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Adversarial training and attribution methods enable evaluation of robustness and interpretability

of deep learning models for image classification
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Deep learning models have achieved high performance in a wide range of applications. Recently, however,
there have been increasing concerns about the fragility of many of those models to adversarial approaches
and out-of-distribution inputs. A way to investigate and potentially address model fragility is to develop
the ability to provide interpretability to model predictions. To this end, input attribution approaches such as
Grad-CAM and integrated gradients have been introduced to address model interpretability. Here, we combine
adversarial and input attribution approaches in order to achieve two goals. The first is to investigate the impact of
adversarial approaches on input attribution. The second is to benchmark competing input attribution approaches.
In the context of the image classification task, we find that models trained with adversarial approaches yield
dramatically different input attribution matrices from those obtained using standard techniques for all considered
input attribution approaches. Additionally, by evaluating the signal-(typical input attribution of the foreground)-
to-noise (typical input attribution of the background) ratio and correlating it to model confidence, we are able
to identify the most reliable input attribution approaches and demonstrate that adversarial training does increase
prediction robustness. Our approach can be easily extended to contexts other than the image classification task

and enables users to increase their confidence in the reliability of deep learning models.

DOI: 10.1103/PhysRevE.110.054310

I. INTRODUCTION

Deep learning (DL) approaches are now used regularly in
a variety of domains, including drug discovery [1], speech
recognition [2], object recognition [3], question and an-
swer [4], machine translation [5], and image description [6].
Strikingly, some published studies report superhuman perfor-
mance, that is, a performance level exceeding that of human
experts [7]. Such claims have created a self-reinforcing cy-
cle of increased popularity, leading to the adoption of deep
learning models in ever more areas of our research and de-
velopment [8—10]. However, as applications move from the
mundane—recognizing your friends on social media—to the
high stake—self-driving cars [11] or diagnosing SARS-CoV-
19 infections from chest x rays [12]—the need to address
model fragility [13] and model interpretability becomes in-
creasingly critical.

Pioneering work by Goodfellow and colleagues [14,15] has
demonstrated that minute input changes can yield significant
changes in the inference process of DL models, an effect they
denoted adversarial attacks. Their findings have led to the de-
velopment of a new approach to model training—adversarial
training [15,16].
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Despite the importance of this work, adversarial attacks are
not the only reason for model failure [17-20]. Even coun-
terintuitive out-of-distribution data can lead to catastrophic
model inference failures. For this reason, many researchers
argue that in order to address model fragility, we must have
model interpretability. Robust and sensible explanations allow
users to verify the soundness of a model’s performance, used
features, and inference assurance. To accomplish the goal of
DL model interpretability, researchers have investigated sev-
eral attribution approaches that aim to estimate the importance
of individual features to model inference [21-23].

Attempting to connect these two strands of research, Zhang
et al. [24] and Tsipras et al. [25] have reported that ex-
planations produced by adversarial robust models are more
interpretable than explanations generated by standard models.
Etmann et al. [26] and Ignatiev et al. [27] have investigated the
connection between adversarial robustness and interpretabil-
ity from a theoretical perspective. Others have attempted
to enhance model generalization by training models with
additional objectives that constrain the interpretability or ad-
versarial mask of a given input image [28-32]. Despite these
efforts, most of the DL research community has been split
between those who focus on increasing model robustness
through adversarial training and those who focus on model
interpretability as the path to model robustness.

However, even these studies tend to focus on input gradi-
ents or a single interpretability method, ignoring the variety
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of interpretability methods and the interpretability of inner
layers. Moreover, these studies rely on definitions of inter-
pretability that focus on the edges of the foreground object,
ignoring the possibility that the interior of the foreground
object may contain critical information. In this study, we
delve deeper into these questions by combining adversarial
robustness and model interpretability in a manner that enables
us to answer two important questions quantitatively. The first
is whether adversarial approaches impact input attribution dis-
tributions across the foreground and background information.
The second is whether competing input attribution methods
can be benchmarked in relation to human vision.

Within the context of the image classification task, our
analyses demonstrate that models trained with similar training
approaches yield correlated interpretability maps regardless of
model architecture. In contrast, models trained with different
training approaches yield uncorrelated interpretability maps.
Additionally, by evaluating the signal (typical input attribution
of the foreground features) to noise (typical input attribution
of the background features) ratio and correlating it to model
confidence, we are able to identify the most reliable input at-
tribution approaches and demonstrate that adversarial training
does increase prediction robustness.

II. METHODS AND DATA

We focus here on convolutional neural networks (CNN) for
image classification since this is a paradigmatic task in DL,
specifically the ResNet [33], PreActResNet [34], and Google
Inception [35] architectures.

