with

E∥xk − x∗∥2 ≤ (1 − Cq,β)k · ∥x0 − x∗∥2. (4.7)

The proof of Lemma 4.2 follows the same strategy as [56] with a minor improvement 
in the condition (4.6) for convergence. For completeness, we provide the full details.

Proof. Consider the iterate xk. Recall that J = J(q, k) is the set of indices of the 
admissible rows that satisfy |bj − aT

j xk| ≤ γq = q-quantile
{
|bj − aT

j xk| : j ∈ I1
}
, with 

|J | = q(m − m0). Let S := C ∩ J be the indices of the corrupted yet admissible rows, 
which satisfies 0 ≤ |S| ≤ β(m − m0). Recall that the row j is sampled from J with 
probability equal to ∥Paj∥2/ZJ , where ZJ :=

∑
j∈J∥Paj∥2 is the normalizing constant. 

Conditional on all the choices up to the kth iteration, we have

Ek∥xk+1 − x∗∥2 =
[
1 −

∑
j∈S∥Paj∥2

ZJ

]
E{j∈J\S}∥xk+1 − x∗∥2 (4.8)

+
∑

j∈S∥Paj∥2

ZJ
E{j∈S}∥xk+1 − x∗∥2, (4.9)



J. Lok, E. Rebrova / Linear Algebra and its Applications 698 (2024) 220–260 247

where E{j∈S} denotes the expectation further conditional on j ∈ S, and similarly for 
E{j∈J\S}. We proceed to estimate the two summands (4.8) and (4.9) individually.

Step 1: Lower bounding the improvement from selecting an uncorrupted equation.
Conditional on sampling an admissible, uncorrupted equation j ∈ J \S, the improvement 
is given by one step of the SCRK method applied to the row submatrix (AI1P)J\S . Thus, 
by Theorem 1.1,

E{j∈J\S}∥xk+1 − x∗∥2 ≤
(

1 −
σ+

min((AI1P)J\S)2∑
j∈J\S∥Paj∥2

)
· ∥xk − x∗∥2.

Since |J \ S| ≥ (q − β)(m − m0), by using the definition of σ+
q−β,min(AI1P) in (4.3)

together with the fact that adding rows to a matrix can only increase its minimum 
singular value, we obtain the following upper bound for the first term (4.8):

(
1 −

∑
j∈S∥Paj∥2

ZJ

)
· ∥xk − x∗∥2 −

σ+
q−β,min(AI1P)2

ZJ
· ∥xk − x∗∥2. (4.10)

Step 2: Upper bounding the deterioration from selecting a corrupted equation. The 
second term (4.9) represents the possible deterioration from selecting a corrupted yet 
admissible row that may take xk further away from the solution x∗. By expanding the 
square, it is equal to

∑
j∈S∥Paj∥2

ZJ

∑

j∈S

∥Paj∥2
∑

i∈S∥Pai∥2

∥∥∥∥∥x
k − x∗ +

bj − aT
j xk

∥Paj∥2 Paj

∥∥∥∥∥

2

=
∑

j∈S∥Paj∥2

ZJ
∥xk − x∗∥2 + 1

ZJ

∑

j∈S

|bj − aT
j xk|2 + 2

ZJ

∑

j∈S

(bj − aT
j xk)(Paj)T(xk − x∗)

≤
∑

j∈S∥Paj∥2

ZJ
∥xk − x∗∥2 + 1

ZJ
|S|γ2

q + 2
ZJ

γq
√
|S| ∥(AI1P)C(xk − x∗)∥, (4.11)

where the definition of the quantile γq and Cauchy-Schwarz is used for the inequality.
Step 3: Bounding the q-quantile of a sample. Since any uncorrupted row aj with 

j ∈ I1 \ C satisfies aT
j x∗ = bj , we have

bj − aT
j xk = aT

j (x∗ − xk) = (Paj)T(x∗ − xk),

recalling that x∗ − xk ∈ Null(AI0). Since there are at least (1 − q)(m −m0) − (β(m −
m0) − |S|) = (1 − q− β)(m −m0) + |S| uncorrupted equations in I1 whose residuals are 
larger than γq, we have

((1 − q − β)(m−m0) + |S|)γ2
q ≤

∑

j∈I1\C

|bj − aT
j xk|2 ≤

∑

j∈I1

∣∣(Paj)T(x∗ − xk)
∣∣2
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= ∥AI1P(xk − x∗)∥2 ≤ σmax(AI1P)2 · ∥xk − x∗∥2.

