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We study the cone of moving divisors on the moduli space Ag of principally polarized

abelian varieties. Partly motivated by the generalized Rankin–Cohen bracket, we con-

struct a non-linear holomorphic differential operator that sends Siegel modular forms to

Siegel modular forms, and we apply it to produce new modular forms. Our construction

recovers the known divisors of minimal moving slope on Ag for g ≤ 4, and gives an

explicit upper bound for the moving slope of A5 and a conjectural upper bound for the

moving slope of A6.

1 Introduction

1.1 Moduli of principally polarized abelian varieties and compactifications

Denote Ag the moduli space of complex principally polarized abelian varieties (ppav),

which is the quotient of its (orbifold) universal cover, the Siegel upper half-space Hg,

by the action of the symplectic group Sp(2g,Z). Let A∗
g denote the Satake–Baily–Borel
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Differentiating Siegel Modular Forms 3443

compactification, and recall that the Picard group PicQ(A∗
g) = Qλ is one-dimensional,

generated by the class λ of the line bundle L → A∗
g of Siegel modular forms of weight

one, which is ample on A∗
g.

Let A′
g be Mumford’s partial compactification of Ag, so that ∂A′

g = Xg−1/ ± 1,

where π : Xg−1 → Ag−1 denotes the universal family of ppav of dimension g− 1.

All toroidal compactifications ofAg containA′
g. The boundary of the perfect cone

toroidal compactification Ag (we use this notation as no other toroidal compactification

will appear) is an irreducible Cartier divisor D, and ∂A′
g is dense within D. The

compactificationAg isQ-factorial,with PicQAg = Qλ⊕Qδ,where δ denotes the class ofD.

The Picard group PicQA′
g is generated by the restrictions of the classes λ and δ from Ag

toA′
g. Philosophically, in what follows, the definition of the slope of divisors takes place

on A′
g, though to formally make sense of it we work on Ag (and refer to [27, Appendix]

for a discussion of why this notion is the same for any other toroidal compactification).

1.2 The ample and effective slopes

Given a divisor E onAg such that its class in the Picard group is [E] = aλ−bδ, its slope is

defined to be s(E) := a/b. The slope of a cone of divisors on Ag is defined as the infimum

of the slopes of divisors contained in the cone. Shepherd-Barron [48] proved that the

ample slope of Ag, that is the slope of the cone of ample divisors is equal to 12, namely,

sAmp(Ag) := inf
{
s(E) : E ∈ Amp(Ag)

}
= 12 .

The effective slope, that is the slope of the cone of effective divisors

sEff(Ag) := inf
{
s(E) : E ∈ Eff(Ag)

}
,

has attracted a lot of attention, in particular because

s(K
Ag

) = s ((g+ 1)λ − δ) = g+ 1 ,

so that the inequality sEff(Ag) < g+1 would imply that Ag is of general type. Freitag [24]

used the theta-null divisor θnull, of slope s(θnull) = 8+ 23−g, to show that Ag is of general

type for g ≥ 8, Mumford [40] used the Andreotti–Mayer divisor N0, of slope s(N0) =

6+ 12
g+1 , to show thatAg is of general type for g ≥ 7,while recently the fourth author with

collaborators [11] showed that sEff(A6) ≤ 7, which implies that the Kodaira dimension

of A6 is non-negative.
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3444 S. Grushevsky et al.

It is known that Ag is unirational for g ≤ 5 (see [39], [7], [13], [52] for the harder

cases of g = 4, 5). In fact, sEff(Ag) is known explicitly for g ≤ 5: the computation of

sEff(A5) is one of the main results of [18], and the lower genera cases are reviewed below.

On the other hand, the slope sEff(Ag) is not known for any g ≥ 6. While the

techniques of Tai [50] show that sEff(Ag) = O(1/g) for g → ∞ (as explained in [25]),

not a single explicit effective divisor E on Ag, for any g, with s(E) ≤ 6 is known.

The analogous notion of effective slope for the moduli space of curves Mg has

been investigated in many papers, in particular for its similar link with the Kodaira

dimension of Mg, starting with [30] [28], [15], and with continuing recent progress such

as [19].

1.3 The moving slope

Recall that an effective divisor E is called moving if h0(E) > 1 and if moreover the base

locus of its linear system |E| has codimension at least two. Themoving slope is the slope

of the cone Mov of moving divisors

sMov(Ag) := inf{s(E) : E ∈ Mov(Ag)} .

Since the moving cone is contained in the effective cone, we have sEff(Ag) ≤ sMov(Ag).

We first observe that if the effective slope is in fact an infimum but not a minimum, then

sEff(Ag) = sMov(Ag) since there is an infinite sequence of effective divisors of strictly

decreasing slopes converging to this infimum (see Lemma 2.2(iii) for a precise statement

and proof). Thus, investigating the moving slope is only of interest if there exists an

effective divisor E ⊂ Ag of slope s(E) = sEff(Ag).

While the moving slope of Ag is less well-studied than the effective slope, it is

also important in attempting to determine the structure of the ring of Siegel modular

forms, and in attempting to run the log-MMP for Ag and determine its interesting

birational models: in fact, the pull-back of an ample divisor on a normal projective

variety X via a non-constant rational map f : Ag ��� X is a moving divisor, as remarked

in [4, Section 1.2].

The moving slope of Ag is known for g ≤ 4, as we will review below, and Tai’s

results also imply that sMov(Ag) = O(1/g) as g → ∞.While the original published version

of the paper [17] claimed an upper bound for sMov(A5), there was a numerical error, and

the corrected (arXiv) version [18] does not allow to deduce any statement on sMov(A5).

For g = 6 the knowledge of the moving slope of A6 would help determining the Kodaira

dimension of A6, if it turns out that sEff(A6) = 7 = s(K
A6

). As in the case g = 5, though,

the moving slope of Ag remains unknown at present for every g ≥ 6.
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Differentiating Siegel Modular Forms 3445

1.4 Context

Our paper revolves around the problem of constructing, from a given modular form, or

from given modular forms, new modular forms of controlled slope. In particular, given a

modular form of minimal slope, such procedure can provide other interesting modular

forms of low slope: for example, for 2 ≤ g ≤ 4, it does provide a modular form of

minimal moving slope (Corollary C). Our construction(s) will consist in applying certain

holomorphic differential operators to Siegel modular forms, so as to yield Siegel modular

forms again (Theorem A).

For motivation, recall the definition of two such well-known operators for g = 1.

The first one is the Serre derivative (credited by Serre [47, Theorem 4] to Ramanujan

[42]): it sends modular forms of weight a to modular forms of weight a+2, and is defined

as Sa(F) := dF
dτ

− π ia
6 E2 · F, where E2 is the Eisenstein series of weight 2 (see also [56,

Section 5] and [49, Lemma 3]). The second one is the second Rankin–Cohen bracket (see

[43] and [8]), which sends a modular form of weight a to a modular form of weight 2a+4,

and is defined as [F,F]2,a := aF d2F
dτ2

− (a + 1)
(
dF
dτ

)2
. Note that Sa is a 1-homogeneous

(i.e., multiplying F by a constant λ multiplies Sa(F) by λ1) differential operator in τ with

non-constant coefficients, while [·, ·]2,a is 2-homogeneous, of pure order 2 (meaning that

all summands involve the derivative d
dτ

twice), with constant coefficients. There are also

2n-th Rankin–Cohen brackets [·, ·]2n,a, which are 2n-homogeneous, of pure order 2n, with

constant coefficients, and send modular forms of weight a to modular forms of weight

2a+ 4n.

The holomorphic differential operators that we will produce for g ≥ 2 are, on

one hand, analogous to Sa, as they will be g-homogeneous, of order g; on the other

hand, they share some similarities with the even Rankin–Cohen brackets, as they will

be pure of order g (meaning that each summand involves exactly g partial derivatives),

with constant coefficients.

1.5 Main results

In order to formulate our main result, given a holomorphic function F : Hg → C, we

assemble the coefficients of its differential dF into the matrix

∂F :=

⎛
⎜⎜⎜⎝

∂F
∂τ11

∂F
2∂τ12

. . . ∂F
2∂τ1g

...
...

. . .
...

∂F
2∂τg1

∂F
2∂τg2

. . . ∂F
∂τgg

⎞
⎟⎟⎟⎠ ,

and we consider the holomorphic function det(∂F) : Hg → C.
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3446 S. Grushevsky et al.

Suppose now that F is a modular form of weight a, with vanishing order b along

the boundary ∂Ag (this will be defined formally in the next section). The determinant

det(∂F) is in general not a modular form, but its restriction to the zero locus {F = 0}

behaves as a modular form of weight ga + 2 (a more intrinsic approach to det(∂F) will

be given in Remark 4.6). Our main result is the following construction.

Theorem A. For every g ≥ 2 and every integer a ≥
g
2 there exists a differential operator

Dg,a acting on the space of genus g Siegel modular forms of weight a that satisfies the

following properties:

(i) if F is a genus g Siegel modular form of weight a and vanishing order b along

the boundary, then Dg,a(F) is a Siegel modular form of weight ga + 2 and of

vanishing order β ≥ gb along the boundary;

(ii) the restriction of Dg,a(F) to the zero locus of F is equal to the restriction of

det(∂F).

Remark 1.1. In Theorem A, it is possible to deal with Siegel modular forms F with

character with respect to Sp(2g,Z), which occur only for g = 2 only. Since D2,a is

quadratic,D2,a(F) will then still be a modular form (with trivial character).

What we will actually prove is a more precise version of this statement. In

Theorem 6.2, we construct for every g ≥ 2 and a ≥
g
2 a holomorphic differential operator

DQg,a
in the τij with constant coefficients and we define Dg,a(F) := DQg,a

(F)/g! for every

Siegel modular forms F of genus g and weight a. Thus, Dg,a(F) is always polynomial in

F and its partial derivatives, though its coefficients depend on the weight a. Though the

operator Dg,a need not be unique, properties (i–ii) in Theorem A force the Siegel modular

form Dg,a(F) to be unique up to adding modular forms divisible by F (which would thus

vanish on the zero locus of F). The construction is explicit, and in Section 6.3 we will give

the formulas for D2,a and D3,a explicitly.

