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Abstract

We investigate optimal decision making under im-
perfect recall, that is, when an agent forgets in-
formation it once held before. An example is the
absentminded driver game, as well as team games
in which the members have limited communica-
tion capabilities. In the framework of extensive-
form games with imperfect recall, we analyze the
computational complexities of finding equilibria in
multiplayer settings across three different solution
concepts: Nash, multiselves based on evidential
decision theory (EDT), and multiselves based on
causal decision theory (CDT). We are interested in
both exact and approximate solution computation.
As special cases, we consider (1) single-player
games, (2) two-player zero-sum games and rela-
tionships to maximin values, and (3) games without
exogenous stochasticity (chance nodes). We relate
these problems to the complexity classes P, PPAD,
PLS, ΣP

2 , ∃R, and ∃∀R.

1 Introduction

In game theory, it is common to restrict attention to games of
perfect recall, that is, games in which no player ever forgets
anything. At first, it seems that this assumption is even better
motivated for AI agents than for human agents: humans for-
get things, but AI does not have to. However, we argue this
view is mistaken: there are often reasons to design AI agents
to forget, or to structure them so that they can be modeled as
forgetful. Moreover, such forgetting-by-design follows pre-
dictable rules and is thereby easier to model formally than
idiosyncratic human forgetting. Thus, games of imperfect re-
call are receiving renewed attention from AI researchers.

Imperfect recall is already being used for state-of-the-
art abstraction algorithms for larger games of perfect
recall [Waugh et al., 2009; Ganzfried and Sandholm, 2014;
Brown et al., 2015]. The idea is that by forgetting
unimportant aspects of the past, the AI can afford
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(a) Forgetful penalty shoot-out. This
game has no Nash equilibrium.
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(b) Extended ab-
sentminded driver.

Figure 1: Games with imperfect recall. P1’s (N) utility payoffs are
labeled on each terminal node. If P2 (H) is present, the game is zero
sum. Infosets are joined by dotted lines.

to conduct equilibrium-approximation computations with
a game model that has a more refined abstraction of
the present. Indeed, imperfect-recall abstractions were
a key component in the first superhuman AIs in no-
limit Texas hold’em poker [Brown and Sandholm, 2018;
Brown and Sandholm, 2019].

Imperfect recall also naturally models settings in which
forgetting is deliberate for other reasons, such as privacy of
sensitive data [Conitzer, 2019; Zhang and Sandholm, 2022].
Conitzer provides the example of an AI driving assistant de-
signed to intervene whenever the human car driver makes a
significant error. In such instances, the AI must assess the
overall skill level of the human driver, despite not being al-
lowed to store information about the individual.

It can also model teams of agents with common goals
and limited ability to communicate. Each team, repre-
sented by one agent with imperfect recall, is then striv-
ing for some notion of optimality among team mem-
bers [von Stengel and Koller, 1997; Celli and Gatti, 2018;
Emmons et al., 2022; Zhang et al., 2023]. Highly distributed
agents are similarly well-described by imperfect recall: such
an agent may take an action at one node based on infor-
mation at that node, and then need to take another action
at a second node without yet having learned yet what hap-
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Multi-player

Nash (D) EDT (D) CDT (S)

exact
∃R-hard and in ∃∀R

—
(Thms. 1 & 3)

1/exp

1/poly

ΣP

2 -complete
(Thms. 2 and 4)

PPAD-complete
(Thm. 6)

Single-player

Optimal (D) EDT (S) CDT (S)

exact
∃R-complete

— —
[Gimbert et al., 2020]

1/exp
NP-complete PLS-complete CLS-complete

[Koller and Megiddo, 1992; (Thm. 5∗) [Tewolde et al., 2023]

1/poly Tewolde et al., 2023] P (Cor. 22∗) P (Cor. 17)

Table 1: Summary of complexity results. New results from this paper are shown with a light green background. (S) stands for search problem,
which is when we ask for a solution strategy profile. In multi-player, (D) stands for deciding whether such an equilibrium even exists. In
single-player, Optimal (D) decides whether some target utility can be achieved. Citations are given for results found in the literature. All of
the hardness results even hold for highly restricted game instances, such as, e.g., for games with no chance nodes or two-player zero-sum
games where one player has perfect recall. ∗: The number of actions per infoset is required to be constant for the membership result. ‘—’:
No results exist for these settings to our knowledge. Also note the technical complication that arises here from the fact that there exist single-
player games in which every exact EDT or CDT equilibrium involves irrational values [Tewolde et al., 2023].

pened at the first node. Thus, effectively, the distributed
agent has forgotten what it knew before. Finally, a single
agent can be instantiated multiple times in the same envi-
ronment, where one copy does not know what another copy
just knew [Conitzer and Oesterheld, 2023]. For example, we
might want to test goal-oriented AI agents in simulation to en-
sure that they will later act in a trustworthy fashion in the real
world [Kovarı́k et al., 2023; Kovarı́k et al., 2024]. Then, the
AI agent will have to act in the real world without knowing
how it acted in simulation.

Perfect recall is a common technical assumption in game
theory because it implies many simplifying properties, such
as polynomial-time solvability of single-player and two-
player zero-sum settings [Koller and Megiddo, 1992]. In
multi-player settings with imperfect recall, Nash equilibria
may not exist anymore [Wichardt, 2008]; in fact, we show
that deciding existence is computationally hard. To give an il-
lustrative running example, consider a variation of Wichardt’s
game in Figure 1a, which we call the forgetful (soccer)
penalty shoot-out. The shooter (P1) decides whether to shoot
left or right, once before the whistle, and once again right
before kicking the ball. At the second decision point, P1
has forgotten which direction they chose previously. P1 only
succeeds in shooting in any direction if she chooses that
direction at both decision points. Upon succeeding, it be-
comes a matching pennies game with the goalkeeper (P2)
who chooses to jump left or right to block the ball. A sim-
ilar analysis to the one of matching pennies implies that in a
potential Nash equilibrium, none of the two players can play
one side more often than the other. However, both players
randomizing 50/50 at each infoset is not a Nash equilibrium
either: P1 is not best responding to P2 because she could in-
stead deterministically shoot towards one side to avoid mis-
coordination with herself altogether which would achieve a
payoff of 1 instead of 0.

Indeed, many of our intuitions fail for imperfect-recall
games – to the point that a significant body of work in
philosophy and game theory addresses conceptual ques-
tions about probabilistic reasoning and decision making in
imperfect-recall games, such as in the Sleeping Beauty prob-
lem [Elga, 2000] or the absentminded driver game of Fig-
ure 1b [Piccione and Rubinstein, 1997]. From this literature,
several distinct and coherent ways to approach games of im-

perfect recall have emerged. We will discuss these in detail
in Section 4.

In this paper, we study the computational complexity of
solving imperfect-recall extensive-form games. We focus
on three solution concepts: (1) Nash equilibria where play-
ers play mutual best response strategies (or simply optimal
strategies in single-player domains), (2) multiselves equilib-
ria based on evidential decision theory, in which each infoset
plays a best-response action to all other infosets and players,
and (3) multiselves equilibria based on causal decision the-
ory, in which each infoset plays a Karush-Kuhn-Tucker (KKT)
point action for the current strategy profile. The latter two are
relaxations of the first. Sections 2 and 4 cover preliminaries
on imperfect-recall games and on multiselves equilibria, re-
spectively. Sections 3 and 5 analyze the computation of Nash
equilibria and of multiselves equilibria, respectively, in vari-
ous setting. Our complexity results for these are summarized
in Table 1. Last but not least, Section 6 shows that games with
imperfect recall stay computationally equally hard even in the
absence of exogenous stochasticity (i.e., chance nodes).

2 Imperfect-Recall Games

We first define extensive-form games, allowing for imperfect
recall. The concepts we use in doing so are standard; for
more detail and background, see, e.g., Fudenberg and Tirole
[1991] and Piccione and Rubinstein [1997]. In this section,
we follow the exposition of Tewolde et al. [2023], with the
addition of introducing multi-player notation.

Definition 1. An extensive-form game with imperfect recall,
denoted by Γ, consists of:

1. A rooted tree, with nodes H and where the edges are la-
beled with actions. The game starts at the root node h0

and finishes at a leaf node, also called terminal node. We
denote the terminal nodes in H as Z and the set of actions
available at a nonterminal node h ∈ H \ Z as Ah.

2. A set of N+1 players N ∪{c}, for N ∈ N, and an assign-
ment of nonterminal nodes to a player that shall choose an
action at that node. Player c stands for chance and repre-
sents exogenous stochasticity that chooses an action. With
H(i) we denote all nodes associated to player i ∈ N .

3. A fixed distribution P(c)(· | h) over Ah for each chance

node h ∈ H(c), with which an action is determined at h.



4. For each i ∈ N , a utility function u(i) : Z → R that
specifies the payoff that player i receives from finishing
the game at a terminal node.

5. For each i ∈ N , a partition H(i) = ⊔I∈I(i)I of player
i’s decision nodes into information sets (infosets). We re-
quire Ah = Ah′ for all nodes h, h′ of the same infoset.
Therefore, infoset I has a well-defined action set AI .

Imperfect Recall. Nodes of the same infoset are assumed
to be indistinguishable to the player during the game even
though the player is always aware of the full game structure.
This may happen even in perfect-recall games due to imper-
fect information, that is, when it is unobservable to the player
what another player (or chance) has played. This effect is
present in Figure 1a for P2. In contrast, infoset I2 of P1 ex-
hibits imperfect recall because once arriving there, the player
has forgotten information about the history of play that she
once held when leaving I1, namely whether she chose left
or right back then. In Figure 1b, the player is unable to re-
call whether she has been in the same situation before or not.
This phenomenon is a special kind of imperfect recall called
absentmindedness. The degree of absentmindedness of an in-
foset shall be defined as the maximum number of nodes of the
same game trajectory that belong to that infoset. In Figure 1b,
it is 3. The branching factor of a game is the maximum num-
ber of actions at any infoset.

In contrast to that, games with perfect recall have every
infoset reflect that the player remembers the sequence of in-
fosets she visited and the actions she took. We note that any
node h ∈ H uniquely corresponds to a history path hist(h)
in the game tree, consisting of alternating nodes and actions

from root h0 to h. Let exp(i)(h) be the experienced sequence
of infosets visited and actions taken by player i on the path
hist(h). Then, formally, a game has perfect recall if for all

players i ∈ N , all infosets I ∈ I(i), and all nodes h, h′ ∈ I ,

we have exp(i)(h) = exp(i)(h′).

Strategies. Let ∆(AI) denote the set of probability distri-
butions over the actions in AI . These will also be referred to
as randomized actions. A (behavioral) strategy µ(i) : I(i) →
⊔I∈I(i)∆(AI) of a strategic player i assigns to each of her in-

fosets I a probability distribution µ(i)(· | I) ∈ ∆(AI). Upon

reaching I , the player draws an action randomly from µ(i)(· |
I). A pure strategy maps deterministically1 to ⊔I∈I(i)AI . A

strategy profile, or profile, µ = (µ(i))i∈N specifies a behav-

ioral strategy for each player. We may write
(

µ(i), µ(−i)
)

to
emphasize the influence of i ∈ N on µ. Denote the strategy

set of player i ∈ N with S(i), and the set of profiles with S.

1Other work has also considered mixed strategies, that is, prob-
ability distributions over all pure strategies. In the presence of im-
perfect recall, mixed strategies are not realization-equivalent to be-
havioral strategies [Kuhn, 1953]. Mixed strategies require the agent
to coordinate her actions across infosets (e.g., access to a correlation
device): For example, in contrast to our introductory discussion on
the forgetful penalty shoot-out (Figure 1a), this game does admit a
Nash equilibrium in mixed strategies since P1 can now choose to
kick left twice in a row 50% of the time and to kick right twice in
a row the other 50% of the time. As this would imply a form of
memory, it does not fit the motivation of this paper.

For a computational analysis, we identify a randomized ac-

tion set ∆(AI) with the simplex ∆|AI |−1, where ∆n−1 :=
{x ∈ Rn : xk ≥ 0 ∀k ,∑n

k=1 xk = 1}. Therefore, the
strategy sets are Cartesian products of simplices:

S ≡×i∈N×I∈I(i) ∆|AI |−1 and S(i) ≡×I∈I(i) ∆|AI |−1.

Reach Probabilities and Utilities. Let P(h̄ | µ, h) be the
probability of reaching node h̄ ∈ H given that the current
game state is at h ∈ H and that the players are playing profile
µ. It evaluates as 0 if h /∈ hist(h̄), and as the product of
probabilities of the actions on the path from h to h̄ otherwise.
The expected utility payoff of player i ∈ N at node h ∈
H \ Z if profile µ is being followed henceforth is U (i)(µ |
h) :=

∑

z∈Z P(z | µ, h) · u(i)(z). We overload notation by

defining P(h | µ) := P(h | µ, h0) for root h0 of Γ, and

by defining the function U (i) as U (i)(µ) := U (i)(µ | h0),
mapping a profile µ to its expected utility from game start. In

Figure 1b, this is U (1)(µ) = 6c2e – or, to follow our notation

more precisely, U (1)(µ) = 6µ(1)(c | I)2µ(1)(e | I).
Polynomials. Each summand P(z | µ, h) · u(i)(z) in

U (i)(µ | h) is a monomial in µ times a scalar, and the ex-

pected utility function U (i) is a polynomial function in the

profile µ. All these polynomials U (i) can be constructed in
polynomial time (polytime) in the encoding size of Γ.

One might also ask how general those polynomial util-
ity functions may be. Indeed, imperfect-recall games can
be very expressive. We give a polytime construction in
Appendix A.4 that, given a collection of N multivariate

polynomials p(i) : ×N
i=1×ℓ(i)

j=1 R
m

(i)
j → R, yields an as-

sociated N -player game Γ with imperfect recall such that

its expected utility functions satisfy U (i)(µ) = p(i)(µ) on

×N
i=1×ℓ(i)

j=1 R
m

(i)
j .

Approximate Solutions. The solution concepts we inves-
tigate will have a definition of the abstract form “Strategy µ
is a solution if for all y ∈ Y we have f(µ) ≥ fµ(y)” for
some set Y of alternatives and some utility/objective func-
tions f and fµ. Then, we call a strategy µ an ǫ-solution if
∀ y ∈ Y : f(µ) ≥ fµ(y)− ǫ.

Computational Considerations. In this paper, we discuss
decision problems and search problems. The former ask for a
yes/no answer; the latter ask for a solution point. The input to
these computational problems may be a game Γ, a precision
parameter ǫ > 0, and/or a target value t. Values in Γ, as
well as ǫ and t are assumed to be rational. We assume that a
game Γ is represented by its game tree structure, which has
size Θ(|H|), and by a binary encoding of its chance node
probabilities and its utility payoffs. If there is a target t, then
it shall be given in binary as well.

If there is no precision parameter ǫ, then we are deal-
ing with problems involving exact solutions. In our set-
tings, such problems are usually beyond NP because equilib-
ria may require irrational probabilities and may therefore not
be representable in finite bit length. In fact, Tewolde et al.
[2023][Figure 6] give a simple single-player example in
which the unique equilibrium takes on irrational values. That
is, in part, why we will also be interested in approximations



up to a small precision error ǫ > 0. Here, we mean ‘small’
relative to the range of utility payoffs, which – by shifting and
rescaling utilies – we can w.l.o.g. assume to be [0, 1].

Remark. By default, ǫ > 0 will be given in binary, in which
case we require inverse-exponential (1/exp) precision.

Here, the term ‘inverse-exponential’ indicates that 1/ǫ can
be exponentially larger than the tree size |H|. Occasionally,
we may instead require inverse-polynomial (1/poly) preci-
sion, which is when ǫ is given in unary, or require constant
precision, which is when ǫ is fixed to a constant > 0. Natu-
rally, 1/exp precision is hardest to achieve.

Complexity Classes. We give a brief overview of the com-
plexity classes appearing in this paper, and refer to Ap-
pendix A.5 for references and more details. The subset re-
lationships of the complexities classes we present here are
believed to be strict. P describes the decision problems
that can be solved in polytime. NP describes the decision
problems that can be solved in non-deterministic polytime.
ΣP

2 describes the decision problems that can be solved in
non-deterministic polytime if given oracle access to an NP
solver, such as a SAT oracle. We have P ⊆ NP ⊆ ΣP

2 ⊆
PSPACE. NP and ΣP

2 are classes for decision problems that
can be formulated as one over discrete variables (w.l.o.g.
Boolean variables). Their counterparts for real-valued de-
cision problems are the first-order-of-the-reals classes ∃R
and ∃∀R: A ∃R problem asks whether a sentence of the
form ∃x1 . . .∃xnF (x1, . . . , xn) is true, where the xi repre-
sent real-valued variables and F represents a quantifier-free
formula of (in-)equalities of real polynomials in rational coef-
ficients. ∃∀R is defined analogously, except for sentences of
the form ∃x ∈ Rn1∀y ∈ Rn2F (x, y). We have NP ⊆ ∃R ⊆
PSPACE ∩∃∀R.

The complexity classes FP and FNP are the search prob-
lem analogues of P and NP, and as such, essentially have the
same complexity. The landscape between FP and FNP, how-
ever, is rich. Total NP search problems are those problems in
FNP for which one knows that each problem instance admits
a solution. The complexity classes in it can be characterized
by the natural, but exponential-time method with which one
can show that each problem instance admits a solution. For
the class PPAD the method is that of a fixed point argument,
as is the case, e.g., for the existence of a Nash equilibrium.
For the class PLS the method is that of a local optimization
argument on a directed acyclic graph. For the class PLS the
method is that of a CLS a local optimization argument on
a bounded polyhedral (continuous) domain. We have FP ⊆
CLS = PPAD ∩ PLS and PPAD, PLS ⊆ FNP.

3 Nash Equilibria and Optimal Play

In this section, we present our computational results for the
classic and most important solution concept in game theory –
the Nash equilibrium [Nash, 1950].

Definition 2. A profile µ is said to be a Nash equilibrium (in
behavioral strategies) for game Γ if for all player i ∈ N , and
all alternative strategies π(i) ∈ S(i), we have

U (i)(µ(i), µ(−i)) ≥ U (i)(π(i), µ(−i)).

In a Nash equilibrium, no player has any utility incentives
to deviate unilaterally to another strategy. Nash showed that
any finite perfect-recall game admits at least one Nash equi-
librium. In contrast, some finite imperfect-recall games have
no Nash equilibrium, as discussed in the introduction. If there
is only a single player, however, finding a Nash equilibrium
– i.e., finding an optimal strategy – reduces to maximizing
a polynomial utility function over a compact strategy space.
Such a solution is guaranteed to exist, and its value is unique.
Therefore, one may ask instead whether some target value t
can be achieved in a given game. In Figure 1b, this would
result in the ∃R-sentence ∃e, c : 6c2e ≥ t ∧ c ≥ 0 ∧ e ≥
0 ∧ c + e = 1. This is an easier task than finding an optimal
strategy. Nonetheless, we have:

Proposition 3 (Gimbert et al., 2020). Deciding whether a
single-player game with imperfect recall admits a strategy
with value ≥ t is ∃R-complete.

For approximation, consider problem OPT-D that asks to

distinguish between whether ∃µ ∈ S : U (1)(µ) ≥ t and

whether ∀µ ∈ S : U (1)(µ) ≤ t− ǫ.

Proposition 4 (Koller and Megiddo, 1992; Tewolde et al.,
2023). OPT-D is NP-complete.

Technically, Koller and Megiddo establish hardness for the
exact decision problem. We shall merely add the observation
that their proof also implies NP-hardness of the approximate
problem; and via the PCP theorem [Håstad, 2001], even for a
constant precision ǫ < 1/8.

3.1 Two-Player Zero-Sum Games

A two-player zero-sum (2p0s) game is a two-player game

where U (2) = −U (1). In that case utilities can be given in
terms of P1, and P2 simply minimizes that utility.

Koller and Megiddo [1992] prove ΣP

2 -completeness of de-
ciding in 2p0s games with imperfect recall whether the max-
min value in pure-strategy play exceeds some utility target
≥ t. We will consider behavioral strategies instead.

Definition 5. In a 2p0s game Γ, the (behavioral) max-min
value and min-max value are defined as

¯
U := maxµ(1)∈S(1) minµ(2)∈S(2) U (1)(µ(1), µ(2)),

Ū := minµ(2)∈S(2) maxµ(1)∈S(1) U (1)(µ(1), µ(2)).

Gimbert et al. [2020] prove that deciding
¯
U ≥ t is in ∃∀R

and is ∃R-hard. For approximation, we know the following.

Lemma 6 (Zhang et al., 2023). It is ΣP

2 -complete to distin-
guish

¯
U ≥ 0 from

¯
U ≤ −ǫ in 2p0s games with imperfect

recall. Hardness holds even with no absentmindedness and
1/poly precision.

To leverage this result in the subsequent sections, we will
first show a tight connection between the existence of Nash
equilibria in a 2p0s game Γ, and Γ’s min-max and max-min
values. Define the duality gap of Γ as the difference

∆ := Ū −
¯
U ≥ 0.

In Figure 1a the duality gap is 1− 0 = 1.

Proposition 7. Let Γ be a 2p0s game with imperfect recall.
If ∆ ≤ ǫ then Γ admits an ǫ-Nash equilibrium. Conversely, if
Γ admits an ǫ-Nash equilibrium, then ∆ ≤ 2ǫ.
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Figure 2: Game construction used to prove hardness of deciding
equilibrium existence. We use boxes for chance nodes, at which
chance plays uniformly at random. Γ is a placeholder game. G is a
game with no equilibrium; Section 3.2 for example uses Figure 1a.

In particular, there is an equivalence between Nash equilib-
rium existence and vanishing duality gap. This result is not
specific to behavioral strategies in imperfect-recall games; it
holds for any family of strategies in any 2p0s game.