Therefore, the q-quantile of the sizes of the residuals can be bounded by

γq ≤ σmax(AI1P)√
(m−m0)(1 − q − β) + |S|

· ∥xk − x∗∥. (4.12)

Step 4: Conclude. Combining (4.10) and (4.11) with the bound on γq shows that the 
expected relative improvement Ek∥xk+1 − x∗∥2/∥xk − x∗∥2 is upper bounded by

1 − 1
ZJ

(
σ+
q−β,min(AI1P)2 −

|S|γ2
q

∥xk − x∗∥2 −
2γq

√
|S| ∥(AI1P)C(xk − x∗)∥

∥xk − x∗∥2

)

≤ 1 − 1
ZJ

(
σ+
q−β,min(AI1P)2 −

[
|S| · σmax(AI1P)2

θ + |S| + 2
√
|S| · σmax(AI1P)2√

θ + |S|

])
,

(4.13)

where θ := (m − m0)(1 − q − β). Now, we can upper bound ZJ by Zq−β from (4.4). 
Next, consider the function f(x) = x

θ+x + 2√x√
θ+x

, and observe that f(|S|) appears in the 
upper bound (4.13). Since f ′(x) > 0 for all x > 0, the upper bound is increasing in |S|. 
Because |S| ≤ β(m −m0), we conclude that the most pessimistic bound, independent of 
|S| and J (and hence k), is obtained by setting |S| = β(m −m0), which implies that

Ek∥xk+1 − x∗∥2 ≤ (1 − Cq,β) · ∥xk − x∗∥2, where Cq,β is defined in (4.5).

To ensure that the mean squared error contracts after each step, it suffices for Cq,β to be 
positive: this is exactly secured by the condition (4.6). By iterating, we obtain (4.7). !

Note that Lemma 4.2 only provides a sufficient condition for convergence in the worst 
case (see [56] for further discussion). Empirically, convergence is observed for larger values 
of β because the corruptions are quickly detected and trapped beyond the threshold. The 
dependence on |S| in (4.13) shows that if the number of admissible, corrupted equations 
is small, then far less is demanded of the spectral quantities of AI1P for the mean 
squared error to contract. For similar reasons, the QuantileRK method also empirically 
outperforms currently available theoretical convergence guarantees [25,10].

4.2. Proof of Theorem 4.1

To prove Theorem 4.1, our strategy will be to show that the ratio of σmax(AI1P)
and σ+

q−β,min(AI1P) is of the same order with high probability. Together with the con-
dition (4.6) for convergence in Lemma 4.2, this implies that the QuantileSCRK method 
will efficiently converge if the proportion of corruptions is small enough.
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First, we show that σ+
q−β,min(AI1P) can be lower bounded with high probability as 

long as the effective aspect ratio (m −m0)/(n −m0) is tall enough. This is proved using 
a similar technique as [25, Proposition 3.4].

