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We study the cone of moving divisors on the moduli space A, of principally polarized
abelian varieties. Partly motivated by the generalized Rankin—-Cohen bracket, we con-
struct a non-linear holomorphic differential operator that sends Siegel modular forms to
Siegel modular forms, and we apply it to produce new modular forms. Our construction
recovers the known divisors of minimal moving slope on Ag for g < 4, and gives an
explicit upper bound for the moving slope of A5 and a conjectural upper bound for the

moving slope of Ag.

1 Introduction
1.1 Moduli of principally polarized abelian varieties and compactifications

Denote A, the moduli space of complex principally polarized abelian varieties (ppav),
which is the quotient of its (orbifold) universal cover, the Siegel upper half-space Hy,

by the action of the symplectic group Sp(2g,Z). Let A5 denote the Satake-Baily—Borel
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compactification, and recall that the Picard group Picgy(Ag) = QA is one-dimensional,
generated by the class A of the line bundle £ — A7 of Siegel modular forms of weight
one, which is ample on A;.

Let A’; be Mumford's partial compactification of A, so that 0.4’y = X ,/ £ 1,
where 7 : X;_; — A,_, denotes the universal family of ppav of dimension g — 1.

All toroidal compactifications of A, contain A’¢. The boundary of the perfect cone
toroidal compactification A, (we use this notation as no other toroidal compactification
will appear) is an irreducible Cartier divisor D, and dA'; is dense within D. The
compactification Ag is Q-factorial, with Picg Ag = QA®Qs, where § denotes the class of D.
The Picard group Picy A’y is generated by the restrictions of the classes 1 and § from A/
to A’g. Philosophically, in what follows, the definition of the slope of divisors takes place
on A’g, though to formally make sense of it we work on Ay (and refer to [27, Appendix]

for a discussion of why this notion is the same for any other toroidal compactification).

1.2 The ample and effective slopes

Given a divisor E on /_4g such that its class in the Picard group is [E] = aX — b, its slope is
defined to be s(E) := a/b. The slope of a cone of divisors on A is defined as the infimum
of the slopes of divisors contained in the cone. Shepherd-Barron [48] proved that the
ample slope of A, that is the slope of the cone of ample divisors is equal to 12, namely,

sAmp(VTlg) ;= inf {S(E): E € Amp(A

g)} —12.

The effective slope, that is the slope of the cone of effective divisors
spee(Ay) := inf {S(E): Ee Eff(Zg)] ,
has attracted a lot of attention, in particular because
s(Kz,) =s(@+Dr-8=g+1,

so that the inequality sEff(,Tlg) < g+1 would imply that A is of general type. Freitag [24]

used the theta-null divisor 6 of slope s(6,,,;;) = 8+ 2379, to show that Ag is of general

null’ null

type for g > 8, Mumford [40] used the Andreotti-Mayer divisor N, of slope s(Vy) =
6+ %, to show that A, is of general type for g > 7, while recently the fourth author with
collaborators [11] showed that sge(Ag) < 7, which implies that the Kodaira dimension

of Az is non-negative.
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It is known that Ag is unirational for g < 5 (see [39], [7], [13], [52] for the harder
cases of g = 4,5). In fact, sge(Ay) is known explicitly for g < 5: the computation of
Sgrr(Asg) is one of the main results of [18], and the lower genera cases are reviewed below.

On the other hand, the slope sEff(Zg) is not known for any g > 6. While the
techniques of Tai [50] show that sge(Ay) = O(1/g) for g — oo (as explained in [25]),
not a single explicit effective divisor E on Ay, for any g, with s(E) < 6 is known.

The analogous notion of effective slope for the moduli space of curves M, has
been investigated in many papers, in particular for its similar link with the Kodaira
dimension of Mg, starting with [30] [28], [15], and with continuing recent progress such
as [19].

1.3 The moving slope

Recall that an effective divisor E is called moving if h®(E) > 1 and if moreover the base
locus of its linear system |E| has codimension at least two. The moving slope is the slope

of the cone Mov of moving divisors
Smov(Ag) := Inf{s(E): E € Mov(Ay)} .

Since the moving cone is contained in the effective cone, we have sggr(Ag) =< Sppoy(Ag)-
We first observe that if the effective slope is in fact an infimum but not a minimum, then
Seer(Ag) = Smoy(Ag) since there is an infinite sequence of effective divisors of strictly
decreasing slopes converging to this infimum (see Lemma 2.2(iii) for a precise statement
and proof). Thus, investigating the moving slope is only of interest if there exists an
effective divisor E C A of slope s(E) = sgg(Ay).

While the moving slope of A is less well-studied than the effective slope, it is
also important in attempting to determine the structure of the ring of Siegel modular
forms, and in attempting to run the log-MMP for A, and determine its interesting
birational models: in fact, the pull-back of an ample divisor on a normal projective
variety X via a non-constant rational map f : 71g --» X is a moving divisor, as remarked
in [4, Section 1.2].

The moving slope of Zg is known for g < 4, as we will review below, and Tai's
results also imply that sy, (Ay) = O(1/g) as g — oc. While the original published version
of the paper [17] claimed an upper bound for sy, (As), there was a numerical error, and
the corrected (arXiv) version [18] does not allow to deduce any statement on sy, (As).
For g = 6 the knowledge of the moving slope of Ag would help determining the Kodaira
dimension of Ag, if it turns out that sge(Ag) = 7 = s(Kz,)- As in the case g = 5, though,

the moving slope of Zg remains unknown at present for every g > 6.

G20z AelN 60 UO Josn Aleiqr seousids UlesH Aq GZ0262./2r7E/v/v20z/a1ome/uiwl/woo dno olwapese/:sdiy woly pepeojumod



Differentiating Siegel Modular Forms 3445
1.4 Context

Our paper revolves around the problem of constructing, from a given modular form, or
from given modular forms, new modular forms of controlled slope. In particular, given a
modular form of minimal slope, such procedure can provide other interesting modular
forms of low slope: for example, for 2 < g < 4, it does provide a modular form of
minimal moving slope (Corollary C). Our construction(s) will consist in applying certain
holomorphic differential operators to Siegel modular forms, so as to yield Siegel modular
forms again (Theorem A).

For motivation, recall the definition of two such well-known operators for g = 1.
The first one is the Serre derivative (credited by Serre [47, Theorem 4] to Ramanujan
[42]): it sends modular forms of weight a to modular forms of weight a+ 2, and is defined
as S,(F) := Z—f — ”GﬂEz - F, where E, is the Eisenstein series of weight 2 (see also [56,
Section 5] and [49, Lemma 3]). The second one is the second Rankin—Cohen bracket (see
[43] and [8]), which sends a modular form of weight a to a modular form of weight 2a + 4,
and is defined as [F,Fl, , := aF% - (@a+1) (%)2. Note that S, is a 1-homogeneous
(i.e., multiplying F by a constant A multiplies S,(F) by A!) differential operator in r with
non-constant coefficients, while [-, ‘]z,a is 2-homogeneous, of pure order 2 (meaning that
all summands involve the derivative % twice), with constant coefficients. There are also

2n-th Rankin-Cohen brackets [, which are 2n-homogeneous, of pure order 2n, with

']Zn,a'
constant coefficients, and send modular forms of weight a to modular forms of weight
2a +4n.

The holomorphic differential operators that we will produce for g > 2 are, on
one hand, analogous to S,, as they will be g-homogeneous, of order g; on the other
hand, they share some similarities with the even Rankin-Cohen brackets, as they will
be pure of order g (meaning that each summand involves exactly g partial derivatives),

with constant coefficients.

1.5 Main results

In order to formulate our main result, given a holomorphic function F : Hg — C, we

assemble the coefficients of its differential dF into the matrix

oF oF JF
at11 20112 Tt 20Ty
8F = E E . . E 12
JF JoF JF
207q1 207tg2 te 01gg

and we consider the holomorphic function det(dF) : Hy — C.
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Suppose now that F is a modular form of weight a, with vanishing order b along
the boundary BZg (this will be defined formally in the next section). The determinant
det(dF) is in general not a modular form, but its restriction to the zero locus {F = 0}
behaves as a modular form of weight ga + 2 (a more intrinsic approach to det(dF) will

be given in Remark 4.6). Our main result is the following construction.

Theorem A. For every g > 2 and every integer a > § there exists a differential operator
9,4, acting on the space of genus g Siegel modular forms of weight a that satisfies the
following properties:

(i) if Fis a genus g Siegel modular form of weight a and vanishing order b along
the boundary, then © ,(F) is a Siegel modular form of weight ga + 2 and of
vanishing order 8 > gb along the boundary;

(ii) the restriction of DyqF) to the zero locus of F is equal to the restriction of

det(dF).

Remark 1.1. In Theorem A, it is possible to deal with Siegel modular forms F with
character with respect to Sp(2g,Z), which occur only for g = 2 only. Since D, , is

quadratic, D, ,(F) will then still be a modular form (with trivial character).