ResNet introduces the concept of residual connection, and
instead of learning the mapping from input to output, it learns
the residual mapping (i.e., the difference between input and
output), which allows training deeper models with hundreds
of layers without the vanishing gradient problem. The model
PreActResNet is an improvement over the ResNet architec-
ture by incorporating the concept of preactivation residual
blocks. In these blocks, the batch normalization and activation
functions (i.e., ReLU) are applied before the convolutional
layer rather than after. Still, the overall architecture structure
remains the same as the original ResNet blocks. Following
another direction, the Google Inception Network (also known
as the Inception Network or Googl.eNet) proposed the incep-
tion modules, which consist of multiple parallel convolutional
layers with different filter sizes. These parallel modules allow
the model to capture features at multiple scales and resolutions
within a single layer.

As shown in Fig. 1(a), we consider four CNN training
methods: two classic training—Adam [36] and stochas-
tic gradient descent (SGD) [37,38]—and two adversarial
training—fast gradient sign method (FGSM) [15] and pro-
jected gradient descent (PGD) [16]. For each CNN model, we
obtained input attribution using six widely used interpretabil-
ity methods—guided Grad-CAM [22], guided backpropaga-
tion [23], Grad-CAM [22], saliency [21], integrated gradients
[39], and input x gradient [40]. Input attribution approaches
produce attribution matrices with the same dimensions as the
input. Each attribute matrix value estimates how important the
corresponding input feature is to the CNN model’s decision.
We have used the feature attribution maps as the primary

visualization. From this visualization, we can compare if
two different trained models distribute their feature impor-
tance similarly. We used the original images from the test
set of every dataset to preserve the data distribution. We per-
formed no data deformation such as stylize, saturate, or patch
shuffle [24].

In order to quantify the similarity of the importance of each
input across CNN models, we calculated Spearman’s rank
correlation of the input attribution matrices across all pairs of
CNN models.

We replicated all our analyses on three datasets: 5000 train
and 8000 test images with a resolution of 96 x96 from STL-10
[41] classified into 10 classes (airplane, bird, car, cat, deer,
dog, horse, monkey, ship, and truck), 60 000 train and 10000
test images with a resolution of 32x32 from CIFAR-10 [42]
classified into the same 10 classes, and 21 000 train and 5000
test images with a resolution of 224x224 from RIVAL-10
[43], again classified into the same 10 classes.

A. Adversarial Training

Adversarial training boosts the robustness of machine
learning models by intentionally exposing them to adversarial
examples during training. This process not only teaches the
model to identify and correct vulnerabilities but also promotes
the learning of more efficient and robust features. As a result,
models become less sensitive to minor variations and more
capable of generalizing across the training data set. In this
work, we evaluated two adversarial training techniques: the
FGSM and PGD. Goodfellow et al. [15] proposed the FGSM
approach to generate adversarial attacks. It involves calculat-
ing the gradient of the loss function with respect to the input
vector and obtaining the signs (direction) of each dimension
of the gradient vector. The authors argue that the gradient
direction is more important than the specific point of the gra-
dient because the space of the input vector is not composed of
subregions of adversarial attacks. As suggested, an alternative
to make the model robust is to add adversarial samples in the
training. In Eq. (1), we present the FGSM adversarial training
cost function. Given a standard loss function, J, the input
vector x, the label y for input x, and the model parameters
0, FGSM updates the loss as

JO,x,y)=alt@,x,y)
+ 0 —-w)JO,x+e O sign(V,J(,x,y))).
(1

The first term computes the loss of the model when supply-
ing the original input vector x, while the second step computes
the loss of the model when supplied an adversarially generated
transformation of x, that is, x + € © sign(V,J(8, x,y)). No-
tice that € is a random vector with the same dimension as x.
As FGSM generates adversarial noise based only on gradient
directions, Madry et al. [16] proposed the PGD method. They
approached adversarial attacks from a min-max perspective,
specifically aiming to recognize and defend against the class
of attacks they face:

mem p6), where p(0)= E
(

[max J@,x+6,y)].
x,y)eD €S

@
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FIG. 1. Do different CNN models focus on different features for determining image classification? (a) Schematic diagram of the
experimental pipeline for evaluating the importance of different features on distinct CNN deep learning models. (Step 1) For every selected
image in the three datasets considered, we train four learning models that use either classical or adversarial training approaches (Step 1).
[Step 2 and (b)] We then use six input attribution approaches to compute the importance of each feature for each of the four learning models.
For all attribution approaches, the feature attributions are significantly more similar between adversarially trained models (FGSM and PGD)
than between classically trained models. (Adam and SGD). [Step 3 and (c)] Finally, we calculate Spearman’s rank correlation of the values
in the two input attribution score matrices to determine the similarity of feature attributions obtained from the distinct learning models. The
correlation matrices make it visually apparent, for this image, that input attribution scores for every attribution method considered are more
similar for models that use the same training approach than for models that use distinct training approaches.

making the model robust to max attacks. The authors suggest
PGD is a first-order universal attack, as it is the most challeng-
ing attack using only first-order information. A limitation of

Here, the max part pursues adversarial noise that maxi-
mizes the loss function J when added to the input vector,
while the min term seeks to minimize the loss function J, thus
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the PGD method is its high computational cost as it requires
multiple calculations of the function’s gradient to find the max
attack.