A priori Dg,a(F) could have a common factor with F, or could even be identically

zero. In order to prevent such behavior, we will apply Theorem A only to modular forms

F that satisfy what will be our main condition:

det(∂F) does not vanish identically

on any irreducible component of {F = 0}.
(	)

Our main application is an immediate consequence of Theorem A.
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Differentiating Siegel Modular Forms 3447

Corollary B. Suppose that the effective slope sEff(Ag) = a/b is realized by a modular

form F of weight a ≥
g
2 that satisfies Condition (	). Then

sMov(Ag) ≤ s(Dg,a(F)) ≤ sEff(Ag) + 2
bg . (1)

We first note that if the zero locus of F in Corollary B is not irreducible, that is, if

F = F1+F2 with F1,F2, effective, then since s(F) ≤ s(F1), s(F2), it follows that s(F) = s(F1) =

s(F2). As a consequence, sMov(Ag) = sEff(Ag) (as will be proven carefully in Lemma 2.2(i)),

and so the statement becomes trivial. Thus, we can assume that the zero locus of F is

irreducible.

We stress that the inequality (1) for the moving slope depends on the actual class

[F], not just on the slope s(F). Moreover, Condition (	) forces F to be square-free. For every

g ≤ 5, it is known that a reduced effective divisor on Ag of minimal slope exists and is

unique. For g ≤ 4, the machinery of Corollary B produces an (already known) divisor that

realizes the moving slope.

Corollary C. For 2 ≤ g ≤ 4, the modular form F of minimal slope on Ag satisfies

Condition (	) and has weight a ≥
g
2 . Moreover,Dg,a(F) realizes the moving slope of Ag.

For g = 5, in [18], it was proven that the Andreotti–Mayer divisor N′
0 (whose

definition will be recalled in Section 3.3) is the unique effective divisor of minimal

slope on A5. Since we will show in Proposition 3.2 that N′
0 satisfies Condition (	), as

a consequence of Corollary B, we obtain the following:

Corollary D. The moving slope of A5 is bounded above by sMov(A5) ≤ 271
35 , and the slope

271/35 is achieved by a moving effective divisor.

In the following table, we collect what is thus known about the effective and

moving slopes of Ag:

sEff(Ag) sMov(Ag)

g = 1 12

g = 2 10 12

g = 3 9 28/3 = 9.333 . . .

g = 4 8 17/2 = 8.500 . . .

g = 5 54/7 = 7.714 . . . ≤ 271/35 = 7.742 . . .

g = 6 [5310 , 7] (?) ≤ 43/6 = 7.166 . . .

g � 1 O(1/g) O(1/g)
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3448 S. Grushevsky et al.

where the upper bound sEff(A6) ≤ 7 is provided by the Siegel modular form θL,h,2 of class

14λ − 2δ constructed in [11]. The question mark in the above table marks a conjectural

upper bound sMov(A6) ≤ 43/6, which is a consequence of the following.

Corollary E. The form θL,h,2 onA6 is prime, that is, not a product of non-constant Siegel

modular forms. Moreover, if θL,h,2 satisfies Condition (	), then

sMov(A6) ≤
43

6
.

The Torelli map τg : Mg → Ag sending a curve to its Jacobian is an injection of

coarse moduli spaces, but for g ≥ 3 is 2-to-1 as a map of stacks. We denote by Jg the

closure of τg(Mg) inside Ag, which is called the locus of Jacobians. For g ≤ 3, we have

Jg = Ag, while J4 ⊂ A4 is the zero locus of the Schottky modular form S4, which has

weight 8. Since (even) theta constants always vanish on curves with even multiplicity,

this implies that θnull ∩ Jg = 2
null for g ≥ 3, where 
null ⊂ Jg is an integral divisor. As

a byproduct of our analysis, we also obtain the following result on Jacobians:

Corollary F. The form D4,8(S4) restricts on J4 to 
null.

Beyond these results, we investigate the applications of both Rankin–Cohen

brackets and of differential operators acting on Siegel modular forms to constructing

new effective divisors. Our results above go essentially one step in this direction,

by applying the differentiation technique to a modular form of lowest slope. This

construction can be iterated or varied to apply it to a tuple of different modular forms: it

would be interesting to investigate the collection of modular forms thus produced, and

to see in particular if this sheds any further light on the generators of the ring of Siegel

modular forms in any genus g ≥ 4, where they are not fully known.

1.6 Structure of the paper

The paper is organized as follows. In Section 2, we set the notation and review the

relation between effective divisors on Ag and Siegel modular forms. In Section 3, we

recall the construction and the slopes of the theta-null divisor θnull and of the Andreotti–

Mayer divisor N′
0, and we show that both satisfy Condition (	). In Section 4, we define the

Rankin–Cohen bracket and prove a weaker version of Corollary B. In Section 5,we review

the computation of the effective and moving slopes for g ≤ 4, derive Corollaries C–D–E

from Theorem A, and prove Corollary F. Finally, in Section 6, we introduce a remarkable

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/im
rn

/a
rtic

le
/2

0
2
4
/4

/3
4
4
2
/7

2
5
2
0
2
5
 b

y
 H

e
a
lth

 S
c
ie

n
c
e
s
 L

ib
ra

ry
 u

s
e
r o

n
 0

9
 M

a
y
 2

0
2
5



Differentiating Siegel Modular Forms 3449

class of differential operators acting on Siegel modular forms, we define DQg,a
and we

prove Theorem A.

2 Siegel Modular Forms and Compactifications of Ag

We briefly recall the standard notions on Siegel modular forms, referring to [24] for a

more detailed introduction. Unless specified otherwise, we assume g ≥ 2.

2.1 The Siegel space and the moduli space of ppav

The Siegel upper half-space Hg is the space of complex symmetric g× g matrices τ with

positive definite imaginary part.

An element γ of the symplectic group Sp(2g,Z), written as γ =
(
A B
C D

)
in g × g

block form, acts on Hg via

γ · τ := (Aτ + B)(Cτ + D)−1.

The action of Sp(2g,Z) on Hg is properly discontinuous, with finite stabilizers. The

quotient Ag = Hg/Sp(2g,Z) is the moduli space of ppav—it is a quasi-projective variety

that can be given the structure of an orbifold (or a Deligne–Mumford stack). We denote

by π : Xg → Ag the universal family of principally polarized abelian varieties (ppav in

short), considered as a stack.

2.2 Divisors and Siegel modular forms

A holomorphic function F : Hg → C is called a holomorphic Siegel modular form of

weight k with respect to Sp(2g,Z) if

F(γ · τ) = det(Cτ + D)kF(τ )

for all τ ∈ Hg and for all γ ∈ Sp(2g,Z) (for g = 1, there is an additional regularity

condition that, by Koecher principle, is unnecessary for g ≥ 2).

This automorphy property with respect to Sp(2g,Z) defines the line bundle

L⊗k −→ Ag

of Siegel modular forms of weight k on Ag.
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3450 S. Grushevsky et al.

Remark 2.1. While in our paper we focus on Siegel modular forms for Sp(2g,Z), the

holomorphic differential operator that we consider is defined for any holomorphic

functions on Hg, and will preserve suitable automorphy properties. It can thus also be

applied to Siegel modular forms with multiplier systems for subgroups of Sp(2g,Z). In

particular, we will apply it to a Siegel modular forms with a character, namely the theta-

null T2 in genus two, discussed in Section 3.1.

2.3 Satake compactification

The Satake–Baily–Borel compactification A∗
g can be defined as

A∗
g := Proj

(
⊕n≥0H

0(Ag,L
⊗n)

)
.

What this means is that sections of a sufficiently high power of L embed Ag into a

projective space, and A∗
g is the closure of the image of Ag under such an embedding.

Since PicQ(A∗
g) = Qλ, where λ denotes the class of L, this implies that any effective Z-

divisor on Ag is the zero locus of a Siegel modular form.

2.4 Partial and perfect cone toroidal compactifications

Set-theoretically,A∗
g is the union of locally closed strata

A∗
g = Ag � Ag−1 � · · · � A0.

The partial (aka Mumford, or rank one) toroidal compactification

A′
g := Ag � ∂A′

g

is obtained by blowing up the partial Satake compactification Ag � Ag−1 along its

boundary Ag−1, and the exceptional divisor ∂A′
g can then be identified with Xg−1/ ± 1.

Any toroidal compactification containsA′
g and admits a blowdownmorphism to

A∗
g. The perfect cone toroidal compactification Ag has the property that the complement

Ag \ A′
g is of codimension 2 inside Ag. The boundary

D := ∂Ag

is an irreducible Cartier divisor, which is the closure of ∂A′
g. We denote by p : Ag → A∗

g

the blowdown map.
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Differentiating Siegel Modular Forms 3451

2.5 Effective divisors on Ag

The effective and moving slope is computed on effective divisors in Ag, or, equivalently,

on effective divisors in Ag, whose support does not contain D. We will call such divisors

internal. For clarity and completeness, we explain how to associate an internal divisor

to a Siegel modular form.

A Siegel modular form F of weight a, thought of as a section of L⊗a on A∗
g, can

be pulled back to a section of p∗L⊗a on Ag. If the vanishing order ordD(p∗F) of p∗F

along the divisor D is b, this means that the zero locus of p∗F on Ag is the union of

an effective divisor not containing D in its support, which we will denote by (F) and call

the zero divisor of the modular form, and of the divisor D with multiplicity b. Since by

definition the zero locus {F = 0} ⊂ A∗
g has class aλ, its preimage in Ag has class ap∗λ

(or aλ in our notation abuse), it follows that the class of the zero divisor of a modular

form is

[(F)] = aλ − bδ ∈ PicQ(Ag)

with a > 0 and b ≥ 0.

To summarize the above discussion, we see that internal effective divisors on

Ag correspond bijectively to Siegel modular forms up to multiplication by a constant,

and from now on we will talk about them interchangeably, additionally suppressing the

adjective “internal” as we will never need to deal with effective divisors on Ag whose

support contains D.

We thus define the slope s(F) of a modular form F to be the slope of the

corresponding (internal) effective divisor (F). We will write F for the modular form

considered on Ag, and stress that the notation [F] := [(F)] for the class of the zero divisor

of a Siegel modular form on Ag does not signify the class of the pullback p∗F, which

would be simply equal to aλ.

Every effective divisor E ⊂ Ag can be uniquely written as E =
∑

ciEi for suitable

ci > 0 and pairwise distinct, irreducible, reduced divisors Ei. We say that two divisors

E =
∑

ciEi and E′ =
∑

djE
′
j have distinct supports if Ei �= E′

j for all i, j.

Similarly, a Siegel modular form F can be uniquely written as a product F =
∏
F
ci
i

for suitable cj > 0 and pairwise distinct, prime Siegel modular forms Fi (i.e., forms

that cannot be factored as products of non-constant modular forms). Two modular

forms F =
∏
F
ci
i and F ′ =

∏
(F ′

j)
dj are said to not have a common factor if Fi �= F ′

j

for all i, j.
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3452 S. Grushevsky et al.

