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Abstract

The double oracle algorithm is a popular method
of solving games, because it is able to reduce
computing equilibria to computing a series of
best responses. However, its theoretical proper-
ties are not well understood. In this paper, we
provide exponential lower bounds on the perfor-
mance of the double oracle algorithm in both
partially-observable stochastic games (POSGs) and
extensive-form games (EFGs). Our results depend
on what is assumed about the tiebreaking scheme—
that is, which meta-Nash equilibrium or best re-
sponse is chosen, in the event that there are multi-
ple to pick from. In particular, for EFGs, our lower
bounds require adversarial tiebreaking, whereas
for POSGs, our lower bounds apply regardless of
how ties are broken.

1 Introduction

The double oracle algorithm [McMahan et al., 2003] is a pop-
ular practical framework for solving large games. It works by
maintaining a meta-game comprised of a set of policies for
each player, computing a meta-Nash equilibrium of the meta-
game, and then computing best responses to that meta-game
and adding those best responses to the meta-game for the next
iteration. In essence, it reduces solving multi-player games
to solving a series of small meta-games, which are easy, and
best-response problems, which are single-player games. The
method (or, more specifically, variations on the deep gener-
alization of it, in which the best responses are replaced with
deep RL-based approximate POMDP solvers, commonly re-
ferred to as a special case of the policy-space response or-
acle [Lanctot et al., 2017] algorithm), has been successfully
applied to large, two-player zero-sum games such as Barrage
Stratego [McAleer et al., 2020] and StarCraft [Vinyals et al.,
2019]. In practice, the algorithm tends to converge very fast:
even in games far too large to enumerate the state space, only
tens or hundreds of iterations are required to reach strong
play.

However, to our knowledge, the theoretical properties of
double oracle are almost completely unstudied. Indeed, the
lack of an efficient convergence guarantee has led to several

variants of double oracle being developed which do have ef-
ficient convergence guarantees, most notably the sequence-
form [Bošanskỳ et al., 2014] and extensive-form double or-
acle [McAleer et al., 2021] algorithms. In extensive-form
games, both of these algorithms are guaranteed to con-
verge in a number of iterations polynomial in the size
of the game. Another variant of double oracle, self-play
PSRO [McAleer et al., 2022] has also been developed that
adds randomized policies to the meta-game, in the hopes that
such policies lead to faster learning. In this paper, however,
we focus on the plain version of the double oracle algorithm.1

We derive several different partially-observable stochas-
tic games (POSGs) in which double oracle takes exponen-
tially many iterations to converge. The games differ in their
structure and in what assumptions need to be made about
the choices left unspecified in the algorithm, namely, the
choices of initialization, meta-Nash equilibria, and best re-
sponses. For example, if all choices are random then we
give a partially-observable stochastic game with an expo-
nential convergence bound (Theorem 3.2); if all choices
can be made adversarially, then we give a tree-form, fully-
observable game (Theorem 3.5). A summary of our results
can be found in Table 1.

2 Preliminaries

A two-player partially-observable stochastic game (POSG)
(hereafter simply game) consists of the following elements:2

1. A finite state space S, action spaces A1, A2, and obser-
vation space O with |O| ≤ |S|;

1In multi-player general-sum games, especially when the game
is large enough that “best” responses are approximated with deep
reinforcement learning, generalizations and variants of the double
oracle algorithm have been studied under the name policy space re-
sponse oracle (PSRO) [e.g., Lanctot et al., 2017]. In this paper, we
adhere to the more traditional name double oracle because we are
indeed working with the more “standard” two-player version of the
algorithm, not any generalization thereof.

2The definition used here is more restrictive than many common
definitions of POSGs. For example, many authors allow observa-
tions to be randomized, or action sets to depend on state, or rewards
to be given at nonterminal states and be action-dependent. But since
this whole paper concerns only lower bounds, adding restrictions
makes our results more powerful. It also simplifies our notation.
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2. a starting distribution S0 ∈ ∆(S);

3. a set of terminal states Z ⊂ S;

4. for each (s, a1, a2) where s ∈ S \ Z, a1 ∈ A1, a2 ∈ A2,
a probability distribution p(·|s, a1, a2) ∈ ∆(S) denoting
the probability of transitioning to the next state;

5. two observation function o1, o2 : S \ Z → O; and

6. two reward functions R1, R2 : Z → [−1,+1] denoting
the reward of P1 and P2 respectively, as a function of the
terminal state reached.