What we will actually prove is a more precise version of this statement. In
Theorem 6.2, we construct for every g > 2 and a > % a holomorphic differential operator
Dog,a in the T with constant coefficients and we define Dy o) = Dag,a (F)/g! for every
Siegel modular forms F of genus g and weight a. Thus, D ,(F) is always polynomial in
F and its partial derivatives, though its coefficients depend on the weight a. Though the
operator D, , need not be unique, properties (i-ii) in Theorem A force the Siegel modular
form D, ,(F) to be unique up to adding modular forms divisible by F (which would thus
vanish on the zero locus of F). The construction is explicit, and in Section 6.3 we will give
the formulas for ®, , and D3 , explicitly.

A priori Dg.a®) could have a common factor with F, or could even be identically
zero. In order to prevent such behavior, we will apply Theorem A only to modular forms

F that satisfy what will be our main condition:

det(dF) does not vanish identically

on any irreducible component of {F = 0}.

Our main application is an immediate consequence of Theorem A.
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Corollary B. Suppose that the effective slope sEff(VTlg) = a/b is realized by a modular

form F of weight a > { that satisfies Condition (+). Then

SMOV(-Zg) = S(Qg'a(F)) = SEff(-/Tlg) + % . (1)

We first note that if the zero locus of F in Corollary B is not irreducible, that is, if
F = F,+F, with F|, F,, effective, then since s(F) < s(F,), s(F,), it follows that s(F) = s(F;) =
S(F,). As a consequence, SMOV(ZQ) = sEff(JTlg) (as will be proven carefully in Lemma 2.2(i)),
and so the statement becomes trivial. Thus, we can assume that the zero locus of F is
irreducible.

We stress that the inequality (1) for the moving slope depends on the actual class
[F], not just on the slope s(F). Moreover, Condition (x) forces F to be square-free. For every
g < 5, it is known that a reduced effective divisor on 719 of minimal slope exists and is
unique. For g < 4, the machinery of Corollary B produces an (already known) divisor that

realizes the moving slope.

Corollary C. For 2 < g < 4, the modular form F of minimal slope on ﬂg satisfies

Condition (x) and has weight a > %. Moreover, ”)Dg,a(F) realizes the moving slope of .Ag.

For g = 5, in [18], it was proven that the Andreotti-Mayer divisor N (whose
definition will be recalled in Section 3.3) is the unique effective divisor of minimal
slope on Ajg. Since we will show in Proposition 3.2 that N} satisfies Condition (x), as

a consequence of Corollary B, we obtain the following:

271

Corollary D. The moving slope of A5 is bounded above by sy, (As) < 5g , and the slope

271/35 is achieved by a moving effective divisor.

In the following table, we collect what is thus known about the effective and

moving slopes of 71g:

SEff (Zg) SMov (zg)
g=1 12
g=2 10 12
g=3 9 28/3 =9.333...
g=4 8 17/2 = 8.500. ..
g=5|54/7=7714...| < 271/35=17.742...
g==6 122, 7] (?) < 43/6 = 7.166. ..
g>1 0(1/9) 0(1/9)
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where the upper bound sg(Ag) < 7 is provided by the Siegel modular form 01 n,o of class
141 — 25 constructed in [11]. The question mark in the above table marks a conjectural

upper bound sy, (Ag) < 43/6, which is a consequence of the following.

Corollary E. The form 6 ; , on Ag is prime, that is, not a product of non-constant Siegel

modular forms. Moreover, if ¢; j, , satisfies Condition (x), then

The Torelli map 7, : My — A, sending a curve to its Jacobian is an injection of
coarse moduli spaces, but for g > 3 is 2-to-1 as a map of stacks. We denote by 7, the
closure of rg(Mg) inside Ag, which is called the locus of Jacobians. For g < 3, we have
Jg = Ag, while J, C A, is the zero locus of the Schottky modular form S,, which has
weight 8. Since (even) theta constants always vanish on curves with even multiplicity,
this implies that 6,,; N J, = 20y for g > 3, where ©,,,;; C J, is an integral divisor. As
a byproduct of our analysis, we also obtain the following result on Jacobians:

Corollary F. The form D, 4(S,) restricts on J, to ©

null*

Beyond these results, we investigate the applications of both Rankin-Cohen
brackets and of differential operators acting on Siegel modular forms to constructing
new effective divisors. Our results above go essentially one step in this direction,
by applying the differentiation technique to a modular form of lowest slope. This
construction can be iterated or varied to apply it to a tuple of different modular forms: it
would be interesting to investigate the collection of modular forms thus produced, and
to see in particular if this sheds any further light on the generators of the ring of Siegel

modular forms in any genus g > 4, where they are not fully known.

1.6 Structure of the paper

The paper is organized as follows. In Section 2, we set the notation and review the
relation between effective divisors on A, and Siegel modular forms. In Section 3, we
recall the construction and the slopes of the theta-null divisor ,,,;; and of the Andreotti-
Mayer divisor N}, and we show that both satisfy Condition (). In Section 4, we define the
Rankin-Cohen bracket and prove a weaker version of Corollary B. In Section 5, we review
the computation of the effective and moving slopes for g < 4, derive Corollaries C-D-E

from Theorem A, and prove Corollary F. Finally, in Section 6, we introduce a remarkable
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class of differential operators acting on Siegel modular forms, we define Daga and we
prove Theorem A.

2 Siegel Modular Forms and Compactifications of A,

We briefly recall the standard notions on Siegel modular forms, referring to [24] for a
more detailed introduction. Unless specified otherwise, we assume g > 2.

2.1 The Siegel space and the moduli space of ppav

The Siegel upper half-space H, is the space of complex symmetric g x g matrices t with
positive definite imaginary part.
An element y of the symplectic group Sp(2g,7Z), written as y = (£8)ingx g

block form, acts on Hg via
y-1:= (At +B)(CTr + D)7 L.

The action of Sp(2g,Z) on H, is properly discontinuous, with finite stabilizers. The
quotient A, = H,/Sp(2g, Z) is the moduli space of ppav—it is a quasi-projective variety
that can be given the structure of an orbifold (or a Deligne-Mumford stack). We denote
by 7 : X; — A, the universal family of principally polarized abelian varieties (ppav in

short), considered as a stack.

2.2 Divisors and Siegel modular forms

A holomorphic function F : Hy, — C is called a holomorphic Siegel modular form of

weight k with respect to Sp(2g,Z) if
F(y - t) = det(Ct + D)*F(7)
for all = € Hy and for all y € Sp(2g,Z) (for g = 1, there is an additional regularity
condition that, by Koecher principle, is unnecessary for g > 2).
This automorphy property with respect to Sp(2g, Z) defines the line bundle
£®k

of Siegel modular forms of weight k on A,.
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Remark 2.1. While in our paper we focus on Siegel modular forms for Sp(2g, Z), the
holomorphic differential operator that we consider is defined for any holomorphic
functions on Hy, and will preserve suitable automorphy properties. It can thus also be
applied to Siegel modular forms with multiplier systems for subgroups of Sp(2g,Z). In
particular, we will apply it to a Siegel modular forms with a character, namely the theta-

null T, in genus two, discussed in Section 3.1.

2.3 Satake compactification

The Satake-Baily-Borel compactification A7 can be defined as
Aj = Proj (@nZOHO(Ag,E@’")) .

What this means is that sections of a sufficiently high power of £ embed A, into a
projective space, and Aj is the closure of the image of A, under such an embedding.
Since PiCQ(A;) = QA, where A denotes the class of £, this implies that any effective Z-
divisor on Ay is the zero locus of a Siegel modular form.

2.4 Partial and perfect cone toroidal compactifications

Set-theoretically, A7 is the union of locally closed strata
Ag=AgUuA U U A,
The partial (aka Mumford, or rank one) toroidal compactification
o /
Agi= A udA,

is obtained by blowing up the partial Satake compactification A, U A,_; along its

boundary Ag_l, and the exceptional divisor BA/g can then be identified with Xg_1/ £ 1.
Any toroidal compactification contains A’j and admits a blowdown morphism to

Ag. The perfect cone toroidal compactification A, has the property that the complement

./Tlg \ A’y is of codimension 2 inside ¢_4g. The boundary
D:=0dA,

is an irreducible Cartier divisor, which is the closure of aA’g. We denote by p : 7tg — A;

the blowdown map.
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2.5 Effective divisors on Ag

The effective and moving slope is computed on effective divisors in A, or, equivalently,
on effective divisors in Aj, whose support does not contain D. We will call such divisors
internal. For clarity and completeness, we explain how to associate an internal divisor
to a Siegel modular form.

A Siegel modular form F of weight a, thought of as a section of £®% on Ay, can
be pulled back to a section of p*£®% on JTlg. If the vanishing order ord,(p*F) of p*F
along the divisor D is b, this means that the zero locus of p*F on A is the union of
an effective divisor not containing D in its support, which we will denote by (F) and call
the zero divisor of the modular form, and of the divisor D with multiplicity b. Since by
definition the zero locus {F = 0} C A; has class a2, its preimage in 719 has class ap*i
(or ai in our notation abuse), it follows that the class of the zero divisor of a modular

form is
[(F)] = ar — bS € Picg(Ay)

witha > 0and b > 0.