2.6 Fourier–Jacobi expansion

The vanishing order of a Siegel modular form F at D can be computed using the Fourier–

Jacobi expansion, which we briefly recall for further use. Writing an element τ ∈ Hg

as

τ =

(
τ ′ z

zt w

)
∈ Hg

with τ ′ ∈ Hg−1, z ∈ Cg−1, w ∈ C∗, and setting q := exp(2π iw), we expand F in power

series in q:

F(τ ) =
∑

r≥0

fr(τ
′, z)qr. (2)

Then the vanishing order ordD F (which we will often denote b) of F along D is detected

by the Fourier–Jacobi expansion as

ordD F = min{r ≥ 0 fr(τ
′, z) �≡ 0} . (3)

The form F is called a cusp form if it vanishes identically on D; equivalently, if f0(τ
′, 0) =

0, that is if ordD F > 0.

2.7 First properties of the moving slope

Here we record some properties of the moving slope, showing that one should only focus

on the case when there exists an effective divisor of minimal slope, and furthermore that

one should only focus on irreducible effective divisors. These are general properties that

we state for Ag, but hold on any projective variety.

Lemma 2.2. The moving slope satisfies the following properties:

(i) if E �= E′ are irreducible reduced effective divisors, then

sMov(Ag) ≤ max{s(E), s(E′)} ;

(ii) if sMov(Ag) = s(E) for somemoving divisor E, then there exists an irreducible

moving divisor E′ such that sMov(Ag) = s(E′);

(iii) if there does not exist an effective divisor E such that s(E) = sEff(Ag), then

sEff(Ag) = sMov(Ag).
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Differentiating Siegel Modular Forms 3453

Proof. (i) Let [E] = aλ − bδ and [E′] = a′λ − b′δ, and suppose that s(E) ≤ s(E′). Then the

linear system |aE′| contains a′E, and its base locus is contained inside E ∩ E′, which has

codimension at least two. It follows that aE′ is a moving divisor. Since [aE′] = a(a′λ−b′δ),

we obtain sMov(Ag) ≤ s(aE′) = s(E′) = a′/b′.

(ii) If the general element of the linear system |E| is irreducible, then we can

choose E′ to be any such element. Otherwise, a general element Et ∈ |E| can be written

as a sum Et = E1
t + · · · + Emt of m distinct effective divisors. Since E is moving, the base

locus of |E| has codimension at least two, thus each Eit is moving.

Moreover sMov(Ag) ≤ mini s(E
i
t) ≤ s(Et) = sMov(Ag), we conclude that s(Eit) =

sMov(Ag) for all i. Hence, it is enough to take E′ = Eit for any i.

(iii) Consider a sequence (En) of effective divisors onAg whose slopes are strictly

decreasing and converging to sEff(Ag). Up to replacing En by the irreducible component

of En with smallest slope, and up to passing to a subsequence, we can assume that all En

are irreducible. Since the slopes are strictly decreasing, the En are all distinct. Applying

(i) to the pair En−1,En, we have sMov(Ag) ≤ s(En). The conclusion follows, since sEff(Ag) ≤

sMov(Ag) ≤ s(En) → sEff(Ag). �

3 Some Relevant Modular Forms

In this section, we briefly recall the definitions and the main properties of theta

constants, of the Schottky form, and of Andreotti–Mayer divisors.

3.1 Theta functions and theta constants

For ε, δ ∈ {0, 1}g the theta function with characteristic
[

ε
δ

]
is the function θ

[
ε
δ

]
: Hg ×

Cg → C defined as

θ
[

ε
δ

]
(τ , z) :=

∑

n∈Zg

expπ i
[(
n+ ε

2

)t
τ
(
n+ ε

2

)
+ 2

(
n+ ε

2

)t (
z+ δ

2

)]
.

Characteristics
[

ε
δ

]
are called even or odd depending on the parity of the

standard scalar product 〈ε, δ〉. This is the same as the parity of θ as a function of z ∈ Cg

for fixed τ ∈ Hg, and there are 2g−1(2g + 1) even characteristics and 2g−1(2g − 1) odd

ones. The theta constant is the evaluation of the theta function at z = 0, which is thus

a function θ
[

ε
δ

]
(τ ) : Hg → C. By the above, all odd theta constants vanish identically,

while an even theta constants are modular form of weight 1/2 (meaning that a suitable

square root of the automorphic factor det(Cτ +D) is taken) with respect to a certain finite
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3454 S. Grushevsky et al.

index subgroup of Sp(2g,Z). The product of all even theta constants

Tg :=
∏

[ ε
δ

]
even

θ
[

ε
δ

]

turns out to be a modular form for the full symplectic group, for g ≥ 3, called the theta-

null modular form, and its zero locus is called the theta-null divisor θnull. It has class

[Tg] = 2g−2(2g + 1)λ − 22g−5δ , and so s(Tg) = s(θnull) = 8 + 23−g . (4)

The case g = 2 is slightly different since T2 has a character, meaning that it satisfies

T2(γ · τ) = ±det(Cτ + D)5T2(τ )

for all γ =
(
A B
C D

)
∈ Sp(4,Z). Hence, T2

2 is a well-defined modular form.

3.2 The Schottky form

The Schottky form is the weight 8 modular form on Ag given by the following degree 16

polynomial in theta constants:

Sg :=
1

2g

∑

ε,δ

θ16
[

ε
δ

]
−

1

22g

⎛
⎝∑

ε,δ

θ8
[

ε
δ

]
⎞
⎠

2

.

The Schottky form is a modular form for Sp(2g,Z), and is natural because it can

alternatively be expressed as Sg = θD+
16

− θE8⊕E8 as the difference of the lattice theta

functions associated to the only two even, unimodular lattices in R16 (see [34] or [35]). It

is known that Sg vanishes identically on Ag if and only if g ≤ 3, and moreover that the

zero locus of S4 is the locus of Jacobians J4 ⊂ A4. The form S4 vanishes identically to

first order along D, and thus

[S4] = 8λ − δ , and s(S4) = 8 , (5)

while for g ≥ 5 the form Sg is not a cusp form (and so it has infinite slope).
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Differentiating Siegel Modular Forms 3455

3.3 Andreotti–Mayer divisor

The Andreotti–Mayer divisor [2] is defined to be the locus N0 of ppav whose theta divisor

is singular.

It is known that N0 is a divisor that has for g ≥ 4 precisely two irreducible

components: N0 = θnull ∪N′
0 (see [40],[10]), while for g = 2, 3 the Andreotti–Mayer divisor

is simply N0 = θnull.

Remark 3.1. For a generic point of θnull, the unique singularity of the theta divisor

of the corresponding ppav is the double point at the two-torsion point of the ppav

corresponding to the characteristic of the vanishing theta constant. It is known that

generically this singular point is an ordinary double point (i.e., that the Hessian matrix,

of the second derivatives of the theta function with respect to z at this point is non-

degenerate). For a generic point of N′
0, the theta divisor of the corresponding ppav has

precisely two opposite singular points, both of which are generically ordinary double

points again, see [26] for a detailed study.

In this short section, we prove the following.

Proposition 3.2. The form Tg for g ≥ 2 and the form Ig for g ≥ 4 satisfy Condition (	).

The genus restrictions in this statement are simply to ensure that the forms are

well-defined and not identically zero.

As we already know, θnull is the zero locus of the modular form Tg that is the

product of all even theta constants, and we know the class of the corresponding divisor

by (4). The modular form, which we denote Ig, defining the effective divisor N′
0 is not

known explicitly for any g ≥ 5 (see [37]), while the Riemann theta singularity implies

that in genus 4 we have N′
0 = J4, and thus I4 = S4. The class of the divisor N′

0 was

computed by Mumford [40]:

[N′
0] = [Ig] = (g! (g+ 3)/4 − 2g−3(2g + 1))λ − ((g+ 1)! /24 − 22g−6)δ , (6)

and so s(Ig) = 6 ·
1 + 2/(g+ 1) − 2g−1(2g + 1)/(g+ 1)!

1 − 3 · 22g−3/(g+ 1)!
> 6 .

Before proving Proposition 3.2, we recall that theta functions satisfy the heat

equation

dτ θ = 2π i · Hessz θ , (7)
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3456 S. Grushevsky et al.

where Hessz denotes the Hessian, that is the matrix of the second partial derivatives

of the theta function with respect to z1, . . . , zg. It will follow from Lemma 3.3 below,

the differentials dTg and dIg are related to the Hessian of the theta function in the z-

variables. Indeed, even though an equation for N′
0 is not known, a precise description of

its tangent space is provided by Lemma 3.3, which is a special case of results proven in

[2] (see also [3]).

Lemma 3.3. Let Z be θnull or N
′
0 and call Z̃ its preimage in Hg. For every general smooth

point τ0 of Z̃, and every ordinary double point z0 ∈ Cg of θ(τ0, ·) = 0, the tangent space

Tτ0
Z̃ has equation dτ θ(τ0, z0) = 0 inside Tτ0

Hg.

Using the above considerations, we can now prove the main proposition of this

subsection.

Proof of Proposition 3.2. If τ0 is a smooth point of θnull, then the theta divisor 
τ0
⊂

Xτ0
= Cg/(Zg ⊕ τ0Z

g) is singular at a unique 2-torsion point, and such a singularity is

ordinary if and only if det(dTg) �= 0 at τ0 by (7) and Lemma 3.3.

Similarly, if τ0 is a generic point of N′
0, then the singular locus of 
τ0

consists

of two opposite non-2-torsion singular points ±z0; moreover, ±z0 are ordinary double

points of 
τ0
if and only if det(dIg) �= 0 at τ0 by (7) and Lemma 3.3.

The conclusion follows from Remark 3.1. �

4 Rankin–Cohen Bracket

Our method to bound the moving slope of Ag from above is by constructing new Siegel

modular forms starting from a given known modular form. For example, starting from

the known Siegel modular form minimizing the slope of the effective cone, we will

try to construct another Siegel modular form, with which it has no common factor,

and which has a slightly higher slope. In this section, we do this using the Rankin–

Cohen bracket (of two different modular forms), which will allow us to prove the

main application Corollary B, but only under the assumption that the moving slope is

achieved.

While our construction of the differential operators Dg,a in Theorem A yields

a stronger result, we now give the details of the geometrically motivated construction

using the Rankin–Cohen brackets. These were defined in [43] and [8] for g = 1 (see

also [56]); a vector-valued version appears in [46] and a scalar-valued version appears

in [55].
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Differentiating Siegel Modular Forms 3457

For further use, we define the symmetric g × g matrix-valued holomorphic

differential operator acting on functions on Hg

∂τ :=

(
1 + δij

2

∂

∂τij

)

1≤i,j≤g

. (8)

When no confusion is possible, we will sometimes denote this differential operator

simply by ∂.