A game is zero-sum if R1 = −R2. We will make the as-
sumption that the game has a DAG structure: the transition
multigraph of the game—that is, the multigraph whose nodes
are the states and for which there is an edge (s, s′) for each
pair (a1, a2) ∈ A1 × A2 such that p(s′|s, a1, a2) > 0—is
directed and acyclic. Thus, the terminal states z ∈ Z are the
sinks of this DAG. We will denote the depth of the DAG by
k.

A pure policy for a player i ∈ {1, 2} is a mapping πi :
O≤d → Ai, where O≤d denotes the set of sequences on O
of length at most k. We denote by Πi the set of pure policies
of player i. A pair of pure policies (π1, π2) is a policy profile
or simply profile. A profile induces a distribution over the
terminal states Z of the game, given by sampling s0 ∼ S0 and
then following (π1, π2) until a state z ∈ Z is reached. We will
use z ∼ (π1, π2) to denote a sample from this distribution. A
mixed policy µi ∈ ∆(Πi) is a distribution over pure policies.
Given mixed profile (µ1, µ2), the expected value of player i
is

Vi(µ1, µ2) = E
π1∼µ1,
π2∼µ2,

z∼(π1,π2)

Ri(z).

Policy πi ∈ Πi is a best response to a mixed policy µ−i if

πi ∈ argmax
π′

i
∈Πi

Vi(π
′
i, µ−i).

An ε-Nash equilibrium is a profile (µ1, µ2) such that neither
player can improve by more than ε:

max
πi∈Πi

Vi(πi, µ−i)− Vi(µ) ≤ ε.

A Nash equilibrium is a 0-Nash equilibrium. In general, com-
puting a Nash equilibrium of a POSG is hard—indeed, even
solving POMDPs (i.e., POSGs where |A2| = 1) is PSPACE-
complete [Papadimitriou and Tsitsiklis, 1987]. It will be use-
ful to define several special cases of POSGs:

1. A (fully-observable) stochastic game is a POSG in
which both players observe the true state, i.e., S = O
and o1(s) = o2(s) = s.

2. A tree-form game is a POSG in which the transition
multigraph is a tree.

3. A normal-form game is a stochastic game with a sin-
gle nonterminal state (which is also the start state). A
two-player normal-form game is described by two ma-
trices V, V2 ∈ R

A1×A2 , where Vi(a1, a2) is the reward
to player i if P1 plays action a1 and P2 plays a2.

Any of the other forms can be converted into normal
form at the cost of a larger game: namely, any POSG is
equivalent to the normal-form game described by matrices
V1, V2 ∈ R

Π1×Π2 . This conversion, however, incurs doubly-
exponential blowup in the size of the game in general.

For zero-sum games, in each of the special cases, there
are polynomial-time algorithms for exactly computing a Nash
equilibrium: in the fully-observable case, one can perform
backwards induction (value iteration) starting from the leaves,
solving each state via a linear program; tree-form POSGs are
a subclass of extensive-form games, and Koller et al. [1994]
describe an LP-based method that runs in polynomial time.

2.1 The Double Oracle Algorithm

ALGORITHM 1: The double oracle algorithm.
NORMALFORMNASHEQUILIBRIUM returns an exact
Nash equilibrium to the normal-form game in which

each player picks a policy from its policy set Π̃i. BE-
STRESPONSE returns a pure policy that is a best re-
sponse to the given opponent policy.

1 Input: POSG, initial strategies π0
1 ∈ Π1, π

0
2 ∈ Π2,

2 desired Nash gap ε ≥ 0
3 Output: ε-Nash equilibrium (µ1, µ2) of the POSG

4 Π̃0
1 ← {π0

1}, Π̃
0
2 ← {π0

2}
5 for t = 1, 2, . . . do
6 µt

1, µ
t
2 ← Nash equilibrium of

7 normal-form game (Π̃t−1
1 , Π̃t−1

2 )
8 πt

1 ← P1 best response to µt
2

9 πt
2 ← P2 best response to µt

1

10 if Nash gap ≤ ε then return (µt
1, µ

t
2)

11 Π̃t
1 ← Π̃t−1

1 ∪ {πt
1}

12 Π̃t
2 ← Π̃t−1

1 ∪ {πt
2}

Pseudocode for the double oracle algorithm is given in Al-
gorithm 1. The algorithm is simple: it iteratively maintains

a meta-game (Π̃1, Π̃2), computes a meta-Nash equilibrium
(µ1, µ2) to that meta-game, computes best responses (π1, π2)
in the full game, and adds those best responses to the meta-
game. Double oracle clearly converges in a finite number of
steps: there are only a finite number of pure policies, and
each iteration of the main loop must add a pure policy to
at least one player’s meta-game policy set (if both best re-
sponses π1, π2 are already in the policy sets, then the Nash
gap would be 0).