To summarize the above discussion, we see that internal effective divisors on
71g correspond bijectively to Siegel modular forms up to multiplication by a constant,
and from now on we will talk about them interchangeably, additionally suppressing the
adjective “internal” as we will never need to deal with effective divisors on Zg whose
support contains D.

We thus define the slope s(F) of a modular form F to be the slope of the
corresponding (internal) effective divisor (F). We will write F for the modular form
considered on J_élg, and stress that the notation [F] := [(F)] for the class of the zero divisor
of a Siegel modular form on A, does not signify the class of the pullback p*F, which
would be simply equal to ax.

Every effective divisor E C Zg can be uniquely written as E = >’ ¢;E; for suitable
c¢; > 0 and pairwise distinct, irreducible, reduced divisors E;. We say that two divisors
E=>cE;andE =3 djE]/. have distinct supports if E; # EJ’ for all i,j.

Similarly, a Siegel modular form F can be uniquely written as a product F = ]_[FZC‘
for suitable ¢; > 0 and pairwise distinct, prime Siegel modular forms F; (i.e., forms
that cannot be factored as products of non-constant modular forms). Two modular
forms F = ]_[Fici and F' = H(FJ’.)dJ’ are said to not have a common factor if F; # FJ’

for all i,j.
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2.6 Fourier-Jacobi expansion

The vanishing order of a Siegel modular form F at D can be computed using the Fourier—
Jacobi expansion, which we briefly recall for further use. Writing an element v € H,

as

with 7" € Hy_,, z € C971, w e C*, and setting q := exp(27iw), we expand F in power

series in q:

F(r)=> f(,2)q" (2)

r>0

Then the vanishing order ordy, F (which we will often denote b) of F along D is detected

by the Fourier—Jacobi expansion as
ord, F = min{r > 0f.(</,z) # 0}. (3)

The form F is called a cusp form if it vanishes identically on D; equivalently, if f;(z/,0) =
0, that is if ord, F > 0.

2.7 First properties of the moving slope

Here we record some properties of the moving slope, showing that one should only focus
on the case when there exists an effective divisor of minimal slope, and furthermore that
one should only focus on irreducible effective divisors. These are general properties that

we state for 749, but hold on any projective variety.

Lemma 2.2. The moving slope satisfies the following properties:

(i) if E # E’ are irreducible reduced effective divisors, then
Sntov(Ag) < max(s(E),s(E)};

(i) if sppey (Zg) = s(E) for some moving divisor E, then there exists an irreducible
moving divisor E’ such that sMOV(Zlg) = s(E");
(iii) if there does not exist an effective divisor E such that s(E) = sEff(Xg), then

SEff(“Tlg) = SMov(zg)'
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Proof. (i) Let [E] = ar — b§ and [E'] = a’A» — b'§, and suppose that s(E) < s(E’). Then the
linear system |aE’| contains a’E, and its base locus is contained inside E N E’, which has
codimension at least two. It follows that aE’ is a moving divisor. Since [aE'] = a(a’A—b’$),
we obtain sMOV(,Tlg) <s(aE)=sE)=a/b.

(ii) If the general element of the linear system |E| is irreducible, then we can
choose E’ to be any such element. Otherwise, a general element E; € |E| can be written
as a sum E, = E} +--- + E/" of m distinct effective divisors. Since E is moving, the base
locus of |E| has codimension at least two, thus each Eg is moving.

Moreover sMOV(JTlg) < min; s(EY) < s(E,) = SMOV(VTlg), we conclude that s(El) =
Smov(Ag) for all i. Hence, it is enough to take E’ = E; for any .

(iii) Consider a sequence (E,,) of effective divisors on A, whose slopes are strictly
decreasing and converging to sger(Ay). Up to replacing E,, by the irreducible component
of E,, with smallest slope, and up to passing to a subsequence, we can assume that all E,,
are irreducible. Since the slopes are strictly decreasing, the E,, are all distinct. Applying
(i) to the pair E,,_;, E,,, we have sMOV(Zg) < s(E,). The conclusion follows, since sEff(Zg) <
Saoy (Ag) < S(Ep) = sger(Ay). [ |

3 Some Relevant Modular Forms

In this section, we briefly recall the definitions and the main properties of theta

constants, of the Schottky form, and of Andreotti-Mayer divisors.

3.1 Theta functions and theta constants

For ¢,8 € {0,1}9 the theta function with characteristic [ §] is the function 6 [§] : H, x
CY9 — C defined as

0[51@2 =Y expri[(n+5) t(n+5) +2(n+5) (z+3)].

nez9

Characteristics [§] are called even or odd depending on the parity of the
standard scalar product (g, §). This is the same as the parity of § as a function of z € C9
for fixed t € Hg, and there are 2971(29 + 1) even characteristics and 2971(29 — 1) odd
ones. The theta constant is the evaluation of the theta function at z = 0, which is thus
a function @ [§] (t) : Hg — C. By the above, all odd theta constants vanish identically,
while an even theta constants are modular form of weight 1/2 (meaning that a suitable

square root of the automorphic factor det(Ct + D) is taken) with respect to a certain finite
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index subgroup of Sp(2g, Z). The product of all even theta constants

[g] even

turns out to be a modular form for the full symplectic group, for g > 3, called the theta-

null modular form, and its zero locus is called the theta-null divisor 6,,;. It has class

[T,] = 297%(29 + 1)r — 2%97°5, and 50 S(T,) = S(Oyy) = 8+2%79. (4)
The case g = 2 is slightly different since T, has a character, meaning that it satisfies
T,(y - 1) = £ det(Ct 4+ D)°T,(1)

forall y = (4 g) € Sp(4,7). Hence, T22 is a well-defined modular form.

3.2 The Schottky form

The Schottky form is the weight 8 modular form on A, given by the following degree 16

polynomial in theta constants:

1 1
8= 5 916[3]—@ >0 [5]
£,0 £,0

The Schottky form is a modular form for Sp(2g, Z), and is natural because it can
alternatively be expressed as S, = bt — Opsars as the difference of the lattice theta
functions associated to the only two even, unimodular lattices in R!® (see [34] or [35]). It
is known that Sg vanishes identically on Ag if and only if g < 3, and moreover that the
zero locus of S, is the locus of Jacobians J, C A,. The form S, vanishes identically to

first order along D, and thus
[S,J=8r—6, and s(S,) =8, (5)

while for g > 5 the form S; is not a cusp form (and so it has infinite slope).
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3.3 Andreotti-Mayer divisor

The Andreotti-Mayer divisor [2] is defined to be the locus IV, of ppav whose theta divisor
is singular.

It is known that N, is a divisor that has for g > 4 precisely two irreducible
components: Ny = 6,1 U N (see [40],[10]), while for g = 2,3 the Andreotti-Mayer divisor
is simply N, =0

null*

Remark 3.1. For a generic point of 6

ul the unique singularity of the theta divisor

of the corresponding ppav is the double point at the two-torsion point of the ppav
corresponding to the characteristic of the vanishing theta constant. It is known that
generically this singular point is an ordinary double point (i.e., that the Hessian matrix,
of the second derivatives of the theta function with respect to z at this point is non-
degenerate). For a generic point of N}, the theta divisor of the corresponding ppav has
precisely two opposite singular points, both of which are generically ordinary double

points again, see [26] for a detailed study.
In this short section, we prove the following.

Proposition 3.2. The form T, for g > 2 and the form I, for g > 4 satisfy Condition (x).

The genus restrictions in this statement are simply to ensure that the forms are
well-defined and not identically zero.

As we already know, 6,,,;; is the zero locus of the modular form T, that is the
product of all even theta constants, and we know the class of the corresponding divisor
by (4). The modular form, which we denote Ig, defining the effective divisor N() is not
known explicitly for any g > 5 (see [37]), while the Riemann theta singularity implies
that in genus 4 we have N, = J,, and thus I, = S,. The class of the divisor N was
computed by Mumford [40]:

[No] = [I,] = (g! (g + 3)/4 — 2973(29 + 1)) — ((g + 1)! /24 — 2297 %)s, (6)

1+2/(g+1)—29"1294+1)/(g+ 1! 6

and so  s(lg) =6- 1-3.229°3/(g + 1)

Before proving Proposition 3.2, we recall that theta functions satisfy the heat

equation

d,0 = 2ni-Hess,0, (7)
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where Hess, denotes the Hessian, that is the matrix of the second partial derivatives
of the theta function with respect to z,... ' Zg. It will follow from Lemma 3.3 below,
the differentials dT, and dI, are related to the Hessian of the theta function in the z-
variables. Indeed, even though an equation for N is not known, a precise description of
its tangent space is provided by Lemma 3.3, which is a special case of results proven in
[2] (see also [3]).

Lemma 3.3. LetZbe®

nul

point 7y of Z, and every ordinary double point zy € CY of O(zy, ) = 0, the tangent space

| or N and call 7 its preimage in H,. For every general smooth
TTOZ has equation d.0(7y, zy) = 0 inside T, H,.

