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1 Introduction

Bosonic string scattering amplitudes can be mathematically defined as integrals over the
space of all maps from Riemann surfaces with marked points to a given spacetime manifold.
To obtain an explicit expression for such an integrand, one proceeds from first principles of
string theory, but of course eventually has to choose local coordinates on the moduli space.
This construction in particular relies on the Mumford isomorphism det(E1)⊗13 ∼= det(E2)
over the moduli space Mg of genus g > 1 (bosonic) Riemann surfaces. Here Ek → Mg

is the universal vector bundle of holomorphic k-differentials, whose fiber over a Riemann
surface X ∈ Mg is H0(X,ω⊗k), where ω = T ∗

X is the holomorphic cotangent bundle of X.
Algebro-geometrically, since E2 is the cotangent bundle T ∗

Mg
, the Mumford isomorphism

gives the expression ωMg = c1(T ∗
Mg

) = det(E2) ∼= λ⊗13
1 for the canonical bundle ωMg of the

moduli space, where λ1 := c1(E1) = det(E1) ∈ Pic(Mg). Since each space-time dimension
contributes λ⊗1/2

1 to the integrand, in particular the Mumford isomorphism implies that
bosonic string theory could only make sense in 26 dimensions. We note that the bosonic
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Mumford isomorphism is a statement that two vector bundles are isomorphic, but it does
not give a canonical isomorphism between them.

Bosonic string amplitudes were extensively studied in the 1980s, and various expressions
for them were obtained in arbitrary genus, see [2, 3] and also the more recent literature [4, 5]
summarizing these results and providing further references. At tree level (i.e. no loops,
i.e. genus zero Riemann surfaces) explicit expressions for bosonic string amplitudes are
well-known, see [6].

The mathematical foundations of the superstring scattering amplitudes were reviewed
and revisited by Witten [7], with further mathematical underpinnings developed in [8–10].
Superstring scattering amplitudes can be mathematically defined as integrals over the space
of all maps from super Riemann surfaces to a given space-time supermanifold. Recall that
a super Riemann surface (SRS) is a complex supermanifold X of complex dimension (1|1),
i.e. such that local charts at any point of X are given by one even and one odd coordinate,
together with a maximally non-integrable, odd distribution D ⊂ TX , i.e. a distribution D of
rank (0|1) such that the Lie bracket of super vector fields induces an isomorphism

[−,−] : D ⊗D ∼−→ TX/D.

This yields a canonical short exact sequence

0 → D → TX → D⊗2 → 0. (1.1)

The super Mumford isomorphism over the moduli space Mg of SRS of genus g > 1 is the
isomorphism

Ber(E1/2)⊗5 = Ber(E3/2) , (1.2)

where E1/2 is now the virtual coherent sheaf over Mg, with fiber H0(X,ω)−H1(X,ω) over
X ∈ Mg, where ω := Ber T ∗

X = D∗ now denotes the canonical bundle of the SRS X, while
E3/2 denotes the bundle with fibers H0(X,ω⊗3) (for which the H1 vanishes automatically),
and Ber denotes the Berezinian, also known as superdeterminant.1 Since the cotangent
bundle to Mg is E3/2, this gives

Ber(E1/2)⊗5 = ωMg , (1.3)

which again is the reason why superstring theory can only be consistent in 10 = 5·2 dimensions
(see below and [7–9, 11] for more details). Crucially, unlike in the bosonic case, the super
Mumford isomorphism (1.2) is not just a statement that two line bundles over Mg are
abstractly isomorphic, but gives a canonical isomorphism between them, see [1].

While the moduli space Mg of genus g > 1 bosonic Riemann surfaces is a complex
Deligne-Mumford stack of dimension 3g − 3, the moduli space Mg of genus g > 1 SRS is
a complex superstack of dimension (3g − 3 | 2g − 2). For g = 0 (resp. 1), to get a Deligne-
Mumford stack as the moduli space of bosonic Riemann surfaces, one needs to consider
Riemann surfaces together with at least n = 3 (resp., n = 1) marked points, whence

1Recall that on the bosonic Riemann surface Xred underlying X, ω restricts to a square root of the
canonical bundle of Xred, so it makes sense to talk of 1/2- and 3/2-differentials, by taking this choice of the
line bundle ω

⊗1/2
Xred

.
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dimM0,n = n − 3; dimM1,n = n. Unlike the bosonic case, where there is only one notion
of a marked point on a Riemann surface (which is a codimension 1 complex subspace, and
equivalent to considering a puncture), there are two different notions of markings or punctures
for super Riemann surfaces. A Neveu-Schwarz (NS) marking on a super Riemann surface X
is just a point of X, i.e. a subspace of complex dimension (0|0) and codimension (1|1), which
plays no role for the distribution D. On the other hand, a Ramond (R) marking is a subspace
of codimension (1|0), over which the maximal non-integrability of the distribution D fails
in a controlled way [7, 12–14].

We denote by Mg,n,k the moduli of genus g super Riemann surfaces with n Neveu-
Schwarz markings and k Ramond markings, and then for g > 1 it is a superstack of dimension
(3g − 3 + n+ k | 2g − 2 + n+ k

2 ). To write an explicit expression for superstring scattering
amplitudes, one needs to choose local coordinates on Mg,n,k. We recall that locally any
(smooth or complex) supermanifold is split, i.e. is isomorphic to the exterior algebra of a
vector bundle on its underlying (bosonic) manifold. Thus in a sufficiently small coordinate
patch, Mg,n,k is modelled on a vector bundle (quotiented by a finite group, as we are working
with orbifolds) over the moduli space SMg,n+k = (Mg,n,k)red of Riemann surfaces with a spin
structure. However, as was shown by Donagi-Witten [15] (see also Donagi-Ott [14] for the
case with Ramond markings), for high enough genus, globally Mg,n,k is not split and does not
even admit a global holomorphic projection to its reduced bosonic moduli space SMg,n+k. In
physics literature [16, 17], to write formulas on Mg,n,k, one often works in local coordinates,
and then uses picture changing operators (PCOs) to change to a different coordinate chart.
To deal with the choices involved, one introduces ghosts, and then integrates over them as
well. In particular, this approach led to spectacular computations of superstring scattering
amplitudes in genus 2 by D’Hoker and Phong [18–24].

Our focus in this paper is the moduli space of genus 0 super Riemann surfaces with only
NS markings: dimM0,n,0 = (n−3 |n−2), for n ≥ 3, since the dimension of the automorphism
group G := OSp(1|2)0 of the super projective line P1|1 with the odd distribution D ⊂ TP1|1

is equal to (3|2). Then M0,n,0 is the moduli space of n-tuples of labeled pairwise distinct
points (z1|ζ1), . . . , (zn|ζn) ∈ P1|1, called NS punctures, up to the diagonal action of G. The
group G acts transitively on triples of distinct bosonic points, and then further on pairs
of odd coordinates. Moreover, fixing the values of z1, z2, z3, ζ1, ζ2 to be z0

1 , z
0
2 , z

0
3 , ζ

0
1 , ζ

0
2 for

some distinct values z0
1 , z

0
2 , z

0
3 ∈ P1 gives a point in each G-orbit in the configuration space

of n-tuples of distinct points of P1|1. Each G-orbit contains a unique element with these
values, up to the action of the involution, which for the choice of ζ0

1 = ζ0
2 = 0 is the

element of G that fixes the bosonic coordinate and changes the sign of the odd coordinate
on P1|1, see [25, § 2.12] and [26, § 5.1.2]. Thus, similarly to the bosonic case, there are
global coordinates (z4, . . . , zn | ζ3, . . . , ζn) on M0,n,0, which exhibit this supermoduli space as
a dense open subset of the superorbifold C0|1 × (C1|1)n−3/Z2 ∼= Cn−3 |n−2/Z2 (provided one
of z0

1 , z
0
2 , z

0
3 is set to ∞), where Z2 acts by the involution that changes the signs of all odd

coordinates simultaneously. Therefore it should be possible to write a global expression for the
tree-level superstring amplitudes, for the case of only NS punctures, explicitly in these global
coordinates, from first principles, without introducing ghosts or picture changing operators.

When we talk about integrals, such as (1.9), over M0,n,0, we treat them as improper
integrals over a noncompact domain and ignore the isotropy group Z2, since its only possible
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contribution to the integral could be a factor of 2. The choice of whether to divide or multiply
by 2 is left to the future reader, as the additivity properties of the Berezin integral over
superstacks are not yet well understood.

The first principles we mentioned above are canonical isomorphisms, such as the super
Mumford isomorphism (1.2), which simplifies in the case g = 0. Over M0,n,0, the super vector
bundle E1/2 trivializes canonically, and thus and thus so does Ber(E1/2), because H0(P1|1, ω) =
0 and H1(P1|1, ω) = H0(P1|1,OP1|1)∗ is canonically isomorphic to C. However, in the presence
of NS markings, the canonical bundle ωMg,n,0 is identified with Ber(H0(ω⊗3(NS))), where
NS is the total NS divisor, rather than with Ber(E3/2), as in the case of no markings. With
this change, the super Mumford isomorphism (1.3) gets modified to a canonical isomorphism

Ber(E1/2)⊗5 ⊗ Ber(H0(X,ω⊗3(NS)|NS)) = ωMg,n,0 ,

see [7, 12]. In the g = 0 case, this simplifies to

Ber(H0(X,ω⊗3(NS)|NS)) = ωM0,n,0 . (1.4)

It is known that the line bundle ω⊗3(NS) above may be replaced by any other odd line
bundle via the canonical isomorphism (4.4), [1, 12]. As a consequence, we get the canonical
isomorphism

Ber(H0(X,ω|NS)) = ωM0,n,0 , (1.5)

which will be used in the main theorem below.
In this paper we perform the computation of the tree-level NS scattering amplitudes

from first principles, not surprisingly recovering the known formulas [27–30] from the physics
literature. The main ingredient is the canonical determination of the holomorphic measure
on M0,n,0, which we deduce by using the canonical super Mumford isomorphism; this also
allows us to canonically fix the coupling constant. We show that the choice of left-moving,
conformal vertex-operator insertions produces a section〈

n⊗
j=1

Vj(zj |ζj)
[
ζ[dz|dζ]|NSj

∣∣∣[dz|dζ]|NSj

]〉
(1.6)

of the line bundle Ber(H0(X,ω|NS)) and compute its image under the isomorphism (1.5).
Here we have uniformized notation and assumed zj = z0

j for j ≤ 3 and ζj = ζ0
j for j ≤ 2.