B. Interpretability methods

Interpretability methods aim to unravel the internal logic of
the machine learning models. These methods seek to explain
the model’s decisions by identifying which input character-
istics are most influential. Saliency maps achieve this by
calculating the gradients of the model output relative to the
input, highlighting the areas that, if changed, would most
affect the output. Given an output score i from a model f, it
calculates the absolute value of the gradient V f(x). to obtain
the importance of each position in x for the i output for the
model f.

Guided backpropagation filters these gradients and focuses
only on positive contributions to provide a more unambiguous
picture of each aspect of the input that most contributes to the
output. Additionally, Grad-CAM can be implemented at the
convolutional layers level.

Another gradient-based approach was developed by Sun-
dararajan et al. [39]. Their IG method is based on an axiomatic
approach. The authors proposed that any adequate inter-
pretability methods must obey two conditions: sensitivity and
implementation invariance . Given the input vector of interest
x and the baseline vector x’, IG estimates the importance I of
an input feature by accumulating the gradients of all points on
the straight line between the baseline vector and the vector of
interest:

1 oF / -
Ii:;:(xi—x;)x/ Whex@=x),, 3
a=0 ox;

Due to the computational cost of implementing Eq. (3),
in practice, one implements an approximate version. In this
version, m is the number of points between the baseline vector
and the vector of interest, which also represents the number of
steps in the Riemann integral approximation

— X, e OF (X + £ x (x—x)
Iiapprox. - u x Z m ) 4)
m P ox;

Although the IG method presents interpretability maps with
little noise compared to other purely gradient-based methods,
it has two important limitations. First, it requires the (sub-
jective) choice of the baseline [44]. Second, it requires the
(subjective) selection of a number m of points on the line that
will calculate the gradient to be accumulated.

III. RESULTS

A. Impact of adversarial training on feature importance

In Fig. 1(b), we show the 24 input attribution matrices for
the image obtained from each pair of training approach X
attribution method. It is visually apparent that input attribu-
tion matrices obtained with the same attribution approach and
the same type of CNN training method appear more similar.
We quantify this hypothesis by calculating Spearman’s rank
correlation between attribution maps obtained from two dif-
ferent models for the same attribution method [bottom row
of Fig. 1(b)]. We use Spearman’s rank correlation to compare
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FIG. 2. Input attribution scores for every attribution method
considered are more similar for models that are trained using an
adversarial approach. (a) We calculate the average (over all images
in each of the two datasets considered) of the correlation matrices
shown in Fig. 1(c). As suggested by the data in Fig. 1(c), the cor-
relations are stronger between models trained for models that use
the same training approach than for models that use distinct training.
However, when considering the average across thousands of images,
we see that models trained using adversarial approaches yield sig-
nificantly more correlated input attribution scores than modes using
classical training approaches. This finding is consistent with the in-
terpretation that adversarial training decreases the impact of shortcut
learning [45]. (b) We compare the correlation matrix between the
different PGD models’ architecture interpretability. It shows a strong
correlation even for different architectures.

two attribution maps according to the pixel order of impor-
tance, as it can capture any monotonic correlation, not just
linear correlations.

Next, we check whether the results shown in Fig. 1 are
robust across all images in the three datasets and across
the model architecture. In Fig. 2, we show the average of
the Spearman correlation across all images from each of the
datasets considering six attribution methods. It is visually
apparent that across the six attribution methods, (i) adversarial
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methods produce attribution matrices that are not strongly
correlated with those obtained from standard methods, (ii)
different adversarial training approaches produce attribution
matrices that are more strongly correlated than those obtained
from models trained with classic methods, and (iii) different
architectures trained using the same strategy produce attri-
bution matrices that are strongly correlated. Thus, we can
conclude that adversarial training impacts the importance of
features in a significant manner regardless of the attribution
method or the model architecture being considered. While
prior works have explored the impact of adversarial training
in model interpretability, none have addressed this correlation
between different adversarial models as our study. This under-
scores the novelty and significance of our research in pushing
the boundaries of understanding in this domain.

B. Relative foreground and background feature importance

Next, we investigate whether adversarial training ap-
proaches are able to force the model’s training to focus on
features of the image that are likely to be important. In order
to answer this question, we note that all of the images in
these three datasets can be seen as having a foreground (the
object being classified) and a background (the rest of the
image). This characteristic allows us to pose the question:
Do adversarially trained models assign greater importance to
foreground pixels than traditionally trained models?

