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Edge-Based Live Learning for Robot Survival
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and Mahadev Satyanarayanan , Life Fellow, IEEE

Abstract—We introduce survival-critical machine learn-
ing (SCML), in which a robot encounters dynamically evolv-
ing threats that it recognizes via machine learning (ML), and
then neutralizes. We model survivability in SCML, and show
the value of the recently developed approach of Live Learn-
ing. This edge-based ML technique embodies an iterative
human-in-the-loop workflow that concurrently enlarges the
training set, trains the next model in a sequence of “best-
so-far” models, and performs inferencing for both threat
detection and pseudo-labeling. We present experimental
results using datasets from the domains of drone surveil-
lance, planetary exploration, and underwater sensing to
quantify the effectiveness of Live Learning as a mechanism
for SCML.

Index Terms—Edge computing, machine learning,
robotics.

I. INTRODUCTION

A S CONFIDENCE grows in Machine Learning (ML), it is
starting to be used in roles that are critical to the survival

of the system on which it is hosted [1]. This is analogous to an
immune system, upon which rests the survival of a biological
organism. Continuous learning to defend against dynamically
evolving threats is the essence of an immune system. Although
it will probably take time for ML-based threat response systems
to attain the sophistication of biological immune systems that
have evolved over a billion years, they both rely on continuous
learning. We refer to ML in such systems as survival-critical
machine learning (SCML).
SCML forces rethinking of current ML practices. Today,

learning is rigidly separated into distinct phases: (a) data col-
lection (including labeling and training set construction); (b)
training; and (c) inferencing. We show that SCML forces us
to blur the rigid boundaries between these phases. As threats
evolve and morph continuously, there is no “pause” button to
allow learning to catch up. All phases of learning have to be
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Figure 1. Conceptual view of live learning (source: [4]).

pipelined and executed concurrently. Falling behind in learning
can be fatal. In classic ML settings, only the best model trained
on a fully assembled training set is of interest. In SCML, “best
so far” models are useful. For example, if a new type of threat
appears, survivability is lowered until it can be reliably detected.
While a large training set for the new threat is being collected
(which may take many hours or days), it may help to deploy a
weak model that is based only on the limited learning possible
so far. In offensive settings, learning may be required because
programmable camouflage [2], [3] has morphed the visual ap-
pearance of a target.
In this paper, we show how a new edge-based technique called

Live Learning can be leveraged for SCML. This pipelined and
iterative workflow for ML was introduced in 2023 by George
et al. [4]. It was originally conceived as a mechanism for selec-
tive transmission of high-bandwidth real-time sensor data for
human-in-the-loop labeling over extreme low-bandwidth wire-
less networks. Figure 1 illustrates the original problem setting
of Live Learning. A team of autonomous unmanned probes
called scouts are on a mission to collect new ML training data.
Examples of scouts include aerial drones, satellites, interplane-
tary spacecraft, and underwater drones. From the viewpoint of
ML, the critical requirement of a scout is that it has sufficient
computing resources and storage to perform training as well as
inferencing. Today, this can be provided by embedded hardware
such as the NVIDIA Jetson AGX Orin [5]. In contrast to Fed-
erated Learning [6], edge data in Live Learning is unlabeled.
Labels can be obtained only from a distant human during a
mission. Intelligent and self-improving transmission of a small
subset of incoming sensor data for labeling was the original
motivation for Live Learning.
In spite of its different heritage, and independent of bandwidth

considerations, we show in this paper that Live Learning is di-
rectly applicable to SCML. This papermakes four contributions:� It identifies the unique ML challenges of survival-critical

settings and highlights the shortcomings of current ML
cost metrics in these settings.
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Figure 2. End-to-end pipeline of Hawk (source: [4]).

� It develops an analytical model for reasoning about sur-
vivability in SCML.� It shows how Live Learning can be adapted for SCML.� It presents experimental results frommultiple state-of-the-
art datasets to quantify the effectiveness of Live Learning
as a mechanism for SCML.

II. BACKGROUND AND RELATED WORK

A. Live Learning and Hawk

As originally conceived, Live Learning addresses the problem
of severe bandwidth mismatch between incoming sensor data
rate at scouts and wireless backhaul bandwidth. This mismatch
is overcomevia a self-improvingML-based transmission system
embodied in an open source implementation called Hawk [7].
Our repurposing of Live Learning for SCML requires changes to
Hawk. Specifically, low bandwidth is no longer a motivation —
Live Learning is valuable at any backhaul network bandwidth.
We describe the original implementation of Hawk below, and
describe our modifications later in the paper (Section A).
Starting from a weak model that is trained via few-shot

learning (FSL) on just a few initial examples, Hawk seamlessly
pipelines semi-supervised learning, active learning, and transfer
learning, with asynchronous bandwidth-sensitive data transmis-
sion to a distant human for labeling. When a significant number
of true positives (TPs) have been labeled, Hawk trains an im-
proved model to replace the old model. This iterative workflow
is Live Learning, which continues until a sufficient number of
TPs have been collected. The workflow is independent of the
specific deep neural network (DNN) architecture that is used for
learning.
Figure 2 illustrates the Hawk processing pipeline. Fresh data

arrives continuously at a high rate into a scout. Only a tiny
fraction of this incoming data can be transmitted for labeling.
Incoming data is both written to local storage, and processed.
The processing consists of three steps. The video stream is first
decoded into individual frames. Each frame is broken up into
small tiles, and the tile stream is inferenced using the current
model.After inferencing, a small subset of the tiles is selected for
transmission and labeling. A tunable data sourcing policy guides
processing new incoming data versus re-processing previously
discarded data. Transmitted items are queued in the cloud for
labeling by a human expert. This data is also available for
training in the cloud. Labels are transmitted back to the scout
as they are generated. Hawk can choose between training in the
cloud or on the scout. If training in the cloud is chosen, the new
model is transmitted to the scout after training. With multiple

scouts, precious TPs are shared across the team so that models
improve at their cumulative TP discovery rate. For training
on scouts, negatives are obtained locally. For cloud training,
negatives are obtained from archives.