Lemma 4.3. Let P be an orthogonal projection onto a fixed (n −m0)-dimensional subspace, 
α ∈ (0, 1], and AI1 ∈ R(m−m0)×n be a random matrix that satisfies Assumptions A1 
and A2. Then there exist absolute constants C, θ > 0 such that if

m−m0
n−m0

≥ 24
α

log
(36θ(1 + CK2)

α3/2

)
, (4.14)

then with probability at least 1 − 3e−α(m−m0)/24,

inf
T⊆I1

|T |=α(m−m0)

σ+
min((AI1P)T ) ≥ α3/2

32
√
m−m0. (4.15)

Proof. Recall that Sn−1 = {x ∈ Rn : ∥x∥ = 1} denotes the unit sphere. By Lemma 3.22, 
we can fix an ε-net N of Range(P) ∩ Sn−1 with cardinality |N | ≤ (3/ε)n−m0 for some 
ε ∈ (0, 1] to be chosen later. Fix any T ⊆ I1 with |T | = α(m − m0). Since for any 
z ∈ Range(P) ∩ Sn−1, there exists x ∈ N such that ∥z − x∥ ≤ ε, using the reverse 
triangle inequality and ∥(AI1P)T ∥ ≤ ∥AI1P∥ implies that

σ+
min((AI1P)T ) ≥ inf

z∈Range(P)∩Sn−1
∥(AI1P)T )z∥ ≥ inf

x∈N
∥(AI1P)T )z∥ − ε∥AI1P∥. (4.16)

Firstly, by Lemma 3.19 (with s = 1), we have that with probability at least 1 −2e−(m−m0),

∥AI1P∥ ≤ (1 + CK2)
√
m−m0. (4.17)

Next, our goal is to define an event E on which a good bound for infx∈N ∥(AI1P)T )z∥
that is independent of T holds. More precisely, for every j ∈ I1 and x ∈ N , define the 
“bad” event

Ex
j := {| ⟨aj ,x⟩ | ≤ α/(4θ)} ,

where θ is some constant to be specified later. Let Ex be the “good” event where less than 
α(m −m0)/2 of the events (Ex

j )j∈I1 occur, and E :=
⋂

x∈N Ex. Observe that ⟨Paj ,x⟩ =
⟨aj ,Px⟩ = ⟨aj ,x⟩ since x ∈ Range(P). Therefore, on E , at least half of the rows of 
(AI1P)T have nontrivial correlation with any x ∈ N , which implies that

inf
x∈N

∥(AI1P)Tx∥ = inf
x∈N

√∑

j∈T

| ⟨Paj ,x⟩ |2 ≥
√

α(m−m0)
2 · α2

16θ2 ≥ α3/2

6θ
√
m−m0.

(4.18)
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To balance (4.17) and (4.18), we choose ε = α3/2/(12θ(1 + CK2)). Therefore, if both 
events E and (4.17) hold, then (4.16) implies that the desired bound (4.15) holds.

It remains to bound the probability of the event E , for which we will combine an anti-
concentration result with a Chernoff bound. By using either [51, Theorem 1.2] if the row 
aj has independent entries with bounded densities (with θ ≥ 2

√
2), or [7, Theorem 8]

if aj has a log-concave distribution (increasing the value of θ based on the absolute 
constant in this result), we deduce that P

(
Ex
j

)
≤ α/4 for all j ∈ I1. Hence, a standard 

Chernoff bound implies that P (Ex) ≥ 1 − e−α(m−m0)/12 for all x ∈ N , and a union 
bound shows that E fails to hold with probability less than

|N | · exp
(
−α(m−m0)

12

)
≤ exp

(
(n−m0) log

(3
ε

)
− α(m−m0)

12

)
≤ e−α(m−m0)/24,

where the condition (4.14) is used for the final inequality. Combining this with the 
probability bound for (4.17) to hold completes the proof. !

Next, the following lemma bounds Zq−β from above with high probability.