This question is equivalent to asking whether these models
are right for the right reasons (RRR) [46—48]. RRR is a neces-
sary property for developing robust machine learning models.
RRR models learn which features provide for good perfor-
mance instead of merely focusing on high performance that
could be achieved based on spurious patterns [49]. To investi-
gate this matter, we separated all images in the STL-10 corpus
into three groups based on model inference confidence: low
(p < 0.5), intermediate (0.5 < p < 0.9), and high (p > 0.9).
We then selected 40 images from each of the 10 categories for
each of the model inference confidence groups. Finally, we
manually built foreground masks for those 1200 images (see
Fig. 3 for four examples). The masks enable us to separate the
foreground from the background when analyzing the attribu-
tion matrices obtained for a given set of architecture, training
strategy, and attribution method.

Figure 3(d) displays the survival function—defined as one
minus the cumulative distribution function—of input attri-
bution values obtained using the IG method, separated by
foreground and background, for the PGD (adversarial) and
Adam (classical) trained CNN models. It is visually appar-
ent that the distributions decay the fastest (slowest) for the
background (foreground) pixels when using the adversarial
training method. Comparing adversarial to classical training
reveals that the greatest difference is in how adversarial train-
ing leads to a reduction of the attribution score associated with
background pixels.

To systematically quantify signal and noise, we separately
calculate the mean attribution value of input pixels from
the foreground and background regions. We then calculate
the signal-to-noise ratio for each (image, CNN model, and
attribution method) triplet. Figure 4 shows boxplots of signal-
to-noise ratios (in decibel units) for the Adam (classical) and

PGD (adversarial) trained models according to six attribution
methods.

We find that the signal-to-noise ratio is higher for PGD-
trained models for all attribution methods except for guided
backpropagation. Additionally, for the PGD-trained model,
we find that the signal-to-noise ratio increases with inference
confidence for all models except, again, for guided backprop-
agation. Indeed, this increase is statistically significant for the
saliency, integrated gradients, and input X gradient attribution
methods, suggesting that these three attribution methods may
reliably identify RRR models.

Even though the experimental conditions are quite differ-
ent, our results could potentially be interpreted as contra-
dicting the conclusions of two recent studies. Moayeri et al.
[43] have reported that adversarially trained models are more
sensitive to background information than foreground informa-
tion when compared to classically trained models. However,
they provide no uncertainty estimates for any of the results
they display in Fig. 2, raising questions about the statistical
significance of the conclusions drawn, especially because they
appear not to have tested as many parameter values for adver-
sarially trained ResNets.

Zhang and Zhu [24] used computational experiments to
quantify the sensitivity of adversarially trained CNNs to
texture and shape distortions. Their study suggests that adver-
sarially trained CNNss are less sensitive to texture distortions
and that their robustness appears to be associated with their
ability to extract geometric features, such as shape and con-
tours. Our findings (Figs. 3 and 4) align with Zhang and
Zhu’s conclusions. Our analyses further suggest that adver-
sarially trained CNNs learn to localize the foreground within
an image. We speculate that this learning is achieved be-
cause of texture differences between the background and
foreground, which results in learning the location of the
boundary.

C. Revealing the attribution within the hidden layers

The typical DL model comprises several layers [33], but
when evaluating adversarial attacks or interpretability maps,
researchers focus primarily on the input-to-output or output-
to-input path information even though the model’s inference
relies on the transformations occurring within the interme-
diate (hidden) layers. To investigate the extent to which
attribution scores transform across successive layers, we use
the IG attribution method to build input attribution matrices
for each intermediate layer. Since models with different ar-
chitectures but trained using the same approach are already
strongly correlated at the input level, we compare here results
for a single architecture—PreAct ResNet—but different train-
ing approaches [Fig. 5(a)]. For adversarially trained models,
the correlations between attribution maps, which start from a
high level for the input, continue to increase moderately with
successive layers. In contrast, for classically trained models,
the correlations between attribution maps increase dramat-
ically with successive layers reaching correlation strengths
similar to those observed for the final layers of adversarially
trained models [Fig. 5(b)].

Confirming our earlier results that training strategy is more
important than model architecture, we find that all three

054310-5



SANTOS, ZANCHETTIN, LEI, AND NUNES AMARAL

PHYSICAL REVIEW E 110, 054310 (2024)

Truck

(a) Airplane

Image

Deer Horse

(b)

Object Mask

(c)

ship 0.99
truck -
car 1.0 1.0
airplane ——
bird 4 1.0
monkey -
cat -
dog
deer
horse -

Model Output

0.84

T T
0.0 0.5 10 0.0 05
(d)

10°
10°!
1072

1073

Survival function value

1.0 0.0 0.5
Softmax

T T T

=== Adam (Foreground)
= Adam (Background)

PGD (Foreground)

PGD (Background)