4.1 Vector-valued bracket

Let F and G be genus g Siegel modular forms of weights k and h, respectively.

Definition 4.1 ([46]). The vector-valued Rankin–Cohen bracket of F and G is

{F,G} :=
Gk+1

Fh−1
· d

(
Fh

Gk

)
.

where d = dτ is the differential of a function of τ ∈ Hg.

Lemma 4.2. The vector-valued bracket

{F,G} = −{G,F} = hGdF − kF dG

is a L⊗(h+k)-valued holomorphic (1, 0)-form on Ag. Moreover {F,G} �≡ 0 unless Fh and Gk

are constant multiples of each other.

Proof. Since Fh/Gk is a meromorphic function on Hg, its differential is a meromorphic

(1, 0)-form. Moreover, Gk+1/Fh−1 is a meromorphic Siegel modular form of weight h + k

(i.e., it is a meromorphic function on Hg that satisfies the transformation property). It

is immediate to check that {F,G} = hGdF − kF dG, which shows that {F,G} is thus

a holomorphic Siegel-modular-form-valued (1, 0) form. Since F and G are non-zero,

the bracket vanishes identically if and only if d(Fk/Gh) is identically zero, which is

equivalent to this ratio being a constant. �
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3458 S. Grushevsky et al.

Another way to state Lemma 4.2 is that, writing {F,G} as a g × g matrix, this

matrix satisfies the transformation law

{F,G}(γ · τ) = det(Cτ + D)k+h(Cτ + D)t · {F,G}(τ ) · (Cτ + D)

for any γ =
(
A B
C D

)
in Sp(2g,Z).

4.2 Scalar-valued bracket

Let E → Ag denote the holomorphic rank g Hodge bundle of (1, 0)-holomorphic forms

on ppav, namely E = π∗

1,0
π (where we recall that π : Xg → Ag denotes the universal

family of ppav). Recall that the cotangent bundle T∗Ag can be identified with Sym2 E ⊂

Hom(E∨,E). Since

det : Hom(E∨,E) → (detE)⊗2 ⊂ �g(Sym2 E) ∼= 
g,0Ag

and detE ∼= L, it follows that det restricts to a map det : T∗Ag → L⊗2, which is

homogeneous of degree g. If f is a meromorphic function defined on Ag, then det(df )

is a meromorphic section of L⊗2.

Definition 4.3. The scalar Rankin–Cohen bracket of Siegel modular forms F,G is

defined as

[F,G] := det{F,G} .

The scalar Rankin–Cohen bracket seems not to have been systematically studied

in the literature. Here we collect some of its basic properties.

Lemma 4.4. Let F,G be Siegel modular forms, of classes

[F] = kλ − xδ; [G] = hλ − yδ.

Then [F,G] is a Siegel modular form of class

[
[F,G]

]
= (g(k+ h) + 2)λ − βδ ,

where

(i) β > 0 (i.e., [F,G] is a cusp form, even if F and G are not);
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Differentiating Siegel Modular Forms 3459

(ii) β ≥ g(x + y);

(iii) for any integer n > 0, [F,Fn] = 0;

(iv) if H is another modular form, then [H2F,G] and [HF,HG] are divisible by Hg;

(v) if F,G do not have any common factors, and F satisfies Condition (	), then F

and [F,G] do not have any common factors.

Proof. (i) Recall that {F,G} = (Gk+1/Fh−1) · d
(
Fh/Gk

)
and so det{F,G} = Gg(k+1)/Fg(h−1)

det(d
(
Fh/Gk

)
). It follows that det{F,G} is a modular form of weight gh(k + 1) − gk(h −

1) + 2 = g(h + k) + 2 and, from the local expression of {F,G}, it follows that [F,G] is

holomorphic.

Consider then the Fourier–Jacobi expansions

F(τ ) = F0(τ
′, 0) +

∑

r>0

Fr(τ
′, z)qr, G(τ ) = G0(τ

′, 0) +
∑

r>0

Gr(τ
′, z)qr,

at τ =
(

τ ′ z
zt w

)
. We have

dF =

(
dτ ′F dzF

(dzF)t dwF

)
, dG =

(
dτ ′G dzG

(dzG)t dwG

)
.

Recall that q = exp(2π iw), so that ∂(qr)/∂w = 2πriqr. It is immediate to check that the

last columns of dF and dG are divisible by q. It follows that [F,G] is divisible by q, and

so is a cusp form.

(ii) Writing dF and dG as above, it is immediate that ordD dF = ordD F and

ordD dG = ordDG. Hence ordD{F,G} = ordD F + ordDG, and the conclusion follows.

(iii) By direct computation {F,Fn} = (nk)FndF − kF(nFn−1)dF = 0 .

(iv) Let � be the weight of H; we compute directly

{H2F,G} = hG(H2 dF + 2HF dH) − (2� + k)H2F dG

= H(hHGdF + 2hF dH − (2� + k)HF dG)

and

{HF,HG} = (� + h)HG(H dF + F dH) − (� + k)HF(H dG+ GdH)

= H(H{F,G} + �H(GdF − F dG) + (h− k)FGdH) .
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3460 S. Grushevsky et al.

(v) Note first that Condition (	) implies that F is square-free. Evaluating [F,G]

along the zero divisor of F, we obtain

[F,G]|F=0 = hgGg det(∂F) . (9)

Since F and G do not have common factors, [F,G] is identically zero along a component

of {F = 0} if and only if det(∂F) is. �

Remark 4.5. It is possible that the strict inequality β > g(x + y) holds in (ii) above: for

example, (i) implies that β ≥ 1 for x = y = 0.

Remark 4.6. Statement (v) above is one instance where we see the key importance of

Condition (	), and of det(∂F). A more intrinsic description of the function det(∂F) is as

follows. If F is a modular form of weight k, its differential is not well-defined on Ag, but

the restriction of dF to the zero divisor E = {F = 0} of F is. Thus dF|E is a section of

L⊗k ⊗ Sym2 E|E , and det(dF) is a section of L⊗(kg+2)|E . In other words, the restriction of

det(∂F) to the zero locus of F behaves as a modular form of weight gk+ 2, as mentioned

in the introduction.

4.3 The bracket and the moving slope

In this section, we apply the scalar Rankin–Cohen bracket to two modular forms of low

slope in order to produce another modular form of low slope. This will allow us to prove

the following weaker version of Corollary B—it is weaker only in that it assumes that

the moving slope is achieved, that is, is a minimum rather than infimum.

Proposition 4.7. Assume that the effective slope sEff(Ag) = a/b is realized by a Siegel

modular form F of class aλ − bδ that satisfies Condition (	). Suppose moreover that the

moving slope sMov(Ag) = a′/b′ is achieved by a Siegel modular form G of class a′λ − b′δ.

Then

sMov(Ag) ≤ sEff(Ag) +
2

bg
.

Proof. If F is a product of at least two distinct prime factors, then each of them realizes

the effective slope. Hence, sMov(Ag) = sEff(Ag) by Lemma 2.2(i), and so the conclusion

trivially holds. Hence, we can assume that F is a prime Siegel modular form.
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Differentiating Siegel Modular Forms 3461

Up to replacing G by a general element in its linear system, we can assume that

F does not divide G. By Lemma 4.4(v), the form [F,G] is not divisible by F, and so in

particular [F,G] does not identically vanish. It follows from Lemma 4.4(ii) that

a′

b′
= sMov(Ag) ≤ s([F,G]) ≤

g(a+ a′) + 2

g(b+ b′)
,

which can be rewritten as

sMov(Ag) =
a′

b′
≤
a

b
+

2

bg
= sEff(Ag) +

2

bg
.

�

Both the scalar Rankin–Cohen bracket and Dg,a (which will be introduced in

Section 6) are holomorphic differential operators of degree g, but their relationship is

not clear, and deserves a further investigation.

5 Effective and Moving Slopes for Small g

In this section, we recall what is known about the effective and moving slopes of Ag for

2 ≤ g ≤ 5. In all these cases, the effective slopes are achieved, and we analyze what we

obtain by applying Theorem A (whose proof is postponed till Section 6) to such effective

divisors of minimal slope, and we prove Corollaries C–D–E–F.

5.1 Case g = 2

In genus 2, the unique effective divisor of minimal slope is the closure of the locus Adec
2

of decomposable abelian varieties inside A2. Set-theoretically, this locus is simply equal

to the theta-null divisor θnull. We thus obtain

sEff(A2) = s(Adec
2 ) = s(θnull) = s(5λ − δ/2) = 10 .

Remark 5.1. Note that the class [T2] = 1
2 (10λ − δ) in PicQ(Ag) is not integral, though its

double is. From the stacky point of view, this is a manifestation of the fact that Adec
2

∼=

(A1×A1)/S2 and so the general element ofAdec
2 has an automorphism group {±1}×{±1},

of order 4, whereas the general genus 2 ppav has automorphism group {±1}, of order 2.

As mentioned in the introduction, Theorem A can be applied to T2, even though

T2 is a modular form with character. Since T2 satisfies Condition (	) by Proposition 3.2,
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3462 S. Grushevsky et al.

we obtain a cusp form D2,5(T2) of weight 12 that is not identically zero on θnull. As in

Corollary B, it follows that

sMov(A2) ≤ s
(
D2,5(T2)

)
= 12 .

Proof of Corollary C for g = 2. It is known [24] that the ideal of cusp forms inside the

ring of genus 2 Siegel modular forms is generated by two modular forms χ10 := T2
2 and

χ12, which has class [χ12] = 12λ−δ. It then follows thatD2,5(T2) and χ12 are proportional,

and so D2,5(T2) realizes the moving slope. �

Since T2 satisfies Condition (	) by Proposition 3.2, and since T2 and χ12 are

square-free and without common factors, Lemma 4.4(v) ensures that the cusp form

[T2,χ12] does not vanish identically along θnull. By Lemma 4.4, it follows that

[
[T2,χ12]

]
= 36λ − 3δ ,

and so [T2,χ12] is another Siegel modular form that achieves the moving slope.

5.2 Jacobian and hyperelliptic loci

As mentioned in the introduction, it is possible to define a slope for effective divisors in

the moduli space Mg of projective curves of genus g. We denote

τg : Mg −→ Ag

the Torelli map that sends a smooth projective curve of genus g to its Jacobian.