The meta-game on iteration t is a t× t normal-form game.
For zero-sum games at least, as specified above, Nash equi-
libria can be easily computed in polynomial time via linear
programming [von Neumann, 1928]. Thus, the entire com-
plexity of Algorithm 1 lies in the best responses (which are
POMDPs) and the number of iterations t until the algorithm
terminates. For nonzero-sum games, Nash equilibrium com-
putation is in general hard [Chen et al., 2009]. However, we
will ignore these computational issues and focus our attention
on the number of iterations it takes for double oracle to con-
verge.



The double oracle algorithm is not affected by the game
representation. For example, running double oracle on a
POSG and running double oracle on the normal form of that
POSG would produce the same result. Therefore, for the rest
of the paper, we will call two games (strategically) equivalent
if they induce the same normal form.

3 Main Results

As suggested above, the main results in this paper are lower
bounds on the complexity of the double oracle algorithm. In
particular, we will give several game examples in which dou-
ble oracle, under various assumptions about the best response
oracle, fails to converge to an ε-equilibrium, for moderately-
sized ε, until t is exponentially large.

In general, a stochastic game may have no Nash equilibria
with small support. For example, consider the k-bit “gener-
alized matching pennies” game in which P1 picks a string
π1 ∈ {0, 1}k one bit at a time, and P2 simultaneously at-
tempts to guess that string, also one bit at a time, with P2
winning if and only if P1 and P2 guess the same string.

This game for k = 4 is depicted in Figure 1. Intuitively,
it is nothing more than a finite automaton that reads two
bitstrings a1, a2 ∈ {0, 1}k (interpreted as natural numbers
in {0, 1, . . . , 2k − 1}) in parallel, and outputs the reward
u(a1, a2) as specified by the normal-form game: that is, it
returns −1 if the strings are equal and +1 otherwise. This
proves:

Theorem 3.1. For every k ≥ 1, there exists a zero-sum fully-
observable stochastic game with O(k) nodes in which, re-
gardless of initialization, meta-Nash, or best responses, dou-
ble oracle takes 2Θ(k) iterations to find an exact equilibrium.

However, the “generalized matching pennies” game is not
ideal as a counterexample, for multiple reasons:

1. Polynomial-time approximation: While double oracle
fails to converge to exact equilibrium in polynomially
many iterations, it will converge to a ε-equilibrium in
O(1/ε) iterations: one can check inductively that, at
odd iterations, P1 will add an arbitrary new policy to

its support Π̃1, and P2 will add the same policy at the
next (even) iteration. Thus, after 2t iterations we will

have Π̃2t
1 = Π̃2t

2 and (µ2t
1 , µ2t

2 ) will be a 1/t-equilibrium.
This is still a reasonable convergence rate.

2. High support. As mentioned above, the game has only
high-support equilibria.

The main counterexamples in our paper will fix both of
these issues. In particular, all our counterexamples will be
families of games in which there is a Nash equilibrium with
constant support size, and yet double oracle fails to find any
ε-approximate equilibrium in poly(N, 1/ε) iterations, where
N is the size of the representation of the POSG. These coun-
terexamples are summarized in Table 1.

Theorem 3.2. For every k ≥ 1, there exists a zero-sum POSG
with O(k) states and a pure Nash equilibrium in which, in the
double oracle algorithm,

• the meta-Nash equilibria and the best responses are
unique on every iteration, and

• for ε constant, if the starting policies π0
1 , π

0
2 are chosen

uniformly at random3, then double oracle takes Θ(2k)
iterations in expectation.

Proof. The proof is based on a simple normal-form game that
we call the n-bigger-number game. In the n-bigger-number
game, each player’s action space is A1 = A2 = [n] :=
{0, . . . , n − 1}, and the rules are as follows. Both players
simultaneously select numbers ai ∈ [n]. If ai = aj , then
both players score 0. Otherwise, the player who plays the
bigger number scores 1, unless |ai − aj| = 1 in which case
they score 2.