3.2 Deciding Nash Equilibrium Existence

We observe that the existence of a Nash equilibrium can be
formulated as “there exists a profile µ such that for all other
profiles π the condition of Definition 2 are satisfied for all
i ∈ N ”. This puts the exact and approximate decision prob-
lems in ∃∀R and ΣP

2 respectively. For an intuitive idea of
our upcoming hardness results, consider the game in Figure 2
where subgame G shall be that of Figure 1a and where sub-
game Γ is a game in which it is hard to decide what utility
P1 can guarantee himself. Then a profile cannot be a Nash
equilibrium if P2 is supposed to continue at the root node,
because in that case G is reached with positive probability
and the players cannot be in equilibrium in that subgame as
we have discussed in the introduction. Note that exiting at the
root node yields P2 a utility of 0, and best-responding to P1
in subgame G also yields P2 a utility of ≤ 0 (recall that P2 is
the minimizer). Thus, for a profile to be a Nash equilibrium
in the overall game, P2 must exit at the root node as a best re-
sponse, which is the case exactly if P1 cannot achieve a utility
of at least 0 in the subgame Γ. Using the problem instances
of Proposition 3 for the subgame Γ, we obtain

Theorem 1. Deciding if a game with imperfect recall admits
a Nash equilibrium is ∃R-hard and in ∃∀R. Hardness holds
even for 2p0s games where one player has a degree of absent-
mindedness of 4 and the other player has perfect recall.

Next, for the approximate case, we use the problem in-
stances of Lemma 6 for the subgame Γ. Define NASH-D to
ask to distinguish between whether an exact Nash equilibrium
exists or whether no ǫ-Nash equilibrium exists.

Theorem 2. NASH-D is ΣP

2 -complete. Hardness holds for
2p0s games with no absentmindedness and 1/poly precision.

With Proposition 7, this immediately implies

Corollary 8. It is ΣP
2 -complete to distinguish ∆ = 0 from

∆ ≥ ǫ in 2p0s games. Hardness holds for 2p0s games with
no absentmindedness and 1/poly precision.

Later in this paper, Theorem 4 will imply another ΣP
2 -

hardness for NASH-D but with different restrictions.

1 0 0 2

l1

l2 r2

r1

l2 r2

I1

I2

Figure 3: A single-player game with imperfect recall where misco-
ordinating actions with yourself is punished most.

3.3 A Naı̈ve Algorithm for Nash Equilibria

For game Γ, let |Γ| denote its representation size and m :=
∑

i∈N
∑

I∈I(i) |AI | its the total number of pure actions.

Proposition 9. NASH-D is solvable in time

poly
(

|Γ|, log 1
ǫ , (m · |H|)m2

)

.

In fact, our algorithm finds an ǫ-Nash equilibrium when-
ever an exact Nash equilibrium exists. The idea is similar
to that one of Lipton and Markakis [2004][Theorem 2] for
multi-player normal-form games: Namely, we iteratively sub-
divide the strategy space, and repeatedly decide with first-
order-of-the-reals solvers whether a Nash equilibrium exists
in this smaller region. Those solvers also give rise to the ex-
ponential time dependence on m. In particular, the algorithm
becomes polytime if m is bounded by a constant. This obser-
vation will aid us towards a PLS-membership proof in Theo-
rem 5. Also note that such a bound on m will not restrict the
size of the game tree since the degree of absentmindedness
can still grow arbitrarily (cf. Figure 1b).

4 Introducing Multiselves Equilibria

Section 3 shows strong obstacles to finding Nash equilibria
in games with imperfect recall. In light of these limitations,
we relax the space of solutions and turn to the multiselves ap-
proach (cf. the agent-form [Kuhn, 1953]), which we review
in this section. This approach argues that, whenever a player
finds herself in an infoset, she has no influence over which ac-
tions she chooses at other infosets. Therefore, at a multiselves
equilibrium µ, each player will play the best randomized ac-
tion at each of their infosets, assuming that they themselves
play according to µ at other infosets and assuming all other
players also play according to µ.

Consider Figure 3. The optimal strategy is to play (r1, r2).
This is also a multiselves equilibrium. However, (l1, l2) is
also a multiselves equilibrium, because if the player is at the
top-level infoset I1 and assumes that she will follow left at the
bottom-level infoset I2, then it is best for her to go left now.
On the other hand, if the player is at I2 and assumes that she
played left at I1, then it is again best for her to play left now.

Multiselves equilibria can be arbitrarily bad in payoff in
comparison to optimal strategies and Nash equilibria, as can
be seen by replacing the payoff of 2 in Figure 3 with some
λ → ∞. This phenomenon is due to miscoordination across
infosets, and it arises in the same manner across teams in team

games: The corresponding normal-form game

(

λ, λ 0, 0
0, 0 1, 1

)



shows that Nash equilibria can be arbitrarily worse relative to
Pareto-optimal profiles.

In games with absentmindedness it becomes controversial
how to apply the multiselves idea. Specifically, how should
a player reason about implications of a choice at the current
decision point for her action choices at past and future deci-
sion points within the same infoset, and – as a consequence
– compute incentives to deviate? That is, in considering de-
viating, will the player assume they would perform the same
deviation at other nodes in the same infoset, or that the devi-
ation is a one-time-only event? We will handle this question
using two well-motivated2 decision theories that correspond
to these two cases: evidential decision theory and causal de-
cision theory. We will see that Nash equilibria are multiselves
equilibria under both decision theories.

This section is accompanied with an extensive Appendix C
that – beyond proving the statements made in this section
– also introduces some additional observations and lemmas
needed for the development of our main results.

4.1 Evidential Decision Theory (EDT)

Suppose a game Γ is played with profile µ, and a player i
arrives in one of her infosets I ∈ I(i). EDT postulates that if
that player deviates to a randomized action α ∈ ∆(AI) at the
current node, then she will have also deviated to α whenever
she arrived in I in the past, and that she will also deviate to α
whenever she arrives in I again in the future. This is because
EDT argues that the choice to play α now is evidence for the
player playing the same α in the past and future.

We denote the behavioral strategy that results from an EDT

deviation as µ
(i)
I 7→α. It plays according to µ(i) at every infoset

except for at I ∈ I(i) where it plays according to α ∈ ∆(AI).

Definition 10. We call µ an EDT equilibrium for game Γ
if for all players i ∈ N , all her infosets I ∈ I(i), and all
randomized actions α ∈ ∆(AI), we have

U (i)(µ) ≥ U (i)(µ
(i)
I 7→α, µ

(−i)).

In an EDT equilibrium, no player has an incentive to de-
viate at an infoset in an EDT fashion to another randomized
action. This is because the right hand side of the inequality
represents the expected ex-ante utility of such an EDT devia-
tion. Section 4.4 gives an extensive discussion on the ex-ante
perspective for multiselves equilibria. Regarding equilibrium
computation, the following result is known:

Proposition 11 (Tewolde et al., 2023). Unless NP = ZPP,
finding an ǫ-EDT equilibrium in a single-player game for
1/poly precision is not in P.

4.2 Causal Decision Theory (CDT)

Say, again, game Γ is played with profile µ, and a player i
arrives in one of her infosets I ∈ I(i). Then CDT postulates

2The debate around decision theories is related to the ap-
proach for belief formation (cf. the Sleeping Beauty problem
[Elga, 2000]). Among other aspects, the literature has studied which
combination of decision theories and belief formation avoid being
Dutch-booked (money-pumped) [Piccione and Rubinstein, 1997;
Briggs, 2010; Oesterheld and Conitzer, 2022].

that the player can deviate to an action α ∈ ∆(AI) at the
current node without violating that she has been playing ac-

cording to µ(i) at past arrivals in I , or that she will be playing

according to µ(i) at future arrivals in I . This is in addition

to assuming that all other players follow µ(−i) as usual. The
intuition behind CDT is that the player’s choice to deviate

from µ(i) at the current node does not cause any change in
her behavior at any other node of the same infoset I .

Example 12. Recall Figure 1b in which – as the story goes –
the absentminded driver has to exit a highway at the second
highway exit to find home. Say the player enters the game
with µ = ‘e’ (exit), and upon arriving in the infoset, consid-
ers deviating to ‘c’ (continue) at this point of time. EDT then
argues that the player will always continue on the highway
and arrive at the third “0” payoff of the game. CDT, on the
other hand, argues that the player will continue on the high-
way once – or more precisely, continue at the root node since
that is the only decision node she could possibly be at given
her strategy µ – and then exit the highway at its second exit.

For node h ∈ H(i) and pure action a ∈ Ah, let ha denote
the child node reached if player i plays a at h. Consequently,

U (i)(µ | ha) is the expected utility of player i from being
at h, playing a, and everyone following profile µ afterwards.

When at an infoset I ∈ I(i), the player does not know at
which node of I she currently is. Therefore, when comput-
ing her utility incentives for a CDT-style deviation to a, she
scales each node by the probability of reaching that node un-
der profile µ. This yields utility incentives

∑

h∈I P(h | µ) · U (i)(µ | ha).
to CDT-deviate to pure action a at infoset I . This
value is known to be equal to the partial derivative

∇I,a U
(i)(µ) of utility function U (i) w.r.t. to action a

of I ∈ I(i) at point µ [Piccione and Rubinstein, 1997;
Oesterheld and Conitzer, 2022]. Hence, we can formulate the
following definition.

Definition 13. Given a profile µ in game Γ, a player i ∈ N
determines her (ex-ante) utility from CDT-deviating at infoset
I ∈ I(i) to randomized action α ∈ ∆(AI) as

U
(i)
CDT(α | µ, I) :=

U (i)(µ) +
∑

a∈AI
(α(a) − µ(a | I)) · ∇I,a U

(i)(µ).

In other words, this is the first-order Taylor approxima-

tion of U (i) at µ in the subspace ∆(AI). In Figure 8 of
Appendix C, we illustrate on a simple game that the ex-ante
CDT-utility – as a first-order approximation – may yield un-
reasonable utility payoffs for values α far away from µ(· | I).
Moreover, if α 6= µ(· | I), we observe that the resulting
behavior of the deviating player cannot be captured by a be-
havioral strategy anymore that the player could have chosen
from the beginning. That is because the player is now acting
differently at different nodes of the same infoset.

Definition 14. A profile µ is said to be a CDT equilibrium

for game Γ if for all player i ∈ N , all her infosets I ∈ I(i),
and all alternative randomized actions α ∈ ∆(AI), we have

U (i)(µ) = U
(i)
CDT

(

µ(i)(· | I)
∣

∣ µ, I
)

≥ U
(i)
CDT(α | µ, I).



Therefore, no player has any utility incentives to deviate
at an infoset in a CDT fashion to another randomized action.
CDT equilibria have received a more thorough treatment in
the literature than EDT equilibria have.

Lemma 15 (Lambert et al., 2019). Any game Γ with imper-
fect recall admits a CDT equilibrium.

Thus, we shall define CDT-S as the search problem that
asks for an ǫ-CDT equilibrium in the game (which always ex-
ists). Let 1P-CDT-S be its restriction to single-player games.

Proposition 16 (Tewolde et al., 2023).
1. A profile µ is a CDT equilibrium of Γ if and only if for all

player i ∈ N , strategy µ(i) is a KKT-point of

maxπ(i)∈S(i) U (i)(π(i), µ(−i)).

2. The problem 1P-CDT-S is CLS-complete.

The original formulation of Tewolde et al. was not given
for the multi-player setting and the ex-ante perspective. The
advantages of the latter are discussed in Section 4.4. Fur-
thermore, we may also highlight a positive algorithmic impli-
cation which has not been stated before. It can be obtained
analogously to [Fearnley et al., 2023, Lemma C.4].

Corollary 17. 1P-CDT-S for 1/poly precision is in P.

4.3 Comparing the Solution Concepts

The three solution concepts form an inclusion hierarchy. This
result is known for single-player settings and extends straight-
forwardly to multi-player settings.

Proposition 18 (Oesterheld and Conitzer, 2022). A Nash
equilibrium is an EDT equilibrium. An EDT equilibrium is
a CDT equilibrium.

This also implies that any single-player game admits both
EDT and CDT equilibria since it admits an optimal strategy
(= Nash equilibrium). In general, neither statement in Propo-
sition 18 holds in reverse. Indeed, we have seen in Figure 3
that multiselves equilibria may not be the optimal strategy.
Moreover, the strategy µ described in Example 12 forms a
CDT equilibrium but not an EDT equilibrium (an EDT de-
viation to a uniformly randomized action achieves positive
utility).

We will find in this paper that CDT equilibria are easier
to compute than EDT equilibria. Indeed, Proposition 11 and
Corollary 17 already serve as the first evidence towards such a
separation. We can also find a hint towards such an insight by
considering the easier problem of verifying whether a given
profile could be an equilibrium. For CDT, this can be done in

polytime: since U
(i)
CDT is linear in α, we do not actually need

to check Definition 14 for all α ∈ ∆(AI), but it suffices to
only check it for pure actions a ∈ AI . For EDT equilibria, on
the other hand, there is no simple-to-check characterization:

U (i)(µ
(i)
I 7→·, µ

(−i)) is a polynomial function over ∆(AI), for
which no easy verification method is known. At least, this is
true in general. As for special cases, we have:

Remark 19. Without absentmindedness, deviation incentives
of EDT and of CDT coincide, and so do the equilibrium con-
cepts. Hence, complexity results such as Proposition 16 and
Theorem 6 will apply to EDT equilibria as well.

1 0 0 2

l1

l2 r2

r1

l3 r3

h1

h2 h3

Figure 4: Differences of the ex-ante and de-se utility perspective
explained on a perfect-recall variant of Figure 3. Again, the only
optimal strategy takes the path r1 – r3. But what action can you
choose at h2?

Remark 20. If each player has only one infoset in total, then
the EDT equilibria coincide with the Nash equilibria.

4.4 On Utility Perspectives

Let us discuss the ex-ante and de-se perspectives on utilities,
and why we chose the former. Consider the game in Figure 4,
which is the perfect-recall version of Figure 3, and consider
the strategy µ = (ǫl1+(1−ǫ)r1, r2, r3) for some small ǫ > 0.
In this case, how much does it matter what randomized action
the player chooses at node h2? In the de-se perspective, the
player calculates her expected deviation gains for her current
situation onwards. In our example, she would calculate an
incentive of 1 to deviate to l2 assuming she is already at h2.
In the ex-ante perspective, the player calculates her expected
deviation gains on the ex-ante utility (from before the game
started). In our example, she would calculate an incentive of ǫ
to deviate to l2 at h2 since that node is rarely visited anyways.

Previous work in the literature has considered agents that
maximize their de-se utilities, as in Strotz [1955] with the
strategy of consistent planning or in Piccione and Rubinstein
[1997]. This might fit well for human agents who are inter-
ested in the impacts of their actions on their current self. In
this paper, however, we argue that for AI and team agents, the
ex-ante perspective is more suitable. Indeed, such an agent
should ground its optimization in the impact its actions has
on the overall ex-ante utility; despite imperfect recall limit-
ing the agent’s decision or commitment powers to the current
infoset (EDT) or decision node (CDT).

There are also technical advantages supporting the ex-ante
perspective. At infosets that are never reached, the action
choices do not affect the ex-ante utility. Under de-se reason-
ing, however, the agent would have to generate beliefs on the
impossible event of being at that infoset. In order to make
such beliefs well-defined, one has to pick one of many possi-
ble options for equilibrium refinement. In optimization terms,
the de-se utility functions are fractions of polynomials with
possible singularities on the boundary of the strategy set due
to vanishing denominators. Tewolde et al.[2023, Theorem 2]
circumvents this issue in their formulation of Proposition 16
by only considering games that come with universal lower
bounds on the positive reach probabilities of all infosets. Un-
fortunately, many (simple) games such as Figure 4 do not sat-
isfy this property.
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Figure 5: A variant of Figure 1a where P1 has one single infoset with
absentmindedness. It is parametrized by the payoff λ ∈ R from P1
shooting left and P2 blocking left.

5 Complexities of Multiselves Equilibria

In this section, we present our computational results for mul-
tiselves equilibria.

5.1 EDT Equilibria

Consider the (parametrized) absentminded penalty shoot-out
in Figure 5. It shows that in multi-player settings, EDT equi-
libria may not exist. Absentmindedness is crucial for such an
example due to Remark 19 and Lemma 15.

Lemma 21. Figure 5 has an EDT equilibrium if and only if
λ ≥ 3.

The next result establishes ∃R-hardness again by similar
arguments to Theorem 1. Except in this construction, we at-
tach the single-player game Γ from Proposition 3 to the bot-
tom left of Figure 5. Note here that by an appropriate payoff
shift in Γ, we can w.l.o.g. assume the target t for Γ to be 3.

Theorem 3. Deciding whether a game with imperfect recall
admits an EDT equilibrium is ∃R-hard and in ∃∀R. Hardness
holds even for 2p0s games where one player has a degree of
absentmindedness of 4 and the other player has perfect recall.

Now consider problem EDT-D that asks to distinguish be-
tween whether an exact EDT equilibrium exists or whether
no ǫ-EDT equilibrium exists.

Theorem 4. EDT-D is ΣP

2 -complete. Hardness holds for
1/poly precision and 2p0s games with one infoset per player
and a degree of absentmindedness of 4.

The technically involved proof casts the game construction
for Theorem 1 to a game where each player only has one in-
foset, in order to use Remark 20. For that, we cannot reduce
from Lemma 6 this time, but we reduce directly from the
ΣP

2 -complete problem ∃∀3-DNF-SAT [Stockmeyer, 1976].
Moreover, we make use of the flexibility that EDT-utilities
can represent arbitrary polynomial functions as long as they
are only over a single simplex.

Next, we turn to the search problem. The algorithm of
Proposition 9 can also find ǫ-EDT equilibria if we adjust for
its equilibrium conditions. In single-player settings, however,
we can do better since EDT equilibria are guaranteed to exist.
Let 1P-EDT-S be the search problem that asks for an ǫ-EDT
equilibrium. This problem was left open by Tewolde et al.
[2023].

Theorem 5. 1P-EDT-S is PLS-complete when the branch-
ing factor is constant. Hardness holds even when the branch-
ing factor and the degree of absentmindedness are 2.

Before we touch on the proof idea, we shall highlight its
contrast to Proposition 16 on the CLS-membership of 1P-
CDT-S, since CLS is believed to be a proper subset of PLS
(evidenced by conditional separations as discussed in Ap-
pendix A.5). Furthermore, we also get:

Corollary 22. 1P-EDT-S for 1/poly precision is in P when
the branching factor is constant.

The proofs first establish that 1P-EDT-S is computation-
ally equivalent to the search problem that takes a polynomial
function p over a product of simplices, and asks for an ap-
proximate “Nash equilibrium point” of it. In the special case
where the branching factor is 2, the domain becomes the hy-
percube [0, 1]ℓ, and an ǫ-Nash equilibrium x is characterized
by the property

∀j ∈ [ℓ] ∀y ∈ [0, 1] : p(x) ≥ p(y, x−j)− ǫ.

We show that this problem is PLS-complete. This result may
be of independent interest for the optimization literature.

The PLS-hardness follows from a reduc-
tion from the PLS-complete problem MAX-
CUT/FLIP [Schäffer and Yannakakis, 1991;
Yannakakis, 2003]. For the positive algorithmic results
of PLS and P membership respectively, we show that
ǫ-best-response dynamics converges to an ǫ-EDT equilib-
rium. We run a similar method to Proposition 9 in order to
compute an ǫ-best response randomized action of an infoset
to the other infosets. This takes polytime if the number
of actions per infoset (= branching factor) is bounded.
Without this restriction, we run into the impossibility result
of Proposition 11.

5.2 CDT Equilibria

How hard is CDT-S, now that we allow for many players?
We can get PPAD-hardness straightforwardly because any
normal-form game can be cast to extensive form, and be-
cause finding a Nash equilibrium in a normal-form game is
PPAD-complete [Daskalakis et al., 2009; Chen et al., 2009].
Interestingly enough, we can also show PPAD-membership.

Theorem 6. CDT-S is PPAD-complete. Hardness holds
even for two-player perfect-recall games with one infoset per
player and for 1/poly precision.

For membership we investigate the existence proof of
Lemma 15 by Lambert et al.. They first shows a connection
to perfect-recall games with particular symmetries, and then
give a Brouwer fixed point argument which resembles that of
Nash’s for symmetric games. However, the connection relies
on a construction whose size blows up in the order of factori-
als, i.e., super-polynomially. Therefore, we modify the fixed
point argument to one that works directly on CDT utilities:
In a game of imperfect recall, given a profile µ, define the
advantage of a pure action a at infoset I of player i as

g
(i)
I,a(µ) := U

(i)
CDT(a | µ, I)− U (i)(µ) .

Intuitively, if the advantage of an action a over the current

randomized action µ(i)(· | I) is large, then the player should



increase its probability of play. Therefore, we may define the
Brouwer function to map any profile µ to profile π defined as

π(i)(a | I) :=
µ(i)(a | I) + max{0, g(i)I,a(µ)}
1 +

∑

a′∈I max{0, g(i)I,a′(µ)}
.

Then we show that this forms a valid a Brouwer func-
tion whose fixed points are indeed CDT equilibria of the
underlying game, and that the Brouwer function and pre-
cision errors satisfy the computational requirements devel-
oped by Etessami and Yannakakis [2010] to imply PPAD-
membership.

The PPAD-membership result is a positive algorithmic re-
sult: it shows that we can find CDT equilibria with fixed
point solvers and path-following methods, just as it is the case
with Nash equilibria in normal-form games. In particular, we
shall highlight the stark contrast to Theorem 4. Finding a
CDT equilibrium sits well within in the landscape of total
NP search problems, whereas even deciding whether an EDT
equilibrium exists is already on higher levels of the polyno-
mial hierarchy, let alone finding one.

6 The Insignificance of Exogenous

Stochasticity

As of now, the hardness results for single-player settings rely
on the presence of chance nodes; see Propositions 3 and 4 and
Theorem 5. In this section, we investigate the complexity of
games without chance nodes. Of course, one might choose
to add players to the game to simulate nature, even in games
of perfect recall. However, adding players may add signifi-
cantly to the computational complexity of the game, cf. P vs
PPAD for Nash equilibria in single-player vs two-player set-
tings under perfect recall, or Proposition 16 vs Theorem 6 for
CDT equilibria under imperfect recall. Interestingly enough,
we can show that in the presence of imperfect recall, chance
nodes do not affect the complexity.