B. Pre-ML Work on Survivability

For centuries beforeML emerged, the concept of survivability
was developed in diverse contexts. The first known use of this
concept was in the creation of a mortality or life table in the late
17th century [8]. Modern actuarial analysis for life insurance is
a direct descendant of that early work [9], [10], [11], [12]. In the
20th century, medical epidemiology has proved to be a major
driver of survivability analysis. Examples of work relating to
survivability in this domain include [13], [14], [15], [16], [17],
[18], [19], [20].
For technologically complex systems that must endure harsh

and unforgiving environments, survivability analysis has been
an integral part of the design process. Examples of such systems
include spacecraft [21], [22], [23] and military systems [24],
[25], [26]. More recently, survivability analysis has been used
in digital and pervasive system design and maintenance [27],
[28], [29]. Most recently [30], [31], novel ML methods have
been used to improve survivability analysis in existing domains.
In contrast, this work aims to use ML as a functional part of
an operational system. Live Learning is thus integral to such a
system, not a tool for analyzing its survivability.

III. AN ANALYTICAL MODEL FOR SCML

Since SCML is a new concept, we need to gain an under-
standing of its tradeoff space. Towards this goal, we develop an
analyticalmodel of SCML.Our intent is to capture the highlights
at an intuitive level, rather than to rigorously model minutiae.
In a later section (Section IV), we ground this model in the
context of an implementation and obtain experimental results
that reflect the constraints of a real system. For simplicity, we
focus on theML problem of classification. In practice, an SCML
system also needs to localize the objects that it is classifying —
i.e. the underlying problem is object detection in live data, not
just classification. Since that further level of complexity adds no
new insights to our discussion, we focus on classification. For
every incoming data item, a scout asks: “Is there a threat at this
moment?”

A. Precision & Recall Alone are Incomplete

Historically, time has played no role in characterizing the
accuracy of a classifier. The well-known metrics of precision
and recall are all that matter. The time needed to create and use
amodel (i.e., data collection, labeling, training, and inferencing)
is not relevant. These are viewed as secondary metrics, typically
outside scope in discussions of accuracy. In SCML, time can no
longer be relegated to a secondary role. A single classification
error can lead to an undetected threat destroying the scout.
There will be no further opportunity for that model to redeem
itself through future successes. This is different from classicML
systems in which a classification error is not fatal — often, it
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Figure 3. AUC improvement over time in SCML.

merely lowers profit. In SCML, an early mistake means that the
system dies young. Early survival, on the other hand, leads to
later mistakes being less likely because of model improvement.
Thus, time has to be viewed on an equal footing with precision
and recall in SCML.
The role of time is captured by Figure 3, which contrasts

Batch Learning (classic ML) and Live Learning. The Y axis
is the area under the precision-recall curve (AUC). In Batch
Learning (Figure 3(a)), training is deferred until ample data has
been collected and labeled. Missions are not even attempted
until an accuratemodel exists. Unfortunately, SCMLhas to cope
with a world in which threats are not static, but evolve. Critical
missions may have to be attempted even without a high-quality
model for a new threat class. For that class, a weak model that
is based on a small training set may be all that is available at
the start of a mission. During the mission, Live Learning can
be used on incoming data to improve the model. More threats
will be encountered on longer missions. Hence, there is greater
danger that a threat will get through undetected and destroy the
scout. However, if the scout survives the early part of a long
mission, Live Learning has significant opportunity to improve
the model. There is thus a delicate balance between survival and
learning that involves time at its heart, as shown by Figure 3(b).
The key advantage of Batch Learning is that all data is

available up front for analysis to create an optimal training set.

This can yield the best model achievable from that training data
for a given model architecture. Unfortunately, this optimality is
of little value in an SCML setting— if the mission is attempted,
the scout is unlikely to survive long enough to benefit.
Like the proverbial tortoise relative to a hare, Live Learning

settles for much smaller incremental gains. However, these
gains are available during the current mission. The gains are
suboptimal relative to Batch Learning because they have to be
made in an online setting. As Figure 3(b) illustrates, the result
is a sub-optimal final AUC (L4 < B1). However, survivability
is improved (Section III-E).