The vertex operators Vj represent the incoming and outgoing particle states. These are
vector-valued functions, and the notation ⟨ ⟩ stands for the vacuum expectation value (VEV ),
i.e. ⟨O⟩ = ⟨Ω|OΩ⟩, where Ω is the vacuum state, O any given operator having Ω in its domain,
and ⟨|⟩ denotes the inner product on the Hilbert space of physical states.

Theorem 1. The choice of conformal vertex-operator insertions (1.6) gives for any X ∈
M0,n,0 a section of BerH0(X,ω|NS). Then the canonical isomorphism (1.5) gives a holomor-
phic section of the line bundle ωM0,n,0 over the dense open subset of M0,n,0 defined by forcing
each NS puncture to stay within the open chart with bosonic coordinate z ̸= ∞. This section
can be expressed in global coordinates (z4, . . . , zn | ζ3, . . . ζn) on M0,n,0 as〈

n∏
j=1

Vj(zj |ζj)
〉
dν , (1.7)
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where
dν = − 1

2n−2

(
z3 − z1 − 1

2ζ3ζ1
) (
z3 − z2 − 1

2ζ3ζ2
)
[ dz4 . . . dzn | dζ3 . . . dζn]

and zj = z0
j , j = 1, 2, 3, and ζa = ζ0

a , a = 1, 2, are fixed finite values (for any concrete
purposes we can set ζ0

1 = ζ0
2 = 0).

If instead we set z1 = ∞, or more concretely, (w1|η1) =
(

1
z1

∣∣∣ ζ1
z1

)
= (0 | η0

1), and replace
the vertex-operator insertion

〈
V1(z1|ζ1)

[
ζ[dz|dζ]|NS1 | [dz|dζ]|NS1

]〉
with〈

V1(0|η1)
[
η[dw|dη]|NS1 | [dw|dη]|NS1

]〉
,

then the corresponding canonical section of ωM0,n,0 on the whole supermoduli space M0,n,0 ⊂
Cn−3 |n−2/Z2 becomes 〈

V1(0|η1)
n∏

j=2
Vj(zj |ζj)

〉
dν , (1.8)

where
dν = 1

2n−2

(
1 + 1

2ζ3η1
) (
z3 − z2 − 1

2ζ3ζ2
)
[ dz4 . . . dzn | dζ3 . . . dζn]

and η1 = η0
1, zj = z0

j , j = 2, 3, and ζ2 = ζ0
2 .

Remark 1. This theorem has an immediate application to physical observables. Define the
tree-level amplitude for scattering n ≥ 3 type II superstrings in the NS sector as

An =
∫
M0,n,0

〈
n∏

j=1
Vj(zj |ζj ; z̄j |ζ̄j)

〉
dm , (1.9)

where the bar indicates complex conjugation, the vertex operators combine left- and right-
movers, i.e., are smooth, rather than holomorphic, sections of the corresponding bundles, and
the measure is the product of the holomorphic and antiholomorphic factors:

dm = dν · dν ,

with dν defined in Theorem 1. Thus we have gotten the standard expression for the scattering
amplitude, usually obtained in physics in an ad hoc way by introducing ghosts and picture
changing operators. We review this process in section 6 to reconcile it with our formulas.
However, our formulas have the advantage of also determining the closed-string coupling
constant gc = (1/2)2 = 1/4 canonically, since the super Mumford isomorphism is defined
canonically, not just up to scaling.

In (1.9) we have omitted the contribution of the dilaton field ϕ, which usually gives
gc = ⟨eϕ⟩. If we were to include the dilaton field, the coupling constant would have to be
adjusted to gc = 1

4⟨e
ϕ⟩.

While the holomorphic forms (1.7) and (1.8) in Theorem 1 are written as an expression
in terms of the chosen global coordinates on M0,n,0 ↪→ Cn−3|n−2/Z2, of course, the actual
forms (1.7) or (1.8) are well-defined on the moduli space, independent of which coordinate
system is chosen. The advantage of our approach is that we are able to determine the
holomorphic forms (1.7) and (1.8) and measure dν canonically from first principles, without
any need for PCOs or ghosts — including the determination of the coupling constant.
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Beyond being a direct mathematical computation not involving ghosts or PCOs, we
hope that the current paper may be of reference value in assembling together the many
mathematical pieces of the construction. We also view our computations as a stepping
stone towards performing similar explicit computations for tree-level superstring scattering
amplitudes with Ramond markings, where the procedure is quite different from the NS
case [31]. For the Ramond case, Ott and the third author [13] have recently obtained an
explicit geometric description of M0,0,k, which should enable a similarly explicit determination
of superstring scattering amplitudes.

2 Basic conventions and constructions with SRSs and their moduli

In this paper, we work with super Riemann surfaces (SRSs) of genus zero, which all are
isomorphic to the standard SRS of genus zero based on the projective superspace P1|1 :=
ProjC[u, v|ξ] over the ground field C of complex numbers, see [25, 26]. We will write X
for such an SRS, when it is essential to think of the SRS, or superconformal, structure, i.e.
an odd, maximally non-integrable distribution D ⊂ TX , see below. The supermanifold P1|1

may be glued out of two affine open charts C1|1 with coordinates (z|ζ) = (v/u | ξ/u) and
(w|η) = (u/v | ξ/v) by the gluing functions

w = 1/z, η = ζ/z.

The odd distribution D defining the SRS structure is generated by the super vector field

Dζ := ∂

∂ζ
+ ζ

∂

∂z
(2.1)

in the chart (z|ζ) and the super vector field

∂

∂η
− η

∂

∂w

in the chart (w|η). Note that 1
2 [Dζ , Dζ ] = D2

ζ = ∂/∂z, and this ensures the maximal
non-integrability of D.

A remarkable feature of super Riemann surfaces is dualism between points and divisors,
making the geometry of SRSs akin to that of classical Riemann surfaces, where the fact that
divisors are linear combinations of points plays a prominent role. In particular, Neveu-Schwarz
(NS) punctures have their divisor avatars, and we will often switch between NS punctures
and NS divisors. What creates this dualism is the structure distribution D. Given a point
p on a SRS X, we can define a complex subsupermanifold of dimension 0|1 supported on
p, i.e., a prime divisor, with tangent space given by D|p. In a family of once-punctured
SRSs, represented by a universal SRS C over the moduli space M with a section p : M ↪→ C,
regarded as a subspace of the universal SRS C, the corresponding NS divisor is given as
the total space, determined by its Op-algebra S(D∗|p) of functions, of the odd line bundle
D|p over p. The inclusion of this total space is given by the projection of the conormal
bundle T ∗

C/M
∣∣
p

of p in C to D∗|p, which is the dual of the inclusion D ↪→ TC/M. Conversely,
given a prime divisor, we can find a unique point in it so that the tangent space to the
divisor at this point is given by the distribution D. If f = 0 is a local equation of a prime

– 6 –



J
H
E
P
0
9
(
2
0
2
4
)
0
0
8

divisor and D is a generator of D near the divisor’s support, then the equations f = 0 and
Df = 0 determine the corresponding point. In coordinates (z|ζ) in which the structure
distribution is generated by Dζ , see (2.1), the divisor corresponding to a point (z0|ζ0) is
given by the equation z − z0 − ζζ0 = 0.

We will work with families X → S of SRSs of genus zero with NS punctures over a
base S. We will assume the base S to be affine, just like the supermoduli space. We will
still denote the total space of the family by X. We will also denote by Π the parity change
operator on a super vector space or sheaf of such.

The Berezinian BerF of a free module F of finite rank over a supercommutative algebra
is a rank-(1|0) (or (0|1), if n is odd) free module, defined as the set [e1, . . . , em | ε1, . . . , εn] of
equivalence classes of homogeneous bases {e1, . . . , em | ε1, . . . , εn} of F modulo the relation

[Me1, . . . ,Mem |Mε1, . . . ,Mεn] ∼ (BerM) · [e1, . . . , em | ε1, . . . , εn]

for each invertible linear automorphism M of the module F . We also add the zero element
to BerF to make it a module. Here BerM is the Berezinian, or superdeterminant, of M .
If, in a homogeneous basis, M is represented by a block matrix

M =
(
A B

C D

)
with respect to the decomposition M = M0 ⊕M1 into the even and odd parts, then

BerM := det(A−BD−1C) det(D)−1 = det(A) det(D − CA−1B)−1.

The Berezinian of a map of free modules is multiplicative: Ber(M1M2) = Ber(M1) Ber(M2).
Given a short exact sequence of free modules

0 → F1 → F2 → F3 → 0,

we also get a canonical isomorphism of the Berezinians of the modules:

BerF2
∼−→ BerF1 ⊗ BerF3.

A standard argument extends the construction of BerF to locally free modules and sheaves.
Line bundles in the super setting will be divided into even and odd ones, depending

on whether their rank is 1|0 or 0|1.
We will adopt the notation Lk for the k’th tensor power L⊗k of a line bundle L for

k ∈ Z. We will routinely use abbreviated notation for cohomology as well. For example,
H i(ωk) will denote the cohomology space H i(C0,n,0, ω

⊗k
C0,n,0/M0,n,0

), where C0,n,0
p−→ M0,n,0 is

the universal family of genus-0 SRSs with n NS punctures. In full generality, we should be
working with the space H0(M0,n,0, R

ip∗ω
⊗k
C0,n,0/M0,n,0

), but it is indeed naturally isomorphic to
H i(C0,n,0, ω

⊗k
C0,n,0/M0,n,0

), given that M0,n,0 is affine, being the Z2-quotient of the complement
of hyperplanes in C0|1×(C1|1)n−4. Likewise, the Berezinian of cohomology B(F) = BerH∗(F)
will be identified with BerH0(M0,n,0,Ber(R•p∗F)). See the details on the determinant and
Berezinian of cohomology in [32, 33] and [1, 12], respectively.

We will denote by (z1|ζ1), . . . , (zn|ζn) the coordinates of the NS punctures. To simplify
notation, we will write ω for the relative dualizing sheaf ωC0,n,0/M0,n,0 , and, when relevant,
also for its restriction, also known as the canonical bundle, to an individual SRS.
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3 The super Mumford form

We recall that the super Mumford isomorphism is a canonical isomorphism B(ω3) = B(ω)5

over the supermoduli space Mg,0,0 for g ≥ 2, [1, 34]. Here we will use the same construction
to establish a canonical isomorphism over M0,n,0: B(ω3) = B(ω)5. To start out, and also
for further use, we construct natural bases for the spaces of global sections of the powers
of the relative dualizing sheaf ω.