1074

T T T
1.0 0.0 0.5 0.5 1.0
Integrated Gradients attribution score

FIG. 3. Deep learning image classification models using adversarial training approaches attribute higher importance to features that fall
within an image’s foreground. (a) Four selected images from the STL-10 corpus show an airplane, a truck, a deer, and a horse. (b) We manually
construct foreground masks for these four images and an additional 1,196 images (not shown). (c) Softmax logits expressing the likelihood of
the image belonging to one of the 10 possible classes. (d) Distribution of input attribution scores obtained using the IG method for features
within the foreground mask (full lines) and outside the foreground mask (dashed lines) for models trained using the PDG (orange, adversarial)
and Adam (blue, classical) training methods. The different decay rates of the survival functions demonstrate that, for these four images, PGD
consistently attributes the highest importance to pixels that fall within the foreground mask and the lowest importance to pixels that fall outside

the foreground mask.

studied architectures exhibit similar interpretability maps at
intermediate and deep layers [Fig. 5(c)]. Under the hypothe-
sis that the interpretability maps obtained with IG capture a
model’s inference process, our findings suggest that both the
intermediate and deep layers of different architectures trained
with PGD converge in their focus for inference.

Goodfellow et al. [15] suggested that adversarial training
is similar to L? regularization in a single-layer logistic re-
gression model. Thus, we test the hypothesis that adversarial
training produces low weights in the first layers to make the
model robust to adversarial changes in the inputs. We apply
L? regularization to each layer of the model individually and
find that penalizing the gradient of the loss with relation to
the input vector [50] yields the most robust model against
the FGSM attack (Table I). Additionally, we also find that
when we penalize only the weights of the first layer, the
model achieves adversarial robustness that is at least twice as

large as when we regularize the deeper layers, supporting our
hypothesis.

TABLE 1. Evaluation of the layer-regularization scenario with
the CIFAR-10 dataset. In the Layer column, the Conv. L informs
that L2 regularization was applied only on layer L. The x grad value
suggests that we regularize the input gradient, as proposed in [50].

Model Layer Training Accuracy Testing Accuracy FGSM
CNN X grad. 85,91 84,39 51,24
CNN  Conv. 1 88,13 81,51 36,44
CNN  Conv.2 86,61 82,05 18.18
CNN  Conv. 3 86.86 83.98 15.61
CNN Conv. 4 87.02 84.77 11.31
CNN  Conv.5 90.41 86.82 13.54
CNN  Conv. 6 91.91 87.08 15.44

054310-6



ADVERSARIAL TRAINING AND ATTRIBUTION METHODS ...

PHYSICAL REVIEW E 110, 054310 (2024)

PreAct ResNet-18 ResNet-34 GoogleNet
40 7 - 304 40 1
30 o i
<EC Egk sk ns 20 - sk 30
&) 20 4
<
£
|©) 10 A
0 -
T T T
40 ns
kg
<EE 30 ~ ) . .
o ns ns ns
F 20
|G)
B 10 A
=1
=
O 0 L ‘ T .
T T
o 40 7
S .
5 30 A i - 30 - -
§ ook 20 ns ns
E« 20 7 ns ns ns
P 10
& 10 A
=
] 0
- e % 1 —_— %
6]
T T T
40 4 30
30 o ns 30 A
g‘ sk 20 - ok
2 ns
2 20 1 sk Hk otk 20 4 ns
= .
3 10 4 . ns ns s e
'O_.‘r.;_‘r_;_‘r_; i S i "] i e et
0 s ke 0 i s i e 0 i i i B i
40 _ T T T 30 . T T 40 . T T T
o
% 30 4 ok * 30 A sk
§ Hxk 207 ns
5 207 B 20 1S
"8 ek esfeok EE ]O | ns ns ns sk
= 10 10 4
: | | et e I e e i 1
E (U e e . T i e U RN R i (U R S i B s .
40 - T T ] 30 o T T 40 - T T T
E 30 e ns 30 .
g o 20 4 kkx
s ns
O 20 1 k% Hkk k% s s 20 4 ns
> 10 + ns ns ok
= 10+ ; I ; 10
E“
04 i i s i s S RS R i 04 E """ =
T T T T T T T T
[0,0.5) [0.5,0.9) [0.9, 1.0] [0,0.5) [0.5,0.9) [0,0.5) [0.5,0.9) [0.9, 1.0]
Softmax B Adam [ PGD

FIG. 4. Deep learning image classification models using adversarial training approaches have greater signal-to-noise ratios for higher
confidence inferences. This panel presents the results for three architectures (i.e., PreActResNet-18, ResNet-34, GoogleNet). We define signal
as the mean input attribution score of pixels inside the foreground image. We select 1200 images from the STL-10 corpus so that we have
the same number of images for each of three inference confidence scores: low confidence (0,0.5), intermediate confidence (0.5, 0.9), and high
confidence (0.9, 1). Each of the six panels shows box plots of the signal-to-noise ratios (measured in dB) for the input attribution scores obtained
using the labeled input attribution approach and trained either using the Adam (blue, classical training) or PGD (orange, adversarial training)
methods. We determine the statistical significance of the differences between cases using a one-tailed student’s t-test. We use the convention
* for 0.01 < p < 0.05, ** for 0.0001 < p < 0.01, and *** for p < 0.0001). It is visually apparent that the saliency, integrated gradient, and
input X gradients input attribution methods display RRR behavior, whereas Grad-CAM, Guided Grad-CAM, and guided backpropagation