Lemma 4.4. Let P be an orthogonal projection onto a fixed (n −m0)-dimensional subspace, 
α ∈ (0, 1], and AI1 ∈ R(m−m0)×n be a random matrix that satisfies Assumptions A1 
and A2. Then there exists an absolute constant c > 0 such that with probability at least 
1 − e−cα(m−m0)/K4 ,

sup
T⊆I1

|T |=α(m−m0)

∥(AI1P)T ∥2
F ≤

(
2 + K4

c
log

( e

α

))
α(m−m0)(n−m0). (4.19)

Proof. For all fixed T ⊆ I1 with |T | = α(m −m0), Lemma 3.23 applied to the submatrix 
(AI1P)T implies that there exists an absolute constant c > 0 such that for all ε > 0,

P
(
∥(AI1P)T ∥2

F ≥ (1 + ε)α(m−m0)(n−m0)
)
≤ e−cmin{ε2,ε}α(m−m0)/K4

.

Hence, by a union bound over all 
( m−m0
α(m−m0)

)
< eα(m−m0) log(e/α) such subsets T , we 

deduce that the probability that the event (4.19) does not hold is not greater than 
exp

{
−α(m−m0)

(
cε
K4 − log

(
e
α

))}
for ε ≥ 1. In particular, choosing ε = 1 + K4

c log
(
e
α

)

leads to the claimed probability guarantee. !

By combining our tail bounds for σmax(AI1P) and σ+
q−β,min(AI1P) as well as Zq−β , 

we can now prove Theorem 4.1.

Proof of Theorem 4.1. In this proof, the various constants of the form c1, C1, . . . that 
appear only depend on K. By Lemma 3.19, σmax(AI1P) ≤ C1

√
m−m0 with probability 

at least 1 − 2e−c1(m−m0). By Lemma 4.3, σ+
q−β,min(AI1P) ≥ C2(q−β)3/2√m−m0 with 
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probability at least 1 − 3e−c2(q−β)(m−m0), given that the condition (4.1) is satisfied. 
Therefore, if both of these events hold, then

σ+
q−β,min(AI1P)2

σmax(AI1P)2 ≥
(
C2
C1

)2
(q − β)3.

Hence, by Lemma 4.2 we deduce that the QuantileSCRK algorithm converges if

(
C2
C1

)2
(q − β)3 >

β

1 − q
+ 2

√
β

1 − q
.

Since q is fixed and the right-hand side can be made arbitrarily small by decreasing β, it 
follows that this condition is satisfied as long as β is sufficiently small. Finally, Lemma 4.4
implies that Zq−β ≤ Cq,β(m −m0)(n −m0) with probability at least 1 −e−c3(q−β)(m−m0)

for some constant Cq,β > 0 that only depends on q, β, and K. If all of these events hold, 
then Lemma 4.2 implies that QuantileSCRK converges with the claimed rate (4.2). The 
proof is completed after simplifying the probability bound. !

5. Numerical experiments

In this section, we present numerical experiments that demonstrate various features 
of the SCRK method (Algorithm 1) and the QuantileSCRK method (Algorithm 2). 
For the plots with random, simulated data that follow, the lines represent the median 
over 200 trials, and the shaded regions indicate the 0.1- and 0.9-quantiles around the 
corresponding medians. The log relative error refers to the quantity log(∥xk−x∗∥/∥x0−
x∗∥). The experiments were performed on a MacBook Air M1 with 8GB RAM using 
Python 3.11.

5.1. SCRK method for systems with correlated rows

In Fig. 5.1, we compare the performance of the SCRK method on a system with 
highly correlated rows for various sizes m0 of I0. It is known that RK performs poorly 
in this setting [45,46]. The entries of A ∈ R2,000×1,000 are independently and uniformly 
distributed on [0.9, 1.1], and the solution x∗ ∈ R1,000 is a standard Gaussian vector. The 
same initial iterate starting in the solution space corresponding to the biggest block (i.e. 
m0 = 200) is used for each variation.