3.1 Bases of cohomology

We denote by t := z[dz|dζ]−1 ∈ H0(C0,n,0, ω
−1) the generating section of ω−1, and consider,

for any positive integer k, the following short exact sequence on C0,n,0:

0 → ωk ·t−→ ωk−1 → ωk−1|div t → 0.

We make the maps in the associated long exact sequence of homology explicit for k = 1, 2, 3, by
first writing out the bases of the relevant spaces, and then identifying the maps on homology
explicitly in these bases, so that Bk(t) is the canonical isomorphism of the associated
Berezinians B(ωk−1) ≃ ΠB(ωk)⊗B(ωk−1|div t). These, suitably modified in the presence of
NS markings, will be used for the computation of the super Mumford form.

Case k = 1. Here we get the exact sequence (of cohomology of sheaves over C0,n,0)

0 = H0(ω) → H0(O) → H0(O|div t) → H1(ω) → H1(O) = 0

The basis of H0(O) is {1 | } — this notation is to list the even basis vectors followed
by the odd basis vectors (none in this case) after the dash. Since H i(O) = 0 for i > 0,
it follows that the Berezinian B(O) = BerH0(C0,n,0;O) = detH0(C0,n,0;O) has as basis
the section Ber{1 | } = det{1 | }, which we will denote by [1 | ]. Using relative super
Serre duality, we see that H1(ω) = H0(O)∗ on each genus zero SRS X, which globalizes
since we have global coordinates on the affine superscheme M0,n,0. Explicitly, the Serre
dual to the even basis element 1 of H0(O) is given by

{
ζ
z [dz|dζ]

∣∣∣ }, and we observe that
B(ω) = (Ber(H1(ω)))−1 = Ber(H0(O)) = B(O) also has basis [1 | ].

The basis of H0(O|div t) is {1|div t | ζ|div t}, and thus [1|div t | ζ|div t] ∈ B(O|div t) is the
generating section of that sheaf. We can thus compute

B1(t) := [1 | ]⊗Π[1 | ]⊗ [1|div t | ζ|div t]−1 ∈ B(O)⊗ΠB(ω)⊗B(O|div t)−1 .

Case k = 2. Here the exact sequence of cohomology is

0 = H0(ω2) → H0(ω) → H0(ω|div t) → H1(ω2) → H1(ω) → H1(ω|div t) → 0

(where the last zero is simply for dimensional reasons). An explicit basis of H1(ω2) = H0(ω−1)∗

can be written simply by thinking of these as suitable volume forms with poles:{
[dz|dζ]2

z

∣∣∣∣∣ ζ[dz|dζ]2z
,
ζ[dz|dζ]2

z2

}
=
{

ζ

[dz|dζ]

∣∣∣∣ 1
[dz|dζ] ,

z

[dz|dζ]

}∗

.
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Thus the generating section of the Berezinian B(ω2) = B(ω−1) is given by[
ζ

[dz|dζ]

∣∣∣∣ 1
[dz|dζ] ,

z

[dz|dζ]

]

The basis of H0(ω|div t) is given by {ζ[dz|dζ]|div t | [dz|dζ]|div t}, and we finally compute

B2(t) := Π[1 | ]−1 ⊗
[

ζ

[dz|dζ]

∣∣∣∣ 1
[dz|dζ] ,

z

[dz|dζ]

]−1
⊗ [ζ[dz|dζ]|div t | [dz|dζ]|div t ]

∈ ΠB(ω)−1 ⊗B(ω2)−1 ⊗B(ω|div t).

Case k = 3. In this case a basis of H1(ω3) = H0(ω−2)∗ can be given as

{
ζ, ζz, ζz2|z, z2

}
· [dz|dζ]

3

z3 ,

(where from now on we write such bases by separating out the common factor, for readability)
and we have the generating section[

ζ[dz|dζ]3

z
,
ζ[dz|dζ]3

z2 ,
ζ[dz|dζ]3

z3

∣∣∣∣∣ [dz|dζ]3z
,
[dz|dζ]3

z2

]
∈ B(ω3) = B(ω−2).

Similarly by thinking of volume forms with poles, we see that {[dz|dζ]2|div t | ζ[dz|dζ]2|div t}
gives a basis of H0(ω2|div t), and thus we finally compute

B3(t) :=
[

ζ

[dz|dζ]

∣∣∣∣ 1
[dz|dζ] ,

z

[dz|dζ]

]
⊗Π

[
ζ[dz|dζ]3

z
,
ζ[dz|dζ]3

z2 ,
ζ[dz|dζ]3

z3

∣∣∣∣∣ [dz|dζ]3z
,
[dz|dζ]3

z2

]

⊗
[
[dz|dζ]2|div t

∣∣∣ ζ[dz|dζ]2|div t

]−1
∈ B(ω2)⊗ΠB(ω3)⊗B(ω2|div t)−1.

3.2 A formula for the super Mumford form

We are now ready to determine explicitly the super Mumford isomorphism, recalling that
unlike the bosonic case, this is not just an abstract isomorphism of line bundles, but in fact the
canonical isomorphism given by the element µ := B3(t)⊗B2(t)⊗B1(t)−2 ∈ B(ω3)⊗B(O)−5,
where to identify this product we recall that B(O) is canonically isomorphic to B(ω). To
obtain an expression for µ, we manipulate the formulas for B1(t), B2(t), B3(t) from the
previous section. We obtain

B2(t)⊗B1(t)−1 = [ζ[dz|dζ]|div t | [dz|dζ]|div t ]⊗ [1|div t | ζ|div t]
[1 | ]3 ⊗

[
ζ

[dz|dζ]

∣∣∣ 1
[dz|dζ] ,

z
[dz|dζ]

]
Recall that restricting any even line bundles L and M on a SRS X to the divisor div t,
we have canonical isomorphisms

B(ΠL|div t) = B(L|div t)−1; B(L|div t) = B(M|div t) ,
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where the latter identification is given by multiplying by any generating holomorphic section
of L−1 ⊗M in a neighborhood of div t. Applying this to all the restrictions in the formula
above, we compute

B2(t)⊗B1(t)−1 = 1
[1 | ]3 ⊗

[
ζ

[dz|dζ]

∣∣∣ 1
[dz|dζ] ,

z
[dz|dζ]

] ∈ B(O)−3 ⊗B(ω2)−1.

By a similar simplification of the expression for B3(t) from the previous section, we obtain

B3(t)⊗B1(t)−1 =

[
ζ

[dz|dζ]

∣∣∣ 1
[dz|dζ] ,

z
[dz|dζ]

]
⊗
[

ζ[dz|dζ]3
z , ζ[dz|dζ]3

z2 , ζ[dz|dζ]3
z3

∣∣∣ [dz|dζ]3
z , [dz|dζ]3

z2

]
[1 | ]2

∈ B(ω2)⊗B(ω3)⊗B(O)−2.

Finally, noticing that the canonical section [1 | ] defines a global trivialization of B(O),
and can thus be omitted in the formulas above, we obtain the following expression for the
super Mumford form

µ = B3(t)⊗B2(t)⊗B1(t)−2 =
[

ζ[dz|dζ]3
z , ζ[dz|dζ]3

z2 , ζ[dz|dζ]3
z3

∣∣∣ [dz|dζ]3
z , [dz|dζ]3

z2

]
(3.1)

as a global section of the line bundle B(ω3) ⊗ B(O)−5 = B(ω3) over M0,n,0.

4 The super Kodaira-Spencer map over M0,n,0

We now proceed to work out the super Mumford isomorphism for the case of genus 0 SRS with
NS markings, by computing the natural isomorphism given by the super Kodaira-Spencer map.

The superanalog of the Kodaira-Spencer map in the case of deformation theory of
supermanifolds is well-known [9, 11, 35]. In our case this will be a map from TXM0,n,0,
which is a super vector space of dimension n − 3|n − 2, to a suitable first homology. For
our purposes it will be more natural to work with the dual map, as it is more explicit to
write bases for spaces of sections H0 rather than for the first homology H1. We first recall
the setup, and then compute the super Kodaira-Spencer map explicitly, by using an explicit
cover to get the class in Čech cohomology.

4.1 The construction

For a SRS X, let T sc
X ⊂ TX be the sheaf of superconformal vector fields, i.e. vector fields that

preserve the distribution D, i.e. of v ∈ TX such that [v,D] ⊂ D. coordinates, see formula (12)
in Katherine Maxwell’s paper https://arxiv.org/pdf/2002.06625.pdf. Note that T sc

X is not an
OX -module: the product f · v of v ∈ T sc

X and a (local holomorphic) function f ∈ OX may
not lie in T sc

X . However, as a sheaf of abelian groups, T sc
X is isomorphic to D⊗2, and in fact

this natural isomorphism can be used to induce an OX -module structure on T sc
X , see [36].

We thus consider T sc
X (−NS) ⊂ T sc

X as the subsheaf of those vector fields that preserve D,
and which also do not move the NS divisor NS.

The previous discussion can be globalized to consider D as a subsheaf of the relative
tangent sheaf TC0,n,0/M0,n,0 ⊂ TC0,n,0 and then define the subsheaves T sc

C0,n,0/M0,n,0
(−NS) ⊂

TC0,n,0/M0,n,0 and T sc
C0,n,0

(−NS) ⊂ TC0,n,0 of vector fields that preserve the global D and fix
the global divisor NS, which we think of as an unramified effective Cartier divisor.
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Altogether, this yields the exact sequence of sheaves of vector spaces

0 → T sc
C0,n,0/M0,n,0

(−NS) → T sc
C0,n,0(−NS) → p∗TM0,n,0 → 0 .

Then the super Kodaira-Spencer isomorphism is the connecting homomorphism

TM0,n,0 → R1p∗T sc
C0,n,0/M0,n,0

(−NS) = R1p∗D⊗2(−NS)

induced by the isomorphism

D⊗2 ∼−→ T sc
C0,n,0/M0,n,0

,

fDζ ⊗Dζ 7−→ f∂z + (−1)f̃

2 Dζ(f)Dζ ,
(4.1)

see [36–39]. Taking global sections, we globalize the super Kodaira-Spencer isomorphism
to the isomorphism

KS : H0(M0,n,0, TM0,n,0) → H1(C0,n,0,D⊗2(−NS)).