The Torelli map is known to extend to a morphism τg : Mg → Ag from the

Deligne–Mumford compactification Mg of Mg to Ag [1], but for our purposes, it will

suffice to work with the well-known partial extension

τ ′
g : M′

g −→ A′
g

from the moduli space M′
g of irreducible stable curves of genus g with at most one

node. The partial compactification M′
g is the union of Mg and the boundary divisor

�′ = ∂M′
g consisting of singular curves with only one node,which is non-separating. It is
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Differentiating Siegel Modular Forms 3463

well-known that PicQ(M′
g) = Qλ1⊕Qδ′ for g ≥ 3, and that themap induced by τ ′

g on Picard

groups is

(τ ′
g)

∗λ = λ1, (τ ′
g)

∗δ = δ′ .

The slope for a divisor aλ1 − bδ′ on M′
g is defined to be a/b, and the slopes of cones of

divisors on M′
g are defined analogously to A′

g.

Remark 5.2. The standard definition of slope for an effective divisor in Mg involves

the vanishing order at all the boundary divisors of Mg. It follows from [20] that, if we

limit ourselves to divisors of slopes less than 29/3 for g ≤ 5, then the two definitions are

equivalent.

As a consequence of the above discussion, we have obtained the following

Lemma 5.3. Let g ≥ 4 and let E be an (internal) effective divisor on Ag.

(i) If E does not contain the Jacobian locus Jg, then (τ ′
g)

−1(E) is an effective

divisor in M′
g of slope s(E);

(ii) If s(E) < sEff(Mg), then E contains the Jacobian locus Jg.

Intersecting an effective divisor with the locus HJ g of hyperelliptic Jacobians

can also provide a constraint for the slope. The closure H′
g of the locus of hyperelliptic

curves Hg inside M′
g is obtained by adding the locus ∂H′

g consisting of curves with one

non-disconnecting node, obtained from smooth hyperelliptic curves of genus g − 1 by

identification of two points that are exchanged by the hyperelliptic involution, cf. [9].

Call the restriction of λ1 to H′
g from Mg still λ1, and denote ξ0 the class of ∂H′

g

(which is also the restriction of δ0 from Mg). It is known that PicQ(H′
g) has dimension 1

and is generated by λ1, ξ0 with the relation (8g+ 4)λ1 = gξ0 (see [9, Proposition 4.7]). The

map τg restricts to H′
g → A′

g and sends ∂H′
g to the boundary of A′

g.

The following result was proven by Weissauer [53] (see [45] for details). Here we

present a different argument.

Proposition 5.4. For every g ≥ 3, modular forms of slope strictly less than 8 + 4
g must

contain HJ g.

Proof. Let F be a modular form on Ag with class [F] = aλ − bδ, and suppose that F does

not vanish on the entire HJ g. We want to show that s(F) = a
b ≥ 8 + 4

g .
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3464 S. Grushevsky et al.

The pullback of F onHg vanishes on an effective divisor V of class [V] = aλ1−βξ0

with β ≥ b. Using the relation in PicQ(H′
g), we obtain [V] = β

(
a
β

−
(
8 + 4

g

))
λ1.

Consider now the double cover Ct of P
1 branched at λ1, . . . , λ2g+1, t, and fix distinct

λ1, . . . , λ2g+1, t0 such that Ct0 /∈ V. Then (Ct)t∈P1 induces a map P1 → H′
g, whose image

is a complete, irreducible curve B ⊂ H′
g not contained in V ∪ ∂H′

g. It follows that

degB(V) ≥ 0 and degB(λ1) > 0, and so a
β

−
(
8 + 4

g

)
≥ 0. The conclusion follows, since

s(F) ≥ a
β
. �

5.3 Case g = 3

The moduli spaceA3 has a meaningful effective divisor, namely (the closure of) the locus

HJ 3 of hyperelliptic Jacobians.

Proof of Corollary C for g = 3. By Proposition 5.4, a divisor in A3 with slope

smaller than 28
3 must contain HJ 3. This implies that the only effective divisor that

could be of slope under 28
3 is (the closure of) the hyperelliptic locus itself, and so

sMov(A3) ≥ 28
3 . Since the closure of HJ 3 coincides with the theta-null divisor, we obtain

from (4)

s(HJ 3) = s(T3) = s(18λ − 2δ) = 9 < 28
3 .

It follows that

sEff(A3) = s(HJ 3) = 9 and sMov(A3) ≥ 28
3 .

Since T3 satisfies Condition (	) by Proposition 3.2, Theorem A provides a modular form

D3,18(T3) of class 56λ − βδ with β ≥ 6. If β ≥ 7, then the slope of D3,18(T3) would be

s(D3,18(T3)) ≤ 56/7, which is less than 9, contradicting the knowledge of effective slope.

Thus β = 6, and

sMov(A3) ≤ s(D3,18(T3)) = 56
6 = 28

3 .

This proves that the moving slope is equal to sMov(A3) = 28
3 , and is realized by D3,18(T3).

�

There are also other constructions of Siegel modular forms in A3 of slope 28
3 :
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Differentiating Siegel Modular Forms 3465

• LetM be the set of all octuplets of even characteristics that are cosets of some

three-dimensional vector space of characteristics, and define

χ28 :=
∑

M even octuplet coset

(
T3∏

m∈M θm

)2

.

This can be checked to be a modular form of class [χ28] = 28λ − 3δ, see [51].

We verify that χ28 cannot be divisible by T3, as otherwise χ28/T3 would be a

holomorphic cusp form of weight 10, which does not exist by [38, 51].

• Alternatively, one can consider the forms

χ140 :=
∑

m even

(
T3
θm

)8

,

which can be shown to have class [χ140] = 140λ − 15δ. We remark that the

decomposable locus Adec
3 can be described by the equations T3 = χ140 = 0,

sinceAdec
3 is simply the locus where at least two theta constants vanish. Since

Adec
3 has codimension 2 within A3, this confirms that the forms T3 and χ140

could not have a common factor.

• Since T3 satisfies Condition (	) by Proposition 3.2, and since T3 and χ28 are

square-free and without common factors, Lemma 4.4(v) ensures that the

Rankin–Cohen bracket [T3,χ28] does not vanish identically along θnull. By

Lemma 4.4, [T3,χ28] has weight 140, and vanishes to order β ≥ 15 along the

boundary. However, if it were to vanish to order 16 or higher, then its slope

would be at most 140
16 = 8.75, which is impossible since sEff(A3) = 9. Thus, we

must have β = 15, so that

[
[T3,χ28]

]
= 140λ − 15δ

is a Siegel modular form that also realizes sMov(A3) = 140
15 = 28

3 . It is not clear

whether [T3,χ28] and χ140 are proportional; however, it is is easy to see that

χ140 lies in the ideal generated by T3 and [T3,χ28].
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3466 S. Grushevsky et al.

5.4 Case g = 4

The locus of Jacobians J4 is a divisor in A4, which is known to be the unique effective

divisor on A4 of minimal slope, see [44]. It is known that the effective slope of M4 is

sEff(M4) = 17
2 (see [16] and [20]),

By Riemann’s theta singularity theory, theta divisors of Jacobians are singular,

and in fact J4 = N′
0. Since I4 = S4 and since [I4] = 8λ − δ as recalled in Section 3.3, this

reconfirms the equality

sEff(A4) = s(I4) = s(8λ − δ) = 8 .

As I4 satisfies Condition (	) by Proposition 3.2, Theorem A applied to I4 produces a

modular form D4,8(I4) not divisible by I4, of class [D4,8(I4)] = 34λ−βδ, with β ≥ 4. Again,

if β were at least 5, the slope would be at most 34/5 < 8, contradicting the effective slope,

and thus we must have β = 4.

Proof of Corollary C for g = 4. From the above discussion, it follows that

sMov(A4) ≤ s(D4,8(I4)) = s(34λ − 4δ) = 17
2 .

On the other hand, Lemma 5.3 implies that any effective divisor in A4 that does

not contain the locus of Jacobians has slope at least sEff(M4) = 17
2 . It follows that

sMov(A4) ≥ 17
2 .

We thus conclude that sMov(A4) = 17
2 = s(D4,8(I4)). �

There are at least two other modular forms in A4 that realize the moving slope.

• The first one is T4, whose class is [T4] = 68λ − 8δ by (4).

• The second one is the Rankin–Cohen bracket [I4,T4]. Since I4 satisfies Condi-

tion (	) by Proposition 3.2, and since I4 and T4 are square-free and without

common factors, Lemma 4.4 ensures that [I4,T4] does not vanish identically

along N′
0 = J4, and has class 306λ − βδ, with β ≥ 36. Since the effective slope

of A4 is 8 and the moving slope of A4 is 17
2 , we must have β = 36 and

sMov(A4) = 17
2 = 306

36 = s([I4,T4]) .
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Differentiating Siegel Modular Forms 3467

As mentioned in the introduction, the pullback τ ∗
gTg via the Torelli map gives

2
null onMg, that is,
√
Tg is not a modular form, but its restriction to Jg is a Teichmüller

modular form. For g = 4, we exhibit a Siegel modular form that intersects J4 in the

divisor 
null, with multiplicity 1.

Proof of Corollary F. Recall that S4 = I4. By Corollary C for g = 4 proven above,D4,8(S4)

realizes the moving slope of A4, and so it does not contain the divisor of minimal slope,

namely the Schottky divisor. Thus, τ ∗
4D4,8(S4) is an effective divisor on M′

4 of class

34λ1 − 4δ′, which thus realizes the effective slope sEff(M4) = 17
2 . Thus, the pullbacks

τ ∗
4T4 and τ ∗

4D4,8(S4) must have the same support. Since [T4] = 2[D4,8(S4)], we conclude

that τ ∗
4D4,8(S4) = 
null. �

Remark 5.5. For the sake of completeness, we recall that the moving slope of M4 is

sMov(M4) = 60/7, see [22]. We can exhibit a modular form (analogous to χ140 for g = 3)

with this slope, namely

φ540 :=
∑

m even

(
T4
θm

)8

.

The Siegel modular form φ540 has class 540λ − 63δ, see [34], and hence τ ∗
4φ540 gives an

effective divisor on M′
4 that realizes the moving slope sMov(M

′
4). Finally, we observe

that both T4 and φ540 have slope less than 9, and the equations T4 = φ540 = 0 define, set

theoretically, the hyperelliptic locus H4 ⊂ M4, as discussed in [23].

5.5 Case g = 5

We recall that one of the main results of [18] was the proof that the divisor N′
0 in A5 has

minimal slope:

sEff(A5) = s(I5) = s(108λ − 14δ) = 54
7 = 7.714 . . .

Since I5 satisfies Condition (	) by Proposition 3.2, by Theorem A

[D5,108(I5)] = 542λ − βδ with β ≥ 70

is a modular form that does not vanish identically on N′
0.
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3468 S. Grushevsky et al.