B. The Mission Abstraction

Without loss of generality, we define a mission to be the
successful delivery of some valuable payload by a scout from a
source to a destination. The mission involves the risk of destruc-
tion of the scout by threats during its journey. For example, the
payload may be life-saving medical supplies, food, or essential
spare parts; the threats may be bullets, missiles, etc. The scout is
protected by an SCML system that continuously tries to detect
incoming threats. Once a threat is detected, it can be neutralized
with certainty by some countermeasure (CM). Exactly how this
happens is not relevant to SCML, and is therefore outside the
scope of this paper. In practice, of course, the neutralization
may not be always successful, and there may only be a limited
number of CMs available on the scout. We also assume that a
single scout is assigned to the mission. In practice, a convoy or
swarmof scoutsmaybe assigned.We ignore these complications
initially, in order to simplify the analytical model, and thereby
gain an intuitive understanding of SCML tradeoffs. We include
these aspects in the experimental evaluation (Sections IV-D and
VI).

C. Characterizing Survivability

Survival is inherently probabilistic in nature. On an unlucky
day, even a superb model may fail to detect just one threat out of
many that it correctly detects. That unfortunate single mistake
may result in scout destruction. Conversely, the scout may have
a lucky day. A weak model may wrongly classify every threat,
yet none of these undetected threats destroy the scout, and it
survives unscathed. Both extremes are unlikely, yet either can
happen on a real mission. A Bayesian prior is the density of
threats during a mission. Regardless of model accuracy, higher
threat density is inherently riskier. It may vary during a mission,
being correlated with space (e.g., physical location) and time
(e.g., greater chance of being discovered on a longer mission).
For simplicity, our modeling assumes a constant threat density
during a mission.
In epidemiology, the metric of Life Expectancy characterizes

survivability. This is the mean of the probability distribution of
the time interval from birth to death of a large population of
organisms. We adopt this metric for SCML. Mission start cor-
responds to birth. Mission end may occur because of successful
completion, or because of scout destruction. Too small a life
expectancy leads to many mission failures.
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Figure 4. Parameters relevant to survivability.

D. Key Parameters and Relationships

Figure 4 summarizes the key parameters of survivabilityα, β,
and γ, which are explained below.We assume that the stochastic
process generating threats is memoryless. The threat arrival rate
is then exponentially distributed. In other words, the probability
distribution of the interarrival time, t, of threats is given by

p(t) = αe−αt (1)

where 1/α is the mean of the distribution. More complex in-
terarrival time distributions can be considered, but this simple
model is adequate for gaining intuition about SCML.
FromanMLandLiveLearningviewpoint, a key consideration

is class imbalance. In otherwords, how rare are threats relative to
all other data classes that are seen during a mission? Extremely
rare threats are good news from the viewpoint of survivability.
However, they also imply slow learning because few TPs can
be collected for a training set. Frequent exposure to threats (and
survival by good luck) leads to much faster learning and model
improvement. This subtle relationship between risk and learning
is expressed by:

α =
total data samples
mission duration

× threat class base rate (2)

Small values of threat class base rate correspond to extreme class
imbalance. For a givenmission duration, this leads to lowα even
with large number of data samples.
Since an SCML system performs classification (Section III),

its ability to detect and neutralize a potential threat is given by
the classic ML measure of recall, symbolized as β

β =
TP

TP + FN
(3)

where FN correponds to false negatives (i.e., positives that are
wrongly classified as negatives). Every FN is an undetected
threat that may destroy the scout. Values of β close to 1.0
imply an SCML system that is effective in detecting threats. If
threat neutralization is imperfect, an additional term to account
for this will be needed in the analysis. As discussed earlier
(Section III-B), the classic ML metric of precision is important
from the viewpoint of conserving CMs. Each false positive (FP)
results in a CM being wasted. Achieving high recall at poor
precision is suboptimal because it may result in a finite supply
of CMs being exhausted long before mission completion. The
scout is then vulnerable to all further threats encountered.
In practice, not every undetected threat is fatal. In the context

of an immune system, for example, a pathogen that is undetected
may still not successfully infect an organism or kill it. We use
the term lethality, symbolized as γ, for the probability that
an undetected threat leads to scout destruction. For “dumb”
threats such as bullets, γ may only be a few percent. With

Figure 5. Impact of threat arrivals & lethality (no SCML).

Figure 6. Using a fixed pre-trained model in SCML.

precision guidedmunitions, it may bemuch higher and approach
100%.
Based on the parameters in Figure 4, the cumulative distribu-

tion function (CDF) S(t) that an SCML system will survive at
least until time t into the mission is given by:

S(t) = e−α(1−β)γt (4)

Figure 5(a) graphically illustrates this equation for different
threat arrival rates (i.e., values of α), when β = 0 and γ = 1.0.
In other words, SCML is nonexistent or inoperable, and hence
there are no CMs. Further, every threat is lethal. As α decreases,
the curve moves further to the right. Longer missions become
less suicidal. The X-coordinate of the mean value of each
curve represents life expectancy; it increases as α is lowered.
Figure 5(b) shows the impact of different lethalities, when
α = 1.0 and β = 0. In other words, the threat arrival rate is
fixed and SCML is nonexistent or inoperable. As γ decreases
(i.e., threats become less lethal), the curve moves further to the
right and life expectancy increases. As Figure 5(a) and (b) show,
α and γ can be viewed as scaling parameters that extend life
expectancy as their values are lowered. However, they do not
change the shape of the curves.
Figure 6(a) and (b) show that this observation is also true

when SCML is used with a pre-trained model of fixed β (i.e.,
no learning is done during a mission). Although life expectancy
improves as β improves, the shape of the curves is unchanged.
This is the state of the art in today’s SCML systems: ML
models are pre-trained in the cloud, and then deployed in scouts.
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Figure 7. New models with similar asymptotic fates.