Theorem 7. All computational hardness results in this pa-
per for the three equilibrium concepts {Nash, EDT, CDT}
still hold even when the game has no chance nodes. They
hold together with previously possible restrictions (e.g., on
the branching factor), except that the restrictions on the num-
ber of infosets and the degree of absentmindedness increase
by one and to O(log |H|) respectively.

In other words, all exogenous stochasticity can be replaced
by one infoset (of an arbitrary player, say P1) with absent-
mindedness, i.e., replaced by uncertainty that arises from for-
getting one’s past actions in an identical situation. The proof

first transforms the game Γ to an equivalent game Γ̃ that only
has a single chance node hc that is located at the root. Next,
we replace hc with an infoset Ic with absentmindedness. We
illustrate in Figure 6 how to do it with a chance node that uni-
formly randomizes over two actions. The resulting game Γ′

has the same number of players and strategy sets as Γ, ex-
cept for the additional infoset Ic for P1. In equilibrium, the
induced conditional probability distribution over the children
of hc in Γ and the nonterminal “children” of Ic in Γ′ will
be the same. Finally, there will be a polynomial relationship
between the equilibrium precision errors in Γ and Γ′.

G G′

1/2 1/2

→

-1

G G′
-1

Ic

Figure 6: How to remove a chance node if it is located at the root.
Starting with the game on the left, replace it with infoset Ic. As-
suming w.l.o.g. that the subgames G and G′ always yield positive
payoffs, the player of Ic will want to randomize uniformly at Ic –
independent of the play in G and G′. For another example with more
chance node children, see Figure 10 in Appendix E.

Next, recall OPT-D from Proposition 4 which asks whether
an approximate target value can be achieved in a single-player
game with imperfect recall. We improve on Theorem 7 in the
specific problem OPT-D via an independent proof.

Proposition 23. OPT-D is NP-hard, even for games with no
chance nodes, one infoset, a degree of absentmindedness of 2,
and 1/poly precision.

Due to Remark 20, this hardness result also holds for decid-
ing whether all EDT equilibria achieve an approximate tar-
get value. The proof reduces from the 2-MINSAT problem
[Kohli et al., 1994].

7 Conclusion

Historically, games of imperfect recall have received only
limited attention, as it is not clear that they cleanly model
any strategic interactions between humans. However, as we
argued in the introduction, they are more practically signif-
icant in the context of AI agents. However, they also pose
new challenges. Optimal decision making under imperfect
recall is hard due to its close connections to polynomial op-
timization. This and previous work has shown this for the
single-player setting. Moreover, it holds even more so in
multi-player settings, where we established that even decid-
ing whether a Nash equilibrium (i.e., mutual best responses)
exists is very hard. Therefore, we turned towards suitable re-
laxations that arose from the game theory and philosophy lit-
erature. We studied them, and their relationship to each other
and to the Nash equilibrium concept, with a computational
lens.

We find that CDT equilibria stay relatively easy to find,
joining the complexity class of finding a Nash equilibrium in
perfect-recall or normal-form games. This is because CDT
defines the most local form of deviation, affecting only one
decision node at a time. EDT equilibria show a more convo-
luted picture. In single-player settings, we relate it to polyno-
mial local search via best-response dynamics. Furthermore,
without absentmindedness, EDT and CDT equilibria coincide
and hence become equally easy (Remark 19). With absent-
mindedness, on the other hand, the relevant decision prob-
lems for EDT equilibria (in single- or multi-player settings)



tend to coincide in complexity with the analogous problems
for Nash equilibria under imperfect recall.

One conclusion, however, has presented itself in all settings
considered throughout this paper: (assuming well-accepted
complexity assumptions), CDT equilibria are in general
strictly easier to find and decide than EDT and Nash equilib-
ria (Proposition 16 vs Theorem 5, Corollary 17 vs Proposi-
tion 11, and Theorem 6 vs Theorem 4). Does this imply that
CDT-based reasoning is more suitable for computationally-
bounded agents?

Finally, the computational differences between EDT equi-
libria and Nash equilibria have yet to be properly understood,
that is, the differences between global optimization of poly-
nomials over a single simplex versus a product of simplices.
We leave this open for future work, with a particular interest
in the search complexities of these two equilibrium concepts.
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A On Section 2

In this section, we expand on the technical background
needed on games with imperfect recall to develop our re-
sults. Again, this section closely follows the notation of
Tewolde et al. [2023] and simply extends their exposition to
multi-player settings.

A.1 Notation

Players in N will be referred to as strategic players. Recall
that we can identify their strategy sets with Cartesian products
of simplices

S ≡ ×
i∈N

×
I∈I(i)

∆|AI |−1 and S(i) ≡ ×
I∈I(i)

∆|AI |−1 .

For that purpose, we have to fix an ordering of the infosets
and actions in a considered game Γ. Denote the number of

infosets of strategic player i ∈ N as ℓ(i) := |I(i)|, and fix an

ordering I
(i)
1 , . . . , I

(i)

ℓ(i)
of infosets in I(i). Similarly, denote

the number of actions at infoset I
(i)
j ∈ I(i) as m

(i)
j := |A

I
(i)
j

|,
and fix an ordering a

(i)
j1 , . . . , a

(i)

jm
(i)
j

of actions in A
I
(i)
j

.

Then, a strategy µ ∈ S is uniquely identified with the vec-
tor

µ =
(

µ
(i)
jk

)

i,j,k
∈ ×

i∈[N ]
×

j∈[ℓ(i)]

∆m
(i)
j −1 ⊂ ×

i∈[N ]
×

j∈[ℓ(i)]

Rm
(i)
j

where µ
(i)
jk ∈ [0, 1] is the probability µ(i)

(

a
(i)
jk | I

(i)
j

)

that

strategic player i assigns to action a
(i)
jk at infoset I

(i)
j .

A.2 Representation of Polynomials

Since we draw some of our complexity results from known
results in polynomial optimization, we first note that polyno-
mials shall be represented in the Turing (bit) model, which
will be described below. Say, we have a general poly-

nomial function p : ×i∈[N ]×j∈[ℓ(i)] R
m

(i)
j → R in vari-

ables x = (x
(i)
jk )i,j,k and of total degree d ∈ N. Let

m := (m
(i)
j )N,ℓ(i)

i,j=1 denote the associated vector of dimen-
sions. Then, the relevant standard monomial basis to p is
{
∏N,ℓ(i),m

(i)
j

i,j,k=1 (x
(i)
jk )

Dijk
}

D∈MB(d,m)
. Here, each vector D

indicates one unique way to distribute the total degree d to
the variables, and MB(d,m) denotes the collection of them.
That is

MB(d,m) :={D = (Dijk)ijk ∈ ×
i∈[N ]

×
j∈[ℓ(i)]

(N ∪ {0})m
(i)
j :

N,ℓ(i),m
(i)
j

∑

i,j,k=1

Dijk ≤ d} .

By abuse of notation, let xD :=
∏

i,j,k(x
(i)
jk )

Dijk . Then,

polynomial p can be uniquely represented as p(x) =
∑

D∈MB(d,m) λD ·xD where each λD ∈ Q for computational

considerations. Finally, any general polynomials p in this pa-
per are assumed to be represented as a binary encoding of

these values (ℓ(i))Ni=1,m and coefficients (λD)D∈MB(d,m).

A.3 Lipschitz Constants

As polynomial functions, utility functions U (i) are Lips-
chitz continuous over strategy space S. We will some-
times need access to these Lipschitz constants. Tewolde et al.
[2023][Lemma 22] describe how, given a polynomial func-
tion p : Rn → R in the Turing (bit) model, one can obtain a
Lipschitz constant L∞ of p over the hypercube [0, 1]n w.r.t.
the infinity norm within polytime.

One possible Lipschitz constant is the maximum gradient
norm over the hypercube

max
x∈[0,1]n

{||∇p(x)||∞} = max
x∈[0,1]n

max
j∈[n]

|∇j p(x)|

= max
j∈[n]

max
x∈[0,1]n

|∇j p(x)| .

Consider a dimension j ∈ [n] and suppose polynomial
∇j p(x) has monomial coefficients (λD)D. Since all vari-
ables xj′ are bounded by 1, we get

max
x∈[0,1]n

|∇j p(x)| ≤ max
x∈[0,1]n

|
∑

D

λD·xD| ≤
∑

λD

|λD| =: Lj ,

which is polytime computable. Hence, we can set

L∞ := max{1,max
j∈[n]

Lj} .

Now say, we start with a game Γ with imperfect recall.
Observe that the strategy space S is a subset of one high-

dimensional hypercube ×i∈[N ]×j∈[ℓ(i)][0, 1]
m

(i)
j . By the

method described above, we can get a Lipschitz constant L
(i)
∞

of each player’s utility functionU (i), and a Lipschitz constant

L
(i,j,k)
∞ of each partial derivative ∇jk U

(i). Summarize them
to one Lipschitz constant

L∞ := max{1,max
i∈[N ]

L(i)
∞ , max

i∈[N ],j∈[ℓ(i)],k∈[m
(i)
j ]

L(i,j,k)
∞ }

for the game Γ.
Furthermore, if the utility payoffs in Γ are bounded, say in

[−2, 2], then the coefficients λD will be (at worst) a monomial

coefficient from U (i) times two monomial degrees from U (i)

(due to second derivative). These values are bounded for the
by the maximum absolute utility value 2 and by the squared
number of nodes |H|2 respectively. Moreover, there will be
at most as many monomials as there are terminal nodes in
Γ, which itself is bounded by |H| again. Hence, each Lj ≤
2|H|3, and thus L∞ = poly(|H|).

A.4 From Polynomials to Imperfect-Recall Games

Given a set of polynomials p = (p(1), . . . , p(N)) :

×i∈[N ]×j∈[ℓ(i)] R
m

(i)
j → RN , we can construct an associ-

ated N -player game with imperfect recall Γ such that Γ’s

its expected utility functions satisfy U (i)(µ) = p(i)(µ) on

×N
i=1×ℓ(i)

j=1 R
m

(i)
j .

Denote supp(p) := {D ∈ MB(d,m) : λ
(i)
D 6=

0 for some i ∈ [N ]}). The constructed game Γ shall have

N players and an infoset I
(i)
j for each i ∈ [N ] and j ∈ [ℓ(i)].



At I
(i)
j , there shall m

(i)
j action choices. The game tree will

have a depth of up to d+1. The root h0 will be a chance node
that has one outgoing edge to a subtree TD for each monomial
index D ∈ supp(p). An outgoing edge is drawn uniformly
at random. Let us build TD associated to D, which, in turn,

is associated to monomial
∏

i,j,k(x
(i)
jk )

Dijk . Let suppms(D)
be a lexicographically ordered version of the multiset which
contains Dij many copies of element (i, j, k) if Dijk > 0.
Then, going through the list suppms(D) means that we will

encounter a variable x
(i)
jk that degree Dijk exactly Dijk-many

times back to back. Therefore, starting with the edge that
goes into TD, do the following loop:

1. Take the next element (i, j, k) of suppms(D).

2. Add a nonterminal node h to the current edge and assign

h to info set I
(i)
j of player i.

3. Create m
(i)
j outgoing edges from h, one for each action

at I
(i)
j .

4. At the end of edges 6= k, add a terminal node with utility
payoff 0 for all i ∈ [N ].

5. Go to the k − th edge.

Lastly, once we are through with suppms(D), add a final
terminal node zD to the current edge, with utility payoff

λ
(1)
D · | supp(p)|, . . . , λ(N)

D · | supp(p)|. With this procedure,
subtree TD will have depth | suppms(D)| = ||D||1.

In this reduction, we have that any point

x ∈ ×i∈[N ]×j∈[ℓ(i)] R
m

(i)
j that is also in

×i∈[N ]×j∈[ℓ(i)] ∆
m

(i)
j −1 naturally comprises a strategy

in Γ that selects the k-th action at I
(i)
j with probability x

(i)
jk .

Moreover, each expected utility function U (i) of player i in
Γ satisfies for such a point x:

U (i)(x) =
∑

z∈Z
P(z | x) · u(i)(z)

=
∑

D∈supp(p)

P(zD | x) · λ(i)
D · | supp(p)|

=
∑

D∈supp(p)

[

( 1

| supp(p)| ·
∏

Dijk>0

(x
(i)
jk )

Dijk

)

· λ(i)
D · | supp(p)|

]

=
∑

D∈MB(d,m)

λD ·
∏

i,j

(x
(i)
jk )

Dijk

= p(x) .

This identity extends to the whole space

×i∈[N ]×j∈[ℓ(i)] R
m

(i)
j . Finally, the construction of Γ

takes polytime in the encoding size of p(1), . . . , p(N).

A.5 Further Comments on the Complexity Classes

Decision Problems P, NP, and ΣP

2 are parts of the lower
levels of the polynomial hierarchy. For a more detailed treat-
ment we refer to [Arora and Barak, 2009][Section 5]. The

first order of the reals, its subclasses ∃∀R and the existen-
tial theory of the reals ∃R, as well as algorithms to solve
those decision problems are discussed in [Renegar, 1992;
Schaefer and Stefankovic, 2017]. The chain NP ⊆ ∃R ⊆
PSPACE∩∃∀R is due to [Shor, 1990; Canny, 1988], and it
ties into the previous discussion that the solutions of an ∃R
sentence may take on irrational solution values.

Let us discuss the running time of deciding a ∃∀R-sentence
∃x ∈ Rn1∀y ∈ Rn2F (x, y), using the standard variable nota-
tion that may overlap with our variable notation in this paper.
In its standard form, quantifier-free formula F is assumed to
be a Boolean formula P where the atomic predicates can be
of the form gi∆i0. Here, gi is a polynomial function in in-
teger coefficients and ∆i ∈ {>,≥,=, 6=,≤, <}. Let n1 and
n2 be the number of variables of the ∃ and ∀ quantifiers, a
be the length of P , m be the number of atomic predicates
gi∆i0, d be an upper bound on the degree of polynomials gi,
and L be the bit length to represent the coefficients in the gi.
Then, Renegar [1992] gives an algorithm A that takes time

poly(L, a) · (md)O(n1·n2) to decide whether such a sentence
is true or not. In order for this to be polynomial time, we may
require the number of variables n1 and n2 to be constant. For
deciding an ∃R-sentence, just set n2 = 1 in the above running
time bound.

Total NP search problems Decision problems ask for a
yes/no answer. Search problems can ask for more sophisti-
cated answers, usually they ask directly for solutions (if ex-
istent) with which we can verify a “yes” instances of the as-
sociated decision problem. The complexity classes FP and
FNP are the search problem analogues of P and NP. We
have P = NP if and only if FP = FNP. However, the
landscape between FP and FNP has been characterized bet-
ter than the landscape between P and NP. More specifi-
cally, there is a special interest in search problems for which
one knows that each problem instance admits a solution (the
landscape of total NP search problems). Within that, we
will be interested in the three complexity classes CLS, PLS,
PPAD, which can be characterized by the method with which
one can show that each problem instance admits a solu-
tion. For the class PPAD (“Polynomial Parity Arguments
on Directed graphs”, Papadimitriou, 1994), that is if one can
show that the existence of a solution can be proven by a
fixed point argument. This is the case for example for the
existence of an approximate Nash equilibrium [Nash, 1951;
Daskalakis et al., 2009]. For the class PLS (“Polynomial Lo-
cal Search”, Johnson et al., 1988), that is if one can show
that the existence of a solution can be proven by a local opti-
mization argument on a directed acyclic graph. Since we will
prove PLS-membership directly, we will give a precise defi-
nition further below. For the class CLS (“Continuous Local
Search”, Daskalakis and Papadimitriou, 2011), that is if one
can show that the existence of a solution can be proven by a
local optimization argument on a bounded polyhedral (con-
tinuous) domain. Alternatively, CLS can be characterized as
the intersection of PPAD and PLS [Fearnley et al., 2023].

In Section 5.1, we discuss the differences in complexity of
finding an approximate EDT vs CDT equilibrium in single-
player settings, and relate it to PLS versus CLS. As of yet,



CLS is believed to be a proper subclass of PLS, a belief sup-
ported by separation oracles (a kind of conditional separation)
for PPAD and PLS [Buresh-Oppenheim and Morioka, 2004;
Buss and Johnson, 2012; Morioka, 2001]. An unconditional
separation of these classes would imply P ( NP.

Definition of PLS A local search problem is given by a set
of instances J . For every instance J ∈ J we are given a
finite set of feasible solutions S(J), an objective function
c : S(J) → Q, and for every feasible solution s ∈ S(J)
a neighborhood N(s, J) ⊆ S(J). Given an instance J , the
goal is to compute a locally optimal solution s∗, that is, a so-
lution that does not have a strictly better neighbor in terms of
the objective value.

Definition 24 (Johnson et al. [1988]). The complexity class
polynomial local search (PLS) consists of all local search
problems that admit a polytime algorithm for each of the fol-
lowing tasks:

1. Given an instance J , compute an initial feasible solu-
tion;

2. Given an instance J and a feasible solution s ∈ S(J),
compute the objective value C(s);

3. Given an instance J and a feasible solution s ∈ S(J),
determine if s is a local optimum, or otherwise deter-
mine a feasible solution s ∈ N(s, J) with a strictly
higher objective value.

B On Section 3

In this section, we prove the results in Section 3. To that end,
we restate results taken from the main body, and give new
numbers to results presented first in this appendix.

Proposition (Restatement of Proposition 7). Let Γ be a 2p0s
game with imperfect recall. If ∆ ≤ ǫ then Γ admits an ǫ-Nash
equilibrium. Conversely, if Γ admits an ǫ-Nash equilibrium,
then ∆ ≤ 2ǫ.

Proof.

1. Suppose ∆ ≤ ǫ. Let

π(1) = argmax
µ(1)∈S(1)

min
µ(2)∈S(2)

U (1)(µ(1), µ(2)) ,

and
π(2) = argmin

µ(2)∈S(2)

max
µ(1)∈S(1)

U (1)(µ(1), µ(2)) .

Then we can show that (π(1), π(2)) is an ǫ-Nash equilibrium.
Indeed, we have

¯
U = min

µ(2)∈S(2)
U (1)(π(1), µ(2)) ≤ U (1)(π(1), π(2))

≤ max
µ(1)∈S(1)

U (1)(µ(1), π(2)) = Ū .

Thus, using Ū −
¯
U = ∆ ≤ ǫ, we obtain the ǫ-Nash equilib-

rium conditions

U (1)(π(1), π(2)) ≥ max
µ(1)∈S(1)

U (1)(µ(1), π(2))− ǫ ,

and

U (1)(π(1), π(2)) ≤ min
µ(2)∈S(2)

U (1)(π(1), µ(2)) + ǫ .

0

Γ

-1 3 -1 -1 -1 -1 3 -1

exit cont

Γ′ := Figure 1a

Figure 7: Game used in Lemma 25 and the proofs of Theorems 1
and 2. Γ is a placeholder game. We use boxes for chance nodes, at
which chance plays uniformly at random.

2. Suppose µ∗ is an ǫ-Nash equilibrium. Then

∆ = min
µ(2)∈S(2)

max
µ(1)∈S(1)

U (1)(µ(1), µ(2))

− max
µ(1)∈S(1)

min
µ(2)∈S(2)

U (1)(µ(1), µ(2))

≤ max
µ(1)∈S(1)

U (1)(µ(1), (µ∗)(2))

− min
µ(2)∈S(2)

U (1)((µ∗)(1), µ(2))

= max
µ(1)∈S(1)

U (1)(µ(1), (µ∗)(2))− U (1)(µ∗)

+ U (1)(µ∗)− min
µ(2)∈S(2)

U (1)((µ∗)(1), µ(2))

≤ ǫ+ ǫ = 2ǫ .

Next, consider the game of Figure 7 where Γ is a 2p0s
game. Let

¯
U be the max-min value in the subgame Γ. More-

over, let v := minz∈Z u(1)(z) ≤ −1 be the minimum termi-
nal payoff in Figure 7.

Lemma 25. If max-min value
¯
U ≥ 0 in Γ, then the game

in Figure 7 has an exact Nash equilibrium. If
¯
U ≤ −ǫ in Γ

for ǫ > 0 sufficiently small (ǫ ≤ − 1
8v ), then Figure 7 has no

ǫ/2-Nash equilibrium.

Proof. First we note that the max-min value of the forgetful
penalty shoot-out subgame Γ′ (cf. Figure 1a) is 0, realized
for example by P1 randomizing 50/50 at her infosets, and
P2 going left deterministically. The min-max value in Γ′, on
the other hand, is 1, realized for example by P2 randomizing
50/50, and P1 going left deterministically. Therefore,∆ = 1,
and by Proposition 7, there is no 1/4-Nash equilibrium in Γ′.

The proof idea is that given a strategy of P1, P2 would be
interested in continuing at the root node if and only if he can
achieve negative utility after that. This comes down to if he
can achieve negative utility in Γ because in Γ′, there is al-
ways a best response with which he can achieve non-positive
utility. Suppose that is the case and, thus, P2 is continuing
at the root node with sufficiently high probability. Then the
profile is already guaranteed to not be an (approximate) Nash



equilibrium because the players will never be in a 1/4-Nash
equilibrium in the subgame Γ′.

1. Suppose
¯
U ≥ 0 in Γ. Consider the profile where P2 exits

100% of the time, and where P1 plays her max-min strategies
in Γ and Γ′, and P2 plays anything in Γ and Γ′. This makes
an exact Nash equilibrium: The only play that has an effect
on the ex-ante utility is P2 exiting at his first node. And this
is optimal for P2, because upon continuing he would receive
a loss of ≥ 0 instead (recall the 2p0s assumption).

2. Suppose
¯
U ≤ −ǫ for some 0 < ǫ < − 1

8v . For the

sake of a contradiction, assume Figure 7 also has an ǫ2/4-
Nash equilibrium π. Let ρ be the probability with which P2
continues at the root in profile π. Then observe that P2 can

deviate to the strategy µ(2) that deterministically continues at

the root and that plays a best response to π(1) in Γ and Γ′.
Therefore, since π is an ǫ2/4-Nash equilibrium, we get

ρv ≤ U (1)(π) ≤ U (1)(π(1), µ(2)) +
ǫ2

4

≤ 1

2 ¯
U +

1

2
0 +

1

4
ǫ ≤ 1

2 ¯
U +

1

4
· (−

¯
U) =

1

4 ¯
U < 0 .