The super Kodaira-Spencer isomorphism over a given SRS X ∈ M0,n,0 is

TM0,n,0 |X → H1(X,D|⊗2
X (−NS)).

To identify H1(C0,n,0,D⊗2(−NS)) further, we apply Serre duality:

R1p∗D⊗2(−NS) = p∗ω
⊗3
C0,n,0/M0,n,0

(NS)∗,

which leads to the isomorphism

σ : H1(C0,n,0,D⊗2(−NS)) = H0(C0,n,0, ω
3(NS))∗.

Combined with the super Kodaira-Spencer isomorphism, this gives the dual isomorphism:

p∗ω
⊗3
C0,n,0/M0,n,0

(NS) → T ∗
M0,n,0 ,

which globalizes to the dual super Kodaira-Spencer isomorphism

KS∗ : H0(C0,n,0, ω
⊗3
C0,n,0/M0,n,0

(NS)) → H0(M0,n,0, T ∗
M0,n,0).

4.2 Proof of the main theorem

The rest of the paper is largely dedicated to the explicit computation of the super Kodaira-
Spencer map and identification of bases for the spaces involved. Before we get into that, we
would like to outline the proof of Theorem 1. Consider the following short exact sequence
(SES) of sheaves over C0,n,0, by restricting to the NS divisor:

0 → ω3→ω3(NS)→ω3(NS)|NS → 0 . (4.2)

This is the analog for a divisor with multiple components of the case k = 3 of the SES
described in section 3. This SES gives a canonical isomorphism of the Berezinian line bundles:

B(ω3)⊗B(ω3(NS)|NS)
∼−→ B(ω3(NS)) ,
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which we are going to identify explicitly. Since H0(ω3) = 0, and H1(ω3(NS)|NS) = 0, as
the relative (topological) dimension of the NS divisor over the moduli space M0,n,0 is 0 and
M0,n,0 is affine, the associated exact sequence in cohomology is simply

0 → H0(ω3(NS))→H0(ω3(NS)|NS)→H1(ω3) → 0 . (4.3)

The choice of any even generating section of the line bundle ω2(NS) in an affine open
neighborhood of the divisor NS yields an isomorphism

B(ω|NS)
∼−→ B(ω3(NS)|NS) , (4.4)

which does not depend on the choice of the section and is thereby canonical, see [1, 12].
provided none of the NS punctures is at ∞, and the Berezinian line bundle B(ω3(NS)|NS).
Thus, we have a canonical isomorphism

φ : B(ω3)⊗B(ω|NS)
∼−→ B(ω3(NS)) .

In appendix A we provide further details and compute the image of the super Mumford
form µ ∈ Γ(M0,n,0, B(ω3)), given by (3.1), tensored with a global section of B(ω|NS) arising
from vertex-operator insertions, under the isomorphism φ, see Proposition 6:

φ

µ⊗
〈

n⊗
j=1

Vj(zj |ζj)
[
ζ[dz|dζ]|NSj

∣∣∣[dz|dζ]|NSj

]〉
=
〈

n∏
j=1

Vj(zj |ζj)
〉
Ber

(
{ζ, ζz, . . . , ζzn−4 | 1, . . . , zn−3} · [dz|dζ]3∏n

j=1(z − zj − ζζj)

)
,

where (z1|ζ1), . . . , (z1|ζ1) are the NS punctures. In section 5 we explain how vertex-
operator insertions make up a section of B(ω|NS). The Berezinian of the dual super Kodaira-
Spencer isomorphism, computed in the remaining part of section 4, with detailed linear
algebra computations given in appendix B, naturally identifies B(ω3(NS)) with the space
H0(M0,n,0, ωM0,n,0) = H0(M0,n,0,Ber(T ∗

M0,n,0
)) of holomorphic volume forms on M0,n,0:

Ber(KS∗) : B(ω3(NS)) ∼−→ H0(M0,n,0, ωM0,n,0).

Proposition 4 below gives an explicit computation,

dν := − 1
2n−2 (z3 − z1 − 1

2ζ3ζ1)(z3 − z2 − 1
2ζ3ζ2)[dz4 . . . dzn | dζ3 . . . dζn] ,

of the image

Ber(KS∗)
(
Ber

(
{ζ, ζz, . . . , ζzn−4 | 1, . . . , zn−3} · [dz|dζ]3∏n

j=1(z − zj − ζζj)

))

under the isomorphism Ber(KS∗), when all the NS punctures are finite, and yields Theorem 1.
The case z1 = ∞ is treated in appendix C.
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4.3 The Čech cohomology computation

First, note that for computations with supermanifolds, it is enough to take an acyclic (Leray)
cover of the underlying bosonic manifold. Below is a precise statement, which is surely known
to seasoned supergeometeres, though we could not find it in the literature.

For a topological space X and a sheaf F on it, recall that an open cover {Ui} is called Leray
with respect to F if for the derived-functor cohomology, we have Hq(Ui1 ∩ · · · ∩Uip ,F) = 0 for
all finite sets {i1, . . . , ip} of indices and all q > 0. In this case, the derived-functor cohomology
Hq(X,F) will agree with the Čech coholomogy of F with respect to this cover, justifying
using the same notation for both.

Lemma 2 (Folklore).

1) If X is a separated superscheme of finite type and F is a quasi-coherent sheaf on X,
then any cover of the underlying scheme Xred by affine open schemes is Leray with
respect to F .

2) If X is a complex supermanifold and F is a coherent sheaf on X, then any cover of the
underlying manifold Xred by open Stein manifolds is Leray with respect to F .

This lemma follows from the following lemma.

Lemma 3 (Folklore).

1) If X is a superscheme of finite type whose reduction Xred is affine and F is a quasi-
coherent sheaf on X, then Hq(X,F) = 0 for all q > 0.

2) If X is a complex supermanifold whose reduction Xred is Stein and F is a coherent
sheaf on X, then Hq(X,F) = 0 for all q > 0.

Proof. (1) Let JX = ((OX)1) be the ideal sheaf of odd nilpotents on the superscheme X. If X
is of finite type and F is a quasi-coherent sheaf on it, then F is a finite iterated extension by
quasi-coherent sheaves Jn

XF/Jn+1
X F of OXred = OX/JX -modules, whose higher cohomology

vanishes by the algebraic version of Cartan’s theorem B, see [40, Theorem III.3.7]. Therefore,
by downward induction on n, the higher cohomology of F on X will also vanish.

(2) The same argument works, except that Cartan’s theorem B itself is applied to the
coherent sheaves Jn

XF/Jn+1
X F on Xred.

Remark 2. By a straightforward super generalization of Serre’s theorem on affineness, it
follows that if X is a superscheme of finite type whose reduction Xred is affine, then X is
affine as a superscheme.

To make formulas more symmetric, we will perform the computation below while setting
the points z0

1 , z
0
2 , z

0
3 to be finite. (The case z0

1 = ∞ is treated in appendix C.) Recall that
while all these 3 bosonic coordinates along with the corresponding fermionic coordinates ζ0

1
and ζ0

2 can be fixed by the action of OSp(1|2)0, the ζ3 remains free, and in anticipation of
this we will be taking one “unnecessary” open set, W3, to handle this.

We will compute the super Kodaira-Spencer map

KS : H0(M0,n,0, TM0,n,0) → H1(C0,n,0,D⊗2(−NS))

in Čech cohomology. Since the super Kodaira-Spencer map is a morphism of sheaves over
(M0,n,0)red = M0,n, we may compute it locally on M0,n, which may be identified with an
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open subset of Cn−3. For any point (z0
4 , . . . , z

0
n) ∈ M0,n, we can choose ε > 0 sufficiently

small so that the ball B ε
2
(z0

4 , . . . , z
0
n) in Cn−3 of radius ε/2 around this point is contained

in M0,n, which is to say that within this ball all the n− 4 bosonic points stay distinct, and
also distinct from z1 = z0

1 , z2 = z0
2 and z3 = z0

3 . Then, working over this ball in the universal
family p : C0,n,0 → M0,n,0 of SRSs, we cover the preimage p−1

red(B ε
2
(z0

4 , . . . , z
0
n)) ⊂ (C0,n,0)red

by the following open subsets.
First recall that the fibers of pred are simply copies of P1, since in the universal curve

the point is allowed to coincide with one of z0
1 , . . . , z

0
n. We denote by Uj ⊂ C, j = 3, . . . , n,

the open radius-ε disk around z0
j (adjusting ε, if necessary, to make sure that the disks

are all disjoint), and denote by U0 the complement in P1 of the union of closed radius-ε/2
disks around these points. Then P1 = U0 ∪ U3 ∪ · · · ∪ Un, and we now construct a suitable
cover of p−1

red(B ε
2
(z0

4 , . . . , z
0
n)) by the open sets W• := U• ×B ε

2
(z0

4 , . . . , z
0
n). We see that the

open cover {W0,W3, . . . ,Wn} is such that the only nonempty intersections are the pairwise
intersections between W0 and Wj , since ε was sufficiently small (ε < min{|zj − zk|, j < k}).
Moreover, these pairwise intersections are simply open annuli, and thus Stein, and thereby
acyclic for coherent sheaves. We further take the open subsupermanifolds of C0,n,0 based
on each of these open subsets.

We utilize the same coordinates (z4, . . . , zn|ζ3, . . . , ζn) on the superdomain in M0,n,0
over the common factor B ϵ

2
(z0

4 , . . . , z
0
n) of all Wj ’s and augment them with coordinates built

on the standard affine coordinates (z|ζ) on the superdomains in P1|1 over the factors Uj ,
3 ≤ j ≤ n. More precisely, we put over Wj the coordinates

(z4, . . . , zn|ζ3, . . . , ζn;wj |ηj) ,

where
(w3|η3) = (z − z0

3 − ζζ3|ζ − ζ3),
(wj |ηj) = (z − zj − ζζj |ζ − ζj), j ≥ 4.

(4.5)

Since our open subsets and their intersections (pairwise, as triple are all empty) are Stein
manifolds, they are acyclic for cohomology with coefficients in coherent sheaves of O-modules
on the corresponding open subsupermanifolds. Therefore this atlas can be used to compute
Čech cohomology. We thus compute the super Kodaira-Spencer map from (4.5) in this atlas as

∂zj

KS7−→
{
−δkj∂wj ∈Γ(W0∩Wk,T sc

C0,n,0/M0,n,0
(−NS))

}n

k=3
, j=4, . . . ,n,

∂ζa

KS7−→
{
−δka(∂ηa−ζ∂wa)= δka((2ηa+ζa)∂wa−Dηa)∈Γ(W0∩Wk,T sc

C0,n,0/M0,n,0
(−NS))

}n

k=3
,

a=3, . . . ,n.