Improving β during a mission changes the shape of the curves,
as discussed below.

E. Model Improvement During a Mission

Suppose β0, β1, β2, ..., βN correspond to improving models
that are installed at times t0, t1, t2,..., tN during a single mission.
Exactly how these new models are obtained by a scout can be
ignored for this high-level discussion. For example, they may
be transmitted wirelessly from the cloud, based on new models
created via learning from other concurrent missions. Another
possibility is for Live Learning on the current mission to train
the models on the scouts. Regardless of how improved models
are obtained, the CDF for survivability, S(t), is now composed
of piecewise segments corresponding to different values of βi.
During the earliest part of the mission, β0 applies; for the next
segment, β1 applies; and so on. Using (4), the decay during each
segment relative to its start can be expressed as:

S0(t) = e−α(1−β0)γ(t−t0) for the piece between t0 and t1 (5)

S1(t) = e−α(1−β1)γ(t−t1) for the piece between t1 and t2 (6)

. . .

Si(t) = e−α(1−βi)γ(t−ti) for the piece between ti and ti+1

(7)

Using the notation λi = α(1− βi)γ, a generalized expression
for S(t) in the interval ti ≤ t ≤ ti+1 is then given by:

S(t) = e
−
�

i−1�
j=0

λj(tj+1−tj)

�
−λi(t−ti)

for ti ≤ t ≤ ti+1 (8)

We illustrate the subtleties of this survivability equation using
two slightly different examples in Figures 7 and 8.
Figure 7 shows S(t) for two hypothetical missions, indicated

by the green and blue curves. Both missions improve β from a
miserable value of 0.05 at the start of themission to a respectable
value of 0.7 for the last part of the mission. However, the
number of steps in which this improvement occurs and their
timing are different for the two missions. Both of these curves
in Figure 7 diverge significantly from the red curve as the
mission progresses. This confirms that learning during amission
improves survivability. Thefigure shows divergence between the

Figure 8. New models with divergent asymptotic fates.

blue and green during the period from t = 2 to t = 9. However,
the twomissions have the same final values of β = 0.7, and they
decay at the same rate asymptotically beyond t = 9. In other
words, regardless of the early part of their journeys, all missions
arriving at a certain β will have comparable future fates beyond
that point.
In the example illustrated by Figure 8, the green and blue

missions reach values of β = 0.4 and β = 0.7 at the same
moments in time. But their histories of model improvement are
different elsewhere. Most importantly, the blue mission con-
tinues to receive model improvements of β = 0.8 and β = 0.9
beyond the last model of β = 0.7 shared with green. Hence,
the later parts of the blue and green curves are divergent —
suvivability is asymptotically higher for the blue mission.

F. Estimating Life Expectancy

Figures 7 and 8 qualitatively show that model improvement
during a mission extends life expectancy. Quantifying this im-
provement requires computing the mean of a piecewise expo-
nential distribution. Fortunately, a closed-form expression for
this can be derived. The mean can be expressed as:

E[T ] =

R�

j=0

� tj+1

tj

Ajte
−λj(t−tj) (9)

In this equation,R is the number of newmodels installed during
the mission. λj is the average arrival rate of lethal, unneutral-
ized or undetected threats for interval j. The first such threat
terminates the life of the mission. Improving models means that
λj decreases over time. tj → tj+1 represents the time interval
over which model j performs inferencing.Aj is a scaling factor
which ensures that the area under the entire probability density
function is 1.0. Omitting the derivation for space reasons, this
scaling factor can be shown to be:

Aj = λj

�
1−

j−1�

i=0

Ai

λi

�
1− e−λi(ti+1−ti)

��
, ∀j (10)

Using this expression for Aj in (9), and omitting the interme-
diate steps of the derivation, we obtain the life expectancy for a
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Figure 9. Life expectancy.

piecewise exponential as:

E[T ] =
R�

j=0

�
Aj

λ2
j

��
1− (λjtj+1 + 1)e−λj(tj+1−tj) + λjtj

�

(11)
Using the above equation, Figure 9 presents the life expectancies
for the curves in Figures 7 and 8.We have validated these results
against Monte Carlo simulations of the missions depicted in
Figures 7 and 8, and obtained identical results.
These results show that model improvement during a mission

can indeed improve survivability. However, quantifying this
improvement in Live Learning implementations is not so simple
because of nonlinearities in learning algorithms. For a given
threat arrival rate, creating more models during a mission means
that each newmodel is based only on a small increase in training
set size over the previous model. This may lead to suboptimal
training. Hence, experimental results are needed to complement
the intuitive understanding of Live Learning presented so far.

IV. EXPERIMENTAL SETUP

In a real implementation, do the predicted gains in sur-
vivability from Live Learning materialize? To experimentally
answer this top-level question, we have created a modified
version of Hawk from the open source release in GitHub [7].
Our experiments leverage ML insights from the original Hawk
work [4] by closely following its experimental setup. We use
the same datasets and classes, data arrival rates, ML models,
hyperparameter settings, Live Learning triggering criterion for
training new models, etc. Our description below first presents
our modifications to Hawk for SCML (Section A), and then
presents other relevant experimental details (Sections B–D).