do not.
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FIG. 5. Adversarial training impacts the most the weights of the first layer. The PreAct ResNet implementation comprises a convolutional
layer followed by four residual blocks. Given an input image, the model performs the forward step (black arrows). Next, it back-propagates the
interpretations (red arrows) to the first layer. (a) We use the IG method to obtain input attribution score matrices and attribution score matrices
for residual blocks 1 to 4. (b) We calculate the average correlation between attribution matrices for models trained using identical approaches
(adversarial, orange, or classical, blue). It is visually apparent that adversarially trained models already display high degrees of correlations in
their attributions scores for first block values. In contrast, classically trained models only reach large correlations for the final block (the green
arrows highlight the decreasing difference in the average correlations with the block index). (c) For each architecture, we compute the PGD
model’s interpretability for every image of the RIVAL-10 dataset and evaluate the correlation between them. The results show that different
architectures trained with PGD on RIVAL-10 produce correlated interpretability maps.

IV. DISCUSSION

Superhuman performance using DL approaches has been
reported frequently in various contexts. However, the reasons
for such high performance are not well understood. Despite
this lack of deep understanding, evidence is building up that
some/much of that performance is achieved through short-
cut learning—so-called Clever Hans moments. In shortcut
learning, the models learn irrelevant (to humans and to the
general task) but effective artifacts in the training dataset
[12,13,51]. While it has been claimed that this is different
from human learning, it may not be so. Indeed, there is
wide-ranging literature in behavioral economics about envi-
ronmentally fit heuristics [52] and what has been denoted as

fast thinking [53]. In fact, DL models may be the ultimate
builders of dataset-centered successful heuristics. The number
of parameters that can be fitted creates the sort of astonishing,
but ultimately barren, memorization captured so effectively
by Jorge Luis Borges in Funes the Memorious [54]. This
brings us to a major concern that potential users in high-stake
domains must consider. While heuristic shortcuts can be in-
credibly effective, they have clear weaknesses and can result
in catastrophic failure.

Our study contributes to understanding the conditions un-
der which specific DL models may fail catastrophically. Both
adversarial training and input attribution methods have been
proposed separately to address the known fragility of DL
models. While adversarial training can increase model robust-
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ness [15,16], it lacks the transparency to demonstrate whether
improvements are not due to other artifacts. By exploiting the
strengths of each of these approaches, we learn two very im-
portant insights. First, the saliency, IG, and Input X Gradient
methods do a good job of capturing the features found to
be important by a DL model, but other attribution methods
do not. Second, adversarially trained models assign more im-
portance to image foreground features (signal) than to image
background features (noise).

Building on this understanding, consider a binary linear
classifier F(x) =sign(¥(x)), where W(x)= (x,z) with
z#0, Etmann et al. [26] demonstrated a connection
between the adversarial robustness of F' and the alignment
between the input image x and the layer weights z (which
directly impact the saliency map V,W). Specifically, they
found that a higher alignment between the weights z and
the input image x contributes to an increased adversarial
robustness in the model. This result suggests that a model
that exhibits adversarial robustness generates saliency maps
that better align with the input image x (see Appendix for
the mathematical details). Consequently, if we consider two
different models demonstrating similar adversarial robustness
to the same input image, they will generate saliency maps
that are better aligned with one another. Thus, we expect
that models sharing an architecture but trained with different
adversarial attack methods yield correlated interpretability
maps. Indeed, the results of Etmann ef al. [26] suggest that
even models with different architecture and trained with
different adversarial strategies but with close adversarial
robustness will still yield correlated interpretability maps.

Finally, our work opens several new directions for promot-
ing more robust DL models. First, while we do not explore
the impact of adversarial training on vision transformers [3],
we have no doubts that our approach can be generalized to the
context of vision transformers. This generalization, however,
requires the application of attribution formulations that are
specific to transformers [55]. Second, there is a clear need to
benchmark the new input attribution methods that are being
proposed. While not a complete benchmarking approach, our
study provides a roadmap for the benchmarking of attribution
methods based on evidence that the model is learning the
justifiably important features.

The STL-10 dataset is available at [56], the CIFAR-10
dataset is openly available, and the RIVALI1O0 is available at
[57]. Images used to investigate the foreground and back-
ground of this study are available at [58].

The code to reproduce the results and figures in this study
is available at [58].
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APPENDIX

This Appendix presents the complete results of the exper-
iments and the results of all evaluated attribution methods.
In addition, we also present the training hyperparameters and
standard evaluation of each model.