Proof of Corollary B. If β ≥ 71, then the slope of D5,108(I5) would be at most

542/71 = 7.633 · · · < 7.714 · · · = 54/7 = sEff(A5) ,

which is a contradiction. Thus β = 70, and

sMov(A5) ≤ s(D5,108(I5)) = 271
35 = 7.742 . . . �

5.6 Case g = 6

For genus 6, the slope is bounded from below s(A6) ≥ 53
10 by [21].Moreover, an interesting

Siegel modular form θL,h,2 of class 14λ−2δ was constructed in [11], showing that s(A6) ≤ 7

and that the Kodaira dimension of A6 is non-negative.

Proof of Corollary E. In light of the classification of modular forms in low genus and

weight in [5] and [6], in genus 6, there are no cusp forms in weight 7, 8, 9, 11, 13. Now,

in genus 6, there are no Siegel modular forms of weight 2 and we have seen above that

s(A6) ≥ 53
10 . Hence, the unique (up to multiple) cusp form of weight 10 vanishes with

multiplicity one along D (and so does a possible cusp form in weight 6). As ordD θL,h,2 = 2,

the form θL,h,2 must thus be prime.

As for the second claim, there are two possibilities:

(a) there exists a Siegel modular form of slope at most 7, not divisible by θL,h,2:

in this case, from Lemma 2.2 it follows that sMov(A6) ≤ 7;

(b) θL,h,2 is the unique genus 6 Siegel modular form of slope 7 (up to taking

powers): the claim then follows from Corollary B, since s(D6,14(θL,h,2)) =

7 + 2
2·6 = 43

6 (as usual, if it happened that D6,14(θL,h,2) were to vanish to

order strictly higher than 6 ·2 = 12, then its slope would be at most 86
13 < 7).

In either case, the result is proven. �

In the above case (a), the moduli spaceA6 would have Kodaira dimension at least

1, in case (b), it would have Kodaira dimension 0.

6 Pluriharmonic Differential Operators

In this section, we introduce a suitable differential operator on the space of modular

forms and prove Theorem A using a general result of [32]. Before introducing the relevant

notions, we explain the outline of what is to be done.
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Differentiating Siegel Modular Forms 3469

We are looking for an operatorDg,a that will map a genus g Siegel modular form F

ofweight a to anothermodular form satisfying certain properties:more precisely,Dg,a(F)

will be a polynomial in F and its partial derivatives. There are various motivations for

looking forDg,a of such a form,which are discussed for the general setup for the problem

in [32], [33], [14].

In our situation, motivated by the occurrence of det(∂F) in our treatment of

Rankin–Cohen bracket (see Remark 4.6 and Proposition 4.7), we will want Dg,a(F) to

restrict to det(∂F) along the zero locus {F = 0}. Note that det(∂F) is homogeneous in

F of degree g, in the sense that each monomial involves a product of g different partial

derivatives of F, and moreover it is a purely g’th order differential operator, in the sense

that each monomial involves precisely g differentiations. Hence, we will look for a Dg,a

that shares these two properties.

Besides F �→ det(∂F), another operator with the above properties is F �→

Fg−1(det ∂)F, where each monomial is Fg−1 multiplied by a suitable g’th order partial

derivative of F. Of course Dg,a(F) cannot be defined either as det(∂F) or as Fg−1(det ∂)F,

as these are not modular forms. But a wished-for Dg,a can be constructed explicitly: in

order to do so,we will use the general machinery of [32],which implies that a differential

operator with constant coefficients maps a non-zero modular form to a modular form if

the corresponding polynomial is pluriharmonic and satisfies a suitable transformation

property under the action of GL(g,C).

We now begin by reviewing the general notation, before stating a particular case

of [32, Thm. 2] that allows the construction of Dg,a.

6.1 Polynomials and differential operators

Let R1, . . . ,Rg be a g-tuple of g× g symmetric matrices, and denote the entries of Rh by

(rh;ij). Denote

C[R1, . . . ,Rg] := C[{rh;ij}]

the space of polynomials in the entries of these matrices. The group GL(g,C) naturally

acts by congruence on each symmetric matrix Rh (namely, via Rh �→ ARhA
t for every

A ∈ GL(g,C)), and so on the space C[R1, . . . ,Rg]. For every integer v ≥ 0, we denote by

C[R1, . . . ,Rg]v ⊂ C[R1, . . . ,Rg] the vector subspace of those polynomials P ∈ C[R1, . . . ,Rg]

that satisfy

P(AR1A
t, . . . ,ARgA

t) = det(A)vP(R1, . . . ,Rg)

for all A ∈ GL(g,C).
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3470 S. Grushevsky et al.

For every polynomial Q ∈ C[R1, . . . ,Rg], we define

Q∂ := Q(∂1, . . . , ∂g), where as usual (∂h)ij :=
1 + δij

2

∂

∂τh;ij
.

Such Q∂ is then a holomorphic differential operator with constant coefficients acting

on holomorphic functions in the variables τh;ij. We further define the holomorphic

differential operator DQ that sends a g-tuple of holomorphic functions F1(τ1), . . . ,Fg(τg)

on Hg to another holomorphic function on the Siegel space given by

DQ(F1, . . . ,Fg)(τ ) := Q∂(F1(τ1) · · · Fg(τg))
∣∣∣ τ1=···=τg=τ .

What this means is that applying each ∂h takes the suitable partial derivatives of Fh

with respect to the entries of the period matrix τh, and then once the polynomial in such

partial derivatives is computed, it is evaluated at the point τ1 = · · · = τg = τ .

While the general theory of applying DQ to a g-tuple of modular forms is very

interesting, we will focus on the case F = F1 = · · · = Fg, denoting then simply DQ(F) :=

DQ(F, . . . ,F).

Example 6.1. It is immediate to check that the following polynomial (the general

notation R will be introduced in Section 6.2 below)

R(1, . . . , 1) =
∑

σ∈Sg

sgn(σ )
∏

{a1,...,an}={1,...,n}

ra1;1,σ(1) · · · ran;n,σ(n)

induces the differential operator D
R(1,...,1)(F) = g! det(∂F). For example, for g = 2, this

operator first gives

∂F(τ1)

∂τ1;1,1

∂F(τ2)

∂τ2;2,2
+

∂F(τ1)

∂τ1:2,2

∂F(τ2)

∂τ2;1,1
− 2

∂F(τ1)

∂τ1;1,1

∂F(τ2)

∂τ2;1,2

and then restricting to τ1 = τ2 yields 2det(∂F). On the other hand, the polynomial

R(g, 0, . . . , 0︸ ︷︷ ︸
g−1 times

) :=
∑

σ∈Sg

sgn(σ )

g∏

j=1

r1;j,σ(j)

induces the differential operator D
R(g,0,...,0)(F) = Fg−1(det ∂)F. We stress that while each

term of D
R(1,...,1) is a product of g first-order partial derivatives of F, each term of

D
R(g,0,...,0) is equal to Fg−1 multiplied by one g’th order partial derivative of F.
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Differentiating Siegel Modular Forms 3471

Our main result is the following Theorem 6.2, which is a refined version of

Theorem A: indeed, to obtain Theorem A from it, we just need to set

Dg,a(F) := 1
g!DQg,a

(F)

for every modular form F of genus g ≥ 2 and weight a ≥
g
2 (the constant factor g! is

introduced only for notational convenience).

In order to motivate the statement below, recall that we wantDQg,a
(F) to be equal

to g! det(∂F) modulo F. Since g! det(∂F) = D
R(1g)(F) as in Example 6.1, and since R(1g)

belongs to C[R1, . . . ,Rg]2, it is rather natural to look for Qg,a inside C[R1, . . . ,Rg]2.

Theorem 6.2. For every g ≥ 2 and every a ≥
g
2 , there exists a polynomial Qg,a ∈

C[R1, . . . ,Rg]2 such that the following properties hold for every genus g Siegel modular

form F of weight a:

(i) DQg,a
(F) is a Siegel modular form of weight ga+ 2;

(ii) if ordD F = b, then ordDDQg,a
(F) ≥ gb;

(iii) the restriction of DQg,a
(F) to the zero locus {F = 0} of F is equal to g! ·det(∂F).

Moreover, for any other polynomial Q′
g,a ∈ C[R1, . . . ,Rg]2 such that DQ′

g,a
satisfies

properties (i) and (iii), the differenceDQg,a
(F)−DQ′

g,a
(F) is a Siegel modular form divisible

by F.

The above differential operator DQg,a
, which is homogeneous of degree g, can be

also applied to modular forms with a character, which only occur for g = 2: in this case,

the output is a modular form (with trivial character).

Remark 6.3. As a consequence of Theorem 6.2(iii), if a modular form F of genus g and

weight a ≥
g
2 satisfies Condition (	), then DQg,a

(F) does not vanish identically on the zero

divisor of F.

The reason we are able to constructQg,a explicitly is that we can use a lot of prior

work, especially by the second author and collaborators, on differential operators acting

on modular forms. In particular, by Theorem 6.10 the operator DQg,a
will map modular

forms to modular forms if Qg,a is pluriharmonic—this essential notion will be recalled

in Section 6.5.

Thus to prove Theorem 6.2, it will suffice to construct a pluriharmonic Qg,a ∈

C[R1, . . . ,Rg]2. Property (i) will rely on Theorem 6.10 and (ii) will be easily seen to hold.

Up to rescaling, we will also check (iii), and the last claim will follow.
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3472 S. Grushevsky et al.

6.2 A basis of C[R1, . . . ,Rg]2

Consider the g-tuple of symmetric g× g matrices R1, . . . ,Rg. We set

R := t1R1 + · · · + tgRg , (10)

and denote by R(n) ∈ C[R1, . . . ,Rg] the coefficients of the expansion of the determinant

det(R) =
∑

n∈Ng

R(n)tn1
1 . . . t

ng
g

as a polynomial in the variables t1, . . . , tg, where

Ng := {n = (n1, . . . ,ng) ∈ Ng |nh ≥ 0for allh,
∑

nh = g} .

The importance of the polynomialsR(n) for us relies on the fact that they clearly belong

to C[R1, . . . ,Rg]2, simply because det(ARAt) = det(A)2 det(R) for all A ∈ GL(g,C).

The following lemma, of a very classical flavor, was communicated to us by

Claudio Procesi.

Lemma 6.4. The set of polynomials {R(n)}n∈N is a basis of C[R1, . . . ,Rg]2 .

Proof. Let V be a complex g-dimensional vector space and let GL(V) naturally act on

Sym2(V∗)⊕g via

A · ((φ1 ⊗ φ1), . . . , (φg ⊗ φg)) := ((φ1A) ⊗ (φ1A), . . . , (φgA) ⊗ (φgA))

for A ∈ GL(V). Consider the C-algebra I(V,g) of SL(V)-invariants inside Sym2(V∗)⊕g.