A. Hawk Modifications for SCML

As mentioned earlier (Section II), the original Hawk im-
plementation focused exclusively on low backhaul bandwidths
(down to 12 kbps). In the context of Figure 2, this maps to
severe throttling of result transmission for labeling from scouts.
However, SCML has value at any network bandwidth. Human
labeling bandwidth, rather than wireless network bandwidth,
may sometimes be the bottleneck. We have therefore modified
the Hawk implementation to use end-to-end queue backpressure
to throttle result transmission from scouts. This aims to prior-
itize human labeling effort so that, regardless of whether the
bottleneck is the human or the network, it is the most high-value
results that are labeled. We achieve this using an end-to-end
token-based flow control mechanism [32].

Figure 10. Examples of DOTA target classes.

Figure 11. Examples of HiRISE target classes.

Figure 12. Examples of Brackish target classes.

Each scoutmaintains a queue of results awaiting transmission.
This queue is sorted by score received on the ML model that
inferenced it. A data item that is processed later by a scout
may receive a higher score than many earlier data items. The
high score suggests that it is likely to be a TP. Since TPs are
rare, they merit early attention by the human labeler in order to
rapidly enlarge the training set and speed up learning. A long
FIFO queue at the human labeler would delay the labeling of
this high-value item. At the same time, maintaining too short a
labeling queue may lead to the human labeler being stalled wait-
ing for work during periods of low network bandwidth. Further,
human think time may vary widely across data items. Some
items may be labeled almost effortlessly, while a few require
extended think times. The token-based mechanism balances
these disparate forces. Its goal is to ensure that the data ingress
rate never exceeds the bottleneck throughput, whose location
and value can vary dramatically over time. As the bottleneck
changes, the token flow adapts to preserve high value of human
labeling effort under all conditions.

B. Datasets

Our experiments use three public datasets from drone surveil-
lance, planetary exploration, and underwater sensing. Examples
from these datasets are shown in Figures 10– 12. For all datasets
and classes, the base rate is below 0.1%. While these datasets
represent benign environments, any class in them could be
designated as the threat class of specified lethality from an ML
viewpoint. CMs are left abstract (Section B), and are not related
in any way to the datasets. Real world CMs may span a wide
range: projectiles, chaff, energy for evasive maneuvers, etc.



40 IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. 13, NO. 1, JANUARY-MARCH 2025

Drone Surveillance (DOTA) [Figure 10]: The drone-captured
15-class DOTA v1.0 dataset [33] consists of 2806 images, half
of which are used as mission data. Image resolution ranges
from 800× 800 pixels to 4000× 4000 pixels. Images are tiled
into 256× 256 pixels, yielding 252,231 usable tiles. During a
mission, a scout receives an average of 180 tiles in 20 seconds.
Planetary Exploration (HiRISE) [Figure 11]: The HiRISE

dataset [34] consists of images collected by the Mars Recon-
naissance Orbiter. There are 73,031 labeled images, tiled into
227× 227 pixels. There are 8 target classes. During a mission,
a scout receives an average of 100 tiles in 20 seconds.
Underwater Sensing (Brackish) [Figure 12]: The Brackish

dataset [35] contains labeled images of marine animals in a
brackish strait with varying visibility. There are 14,518 images
of 1080p resolution tiled into 256× 256 pixels, for a total of
563,829 tiles. There are 6 target classes. During a mission, a
scout receives an average of 100 tiles in 3 seconds.

C. Hardware

Each scout consists of a 6-core 3.6 GHz Intel Xeon E5–
1650v4 processor, 32 GB memory, 4 TB disk storage for im-
age data, and an NVIDIA GTX 1060 GPU. Today, a typical
scout would be configured with embedded hardware such as an
NVIDIA JetsonAGXOrin [5],weighing 1.58 kg. Such hardware
could easily be carried by an autonomous drone, unmanned
spacecraft, or underwater immersible. Rather than the austere
network settings of the original Hawk work, we assume that
ample network bandwidth (1 Gbps) is available. The bottleneck
is now human labeling rate (Figure 2), emulated by code that
returns the ground-truth label after a configurable think time (1 s
in our experiments).

D. Mission Configuration

Although our simple analyticalmodel (Section III) focused on
missionswith a single scout, our experimental evaluationmirrors
the original Hawk work by using 7 scouts that share TPs. The
learning rate of the whole ensemble is thus determined by their
collective rate of threat encounters. The scouts have identical
hardware, as described above (Section IV-C), and connectivity
between them is 1 Gbps. In the context of survivability, it is
necessary to specify what constitutes mission success when
some scouts die but others survive. We require all scouts to
reach their destination for the mission to be successful, but other
criteria are possible as discussed later (Section VIII).

V. RESULTS: LIVE LEARNING TIMELINE

What is the timeline of Live Learning on a scout? This ques-
tion forms the backdrop for all other experimental results pre-
sented in this paper. As shown by our analytical model (Section
III-E), the timing and magnitude of model improvement greatly
influences survivability. When the improvement is achieved
through Live Learning, its timeline depends on the dataset, at-
tributes of the threat class (especially its base rate), andnumerous
ML hyperparameters.

Figure 13. Mission timeline for live learning.