We first analyze the behavior of double oracle in the n-
bigger-number game with random starting policies. For
each t, let M(t) be the largest number in the support of ei-
ther player’s policy set Πt

i . Then with constant probability,
M(0) ≤ n/2. Further, µt

1 is supported on {0, . . . ,M(t− 1)}.
Then the best response πt

2 to µt
1 is at most M(t − 1) +

1, because any number larger than t performs worse than
max supp(µt

1) + 1 ≤ t. Thus, M(t) ≤ M(t − 1) + 1 for
all t ≥ 1. Equilibrium can only be reached when M(t) = n,
because the only equilibrium of the game is (n, n). Therefore,
with constant probability, double oracle takes Θ(n) iterations,
and therefore the expected number of iterations for double or-
acle is also Θ(n).

We now show that the n-bigger-number game, for n = 2k,
is equivalent to a POSG with O(k) nodes, which would com-
plete the proof. Consider the POSG depicted in Figure 2 (for
k = 4, easily generalizable). Like Figure 1, this POSG is
essentially a finite automaton that reads two bitstrings a1, a2
simultaneously, and outputs the required value. The reward
depends on the value of a1 − a2, in particular, whether it is
greater than 1, equal to 1, equal to 0, equal to -1, or less than
-1. The center row of nodes captures the states in which the
substrings read are currently equal (If that continues until the
last timestep, then the numbers are equal). The row above
the center captures the states in which a1 6= a2 but it is still
possible for a1 = a2 + 1. (This happens if a1 = x10ℓ and
a2 = x01ℓ for some string x and integer ℓ.) The row below
the center is the same but with the players flipped.

Since observations are trivial, a pure policy in this POSG is
specified by a vector πi ∈ {0, 1}k, whose jth index specifies
the action played by player i at time j ∈ [k]. The vector πi is
then identified with the pure action in the 2k-bigger-number
game whose binary representation is πi. This POSG is equiv-
alent to the 2k-bigger-number game.

The next two results will be similar to the above result,
but will have increasingly stringent requirements on the struc-
ture of the game—first, stochastic games, and then tree-form
stochastic games. In exchange, we will also need more strin-
gent requirements on the behavior of the double oracle al-
gorithm. In particular, the meta-Nash equilibria and best re-
sponses used by double oracle may no longer be unique, so
we will need to make assumptions on how they are chosen.

3Choosing starting policies at random means choosing a pure
policy π0

1 from Π1 uniformly at random, not setting π0
1 to be the

uniformly random policy.



game properties double oracle assumptions
ZS FO TF Nash support initialization meta-Nash best responses |S| ε∗

Theorem 3.1 ✓ ✓ ✗ 2Θ(k) — — — O(k) 2−Θ(k)

Theorem 3.2 ✓ ✗ ✗ 1 random — — O(k) Θ(1)
Theorem 3.3 ✓ ✓ ✗ 1 random — adversarial O(k) Θ(1)
Theorem 3.4 ✗ ✗ ✓ 1 adversarial adversarial — poly(k) Θ(1/k)
Theorem 3.5 ✓ ✓ ✓ 2 adversarial adversarial adversarial O(k) Θ(1/k)

Table 1: Summary of main results. Nash support gives the minimum support per player, in pure policies, of any exact Nash equilibrium.

In all cases double oracle takes 2
Θ(k) iterations to converge to an ε-equilibrium for every ε < ε∗. ‘ZS’, ‘FO’, and ‘TF’ mean zero-sum,

fully-observable, and tree-form, respectively.

Whenever the choice is not unique, we will always assume ad-
versarial choices for the algorithm—that is, we will assume
that meta-Nash equilibria and best responses are chosen to
make double oracle run for as long as possible.

Theorem 3.3. For every k ≥ 1, there exists a zero-sum fully-
observable stocastic game with O(k) states and a pure Nash
equilibrium , in which, in the double oracle algorithm,

• the meta-Nash equilibria are unique on every iteration,

• the best responses are not unique on every iteration, and

• for ε < 2, if the starting policies π0
1 , π

0
2 are chosen uni-

formly at random, double oracle with adversarial best
responses takes 2k − 1 iterations.