Since v < 0, we get ρ > 0 and hence ρ ≥ 1
4v ¯
U .

Again, π is an ǫ2/4-Nash equilibrium. Thus, in particular,
no player has an incentive of more than ǫ2/4 to deviate to
another strategy in the game Γ′. Hence π|Γ′ would make an
approximate Nash equilibrium in Γ′ (considered as its own
game) with rescaled approximation error

1

ρ · 1
2

· ǫ
2

4
≤ ǫ2

1
2v ¯
U

=
2 · (−v) · ǫ2

−
¯
U

≤ 2 · (−v) · ǫ2
ǫ

= −2vǫ ≤ −2v
−1

8v
=

1

4
.

This contradicts that Γ′ has no 1/4-Nash equilibrium as dis-
cussed in the beginning of the proof.

Theorem (Restatement of Theorem 1). Deciding if a game
with imperfect recall admits a Nash equilibrium is ∃R-hard
and in ∃∀R. Hardness holds even for 2p0s games where one
player has a degree of absentmindedness of 4 and the other
player has perfect recall.

Proof. ∃∀R-membership follows because we can formulate
the question of Nash equilibrium existence as the sentence

∃µ∀π :µ ∈ S ∧
[

π /∈ S ∨

∧i∈[N ]

(

U (i)(µ) ≥ U (i)(π(i), µ(−i))
)

]

.

∃R-hardness follows from a reduction from Proposition 3.
Let (Γ, t) be an instance of that decision problem. W.l.o.g.
we can assume t = 0 (otherwise first shift the payoffs in Γ
by 1 − t). Insert Γ into Figure 7 by letting P1 play in that
subgame. Payoffs of P2 in that subgame shall simply be the
negative of the payoffs of P1. Call this new game construc-
tion G. This is a polytime construction. Moreover, asking

whether a utility of 0 can be achieved in original Γ is equiva-
lent to asking whether

¯
U ≥ 0 in subgame Γ of G.

The equivalence of those decision problems follows by
Lemma 25: If

¯
U ≥ 0 then G has a Nash equilibrium. If G has

a Nash equilibrium, then it also has an ǫ/2-Nash equilibrium
for arbitrary small ǫ > 0. Hence,

¯
U ≥ 0.

About the hardness restrictions: Gimbert et al. [2020]

show hardness of Proposition 3 even for degree 4 polynomi-
als, that is, games with degree of absentmindedness 4. More-
over, G is a 2p0s game in which P2 has perfect recall.

Theorem (Restatement of Theorem 2). NASH-D is ΣP

2 -
complete. Hardness holds for 2p0s games with no absent-
mindedness and 1/poly precision.

Proof. ΣP

2 -membership: Given an instance (Γ, ǫ), we can
guess a profile µ and verify in non-deterministic polytime
whether it is an ǫ-Nash equilibrium. Namely, guess µ to have

action probabilities with values with denominators ≤ 2L∞

ǫ ,
where L∞ is obtained as in Appendix A.3. Note that this is a
polysized guess in (Γ, ǫ). Then, to verify, guess another pro-
file π in the same way. Finally, check for each player i ∈ N
whether U (i)(µ(i), µ(−i)) ≥ U (i)(π(i), µ(−i))− ǫ. If so, then
this serves as a verification that Γ has an ǫ-Nash equilibrium,
and therefore, an exact Nash equilibrium.

This works, because if Γ has an exact Nash equilibrium
µ∗, then this method is able to find an ǫ-Nash equilibrium.
Namely, µ∗ will be at most ǫ

2L∞

away (in || · ||∞) from a

profile µ that could have been guessed by the method above.
And this profile will satisfy for all player i ∈ N , and all

alternative strategies π(i) ∈ S(i)

U (i)(µ) = U (i)(µ)− U (i)(µ∗) + U (i)(µ∗)

≥ U (i)(µ∗)− L∞||µ− µ∗||∞
≥ U (i)(π(i), (µ∗)(−i))− L∞

ǫ

2L∞
− U (i)(π(i), µ(−i)) + U (i)(π(i), µ(−i))

≥ U (i)(π(i), µ(−i))− ǫ

2

− L∞
∣

∣

∣

∣

∣

∣

(

π(i), (µ∗)(−i)
)

−
(

π(i), µ(−i)
)

∣

∣

∣

∣

∣

∣

∞

≥ U (i)(π(i), µ(−i))− ǫ

2
− L∞

ǫ

2L∞
≥ U (i)(π(i), µ(−i))− ǫ .

ΣP

2 -hardness: We reduce from Lemma 6, and the idea is
analogous to the proof of Theorem 1. Given an instance
(Γ, ǫ) for it, insert Γ in Figure 7 and call the construction
G. Let

¯
U be the min-max value in Γ, and v be the mini-

mum terminal payoff in G. Set ǫ′ := 1
2 min{ǫ,− 1

8v}. Then,
by Lemma 25, we have for corresponding NASH-D instance
(Γ, ǫ′): If

¯
U ≥ 0, then G has an exact Nash equilibrium,

which will be correctly identified as such by a NASH-D
solver. If

¯
U ≤ −ǫ, then also

¯
U ≤ −min{ǫ,− 1

8v }. Hence, G
has no ǫ′-Nash equilibrium, which will be correctly identified
as such by a NASH-D solver.

The restrictions on the hardness result follow directly from
Lemma 6 or Theorem 2.



Corollary (Restatement of Corollary 8). It is ΣP

2 -complete
to distinguish ∆ = 0 from ∆ ≥ ǫ in 2p0s games. Hardness
holds for 2p0s games with no absentmindedness and 1/poly
precision.

Proof. Reduce from Theorem 2 using Proposition 7.

Proposition (Restatement of Proposition 9). NASH-D is
solvable in time

poly
(

|Γ|, log 1
ǫ , (m · |H|)m2

)

.

Proof. Let (Γ, ǫ) be an instance of NASH-D. Let m :=
∑

i∈[N ]

∑

j∈[ℓ(i)] m
(i)
j be the total number of pure actions in

the game. This will be the number of variables n1 and n2 in
the resulting ∃∀R-sentences (recall Appendix A.5). By abuse
of notation, let S(µ) be the system of linear (in-)equalities in
a profile µ that describes whether µ lies in the profile set, that
is, the conjunctions of

µ
(i)
jk ≥ 0 ∀i ∈ [N ], ∀j ∈ [ℓ(i)], ∀k ∈ [m

(i)
j ]

and

m
(i)
j

∑

k=1

µ
(i)
jk = 1 ∀i ∈ [N ], ∀j ∈ [ℓ(i)] .

Notice that the profile set S lies in the standard hypercube
[0, 1]m which can be described as the (conjuction) system
B(µ) of linear (in-)equalities

µ
(i)
jk ≥ 0 := y

(i)
jk ∀i ∈ [N ], ∀j ∈ [ℓ(i)], ∀k ∈ [m

(i)
j ] ,

and µ
(i)
jk ≤ 1 := z

(i)
jk ∀i ∈ [N ], ∀j ∈ [ℓ(i)], ∀k ∈ [m

(i)
j ] .

We will make use and adjust the values y
(i)
jk and z

(i)
jk later

on.

First, we decide the sentence whether there exists (∃) µ ∈
Rm such that for all (∀) π ∈ Rm we have

S(µ) ∧B(µ)

∧
[

¬S(π) ∨ ∧i∈[N ]

(

U (i)(µ) ≥ U (i)(π(i), µ(−i))
)

]

.
(1)

If this is false, then we can return that no (ǫ-)Nash equi-
librium exists in Γ (since NASH-D is a promise problem). If
the sentence is true, then we can work on finding an ǫ-Nash
equilibrium. We do it by shrinking the region of profile space
S that we may consider further and further, until any point of
that region is an ǫ-Nash equilibrium. Namely, compute a Lip-
schitz constant L∞ of Γ as described in Appendix A.3, and
run the subdivision method in Algorithm 1.

Algorithm 1 Subdivison Search for a Nash Equilibrium

1: while diam ≥ ǫ
2L∞

do

2: for i ∈ [N ], j ∈ [ℓ(i)], k ∈ [m
(i)
j ] do

3: if ∃µ∀π : (1) ∧ µ
(i)
jk ≤ y

(i)
jk

+z
(i)
jk

2 then

4: z
(i)
jk ← y

(i)
jk +z

(i)
jk

2
5: else

6: y
(i)
jk ← y

(i)
jk +z

(i)
jk

2

7: end if
8: Update B accordingly
9: end for

10: diam ← diam/2
11: end while

After each for loop, the box B shrinks by 1/2 along each
dimension, while making sure that the the sentence to (1) re-
mains true. Therefore, once the while loop terminates, there
(still) is a profile µ̂ ∈ B that is an exact Nash equilibrium
for Γ. Select any point µ that satisfies the linear (in-)equality
system S(µ)∧B(µ). Then, due to termination condition, we
have ||µ − µ̂||∞ < ǫ

2L∞

. All in all, we can therefore de-

rive by analogous reasoning to the ΣP
2 -membership proof of

Theorem 2 that µ is an ǫ-Nash equilibrium of Γ.
Running time: Let us assume oracle access to an ∃∀R

solver for a second. The diameter of B w.r.t. the infinity
norm starts at diam = 1, and it halves once after each fin-
ished for loop. Any for loop takes O(m) time. This makes

the subdivison algorithm take O
(

m·
(

logL∞+log 1
ǫ

)

)

time,

which is polytime in instance (Γ, ǫ). Therefore, the bounds

y
(i)
jk and z

(i)
jk remain polysized. On the other hand, observe

that the maximal degree of the polynomial functions in (1)
is bounded by the maximal tree depth in Γ, which is in turn
bounded by |H|. Hence, by the discussion in Appendix A.5,
each ∃∀R-sentence can be decided in running time

poly
(

|Γ|, log 1

ǫ

)

·
(

O(m) · |H|
)O(m2)

= poly
(

|Γ|, log 1

ǫ
, (m · |H|)m2

)

.

Finally, solving a linear (in-)equality system to get the point

µ takes poly
(

|Γ|, log 1
ǫ

)

-time. This gives the overall running

time bound

O
(

m ·
(

logL∞ + log
1

ǫ

)

)

· poly
(

|Γ|, log 1

ǫ
, (m · |H|)m2

)

= poly
(

|Γ|, log 1

ǫ
, (m · |H|)m2

)

.

C On Section 4

In this section, we expand on the technical background
needed on multiselves equilibria and prove the claims made
in Section 4. To that end, we restate results taken from the
main body, and give new numbers to results presented first in
this appendix.



C.1 On CDT Utilities and Equilibria

CDT Utilities and Derivatives

Lemma 26 (Piccione and Rubinstein;
Oesterheld and Conitzer, 1997; 2022). For all player
i ∈ N , infosets I ∈ I(i), pure actions a ∈ AI , and strategy
µ ∈ S, we have

∇I,a U
(i)(µ) =

∑

h∈I

P(h | µ) · U (i)(µ | ha) ,

where the l.h.s. denotes the partial derivative of utility func-
tion U (i) w.r.t. to action a of I ∈ I(i) at point µ.

Proof. Take a player i ∈ N . Recall that U (i) is a polynomial

function over strategy set S ⊂×i′∈[N ]×j′∈[ℓ(i′)]R
m

(i′)

j′ . Fix

an infoset j ∈ [ℓ(i)] and pure action k ∈ [m
(i)
j ]. Let e

(i)
jk

denote the unit vector in direction of dimension (i, j, k) of

S. The partial derivative of U (i) in that dimension and at a
strategy µ is then defined as

∇jk U
(i)|µ := lim

ǫ→0

1

ǫ
·
(

U (i)(µ+ ǫ · e(i)jk )− U (i)(µ)
)

.

Note that x := µ + ǫ · e(i)jk is not a profile since its action

values at infoset Ij sum up to 1 + ǫ. Nonetheless, utility U (i)

and reach probability P as polynomials are still well defined
there. Thus

U (i)(x) =
∑

z∈Z
P(z | x) · u(i)(z) = (†) .

Here, productP(z | x) is equal to the productP(z | µ), except

that factor µ
(i)
jk is replaced by factor µ

(i)
jk + ǫ. This factor

occurs as often in that product as ak needs to be played in the
history of z. Multiply out this product and sort the resulting
sum by their order in ǫ:

(†) =
∑

z∈Z
P(z | µ) · u(i)(z)

+
∑

z∈Z

(

u(i)(z) ·
∑

h∈hist(z)∩Ij

P(h | µ) · ǫ · P(z | µ, hak)
)

+O(ǫ2)

= U (i)(µ) + (⋆) +O(ǫ2)

Therefore,

∇jk U
(i)|µ = lim

ǫ→0

1

ǫ
·
(

U (i)(µ) + (⋆) +O(ǫ2)− U (i)(µ)
)

= lim
ǫ→0

(⋆)

ǫ

=
∑

z∈Z

∑

h∈Ij

u(i)(z) · P(h | µ) · P(z | µ, hak)

=
∑

h∈Ij

P(h | µ) ·
∑

z∈Z
P(z | µ, hak) · u(i)(z)

=
∑

h∈Ij

P(h | µ) · U (i)(µ | hak) .

Alternative Characterizations

Remark 27. The CDT utility of a player i ∈ N in Γ at infoset
I ∈ I(i) from randomized action α ∈ ∆(AI) under profile µ
satisfies the linearity property

U
(i)
CDT(α | µ, I) =

∑

a∈AI

α(a) · U (i)
CDT(a | µ, I) .

Proof. We have

∑

a∈AI

α(a) · U (i)
CDT(a | µ, I)

=
∑

a∈AI

α(a) ·
(

U (i)(µ) +∇I,a U
(i)(µ)

−
∑

a′∈AI

µ(a′ | I) · ∇I,a′ U (i)(µ)
)

=
∑

a∈AI

α(a) ·
(

U (i)(µ)−
∑

a′∈AI

µ(a′ | I) · ∇I,a′ U (i)(µ)
)

+
∑

a∈AI

α(a) · ∇I,a U
(i)(µ)

= U (i)(µ)−
∑

a′∈AI

µ(a′ | I) · ∇I,a′ U (i)(µ)

+
∑

a∈AI

α(a) · ∇I,a U
(i)(µ)

= U
(i)
CDT(α | µ, I) .

Lemma 28. A profile µ is a CDT equilibrium for game Γ if
and only if for all player i ∈ N , all her infosets I ∈ I(i), and
all alternative pure actions a ∈ AI , we have

U
(i)
CDT(a | µ, I) ≥ max

a′∈AI

U
(i)
CDT(a

′ | µ, I) .

Proof. Using Remark 27, we have for all i ∈ [N ] and j ∈
[ℓ(i)]

U
(i)
CDT(µ

(i)
j· | µ, Ij) =

∑

k∈[m
(i)
j ]

µ
(i)
jk · U (i)

CDT(ak | µ, Ij)

=
∑

k∈supp(µ
(i)
j· )

µ
(i)
jk · U (i)

CDT(ak | µ, Ij) ,

and analogously for randomized action α instead of µ
(i)
j· .

This allows us to see that randomized action µ
(i)
j· is not op-

timal in ∆(AIj ) if and only if it does not solely randomize
over optimal pure actions.

Unreasonable CDT Utilities In Distance
As a first-order Taylor approximation of U (i), the ex-ante
CDT-utility may yield unreasonable utility payoffs for values
α far away from µ(· | I). Consider Figure 8. Say, the player
enters the game with the strategy µ that always continues at
I , the player arrives at I , and considers a deviation to action
α that deterministically exits now. Then



1

1

1 0

e c

e
. . .

e c

I

h0
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hn

Figure 8: A single-player single-infoset game with n nodes. Exiting
at any of them gives the player a utility of 1.

U
(1)
CDT(α | µ, I) = 0 +∇I,exit U

(1)(µ)−∇I,continue U
(1)(µ)

=
∑

hi∈I

P(hi | µ) · U (1)(µ | hi ◦ exit)−
∑

hi∈I

P(hi | µ) · U (1)(µ | hi ◦ continue)

= n · 1− n · 0 = n .

This is unreasonable to expect because the game only has
payoffs between 0 and 1. However, we can give the following
bound on CDT utilities:

|U (i)
CDT(α | µ, I)|

= |U (i)(µ) +
∑

a∈AI

(α(a) − µ(a | I)) · ∇I,a U
(i)(µ)|

≤ |U (i)(µ)| + ||α− µ(· | I)||∞||∇I,· U
(i)(µ)||∞

(∗)
≤ |U (i)(µ)|+ 1 · |H||U (i)(µ)|
≤ 2|H|max

z∈Z
|u(i)(z)| ,

(2)

where in (∗) we used Lemma 26.

Computational Results Inserting Definition 13 into Defi-
nition 14 immediately yields

Remark 29. A profile µ is an ǫ-CDT equilibrium (ǫ ≥ 0) for
game Γ if and only if for all player i ∈ N , all her infosets
I ∈ I(i), and all alternative randomized actions α ∈ ∆(AI),
we have
∑

a∈AI

µ(a | I) ·∇I,a U
(i)(µ) ≥

∑

a∈AI

α(a) ·∇I,a U
(i)(µ)− ǫ .

Proposition (Restatement of Proposition 16; Tewolde et al.,
2023).

1. A profile µ is a CDT equilibrium of Γ if and only if for all
player i ∈ N , strategy µ(i) is a KKT-point of

maxπ(i)∈S(i) U (i)(π(i), µ(−i)).

2. Problem 1P-CDT-S is CLS-complete.

Proof. We refer to Tewolde et al. [2023][Theorem 1 and 2]
for these results. We shall use characterization Remark 29
which is analogous to their Definition 9, except that ours
is in the ex-ante perspective, so make use of Lemma 26.
Tewolde et al. prove the KKT correspondence for single-
player settings. Our proof works analogously because the
single-player result then implies the multi-player result: A
profile µ is a CDT-equilibrium of Γ if and only if for each

player i ∈ N , their strategy µ(i) is a CDT-equilibrium of the
single-player version of Γ where all players i′ 6= i play fixed

the strategy µ(i′).
We highlight that all KKT conditions together for a point

µ ∈×i∈[N ]×j∈[ℓ(i)] R
m

(i)
j become that there exist KKT mul-

tipliers {τ (i)jk ∈ R}N,ℓ(i),m
(i)
j

i,j,k=1 and {κ(i)
j ∈ R}N,ℓ(i)

i,j=1 such that

µ
(i)
jk ≥ 0 ∀i ∈ [N ], ∀j ∈ [ℓ(i)], ∀k ∈ [m

(i)
j ]

m
(i)
j

∑

k=1

µ
(i)
jk = 1 ∀i ∈ [N ], ∀j ∈ [ℓ(i)]

τ
(i)
jk ≥ 0 ∀i ∈ [N ], ∀j ∈ [ℓ(i)], ∀k ∈ [m

(i)
j ]

τ
(i)
jk = 0 or µ

(i)
jk = 0 ∀i ∈ [N ], ∀j ∈ [ℓ(i)], ∀k ∈ [m

(i)
j ]

∇jk U
(i)(µ) + τ

(i)
jk − κ

(i)
j = 0 ∀i ∈ [N ], ∀j ∈ [ℓ(i)], ∀k ∈ [m

(i)
j ]

(3)

Next, we remark that Lemma 28 motivates another notion
of approximate CDT equilibrium: A profile µ is said to be an
ǫ-well-supported CDT equilibrium for a game if it satisfies
inequality Lemma 28 up to ǫ relaxation on the r.h.s..

This approximation concept is polynomially precision-
related to ǫ-CDT equilibria, and it has a close connection to
approximate KKT points.

Lemma 30 (Tewolde et al., 2023). Let µ be a profile of a
game Γ with imperfect recall. Then:

1. If µ is an ǫ-well-supported CDT equilibrium of Γ then it
is also an ǫ-CDT equilibrium of Γ

2. If µ is an ǫ CDT equilibrium of Γ then we can compute
a (3L∞|H|√ǫ)-well-supported CDT equilibrium of Γ,
where L∞ is the Lipschitz constant obtained as in Ap-
pendix A.3.

3. If µ is an ǫ-well-supported CDT equilibrium of Γ then it
is an ǫ-KKT point to Proposition 16.1, that is, it satisfies
KKT conditions (3), except the last one that is replaced
by

|∇jk U
(i)(µ) + τ

(i)
jk − κ

(i)
j | ≤ ǫ .

Proof. Analogous Tewolde et al. [2023][Section H.3].

Corollary (Restatement of Corollary 17). 1P-CDT-S for
1/poly precision is in P.

Proof. Let the reward range of the game be in [0, 1]. Then the

utility function U (1) and its gradient are both L∞-Lipschitz



continuous for L∞ = poly(|Γ|) (Appendix A.3). Thus, it
suffices to run projected gradient descent for poly(|Γ|, 1/ǫ)
steps to obtain an ǫ-KKT point, which, in return, makes an
ǫ-CLS equilibrium of Γ. A formal analysis of can be found,
for example, in [Fearnley et al., 2023, Lemma C.4].)

C.2 On Comparing the Solution Concepts

Proposition (Restatement of Proposition 18;
Oesterheld and Conitzer, 2022). A Nash equilibrium is
an EDT equilibrium. An EDT equilibrium is a CDT
equilibrium.

Proof. If µ is a Nash equilibrium, then every player i ∈ N
plays their optimal strategy in S(i) in response to the profile
of the others. In particular, for each of her infosets Ij , she

plays the optimal randomized action in ∆m
(i)
j −1 in response

to her own strategy at other infosets j′ 6= j and to the profile
of the others. Therefore, µ is an EDT-equilibrium.

If µ is an EDT-equilibrium, then for every player i ∈ N
and each of her infosets Ij , we have that µ

(i)
j· is the global

optimum of

max

α∈∆
m

(i)
j

−1

U (i)(µ
(i)
Ij 7→α, µ

(−i)) .

In particular, it will be a KKT point of this maximization
problem. These KKT conditions, grouped together for all in-
fosets Ij , coincide with with the KKT conditions of Proposi-
tion 16. Therefore, µ is a CDT-equilibrium.

Remark (Restatement of Remark 19). Without absentmind-
edness, deviation incentives of EDT and of CDT coincide,
and so do the equilibrium concepts. Hence, complexity re-
sults such as Proposition 16 and Theorem 6 will apply to EDT
equilibria as well.