As in the classical case of families of complex manifolds, see [41, section 4.2(a)] and [42,
eq. (1.33)], the above super Kodaira-Spencer map is given by the infinitesimal deformations
of the fiber of the universal SRS C0,n,0 in the zj and ζa directions on the supermoduli space
M0,n,0. Composing with the isomorphism (4.1), we get

∂zj

KS7−→
{
−δkjDηj ⊗Dηj ∈Γ(W0∩Wk,D⊗2(−NS))

}n

k=3
, j=4, . . . ,n,

∂ζa

KS7−→
{
δka((2ηa+ζa)Dηa⊗Dηa)∈Γ(W0∩Wk,D⊗2(−NS))

}n

k=3
, a=3, . . . ,n.

(4.6)
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4.4 The dual map

While we have an explicit basis for H0(ω3(NS)), we want to compute the super Kodaira-
Spencer map in coordinates (z4, . . . , zn|ζ3, . . . , ζn) on M0,n,0. Equivalently, we can make
explicit the dual map isomorphism

KS∗ : H0(ω3(NS)) → H0(M0,n,0, T ∗
M0,n,0)

obtained by combining the super Kodaira-Spencer map with Serre duality and applying
linear duality. The Serre duality isomorphism

σ : H1(X,D⊗2(−NS)) −→ H0(ω⊗3(NS))∗

is given by

σ(fDζ ⊗Dζ)(λ) = Res
[
ιfDζ⊗Dζ

λ
]
.

The contraction can be easily computed once we notice that

ιDζ
[dz|dζ] = −1. (4.7)

A nice way to prove (4.7) is by using the exact sequence

0 → D → T → T /D → 0

and the isomorphism D2 = T /D. Indeed, note that
[

∂
∂z |

∂
∂ζ

]
is a local basis of Ber T ,

and compute [
∂
∂z |

∂
∂ζ

]
=
[

∂
∂z |Dζ

]
= [D2

ζ |Dζ ] = Dζ ∈ Ber T = D.

Therefore, [dz|dζ] = D∗
ζ ∈ D∗ = Ber T ∗ = ωX , which means [dz|dζ](Dζ) = 1 and implies (4.7).

So, the composition of Serre duality with the super Kodaira-Spencer map (4.6) gives

σ ◦KS: ∂zj 7−→ σ(−Dζ ⊗Dζ |W0∩Wj ), j = 4, . . . , n,
σ ◦KS: ∂ζa 7−→ σ((2ηa + ζa)Dζ ⊗Dζ |W0∩Wa), a = 3, . . . , n,

(4.8)

where we take into account that Dηj = Dζ |W0∩Wj , which follows from (4.5). We want to
evaluate σ explicitly on the basis (A.6) for H0(ω3(NS)), described in Proposition 6. For
convenience, we rewrite that basis in the form{

ζza

∣∣∣∣∣ zb

(
1−

n∑
k=1

ζkζ

z − zk

)}
· [dz|dζ]3∏n

j=1(z − zj)
, (4.9)

where b = 0, . . . , n − 3 and a = 0, . . . , n − 4. In this formula, and until the end of this
section, to simplify notation, we will simply write z1, z2, z3 instead of z0

1 , z
0
2 , z

0
3 and ζ1, ζ2

instead of ζ0
1 , ζ

0
2 . We stress that these are fixed points in C, not free bosonic coordinates

on M0,n,0 like z4, . . . , zn (and we still do not allow them to take infinite value, except in
appendix C). However, as they appear symmetrically in the formulas, we will avoid using
the superscript 0 here and in the appendices.
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We compute

σ (−Dζ⊗Dζ |W0∩Wi)
(

zaζ[dz|dζ]3∏n

j=1(z−zj)

)
=Res |z=zi

[
−zaζ[dz|dζ]∏n

j=1(z−zj)

]
= −za

i∏
k ̸=i

(zi−zk)
,

σ (−Dζ⊗Dζ |W0∩Wi)
(

zb[dz|dζ]3∏n

j=1(z−zj)

(
1−

n∑
k=1

ζkζ

z−zk

))
=Res |z=zi

[
zb[dz|dζ]∏n

j=1(z−zj)

(
n∑

k=1

ζkζ

z−zk

)]

= zb
i∏

j ̸=i
(zi−zj)

∑
k ̸=i

ζk

zi−zk
+ζi

d

dz z=zi

zb∏
j ̸=i

(z−zj)

= zb
i∏

j ̸=i
(zi−zj)

∑
k ̸=i

ζk−ζi

zi−zk
+ bζiz

b−1
i∏

j ̸=i
(zi−zj)

for i = 4, . . . , n and, similarly,

σ ((2ηc+ζc)Dζ⊗Dζ |W0∩Wc)
(
zaζ[dz|dζ]3∏n

j=1(z−zj)

)
= −za

c ζc∏
k ̸=c(zc−zk)

,

σ ((2ηc+ζc)Dζ⊗Dζ |W0∩Wc)
(

zb[dz|dζ]3∏n
j=1(z−zj)

(
1−

n∑
k=1

ζkζ

z−zk

))
= 2zb

c∏
j ̸=c(zc−zj)

+ zb
c∏

j ̸=c(zc−zj)
∑
k ̸=c

ζcζk

zc−zk

for c = 3, . . . , n.

4.5 The Berezinian of the dual map

Proposition 4. The isomorphism Ber(KS∗) maps Ber
(
{ζ, ζz, . . . , ζzn−4 | 1, . . . , zn−3}·

[dz|dζ]3∏n

j=1(z−zj−ζζj)

)
to − 1

2n−2 (z3 − z1 − 1
2ζ3ζ1)(z3 − z2 − 1

2ζ3ζ2)[dz4, . . . , dzn | dζ3, . . . , dζn].

Proof. We compute the dual super Kodaira-Spencer map KS∗ explicitly to be given by the
following matrix in the dual bases (A.6) of H0(ω3(NS)) and {dz4, . . . , dzn | dζ3, . . . , dζn} of
H0(M0,n,0, T ∗

M0,n,0
):

Mn =
(
A B

C D

)
,

where A is an (n− 3)× (n− 3) matrix with entries

Ajk =
−zk−1

j+3∏
l ̸=j+3(zj+3 − zl)

with 1 ≤ l ≤ n and 1 ≤ j, k ≤ n− 3; B is an (n− 3)× (n− 2) matrix with entries

Bjb =
zb−1

j+3∏
l ̸=j+3(zj+3 − zl)

− ∑
i ̸=j+3

ζj+3 − ζi

zj+3 − zi
+ (b− 1)ζj+3

zj+3


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with 1 ≤ l ≤ n and 1 ≤ j ≤ n− 3, 1 ≤ b ≤ n− 2; C is an (n− 2)× (n− 3) matrix with entries

Cak =
ζa+2z

k−1
a+2∏

l ̸=a+2(za+2 − zl)

with 1 ≤ l ≤ n and 1 ≤ a ≤ n− 2, 1 ≤ k ≤ n− 3; and D is an (n− 2)× (n− 2) matrix with
entries

Dab = −
zb−1

a+2∏
l ̸=a+2(za+2 − zl)

2 + ∑
i ̸=a+2

ζa+2ζi

za+2 − zi


with 1 ≤ l ≤ n and 1 ≤ a ≤ n− 2, 1 ≤ b ≤ n− 2. In the end, it is the Berezinian of Mn what
we need, and we determine it by a direct computation.

Lemma 5. The Berezinian of the map Mn is given by

BerMn = det(A)
det(D − CA−1B) = − 1

2n−2 (z3 − z1 − 1
2ζ3ζ1)(z3 − z2 − 1

2ζ3ζ2).

Appendix B is dedicated to the proof of this lemma. The proposition follows.

5 Vertex-operator insertions

Here we discuss vertex-operator insertions and argue that they define a section of the line
bundle B(ω|NS). Our construction in principle follows the lines suggested by Witten [43,
appendix A] for the moduli space Mg,1 of ordinary Riemann surfaces with one puncture, but
the case of Neveu-Schwarz punctures on a super Riemann surfaces seems to be considerably
subtler. A vertex operator is usually understood as representing the asymptotic state of an
incoming (at time t = −∞), or outgoing (at time t = +∞) particle, with given spacetime
momentum, spin, and other possible quantum numbers. After integration over spacetime, the
vacuum expectation value (VEV) of the vertex operator becomes a section of the contangent
bundle of the worldsheet (a super Riemann surface) of the propagating superstring, which
presents itself as a boundary component of the SRS. The assumed superconformal invariance
of the vertex operator means that the vertex operator is a cotangent vector to the super
Riemann surface X at the puncture replacing the boundary component. This puncture can
be of Ramond or Neveu-Schwarz type, but in this paper, we focus on NS punctures. Let
us also consider only conformal, i.e., left-moving, vertex operators, as a start, to keep doing
complex analytic geometry as long as possible. The holomorphic cotangent bundle T ∗

X on X
is a rank-(1|1) super vector bundle, which fits into the short exact sequence

0 → (D∗)⊗2 → T ∗
X → D∗ → 0,

dual to (1.1). Recall that D∗ = ωX and restrict this sequence to the NS puncture p ∈ X:

0 → ω⊗2
X

∣∣
p
→ T ∗

X |p → ωX |p → 0.

If two cotangent vectors v1, v2 ∈ T ∗
X |p form a basis such that v1 generates ω⊗2

X |p and v2
projects to a generator of ωX |p, then their Berezinian [v1|v2] is a vector in Ber T ∗

X |p = ωX |p.
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This vector is a vertex-operator insertion, which is meant to have been integrated over the
field configurations (to produce a VEV) and is usually denoted with extra brackets: ⟨[v1|v2]⟩.