Proof. We will define a n-weak bigger-number game simi-
lar to the n-bigger-number game used in the proof of The-
orem 3.2. In the weak n-bigger-number game, two players
simultaneously select a number ai ∈ [n], and whoever picks
the bigger number wins (scores 1).

Unlike the bigger-number game, best responses will not be
unique in the weak bigger-number game. For example, every
number bigger than 0 is a best response to 0. However, we
can still replicate the behavior of double oracle on the bigger-
number game, because the same conditions for that behavior
still hold: namely, the only Nash equilibrium is (n, n), and
max supp(µt

1) + 1 is always a best response to µt
1. There-

fore, if we always adversarially choose this best response, an
identical analysis holds, and the expected runtime of double
oracle is Θ(n) iterations.

We now only need to represent the 2k-weak bigger-number
game as a stochastic game. Consider the stochastic game in
Figure 3, which is this time a fully-observable game4. Once
again, this POSG is essentially a finite automaton that com-
putes the game value. As before, we relate the policies, which
are vectors πi ∈ {0, 1}k, to numbers in {0, . . . , 2k − 1} via
their binary representation, and from this it is easy to see that
the normal form of this stochastic game is indeed the 2k-weak
bigger-number game.

Our next result is the only result that uses a nonzero-sum
game, and the first of two results concerning tree-form games.

4The observations in this game are actually irrelevant, because
there is only one possible state corresponding to each history length.

Theorem 3.4. For every k ≥ 1, there exists a nonzero-sum,
tree-form, partially-observable stochastic game with poly(k)
states, and a pure Nash equilibrium, in which, for ε < 1/k,
there exist starting policies π0

1 , π
0
2 such that double oracle

with adversarial meta-Nash equilibria takes Θ(2k) iterations
to converge.

Proof. As before, we define the normal-form game first. In
the n-incrementing game, two players simultaneously pick
numbers ai ∈ [n]. If ai = aj + 1 then player i scores α
and player j scores −β, where β > α > 0. If ai = aj then
both players score 0. Otherwise both players score a negative
number.

It is easy to see that, in the subgame where both players are
restricted to {0, . . . , t} ⊆ [n], (t, t) is a Nash equilibrium (in
fact, the unique welfare-maximizing equilibrium) and t + 1
is a best response for both players. Thus, if both players are

initialized at Π̃0
i = {0}, convergence will only happen after

will only converge after n iterations. We will set n = 2k, and
show that this game is representable as a stochastic game with
poly(k) states.

Consider the stochastic game defined as follows. Both
players have action sets of size 2k, identified with bitstrings
consisting of completely repeated digits, i.e., 0, 1, 00, 11, 000,
111, etc. For cleanliness we will write 0ℓ to be the string with
0 repeated ℓ times, and 1ℓ for the string with 1 repeated ℓ
times. These strings will denote the trailing runs of the play-
ers’ bit strings. The transitions are as follows. At the root
state, if both players play the same bit and different lengths,
then both players score −2. If the players play different-
length strings and neither player has played a string of length
1, both players score −2. Otherwise, the game continues.

At this point, there are three possibilities. From here on-
wards, players are forced to play either 0 or 1: any other ac-
tion immediately terminates the game with both players scor-
ing −2 (and is therefore dominated).

1. Both players have played 0ℓ or 1ℓ. In this case, bit i ∈
{1, . . . , k − ℓ − 1} is drawn uniformly at random and
disclosed to both players, and both players choose an
action. Both players score 0 if the bits match, and −1
otherwise.

2. One player has played 0ℓ, and the other has player 1ℓ. In
this case, a bit i ∈ {1, . . . , k− ℓ−1} is drawn uniformly
at random and disclosed to both players, and both play-
ers then choose an action again. The player who played
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1ℓ scores −1. The player who played 0ℓ scores 1/2k if
the bits match, and −1 otherwise.

3. One player (WLOG, P1) has played 0ℓ (for ℓ > 1), and
the other has played 1. In this case, a bit i ∈ {1, . . . , k−
2} is selected at random. Then both players select an
action. If i = k−ℓ then P1 is forced to play 1; if i > k−ℓ
then P1 is forced to play 0. P1 scores −1. P2 scores
1/2k if the bits match, and −1 otherwise.