Proof. If there is no absentmindedness in a game Γ, then
each player enters each of her infosets at most once within

the same game play. Therefore, utility function U (i)(µ) =

U (i)(µ
(i)
I 7→µ(·|I), µ

(−i)) is linear in an action probabilityµ(a ∈
I). In particular, the first order approximation U

(i)
CDT(α | µ, I)

of U (i)(µ
(i)
I 7→α, µ

(−i)) becomes exact. Hence, EDT utilities
and CDT utilities coincide, yielding coinciding equilibrium
sets.

Remark (Restatement of Remark 20). If each player has
only one infoset in total, then the EDT equilibria coincide
with the Nash equilibria.

Proof. If a player i ∈ N has only one infoset I , then S(i) =

∆(AI) as well as U (i)(µ
(i)
I 7→α, µ

(−i)) = U (i)(α, µ(−i)) for
α ∈ ∆(AI). Hence, the Definitions 2 and 10 coincide.

D On Section 5

In this section, we prove the results in Section 5. To that
end, we restate results taken from the main body, and give
new numbers to definitions and results presented first in this
appendix.

λ′ 1 0 0 0 0 1 0

Figure 9: As in Figure 5 but with payoffs first shifted by 1 and then
scaled with 1/4, such that λ′

≡ (λ+ 1)/4.

D.1 On the Existence of EDT Equilibria

Recall the absentminded penalty shoot-out in Figure 5, and
also consider the variation of Figure 9 in which its payoffs
are shifted and scaled.

Lemma 31. In the games of Figure 5 for value λ and Figure 9
for value λ′ = (λ+ 1)/4, we have coinciding EDT and Nash
equilibrium sets.

Proof. First note that EDT and Nash equilibria coincide
within each game due to Remark 20. Thus we may turn our
attention to Nash equilibria. The Nash equilibrium sets of
the two games coincide because they are positive affine trans-
forms of each other [Tewolde and Conitzer, 2024]: P1 max-
imizes her utility function U (1)(·, µ(−1)). But its maximum
stays the same even if one adds constant 1 and scales it after-
wards with positive 1/4. Hence, P1’s best response sets stay
the same in both games. Analogously for P2 whose utility
function was shifted by −1 and scaled by positive 1/4. In
particular, any Nash equilibria in one game (if existent at all)
will remain Nash equilibria in the other game.

Lemma (Restatement of Lemma 21). Figure 5 has an EDT
equilibrium if and only if λ ≥ 3.

Proof. Again, the first equivalence follows from Remark 20.
For the second equivalence note that due to Lemma 31,

Figure 5 has a Nash equilibrium for some λ if and only if
Figure 9 has a Nash equilibrium for λ′ = (λ + 1)/4. Hence,
we can show instead that Lemma 31 has a Nash equilibrium
if and only if λ′ ≥ 1.

Suppose λ′ ≥ 1 in Figure 9. Then P2 has a (weakly) dom-
inant strategy of playing right. P1 best responds to that with
playing left. This profile forms a Nash equilibrium.

Suppose λ′ < 1 in Figure 9. For the sake of contradiction,
suppose furthermore that the game has a Nash equilibrium
µ∗.

First, note that this game has the following best response
cycle: P1 plays left =⇒ P2 plays left =⇒ P1 plays right
=⇒ P2 plays right =⇒ P1 plays left. Therefore, µ∗ cannot
contain a pure strategy because this would lead to a contra-
diction due to the best response cycle.

Therefore, µ∗ is fully randomized. Let 0 < s∗, t∗ < 1 be
the probabilities with which P1 and P2 play left in µ∗ respec-
tively. Note that the strategy spaces of P1 and P2 are fully



determined by the probability put on left, which is the inter-
val [0, 1]. As a Nash equilibrium of the game, s∗ and t∗ have

to simultaneously maximize U (1)(·, t∗) and U (2)(s∗, ·) over
[0, 1] respectively. Since s∗ and t∗ both lie in the interior, they
must therefore, in particular, be stationary points. We obtain

U (1)(s, t∗) = s2 ·
(

t∗λ′ + (1− t∗)
)

+ (1− s)2t∗

= s2 ·
(

t∗λ′ + 1
)

− 2st∗ + t∗ .

Hence for P1’s perspective

0 =
d

ds
U (1)(·, t∗)

∣

∣

∣

s=s∗
=

(

2s ·
(

t∗λ′ + 1
)

− 2t∗
)∣

∣

∣

s=s∗

= 2s∗ ·
(

t∗λ′ + 1
)

− 2t∗ .

In particular, t∗λ′ + 1 6= 0, because otherwise would imply
t∗ = 0. Therefore,

s∗ =
t∗

t∗λ′ + 1
. (4)

We can now deduce that actually t∗λ′ + 1 > 0 is the case
because otherwise

t∗λ′ + 1 < 0 =⇒ 0 >
t∗

t∗λ′ + 1
= s∗ =⇒ Contradiction.

Finally, we can deduce that s∗ could not have been a best
response to t∗ because s = 0 performs better than s∗. We get

U (1)(0, t∗) = t∗ and therefore

U (1)(0, t∗)− U (1)(s∗, t∗)

= t∗ − (s∗)2 ·
(

t∗λ′ + 1
)

+ 2s∗t∗ − t∗

(4)
= − (t∗)2

t∗λ′ + 1
+

2(t∗)2

t∗λ′ + 1
=

(t∗)2

t∗λ′ + 1
> 0 .

Hence, (s∗, t∗) could not have been a Nash equilibrium.

Theorem (Restatement of Theorem 3). Deciding whether a
game with imperfect recall admits an EDT equilibrium is ∃R-
hard and in ∃∀R. Hardness holds even for 2p0s games where
one player has a degree of absentmindedness of 4 and the
other player has perfect recall.

Proof. ∃∀R-membership follows because we can formulate
the question of EDT equilibrium existence as the sentence

∃µ∀π :µ ∈ S ∧
[

π /∈ S ∨

∧i∈[N ],j∈[ℓ(i)] U
(i)(µ) ≥ U (i)(µ

(i)

I
(i)
j 7→π

(i)
j·

, µ(−i))

]

.

∃R-hardness follows from a reduction from Proposition 3.
Let (Γ, t) be an instance of that decision problem. W.l.o.g.
we can assume t = 3 (otherwise first shift the payoffs in Γ by
1 − t). Create a new game G by attaching Γ to the game G′

of Figure 5, by replacing the terminal node on the bottom left
of G′ with action history (left, left, left) with the root node of
Γ. Let P1 play the subgame Γ in G and receive its payoffs.
Payoffs of P2 in that subgame shall simply be the negative

of the payoffs of P1. This is a polytime construction. Let us
show equivalence of the decision problems.

Suppose a utility ≥ 3 can be achieved in Γ. Then, there is
also an optimal strategy π for Γ with utility ≥ 3. By Proposi-
tion 18, this is also an EDT equilibrium ofΓ. Then, the profile
((left, π), right) makes an EDT equilibrium in G: P1 cannot
improve at her first (and only relevant) infoset because P2 is
going right, and P2 cannot improve at his infoset because he
would receive a utility (loss) ≥ 3 upon going left.

Suppose G has an EDT equilibrium µ. Let λ be the de-se
utility that µ achieves in subgameΓ. Observe that the infosets
of subgame Γ in G are separated from the other infosets in
G. In particular, P1 knows when she is in subgame Γ of G,
and P2 does not get to act in that subgame. Therefore, µ
restricted to the first infoset of each player must make an EDT
equilibrium of Figure 5 for that value λ. By Lemma 21, we
obtain λ > 3. Hence, a utility of ≥ 3 can be achieved in Γ.

About the hardness restrictions: Gimbert et al. [2020]

show hardness of Proposition 3 even for degree 4 polynomi-
als, that is, games with degree of absentmindedness 4. More-
over, G is a 2p0s game in which P2 has perfect recall.

Theorem (Restatement of Theorem 4). EDT-D is ΣP

2 -
complete. Hardness holds for 1/poly precision and 2p0s
games with one infoset per player and a degree of absent-
mindedness of 4.

Proof. ΣP
2 -membership: EDT-D is the special case of

NASH-D in which each infoset is played by a new additional
player. Thus membership follows from Theorem 2.
ΣP

2 -hardness: We reduce from the ΣP
2 -complete problem

∃∀3-DNF-SAT [Stockmeyer, 1976][Section 4], which is the
following problem: given a 3-DNF formula φ(x, y) with k−2
clauses where x ∈ {0, 1}m−1 and y ∈ {0, 1}n−1, decide
whether ∃x ∀y φ(x, y). We consider the standard multilinear
form of a DNF formula φ : Rm−1 × Rn−1 → R given by
replacing ∧ with multiplication, ∨ with addition, and ¬z with
1− z, so that, for x ∈ {0, 1}m−1 and y ∈ {0, 1}n−1, φ(x, y)
is the number of clauses satisfied by (x, y). In particular, for-
mula φ(x, y) is satisfied if and only if φ(x, y) ≥ 1.

Construction (Part 1) First, we add variables xm and yn
and the two clauses xm ∧ ¬yn and ¬xm ∧ yn to φ, to get a
formula

φ′ : Rm × Rn → R

(x, y) 7→ φ(x, y) + xm(1 − yn) + (1 − xm)yn.

Note that φ′ is also a 3-DNF formula with m + n variables
and k clauses, and φ′ (as a SAT formula) is ∃∀-satisfiable
if and only if φ is. That is because yn can always be set to
xm in order to not satisfy the last two added clauses. The sole
purpose of these two clauses will be, in our game construction
later on, to ensure that if there is no equilibrium, there is also
no ǫ-equilibrium. Next, construct a 2p0s game as follows. P1
and P2 each have one infoset of m+1 and n+2 actions. For
randomized action profile (x, y) ∈ ∆(m+1)×∆(n+2) =:
X × Y , we set P1’s utility function as

U (1)(x, y) := (1− yn+2)

(

φ′(mx1:m, ny1:n)−
1

2

)

− Lψm(x) + Lψn(y) .



Here, x1:m denotes indexing, that is, the subvector of x com-
prising of the first m elements, and analogous for y1:n. For
simplicity of notation, we will hereafter write x̃ = mx1:m

and ỹ = ny1:n. Moreover, ψm is defined as

ψm(x) :=

m
∑

i=1

(mxi)
2(1−mxi)

2,

and ψn is defined analogously. Lastly, L is a large number to
be picked later. Note that we have ψm ≥ 0, and equality if
and only if x̃i ∈ {0, 1} for all i ∈ {1, . . . ,m}. Also note that

U (1) has polynomial degree at most 4.

Intuition With this utility function, the two players play the
multilinear form of φ′ against each other, determined by a
rescaling of randomization x1:m and ny1:n. In order to make
those rescalings practicall boolean, we harshly punish with
L · ψ any values in (x1:m, ny1:n) that do not rescale to close

to boolean. Then,
(

φ′(mx1:m, ny1:n)− 1
2

)

will be strictly

positive / negative depending on if φ′ is satisfied or not. P2
has an additional action alternative en+2 that also allows him
to not play this game φ′ in the first place if he – as the mini-
mizer – does not see how to satisfy φ′. Finally, actions em+1

of P1 and en+1 of P2 have the sole purpose to fill up the vec-
tor sum to 1 in order to represent an element of the simplex,
i.e., a probability vector.

Construction (Part 2) Use Appendix A.4 to construct a

2p0s imperfect-recall game Γ whose utility function is U (1)

(that is, U (2) = −U (1)). In particular, Γ has a degree of
absentmindedness at most 4 and one infoset for each player.
Due to the latter, we can speak of an ǫ-equilibrium which en-
tails both, ǫ-EDT-equilibria and ǫ-nash equilibria. Next, set

R := k · (max{m,n})3

ǫ :=
( 1

28k

)2

L :=
8R

ǫ
.

Then the construction of corresponding EDT-D instance
(Γ, ǫ) takes polytime and ǫ is of 1/poly precision. The re-
maining goal is to proof that

Claim 1: if φ′ is ∃∀-satisfiable, then Γ admits an exact equi-
librium.

Claim 2: if Γ admits an ǫ-equilibrium, then from it, we can
construct an assignment x̃ ∈ {0, 1}m that shows
∃∀-satisfiability of φ′.

Those two claims together imply that Γ either admits an
exact equilibrium or no ǫ-equilibrium. As a conclusion, φ
will be a “yes” (and resp. “no”) instance of ∃∀3-DNF-SAT
if and only if φ′ is if and only if the corresponding EDT-D
instance (Γ, ǫ) has an exact equilibrium (and resp. has no ǫ-
equilibrium equilibrium), which is the decision question of
EDT-D. This completes the reduction.

Claim 1: Suppose φ′ is ∃∀-satisfiable, that is, there exists
x̃ ∈ {0, 1}m for which φ′(x̃, ỹ) ≥ 1 for all ỹ ∈ {0, 1}n.
We claim that in this case the profile (x∗, y∗) where x∗ :=
(x̃/m, 1 − ‖x̃/m‖1) and y∗ := en+2 (i.e., always play pure

action n + 2) is an exact equilibrium. Indeed, we have

U (1)(x∗, y∗) = 0,

max
x∈X

U (1)(x, y∗) = max
x∈X

−Lψm(x) = 0

and

min
y∈Y

U (1)(x∗, y)

= min
y∈Y

(

(1− yn+2)

(

φ′(x̃, ỹ) − 1

2

)

+ Lψn(y)

)

≥ min
y∈Y

(1− yn+2) ·
1

2
+ 0 ≥ 0.

Hence, neither player can unilaterally improve on the out-
come of (x∗, y∗). Before we get to Claim 2, we will need two
lemma-like observations.

(I) Best Response and Integrality We say that x is δ-
integral for 0 < δ < 1/2 if x̃i ∈ [0, δ] ∪ [1 − δ, 1 + δ]
for every 1 ≤ i ≤ m. We define it analogously for y where
we now have to check for 1 ≤ j ≤ n. We claim that if x is
an ǫ-best response to y (resp. y is an ǫ-best response to x),
then x (resp. y) is

√
ǫ-integral (note that

√
ǫ ≤ 1/28 < 1/2).

We show its contraposition. First, observe that φ′ has k terms
of degree at most 3, and that x̃i, ỹj ∈ [0,max{m,n}] for all
i, j. Hence, parameter R was chosen large enough such that
we have for all (x, y) ∈ X × Y that 0 ≤ φ′(x̃, ỹ) ≤ R. For
the contraposition, suppose x is not

√
ǫ-integral, that is, there

is i ∈ [m] such that x̃i /∈ [0,
√
ǫ] ∪ [1−√

ǫ, 1 +
√
ǫ]. Then

ψm(x) ≥ x̃2
i (1− x̃i)

2 ≥
(

1

2

)2

(
√
ǫ)2 = ǫ/4

where the second inequality is based on the fact that x̃i must
have at least 1/2 distance from either 0 or 1 (or both). Hence,
by how we set L, we have

U (1)(x, y) ≤ 1 · (R− 1/2)− Lψm(x) + Lψn(y)

≤ R − 8R

ǫ
· ǫ
4
+ Lψn(y)

= R − 2R+ Lψn(y)

≤ Lψn(y)− 1 .

But then P1 at least 1/2 utility units of incentives to deviate
to her pure action em+1 because

U (1)(em+1, y) ≥ 1 · (0− 1/2)− L · 0 + Lψn(y)

= Lψn(y)− 1/2 .

In particular, x couldn’t have been an ǫ-best response to y
since we set ǫ < 1/2. Almost analogous reasoning yields
that if y is an ǫ-best response to x, then y is

√
ǫ-integral. The

only difference is that we derive

U (1)(x, y) ≥ 1·(0−1/2)−Lψm(x)+2R ≥ −Lψm(x)+3/4

and

U (1)(x, en+2) ≤ 0 · (. . . )− Lψm(x) + 0 = −Lψm(x) .



(II) Integrality and Value Approximation Suppose
(x′, y′) are

√
ǫ-integral, and let [·] denote element-wise

rounding. Recall that we denote x̃′ = m · x′
1:m and analo-

gous for ỹ′. Then x̃′ and [x̃′] are at most
√
ǫ distant from each

other in each entry i; and same for ỹ′ and [ỹ′]. Hence, using
how we set ǫ, we can derive that

|φ′(x̃′, ỹ′)− φ′([x̃′], [ỹ′])| ≤ k
(

(1 +
√
ǫ)3 − 13

)

√
ǫ<1

≤ k(1 + 3
√
ǫ+ 3

√
ǫ+

√
ǫ− 1)

= 7k
√
ǫ = 1/4 .

The first inequality comes from the fact that that φ′ has k
terms with unit coefficients and degree at most 3, so that the
maximal difference in a term is if x̃′

i (resp. ỹ′j) is 1 +
√
ǫ and

[x̃′
i] (resp. [ỹ′j ]) is 1. The second inequality uses the Binomial

Theorem.

Starting on Claim 2 Suppose (x∗, y∗) is an ǫ-equilibrium.
By paragraph (I), both x∗ and y∗ are

√
ǫ-integral. Thus, we

can set x̃i := [x̃∗
i ] and ỹj := [ỹ∗j ] for i ∈ [m] and j ∈ [n],

and obtain x̃ ∈ {0, 1}m and ỹ ∈ {0, 1}n. That is, (x̃, ỹ)
are Boolean assignments for φ′. We will show that for all
possible assignments y ∈ {0, 1}n, we have φ′(x̃, y) ≥ 1. To
that end, we will first show an intermediary fact.

Observation φ′(x̃, ỹ) ≥ 1: For the sake of contraposition,
suppose φ′(x̃, ỹ) < 1, that is, since (x̃, ỹ) are exactly integral,
φ′(x̃, ỹ) = 0. Then consider P2’s alternative strategy ŷ =
(ỹ/n, 1 − ||ỹ/n||1, 0). Since y∗ is an ǫ-best response to x∗,
we derive

− 3

4
(1− y∗n+2)− Lψm(x∗)

= (1− y∗n+2)(φ
′(x̃, ỹ)− 3

4
)− Lψm(x∗)

(II)

≤ (1− y∗n+2)(φ
′(x̃∗, ỹ∗) +

1

4
− 3

4
)− Lψm(x∗) + Lψn(y

∗)

= U (1)(x∗, y∗) ≤ U (1)(x∗, ŷ) + ǫ

= 1 · (φ′(x̃∗, ỹ)− 1

2
)− Lψm(x∗) + 0 + ǫ

(II)

≤ φ′(x̃, ỹ) +
1

4
− 1

2
− Lψm(x∗) +

1

8

= 0− 1

8
− Lψm(x∗) .

This simplifies to − 3
4 (1− y∗n+2) ≤ − 1

8 , that is,

1− y∗n+2 ≥ 1

6
. (5)

This allows us to show that x∗ could not have been an ǫ-best
response to y∗. Consider P1’s alternative assignment z̃ =
(x̃1:m−1, 1−x̃m) ∈ {0, 1}m, which is x̃ except for the last bit
flipped. Since we started with φ′(x̃, ỹ) = 0, we in particular
have x̃m(1− ỹn) + (1− x̃m)ỹn = 0. But then z̃m(1− ỹn)+
(1 − z̃m)ỹn = 1, and thus φ′(z̃, ỹ) = 1. Moreover, we also
have versus ỹ∗ that

φ′(z̃, ỹ∗)
(II)

≥ φ′(z̃, ỹ)− 1/4 = 3/4 + 0 = 3/4 + φ′(x̃, ỹ)
(II)

≥ 3/4 + φ′(x̃∗, ỹ∗)− 1/4 = φ′(x̃∗, ỹ∗) + 1/2

Finally, consider P1’s alternative strategy z := (z̃/m, 1 −
||z̃/m||1). Then

U (1)(z, y∗) = (1− y∗n+2)(φ
′(z̃, ỹ∗)− 1

2
)− 0 + Lψn(y

∗)

≥ (1− y∗n+2)(φ
′(x̃∗, ỹ∗) +

1

2
− 1

2
)− Lψm(x∗) + Lψn(y

∗)

= (1− y∗n+2) ·
1

2
+ U (1)(x∗, y∗)

(5)
≥ 1

6
· 1
2
+ U (1)(x∗, y∗)

1
12>ǫ

> U (1)(x∗, y∗) + ǫ .

Therefore, x∗ could not have been an ǫ-best response to y∗.

Completing Claim 2 By above observation, we have
φ′(x̃, ỹ) ≥ 1. Let y ∈ {0, 1}n be any possible assign-
ment in the 3-DNF formula φ′(x̃, ·). Define ŷ := (y/n, 1 −
||y/n||1, 0). Then, since y∗ is an ǫ-best response to x∗, we
can derive

φ′(x̃, y)− 1

4
− Lψm(x∗)

(II)

≥ φ′(x̃∗, y)− 1

4
− 1

4
− Lψm(x∗)

= U (1)(x∗, ŷ) ≥ U (1)(x∗, y∗)− ǫ

= (1− y∗n+2)(φ
′(x̃∗, ỹ∗)− 1

2
)− Lψm(x∗) + Lψn(y

∗)− ǫ

≥ (1− y∗n+2)(φ
′(x̃, ỹ)− 1

4
− 1

2
)− Lψm(x∗) + Lψn(y

∗)− ǫ

≥ (1− y∗n+2)(1−
3

4
)− Lψm(x∗)− ǫ

≥ −Lψm(x∗)− ǫ .

But this implies

φ′(x̃, y) ≥ 1

4
− ǫ > 0 .

Since φ′(x̃, y) is an integer, we have φ′(x̃, y) ≥ 1, that is,
φ′(x̃, y) is satisfied. Note that y ∈ {0, 1}n was chosen ar-
bitrarily, hence, we conclude that φ′ is ∃∀-satisfiable (with
x̃).

D.2 On the Search of EDT Equilibria in
Single-Player

Theorem (Restatement of Theorem 5). 1P-EDT-S is PLS-
complete when the branching factor is constant. Hardness
holds even when the branching factor and the degree of ab-
sentmindedness are 2.

We will prove this result over multiple steps. First, we con-
sider the corresponding polynomial optimization problem to
1P-EDT-S.