1. Models setup
a. Training parameters

Table II presents all the hyperparameter values and the
learning rate schedule. We have chosen the values of the hy-
perparameters based on [59]. Furthermore, we have optimized
the tradeoff between keeping the hyperparameters with equal
value within each dataset scenario as much as possible and
producing a model with competitive accuracy. Therefore, the
batch size and the number of epochs are equal.

b. Standard evaluation

The columns Test Acc and FGSM from Table II present the
results obtained from each model in the datasets CIFAR-10,
STL-10, and RIVAL10. As expected, the classically trained
models have better results than the adversarially trained mod-
els in the standard evaluation [25]. However, the adversarially
trained models are more robust to adversarial attacks.

In order to enhance our conclusions about the correlation
analysis, we extend it to two additional architectures, namely
ResNet-34 and GoogleNet. Figure 6 displays the correlation
matrices for the ResNet-34 and GoogleNet architectures. The
results demonstrate that the correlation scores are consis-
tently higher among adversarial robust models compared to
nonadversarial ones, thus confirming the alignment with our
previously reported findings in the paper.

The layer-by-layer analysis revealed that adversarial train-
ing has a significant impact on the first layer of the
PreActResnet-18 model. To further validate this observation,
we conducted additional experiments on the GoogleNet and
ResNet-34 architectures and presented the results in Fig. 7
in this Appendix. The findings indicate that adversarial train-
ing predominantly affects the initial layers of ResNet-34 and
GoogleNet, thus being coherent with the findings in the paper.

2. Analysis of the interpretability maps correlation
between different architectures

In Fig. 2(b) we showed that different PGD models’ archi-
tecture produces strongly correlated interpretability maps. In
order to present the complete results, we extend this analy-
sis for all training approaches (i.e., Adam, SGD, PGD, and
FGSM) in Fig. 8. The complete results show that for each
interpretability method that computes attribution maps with
relation to the input rather than intermediate layers (i.e., all
methods except Grad-CAM), the correlations between dif-
ferent architectures trained using the same adversarial attack
method are consistently higher than the corresponding cor-
relations between architectures trained using nonadversarial
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FIG. 6. Adversarial trained models have more correlated interpretability maps than non-adversarial. The plot is organized in three grids
of results, the top one is for the STL-10 dataset, while the middle is for CIFAR10 and the bottom is for RIVAL-10. The findings in the paper
extend to other architectures, such as ResNet-24 and Google Inception, for almost all cases.

054310-10



ADVERSARIAL TRAINING AND ATTRIBUTION METHODS ...

PHYSICAL REVIEW E 110, 054310 (2024)

TABLE II. Hyperparameters values to models training. Each row represents the training settings for each model. The alpha and epsilon are
hyperparameters related to adversarial training, and the attack iters represent the number of iterations used in the PGD method. The cells with
no value suggest that the training method does not need this parameter. The columns FGSM present the results obtained from the adversarial

robustness evaluation.

Training Architecture Dataset Batch Epochs Alpha Epsilon LR Test FGSM
Approach size Acc Acc
SGD PreAct-18 CIFAR-10 128 50 0.2 94.41 0.0
Adam PreAct-18 CIFAR-10 128 50 0.005 92.82 0.0
FGSM PreAct-18 CIFAR-10 128 50 0.16 0.13 0.2 85.67 45.19
PGD PreAct-18 CIFAR-10 128 50 0.03 0.13, iters 10 0.2 83.39 50.68
SGD GoogleNet CIFAR-10 64 100 0.04 90.40 22.6
Adam GoogleNet CIFAR-10 128 100 0.0001 90.91 6.21
FGSM GoogleNet CIFAR-10 128 100 0.16 0.13 0.01 77.22 48.73
PGD GoogleNet CIFAR-10 128 100 0.03 0.13, iters 10 0.01 86.12 55.47
SGD ResNet-34 CIFAR-10 128 100 0.05 90.41 12.36
Adam ResNet-34 CIFAR-10 128 100 0.0015 93.02 14.30
FGSM ResNet-34 CIFAR-10 128 100 0.16 0.13 0.05 86.28 33.60
PGD ResNet-34 CIFAR-10 128 100 0.03 0.13, iters 10 0.0015 83.16 54.88
SGD PreAct-18 STL-10 32 50 0.2 81.81 0.0
Adam PreAct-18 STL-10 32 50 0.0015 82.55 0.0
FGSM PreAct-18 STL-10 32 50 0.16 0.13 0.2 72.76 37.58
PGD PreAct-18 STL-10 32 50 0.03 0.13, iters 10 0.2 71.30 40.79
SGD GoogleNet STL-10 32 100 0.005 80.05 17.91
Adam GoogleNet STL-10 32 100 0.0001 86.41 0.02
FGSM GoogleNet STL-10 32 100 0.16 0.13 0.01 75.40 38.16
PGD GoogleNet STL-10 32 100 0.03 0.13, iters 10 0.01 72.10 40.13
SGD ResNet-34 STL-10 32 100 0.005 78.55 4.71
Adam ResNet-34 STL-10 32 100 0.0015 85.74 2.85
FGSM ResNet-34 STL-10 32 100 0.16 0.13 0.005 72.73 34.31
PGD ResNet-34 STL-10 32 100 0.03 0.13, iters 10 0.005 80.29 37.04
SGD PreAct-18 RIVAL-10 128 100 0.01 83.31 7.56
Adam PreAct-18 RIVAL-10 128 100 0.0001 86.80 8.97
FGSM PreAct-18 RIVAL-10 128 100 0.16 0.13 0.01 74.14 38.81
PGD PreAct-18 RIVAL-10 128 100 0.03 0.13, iters 10 0.01 77.53 42.04
SGD GoogleNet RIVAL-10 128 200 0.01 84.54 7.08
Adam GoogleNet RIVAL-10 128 200 0.0015 87.42 6.41
FGSM GoogleNet RIVAL-10 128 100 0.16 0.13 0.015 72.80 37.70
PGD GoogleNet RIVAL-10 128 100 0.03 0.13, iters 10 0.01 76.88 43.27
SGD ResNet-34 RIVAL-10 128 200 0.01 82.99 10.06
Adam ResNet-34 RIVAL-10 128 200 0.0001 88.42 11.93
FGSM ResNet-34 RIVAL-10 128 100 0.16 0.13 0.02 74.57 37.59
PGD ResNet-34 RIVAL-10 128 100 0.03 0.13, iters 10 0.01 74.54 37.91