As predicted by Corollary 3.12, the SCRK method with I0 as the first m0 rows 
of A outperforms RK for any m0 ≥ 1 since the pairwise row correlations of A are 
bounded from below. Moreover, increasing m0 increases the rate of convergence (see 
Theorem 3.17). However, since increasing m0 leads to heavier iterations and a higher 
initial cost from computing A†

I0
(see Remark 1.3), the optimal block size for a given 

target error and time budget is not necessarily the largest as highlighted by Fig. 5.1
(right).
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Fig. 5.1. Performance of SCRK on a system with highly correlated rows for various sizes m0 of AI0 . (Left)
Log relative error at each iteration. (Right) Log relative error against time elapsed, including the initial cost 
of precomputing A†

I0
for each m0. The time taken to reach a log relative error of less than −8 is reported 

in brackets (N/A indicates that this was not reached in 30 seconds).

Fig. 5.2. Performance of SCRK on a coherent system with low-rank structure using a “perfect” block (with 
m0 = 20) and a randomly sampled block (with m0 = 100) as described in the main text. The two-subspace 
Kaczmarz method [46] and randomized block Kaczmarz method [45] (with two block sizes) are also included. 
(Left) Log relative error at each iteration. (Right) Log relative error against time elapsed, not including 
the initial costs of precomputing pseudoinverses for SCRK and block Kaczmarz. The time taken to reach 
a log relative error of less than −8 is reported in the brackets (N/A indicates that this was not reached in 
30 seconds).

5.2. SCRK method for systems with low-rank structure

In Fig. 5.2, we consider the performance of the SCRK method on a structured matrix 
A ∈ R2,000×1,000, constructed as in Example 3.11. The first r = 20 rows of A are 
normalized standard Gaussian vectors. The remaining m − r rows (aj)j>r are equal to 
aj := (1 − ε)a′

j + εcj , where ε = 0.1, a′
j is sampled from {a1, . . . , ar}, and cj is sampled 

from span({a1, . . . , ar})⊥ and normalized; i.e. aj mainly consists of a row from the 
special top block plus some noise in the orthogonal direction. The solution x∗ ∈ R1,000

is a standard Gaussian vector.
The SCRK algorithm is run with two choices of I0: the first uses the “perfect” block 

of size m0 = 20 with the rows {a1, . . . , ar} that generate the coherence structure. The 
second variant uses a block of m0 = 5r = 100 rows of A sampled (without replacement) 
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Fig. 5.3. Convergence paths for the SCRK (with I0 equal to the first m0 = 25 rows) and RK methods on a 
noisy system. The dashed/dotted lines indicate the predicted error horizons γ0 + γ1 from Theorem 3.4 and 
γ = ∥r∥2/σmin(A)2 from [44] respectively.

uniformly at random. This represents the case where the source of coherence is unknown, 
but sampling the effective rank of A (with an appropriate oversampling factor) should 
find a good block AI0 as predicted by Theorem 3.15. Indeed, Fig. 5.2 shows that both 
choices of I0 converge effectively: the dramatic improvement in the per-iteration conver-
gence rate of SCRK over RK shown by the left plot is explained by the (inverse) scaled 
condition number σ+

min(AI1P)/∥AI1P∥F = 9.33 × 10−3 of AI1P with m0 = 20 (and 
similarly 9.56 × 10−3 with m0 = 100) being significantly larger than the corresponding 
quantity σmin(A)/∥A∥F = 3.29 × 10−5 for A (see Section 3.3).

The two-subspace Kaczmarz method [46] and randomized block Kaczmarz method [45]
(using equally-sized blocks of size 20 and 40 chosen uniformly at random, and precom-
puted pseudoinverses) are also included. The same initial iterate as SCRK with m0 = 20
is used. It is known that these algorithms perform well in systems with highly correlated 
rows, such as the one previously considered in Fig. 5.1. However, Fig. 5.2 shows that the 
effectiveness of two-subspace Kaczmarz and block Kaczmarz with blocks of size 20 that 
are “too small” is impeded by the coherence structure of A.

On the other hand, block Kaczmarz with blocks of size 40 that are “large enough” 
(relative to r = 20 for this problem) converges effectively. While Fig. 5.2 (left) shows 
that it converges with a greater per-iteration rate than SCRK (since it effectively uses 
40 new rows in each iteration instead of just one), Fig. 5.2 (right) shows that the lighter 
iterations of the SCRK method actually make it more efficient on a time basis.