For the class “Roundabout” from the dataset DOTA, the
second and third columns of Figure 13(a) show this timeline.
The initial model, based on a bootstrap training set containing
just 20 TPs, is weak. Its AUC (area under the precision-recall
curve on a held-out test set) is merely 0.20. However, in the
face of our extreme class imbalance, even 0.20 is much better
than random classification. The first new model is installed 146
seconds into the mission, and has a slightly improved AUC of
0.29. At 388 seconds, a better model with AUC 0.45 is installed;
at 547 seconds, a model with AUC 0.47 is installed; and so on.
The AUC improvement is mostly monotonic, with occasional
plateaus or reversals due to the randomness inherent in the
learning process. The final model with AUC 0.62, has clearly
improved far beyond the initial model. The last two columns
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Figure 14. Visualization of live learning timeline (compare with Fig-
ure 3(b)).

of Figure 13(a) confirm that this theme of model improvement
during a mission holds for a different class of the DOTA dataset.
Figure 13(b) and (c) confirm that it also holds for classes of the
HiRISE and Brackish datasets.

The data in Figure 13 is visualized in Figure 14 using the
canonical Live Learning timeline shown earlier in Figure 3(b).
For all datasets and classes, significant improvement in model
accuracy is seen over the life of the mission. The magnitude of
the improvement is dataset and class dependent.
Figure 15 shows the transmission and labeling efficiency of

Live Learning for the experiments shown in Figure 13. For class
Roundabout of datasetDOTA, the total number of tiles processed
by the scouts is 252,225. Of these, only 4117 were transmitted
for labeling by the human in the loop. In spite of the extreme class
imbalance (less than 0.1% base rate), 272 TPs were found out
of 336 ground truth TPs. This general theme holds for all of the
datasets and classes shown in Figure 15. These results confirm
that Live Learning is frugal in its use of network bandwidth and
human effort, but highly effective in discovering TPs.

VI. RESULTS: IMPORTANCE OF MODEL PRECISION

Our analytical modeling (Sections III-D and III-F) focused
exclusively on the recall metric (β) of themodel used for SCML.
High recall ensures that almost all threats are detected. With an
infinite supply of CMs, detection ensures neutralization. Our

Figure 15. Transmission & labeling efficency of live learning.

analysis ignored the complementary metric of model precision,
which determines howmanyCMs arewasted. In practice, no real
mission can carry an infinite supply of CMs. Wasted CMs hurt
survivability. If the supply of CMs on a mission is exhausted,
no further neutralization of threats is possible. Even perfect ML
(i.e., detection of every threat beyond that point) cannot save the
mission. Any threat (detected or undetected) may then be fatal,
and survival is determined solely by the arrival rate of threats (α)
and their lethality (γ).
The balance between recall and precision is determined by

a tunable threshold, ranging between 0.0 and 1.0. Data items
that are scored above the threshold are deemed to be positives;
the rest are deemed to be negatives. Some of the positives may
be FPs, and some of the negatives may be FNs. With an ample
supply of CMs, there is no incentive to be frugal — FPs don’t
matter at all, only FNs do. As the supply of CMs falls, FPs
become problematic.
For class Roundabout of the dataset DOTA and a low threat

lethality of γ = 0.01 , Figure 16 shows survivability for four
different initial supplies of CMs. With an infinite supply of
CMs (Figure 16(a)), lowering threshold is always a win. A
threshold of 0.1 results in a likelihood of survival to mission
completion that is over 90%. Higher thresholds lead to lower
likelihod ofmission success. At a threshold of 0.7, the likelihood
of success is only about 50%. Figure 16(b) shows that a threshold
of 0.1 results in too many FPs when the initial supply is only
100,000 CMs. All CMs are used up by roughly 30 minutes into
the mission, and survivability sharply drops after that. For this
case, a threshold of 0.25 leads to the highest chances of mission
success (roughly 80%). This general trend continues when CMs
are limited to 20,000 (Figure 16(c)) and 10,000 (Figure 16(d)).
In the latter case, the high threshold of 0.7 offers the best chances
of survival to mission success.
From the viewpoint of conserving CMs, the importance of

model improvement during a mission becomes clear by exam-
ining the total CMs used on successful missions. Figure 17
compares the numbers of CMs consumed by a mission using
Live Learning to that consumed when no improvement is made
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Figure 16. Survivability with limited CMs at 1% lethality.

Figure 17. Total CM usage.

to the initial model. Note that only data from successfulmissions
is included here. The thresholds used in Figure 17 are the same
as in Figure 16. At low threshold, the difference between the
CMs used in the two cases is only modest — both are equally
profligate in their use of CMs. As threshold rises, the improved
model quality of Live Learning begins to have substantial effect.
Far fewer CMs are used at higher thresholds with Live Learning.
The lethality of threats is low (γ = 0.01) for the results shown

in Figures 16 and 17. In other words, the impact of FNs is mild
— there is only a 1% chance that an undetected threat will kill.
What happens when threats are more lethal?
Figures 18 and 19 show the impact of increasing lethality

to 5% and 10% respectively. Relative to Figure 16, the drop
in survivability is apparent in all cases. Even with an infinite
number ofCMsand a threshold of 0.1, Figure 18 shows amission
success below 80%. Figure 19 shows a mission success barely
above 50%. These are in contrast to a value well above 90%
in Figure 16. At higher lethality, running out of CMs is also
riskier. With a limit of 20,000 CMs or lower, Figure 19(c) and
(d) show that there is virtually no hope of mission success at any
threshold. With 100,000 CMs, Figure 19(b) shows a glimmer of
hope for mission success at thresholds of 0.25 and 0.4, but none
at other thresholds. The same general pattern holds in Figure 18.