Definition 32. An instance of the search problem NE-POLY-
S consists of

1. integers ℓ and (mj)j∈[ℓ] in binary, determining simplices

Sj := ∆mj−1

2. a polynomial function p :×j∈[ℓ] R
mj → R in the Turing

(bit) model, and

3. a precision parameter ǫ > 0 in binary.

A solution consists of a point x ∈ S :=×j∈[ℓ] Sj such that

for all j ∈ [ℓ] and yj ∈ Sj , we have p(x) ≥ p(yj , x−j)− ǫ.



Lemma 33. 1P-EDT-S is computationally equivalent to
NE-POLY-S.

Proof. This follows straightforwardly from the connection
of imperfect-recall games and polynomial optimization de-
scribed in Section 2 and appendix A.4. It only requires the
realization that condition p(x) ≥ p(yj , x−j)− ǫ corresponds

to U (1)(µ(1)) ≥ U (1)(µ
(1)
I 7→α)− ǫ in this connection.

For PLS-hardness, it is enough to work on the the hyper-
cube as a domain.

Definition 34. An instance of the search problem CUBE-NE-
POLY-S consists of

1. integer ℓ in binary, determining hypercube [0, 1]ℓ

2. a polynomial function p : Rℓ → R in the Turing (bit)
model, and

3. a precision parameter ǫ > 0 in binary.

A solution consists of a point x ∈ [0, 1]ℓ such that for all
j ∈ [ℓ] and yj ∈ [0, 1], we have p(x) ≥ p(yj , x−j)− ǫ.

Lemma 35. CUBE-NE-POLY-S reduces to NE-POLY-S.

Proof. Take an instance J = (ℓ, p : Rℓ → R, ǫ) of CUBE-
NE-POLY-S. Define the corresponding NE-POLY-S instance

as Ĵ = (ℓ, (mj)j , p̂, ǫ), where ∀j ∈ [ℓ] : mj := 2 and

p̂ :
ℓ×

j=1

R2 → R

(

(xj1, xj2)
)ℓ

j=1
7→ p(x11, x21, . . . , xℓ1) .

Then, if x̂∗ is an ǫ-Nash equilibrium of Ĵ , then so will be
(x̂∗

j1)j∈[I] for J .

Next, we show that CUBE-NE-POLY-S is PLS-hard.
For that, we introduce the PLS-complete problem MAX-
CUT/FLIP.

Let G = (V,E,w) be an undirected graph, w : E → N be
positive edge weights, and V = A ⊔ B be a vertex partition.
Then, the cut of A ⊔B is defined as all the edges in between
A and B:

E ∩ (A,B) :=

{{u, v} = e ∈ E : u ∈ A ∧ v ∈ B or u ∈ B ∧ v ∈ A} .
Its weight is defined as w(A,B) :=

∑

e∈E∩(A,B) w(e). The

FLIP neighbourhood of partition A⊔B is the set of partitions
that can be obtained from (A,B) by just moving one vertex
from one part to the other:

FLIP(A,B) :=
{

(A ∪ {b}) ⊔ (B \ {b})
}

b∈B
∪
{

(A \ {a}) ⊔ (B ∪ {a})
}

a∈A
.

Definition 36. An instance of the search problem MAX-
CUT/FLIP consists of an undirected graph G = (V,E,w)
with weights w : E → N. A solution consists of a partition
V = A ⊔ B that has maximal cut weight among its FLIP
neighbourhood.

For problems involving weighted graphs G = (V,E,w),
we are interested in their computational complexities in terms
of |V |, |E|, and a binary encoding of all weight values.

Lemma 37 (Yannakakis [2003],Schäffer and Yannakakis
[1991]). MAXCUT/FLIP is PLS-complete.

This allows us to proof PLS-hardness of our problems of
interest.

Lemma 38. MAXCUT/FLIP reduces to CUBE-NE-POLY-S.

Corollary 39. CUBE-NE-POLY-S, NE-POLY-S, and 1P-
EDT-S are PLS-hard. Hardness holds even when the branch-
ing factor (maxj mj) and the degree of the polynomial / ab-
sentmindedness are 2.

Proof of Lemma 38. Let G = (V,E,w) be an instance of
MAXCUT/FLIP. First, we create the associated CUBE-NE-
POLY-S instance. Let ℓ = |V | such that each vertex v ∈ V is
associated to an entry xv in x ∈ S = [0, 1]ℓ. We can define
for point x ∈ S and vertices t, v ∈ V the function

dt,v(x) := xt(1− xv) + (1− xt)xv

which is maximized if one of the values xt and xv is 0 and
the other is 1; corresponding to t and v belonging to different
partitions. Set W =

∑

e∈E w(e), W ′ := 2(W + 1) and

p(x) =W ′ ∑

v∈V

(
1

2
− xv)

2 +
∑

{t,v}∈E

w(t, v) · dt,v(x) .

The first summand has a large weight W ′ and forces any so-
lution x∗ to have values x∗

v far away from 1
2 . We can get the

Lipschitz constant L∞ = 15W for p over S by the method
described in Appendix A.3. Set ǫ = 1/(2L∞ + 2) < 1

2 .

Let x∗ be a solution to this CUBE-NE-POLY-S instance.
Then we claim: (1) L∞ is actually a Lipschitz constant of p
over S, (2) We have ∀v : x∗

v ≤ ǫ ∨ x∗
v ≥ 1 − ǫ. Define z∗ ∈

{0, 1}ℓ as z∗v = 0 if x∗
v ≤ ǫ and as z∗v = 1 if x∗

v ≥ 1−ǫ. Then,
(3) partition V = {v ∈ V : z∗v = 0} ⊔ {v ∈ V : z∗v = 1} is a
solution to the original MAXCUT/FLIP instance.

Claim (1): We have for u ∈ V

∇u p(x) = −2W ′(
1

2
− xu) +

∑

{u,v}∈E

w(u, v) · (1− 2xv)

= −W ′ + 2W ′xu +W − 2
∑

{u,v}∈E

w(u, v)xv

Using W ≥ 1 and W ′ ≤ W , these polynomial coefficients
yield Lipschitz constant

W ′ + 2W ′ +W + 2W ≤ 15W =: L∞

for p over the hypercube.



Claim (2): We start with x∗ being an ǫ-Nash equilibrium.
Suppose vertex u ∈ V has x∗

u ≤ 1
2 . Then

ǫ ≥ p(0, x∗
−u)− p(x∗)

= W ′(
1

2
− 0)2 −W ′(

1

2
− x∗

u)
2

+
∑

{u,v}∈E

w(u, v) · du,v(0, x∗
−u)

−
∑

{u,v}∈E

w(u, v) · du,v(x∗)

= W ′(1
4
− (

1

2
− x∗

u)
2
)

+
∑

{u,v}∈E

w(u, v) · (x∗
v − du,v(x

∗))

= (†)
Note that with x∗

u ≤ 1
2 , we have

1

4
− (

1

2
− x∗

u)
2 = (1− x∗

u)x
∗
u ≥ 1

2
x∗
u

and

x∗
v − du,v(x

∗) = x∗
v − x∗

u + x∗
ux

∗
v − x∗

v + x∗
ux

∗
v ≥ −x∗

u .

Therefore, recalling that uwas a fixed vertex, we can continue
with

(†) ≥ W ′ · 1
2
x∗
u +

∑

{u,v}∈E

w(u, v) · (−x∗
u)

= x∗
u

(1

2
W ′ −

∑

{u,v}∈E

w(u, v)
)

≥ x∗
u

(

W + 1−W
)

= x∗
u

On the other hand, suppose that vertex u ∈ V has x∗
u > 1

2 .
Then

ǫ ≥ p(1, x∗
−u)− p(x∗)

= W ′(1

4
− (

1

2
− x∗

u)
2
)

+
∑

{u,v}∈E

w(u, v) · (1− x∗
v − du,v(x

∗))

(∗)
≥ W ′ · 1

2
(1− x∗

u) +
∑

{u,v}∈E

w(u, v) · (−(1− x∗
u))

≥ (1− x∗
u)
(1

2
W ′ −

∑

{u,v}∈E

w(u, v)
)

≥ 1− x∗
u

which implies x∗
u ≥ 1− ǫ. In (∗), we used

1− x∗
v − du,v(x

∗) = 1− x∗
u − 2x∗

v + 2x∗
ux

∗
v

= (1− x∗
u)(1 − 2x∗

v) ≥ −(1− x∗
u) .

Claim (3): Any point z =∈ {0, 1}ℓ induces a partition

V = A(z)⊔B(z) := {v ∈ V : zv = 0}⊔{v ∈ V : zv = 1} .
Moreover, for any such point z and vertices t, v ∈ V , we have

dt,v(z) =

{

0 if zt, zv ∈ A(z) or zt, zv ∈ B(z)

1 else
.

Therefore, the cut weight associated to point z =∈ {0, 1}ℓ
has a relationship to polynomial p in the form of

p(z) = W ′ · ℓ · 1
4
+ w

(

A(z), B(z)
)

. (6)

Now define z∗ as

z∗v :=

{

0 if xv ≤ ǫ

1 if xv ≥ 1− ǫ
.

Let us now show that its induced partition is a solution to the
original MAXCUT/FLIP instance. Consider a vertex u ∈ V
that wants to change the part of the partition it is in. The new
partition is induced by the point (1 − z∗u, z

∗
−u). Using that p

is L∞-Lipschitz and that x∗ is an ǫ-Nash equilibirum that is
also ǫ-close to z∗, we get

w
(

A(1− z∗u, z
∗
−u), B(1− z∗u, z

∗
−u)

)

− w
(

A(z∗), B(z∗)
)

(6)
= p(1− z∗u, z

∗
−u)− p(z∗)

= p(1− z∗u, z
∗
−u)− p(1− z∗u, x

∗
−u) + p(1− z∗u, x

∗
−u)

− p(x∗) + p(x∗)− p(z∗)

≤ L∞||(1− z∗u, z
∗
−u)− (1− z∗u, x

∗
−u)||∞

+ ǫ+ L∞||x∗ − z∗||∞
≤ L∞ǫ+ ǫ+ L∞ǫ = ǫ(2L∞ + 1)

< 1

by the choice of ǫ. Recall that edge weights are integers,
and hence, also the weight of a cut. Therefore, the inequal-
ity chain above started with an integer that was shown to be
strictly less than 1 at the end. We get

w
(

A(1 − z∗u, z
∗
−u), B(1− z∗u, z

∗
−u)

)

≤ w
(

A(z∗), B(z∗)
)

,

proving that if vertex u changes the part of the partition it is
in, then the cut weight does not increase. Since u ∈ V was
arbitrary, we have shown that partition V = A(z∗) ⊔ B(z∗)
has maximal weight among its FLIP neighbourhood.

Proof of Corollary 39. Follows from Lemmata 33, 35
and 37. For the hardness restrictions, note that we started
with a degree two polynomial and a hypercube. This is
associated to a game tree of depth 3, with a depth of absent-
mindedness of at most 2, and with a number of actions per
infoset of 2.

Next, we show PLS-membership.

Lemma 40. 1P-EDT-S and NE-POLY-S when the branch-
ing factor is constant is in PLS.

Proof. By Lemma 33, it suffices to show this for 1P-EDT-S.
We show it by giving a best response dynamics that can be run
between the infosets in order to find an ǫ-EDT equilibrium.
So let (Γ, ǫ) be a 1P-EDT-S instances.



Computing an ǫ-best response: We will now describe a
method that, given a profile µ for Γ and an infoset Ij , com-

putes an ǫ/2-best responseα ∈ ∆m
(1)
j −1 =: Sj of that infoset

to strategy µ
(1)
−j at other infosets. The method is similar to the

one described in the proof of Proposition 9. This time, how-
ever, instead of working on the whole profile set S, we only
work on the randomized action simplex Sj . We also initial-

ize the hypercube as Bj := [0, 1]m
(1)
j , and describe it with

bounds (yk, zk)k. Then, the sentences we will have to solve

are whether there exists (∃) α ∈ Rm
(1)
j such that

Sj(α) ∧Bj(α) ∧ U (1)(α, µ
(1)
−j ) ≥ t , (7)

where t ∈ Q is a target value.
As a preprocessing step, we shall first approximate the

maximal utility value u∗ ∈ R achievable with an exact best
response. To that regard, initialize

u := min
z∈Z

u(1)(z)− 1 and ū := min
z∈Z

u(1)(z) + 1 .

Then u < u∗ < ū. Therefore, sentence (7) is true and false
for values t = u and t = ū respectively. Hence, we can do
binary search on R to pinpoint u∗ by updating the lower and
upper bounds u and ū accordingly such that u < u∗ < ū says
satisfied and until |ū − u| < ǫ/4. Then, in particular, û := u
satisfies |u∗ − û| < ǫ/4.

Algorithm 2 Subdivison Search for a Best Response

1: while diam ≥ ǫ
4L∞

do

2: for k ∈ [m
(i)
j ] do

3: if ∃α : (7) ∧ αk ≤ yk+zk
2 then

4: zk ← yk+zk
2

5: else
6: yk ← yk+zk

2
7: end if
8: Update Bj accordingly
9: end for

10: diam ← diam/2
11: end while

Next, we run Algorithm 2 where (7) is always invoked for
value t = û. Upon termination, select any point α that sat-
isfies the linear (in-)equality system Sj(α) ∧ Bj(α). If α∗ is
the point that satisfies (7), then due to termination condition,
we have ||α− α∗||∞ < ǫ

4L∞

. This yields

U (1)(α, µ
(1)
−j )

= U (1)(α, µ
(1)
−j)− U (1)(α∗, µ(1)

−j) + U (1)(α∗, µ(1)
−j )

= U (1)(α∗, µ(1)
−j)− |U (1)(α, µ

(1)
−j )− U (1)(α∗, µ(1)

−j)|
≥ û− L∞ · ||(α, µ(1)

−j)− (α∗, µ(1)
−j)||∞

≥ u∗ − ǫ/4− L∞ · ǫ

4L∞
= u∗ − ǫ/2 .

Finally, the running time analysis works analogous to the
one in the proof of Proposition 9, except that the number

of variables “m” now is m
(1)
j . Since it is constant by as-

sumption, we get polytime computability of such an ǫ-best
response α.

ǫ-Best Response Dynamics: The best response dynamics
can start at any profile µ ∈ S, e.g., at the one that plays the
first action of each infoset deterministically. The neighbour-
hood of an iterate µ ∈ S shall be all profiles of the form

(α, µ
(1)
−j ) where j ∈ [ℓ(1)] and α is an ǫ/2-best response to

µ
(1)
−j . This neighbourhood can be determined within poly-

time. Finally, we can evaluate the utility U (1)(π) of any it-

erate π = µ or any neighbour π = (α, µ
(1)
−j ) within poly-

time. If there is a neighbour (α, µ
(1)
−j ) with utility U (1)(µ) ≤

U (1)(α, µ
(1)
−j )− ǫ/2, then take that neighbour as the next iter-

ate, otherwise, terminate and return µ.
Let π be returned by this algorithm. Then π is an ǫ-EDT

equilibrium of Γ: Take any infoset Ij . Let (α, π
(1)
−j ) be the

neighbour associated to that infoset and u∗ be the maximal
utility value achievable from that infoset with an exact best
response. Then, for any alternative randomized action α′ ∈
∆m

(1)
j −1, we have

U (1)(π) ≥ U (1)(α, π
(1)
−j )− ǫ/2

≥ u∗ − ǫ/2− ǫ/2 = u∗ − ǫ

≥ U (1)(α′, π(1)
−j )− ǫ/2 .

This concludes the proof.

Corollary (Restatement of Corollary 22). 1P-EDT-S for
1/poly precision is in P when the branching factor is con-
stant.

Proof. Let the reward range of the game be in [0, 1] and the
desired approximation error be ǫ. Take the best response
method described in the previous proof. When the branching
factor is constant, it iteratively computes and transitions to a
ǫ/2-best response in time poly(|Γ|, log(1/ǫ)). But this pro-
cess can update the strategy at most O(1/ǫ) times. Thus, if ǫ
is of 1/poly size, then the method runs in time poly(|Γ|, 1/ǫ)
overall.

D.3 On the Search of CDT Equilibria

Theorem (Restatement of Theorem 6). CDT-S is PPAD-
complete. Hardness holds even for two-player perfect-recall
games with one infoset per player and for 1/poly precision.

We prove this in parts.

Lemma 41. CDT-S is PPAD-hard, even for two-player
perfect-recall games with one infoset per player and for
1/poly precision.

Proof. For PPAD-hardness, we can use a well-known re-
duction from normal-form games to perfect-recall extensive-
form games. In particular, we reduce from the PPAD-
complete problem of computing an approximate Nash equi-
librium, for inverse-polynomial precision, of a two-player
normal-form game [Chen et al., 2009]. The representation of



such a game is the number of pure actions of each player, and
all utility payoffs encoded in binary.

Starting from such an instance (G, ǫ), we can a correspond-
ing instance (Γ, ǫ) of CDT-EQ as follows: Assign the root

node of Γ to P1, with an infoset I
(1)
1 , and the action set that

P1 has in G. Each child of the root node shall be assigned to

P2, grouped together to one infoset I
(2)
1 , and with the action

set that P2 has in G. Finally, each node of depth 3 is a termi-
nal node, with utility payoffs equal to what the players would
have received in G if they played the same action there that
lead to this terminal node. This is a polytime construction.

Then,Γ has perfect recall, hence no absentmindedness, and
it has one infoset per player. By Remarks 19 and 20, ǫ-CDT
equilibria of Γ equal its ǫ-Nash equilibria which, in return,
equal the ǫ-Nash equilibria in G.

Next, we show PPAD-membership of CDT-S by
leveraging the general tool of Etessami and Yannakakis
[2010][Section 2.3] to show that a fixed point problem is in
PPAD. First, we define the fixed point function that is similar
in structure to the one given by Nash [1951]. Given a game Γ
with imperfect recall and a profile µ for it, define the advan-

tage of a pure action k ∈ [m
(i)
j ] at infoset j ∈ [ℓ(i)] of player

i ∈ [N ] as

g
(i)
jk (µ) := U

(i)
CDT(ak | µ, Ij)− U (i)(µ) .

If these advantages are at most ǫ for all i, j, k at µ, then
µ is an ǫ-CDT equilibrium by Definition 14 and Remark 27.
The fixed point mapping F we will consider is one that sends
profile µ of Γ to profile F (µ) of Γ with entries

F (µ)
(i)
jk :=

µ
(i)
jk +max{0, g(i)jk (µ)}

1 +
∑m

(i)
j

k′=1 max{0, g(i)jk′(µ)}
. (8)

Intuitively, from µ to F (µ) it increases the probabilities of
those actions that have a positive advantage over the currently

played randomized action µ
(i)
j· at ∆(AIj ).

Lemma 42. Let Γ be a game with imperfect recall. Then
mappingF as defined above maps the profile set S onto itself.
Moreover, a profile µ is an exact CDT equilibrium of Γ if and
only if it is a fixed point of F , that is, F (µ) = µ.

Proof. If µ ≥ 0, then also F (µ) ≥ 0. Moreover, for all player

i and infosets j, we have that if
∑m

(i)
j

k=1 µ
(i)
jk then also

m
(i)
j

∑

k=1

F (µ)
(i)
jk =

∑m
(i)
j

k=1 µ
(i)
jk +

∑m
(i)
j

k=1 max{0, g(i)jk (µ)}

1 +
∑m

(i)
j

k′=1 max{0, g(i)jk′(µ)}
= 1 .

Hence, F (µ) is a profile of Γ if µ is.
Next, suppose µ is an exact CDT equilibrium of Γ. Then,

by definition, we have for all i, j, k that the advantage g
(i)
jk (µ)

is non-positive, hence F (µ)
(i)
jk =

µ
(i)
jk +0

1+0 = µ
(i)
jk , yielding

F (µ) = µ.
Last but not least, suppose F (µ) = µ. Let us show that any

player i plays optimally at any infoset Ij with randomized

action µ
(i)
j· , by showing that no pure action ak does better at

Ij , using Remark 27. We show this by proving that advantage

g
(i)
jk (µ) is non-positive for each action ak. For the sake of

contradiction, suppose that the subset K := {k ∈ [m
(i)
j ] :

g
(i)
jk (µ) > 0} of actions with positive advantage is non-empty.

Then observe that
∑m

(i)
j

k′=1 max{0, g(i)jk′(µ)} > 0. Thus, all

actions k̃ /∈ K with non-positive advantage satisfy

µ
(i)

jk̃
= F (µ)

(i)

jk̃
=

µ
(i)

jk̃
+ 0

1 +
∑m

(i)
j

k′=1 max{0, g(i)jk′(µ)}
,

which implies µ
(i)

jk̃
= 0. Hence, supp(µ

(i)
j· ) ⊆ K. Know-

ing this, we can derive the contradiction

U
(i)
CDT(µ

(i)
j· | µ, Ij) =

∑

k∈[m
(i)
j ]

µ
(i)
jk · U (i)

CDT(ak | µ, Ij)

=
∑

k∈supp(µ
(i)
j· )

µ
(i)
jk · U (i)

CDT(ak | µ, Ij)

=
∑

k∈supp(µ
(i)
j· )

µ
(i)
jk ·

(

g
(i)
jk (µ) + U

(i)
CDT(µ

(i)
j· | µ, Ij)

)

>
∑

k∈supp(µ
(i)
j· )

µ
(i)
jk · U (i)

CDT(µ
(i)
j· | µ, Ij)

= U
(i)
CDT(µ

(i)
j· | µ, Ij) .

Thus, K must have been empty. Since this holds for each
player and infoset, µ must have been an exact CDT equilib-
rium for Γ.

Next, we show that F is Lipschitz continuous for a moder-
ately sized Lipschitz constant in terms of the game instance
Γ.

Lemma 43. Given a game Γ with imperfect recall, its map-
ping F from (8) is Lipschitz continuous on the profile set S
with Lipschitz constant LF := 11|H|2L∞, where L∞ is the
Lipschitz constant of Γ as described in Appendix A.3.

Proof. We follow the proof outline of
[Daskalakis and Papadimitriou, 2011][Lemma 3.4], and
show that if profiles µ and π have distance ||µ − π||∞ ≤ ǫ,
then ||F (µ)− F (π)||∞ ≤ 11|H|2L∞ǫ.