We claim the vertex-operator insertion [v1|v2] ∈ ωX |p gives rise canonically to a vector
in the odd line BerH0(NSp, ωX |NSp). Let NSp be the NS divisor corresponding to the NS
puncture p. The NS divisor is determined by its algebra of functions OX |NSp = S(D∗|p) =
OX |p ⊕D∗|p, see section 2. Tensoring this algebra with ωX |NSp over OX |NSp = ONSp , we get

ωX |NSp = ωX |p ⊕ ω⊗2
X |p,

whence we see that BerH0(NSp, ωX |NSp) = ω⊗2
X |p ⊗ ω−1

X |p = ωX |p. Thus, the vertex-
operator insertion [v1|v2] ∈ ωX |p can naturally be regarded as a vector in B(ωX |NSp) =
BerH0(NSp, ωX |NSp). In the above, we have made sure to avoid splitting super vector spaces
and sheaves into even and odd components, which allows the argument to easily generalize to
families of super Riemann surfaces. For the universal family Cg,1,0 → Mg,1,0, a vertex-operator
insertion becomes a section V (p) = [v1|v2] ∈ H0(Mg,1,0, B(ω|NSp)), where p is understood
as a section p : Mg,1,0 → Cg,1,0 of the universal family.

When we have n NS punctures p1, . . . pn, the corresponding total NS divisor is the sum
NS = NSp1 + . . .+ NSpn , and the vertex-operator insertions V1(p1), . . . , Vn(pn) multiply to
produce a section

⊗n
j=1 Vj(pj) of Ber(ω|NS) = Ber(ω|NSp1

)⊗· · ·⊗Ber(ω|NSp1
). If (z|ζ) are holo-

morphic coordinates near the j’th NS puncture pj = (zj |ζj), where
[
ζ[dz|dζ]|NSj

∣∣∣[dz|dζ]|NSj

]
gives a basis of Ber(ω|NSj ), then Vj(pj) may be expressed as Vj(zj |ζj)

[
ζ[dz|dζ]|NSj

∣∣∣[dz|dζ]
vertNSj

]
, whence the product of these gives a section

n⊗
j=1

Vj(zj |ζj)
[
ζ[dz|dζ]|NSj | [dz|dζ]|NSj

]
∈ H0(M0,n,0,Ber(ω|NS)),

as claimed in (1.6), where we used the brackets ⟨ ⟩ there to stress that it includes integration
over the spacetime configurations.

6 Tree-level scattering amplitudes in the physics literature

To better understand the physics context of our results and match them with the well-known
computations, we review how the holomorphic measure dν arises in the determination the
superstring scattering amplitudes in the physics literature for the type IIB superstring theory.
The matter superfields in terms of the holomorphic coordinates (z|ζ) on a SRS and the
antiholomorphic coordinates (z̄|ζ̄) on the complex conjugate SRS are given by

XXXµ(z|ζ; z̄|ζ̄) = Xµ
L(z) +Xµ

R(z̄) + ζψµ(z) + ζ̄ψ̄µ(z̄). (6.1)

In the usual approach to superstring scattering amplitudes one also introduces the su-
perghost fields

B(z|ζ) = b(z) + ζβ(z), C(z|ζ) = c(z) + ζγ(z),
B̄(z̄|ζ̄) = b̄(z̄) + ζ̄β̄(z̄), C̄(z̄|ζ̄) = c̄(z̄) + ζ̄ γ̄(z̄).
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In order to compute the scattering amplitude among n physical states, one inserts and
then integrates superconformal vertex operators of conformal weight (1|1) at the punctures.
However, to eliminate the zero modes of the superghosts and get sensible path integrals,
one must then also introduce picture changing operators (PCO), necessary to get a sensible
nontrivial measure (allowing for nonvanishing result). It turns out that the vertex operators
can then be taken in the form

V(z|ζ; z̄|ζ̄) = c(z)c̄(z̄)δ(γ(z))δ(γ̄(z̄))V (z|ζ; z̄|ζ̄) ,

where V is a superconformal field of conformal weight (1|1), and the delta distributions
are meant to ensure that the γ components vanish at the puncture. When computing the
amplitudes, for n ≥ 3, one has also to introduce the insertion of δ(β)δ(β̄), conventionally
chosen at (z3|ζ3, z̄3|ζ̄3), which can be used to eliminate δ(γ(z3))δ(γ̄(z̄3)). For n ≥ 4, n − 3
vertices can be replaced by integrated vertices

KVj =
∫

Σ
dζjdζ̄jdzjdz̄j Vj(zj |ζj ; z̄j |ζ̄j) ,

where Σ is the genus zero super Riemann surface underlying the scattering representation,
so that we can write for the amplitude

An =
〈
cc̄δ(γ)V1(z0

1 |0; z̄0
1 |0)cc̄δ(γ)V2(z0

2 |0; z̄0
2 |0)cc̄δ(γ)Dζ3Dζ̄3

V3(z0
3 |0; z̄0

3 |0)
n∏

j=4
KVj

〉
,

where ⟨. . . ⟩ means the VEV. In particular, the first three bosonic coordinates are fixed
at the arbitrary values z0

1 , z
0
2 , z

0
3 , while the first two odd variables are conventionally fixed

at ζa = 0, a = 1, 2. Notice that the ghosts disappeared from the integrated vertices so
they factor in the VEV as

kgh =
〈
cc̄δ(γ)(z0

1 ; z̄0
1)cc̄δ(γ)(z0

2 ; z̄0
2)cc̄δ(γ)(z0

3 ; z̄0
3)
〉
.

A simple physics calculation using bosonization and operator product expansion (OPE)
then yields

kgh = (z0
3 − z0

1)(z0
3 − z0

2)(z̄0
3 − z̄0

1)(z̄0
3 − z̄0

2) ,

and we remark that the amplitude can then be rewritten as

An = gn−2
c

∫
M0,n,0

〈
V1(z0

1 |0; z̄0
1 |0)V2(z0

2 |0; z̄0
2 |0)V3(z0

3 |ζ3; z̄0
3 |ζ̄3)

n∏
j=4

Vj(zj |ζj ; z̄j |ζ̄j)
〉
Dm,

(6.2)
where gc denotes the closed string coupling and the integration measure is

Dm = kgh[dz4 . . . dzn|dζ3 . . . dζn][dz̄4 . . . dz̄n|dζ̄3 . . . dζ̄n] .

Direct comparison with (1.9) allows us to identify gc = 1/4 (when neglecting the
dilaton field).
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7 Conclusion

We can now compare our results with the standard derivation of tree-level NS amplitudes
available in the literature. Instead of deducing the amplitude formula (6.2) by constructing
a measure through the introduction of ghosts and PCOs, we have suggested the slightly
more general formula (1.9), containing only the physical fields and the canonical measure,
as determined by the super Mumford isomorphism over M0,n,0. By comparing the two
formulas, we see that they coincide after replacing gc by ⟨eϕ⟩

4 , if we include the dilaton
contribution in (1.9).
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A The super Mumford form over M0,n,0

Here we compute the image of the super Mumford form

µ =
[
ζ[dz|dζ]3

z
,
ζ[dz|dζ]3

z2 ,
ζ[dz|dζ]3

z3

∣∣∣∣∣ [dz|dζ]3z
,
[dz|dζ]3

z2

]
∈ B(ω3), (A.1)

see (3.1), tensored with a global section〈
n⊗

j=1
Vj(zj |ζj)

[
ζ[dz|dζ]vertNSj

∣∣∣[dz|dζ]|NSj

]〉
∈ B(ω|NS)

arising from vertex-operator insertions, under the isomorphism

φ : B(ω3)⊗B(ω|NS) → B(ω3(NS)), (A.2)

which comes from the short exact sequence

0 → ω3 f−→ ω3(NS) g−→ ω3(NS)|NS → 0 (A.3)

and the canonical isomorphism (4.4):

B(ω|NS)
∼−→ B(ω3(NS)|NS) . (A.4)
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Even though all the isomorphisms are defined in a canonical, coordinate-independent way,
since we want to perform explicit computations, we work with the standard affine coordinates
(z|ζ) on P1|1. Note that the isomorphisms are linear over holomorphic functions, such as〈∏n

j=1 Vj(zj |ζj)
〉
, on the supermoduli space and, therefore, it is enough to compute the

image of

µ⊗
n⊗

j=1

[
ζ[dz|dζ]|NSj | [dz|dζ]|NSj

]
(A.5)

under φ.

Proposition 6. The image of (A.5) under the isomorphism φ of (A.2) is the Berezinian of
the following basis of H0(ω3(NS)):

{ζ, ζz, . . . , ζzn−4 | 1, . . . , zn−3} · [dz|dζ]3∏n
j=1(z − zj − ζζj)

. (A.6)

Proof. For each j = 1, . . . , n, multiplication by the generator [dz|dζ]2
(z−zj−ζζj) of ω2(NS) (in a small

enough open neighborhood of the jth NS puncture) maps the basis{
ζ[dz|dζ]

∣∣∣∣
NSj

∣∣∣∣∣ [dz|dζ]
∣∣∣∣
NSj

}

of H0(ω|NSj ) to the basis {
ζ[dz|dζ]3

z − zj − ζζj

∣∣∣∣
NSj

∣∣∣∣∣ [dz|dζ]3

z − zj − ζζj

∣∣∣∣
NSj

}
(A.7)

of H0(ω3(NS)|NSj ), where the “restriction” |NSj means considering a local section of ω3(NS)
modulo the subsheaf (z − zj − ζζj)ω3(NS). This maps the Berezinian

n⊗
j=1

[
ζ[dz|dζ]|NSj

∣∣∣[dz|dζ]|NSj

]
(A.8)

of the basis of H0(ωNS) to the Berezinian

n⊗
j=1

[
ζ[dz|dζ]3

z − zj − ζζj

∣∣∣∣
NSj

∣∣∣∣∣ [dz|dζ]3

z − zj − ζζj

∣∣∣∣
NSj

]
(A.9)

of the basis of H0(ω3(NS)NS) and induces the canonical isomorphism (A.4) on the Berezinians
of the cohomology. It remains to show that the canonical isomorphism

B(ω3)⊗B(ω3(NS)|NS)
∼−→ B(ω3(NS)) (A.10)

induced by (A.3) matches the super Mumford form µ, the Berezinian (A.9), and the Berezinian
of the basis (A.6):

µ⊗ (A.9) 7→ [(A.6)]. (A.11)

– 21 –



J
H
E
P
0
9
(
2
0
2
4
)
0
0
8

We will work with the long exact sequence in cohomology

0 → H0(ω3(NS)) g−→ H0(ω3(NS)|NS)
δ−→ H1(ω3) → 0 (A.12)

associated with the short exact sequence (A.3) of sheaves. In terms of the sequence (A.12),
the isomorphism (A.10) rewrites as

Ber(H0(ω3(NS)|NS))
∼−→ Ber(H1(ω3))⊗ Ber(H0(ω3(NS))).