Figure 18. Survivability with limited CMs at 5% lethality.

Figure 19. Survivability with limited CMs at 10% lethality.

The same general pattern of results also holds across diverse
classes and datasets, but we omit the relevant graphs due to
space limitations.
If a certain number of CMs are available at the start of a

mission, what threshold should a scout select for highest likeli-
hood of success? If too low a threshold is selected, CMs may be
exhausted before the end of the mission. This is likely to lead
to mission failure, because of inability to neutralize a correctly
detected threat late in the mission. If too high a threshold is
selected, recall will be unnecessarily low. This will also hurt
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Figure 20. Optimal threshold for mission success.

the chances of survival to mission completion. The optimal
threshold results in the last CM being consumed just before
mission completion. Ending themissionwithCMs left over does
not enhance survivability.
With the number of CMs as a parameter, Figure 20 shows

how threshold affects likelihood of mission completion. With
an infinite number of CMs (red curve), there is no point at
which CMs are exhausted. Reducing threshold therefore always
improves survivability. Operating with a threshold close to zero
is optimal. For all cases involving a finite number of CMs, the
point of intersection of the relevant curve with the red curve
gives the optimal threshold. Any lower a value causes CMs to
be used up too soon. Any higher a value, leads to CMs being left
over at the end of a completed mission.

VII. RESULTS: RECALL-BIASED LOSS FUNCTIONS

Our analysis and experimental results from the previous sec-
tions show that in SCML:� Recall is always important.� Precision may or may not be important, depending on

the CMs available relative to mission duration and threat
density. As long as a scout does not run out of CMs,
precision can be traded off for improved recall.

These observations lead to the shape of the precision-recall
curve playing an important role in SCML. In other words, it is
not just the AUC of a model that matters, but also how that AUC
is achieved. This is illustrated by Figure 21, which shows two
hypothetical precision-recall curves that have an AUC of 0.5.
Figure 21(a) trades off precision and recall evenly everywhere. In
contrast, Figure 21(b) is biased in favor of recall at low precision.
If one knows ahead of time that a mission can be executed at
low precision, then Figures 21(b) is preferable to 21(a). Live
Learning can then be tuned to preferentially improve recall
rather than precision. In the original Hawk implementation, FNs
resulted in missed TPs. However, because discards are revisited
later using improved models, “near misses” can be rediscovered
and correctly interpreted as TPs. On the other hand, FPs always
waste bandwidth. The incentives are different in SCML, where a
single FN can be fatal. This suggests biasing learning differently
from the original Hawk implementation. Tuning for bias can
be achieved via the loss function used for training new models

Figure 21. AUC = 0.5 .

Figure 22. Impact of biased loss function.

Figure 23. Targeting a specific FN range.

duringLiveLearning.Our experiments use a biased loss function
that weights classification errors on positives (i.e., FNs) twice
as heavily as errors on negatives. Hawk’s original loss function
weights errors on positives and negatives equally.
For class Roundabout of dataset DOTA, Figure 22 compares

CMs used and FNs for these two different loss functions. At all
thresholds, Figure 22 shows fewer FNs at the price of higher
CM usage. Figure 23 uses a different viewpoint to compare
biased and unbiased loss functions. It asks “If the total FNs
during a completed mission should lie within a targeted range,
at what thresholds should the models operate? How many CMs
do they use at those thresholds?” At very few FNs (0–1, 12–13),
Figure 23 shows that both biased and unbiased models use
roughly the same number of CMs; however, their optimal thresh-
olds are quite different. For intermediate ranges of FNs (25–26
and 40-42), the biased models use significantly fewer CMs at
optimal threshold. At the high end (74–76 FNs), the situation is
reversed: the unbiased model uses noticeably fewer CMs. Thus,
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Figure 24. Impact of loss function bias on survivability.

the choice of the loss function should be informed by the desired
target FN range.
The impact on survivability of a biased loss function is shown

by Figure 24. Note that the X axis is in log scale in these
graphs. For each data point on this scatter plot, the survivability
shown is for the optimal threshold. This is the threshold at
which survivability is highest for that number of CMs and
lethality. The benefit of bias is most apparent at a lethality of
γ = 0.10 (Figure 24(d)). For all CM values, the survivability
with a biased loss function is equal to or higher than that attained
using an unbiased loss function.
At the lower lethality of γ = 0.05 (Figure 24(c)), the benefit

of a biased loss function is still visible. As before, the biased loss
function does as well or better than the unbiased loss function.
The sole exception is for 20,000 CMs.
When lethality is further reduced (Figure 24(b) and (a)), there

is no longer a clear win from a biased loss function. At these
lower lethalities, the penalty for an FN is small. The win from
biasing for fewer FNs ismuch less now, and is swamped by other
attributes of the loss function.
Figure 25 drills deeper into the data from Figure 24(c). For

four different points on the X axis of Figure 24(c) (i.e., different
CM values), Figure 25(a) through Figure 25(d) show the full
survivability curve for biased and unbiased loss functions. The
heights of the points in Figure 24(c) correspond to the final Y
values at the end of a mission for the curves in Figure 25. For
calibration, the “No Learning” curve is also shown. This corre-
sponds to the initial model remaining unchanged throughout a
mission. The importance of Live Learning (biased or unbiased)
relative toNoLearning is clearly seen in Figure 25. Themessage
from Figure 25 reinforces the message from Figure 24(c): at
higher CM usage (50,000 CMs), the biased loss function im-
proves survivability.