Using the above considerations, we can now prove the main proposition of this
subsection.

Proof of Proposition 3.2. If 7, is a smooth point of 6,

then the theta divisor ®, C
X, = CI/(Z9 & 7yZ7) is singular at a unique 2-torsion point, and such a singularity is
ordinary if and only if det(dT,) # 0 at 7, by (7) and Lemma 3.3.

Similarly, if 7, is a generic point of N, then the singular locus of 0, consists
of two opposite non-2-torsion singular points +z,; moreover, £z, are ordinary double
points of ®, if and only if det(dlg) # 0 at 7y by (7) and Lemma 3.3.

The conclusion follows from Remark 3.1. [ |

4 Rankin—-Cohen Bracket

Our method to bound the moving slope of A, from above is by constructing new Siegel
modular forms starting from a given known modular form. For example, starting from
the known Siegel modular form minimizing the slope of the effective cone, we will
try to construct another Siegel modular form, with which it has no common factor,
and which has a slightly higher slope. In this section, we do this using the Rankin-
Cohen bracket (of two different modular forms), which will allow us to prove the
main application Corollary B, but only under the assumption that the moving slope is
achieved.

While our construction of the differential operators ©,, in Theorem A yields

g.a
a stronger result, we now give the details of the geometrically motivated construction
using the Rankin-Cohen brackets. These were defined in [43] and [8] for g = 1 (see
also [56]); a vector-valued version appears in [46] and a scalar-valued version appears

in [55].
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For further use, we define the symmetric g x g matrix-valued holomorphic

differential operator acting on functions on Hyg

1+46; o
a[ :Z( 2 v a_) . (8)
Y J1<ij<g

When no confusion is possible, we will sometimes denote this differential operator

simply by 0.

4.1 Vector-valued bracket

Let F and G be genus g Siegel modular forms of weights k and h, respectively.

Definition 4.1 ([46]). The vector-valued Rankin-Cohen bracket of F and G is

Gk-l—l Fh
{F, G} = Fh—l . d(a)

where d = d, is the differential of a function of r € H,.

Lemma 4.2. The vector-valued bracket
(F,G} = —{G,F} = hGdF — kFdG

is a £L8MH0) _yalued holomorphic (1, 0)-form on .Ag. Moreover {F, G} # 0 unless F" and G¥

are constant multiples of each other.

Proof. Since F"'/G¥ is a meromorphic function on H_, its differential is a meromorphic
(1,0)-form. Moreover, G¥*1/F"~! is a meromorphic Siegel modular form of weight h + k
(i.e., it is a meromorphic function on H, that satisfies the transformation property). It
is immediate to check that {F,G} = hGdF — kF dG, which shows that {F, G} is thus
a holomorphic Siegel-modular-form-valued (1,0) form. Since F and G are non-zero,
the bracket vanishes identically if and only if d(F¥/G") is identically zero, which is

equivalent to this ratio being a constant. |
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Another way to state Lemma 4.2 is that, writing {F, G} as a g x g matrix, this

matrix satisfies the transformation law
{F,G)(y - 1) = det(Ct + D)*""(Ct + D)' - {F, G}(v) - (Ct + D)
for any y = (4 B) in Sp(2g, Z).

4.2 Scalar-valued bracket

Let E — A, denote the holomorphic rank g Hodge bundle of (1, 0)-holomorphic forms
on ppav, namely E = 7, Q19 (where we recall that = : Xy, — Ay denotes the universal
family of ppav). Recall that the cotangent bundle T* A, can be identified with Sym?E ¢
Hom(EY, E). Since

det : Hom(EY,E) — (detE)®? c AY(Sym? E) = Qg'OAg

and detE = £, it follows that det restricts to a map det : T*A, — £%?, which is
homogeneous of degree g. If f is a meromorphic function defined on Ay, then det(df)

is a meromorphic section of £®2.

Definition 4.3. The scalar Rankin—-Cohen bracket of Siegel modular forms F,G is
defined as

[F, G] := det(F, G}.

The scalar Rankin-Cohen bracket seems not to have been systematically studied

in the literature. Here we collect some of its basic properties.
Lemma 4.4. Let F, G be Siegel modular forms, of classes

[F] = k) — x6; [G] = ha — y§.
Then [F, G] is a Siegel modular form of class

(7, 61] = (gt + ) +2)2. - s,

where

(i) B > 0(.e. [F,Glis a cusp form, even if F and G are not);
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B=>gx+y)
for any integer n > 0, [F, F*] = 0;
if H is another modular form, then [H%F, G] and [HF, HG] are divisible by HY;

(v) if F, G do not have any common factors, and F satisfies Condition (x), then F

(iii

= = ZZ

(iv
and [F, G] do not have any common factors.

Proof. (i) Recall that {F, G} = (G¥*1/F"1). d (F"/G¥) and so det(F, G} = GI*+D /Fg(h—D)
det(d (F"/G¥)). It follows that det{F, G} is a modular form of weight gh(k + 1) — gk(h —
1) + 2 = g(h + k) + 2 and, from the local expression of {F, G}, it follows that [F, G] is
holomorphic.

Consider then the Fourier-Jacobi expansions

F(t) = Fy(7/,0) + ZF,(T/,z)qr, G(t) = Go(',0) + Z G.(t',2)q,

r>0 r>0

att = (’; z).Wehave
zw

dF:( d,F d,F ) Jc =( d,.G d,G )
d,F)t d,F d,6)t d,G
Recall that g = exp(27iw), so that d(q")/dw = 2rriq". It is immediate to check that the
last columns of dF and dG are divisible by g. It follows that [F, G] is divisible by g, and
so is a cusp form.

(ii) Writing dF and dG as above, it is immediate that ord, dF = ordpF and
ord, dG = ordj G. Hence ordp{F, G} = ordy F + ordy G, and the conclusion follows.

(iii) By direct computation {F,F"*} = (nk)F"dF — kF(nF" 1)dF =0.

(iv) Let £ be the weight of H; we compute directly

{(H?F, G} = hG(H? dF + 2HF dH) — (2¢ + k)H*F dG

= H(hHGdF + 2hFdH — (2¢ + k)HF dG)
and

{HF,HG} = ({ + h)HG(H dF + F dH) — (¢ + k)HF(H dG + G dH)

— H(H{F, G} + ¢tH(GdF — FdG) + (h — k)FG dH).
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(v) Note first that Condition (x) implies that F is square-free. Evaluating [F, G]

along the zero divisor of F, we obtain
[F, Gllp_o = h9GY det(dF). 9)

Since F and G do not have common factors, [F, G] is identically zero along a component
of {F = 0} if and only if det(dF) is. |

Remark 4.5. It is possible that the strict inequality 8 > g(x + y) holds in (ii) above: for

example, (i) implies that 8 > 1 forx =y = 0.

Remark 4.6. Statement (v) above is one instance where we see the key importance of
Condition (), and of det(dF). A more intrinsic description of the function det(dF) is as
follows. If F is a modular form of weight k, its differential is not well-defined on Ag, but
the restriction of dF to the zero divisor E = {F = 0} of F is. Thus dF|; is a section of
L% ® Sym? E|;, and det(dF) is a section of £L2%*9+2)|,.. In other words, the restriction of
det(dF) to the zero locus of F behaves as a modular form of weight gk + 2, as mentioned

in the introduction.

4.3 The bracket and the moving slope

In this section, we apply the scalar Rankin—-Cohen bracket to two modular forms of low
slope in order to produce another modular form of low slope. This will allow us to prove
the following weaker version of Corollary B—it is weaker only in that it assumes that

the moving slope is achieved, that is, is a minimum rather than infimum.

Proposition 4.7. Assume that the effective slope sEff(JTlg) = a/b is realized by a Siegel
modular form F of class at — bé that satisfies Condition (x). Suppose moreover that the
moving slope sMOV(JTlg) = a'/b’ is achieved by a Siegel modular form G of class a’A» — b'S.
Then

_ — 2
SMOV(‘Ag) < SEff(Ag) + E .

Proof. If Fisa product of at least two distinct prime factors, then each of them realizes
the effective slope. Hence, sMOV(,T\g) = sEff(ﬂg) by Lemma 2.2(i), and so the conclusion

trivially holds. Hence, we can assume that F is a prime Siegel modular form.
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Up to replacing G by a general element in its linear system, we can assume that
F does not divide G. By Lemma 4.4(v), the form [F, G] is not divisible by F, and so in

particular [F, G] does not identically vanish. It follows from Lemma 4.4(ii) that

a _ < gla+a)+2
F - SMov(Ag) S S([F/ G]) S g(b + b/)

’

which can be rewritten as

~

2

_ a _
SMOV(AQ) = < E + = SEff(Ag) + @ .

2
bg

<8

Both the scalar Rankin-Cohen bracket and D/, (which will be introduced in
Section 6) are holomorphic differential operators of degree g, but their relationship is

not clear, and deserves a further investigation.