5.3. SCRK method for noisy systems

In Fig. 5.3, we consider the performance of the SCRK algorithm on a noisy system 
to demonstrate the validity of the error horizon predicted by Theorem 3.4. The rows 
of A ∈ R300×100 are independent normalized standard Gaussian vectors, the solution 
x∗ ∈ R100 is a standard Gaussian vector, and the entries of the noise vector r are 
independently and uniformly distributed on [−0.01, 0.01].
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Fig. 5.4. Performance of the QuantileSCRK method, given a corruption-free block of size m0, compared to the 
QuantileRK method [25] on Gaussian systems with different aspect ratios and c corrupted measurements. 
(Left) Log relative error after k iterations for various values of the quantile parameter q. (Right) Convergence 
paths using the best quantile parameters qRK and qSCRK.

5.4. QuantileSCRK algorithm

In Fig. 5.4, we compare the performance of the QuantileSCRK and QuantileRK [25]
methods on Gaussian systems A with different aspect ratios, where the measurements 
are corrupted by a sparse vector with c non-zero entries independently and uniformly 
distributed on [−1, 1]. The rows of A are independent normalized standard Gaussian 
vectors, and the solution x∗ is a standard Gaussian vector.

Tall systems are considered in Fig. 5.4a, where 100/500 = 20% (resp. 100/480 ≈
20.8%) of the rows of A (resp. AI1) correspond to corrupted measurements. These plots 
replicate the finding that the QuantileRK method converges effectively for tall, Gaussian-
like matrices even in the presence of numerous corruptions [25], and also show that 
exploiting information about corruption-free measurements using the QuantileSCRK 
method accelerates convergence (see Theorem 4.1).

Almost-square systems are considered in Fig. 5.4b, where 10/130 ≈ 7.7% (resp. 
10/55 ≈ 18.2%) of the rows of A (resp. AI1) correspond to corrupted measurements. It is 
clear that the QuantileRK method is unable to make any progress in this setting. On the 
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Fig. 5.5. Solving a discretized differential equation for a line in the plane given two sets of inconsistent initial 
conditions as described in the main text. (Left) 50 outputs after 10,000 iterations of QuantileSCRK with 
q = 0.65 (translucent gray lines); 38 out of the 50 converged to Line 1 (in the sense ∥ALine 1xk−bLine 1∥2 <
10−3). (Right) 50 outputs after 10,000 iterations of the QuantileSCRK algorithm with q = 0.3 (translucent 
orange lines); 45 out of the 50 converged to Line 2.

other hand, the QuantileSCRK method converges for q around 0.8, which demonstrates 
that exploiting external knowledge in the form of a large block AI0 corresponding to 
corruption-free measurements can enable convergence in such challenging settings.

5.5. Systems of differential equations with inconsistent initial conditions

We consider the problem of numerically solving a system of differential equations given 
competing data for the initial conditions as another application of the QuantileSCRK 
method. After discretization via a finite difference scheme, two types of equations arise: 
the first describe the underlying law and can be considered to be known exactly, and 
the second type encode the initial conditions, which can be obtained from real data 
with potentially faulty measurements. Thus, the problem can be viewed as one about 
detecting and disregarding the “corrupted” equations coming from inconsistent initial 
conditions, given that the majority of the equations of the first type can be “trusted”.

In Fig. 5.5, we consider the linear system obtained from discretizing the differential 
equation y′′ = 0 for a line illustrate this idea. The top 98 ×100 block is a Toeplitz matrix 
with entries 1, −2, 1 along the diagonal before normalization, which we take to be AI0. 
We consider two sets of initial conditions corresponding to two lines: Line 1 being y = x

with 10 initial conditions, and Line 2 being y = 25 − x/2 with 5 initial conditions.
The plots show that solving this system using least squares or QuantileRK produces 

poor solutions. However, using QuantileSCRK with a careful choice of the quantile pa-
rameter enables convergence to one line or the other as the algorithm is able to find a 
set of consistent initial conditions: when q = 0.65, QuantileSCRK converges to Line 1 a 
majority of the time (left), and when q = 0.3, QuantileSCRK converges to Line 2 instead 
(right). We also observed that the initial iterate x0 has a significant biasing effect on 
which solution is preferred for convergence.