Figure 25. Survivability at optimal threshold for γ = 0.05.

Figure 26. Survivability at optimal threshold for γ = 0.02.

For lethalities of γ = 0.02 and γ = 0.01, Figures 26
and 27 enable in-depth comparison of biased, unbiased and No
Learning cases. As expected, No Learning is always inferior
to Live Learning. Between biased and unbiased flavors of Live
Learning, there is not a clear winner at lower lethality.

VIII. FUTURE EXTENSIONS

As the first work to explore the convergence of survivability
and ML, this paper has explored four major sets of questions:
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Figure 27. Survivability at optimal threshold for γ = 0.01 .

� Can a simple analytical model provide useful input about
survivability in the context of Live Learning? What broad
insights does such analysis reveal? [Section III]� How fast does model improvement happen with Live
Learning? Does model improvement lead to improved
survivability? How robust are these improvements relative
to the threat environment? [Sections V and VI]� When the supply of CMs is limited, how should precision
and recall be balanced for optimal survivability? [Section
VI]� Should precision and recall be asymmetrically targeted
during Live Learning? Under what conditions does such
asymmetry help to improve survivability? [Section VII]

In answering these questions, our work has opened the door
to many topics of further research. We briefly discuss some of
these topics below, in no particular order of presentation.
Adaptive Thresholding: One possible way to improve upon

the work presented here would be to dynamically adapt the
threshold used for classification as a mission progresses. Early
in a mission, when the model is weak, it makes sense to use
a low threshold in order to ensure good recall (i.e., high β).
As the model improves, the threshold can be raised without
unduly hurting β. How best to do this adaptation is an open
question. It will likely need to take into account the supply of
CMs. Especially when CMs are precious, it may be optimal to
waste more of them early in the mission because the model is
weak.
Non-uniform threat profile: Our analysis (Section III) has

shown the importance of threat arrival rate (α) and threat lethal-
ity (γ). These parameters have been assumed to be constant
throughout a mission. In real-world settings, this may not be a
valid assumption. In military settings, certain high-value targets
may have higher threat densities and lethalities than low-value

targets. When stealth is important, long mission duration in-
creases the risk of detection and, hence, threat profile. Un-
derstanding SCML in the context of non-uniform spatial and
temporal threat profiles will be important.
M-out-of-N success criteria: This work has assumed that

when multiple scouts are used, they all have to reach the des-
tination for the whole mission to succeed. In many real-world
settings, a weaker success criterion may be acceptable. As long
as M out of N scouts reach their destination, success may
be assured. This complicates Live Learning because the total
rate of encounters with threats changes as scouts die off. Both
analytical and experimental investigation of optimal strategies
for M-out-of-N success criteria will thus be important.
Convoy/SwarmReplacements andRelays:Thiswork assumes

that when N scouts are available, they are launched together as
a convoy or swarm with the same initial model. In contrast, if
the launch of individual scouts is temporally staggered, the later
scouts can benefit from the learning of the earlier scouts. Of
course, the rate of that learning will be slower because fewer
threats are encountered by the smaller initial cohort of scouts.
How these factors balance out would be valuable to study. A
variant of this approach is to maintain a fixed number of scouts
in flight. When a scout dies, a new one is launched to replace it.
That scout can start with the best model learned so far.
Real-world Threat Distributions: Our analysis has assumed

a simple exponential model for threat arrivals. The experimen-
tal results use the threat distribution embedded in the DOTA,
HiRISE, and Brackish datasets. Real-world applications of
SCML may face very different threat distributions. Obtaining
empirical data on real-world threat distributions and using them
in Live Learning experiments would be valuable.
Wider Exploration of Loss Functions: Our work has looked

at a specific way of biasing the loss function for Live Learning.
A broader investigation of loss functions, possibly including
adaptation during a mission, would be valuable.
Exploration of Hawk Hyperparameter Space: The current

system inherits many ML hyperparameters, such as the trigger
for training a new model, from the original Hawk implementa-
tion. It would be valuable to investigate how these hyperparam-
eters should be tuned to optimize SCML.
Relationship to edge-cloud reinforcement learning (RL): Sur-

vival is the ultimate reward. In that sense, SCMLcould beviewed
as a form of RL. Establishing a theoretical basis to more deeply
connect RL with Live Learning would be valuable.
Biological Immunity: This paper began by pointing to bi-

ological immunity as the inspiration for SCML. Coming full
circle, it would be valuable to evaluate the immune systems
of organisms from the viewpoint of Live Learning. Humans are
highly evolved, and likely to be too complex for such evaluation.
However, much simpler organisms may prove to be tractable.

IX. CONCLUSION

In this paper, we have introduced and explored the concept of
SCML using both an analytical approach and an experimental
evaluation of a real implementation. The insights from these
components complement each other. Our analysis highlights the
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importance of model improvement during a mission. Our exper-
imental results quantify the insights from analysis, and provide
baseline measurements upon which future improvements can be
judged. Our work is applicable to any edge-based system that
operates in a threat environment that continuously evolves, and
hence requires the full power of learning for survival. We show
that the recently developed pipelining approach of LiveLearning
is an excellent fit for SCML. Our experimental results confirm
the effectiveness of Live Learning as a mechanism for SCML.
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