5 Effective and Moving Slopes for Small g

In this section, we recall what is known about the effective and moving slopes of A, for
2 < g < 5.1In all these cases, the effective slopes are achieved, and we analyze what we
obtain by applying Theorem A (whose proof is postponed till Section 6) to such effective

divisors of minimal slope, and we prove Corollaries C-D-E-F.

5.1 Caseg=2

In genus 2, the unique effective divisor of minimal slope is the closure of the locus A‘Ziec
of decomposable abelian varieties inside .A,. Set-theoretically, this locus is simply equal
to the theta-null divisor 6,,;;. We thus obtain

Sper(Ay) = S(ALC) = s(6,,7) = s(5A — 8/2) = 10.

Remark 5.1. Note that the class [T,] = %(1OA —48)in PicQ(Zg) is not integral, though its
double is. From the stacky point of view, this is a manifestation of the fact that A‘ziec =
(A; x A))/S, and so the general element of Agec has an automorphism group {+1} x {+1},

of order 4, whereas the general genus 2 ppav has automorphism group {+1}, of order 2.

As mentioned in the introduction, Theorem A can be applied to T,, even though

T, is a modular form with character. Since T, satisfies Condition (x) by Proposition 3.2,
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we obtain a cusp form D, 5(T,) of weight 12 that is not identically zero on 6, . As in

Corollary B, it follows that
Saov(Ag) < 5 (Dyp5(Tp) = 12.

Proof of Corollary C for g = 2. It is known [24] that the ideal of cusp forms inside the
ring of genus 2 Siegel modular forms is generated by two modular forms x;, := TZ2 and
X12, which has class [x;,] = 121 —§.It then follows that ©, 5(T,) and x,, are proportional,

and so D, 5(T,) realizes the moving slope. |

Since T, satisfies Condition (x) by Proposition 3.2, and since T, and x;, are
square-free and without common factors, Lemma 4.4(v) ensures that the cusp form

[Ty, x,2] does not vanish identically along 6, ;. By Lemma 4.4, it follows that
[[Tzr X12]:| =361 — 36,

and so [T, x;,] is another Siegel modular form that achieves the moving slope.

5.2 Jacobian and hyperelliptic loci

As mentioned in the introduction, it is possible to define a slope for effective divisors in

the moduli space My of projective curves of genus g. We denote
Ty Mg — Ay
the Torelli map that sends a smooth projective curve of genus g to its Jacobian.

T, /Vg N Zg from the

Deligne-Mumford compactification /\_/lg of M, to J_élg [1], but for our purposes, it will

The Torelli map is known to extend to a morphism

suffice to work with the well-known partial extension

/. / /
79 Mg — A
from the moduli space My of irreducible stable curves of genus g with at most one
node. The partial compactification M/g is the union of Mg and the boundary divisor

A" = 3 Mg consisting of singular curves with only one node, which is non-separating. It is
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well-known that PicQ(M;) = Q1,9Q¢' forg > 3,and that the map induced by ré on Picard

groups is
(ré)*)» = A, (té)*a =4

The slope for a divisor ar; — b3’ on qu is defined to be a/b, and the slopes of cones of

divisors on M are defined analogously to Ajg.

Remark 5.2. The standard definition of slope for an effective divisor in Hg involves
the vanishing order at all the boundary divisors of ﬂg. It follows from [20] that, if we
limit ourselves to divisors of slopes less than 29/3 for g < 5, then the two definitions are

equivalent.

As a consequence of the above discussion, we have obtained the following

Lemma 5.3. Let g > 4 and let E be an (internal) effective divisor on Ag.

(i) If E does not contain the Jacobian locus J,, then (té)_l(E) is an effective
divisor in My of slope s(E);
(i) Ifs(E) < sEff(Mg), then E contains the Jacobian locus g

Intersecting an effective divisor with the locus H.J, of hyperelliptic Jacobians
can also provide a constraint for the slope. The closure ’H; of the locus of hyperelliptic
curves H, inside Mg is obtained by adding the locus dH; consisting of curves with one
non-disconnecting node, obtained from smooth hyperelliptic curves of genus g — 1 by
identification of two points that are exchanged by the hyperelliptic involution, cf. [9].

Call the restriction of 2, to H; from ./Vg still 2, and denote &, the class of dH,
(which is also the restriction of §; from Mg). It is known that PicQ(”H;) has dimension 1
and is generated by A, &, with the relation (8g + 4)A; = g&, (see [9, Proposition 4.7]). The
map T, restricts to H; — A’ and sends 9%, to the boundary of A’/

The following result was proven by Weissauer [53] (see [45] for details). Here we

present a different argument.

Proposition 5.4. For every g > 3, modular forms of slope strictly less than 8 + 3 must

contain ’ng.

Proof. Let F be a modular form on Ag with class [F] = al — bs, and suppose that F does
not vanish on the entire HJ 4. We want to show that s(F) = % >8+ g.
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The pullback of F on Hgy vanishes on an effective divisor V of class [V] = ai; — B&,
with 8 > b. Using the relation in PicQ(H;), we obtain [V] = B (% — (8 + g)) Ay

Consider now the double cover C, of P! branched at AMoerhogini and fix distinct
Airewwihggir,t such that Cy ¢ V. Then (Cy)sepr induces a map P! — Hg, whose image
is a complete, irreducible curve B C H, not contained in V U dH. It follows that
degz(V) > 0 and degg(r;) > O, and so % — (8 + ;?L) > 0. The conclusion follows, since
s(F) > %. [ |

5.3 Caseg=3

The moduli space A; has a meaningful effective divisor, namely (the closure of) the locus

HJ 4 of hyperelliptic Jacobians.

Proof of Corollary C for g = 3. By Proposition 5.4, a divisor in A; with slope
smaller than 23—8 must contain 7.J,. This implies that the only effective divisor that
could be of slope under % is (the closure of) the hyperelliptic locus itself, and so
SMOV(./T\3) > %. Since the closure of H.J 5 coincides with the theta-null divisor, we obtain

from (4)
S(HT3) =s(T3) =s(18. —28) =9 < 2.
It follows that
sprr(Ay) =s(HT3) =9 and sy, (A3 > 2.

Since T, satisfies Condition (x) by Proposition 3.2, Theorem A provides a modular form
D3,18(T3) of class 561 — 5 with g > 6. If B > 7, then the slope of D3 ,4(T3) would be
s(D318(T3)) < 56/7, which is less than 9, contradicting the knowledge of effective slope.
Thus 8 = 6, and

SMOV(ZB) = S(®3,18(T3)) = % = 23_8

This proves that the moving slope is equal to sy, (A3) = %, and is realized by D3 15(T3).
|

There are also other constructions of Siegel modular forms in 4, of slope 23—8:
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Let M be the set of all octuplets of even characteristics that are cosets of some

three-dimensional vector space of characteristics, and define

wm L2 ()

M even octuplet coset

This can be checked to be a modular form of class [x,g] = 281 — 3§, see [51].
We verify that x,q cannot be divisible by T3, as otherwise x,5/T5 would be a
holomorphic cusp form of weight 10, which does not exist by [38, 51].

Alternatively, one can consider the forms

Xia0 = D (E)S

m even Gm

which can be shown to have class [x;49] = 1401 — 155. We remark that the
decomposable locus Agec can be described by the equations T3 = x40 = O,
since Agec is simply the locus where at least two theta constants vanish. Since
Age has codimension 2 within Ay, this confirms that the forms T3 and x4
could not have a common factor.

Since T; satisfies Condition (x) by Proposition 3.2, and since T3 and x,g are
square-free and without common factors, Lemma 4.4(v) ensures that the
By
Lemma 4.4, [T3, x»g] has weight 140, and vanishes to order 8 > 15 along the

Rankin—-Cohen bracket [T, x,g] does not vanish identically along 6,,y.
boundary. However, if it were to vanish to order 16 or higher, then its slope
would be at most % = 8.75, which is impossible since sz (A3) = 9. Thus, we
must have 8 = 15, so that

[[TS, XZB]] = 140% — 158

is a Siegel modular form that also realizes sy, (A3) = % = %. It is not clear

whether [T;, x,5] and ;4 are proportional; however, it is is easy to see that

X140 lies in the ideal generated by T; and [T5, xyg].
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54 Caseg=4

The locus of Jacobians J, is a divisor in A,, which is known to be the unique effective
divisor on 4, of minimal slope, see [44]. It is known that the effective slope of M, is
sgrr(My) = LI (see [16] and [20]),

By Riemann’s theta singularity theory, theta divisors of Jacobians are singular,
and in fact J, = N. Since I, = S, and since [I;] = 8% — § as recalled in Section 3.3, this

reconfirms the equality

sgep(Ag) = s(Iy) = s(81 — 8) = 8.
As I, satisfies Condition (x) by Proposition 3.2, Theorem A applied to I, produces a
modular form D, g(I,) not divisible by I, of class [D, g(I;)] = 341 — 3, with B > 4. Again,

if 8 were at least 5, the slope would be at most 34/5 < 8, contradicting the effective slope,

and thus we must have g = 4.