First, consider h
(i)
jk = U

(i)
CDT(ak | ·, Ij) as a function in

profile µ′ ∈ S, for a given i, j, k.

h
(i)
jk is Lipschitz continuous: We show this with the pro-

files µ and π above. We have



|h(i)
jk (µ)− h

(i)
jk (π)|

= |U (i)(µ) +∇jk U
(i)(µ)−

∑

k′∈[m
(i)
j ]

µ
(i)
jk′ · ∇jk′ U (i)(µ)

− U (i)(π) −∇jk U
(i)(π) +

∑

k′∈[m
(i)
j ]

π
(i)
jk′ · ∇jk′ U (i)(π)|

≤ |U (i)(µ)− U (i)(π)|+ |∇jk U
(i)(µ)−∇jk U

(i)(π)|
+ |

∑

k′∈[m
(i)
j ]

µ
(i)
jk′ · ∇jk′ U (i)(µ)− π

(i)
jk′ · ∇jk′ U (i)(π)|

≤ L∞ǫ+ L∞ǫ

+
∑

k′∈[m
(i)
j ]

|µ(i)
jk′ · ∇jk′ U (i)(µ)− π

(i)
jk′ · ∇jk′ U (i)(µ)

+ π
(i)
jk′ · ∇jk′ U (i)(µ)− π

(i)
jk′ · ∇jk′ U (i)(π)|

≤ 2L∞ǫ+
∑

k′∈[m
(i)
j ]

|∇jk′ U (i)(µ)|ǫ + |π(i)
jk′ |L∞ǫ

≤ 2L∞ǫ+
∑

k′∈[m
(i)
j ]

(L∞ǫ+ 1 · L∞ǫ)

≤ 2L∞ǫ+ 2|H|L∞ǫ = 4|H|L∞ǫ .

g
(i)
jk is Lipschitz continuous:

|g(i)jk (µ)− g
(i)
jk (π)| = |h(i)

jk (µ)− U (i)(µ)− h
(i)
jk (π) + U (i)(π)|

≤ |h(i)
jk (µ)− h

(i)
jk (π)|+ |U (i)(µ)− U (i)(π)|

≤ 4|H|L∞ǫ + L∞ǫ ≤ 5|H|L∞ǫ .

Therefore, by case distinction, we also get

|max{0, g(i)jk (µ)} −max{0, g(i)jk (π)}|
≤ |g(i)jk (µ)− g

(i)
jk (π)| ≤ 5|H|L∞ǫ .

F is Lipschitz continuous: We show for each entry index
i, j, k

|F (µ)
(i)
jk − F (π)

(i)
jk |

(∗)
≤ |µ(i)

jk − π
(i)
jk |+ |max{0, g(i)jk (µ)} −max{0, g(i)jk (π)}|

|
m

(i)
j

∑

k′=1

max{0, g(i)jk′(µ)} −
m

(i)
j

∑

k′=1

max{0, g(i)jk′(π)}|

≤ ǫ + 5|H|L∞ǫ+ |H| · 5|H|L∞ǫ

≤ 11|H|2L∞ǫ ,

where in (∗) we used [Daskalakis and Papadimitriou, 2011][Lemma 3.6].
Thus,

||F (µ)− F (π)||∞ ≤ 11|H|2L∞ǫ .

We call µ ∈ S an ǫ-fixed point of F if ||F (µ) − µ||∞ < ǫ.

Lemma 44. It is in PPAD to find an ǫ-fixed point of associ-
ated mapping F to a game Γ with imperfect recall.

Proof. We invoke [Etessami and Yannakakis, 2010][Proposition
2.2 (2)] for this, for which we need that mapping F is poly-
nomially continuous and polynomially computable. The
former follows from Lemma 43. The latter follows because
the profile set S is easy to describe and F is polytime
computable.

For the next (and last) result, note that the value

θ := max
{

1 , 3|H| · max
z∈Z,i∈N

|u(i)(z)|
}

serves as an upper bound on values g
(i)
jk (µ). (We need the

factor |H| because of (2)).

Lemma 45. For any game Γ with imperfect recall, if µ is an
ǫ-fixed point (ǫ < 1

4 ) of its associated mapping F , then µ is

an ǫ′-CDT equilibrium of Γ, where ǫ′ := 2θ|H|3/2√ǫ and θ
is defined as above.

Proof. We follow the proof outline of
[Etessami and Yannakakis, 2010][Proposition 2.3]. Let
µ be an ǫ-fixed point of F . Then we show that for all indices

i, j, k, we have max{0, g(i)jk (µ)} ≤ ǫ′. This then implies that

µ is an ǫ′-CDT equilibrium by Definition 14 and Remark 27.
Take any player i and infoset j. Then ||F (µ) − µ||∞ < ǫ

implies for any action k ∈ [m
(i)
j ]:

|max{0, g(i)jk (µ)} − µ
(i)
jk ·

m
(i)
j

∑

k′=1

max{0, g(i)jk′(µ)}|

≤ ǫ ·
(

1 +

m
(i)
j

∑

k′=1

max{0, g(i)jk′(µ)}
)

≤ ǫ(1 + |H| · θ)

≤ 2θ|H|ǫ .

(9)

Next, define K+ := {k ∈ [m
(i)
j ] : g

(i)
jk (µ) > 0} and K− :=

{k ∈ [m
(i)
j ] : g

(i)
jk (µ) < 0}.

Case 1: There is an index k̃ ∈ K− with µ
(i)

jk̃
≥

√

ǫ
|H| , then

for any action k ∈ [m
(i)
j ]:

max{0, g(i)jk (µ)} ≤
√

|H|
ǫ

·
√

ǫ

|H|

m
(i)
j

∑

k′=1

max{0, g(i)jk′(µ)}

≤
√

|H|
ǫ

· µ(i)

jk̃

m
(i)
j

∑

k′=1

max{0, g(i)jk′(µ)}

≤
√

|H|
ǫ

·
∣

∣

∣
0− µ

(i)

jk̃

m
(i)
j

∑

k′=1

max{0, g(i)jk′(µ)}
∣

∣

∣

k̃∈K−

=

√

|H|
ǫ

·
∣

∣

∣
max{0, g(i)

jk̃
(µ)} − µ

(i)

jk̃

m
(i)
j

∑

k′=1

max{0, g(i)jk′(µ)}
∣

∣

∣

(9)
≤

√

|H|
ǫ

· 2θ|H|ǫ = 2θ|H|3/2√ǫ = ǫ′ .



Case 2: For all indices k̃ ∈ K−, we have µ
(i)

jk̃
<

√

ǫ
|H| .

We first have to observe that

m
(i)
j

∑

k′=1

µ
(i)
jk′ ·max{0, g(i)jk′(µ)} =

∑

k′∈K+

µ
(i)
jk′ · g(i)jk′ (µ)

=

m
(i)
j

∑

k′=1

µ
(i)
jk′ · g(i)jk′(µ)− 0−

∑

k̃∈K−

µ
(i)

jk̃
· g(i)

jk̃
(µ)

=

m
(i)
j

∑

k′=1

µ
(i)
jk′ · U (i)

CDT(ak | µ, Ij)−
m

(i)
j

∑

k′′=1

µ
(i)
jk′′ · U (i)(µ)

−
∑

k̃∈K−

µ
(i)

jk̃
· g(i)

jk̃
(µ)

= U
(i)
CDT(µ

(i)
j· | µ, Ij)− U (i)(µ)−

∑

k̃∈K−

µ
(i)

jk̃
· g(i)

jk̃
(µ)

=
∑

k̃∈K−

µ
(i)

jk̃
· (−g

(i)

jk̃
(µ)) ≤ |H|

√

ǫ

|H| · θ

≤ θ
√

|H|√ǫ .

Next, set k∗ = argmaxk∈K+ g
(i)
jk (µ).

Case 2.1: Probability µ
(i)
jk∗ ≥ 1

2|H| . Then for any action

k ∈ [m
(i)
j ]:

max{0, g(i)jk (µ)} ≤ max{0, g(i)jk∗(µ)}

=
2|H|
2|H| max{0, g(i)jk∗(µ)} ≤ 2|H|µ(i)

jk∗ max{0, g(i)jk∗(µ)}

≤ 2|H|
m

(i)
j

∑

k′=1

µ
(i)
jk′ max{0, g(i)jk′(µ)}

≤ 2|H| · θ
√

|H|√ǫ = 2θ|H|3/2√ǫ = ǫ′ .

Case 2.2: Probability µ
(i)
jk∗ < 1

2|H| . Then for any action

k ∈ [m
(i)
j ]:

max{0, g(i)jk (µ)} ≤ max{0, g(i)jk∗(µ)}

= 2 ·
(

max{0, g(i)jk∗(µ)} − 1

2
max{0, g(i)jk∗(µ)}

)

= 2 ·
(

max{0, g(i)jk∗(µ)} − 1

2|H| |H| ·max{0, g(i)jk∗(µ)}
)

≤ 2 ·
(

max{0, g(i)jk∗(µ)} − 1

2|H|

m
(i)
j

∑

k′=1

max{0, g(i)jk∗(µ)}

≤ 2 ·
(

max{0, g(i)jk∗(µ)} − µ
(i)
jk∗

m
(i)
j

∑

k′=1

max{0, g(i)jk′(µ)}
)

≤ 2 ·
∣

∣

∣
max{0, g(i)jk∗(µ)} − µ

(i)
jk∗

m
(i)
j

∑

k′=1

max{0, g(i)jk′(µ)}
∣

∣

∣

(9)
≤ 2 · 2θ|H|ǫ ≤ 2θ|H|3/2√ǫ · 2√ǫ

≤ 2θ|H|3/2√ǫ = ǫ′ ,

where we used at the last line that ǫ ≤ 1
4 .

This covers all cases, and hence µ is an ǫ′-CDT equilibrium
of Γ.

Proposition 46. CDT-S is in PPAD.

Proof. Given an instance (Γ, ǫ) of CDT-S, construct map-

ping F as in (8) and δ :=
(

ǫ
2θ|H|3/2

)2

. Use Lemma 44.

Then, a δ-fixed point of F makes an 2θ|H|3/2
√
δ = ǫ-CDT

equilibrium of Γ by Lemma 45.

E On Section 6

In this section, we prove the results in Section 6. To that end,
we restate results taken from the main body, and give new
numbers to results presented first in this appendix.

E.1 On General Chance Node Removal

Here, we will show:

Theorem (Restatement of Theorem 7). All computational
hardness results in this paper for the three equilibrium con-
cepts {Nash, EDT, CDT} still hold even when the game has
no chance nodes. They hold together with previously pos-
sible restrictions (e.g., on the branching factor), except that
the restrictions on the number of infosets and the degree of
absentmindedness increase by one and to O(log |H|) respec-
tively.

This result immediately follows from the following con-
struction. For this subsection, let equilibrium be any of the
three equilibrium concepts {Nash, EDT, CDT}.

Theorem 8. For an N -player game Γ with imperfect recall,
we can create an N -player game Γ′ with imperfect recall and
without chance nodes such that

1. Γ′ has the same info and action sets as Γ except an ar-
bitrary player (PL1) has one additional infoset Ic with
absentmindedness which will induce randomness,

2. there is a randomized action α for Ic such that for exact
equilibrium sets E and E′ of Γ and Γ′, we have identity
E′ = E × {α},

3. there is an polynomial relationship between precision
errors of approximate equilibria in Γ′ and the approx-
imate equilibria they induce in Γ.

We prove Theorem 8 in parts.
First, we show how to transition to a game with a single,

polysized chance node hc at the root.



Lemma 47. A game Γ with imperfect recall can be polytime
reduced to a game Γ′ with imperfect recall such that Γ′ has
the same strategy sets and utility functions as Γ, and Γ′ has
only one chance node which is placed at the root. That chance
node randomizes uniformly over 2t actions for some integer t
in O(log |H|) where |H| is the number of nodes in Γ.

In particular, Γ and Γ′ have the same ǫ-equilibria.

Proof. Let Γ be a game with imperfect recall. Get its util-

ity functions U (1), . . . , U (N). Use Appendix A.4 to create a

game Γ̃ with imperfect recall out of it, that has utility func-

tions U (1), . . . , U (N). Both of these steps take polytime. No-

tably, Γ̃ has only one chance node h0 at the root, and that one
is randomizing uniformly over a number of outgoing actions
r that is equal to the number of monomials with nonzero co-

efficients in the functions U (1), . . . , U (N). This is bounded
by the number of terminal nodes |Z| in Γ, which is bounded
by the number of nodes |H| in Γ. Next, we pad the number

of outgoing edges at h0 in Γ̃ to 2⌈log(r)⌉ to obtain the final

game Γ′: Add 2⌈log(r)⌉ − r many actions to h0, each leading
to a terminal node with utility 0 for all player. Next, make the

probability distribution at h0 uniform over these 2⌈log(r)⌉ ac-

tions, and rescale the payoffs at terminal nodes that were in Γ̃
before this padding action by 2⌈log(r)⌉/r. This padding pro-
cedure is polytime (we added at most r additional actions at
the root) and it ensures that the new gameΓ′ has the same util-

ity functions as Γ̃ which has the same utility function as origi-
nal game Γ. Hence, Γ′ and Γ have the same ǫ-equilibria since
those are defined in terms of the strategy sets and ex-ante util-
ity functions. Last but not least, Γ′ has only one chance node

at the root which randomizes uniformly over 2⌈log(r)⌉ actions
where ⌈log(r)⌉ = O(log |H|).

Proposition 48. Let Γ be a game with imperfect recall that
has only one chance node at the root which randomizes uni-
formly over 2t actions for some t ∈ N. Then Γ can be poly-
time reduced to a game Γ′ with imperfect recall such that

1. Γ′ has no chance nodes

2. exact equilibria of Γ correspond 1-1 to exact equilibria
of Γ′

3. δ-equilibria of Γ′ give rise to ǫ-equilibria of Γ, where we
(might) set

δ = min{1
4
,

ǫ

2t + t · L∞
}

using a Lipschitz constant L∞ as described in Ap-
pendix A.3.

Proof. Let Γ be a game with imperfect recall with one chance
node h0 at the root with the above description. We assume
w.l.o.g. that the payoffs in Γ are ≥ 1 (otherwise first shift

the payoffs in Γ by 1 − minz∈Z,i∈N u(i)(z)). Replace h0

with one big infoset Ic with 2 actions l (left) and r (right)
and a degree of absentmindedness of 2t. It is irrelevant which
player is assigned to Ic, so let it be P1. Figure 6 gives an
example for t = 1 and Figure 10 gives an example for t = 3.

The Construction:
Formally, we replace h0 by a tree T of terminal nodes and
nodes in Ic as follows. T will have a depth of 2t+1. Start at
the root h′

0, assign it to Ic, and call its depth level 0. Create
two outgoing edges l and r to nodes h′

1 and h′
2. Assign those

nodes to Ic as well. Make nodes h′
1l and h′

2r terminal nodes
with payoff −1 to all players. Assign nodes h′

1r and h′
2l to

Ic. Next, we create depth levels 2 and 3 to 2t− 3 and 2t− 2
by induction. Let node h′ be in Ic and at an even depth level.
Assign its two children h′l and h′r, as well as their respec-
tive child h′lr and h′rl, to Ic. The nodes h′ll and h′rr shall
be terminal nodes with payoff 0 to all players. Finally, depth
levels 2t− 1 and 2t shall be created in the same way, except
that the nodes at level 2t that would have been assigned to Ic
are now instead being replaced by the children of the origi-
nal chance node h0 (order of replacement is irrelevant). This

works out number-wise because there are exactly 22t/2 = 2t

many nonterminal nodes at depth level 2t.

How Γ′ looks like:
If S =×i∈N S(i) is the strategy set of Γ, then

S′ = S(1) ×∆({l, r})× ×
i∈N\{1}

S(i) = S × [0, 1]

is the strategy set of Γ, where the interval [0, 1] stands for the
probability that P1 assigns to playing left l at Ic. Take the
utility function of any player i ∈ N and write it as

U (i)(µ) =
∑

a∈[2t]

1

2t
U (i)(µ | h0a)

for strategy µ ∈ S.
Observe that each children h0a of h0 in the corresponding

game Γ′ has an action history with exactly t appearances of l
and t appearances of r. Therefore, they are all reached with
equal probability lt(1 − l)t, where by abuse of notation we
use l ∈ [0, 1] for the probability put by P1 on action l at
Ic. Moreover, after the constructed tree T at the beginning,
infoset Ic does not occur again. Next, recall that all terminal
nodes in T , except for the two on depth level 2, have a payoff

of 0. Hence, if V (i) denotes the utility functions in Γ′, we can
rewrite them as

V (i)(µ, l) = −l2 − (1 − l)2 +
∑

a∈[2t]

lt(1− l)tU (i)(µ | h0a)

= −l2 − (1 − l)2 + 2t
(

l(1− l)
)t
U (i)(µ)

= −1

2
− 2(l − 1

2
)2 + 2t

(1

4
− (l − 1

2
)2
)t

U (i)(µ)

for strategy (µ, l) ∈ S′. Note that 0 ≤ l ≤ 1 implies

0 ≤ (l − 1
2 )

2 ≤ 1
4 and thus the factor in front of U (i)(µ)

is always non-negative in a valid profile (µ, l). Moreover, us-

ing that utility U (i) is positive, we observe that any profile
(µ, l) for l 6= 1

2 is strictly dominated by profile (µ, 1
2 ). In

fact, the best response set of P1 to µ(−1) in Γ′ is the best re-

sponse set to µ(−1) in Γ and playing 1
2 at Ic. This is because

function V (1)(·, µ(−1), 1
2 ) is just a positive factor scaling and

subsequent constant shift of U (1)(·, µ(−1)). Analogous rea-
soning yields that the best response set of player i 6= 1 in Γ′
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Figure 10: Another example for the construction of Proposition 48, this time the chance node at the root randomizes uniformly over 8 actions
into subgames G1, . . . , G8.

to (µ(−i), l) for 0 6= l 6= 1 is equal her best response set in Γ
to µ(−i).

Exact Nash and EDT:
Suppose µ is an exact Nash equilibrium or EDT equilibrium
of Γ. Then by above reasoning, profile (µ, 1

2 ) makes an exact
Nash equilibrium or, respectively, EDT equilibrium in Γ′.

Approximate Nash:
We will now show that given (Γ, ǫ), we can set δ > 0 suf-
ficiently small but of size poly(ǫ, |Γ|), such that if (µ, l) is a
δ-Nash equilibrium in Γ′, then µ is an ǫ-Nash equilibrium in
Γ.

First, we bound how far away l can be from 1
2 . A δ-Nash

equilibrium in particularly satisfies the δ-EDT equilibrium
condition that (µ, l) does not perform more than δ worse than

(µ, 1
2 ) for P1. Thus, using that utility U (i) is positive, we get

δ ≥ V (1)(µ,
1

2
)− V (1)(µ, l)

= 2(l − 1

2
)2 + 2tU (1)(µ)

[ 1

4t
−
(1

4
− (l − 1

2
)2
)t]

≥ 2(l − 1

2
)2 + 2tU (1)(µ) · 0 ,

which implies that l must satisfy

(l − 1

2
)2 ≤ δ/2 . (10)

In particular, we will choose δ ≤ 1
4 , and have 0 6= l 6= 1.

Next, we show that µ is an ǫ-Nash equilibrium of Γ. Con-

sider any deviation strategy π(i) of player i ∈ N in Γ. Then,

we get

U (i)(π(i), µ(−i))− U (i)(µ)

=
2t
(

1
4 − (l − 1

2 )
2
)t

2t
(

1
4 − (l − 1

2 )
2
)t (U

(i)(π(i), µ(−i))− U (i)(µ))

=
V (i)(π(i), µ(−i), l)− V (i)(µ, l)

2t
(

1
4 − (l − 1

2 )
2
)t

(∗)
≤ δ

2t
(

1
4 − (l − 1

2 )
2
)t

(10)
≤ δ

2t
(

1
4 − δ

2

)t

(†)
≤ δ

2t
(

1
4 − 1

8

)t

=
δ

2t 1
4t

(⋆)

≤ ǫ ,

where we use in (∗) that (µ, l) is a δ-Nash equilibrium in
Γ′, in (†) that we will choose δ ≤ 1

4 , and in (⋆) that we will

choose δ ≤ 1
2t ǫ. Hence, µ(i) is an ǫ-best response of player

i to µ(−i) in Γ. All in all, if we set δ := min{ 1
4 ,

1
2t ǫ}, then

any δ-Nash equilibrium (µ, l) in Γ′ induces µ to be an ǫ-Nash
equilibrium in Γ.

Approximate EDT:
Analogous reasoning as in approximate Nash. One merely

has to consider each infoset I in Γ and only deviations µ
(i)
I 7→α.



Exact CDT:
The KKT characterization Proposition 16 for game Γ states
that profile µ is an exact CDT equilibrium of Γ if and only if

there exist KKT multipliers {τ (i)jk ∈ R}N ,ℓ(i),m
(i)
j

i,j,k=1 and {κ(i)
j ∈

R}N ,ℓ(i)

i,j=1 such that

µ
(i)
jk ≥ 0 ∀i ∈ [N ], ∀j ∈ [ℓ(i)], ∀k ∈ [m

(i)
j ]

m
(i)
j

∑

k=1

µ
(i)
jk = 1 ∀i ∈ [N ], ∀j ∈ [ℓ(i)]

τ
(i)
jk ≥ 0 ∀i ∈ [N ], ∀j ∈ [ℓ(i)], ∀k ∈ [m

(i)
j ]

τ
(i)
jk = 0 or µ

(i)
jk = 0 ∀i ∈ [N ], ∀j ∈ [ℓ(i)], ∀k ∈ [m

(i)
j ]

∇jk U
(i)(µ) + τ

(i)
jk − κ

(i)
j = 0 ∀i ∈ [N ], ∀j ∈ [ℓ(i)], ∀k ∈ [m

(i)
j ]

(11)

The KKT characterization for a profile (µ, l) in game Γ′

is the same, except that we replace ∇jk U
(i)(µ) in (11) with

∇jk V
(i)(µ, l), and that we need additional multipliers τ−l

and τ+l such that

l ≥ 0 and l ≤ 1

τ−l ≥ 0 and τ+l ≥ 0

τ−l = 0 or l = 0

τ+l = 0 or l = 1

∇l V
(i)(µ, l) + τ−l − τ+l = 0 . (12)

We first observe that

∇l V
(i)(µ, l)

= 2(1− 2l) + 2t(1− 2l)t
(1

4
− (l − 1

2
)2
)t−1

U (i)(µ)

= (1− 2l)

(

2 + 2tt
(1

4
− (l − 1

2
)2
)t−1

U (i)(µ)

)

.