The quotient GL(V)/SL(V) ∼= C∗ acts on I(V,g) and, under this action, the algebra of

invariants decomposes as

I(V,g) =
⊕

d

I(V,g)d, where I(V,g)d := {P ∈ I(V,g) | A · P = det(A)2dP}.

Clearly, I(V,g)d is simply the subspace of I(V,g) consisting of invariant polynomial

maps P : Sym2(V)⊕g → C of total degree d · dim(V) with respect to the above C∗-action.
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Differentiating Siegel Modular Forms 3473

The subspace I(V,g)1, which by definition is C[R1, . . . ,Rg]2, decomposes as

I(V,g)1 =
⊕

n∈Ng

I(V,g)n

where I(V,g)n :=
⊗g

i=1
Symni(Sym2(V∗)) denotes the subspace of invariant polynomial

functions Sym2(V)⊕g → C of multi-degree n.

Since it is easy to check that R(n) ∈ I(V,g)n, it is enough to show that I(V,g)n

has dimension 1 for all n ∈ Ng. Moreover, I(V,g)n is isomorphic to I(V,g)(1,...,1) =

(Sym2(V∗)⊗g)SL(V) as an SL(V)-module for all n ∈ Ng, and so it is enough to show that

(Sym2(V∗)⊗g)SL(V) has dimension at most 1 (and in fact it will have dimension 1, since

R(n) �≡ 0).

Thinking of (Sym2(V∗)⊗g)SL(V) as a subspace of ((V∗)⊗2g)SL(V), we describe a basis

of ((V∗)⊗2g)SL(V); it is enough to do that for V = Cg.

Let P be the set of all permutations (I, J) = (i1, . . . , ig, j1, . . . , jg) of {1, 2, . . . , 2g}

such that ih < jh for all h = 1, . . . ,g. For every (I, J) ∈ P, we denote by

[i1, . . . , ig][j1, . . . , jg] : V
⊗2g −→ C

the linear map that sends v1 ⊗ · · · ⊗ v2g to det(vI)det(vJ), where vI is the matrix whose

h-th column is vih (and similarly for vJ ). It is a classical fact that the collection of

[i1, . . . , ig][j1, . . . , jg] with (I, J) ∈ P is a basis of ((V∗)⊗2g)SL(V), cf. [41, pages 387, 504].

Fix now (I, J) and consider the restriction of [i1, . . . , ig][j1, . . . , jg] to Sym2(V)⊗g,

and in particular to the vectors of type

v1 ⊗ v1 ⊗ v2 ⊗ v2 ⊗ · · · ⊗ vg ⊗ vg,

which generate Sym2(V)⊗g. Note that [i1, . . . , ig][j1, . . . , jg] is alternating both in I and in J,

and vanishes on all vectors v1⊗v1⊗v2⊗v2⊗· · ·⊗vg⊗vg as soon as either I or J contains

{2m − 1, 2m} for some m = 1, . . . ,g. It follows that all elements [i1, . . . , ig][j1, . . . , jg] of

the above basis of ((V∗)⊗2g)SL(V) vanish on Sym2(V)⊗g, except possibly [1, 3, 5, . . . , 2g −

1][2, 4, 6, . . . , 2g]. We conclude that (Sym2(V∗)⊗g)SL(V) is at most 1-dimensional. �

6.3 Definition of the polynomial Qg,a

In view of Lemma 6.4, every polynomial in C[R1, . . . ,Rg]2 must be a linear combination of

the R(n)’s. Here we define a sought polynomial Qg,a ∈ C[R1, . . . ,Rg]2 as a linear combi-
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3474 S. Grushevsky et al.

nation of the R(n)’s by providing explicit formulas for its coefficients. Pluriharmonicity

of Qg,a will be defined and verified in Section 6.6. This Qg,a is not unique in general, but

another choice makes no difference for proving Theorem A and Corollary C.

We define the constant

C(a, 1) := (g− 1)

g−1∏

i=1

(2a− i) .

Moreover, for every m = 2, . . . ,g we define the constant

C(a,m) := (−1)m−1(m− 1)! (2a)m−1

g−1∏

i=m

(2a− i) ,

where for m = g the last product above is declared to be equal to 1, so that C(a,g) =

(−1)g−1(g− 1)! (2a)g−1.

By an abuse of notation, we delete the index a from C(a,m) and we assume 2a ≥

g ≥ 2, so that C(1) �= 0, and define then

Qg,a :=
1

C(1)

∑

n∈Ng

c(n)R(n) ,

where

1. c(1, . . . , 1) := C(1);

2. if at least two of n1, . . . ,ng are greater than 1, then we set c(n) := 0;

3. if nh = m > 1 for some h, while 0 ≤ nj ≤ 1 for any j �= h, then we set

c(n) := C(m).

Hence c(n) �= 0 if and only ifn is equal to (m, 1, 1, . . . , 1, 0, 0, . . . , 0) for somem ≥ 1,

up to permuting its components.

6.4 Explicit formulas

In order to have a more explicit expression for the polynomials R(n), we expand the

relevant determinants.

Notation 6.5. If M is a g × g matrix and I, J ⊂ {1, 2, . . . ,g} with |I| = |J|, we denote

by MIJ the minor of M consisting of rows I and columns J, and denote by detIJ(M) the

determinant of MIJ (if |I| = |J| = 0, then we formally set detIJ(M) := 1). Moreover, we let

Î be the complement of I and, if i ∈ {1, 2, . . . ,g}, then we let ı̂ := {1, 2, . . . ,g} \ {i}.
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Differentiating Siegel Modular Forms 3475

Applying the Laplace expansion several times yields

R(n) =
∑

I•,J•

ε(I•, J•)det
I1J1

(R1) · · ·det
IgJg

(Rg) , (11)

where (I•, J•) = (I1, . . . , Ig, J1, . . . , Jg) and

• I1, . . . , Ig, J1, . . . , Jg run over all subsets of {1, . . . ,g} such that |Ii| = |Ji| = ni for

each i = 1, . . . ,g and �
g
i=1

Ii = �
g
i=1

Ji = {1, . . . ,g};

• ε(I•, J•) is the signature of the element of Sg thatmaps (I1, . . . , Ig) to (J1, . . . , Jg),

where the elements inside each subset Ii or Ji are ordered from minimum to

maximum.

In order to computeD
R(n)(F, . . . ,F), consider n = (m, 1, . . . , 1, 0, . . . , 0). Regarding

the partial sum of the parts for |Ij| = 1 as expansions of determinants by Laplace

expansion, we have

D
R(n)(F, . . . ,F) = Fm−1

∑

|I|=|J|=m

ε(I, J)(g−m)! (detIJ ∂)F · det̂I ,̂J(∂F) , (12)

where we denote

ε(I, J) := (−1)i1+···+im+j1+···+jm .

Thus, we have obtained the following.

Corollary 6.6.

(i) If n = (1, . . . , 1), then D
R(1,...,1)(F) = g! det(∂F).

(ii) If n ∈ Ng and n �= (1, . . . , 1), then D
R(n)(F) is a multiple of F.

Proof. For (i), note that

g∑

j=1

(−1)i+j∂ijF · det̂ı ĵ (∂F) = det(∂F)

for every i = 1, . . . ,g. Then formula (12) for n = (1, 1, . . . , 1) (i.e., for m = 1) yields

D
R(1,...,1)(F) = (g− 1)!

g∑

i,j=1

(−1)i+j∂ijF · det̂ı ĵ (∂F) = g! det(∂F) .
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3476 S. Grushevsky et al.

For (ii),we observe that since
∑

nh = g, and allnh ≥ 0, it follows that unlessn = (1, . . . , 1),

there exists at least one h such that nh = 0. But then the polynomial R(n) would contain

no rh;ij, which is to say that Fh is not differentiated at all by D
R(n)(F1, . . . ,Fg). This finally

means that D
R(n)(F1, . . . ,Fg) is divisible by Fh, and thus D

R(n)(F) is divisible by F. �

Example 6.7. For g = 2, 3 we have

DQ2,a
(F,F) = 2det(∂F) +

2(2a)

1 − 2a
F · (det ∂)F ,

DQ3,a
(F,F,F) = 6det(∂F) +

3(2a)2

(2a− 1)(2a− 2)
F2 · (det ∂)F

−
3(2a)

(2a− 1)
F

3∑

i,j=1

(∂ijF) · (detı̂ ĵ ∂)F .

6.5 Pluriharmonic polynomials

Our motivation for the construction below is as follows. For any reasonable lattice L in

Rm and a pluriharmonic, in the sense defined below, polynomial P̃(X) in n × m variable

matrix X satisfying P̃(AX) = det(A)kP̃(X) for any A ∈ GL(n,C), it is well-known that the

theta series

θL,P̃(τ ) =
∑

x1,...,xn∈L

P̃(x1, . . . ,xn) exp(2π i
∑

i,j

(xi,xj)τij)

is a Siegel modular form of weight m
2 + k. On the other hand, for P = 1 (constant 1),

we have

1 + δij

2

∂

∂τij
θL,1 = (2π i)

∑

x1,...,xn∈L

(xi,xj) exp(2π i
∑

i,j

(xi,xj)τij).

This means that if P̃(X) is a function of (xi,xj), then we can regard θL,P̃ as a derivative of

theta series θL,1. This morally motivates Theorem 6.10 below, though the actual content

and the proof of the theorem are much more subtle. Theorem 6.10 shows that the

most important step toward the proof of Theorem 6.2 is checking that Qg,a, defined in

Section 6.3 as a linear combination of R(n), is pluriharmonic. In this section, we recall

the relevant setup, definitions, and statements.
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Differentiating Siegel Modular Forms 3477

Fix an g× k matrix X = (xiν), and denote for 1 ≤ i, j ≤ g

�ij(X) :=

k∑

ν=1

∂2

∂xiν∂xjν
.

For a polynomial P(R) in the entries of a symmetric g × g matrix R = (rij), we denote

P̃(X) := P(XXt).

Definition 6.8. The polynomial P is called pluriharmonic (with respect to X) if �ijP̃ = 0

for all 1 ≤ i, j ≤ g.

To detect this pluriharmonicity in terms of R, we define the differential operator

in variables (rij) by

Dij := k · ∂ij +

g∑

u,w=1

ruw∂iu∂jw , (13)

where ∂ij :=
1+δij
2

∂
∂rij

. Then a direct computation yields

(DijP)(XXt) = �ij (̃P(X)) , (14)

where P(rij) is any polynomial, and the LHS means Dij is applied to P, and then evaluated

at XXt.