Proof of Corollary C for g =4. From the above discussion, it follows that

SMOV(ZAL) = 8(94,8(14)) = 5(34) — 48) = 12_7 '

On the other hand, Lemma 5.3 implies that any effective divisor in .4, that does

not contain the locus of Jacobians has slope at least sge(M,) = 7. It follows that
Smov(Ae) = -
We thus conclude that sy, (Ay) = & = s(D,4(I,)). [

There are at least two other modular forms in A, that realize the moving slope.

e The first one is T,, whose class is [T,] = 681 — 85 by (4).

e The second one is the Rankin-Cohen bracket [I,, T,]. Since I, satisfies Condi-
tion (x) by Proposition 3.2, and since I, and T, are square-free and without
common factors, Lemma 4.4 ensures that [I,, T,] does not vanish identically
along N = J,, and has class 3061 — 83, with g > 36. Since the effective slope

of A, is 8 and the moving slope of A, is %, we must have 8 = 36 and

Snmov(A) = I = 398 = s(I1,, T,)) .
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As mentioned in the introduction, the pullback 75T, via the Torelli map gives
20, on /\/lg, that is, \/T>g is not a modular form, but its restriction to jg is a Teichmuller
modular form. For g = 4, we exhibit a Siegel modular form that intersects 7, in the
divisor ®,;, with multiplicity 1.
Proof of Corollary F. Recall that S, = I;. By Corollary C for g = 4 proven above, D, ¢(S,)
realizes the moving slope of 4,, and so it does not contain the divisor of minimal slope,
namely the Schottky divisor. Thus, 7;9,4(S,) is an effective divisor on M, of class
34A, — 48', which thus realizes the effective slope spp(M,) = % Thus, the pullbacks
7, T, and 7,9, ¢(S,) must have the same support. Since [T,] = 2[D,¢(S,)], we conclude
that 770, 4(S,) = © [

null*

Remark 5.5. For the sake of completeness, we recall that the moving slope of M, is
Spov(My) = 60/7, see [22]. We can exhibit a modular form (analogous to x;,q for g = 3)

with this slope, namely

P5a0 = Z (2)8'

m even m

The Siegel modular form ¢5,, has class 5401 — 634, see [34], and hence 7, ¢5,, gives an
effective divisor on M that realizes the moving slope sy, (M,). Finally, we observe
that both T, and ¢5,, have slope less than 9, and the equations T, = ¢,y = O define, set
theoretically, the hyperelliptic locus H, C M,, as discussed in [23].

5,5 Caseg=>5

We recall that one of the main results of [18] was the proof that the divisor Nj, in A has

minimal slope:
sgrr(Ag) = s(Ts) = s(1081 — 148) = 2 = 7.714...
Since I satisfies Condition (x) by Proposition 3.2, by Theorem A
[D5,10s(Is)] = 5424 — B5 with B > 70

is a modular form that does not vanish identically on Nj,.
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Proof of Corollary B. If 8 > 71, then the slope of Dg ;¢5(I5) would be at most

542/71 = 7.633--- < 7.714--- = 54/7 = sp(Asg) ,

which is a contradiction. Thus 8 = 70, and

SMov(Z5) = S(©5y103(15)) = 23L51 =7.742... [

5.6 Caseg==6

For genus 6, the slope is bounded from below 3(716) > ?—3 by [21]. Moreover, an interesting
Siegel modular form 6y, 5, , of class 14A—23 was constructed in [11], showing that s(Ag) <7

and that the Kodaira dimension of A is non-negative.

Proof of Corollary E. In light of the classification of modular forms in low genus and
weight in [5] and [6], in genus 6, there are no cusp forms in weight 7,8,9,11,13. Now,
in genus 6, there are no Siegel modular forms of weight 2 and we have seen above that
s(¢_46) > %. Hence, the unique (up to multiple) cusp form of weight 10 vanishes with
multiplicity one along D (and so does a possible cusp form in weight 6). As ordy 67 5, , = 2,
the form 6; j, , must thus be prime.

As for the second claim, there are two possibilities:

(a) there exists a Siegel modular form of slope at most 7, not divisible by 6y j, ,:
in this case, from Lemma 2.2 it follows that sy, (Ag) < 7;

(b) 6y, is the unique genus 6 Siegel modular form of slope 7 (up to taking
powers): the claim then follows from Corollary B, since s(Dg14(6;p2)) =
7+ % = %3 (as usual, if it happened that Dg,(0;, j, ,) were to vanish to

order strictly higher than 6-2 = 12, then its slope would be at most % < 7).

In either case, the result is proven. [ |

In the above case (a), the moduli space .A; would have Kodaira dimension at least

1, in case (b), it would have Kodaira dimension O.

6 Pluriharmonic Differential Operators

In this section, we introduce a suitable differential operator on the space of modular
forms and prove Theorem A using a general result of [32]. Before introducing the relevant

notions, we explain the outline of what is to be done.
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We are looking for an operator ® , that will map a genus g Siegel modular form F
of weight a to another modular form satisfying certain properties: more precisely, © ,(F)
will be a polynomial in F and its partial derivatives. There are various motivations for
looking for Dga of such a form, which are discussed for the general setup for the problem
in [32], [33], [14].

In our situation, motivated by the occurrence of det(dF) in our treatment of
Rankin-Cohen bracket (see Remark 4.6 and Proposition 4.7), we will want lea(F) to
restrict to det(dF) along the zero locus {F = 0}. Note that det(dF) is homogeneous in
F of degree g, in the sense that each monomial involves a product of g different partial
derivatives of F, and moreover it is a purely g'th order differential operator, in the sense
that each monomial involves precisely g differentiations. Hence, we will look fora @, ,
that shares these two properties.

Besides F + det(dF), another operator with the above properties is F +—
F9~1(det d)F, where each monomial is F9~! multiplied by a suitable g'th order partial
derivative of F. Of course D4,q(F) cannot be defined either as det(dF) or as FI~!(det d)F,
as these are not modular forms. But a wished-for ©/ , can be constructed explicitly: in
order to do so, we will use the general machinery of [32], which implies that a differential
operator with constant coefficients maps a non-zero modular form to a modular form if
the corresponding polynomial is pluriharmonic and satisfies a suitable transformation
property under the action of GL(g, C).

We now begin by reviewing the general notation, before stating a particular case
of [32, Thm. 2] that allows the construction of D ,.

6.1 Polynomials and differential operators

Let Ry, ..., R, be a g-tuple of g x g symmetric matrices, and denote the entries of Rj, by
(Ty,i7). Denote

CIRy, ..., Ryl := Cl{ry ;]
the space of polynomials in the entries of these matrices. The group GL(g, C) naturally
acts by congruence on each symmetric matrix R; (namely, via R;, — AR,A" for every
A € GL(g,0)), and so on the space C[R,, ..., Rg]. For every integer v > 0, we denote by

CIRy, ... ,Rg]V C CIRy,... ,Rg] the vector subspace of those polynomials P € C[R;, ... ,Rg]
that satisfy

P(ARAY, ... ,ARgAt) = det(4)"P(Ry, ..., Ry)

for all A € GL(g,C).
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For every polynomial Q € C[Ry, ... ,Rg], we define

1+8; 9
2 afh;ij ’

Q, :==Q(d,...,9y), where as usual (dp);; :=

Such Q, is then a holomorphic differential operator with constant coefficients acting
on holomorphic functions in the variables 7,;;. We further define the holomorphic
differential operator D, that sends a g-tuple of holomorphic functions F; (r;), .. Fy(ty)

on Hy to another holomorphic function on the Siegel space given by

Do(Fy, .. F)(T) i= Qy(Fy (1)) -+ Fy(tg)| 1=y -

What this means is that applying each 9; takes the suitable partial derivatives of F;,
with respect to the entries of the period matrix 7;, and then once the polynomial in such
partial derivatives is computed, it is evaluated at the point 7; = --- =7, = 7.

While the general theory of applying D, to a g-tuple of modular forms is very
interesting, we will focus on the case F = F; = --- = F, denoting then simply D, (F) :=

Dy(F,...,F).

Example 6.1. It is immediate to check that the following polynomial (the general

notation MR will be introduced in Section 6.2 below)

RA,..., 1) = Z sgn(o) H Tarlo) " Tapnom)

= (@1,...an)=(1,..n)

induces the differential operator Dy

,,,,,

operator first gives

0F (1)) 0F(ry) | OF(1)) 0F(r) _,0F(ry) OF(ty)
0Ty;1,1 0T 0 0Ty.92 0711 0Ty;1,1 9T 2

and then restricting to r; = 1, yields 2 det(dF). On the other hand, the polynomial

R(g, 0 0....0 Z Sgn(U)Hrl]o‘(])

g- 1 times 0€Sg

induces the differential operator Dy(g,0,..0)F) = F9~1(det 3)F. We stress that while each

term of Dy 1) is a product of g first-order partial derivatives of F, each term of

.....

Dy(g,0,..,0) 18 equal to F9~1 multiplied by one g'th order partial derivative of F.
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Our main result is the following Theorem 6.2, which is a refined version of

Theorem A: indeed, to obtain Theorem A from it, we just need to set
D0 = 4D, ,F)

for every modular form F of genus g > 2 and weight a > J (the constant factor g! is
introduced only for notational convenience).