4. One player (WLOG, P1) has played 1ℓ (for ℓ > 1), and
the other has played 0. In this case, a bit i ∈ {1, . . . , k−
2} is selected at random. Then both players select an
action. If i = k − ℓ then P1 is forced to play 0. If
i > k − ℓ then P1 is forced to play 1. P2 scores −1. P1
scores 1/2k if the bits match, and −1 otherwise.

A sketch of the game is depicted in Figure 4. Like the pre-
vious three proofs, we still essentially want a state machine
to discriminate between the same five classes (a1 − a2 >
1,= 1,= 0,= −1, < −1) but now we need the game to
be tree-form. Since the comparison between the numbers re-
quires knowing how long the trailing run of ones (or zeros)
is, we ask the players for this information up-front—that is,
both players at the start state choose the trailing runs of their
numbers from the set {0, 1, 00, 11, 000, 111, . . .} of size 2k.
Conditioned on these choices, the reward function is linear in
the prefixes of the two players’ bitstrings, and hence it can be
represented by a single layer of the game tree in which a bit
is selected at random and then the players pick assignments
to that bit.

An undominated pure policy (for either player) consists
of a trailing run 0ℓ or 1ℓ, and assignments to each bit i ∈
{1, . . . , k − ℓ− 1}. Thus, such strategies correspond exactly
to the bitstrings in {0, 1}n. It is easy to check that the util-
ities in the game restricted to undominated strategies satisfy
the conditions of the n-incrementing game, completing the
proof.

Our final result will involve a case where both the meta-
Nash equilibria and the best responses are not unique, and
therefore we will assume that both are adversarially chosen.
However, the game in the counterexample will have the most
stringent structure: the counterexample is a zero-sum tree-
form, fully-observable stochastic game.

Theorem 3.5. For every k ≥ 1, there exists a zero-sum fully-
observable, tree-form stochastic game with O(k) states and
a Nash equilibrium of support size 2 for each player in which,
for ε < 2/k, there exist starting policies π0

1 , π
0
2 such that

double oracle with adversarial meta-Nash equilibria and best
responses takes at least 2k−1 iterations.

Proof. Unlike in the previous two proofs, in this proof it will
be most convenient to start by defining the stochastic game
without first discussing its normal form. Consider the follow-
ing game. There are k nonterminal states, s1, . . . , sk. The
starting distribution S0 is uniform on {s1, . . . , sk}. At each
state, the players will each play a single action ai ∈ {0, 1},
and then the game will end. It remains only to define the
rewards.

• At state s1, P2 wins if and only if the players did not play
the same action. That is, s1 is a matching pennies game.

• At state sj for j > 1, P2 wins if and only if P1 played 0
and P2 played 1.

The winner gets value +1, and the loser gets value −1.
The equilibrium value of this game is 1 − 1/k for P1: the

profile “play uniform random at s1 and 1 at all other states”
is an equilibrium policy for both players of support size 2. As
before, we will identify pure strategies πi ∈ {0, 1}k with the
numbers they encode in binary. In this notation, let π0

1 = 2k−
1 and π0

2 = 0. Then we will show that, for t ∈ {1, . . . , 2k−1−
1}, the following adversarial choices of meta-Nash and best
responses are possible in the double oracle algorithm:

1. t− 1 is a best response for P1 against P2 playing t− 1,

2. t is a best response for P2 against P1 playing 2k − 1,

3. Π̃t
1 = {2k − 1} ∪ {0, . . . , t − 1}, and Π̃t

2 = {0, . . . , t},
and

4. (2k − 1, t − 1) is a meta-Nash equilibrium if (Π̃t
1, Π̃

t
2),

that has equilibrium gap 2/k in the full game,

We now prove all four points above by induction.

1. For P1, playing t − 1 against t − 1 wins all states, so it
is a best response.

2. Against 2k − 1, P2 can only win the matching pennies
game, which P2 does by playing any policy in the range
[0, 2k−1 − 1]. t is indeed such a policy.

3. This follows from the previous two points and the defini-
tion of the double oracle algorithm.

4. The profile (2k − 1, t − 1) scores 1 − 2/k for P1 since
P1 loses the matching pennies game but wins all others
by playing 1. P2 cannot improve upon this. P1 can only
improve by winning at all states, but in order to do that,
P1 must play a policu in the range [t − 1, 2k−1 − 1].

However, P1’s policy set Π̃t−1
1 only contains {0, . . . , t−

2} by induction hypothesis, so P1 cannot win all states,
and therefore (2k − 1, t− 1) is a meta-Nash equilibrium.