We will describe the relation between the bases of the three terms of (A.12) and the resulting
relation between their Berezinians.

The map g in (A.12) is obtained by restricting the elements of the basis (A.6) to the
divisor NS. This gives the following elements of H0(ω3(NS)|NS):

⊕
j

ζza
j∏

k ̸=j(zj−zk)
[dz|dζ]3

z−zj−ζζj

∣∣∣∣
NSj

, 0≤ a≤n−4,

⊕
j

 za
j∏

k ̸=j(zj−zk)
−

ζza
j∏

k ̸=j(zj−zk)

∑
k ̸=j

ζj−ζk

zj−zk
−aζj

zj

 [dz|dζ]3

z−zj−ζζj

∣∣∣∣
NSj

, 0≤ a≤n−3.

To determine the map δ in (A.12) explicitly, we first note that{
ζz2, ζz, ζ

∣∣∣∣ z2, z

}
· [dz|dζ]

3

z3 (A.13)

is a basis of H1(ω3) whose Berezinian is the super Mumford form µ, see (A.1). On the other
hand, by Serre duality H1(ω3) = H0(ω−2)∗, and{

1, z, z2 | − ζ,−ζz
}
· [dz|dζ]−2

is the dual basis of H0(ω−2). The map δ sends λ ∈ H0(ω3(NS)|NS) to δ(λ) ∈ H1(ω3) =
H0(ω−2)∗ such that for any α ∈ H0(ω−2), we have

δ(λ)(α) = ResNS(λα).

This map δ is given explicitly on the basis (A.7) by

ζ[dz|dζ]3

z − zj − ζζj

∣∣∣∣
NSj

7−→
(
ζ

z
+ zj

ζ

z2 + z2
j

ζ

z2

)
[dz|dζ]3,

[dz|dζ]3

z − zj − ζζj

∣∣∣∣
NSj

7−→
(1
z
+ zj

1
z2

)
[dz|dζ]3

for j = 1, . . . , n.
Thus, in matrix form with respect to the chosen bases, we can write

g =
(
A B

0 C

)
,
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with

A=



1∏
k ̸=1

(z1−zk)
(1,z1, . . . ,z

n−4
1 )

1∏
k ̸=2

(z2−zk)
(1,z2, . . . ,z

n−4
2 )

. . . . . . . . .
1∏

k ̸=n
(zn−zk)

(1,zn, . . . ,z
n−4
n )

 ,

B=



1∏
k ̸=1

(z1−zk)

(∑
k ̸=1

ζ1−ζk

z1−zk
;
∑

k ̸=1
(ζ1−ζk)z1

z1−zk
−ζ1 ; . . . ;

∑
k ̸=1

(ζ1−ζk)zn−3
1

z1−zk
−(n−3)zn−4

1 ζ1

)
1∏

k ̸=2
(z2−zk)

(∑
k ̸=2

ζ2−ζk

z2−zk
;
∑

k ̸=2
(ζ2−ζk)z2

z2−zk
−ζ2 ; . . . ;

∑
k ̸=2

(ζ2−ζk)zn−3
2

z2−zk
−(n−3)zn−4

2 ζ2

)
. . . . . . . . .

1∏
k ̸=n

(zn−zk)

(∑
k ̸=n

ζn−ζk

zn−zk
;
∑

k ̸=n
(ζn−ζk)zn

zn−zk
−ζn ; . . . ;

∑
k ̸=n

(ζn−ζk)zn−3
n

zn−zk
−(n−3)zn−4

n ζn

)


,

C =



1∏
k ̸=1

(z1−zk)
(1,z1, . . . ,z

n−3
1 )

1∏
k ̸=2

(z2−zk)
(1,z2, . . . ,z

n−3
2 )

. . . . . . . . .
1∏

k ̸=n
(zn−zk)

(1,zn, . . . ,z
n−3
n )

 ,

and

δ =


1 1 . . . 1 0 0 . . . 0
z1 z2 . . . zn 0 0 . . . 0
z2

1 z
2
2 . . . z

2
n 0 0 . . . 0

0 0 . . . 0 1 1 . . . 1
0 0 . . . 0 z1 z2 . . . zn

 .

Let us pick a splitting of the short exact sequence (A.12), that is to say, a map δ′ :
H1(ω3) → H0(ω3(NS)|NS) such that δδ′ = id. A priori there are many choices, but the
relation between the Berezinians will not depend on the choice. Since we have fixed the
coordinates {z4, . . . zn | ζ3, . . . , ζn}, we are left to work with the matrix elements associated
to the remaining ones, which renders an invertible 5× 5 matrix. We get

δ′ =



z2z3
(z2−z1)(z3−z1)

−(z2+z3)
(z2−z1)(z3−z1)

1
(z2−z1)(z3−z1) 0 0

z1z3
(z1−z2)(z3−z2)

−(z1+z3)
(z1−z2)(z3−z2)

1
(z1−z2)(z3−z2) 0 0

z2z1
(z2−z3)(z1−z3)

−(z2+z1)
(z2−z3)(z1−z3)

1
(z2−z3)(z1−z3) 0 0

0 0 0 0 0
...

...
...

...
...

0 0 0 0 0
0 0 0 z2

z2−z1
−1

z2−z1

0 0 0 z1
z1−z2

−1
z1−z2

0 0 0 0 0
...

...
...

...
...

0 0 0 0 0



.

– 23 –



J
H
E
P
0
9
(
2
0
2
4
)
0
0
8

The transition matrix M from the basis of H0(ω3(NS)|NS) formed by the image of the
basis (A.6) under g and the image of the basis (A.13) under δ′ to the basis (A.7) over all
j = 1, . . . , n is thus represented by a 2n× 2n block matrix

M =
(
Ã B̃

0 C̃

)
,

where

Ã=



1∏
k ̸=1

(z1−zk)
(1,z1, . . . ,z

n−4
1 ), (z2z3,−z2−z3,1)

(z2−z1)(z3−z1)

1∏
k ̸=2

(z2−zk)
(1,z2, . . . ,z

n−4
2 ), (z1z3,−z1−z3,1)

(z1−z2)(z3−z2)

1∏
k ̸=3

(z3−zk)
(1,z3, . . . ,z

n−4
3 ), (z1z2,−z1−z2,1)

(z1−z3)(z2−z3)

1∏
k ̸=4

(z4−zk)
(1,z4, . . . ,z

n−4
4 ), (0,0,0)

...
...

1∏
k ̸=n

(zn−zk)
(1,zn, . . . ,z

n−4
n ), (0,0,0)


,

B̃=



1∏
k ̸=1

(z1−zk)

(∑
k ̸=1

ζ1−ζk

z1−zk
;
∑

k ̸=1
(ζ1−ζk)z1

z1−zk
−ζ1; . . . ;

∑
k ̸=1

(ζ1−ζk)zn−3
1

z1−zk
−(n−3)zn−4

1 ζ1;0;0
)

1∏
k ̸=2

(z2−zk)

(∑
k ̸=2

ζ2−ζk

z2−zk
;
∑

k ̸=2
(ζ2−ζk)z2

z2−zk
−ζ2; . . . ;

∑
k ̸=2

(ζ2−ζk)zn−3
2

z2−zk
−(n−3)zn−4

2 ζ2;0;0
)

. . . . . . . . .
1∏

k ̸=n
(zn−zk)

(∑
k ̸=n

ζn−ζk

zn−zk
;
∑

k ̸=n
(ζn−ζk)zn

zn−zk
−ζn; . . . ;

∑
k ̸=n

(ζn−ζk)zn−3
n

zn−zk
−(n−3)zn−4

n ζn;0;0
)


,

C̃ =



1∏
k ̸=1

(z1−zk)
(1,z1, . . . ,z

n−3
1 ), (z2,−1)

z2−z1

1∏
k ̸=2

(z2−zk)
(1,z2, . . . ,z

n−3
2 ), (z1,−1)

z1−z2

1∏
k ̸=3

(z3−zk)
(1,z3, . . . ,z

n−3
3 ), (0,0,0)

...
...

1∏
k ̸=n

(zn−zk)
(1,zn, . . . ,z

n−3
n ), (0,0,0)


.

Accordingly, the Berezinians of the two bases of H0(ω3(NS)|NS) are related by BerM ,
which the following lemma claims to be simply equal to 1, proving (A.11) and thereby the
proposition.

Lemma 7. BerM = 1.

Proof. We have BerM = det Ã det C̃−1. In order to compute these determinants, let us
notice that

Ã =
(
A1 A2
A3 0

)
,

where A2 is the 3× 3 matrix

A2 =

 1 1 1
z1 z2 z3
z2

1 z
2
2 z

2
3


−1

,
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and A3 is the (n− 3)× (n− 3) matrix

A3 =


1∏

k ̸=4(z4−zk)(1, z4, . . . , z
n−4
4 )

...
1∏

k ̸=n
(zn−zk)(1, zn, . . . , z

n−4
n )

 .

Therefore,

detA2 =
∏

1≤j<k≤3

1
zk−zj

,

detA3 =
n∏

l=4

(
1∏

k ̸=l(zl−zk)

)
det


1,z4, . . . ,z

n−4
4

...
1,zn, . . . ,z

n−4
n

=
n∏

l=4

(
1∏

k ̸=l(zl−zk)

) ∏
4≤r<m≤n

(zm−zr),

and2

det Ã=(−1)n−3detA2detA3 =(−1)n−3 ∏
1≤j<k≤3

1
zk−zj

n∏
l=4

(
1∏

k ̸=l(zl−zk)

) ∏
4≤r<m≤n

(zm−zr).

In the same way, we have

C̃ =
(
C1 C2
C3 0

)
,

where C2 is the 2× 2 matrix

C2 =
(
1 1
z1 z2

)−1

,

and C3 is the (n− 2)× (n− 2) matrix

C3 =


1∏

k ̸=3(z3−zk)(1, z3, . . . , z
n−3
3 )

...
1∏

k ̸=n
(zn−zk)(1, zn, . . . , z

n−3
n )

 .