Here, using that utility U (i) is positive, the second factor
(the big bracket) will always be positive. Hence, after an-
other look at the KKT conditions, boundary points l = 0 and
l = 1 cannot satisfy the KKT conditions in Γ′ no matter the
choice of τ−l ≥ 0 or, respectively, τ+l ≥ 0. In the interior
(0, 1), the KKT conditions on l reduce to stationary condition

∇l V
(i)(µ, l) = 0 which is only satisfied at l = 1

2 .
Next, we observe that for indices i, j, k, we have

∇jk V
(i)(µ, l) = 2t

(1

4
− (l − 1

2
)2
)t

∇jkU
(i)(µ) ,

which, for 0 < l < 1 implies that ∇jk V
(i)(µ, l) is simply a

positive rescaling of U (i)(µ).
Therefore, all in all, we get the equivalence that (1) a

point (µ, l) satisfies the KKT conditions of Γ′ for multipli-

ers {τ (i)jk ∈ R}N ,ℓ(i),m
(i)
j

i,j,k=1 , {κ(i)
j ∈ R}N ,ℓ(i)

i,j=1 , τ−l , and τ+l if

and only if (2) l = 1/2, τ−l = 0 = τ+l , and µ satisfies the

KKT conditions of Γ for multipliers {2tτ (i)jk ∈ R}N ,ℓ(i),m
(i)
j

i,j,k=1

and {2tκ(i)
j ∈ R}N ,ℓ(i)

i,j=1 .

Approximate CDT:

We will now show that given (Γ, ǫ), we can set δ̃ > 0 suf-

ficiently small but of size poly(ǫ, |Γ|), such that if (µ̃, l̃) is a

δ̃-CDT equilibrium in Γ′, then we can compute a profile µ′

from it in polytime such that µ is an ǫ-CDT equilibrium in Γ.

First, we use Lemma 30 to transition from the δ̃-CDT
equilibrium in Γ′ to a δ-well-supported CDT equilibrium

(µ, l) in Γ′, where δ = 3L∞|H|
√

δ̃ and L∞ is chosen as
in Appendix A.3. Next, we note that an approximate well-
supported CDT equilibrium (for precision ǫ in Γ or δ in Γ′)
satisfies the exact KKT conditions above except that equality
(11) is replaced by

|∇jk U
(i)(µ) + τ

(i)
jk − κ

(i)
j | ≤ ǫ

and that equality (12) is replaced by

|∇l V
(i)(µ, l) + τ−l − τ+l | ≤ δ .

So let {τ (i)jk ∈ R}N ,ℓ(i),m
(i)
j

i,j,k=1 , {κ(i)
j ∈ R}N ,ℓ(i)

i,j=1 , τ−l , and τ+l be

those KKT multipliers for (µ, l) in Γ. Then, we will show that

multiplier {2tτ (i)jk ∈ R}N ,ℓ(i),m
(i)
j

i,j,k=1 and {2tκ(i)
j ∈ R}N ,ℓ(i)

i,j=1

show that µ is an ǫ-well-supported CDT equilibrium for Γ.
First, we bound how far away l can be from 1

2 . Analogous
to the exact case, we will implicitly choose δ ≤ 1 and there-
fore, boundary points l = 0 and l = 1 cannot be the case in
a δ-well-supported CDT equilibrium. Hence, τ−l = 0 = τ+l
and the above inequality simplifies to

δ ≥ |∇l V
(i)(µ, l)|

= |1− 2l| ·
∣

∣

∣
2 + 2tt

(1

4
− (l − 1

2
)2
)t−1

U (i)(µ)
∣

∣

∣

≥ |1− 2l| · |2|
that is

(l − 1

2
)2 ≤ δ2/4 . (13)

Next, we bound

0 =
1

2t
− 2t(

1

4
− 0)t ≤ 1

2t
− 2t

(1

4
− (l − 1

2
)2
)t

(13)
≤ 1

2t
− 2t

(1

4
− δ2

4

)t
=

1

2t
− 2t

1

4t
(1− δ2)t

(⋆)

≤ 1

2t
− 1

2t
(1− tδ2) =

t

2t
δ2

where in (⋆) we used Bernoulli’s inequality. Hence

∣

∣

∣

1

2t
− 2t

(1

4
− (l − 1

2
)2
)t∣
∣

∣
≤ t

2t
δ2 . (14)

Finally, we have all the tools to conclude that µ is an ǫ-
well-supported CDT equilibrium of Γ: Clearly, the domain
and complementary conditions are still satisfied since those
are the same in Γ and Γ′, and because we simply rescaled the



τ multiplier by a positive constant. Next, fix any coordinate
(i, j, k). Then, we get

|∇jk U
(i)(µ) + 2tτ

(i)
jk − 2tκ

(i)
j |

≤ 2t| 1
2t
∇jk U

(i)(µ) + τ
(i)
jk − κ

(i)
j |

≤ 2t ·
∣

∣

∣

1

2t
∇jk U

(i)(µ)− 2t
(1

4
− (l − 1

2
)2
)t

∇jk U
(i)(µ)

+ 2t
(1

4
− (l − 1

2
)2
)t

∇jk U
(i)(µ) + τ

(i)
jk − κ

(i)
j

∣

∣

∣

≤ 2t ·
∣

∣

∣

1

2t
∇jk U

(i)(µ)− 2t
(1

4
− (l − 1

2
)2
)t

∇jk U
(i)(µ)

∣

∣

∣

+ 2t ·
∣

∣

∣
2t
(1

4
− (l − 1

2
)2
)t

∇jk U
(i)(µ) + τ

(i)
jk − κ

(i)
j

∣

∣

∣

≤ 2t
∣

∣

∣
∇jk U

(i)(µ)
∣

∣

∣
·
∣

∣

∣

1

2t
− 2t

(1

4
− (l − 1

2
)2
)t∣
∣

∣

+ 2t · |∇jk V
(i)(µ, l) + τ

(i)
jk − κ

(i)
j |

(14),(∗)
≤ 2t

∣

∣∇jk U
(i)(µ)

∣

∣ · t

2t
δ2 + 2tδ

≤ δ
(

2t + tδ ·max
µ∈S

||∇U (i)(µ)||∞
)

(†)
≤ δ

(

2t + t ·max
µ∈S

L∞
)

(⋆)

≤ ǫ ,

where we use in (∗) that (µ, l) is a δ-well-supported CDT
equilibrium in Γ′, in (†) that we will implicitly choose δ ≤ 1,
and in (⋆) that we will implicitly choose δ ≤ 1

2t+t·L∞

ǫ. All

in all, if we set

δ̃ :=

(

min{1, ǫ
2t+t·L∞

}
3L∞|H|

)2

,

then any δ̃-CDT equilibrium (µ̃, l̃) in Γ′ gives rise to a
min{1, ǫ

2t+t·L∞

}-well-supported equilibrium (µ, l) in Γ′,
which in turn induces µ to be an ǫ-well-supported CDT equi-
librium in Γ and therefore, by Lemma 30, an ǫ-CDT equilib-
rium in Γ.

We conclude with the main result of this section.

Proof of Theorems 7 and 8. Starting with a game Γ with util-
ity payoffs in the range of [0, 2], a precision parameter ǫ ≥
0 and an equilibrium concept equilibrium in {Nash, EDT,
CDT}, apply Lemma 47 and then Proposition 48 on Γ to get a
game Γ′. Then Γ′ was constructed in polytime, and it has no
chance nodes. It also has the same strategy set and game tree
structure as Γ, except for one additional infoset Ic at the be-
ginning. Ic has a degree of absentmindedness that is bounded
by 2 · ⌈log |Z|⌉ = O(log |H|).

For exact computational problems (ǫ = 0) we have that
µ is an equilibrium of Γ if and only if (µ, 1

2 ) is an equilib-
rium in Γ′. For approximate computational problems (ǫ > 0),
we still have the correspondence with exact equilibria, but

we can also choose δ > 0 as in Proposition 48 such that δ-
equilibria in Γ′ will be or give rise to ǫ-equilibria of Γ. Note
that 2t = poly(|H|) and that because of bounded utility pay-
offs in Γ, Lipschitz constant L∞ will be of size poly(|H|) as
well. Thus, if ǫ was of 1/poly or 1/exp precision (in |Γ), then
δ will continue to be so.

E.2 On Single-Player Games without Chance
Nodes

Recall that a Boolean formula φ is in conjunctive normal
form (CNF) if it is a conjunction of a collection of m
clauses C′

1, . . . , C
′
m each of which is a disjuntion of literals

{xi,¬xi}i. The problem MINSAT takes a Boolean formula
φ in CNF together with an integer threshold 0 ≤ s∗ ≤ m
as an instance, and asks whether there is a truth assignment
for the variables in φ that satisfies at most s∗ clauses in
φ. The problem 2-MINSAT restricts MINSAT to those in-
stances where each clause C′

j of φ contains no more than two
literals.

Lemma 49 (Kohli et al. [1994]). 2-MINSAT is NP-
complete.

We will consider a variant of 2-MINSAT. First, suppose
a clause C′

j uses the same variable x in both of its literals.

Then, it is either always satisfied (x ∨ ¬x) in which case it
can be removed. Otherwise, it reduces to a singleton clause
in which case it can be padded with a dummy variable y that
is only used in that clause. There are only at most m such
paddings needed, and for the minimization procedure it is suf-
ficient to consider only those truth assignments that set y to
be false. Hence, with linear blowup we can assume w.l.o.g.
that the 2-MINSAT instances solely consist of clauses that
use two distinct variables.

Next, observe that the negation ¬φ – after distributing the
negation into the clauses – is a disjunction of the collection of
clauses C1, . . . , Cm where Cj is a conjunction of the nega-
tions of the literals in C′

j . Moreover, a truth assignment π
satisfies M clauses in ψ if and only if it satisfies (exactly the
other) m −M clauses in ¬φ. Putting both of these together,
we obtain from Lemma 49:

Corollary 50. The following problem 2-DNF-MAXSAT is
NP-complete: Given a threshold DNF formula φ which uses
exactly two distinct variables in each of its m clauses, and
given an integer threshold 0 ≤ s∗ ≤ m, does there exist a
truth assignment for the variables in φ that satisfies at least
s∗ clauses in φ?

We get to the main result of this section.

Proposition (Restatement of Proposition 23). OPT-D is NP-
hard, even for games with no chance nodes, one infoset, a
degree of absentmindedness of 2, and 1/poly precision.

Proof. We reduce from 2-DNF-MAXSAT. Let (φ, s∗) be
one of its instances, that is, φ is a collection of clauses
C1, . . . , Cm over variables x1, . . . , xn, where each clause
is a conjunction of 2 literals of distinct variables. Con-
struct a single-player game Γ with imperfect recall from
it as follows. It has one infoset I with 2n actions
{t1, f1, t2, f2, . . . , tn, fn}, where taking action ti or fi will



correspond to setting xi to true or false respectively in a cor-
responding truth assignment. Root h0 belongs to I , each of
its 2n children belong to I , and each of their respective 2n
children are terminal nodes. Hence, there are 4n2 terminal
nodes in Γ. Each terminal node z has a history that corre-
sponds to setting some variable xi to truth value v, and set-
ting some (possibly other) variable xi′ to truth value w, where
v, w ∈ {t, f}. The utility payoff at such z shall be as follows:

• If i = i′, then z yields a penalty payoff of u(z) = −B,
where B = (16mn2)3 ∈ N is a sufficiently large value
(but still polynomially large). We will later see that be-
cause of this penalty, the player will try to maximize the
probability that the case i 6= i′ happens. That is, the
player will be incentivized to allocate, for each i, ap-
proximately 1/n probability to the actions ti and fi to-
gether.

• If i 6= i′, then xi 6= xi′ , hence the partial truth value
assignment might already satisfy some clauses Cj of φ.
Let C(xi 7→ v, xi′ 7→ w) ∈ {0, 1, . . . ,m} be the number
of such satisfied clauses. For example, a terminal node
z with history (f5, t3) satisfies all the occurrences of the
clauses x3∧¬x5 and¬x5∧x3 in formula φ (and no other
clauses). Define the payoff u(z) to be C(xi 7→ v, xi′ 7→
w).

Finally, choose target value t∗ := −B 1
n + 2 1

n2 s
∗ and pre-

cision ǫ := 2 1
n2 · 1

4 . This whole construction takes poly-time
and ǫ indeed makes a 1/poly precision.

We claim that

Claim 1: if there is a truth assignment that satisfies at least
s∗ clauses of φ, then there is also a strategy of Γ
with utility at least t∗,

Claim 2: if Γ has a strategy µ with utility ≥ t∗ − ǫ, then
from it, we can construct an assignment ψ that sat-
isfies at least s∗ clauses of φ, and hence, Γ admits
a strategy with utility at least t∗.

Those two claims imply that one can either achieve utility t∗

in Γ, or one cannot achieve t∗ − ǫ. In particular, (φ, s∗) will
be a “yes” (and resp. “no”) instance of 2-DNF-MAXSAT if
and only if the corresponding (Γ, t∗, ǫ) is a “yes” (and resp.
“no”) instance of OPT-D. This concludes the reduction.

Utility in Γ: First, we characterize the utility function U of
the single player in Γ. In general, a strategy µ contains action
probabilities µ(xi 7→ f) and µ(xi 7→ t) on actions fi and ti
respectively. Any such strategy can instead be described by
values pi = µ(xi 7→ f) + µ(xi 7→ t) ∈ [0, 1], which are
the probabilities with which variables xi are chosen under µ,

and values αi = µ(xi 7→f)
pi

∈ [0, 1], which are the fractions

of times with which variable xi – if chosen – is set to false.
If pi = 0, then we can set αi to an arbitrary value in [0, 1]
instead. Since µ is a strategy, we have

∑

i pi = 1. We get for

any strategy µ the identity

U(µ) =
∑

i∈[n]

(−B) ·
[

µ(xi 7→ f) · µ(xi 7→ f)

+ µ(xi 7→ f) · µ(xi 7→ t) + µ(xi 7→ t) · µ(xi 7→ f)

+ µ(xi 7→ t) · µ(xi 7→ t) +
]

+
∑

i∈[n]

∑

i′ 6=i

[

µ(xi 7→ f) · µ(xi′ 7→ f) · C(xi 7→ f, xi′ 7→ f)

+ µ(xi 7→ f) · µ(xi′ 7→ t) · C(xi 7→ f, xi′ 7→ t)

+ µ(xi 7→ t) · µ(xi′ 7→ f) · C(xi 7→ t, xi′ 7→ f)

+ µ(xi 7→ t) · µ(xi′ 7→ t) · C(xi 7→ t, xi′ 7→ t)
]

= −B
∑

i∈[n]

p2i + 2
∑

i∈[n]

∑

i′>i

pipi′
[

αiαi′ · C(xi 7→ f, xi′ 7→ f)

+ αi(1− αi′ ) · C(xi 7→ f, xi′ 7→ t)

+ (1 − αi)αi′ · C(xi 7→ t, xi′ 7→ f)

+ (1 − αi)(1 − αi′) · C(xi 7→ t, xi′ 7→ t)
]

= −B
∑

i∈[n]

p2i + 2V (µ) ,

where V stands for the second (big double) sum. We will
later use the fact that

0 ≤ V (π) ≤
∑

i∈[n]

∑

i′>i

1 · (m+m+m+m) ≤ 4mn2 .

(15)

Claim 1 Supposeψ is a truth value assignment for variables
x1, . . . , xn. Let s(ψ) be the number of clauses ψ satisfies in
φ. Define ψ’s associated strategy in Γ as

µψ(xi 7→ v) =

{

1/n if ψ(xi) = v

0 if ψ(xi) = ¬v
for all i ∈ [n] and v ∈ {f, t}. Then observe that pi(µψ) =
1/n, and αi(µψ) = ψ(xi), and

V (µψ) =
∑

i∈[n]

∑

i′>i′

1

n2
C(xi 7→ ψ(xi), xi′ 7→ ψ(xi′ ))

=
1

n2
s(ψ) .

(16)

Hence,

U(µψ) = −B
1

n
+ 2

1

n2
s(ψ) = t∗ + 2

1

n2
(s(ψ)− s∗)

Therefore, overall, if there is truth value assignment ψ for
φ with s(ψ) ≥ s∗, then µψ will achieve a utility of at least t∗.

Observation 1 for Claim 2 First, we show that in an (ex-
actly) optimal strategy π for Γ, the probabilities pi have dis-
tance at most

δ :=
√

16mn2/B =
1

16mn2
< 1 (17)



from value 1
n . That is because by optimality, it in particular

performs better than a strategy µ defined as follows: Give it
the same distribution α, and almost the same distribution q
as p in π. The only difference is that for i∗ ∈ argmaxi pi
and i∗ ∈ argmini pi, we define qi∗ = (pi∗ + pi∗)/2 = qi∗
instead. Then

0 ≤ U(π)− U(µ) = −B
∑

i∈[n]

p2i + 2V (π) +B
∑

i∈[n]

q2i − 2V (µ)

(15)
≤ −B

∑

i∈[n]

(p2i − q2i ) + 2 · 4mn2 − 0

= −B
(

p2i∗ + p2i∗ − 2 · (pi∗ + pi∗)
2/4

)

+ 8mn2

= −B
(

p2i∗/2 +−pi∗pi∗ + p2i∗/2
)

+ 8mn2

= −1

2
B(pi∗ − pi∗)

2 + 8mn2 ,

which implies (pi∗ − pi∗)
2 ≤ 16mn2/B, and hence,

|pi∗ − pi∗ | ≤
√

16mn2/B = δ .

Note that i∗ and i∗ were chosen as extreme values, and thus,

1/n = 1/n
∑

i∈[n]

pi ∈ [1/n
∑

i∈[n]

pi∗ , 1/n
∑

i∈[n]

pi∗ ] = [pi∗ , pi∗ ] ,

where this interval has a length of at most δ. Putting the last
two derivations together, we obtain for any i ∈ [n]:

pi ∈ [pi∗ , pi∗ ] ⊂ [1/n− δ, 1/n+ δ] .

As another consequence, we want to observe for later that for
i, i′ ∈ [n], we have

pipi′ ≤ (1/n+ δ)2 = 1/n2 + 2δ/n+ δ2

≤ 1/n2 + 2δ + δ = 1/n2 + 3δ .
(18)

Observation 2 for Claim 2 Next, we shall argue that
−B

∑

i∈[n] p
2
i is maximized at pi = 1/n ∀i. Recall that

for any strategy µ we have p ∈ ∆n−1. Hence, minimiz-
ing the term above is equivalent to maxp∈∆n−1 ||p||22. This
is a uniformly convex function over a convex, compact poly-
tope, hence it attains its global minimum in the relative inte-
rior of the simplex (i.e. the inequality constraints are slack).
A global minimum also satisfies the KKT conditions, and
the KKT conditions for a relative interior point become that
p ∈ ∆n−1 and that p = 1

2κ1 for some κ ∈ R and the vector 1

that consists of 1’s in each entry. This condition is only satis-
fied at p∗ = 1

n1. In particular, for all p ∈ ∆n−1, we therefore
obtain

−B
∑

i∈[n]

p2i ≤ −B
∑

i∈[n]

( 1

n

)2

= −B
1

n
. (19)

Claim 2 Now suppose Γ has a strategy µ with utility ≥ t∗−
ǫ. Then, an optimal strategy π′ also achieves U(π′) ≥ t∗ − ǫ.
Let us create another optimal strategy π from π′ that satisfies
α ∈ {0, 1}n, that is, its distribution α to truth and false values
make a proper truth value assignment of variables x1, . . . , xn.
To that end, note that U(π′) is linear in α′

i of π′ for any given

values p and α′
−i, and hence it is maximized at the boundary

α′
i = 0 or α′

i = 1. Therefore, starting from π′, we can itera-
tive over i = 1, . . . , n and set αi to one of these extreme val-
ues without decreasing the utility value. Denote the resulting
strategy with π. It is also optimal for Γ and its α ∈ {0, 1}n.
For that strategy, we can derive

−B
1

n
+ 2

1

n2
(s∗ − 1

4
) = t∗ − ǫ ≤ U(π′)

= U(π) = −B
∑

i∈[n]

p2i + 2V (π)
(19)
≤ −B

1

n
+ 2V (π)

(16)
= −B

1

n
+ 2

∑

i∈[n]

∑

i′>i′

pipi′C(xi 7→ αi, xi′ 7→ αi′ )

(18)
= −B

1

n
+ 2

∑

i∈[n]

∑

i′>i′

(1/n2 + 3δ) · C(xi 7→ αi, xi′ 7→ αi′)

(16)
= −B

1

n
+ 2 · (1/n2 + 3δ) · s(α) .

Rearranging yields

s∗ ≤ 1

4
+ s(α) + s(α) · 3δn2 ≤ s(α) +

1

4
+ δ · 3mn2

(17)
= s(α) +

1

4
+

1

16mn2
· 3mn2 ≤ s(α) +

1

2
.

Since both s∗ and s(α) are integers, this can only be the case
if s(α) ≥ s∗, that is, there is a truth value assignment that
satisfies at least s∗ clauses of φ. Using Claim 1 for ψ = α,
we obtain that there must also be a strategy in Γ that achieves
a utility of at least t∗ in Γ.

Corollary 51. It is NP-hard to distinguish between whether
all EDT equilibria µ in a single-player game have an utility
U (1)(µ) ≥ t from whether there is an EDT equilibrium µ that

satisfies U (1)(µ) ≤ t−ǫ. Hardness holds even for games with
no chance nodes, one infoset, a degree of absentmindedness
of 2, and 1/poly precision.

Proof. This follows from Proposition 23, and from the fact
that in single-infoset games all EDT equilibria are optimal
strategies due to Remark 20.
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