This completes the induction and therefore the proof, since
with these choices, the Nash gap computed by double oracle
will stay at 2/k until at least iteration 2k−1.

4 Discussion and Related Work

In this section, we discuss a few alternative algorithms similar
to the double oracle algorithm, and how they relate to the
results in this paper.

4.1 Fictitious Play

Another common algorithm for reducing multi-player to
single-player games is fictitious play. Fictitious play differs
from double oracle only in the choice of opponent policies
µt
−i against which player i computes the best response πt

i .
While double oracle uses a Nash equilibrium of the restricted
game defined by the policies already discovered, fictitious
play uses a simple uniform average over those policies:

µt
−i :=

1

t

t−1∑

τ=0

π
(τ)
−i .



s1

+1 –1 –1 +1

s2

+1 –1 +1 +1

s3

+1 –1 +1 +1

1/3

0,0 0,1 1,0 1,1

1/3

0,0 0,1 1,0 1,1

1/3

0,0 0,1 1,0 1,1

Figure 5: A depiction of the game used in Theorem 3.5, for k = 3. Edges to the start states are labeled with their starting probabilities (1/3).

Although this change seems simple, the two algorithms be-
have very differently in theory. For example, double oracle
is guaranteed to converge in at most |Π| iterations, where Π
is the set of policies, since at least one policy is added on
every iteration until convergence is reached. However, prov-
ing (or disproving) a poly(|Π|, 1/ε)-time convergence rate
for fictitious play, even in zero-sum games is one of the old-
est open problems in game theory, known as Karlin’s con-
jecture [Karlin, 1959]. Similarly to our discoveries, how-
ever, the behavior of fictitious play is known to depend on
assumptions about tiebreaking. In particular, it is known
that for normal-form games whose payoff matrix is diago-
nal, the convergence rate of fictitious play is polynomial if
the best responses are chosen using a consistent tiebreaking
method [Abernethy et al., 2021], but not if they are chosen
adversarially [Daskalakis and Pan, 2014].

4.2 α-Best Response Dynamics and Potential
Games

In best response dynamics, we simply set µt
−i = πt−1

−i . That
is, each player simply best responds to the opponent’s pre-
vious policy. In zero-sum games, best response dynamics
usually will not converge to equilibria: indeed, since πt is
always pure, best response dynamics cannot converge when-
ever there is no pure equilibrium. However, best response dy-
namics have been considered in the class of potential games,
which are, roughly speaking, games that “look like” ones
in which every player has the same utility function. In this
class of games, it has been observed [Awerbuch et al., 2008;
Chien and Sinclair, 2011] that it is sometimes better to limit
players to only playing best responses if they improve the
player’s utility by more than some parameter α.

One may ask whether a similar change affects our lower
bounds. That is, suppose that, in the double oracle algorithm,
the best response πt

i is only added to Πt
i if V (πt

i , µ
t
−i) −

V (µt) ≥ α, where ε ≥ α > 0. Let us call this algorithm
α-double oracle.

• In Theorem 3.1, the best response of P1 at iteration 2t
improves the value by 2/t, and the best response of P2
at iteration 2t + 1 improves the value by a full 2. Thus,
the theorem is unaffected.

• In Theorem 3.2, Theorem 3.3, and Theorem 3.4, the
value improvement of every player on every iteration is
equal to the Nash gap. Therefore, these results are unaf-
fected.

• Theorem 3.5 is affected. That result relies on the ability
for P2 to add the best response πt

2 = t, which does not
improve P2’s value at all. Thus, the result breaks for
every α > 0.

5 Conclusions and Future Research

We have shown, to our knowledge, the first exponential lower
bounds on the convergence time (in number of iterations) of
the double oracle algorithm. We leave several natural ques-
tions for future research.

• Can the gaps in Table 1 be closed? For example, does
there exist a tree-form POSG in which the double oracle
algorithm must take exponentially many iterations with
any of the adversarial assumptions removed? Does there
exist a fully-observable stochastic game in which the
double oracle algorithm is exponential even with non-
adversarial best responses?

• Are there “simple” modifications to double oracle, for
example, α-double oracle as suggested in Section 4.2,
that guarantee polynomial worst-case bounds in certain
cases (e.g., zero-sum tree-form games)?
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