Therefore,

detC2 =
1

z2−z1
,

detC3 =
n∏

l=3

(
1∏

k ̸=l(zl−zk)

)
det


1,z3, . . . ,z

n−3
3

...
1,zn, . . . ,z

n−3
n

=
n∏

l=3

(
1∏

k ̸=l(zl−zk)

) ∏
3≤r<m≤n

(zm−zr),

2In bringing each of the far right columns to the left, in order to get a block-diagonal matrix, the determinant
changes sign 3(n − 3) times.
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and

det C̃ = detC2 detC3 = 1
z2 − z1

n∏
l=3

(
1∏

k ̸=l(zl − zk)

) ∏
3≤r<m≤n

(zm − zr).

By taking the quotient we get

BerM = det Ã
det C̃

= (−1)n−3

(z3 − z2)(z3 − z1)(z2 − z1)

n∏
l=4

(
1∏

k ̸=l(zl − zk)

) ∏
4≤r<m≤n

(zm − zr)

× (z2 − z1)
n∏

l=3

∏
k ̸=l

(zl − zk)

 ∏
3≤r<m≤n

1
zm − zr

= (−1)n−3

(z3 − z2)(z3 − z1)

∏
k ̸=3

(z3 − zk)

 ∏
3<m≤n

1
zm − z3

.

The first factor times the last n− 3 give
∏

k ̸=3
1

z3−zk
, so we get BerM = 1.

B Proof of lemma 5: the Berezinian of the super Kodaira-Spencer map

We first notice that, for N = D − CA−1B, in terms of rows, we can write

N =



− 2∏
j ̸=3(z3−zj)

((
1 + 1

2
∑

k ̸=3
ζ3ζk

z3−zk

)
(1, z3, . . . , z

n−3
3 ) + ζ3

2 (1, z3, . . . , z
n−4
3 )A−1B

)
− 2∏

j ̸=4(z4−zj)

(
1, z4, . . . , z

n−3
4

)
. . .

− 2∏
j ̸=n

(zn−zj)
(
1, zn, . . . , z

n−3
n

)


so that writing the first row as a sum, we can write detN = detN ′ + detN ′′, where

N ′ =



− 2∏
j ̸=3(z3−zj)

((
1 + 1

2
∑2

k=1
ζ3ζk

z3−zk

)
(1, z3, . . . , z

n−3
3 )

)
− 2∏

j ̸=4(z4−zj)

(
1, z4, . . . , z

n−3
4

)
. . .

− 2∏
j ̸=n

(zn−zj)
(
1, zn, . . . , z

n−3
n

)


and

N ′′ =



− 1∏
j ̸=3(z3−zj)

((∑n
k=4

ζ3ζk
z3−zk

)
(1, z3, . . . , z

n−3
3 ) + ζ3(1, z3, . . . , z

n−4
3 )A−1B

)
− 2∏

j ̸=4(z4−zj)

(
1, z4, . . . , z

n−3
4

)
. . .

− 2∏
j ̸=n

(zn−zj)
(
1, zn, . . . , z

n−3
n

)


.

It is immediate to see that detA/ detN ′ gives the expression (5). So we just need to prove
that detN ′′ = 0. This is equivalent to say that det Ñ = 0, where

Ñ =


(∑n

k=4
ζ3ζk

z3−zk

)
(1, z3, . . . , z

n−3
3 ) + ζ3(1, z3, . . . , z

n−4
3 )A−1B

(1, z4, . . . , z
n−3
4 )

. . .

(1, zn, . . . , z
n−3
n )

 .
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Now, we observe that the first line has the form
∑n

k=4 χkζ3ζk, where χk is a row. So, it
is sufficient to prove that det Ñk = 0 for each k, where Ñk is obtained by replacing χk

in place of the first row of Ñ . By the structure of the element of the matrix Ñ , we see
that its determinant is cyclically symmetric in the zk, k > 3, so it is sufficient to prove the
vanishing result just for one given k, say k = 4. We also notice that in A−1B the common
denominators in A and B cancel out. It is also convenient to notice that of the rows of B
only the last terms in the parenthesis of Bjb contribute to the determinant, since the first
terms give rows that are combinations of the remaining rows. Therefore, we can replace
the matrix A−1B with Ã−1B̃4, where

Ã =


1 z4 z

2
4 . . . z

n−4
4

1 z5 z
2
5 . . . z

n−4
5

...
...

... . . . ...
1 zn z2

n . . . zn−4
n


is a Vandermonde matrix (up to the change of sign in the second column), and

B̃4 =


0 −ζ4 −2ζ4z4 . . . −(n− 3)ζ4z

n−4
4

0 0 0 . . . 0
...

...
... . . . ...

0 0 0 . . . 0

 .

Thus, we see that

det Ñ4 = det Ñ ′
4 + det Ñ ′′

4 ,

where

Ñ ′
4 =


ζ3ζ4

z3−z4
(1, z3, . . . , z

n−3
3 )

1, z4, . . . , z
n−3
4

. . .

1, zn, . . . , z
n−3
n


and

Ñ ′′
4 =


ζ3(1, z3, . . . , z

n−4
3 )Ã−1B̃4

1, z4, . . . , z
n−3
4

. . .

1, zn, . . . , z
n−3
n

 .

We now prove that det Ñ ′′
4 = − det Ñ ′

4. Factoring out ζ3ζ4
z3−z4

from the first row of Ñ ′
4 gives

a Vandermonde matrix, so that the determinant is equal to

det Ñ ′
4 = ζ3ζ4

z3 − z4

∏
3≤j<k≤n

(zk − zj) = −ζ3ζ4

n∏
l=5

(zl − z3)
∏

4≤j<k≤n

(zk − zj). (B.1)

We can now compute det Ñ ′′
4 . To this end, we notice that the entry number k of the first

row of Ñ ′′
4 is

∑n−3
a=1 z

a−1
3 Ã−1

a1 (B̃4)1k. This can be computed as follows. Since Ã−1
a1 det Ã is the
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co-factor of the matrix Ã in position a1, we see that
∑n−3

a=1 z
a−1
3 Ã−1

a1 det Ã is the determinant
of the matrix Ā obtained by replacing z4 with z3 in the first row of Ã. Since both Ã and
Ã′ are Vandermonde matrices, we get

n−3∑
a=1

za−1
3 Ã−1

a1 = det Ã′

det Ã
=

n∏
j=5

zj − z3
zj − z4

,

and so

det Ñ ′′
4 = −ζ3ζ4

∏n
l=5(zl − z3)∏n
j=5(zj − z4)

det


(0, 1, 2z4, . . . , (n− 3)zn−4

4 )
(1, z4, . . . , z

n−3
4 )

. . .

(1, zn, . . . , z
n−3
n )

 . (B.2)

Now, all co-factors of the first line of the last matrix are of Vandermonde type and, in
particular, are thus divisible by

∏n
j=5(zj − z4). It follows that det Ñ ′′

4 is a polynomial in
the zj of the same degree as det Ñ ′

4, which vanishes when zj = z3 (for some j ≥ 5) or when
zj = zk (for some 5 ≤ j < k ≤ n). Since the determinant det Ñ ′

4 is simply the product of
these linear factors, and det Ñ ′′

4 is a polynomial of the same degree divisible by the same
degree, it follows that det Ñ ′′

4 / det Ñ ′
4 is just a constant, which we can compute by evaluating

for any specific values of zj . For z4 = 0 we get

detÑ ′′
4 =−ζ3ζ4

∏n
l=5(zl−z3)∏n

j=5 zj
det


(0,1,0, . . . ,0)
(1,0, . . . ,0)

(1,z5, . . . ,z
n−3
5 )

. . .

(1,zn, . . . ,z
n−3
n )

= ζ3ζ4

∏n
l=5(zl−z3)∏n

j=5 zj
det

(z
2
n, . . . ,z

n−3
5 )

. . .

(z2
n, . . . ,z

n−3
n )



= ζ3ζ4

n∏
l=5

(zl−z3)
n∏

j=5
zj

∏
5≤j<k≤n

(zk−zj),

(B.3)

which coincides with the evaluation of − det Ñ ′
4, computed in (B.1), for z4 = 0.

C The z1 = ∞ case

Here we consider the z1 = ∞ case, or, equivalently, of (w | η) = (0 | η1) in the coordinates
(w | η) =

(
1
z , |

ζ
z

)
in the chart on P1|1 centered at z = ∞. We will deduce the resulting

expression (1.8) in that case of Theorem 1 by letting z1 → ∞ in formula (1.7), which gives the
expression of the measure for a finite value of z1. More precisely, we will let (w1 | η1) → (0 | η1)
(or simply w1 → 0) for (w1 | η1) =

(
1
z1

| ζ1
z1

)
.

There is one subtlety, though. We want the vertex-operator insertion

V1(z1|ζ1)
[
ζ[dz|dζ]

∣∣
NS1

∣∣∣ [dz|dζ] ∣∣NS1

]
=V1

(
1

w1

∣∣∣ ζ1
w1

)
1

w1

[
η[dw|dη]

∣∣
NS1

∣∣∣ [dw|dη] ∣∣NS1

]
(C.1)
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at NS1 = {w − w1 + ηη1 = 0} in (1.6) to converge to a finite vertex operator

Ṽ1(0|η1)
[
η[dw|dη]|NS1

∣∣∣[dw|dη]|NS1

]
as w1 → 0, i.e., we want

lim
w1→0

V1
(

1
w1

∣∣∣ ζ1
w1

)
1

w1
= Ṽ1(0|η1) .

Here we again drop the vacuum expectation value brackets ⟨ ⟩ from the notation.
On the other hand,

dν = − 1
2n−2w1

(
z3w1 − 1− 1

2ζ3η1
) (
z3 − z2 − 1

2ζ3ζ2
)
[dz4 . . . dzn | dζ3 . . . dζn]

and hence

V1(z1|ζ1)dν = −
V1
( 1

w1
| ζ1

w1

)
2n−2w1

(
z3w1 − 1− 1

2ζ3η1
) (
z3 − z2 − 1

2ζ3ζ2
)
[dz4 . . . dzn | dζ3 . . . dζn]

→ Ṽ1(0|η1) 1
2n−2

(
1 + 1

2ζ3η1
) (
z3 − z2 − 1

2ζ3ζ2
)
[dz4 . . . dzn | dζ3 . . . dζn]

as w1 → 0. In Theorem 1, we use V1 in lieu of Ṽ1 as well as slightly abuse notation and
denote the above limit by V1(0|η1)dν.

Open Access. This article is distributed under the terms of the Creative Commons Attri-
bution License (CC-BY4.0), which permits any use, distribution and reproduction in any
medium, provided the original author(s) and source are credited.
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