In order to motivate the statement below, recall that we want Dag,a (F) to be equal
to g! det(dF) modulo F. Since g! det(dF) = Dy 19)(F) as in Example 6.1, and since PR(19)
belongs to CIR,, ... ng]zr it is rather natural to look for Ogla inside C[Ry, ... ng]z-

Theorem 6.2. For every g > 2 and every a > %, there exists a polynomial Qqq €
CIR;, ..., Rgly such that the following properties hold for every genus g Siegel modular

form F of weight a:

@) Dy, ,(F) is a Siegel modular form of weight ga + 2;
(ii) if ordy F = b, then ord, Dy, ,(F) = gb;
(iii) the restriction of Dag,a (F) to the zero locus {F = 0} of F is equal to g! - det(dF).
Moreover, for any other polynomial Qg , € CIR,, ..., Rgl, such that Dq,, satisfies
properties (i) and (iii), the difference Dag,a (F)— Da/m (F) is a Siegel modular form divisible
by F.

The above differential operator Doy, which is homogeneous of degree g, can be
also applied to modular forms with a character, which only occur for g = 2: in this case,

the output is a modular form (with trivial character).

Remark 6.3. As a consequence of Theorem 6.2(iii), if a modular form F of genus g and
weight a > % satisfies Condition (), then Dog LB does not vanish identically on the zero

divisor of F.

The reason we are able to construct Qg4 explicitly is that we can use a lot of prior
work, especially by the second author and collaborators, on differential operators acting
on modular forms. In particular, by Theorem 6.10 the operator Dag’a will map modular
forms to modular forms if Q, , is pluriharmonic—this essential notion will be recalled
in Section 6.5.

Thus to prove Theorem 6.2, it will suffice to construct a pluriharmonic Qg €
CIR;, ..., Rgyl,. Property (i) will rely on Theorem 6.10 and (ii) will be easily seen to hold.

Up to rescaling, we will also check (iii), and the last claim will follow.
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6.2 A basis of C[Ry,...,Rgl2

Consider the g-tuple of symmetric g x g matrices Ry, ..., R,. We set
Ri=t,Ry +- -+ 4Ry, (10)
and denote by i(n) € CIR;, ... ,Rg] the coefficients of the expansion of the determinant

det(R) = > Rt ... 1o°

neNg

as a polynomial in the variables ¢,..., ty, where

N, = {n=(n1,...,ng)eN9|nh20forallh, Znhzg}.

The importance of the polynomials $3(n) for us relies on the fact that they clearly belong
to CIRy,... ,Rg]z, simply because det(A9RA?) = det(4)? det(R) for all A € GL(g, C).
The following lemma, of a very classical flavor, was communicated to us by

Claudio Procesi.
Lemma 6.4. The set of polynomials {R(n)},cy is a basis of C[R,,...,Rgl, .

Proof. Let V be a complex g-dimensional vector space and let GL(V) naturally act on
Sym?(V*)®9 via

A- (@1 QP11 (9g @ Py)) 1= ((914) ® ($14), ..., (9 A) ® (9sA))

for A € GL(V). Consider the C-algebra Z(V,g) of SL(V)-invariants inside Sym?(V*)®9.
The quotient GL(V)/SL(V) = C* acts on Z(V,g) and, under this action, the algebra of

invariants decomposes as

Z(V,g) = @I(V,g)d, where Z(V,g); :={P€Z(V,g) |A-P = det(A)ZdP}.
d

Clearly, Z(V, g), is simply the subspace of Z(V,g) consisting of invariant polynomial
maps P : Sym?(V)®9 — C of total degree d - dim(V) with respect to the above C*-action.
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The subspace Z(V, g);, which by definition is C[R,, ... ,Rg]2, decomposes as

IV, 9, = P TV, 9),

neNg

where Z(V, g),, := ®?:1 Sym™(Sym?(V*)) denotes the subspace of invariant polynomial
functions Sym?(V)®9 — C of multi-degree n.

Since it is easy to check that R(n) € Z(V, g),., it is enough to show that Z(V, g),
has dimension 1 for all n € Nj. Moreover, Z(V, g), is isomorphic to Z(V,g);, 1) =
(Sym?(V*)®9)SLV) a5 an SL(V)-module for all n € N, and so it is enough to show that
(Sym?(V*)®9)SL(V) has dimension at most 1 (and in fact it will have dimension 1, since
R(n) #0).

Thinking of (Sym?(V*)®9)SM(") as a subspace of (V*)®29)SL(V) we describe a basis
of ((V*)®29)SL(V); it is enough to do that for V = C9.

Let B be the set of all permutations (I,J) = (il,...,ig,jl,...,jg) of {1,2,...,2g}
such that iy, <j;, forallh=1,...,g. For every (I,J) € ‘B, we denote by

iy, iglliy, gl s VB2 — C

the linear map that sends v; ® - -- ® v,, to det(vy) det(v;), where v; is the matrix whose
h-th column is v; (and similarly for v;). It is a classical fact that the collection of
iy, ..., iglljy, . ... Jg] with (I,J) € B is a basis of (7*)®29)SL(V) of [41, pages 387, 504].

Fix now (I,J) and consider the restriction of [i,... ,ig][]'l, ... ,jg] to Sym?(V)®9,

and in particular to the vectors of type
VIQVI @V @V Q- @V, ®Vy,

which generate Sym?(V)®9. Note that [iy,..., ig][]'l, ... ,jg] is alternating both in I and in J,

and vanishes on all vectors v; ® v; ® v, ® v, ®- - - ® Vv, ®V, as soon as either I or J contains

{2m — 1, 2m} for some m = 1,...,g. It follows that all elements [il,...,ig][jl,...,jg] of
the above basis of ((V*)®29)SL(") yanish on Sym?(V)®9, except possibly [1,3,5,...,29 —
1112, 4,86, ...,2g]. We conclude that (Sym?(V*)®9)SL(") is at most 1-dimensional. [

6.3 Definition of the polynomial Qg

In view of Lemma 6.4, every polynomial in C[R;, ..., Rgl, must be a linear combination of

the (n)’s. Here we define a sought polynomial Og'a € (C[Rl,...,Rg]2 as a linear combi-
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nation of the R(n)’s by providing explicit formulas for its coefficients. Pluriharmonicity
of @, , will be defined and verified in Section 6.6. This Qg , is not unique in general, but
another choice makes no difference for proving Theorem A and Corollary C.
We define the constant
g-1

Cla,1):=@g-1D][]ea-0.

i=1
Moreover, for every m = 2,...,g we define the constant

-1
C(a,m) = (-1 Y(m - 1)! 2a)™! gH (2a —1i),
1=m
where for m = g the last product above is declared to be equal to 1, so that C(a,g) =
(197 1g - D! 2ay9 1.
By an abuse of notation, we delete the index a from C(a, m) and we assume 2a >
g > 2,so that C(1) # 0, and define then

Og,a = ﬁ c(m)Rm),

neNg

where

1. c(1,...,1):=CQ);

2. if at least two of nnq,...,n, are greater than 1, then we set c(n) := 0;

g
3. if nj, = m > 1 for some h, while 0 < n; < 1 for any j # h, then we set

J
c(n) := C(m).

Hence c(n) # 0ifand onlyifnisequal to (m,1,1,...,1,0,0,...,0) forsomem > 1,

up to permuting its components.

6.4 Explicit formulas

In order to have a more explicit expression for the polynomials R(n), we expand the

relevant determinants.

Notation 6.5. If M is a g x g matrix and I,J C {1,2,...,g} with |I| = |J|, we denote
by M;; the minor of M consisting of rows I and columns J, and denote by det;;(M) the
determinant of M;; (if |I| = |J| = 0, then we formally set det;;(M) := 1). Moreover, we let
T be the complement of I and, ifi € {1,2,...,g},thenwelet? :={1,2,...,g}\ {i}.
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Applying the Laplace expansion several times yields

Rm) = Y ed,,J,) det(R)) - det(Ry) , (11)
= nIJi IgJg

where (I,,J,) = (I}, . .. ,Ig,Jl,...,Jg) and

* IL,....I;Jy, ..., Jyrun over all subsets of {1,..., g} such that |I;| = |J;| = n; for
eachi=1,...,g and u?lei = uleji ={1,...,9%s

e €(l,,J,) is the signature of the element of Sg that maps (I, ... ,Ig) to (Jy, ... ,Jg),
where the elements inside each subset I; or J; are ordered from minimum to

maximum.

In order to compute Dyny(F, ..., F), considern = (m,1,...,1,0,...,0). Regarding
the partial sum of the parts for Il = 1 as expansions of determinants by Laplace

expansion, we have

Doy F, ..., F) =F™ 1 D" €(I,J)(g — m)! (dety; d)F - det; 5(0F), (12)
\I|=1J|=m

where we denote

eI, J) i= (—1)ittimtiittim,
Thus, we have obtained the following.

Corollary 6.6.