This equality shows that computing the �ij derivative of P̃ (which is a second

order differential operator) amounts to computing the Dij applied to P, which is a differ-

ential operator that includes first and second order derivatives. Thus, pluriharmonicity

is equivalent to the condition Dij(P) = 0 for all 1 ≤ i, j ≤ g.

Now the full setup we require is as follows. For a positive integer k = 2a, we

consider a g-tuple of g× k matrices X1, . . . ,Xg, and denote Rh := XhX
t
h.

Definition 6.9. A polynomial P ∈ C[R1, . . . ,Rg] is called pluriharmonic if

P̃(X1, . . . ,Xg) := P(X1X
t
1, . . . ,XgX

t
g) ,

is pluriharmonic with respect to the g× (gk) matrix X = (X1, . . . ,Xg).
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3478 S. Grushevsky et al.

The following result is a special case of [32, Theorem 2], which shows the

importance of pluriharmonicity.

Theorem 6.10. For g ≥ 2, let P ∈ C[R1, . . . ,Rg]2 and let F �= 0 be a Siegel modular form

of genus g and weight a ≥
g
2 . Then DP(F, . . . ,F) is a Siegel modular form of weight ga+ 2

if P is pluriharmonic.

Let us first give an elementary characterization of pluriharmonicity.

Lemma 6.11. Let P ∈ C[R1, . . . ,Rg].

(i) The polynomial P̃(X) is pluriharmonic if and only if P̃(AX) is harmonic (i.e.,
∑g

i=1
�iiP̃(AX) = 0) for any A ∈ GL(g,C).

(ii) Assume that P̃ ∈ C[R1, . . . ,Rg]v for some v. Then, P̃(X) is pluriharmonic if and

only if �11(̃P) = 0.

Proof. The claim (i) is remarked in [36] and we omit the proof. In order to prove (ii), note

that pluriharmonicity of P̃ implies that �11(̃P) = 0 by definition. Hence, it is enough to

prove that �11(̃P) = 0 implies pluriharmonicity. For a fixed i with 1 ≤ i ≤ g, let A be the

permutation matrix that exchanges the first row and the i-th row. Since

�ii(X) · P̃(X) = det(A)−v�ii(X) · P̃(AX)

= det(A)2−v�11(AX) · P̃(AX) = 0,

the conclusion follows. �

Denoting Dh;11 the differential operator D11 defined in (13) with respect to the

entries of thematrixRh, and using (14) to rewrite�h,ij for each Xh asDh;11, by Lemma 6.11

we have the following.

Corollary 6.12. Suppose that P̃ ∈ C[R1, . . . ,Rg]v for some v. Then P is pluriharmonic

with respect to the g× (gk) matrix (X1, . . . ,Xg) if and only if

g∑

h=1

Dh;11P = 0 . (15)

The above corollary applies to Qg,a and simplifies the verification of its plurihar-

monicity.
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Differentiating Siegel Modular Forms 3479

6.6 Pluriharmonicity of Qg,a

The result that we want to show is the following.

Proposition 6.13. The polynomial Qg,a is pluriharmonic.

Since we will be dealing with minors of the matrix R defined by (10), we let

N′ := {n′ = (n′
1, . . . ,n

′
g) ∈ Ng |n′

h ≥ 0 for all h,
∑

n′
h = g− 1} , (16)

and we denote by R̂k;l the determinant of the matrix Rk̂;̂l, and denote by R̂k;l(n
′) the

polynomial appearing in the expansion

R̂k;l =
∑

n′∈N′

R̂k;l(n
′)t

p1
1 · · · t

pg
g .

We can now compute the derivative of R(n) that enters into the formula (15) for

pluriharmonicity.

Lemma 6.14. For any n ∈ Ng, we have

Dh;11R(n) = 2(k− nh + 1)R̂1;1(n − eh) ,

where k = 2a, and {e1, . . . ,eg} is the standard basis of Zg.

Proof. By symmetry, it is enough to prove this for h = 1; for simplicity, we just write

rij for the entries of the symmetric matrix r1;ij, and define ∂ by (8). We recall that D1;11 =

k · ∂11 +
∑g

i,j=1
rij∂1i∂1j.

Then by treating the cases i = 1 and i �= 1 separately, and checking the factor of

1/2 versus 1 appearing in the definition of ∂ for these entries, we see that

∂1i det(R) = 2(−1)1+it1R̂1;i

for any i = 1, . . . ,g. To compute the second order derivatives appearing in D1;11, we first

note that since R̂1;1 does not depend on any r1i, we have ∂1i∂1j det(R) = 0 if i = 1 or j = 1.
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Otherwise, for i, j �= 1, we compute

rij∂1i∂1j det(R) = (−1)1+jt1rij∂1iR̂1;j = (−1)1+j+1+(i−1)t21rijR̂{1,i};{1,j}

= (−1)(−1)(i−1)+(j−1)t21rijR̂{1,i};{1,j} .

Summing these identities yields

g∑

i,j=2

rij∂1i∂1j det(R) = (−t1)

g∑

i,j=2

t1rij(−1)(i−1)+(j−1)R̂{1,i};{1,j} .

Here for a fixed i, the sum
∑g

j=2
(−1)(i−1)+(j−1)rijR̂{1,i};{1,j} is nothing but the derivative of

the (i− 1)-th row of R̂1;1 with respect to t1, and thus

g∑

i,j=2

(−1)(i−1)+(j−1)rijR̂{1,i};{1,j} =
∂

∂t1
R̂1;1 .

Recall that R̂1;1 =
∑

n′∈N′ R̂1;1(n
′)t

p1
1 . . . t

pg
g and note that

t1
∂

∂t1
(t
p1
1 . . . t

pg
g R̂1;1(n

′)) = p1t
p1
1 . . . t

pg
g R̂1;1(n

′) .

Thus, the coefficient of tn1
1 . . . t

ng
g in the expansion of D1;11 det(R) is equal to

2kR̂1;1(n1 − 1,n2, . . . ,ng) − 2(n1 − 1)R̂1;1(n1 − 1,n2, . . . ,ng) .

�

As a consequence of Lemma 6.14, we have

(2a− 1)!

(2a− g)!

g∑

h=1

Dh;11Qg,a =

g∑

h=1

c(n)Dh;11R(n)

=

g∑

h=1

2(k− nh + 1)c(n)R̂1;1(n − eh)

= 2

g∑

h=1

(k− n′
h)c(n

′ + eh)R̂1;1(n
′) .
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Thus, by Corollary 6.12, to check pluriharmonicity of Qg,a, it is enough to check that

g∑

h=1

(k− n′
h)c(n

′ + eh) = 0 (17)

for all n′ ∈ N′.

Comparing the degrees of R̂1;1(n
′) with respect to Rh, one can see that the set

{R̂1,1(n
′) |n′ ∈ N′} is linearly independent over C, and so (17) is actually equivalent to the

pluriharmonicity of Qg,a.

Proof of Proposition 6.13. It is enough to verify (17) for every n′ ∈ N′. Up to reordering

the entries of n′, we can assume that they are non-increasing.

If n′
1 ≥ n′

2 > 1, then n′ + e� has two entries larger than 1, and so by definition we

have c(n′ + e�) = 0 for any �. It follows that all the terms in (17) are equal to zero, and

the equation is trivially satisfied.

For n′ = (1, . . . , 1, 0), the LHS of (17) is

k · c(1, . . . , 1) + (k− 1)

(
c(2, 1, . . . , 1, 0) + c(1, 2, . . . , 1, 0) + · · · + c(1, . . . , 2, 0)

)

= k · C(1) + (k− 1)(g− 1)C(2) .

By definition of C(1) and C(2), the terms cancel, yielding 0.

Let now n′ = (m, 1, . . . , 1, 0, . . . , 0) with g − m entries 1. If 2 ≤ � ≤ g − m, then

n� > 1 and c(n′ + e�) = 0 by definition. We then have

c(n′ + e1) = c(m+ 1, 1, . . . , 1, 0, . . . , 0) = C(m+ 1) .

If g − m + 1 ≤ �, then n′ + e� is of type (m, 1, . . . , 1, 0, . . . , 0), (m, 1, . . . , 1, 0, 1, 0, . . . , 0),

. . . , or (m, 1, . . . , 1, 0, . . . , 0, 1): in all these cases n′ + e� has g − m entries 1, and thus

c(n′ + e�) = C(m). So LHS of (17) is given by

(k−m)C(m+ 1) + km · C(m) ,

which also vanishes by our definition of the constants C(m). �
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Example 6.15. In the case g = 2, we obtain

Q2,a = R(1, 1) −
2a

2a− 1
R(2, 0) −

2a

2a− 1
R(0, 2) ,

where we have used k = 2a. This is a special case of the discussion in [14].

Proof of Theorem 6.2. The polynomial Qg,a, defined in Section 6.3, belongs to

C[R1, . . . ,Rg]2 and is pluriharmonic by Proposition 6.13. Then (i) and the first part of

(ii) follow from Theorem 6.10.Moreover, since DQg,a
(F1, . . . ,Fg) is C-linear in each Fh, and

since Fh and
∂Fh
∂τij

have the same vanishing order at the boundary for all h and all i, j, it

follows that DQg,a
(F, . . . ,F) has vanishing order β ≥ gb. This completes the proof of (ii).

As for (iii), note that 2a ≥ g ≥ 2 ensures that the constant C(1) defined in Section

6.3 is non-zero and so, by construction,

Qg,a = R(1, . . . , 1) +
∑

n�=(1,...,1)

(2a− g)! c(n)

(2a− 1)! (g− 1)
R(n) .

By Corollary 6.6, it follows that

DQg,a
(F, . . . ,F) ≡ g! det(∂F) (mod F) ,

and so (iii) is proven. The last claim is an immediate consequence of (i) and (iii), as the

modular form DQg,a
(F) − DQ′

g,a
(F) vanishes along {F = 0}. �

Wemake one last remark on the above proof.We are not claiming that Qg,a or the

associated differential operator DQg,a
are unique. Since we are looking for polynomials

in C[R1, . . . ,Rg]2, these must be linear combinations of theR(n)’s by Lemma 6.4. IfQ′
g,a ∈

C[R1, . . . ,Rg]2 satisfies property (iii) in Theorem 6.2, then it must take the form

Q′
g,a = R(1, . . . , 1) +

∑

n�=(1,...,1)

c′(n)R(n)

by Corollary 6.6.Hence, the restrictions ofDQ′
g,a

(F) andDQg,a
(F) to the locus {F = 0} agree.

Note that the coefficients c′(n) may differ from the c(n) that were defined in Section 6.3.
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