256 J. Lok, E. Rebrova / Linear Algebra and its Applications 698 (2024) 220–260

Fig. 5.6. Reconstructions of the Shepp-Logan phantom from A ∈ R4,500×2,500 and b̃ ∈ R4,500 with c = 1, 125
corruptions as described in the main text. The QuantileSCRK method, given a corruption-free block AI0
of size m0 = 500, and the QuantileRK method were both run using q = 0.7 for 60m = 270, 000 iterations, 
obtaining a final ℓ2 error ∥xk − x∥2 of 3.47 and 6.85 respectively.

5.6. CT image reconstruction

Finally, we investigate the performance of QuantileSCRK on a realistic dataset. We 
consider the Shepp-Logan phantom, generated using the Air Tools II package [27] with 
parameters N = 50 (the image is N × N), θ = {0, 2, 4, . . . , 178} (angles used), and 
ρ = 50 (number of parallel rays). The image is encoded by the measurement matrix 
A ∈ R4,500×2,500 and measurements b ∈ R4,500. A subset I0 of m0 = 500 rows of A
was randomly chosen to be corruption-free (e.g. corresponding to trustworthy measure-
ments), and a random set of c = 1, 125 of the remaining measurements were corrupted 
by quantities uniformly distributed in [2, 6] to produce the corrupted measurements b̃.

In Fig. 5.6, we show various reconstructions given A and the corrupted measurements 
b̃. It is clear that the least squares solution of the corrupted linear system is very poor. 
The QuantileRK method, initialized from zero, achieves a noisy reconstruction that does 
not recover the fine details. Using the QuantileSCRK method with the corruption-free 
block AI0 achieves the best reconstruction, even though a significant proportion (25%) 
of the measurements have been corrupted.

6. Conclusion and future directions

In this paper, we introduced the subspace constrained randomized Kaczmarz (SCRK) 
method for solving consistent, overdetermined systems of linear equations Ax = b, which 
provides a framework for studying the dynamics of the randomized Kaczmarz algorithm 
when the iterates are confined to a selected solution space AI0x = bI0 . We described the 
convergence rate of the SCRK method in terms of the spectral properties of the matrix 
AI1P, where P is the orthogonal projector onto Null(AI0). We also demonstrated, both 
theoretically and empirically, how the SCRK method can exploit approximately low-rank 
structure to accelerate convergence.

We also proposed the QuantileSCRK method for solving corrupted linear systems, 
which is able to exploit external knowledge about corruption-free subsystems. In addi-
tion to theoretical convergence analysis, we demonstrated numerically that it is able to 
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converge for almost-square corrupted linear systems, where existing iterative methods are 
ineffective, and that it can be useful for solving differential equations with inconsistent 
initial conditions and image reconstruction from significantly corrupted measurements.

The framework of subspace constrained iterations raises many possible future direc-
tions. For example, since our analysis showed that the SCRK updates simplify to a 
version of the usual Kaczmarz updates with skewed step directions and the projector P
acts as a right preconditioner for A to improve the convergence rate, it seems plausible 
that similar ideas could be applied to related solvers such as the sketch-and-project algo-
rithm [21] or iterative projection methods for solving systems of linear inequalities [34,5]. 
It would also be interesting to develop and analyze a QuantileSCRK method in which 
the trusted solution space is built up adaptively in a data-driven way, based on the in-
formation accumulated during the iteration process, which could lead to an effective way 
for solving corrupted linear systems even in the absence of external knowledge.
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