methods (i.e., Adam or SGD). This finding is coherent with
the present in the paper on Fig. 2(b).

3. On why adversarial robust models produce
correlated interpretability maps

To elucidate the implications of our experimental findings
and provide a more nuanced understanding, we build here on
the work by Etmann et al. [26] regarding the robustness of a
binary linear classification model. Our analysis enables us to
demonstrate a connection between the saliency map obtained
from two different models, which are both adversarially robust
to the same input vector x. For concreteness, we focus on
saliency map interpretability.

We start by recalling Etmann ef al.’s definitions. [26]
Definition 1. Let F : X — C with C finite, be a classifier
over the normed vector space (X, || - ||). We call

p(x) = inf{lle]l : F(x +e) # F (0}, (AL)

the (adversarial) robustness of F for input x, and call
E.plp(x)] the (adversarial) robustness of F over the distri-
bution D.

Definition 2. Let the binary classifier F : X — {—1, 1} be
defined almost everywhere (a.e.) by

F(x) =sign(¥(x)) = sign({x, z)), (A2)
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where W : X — R is differentiable in x. We call VW the
saliency map of F with respect to W in x, and call

|(x, VW)
ax) = ————>—, (A3)
V&)l
the alignment with respect to W in x.
Etmann et al. [26] demonstrated that
[x, 2 [(x, VW)
p(x) = = = llxll - lcos(®)I, (A4

VLWl

where § is the angle between the vectors x and VW . These
results show that the adversarial robustness in an input vector
x depends on the alignment between the linear model weights
z (which directly impact the saliency map VW) and the input
vector x.

From these results, we can easily derive a relationship be-
tween the saliency maps of two linear binary models. Consider
two binary linear models

F!' =sign(W'(x)) and F? = sign(¥%(x)).

llzIl

(A5)

If both have robustness in regard to an input vector x of
approximately p(x), then it follows from Eq. (A4) that

|<~xa Vx\ll1>| |<x7 VX\IJZH
px) = lIx] - ———— = |lx]| - —————= + €, (A6)
EIRAA ERAZ
and
[(x, Vo Uh | (x, Vo 02)
— —ex 1. (A7)
A |V, 02|

Both models must also fulfill the condition that the an-
gle & between the vector x and their saliency maps must be
in the interval [0°, 90°). It follows that (x, V,W!) > 0 and

(x, V,W?) > 0. This enables us to pull the x out of the cor-
relation calculation

( AR\ vV, w2 ) <1
X - — = € .
VL Vw2

For this equation to hold for all vectors x, then the term inside
the parentheses must be close to zero, and the two salience
maps must be approximately the same:

(A8)

v, e v,
AAXN VAT

(A9)

This argument shows that two models with similar ad-
versarial robustness will produce similar salience maps.
Connecting this result to the finding that different architec-
tures trained with either the PGD or the FGSM approaches
have similar adversarial robustness (Table II) allows us to
understand why a continuum of similarities of adversarial
robustness produces a continuum of degrees of correlations
of attribution maps. The question remains, though, of why
different models trained using classical methods do not dis-
play strong correlations across interpretability methods. The
results above suggest that this may be due to the possibility
that the weights for two different classically trained models
are not as well aligned as the weights for two different ad-
versarially trained models. That is, classically trained models
attain similar performance with very different sets of weights,
whereas adversarially trained models converge to more sim-
ilar sets of weights. While this is an important insight that
deserves greater attention, it is beyond the scope of the current
manuscript.
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