(i) Ifn=(,...,1),then Dy ;) F) = g! det(dF).
(i) Ifne N, andn # (1,...,1), then Dy (F) is @ multiple of F.

Proof. For (i), note that
g . .
> (=), F - det; }(0F) = det(dF)
j=1
foreveryi=1,...,g. Then formula (12) forn = (1,1,...,1) (i.e., for m = 1) yields
g

.....

ij=1
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For (ii), we observe that since > n;, = g,and alln;, > 0,itfollows thatunlessn=(1,...,1),
there exists at least one h such that nj, = 0. But then the polynomial $i(n) would contain
no ry;, which is to say that Fy, is not differentiated at all by Dy, (Fy, . . ., F,). This finally
means that D) (Fy, - - - ,Fg) is divisible by Fj,, and thus Dy () (F) is divisible by F. [ |

Example 6.7. For g = 2,3 we have

2(2a)
Dq, (F,F) = 2det(oF F. F
OZ,a( ,F) det(0F) + T —2a (detd)F,
2 2
Dy, (F,F,F) = 6 det(OF) + — =2 ___p2. (det)F

(2a — 1)(2a — 2)

3
3(2a)
B mFiE(aijF) - (det;; )F .

6.5 Pluriharmonic polynomials

Our motivation for the construction below is as follows. For any reasonable lattice L in
R™ and a pluriharmonic, in the sense defined below, polynomial P(X) in n x m variable
matrix X satisfying P(AX) = det(4)kP(X) for any A € GL(n, C), it is well-known that the

theta series

0 (1) = z 13(X1,...,Xn)exp(ZniZ(xi,xj)rij)

X1,...,Xn€L ij

is a Siegel modular form of weight % + k. On the other hand, for P = 1 (constant 1),

we have

1+8ij d . .
o 5t = 27D > (xxp)exp@ri Y (%, X)Ty).

Y X1,...Xn€L ij

This means that if P(X) is a function of (x;, X;), then we can regard 0, pasa derivative of
theta series 0;, . This morally motivates Theorem 6.10 below, though the actual content
and the proof of the theorem are much more subtle. Theorem 6.10 shows that the
most important step toward the proof of Theorem 6.2 is checking that Qg ,, defined in
Section 6.3 as a linear combination of 93(n), is pluriharmonic. In this section, we recall

the relevant setup, definitions, and statements.
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Fix an g x k matrix X = (x;,), and denotefor 1 <i,j <g

k 52
A= G

v=1 iv Yy

For a polynomial P(R) in the entries of a symmetric g x g matrix R = (r;;), we denote
P(X) := P(XXY).

Definition 6.8. The polynomial P is called pluriharmonic (with respect to X) if Aijﬁ =0
foralll <i,j<g.

To detect this pluriharmonicity in terms of R, we define the differential operator

in variables (ri) by

g9

u,w=1

1+8ij KR

where 9;; 1= —; o Then a direct computation yields

(DP)(XX") = A;(PX), (14

where P(ry) is any polynomial, and the LHS means Dy; is applied to P, and then evaluated
at XX°.

This equality shows that computing the A;; derivative of P (which is a second
order differential operator) amounts to computing the D;; applied to P, which is a differ-
ential operator that includes first and second order derivatives. Thus, pluriharmonicity
is equivalent to the condition D;j(P) =0 forall 1 <i,j <g.

Now the full setup we require is as follows. For a positive integer k = 2a, we

consider a g-tuple of g x k matrices X1, ... ,Xg, and denote Ry, := Xthl.

Definition 6.9. A polynomial P € C[Ry, ... ,Rg] is called pluriharmonic if
P(Xy,..., X)) :=PX,X},..., X X},

is pluriharmonic with respect to the g x (gk) matrix X = (X, ... ' Xg).
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The following result is a special case of [32, Theorem 2], which shows the

importance of pluriharmonicity.

Theorem 6.10. For g > 2,let P € C[Ry, ... ,Rg]2 and let F # 0 be a Siegel modular form
of genus g and weight a > 3. Then Dp(F, ..., F) is a Siegel modular form of weight ga + 2

if P is pluriharmonic.
Let us first give an elementary characterization of pluriharmonicity.

Lemma 6.11. LetP € C[Ry,... ,Rg].

(i) The polynomial P(X) is pluriharmonic if and only if P(AX) is harmonic (i.e.,
7 1 AjP(AX) = 0) for any A € GL(g, C).

(ii) AssumethatP e CIR,, ... ,Rg]V for some v. Then, P(X) is pluriharmonic if and

only if A, (P) = 0.

Proof. The claim (i) is remarked in [36] and we omit the proof. In order to prove (ii), note
that pluriharmonicity of P implies that A,;(P) = 0 by definition. Hence, it is enough to
prove that Au(f’) = 0 implies pluriharmonicity. For a fixed i with 1 <i < g, let A be the

permutation matrix that exchanges the first row and the i-th row. Since

Ay(X) - P(X) = det(A) " A;(X) - P(AX)

= det(4)?7VA,, (AX) - P(AX) = 0,
the conclusion follows. [ |

Denoting Dy, the differential operator D;; defined in (13) with respect to the
entries of the matrix Ry, and using (14) to rewrite A, ;; for each Xj, as Dy,.,;, by Lemma 6.11

we have the following.

Corollary 6.12. Suppose that P € CIRy,...,Ryl, for some v. Then P is pluriharmonic
with respect to the g x (gk) matrix (X;, ..., X,) if and only if

g
ZDh;uP:O— (15)
h=1

The above corollary applies to Qg q and simplifies the verification of its plurihar-

monicity.
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6.6 Pluriharmonicity of Qg 4

The result that we want to show is the following.
Proposition 6.13. The polynomial Qg q is pluriharmonic.

Since we will be dealing with minors of the matrix R defined by (10), we let
N :={n= (n/l,...,n;) € N9|nj, > 0 for all h, Zn}l =g-—1}, (16)

and we denote by iﬁk;l the determinant of the matrix %37, and denote by ffik,.l(n’) the

polynomial appearing in the expansion

Ry = >, Ry’ - t5° .

n’eN’

We can now compute the derivative of $i(n) that enters into the formula (15) for

pluriharmonicity.

Lemma 6.14. For anyn e Ng, we have
Dj.1 %) = 2(k —nj, + DR, (0 —ep),

where k = 2a, and {e,, ... ,eg} is the standard basis of Z9.

Proof. By symmetry, it is enough to prove this for A = 1; for simplicity, we just write
r;; for the entries of the symmetric matrix ry.;;, and define 9 by (8). We recall that D;,;; =
9
k- + Zi,jzl 130101
Then by treating the cases i = 1 and i # 1 separately, and checking the factor of

1/2 versus 1 appearing in the definition of 9 for these entries, we see that
9y; det(®) = 2(—1)! g Ry

foranyi=1,...,g. To compute the second order derivatives appearing in D;.;;, we first

note that since 5‘\{1;1 does not depend on any ry;, we have 9,;0;;det(R) =0ifi=1orj=1.
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Otherwise, fori,j # 1, we compute

rondyj det®) = (=DMt oy Ry = (DD 2R

D+ 1
= (DEDTHIDERR G

Summing these identities yields

g g
D
D rydidy det@®) = (=) D tyrg(~DEVTIIR G
1j=2 ij=2

Here for a fixed i, the sum SI,(=DEDHDr R o ) is nothing but the derivative of
the (i — 1)-th row of R,.; with respect to ¢;, and thus

J ~
%1;1 .

g
_1\GE-D+G-D,. @ . =
Z( 1) TR = at,

ij=2

Recall that S’)\‘il;l =D e D’L\il;l(n’)tlfl . tgg and note that
a ~ ~
g @ R @) =p TR ()
Thus, the coefficient of ] ... tZg in the expansion of D, det(R) is equal to

2kRy, (g — 1,ny, ... np) — 20y — DR, (g — 1,ny,...,ny).

As a consequence of Lemma 6.14, we have

(2a — 1)!

(2a — g)'z hllagazzc(n)Dh;llm(n)

h=1
g —~
Z 2(k — nj, + DemR;,; (n — ey)

9
=2 (k—npc@ +e,)R,,; ).
h=1
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Thus, by Corollary 6.12, to check pluriharmonicity of Q, ,, it is enough to check that

gar’

g
> (k—njcm’ +e,) =0 (17)
h=1

foralln’ e N'.
Comparing the degrees of ﬁl;l(n/) with respect to R;, one can see that the set
{97{1'1 (n’) |In’ € N’} is linearly independent over C, and so (17) is actually equivalent to the

pluriharmonicity of Qg ,.

Proof of Proposition 6.13. It is enough to verify (17) for every n’ € N'. Up to reordering
the entries of n’, we can assume that they are non-increasing.

If n}| > n}, > 1, then n’ + e, has two entries larger than 1, and so by definition we
have c(n’ + e,) = 0 for any ¢. It follows that all the terms in (17) are equal to zero, and
the equation is trivially satisfied.

Forn' = (1,...,1,0),the LHS of (17) is

k~c(1,...,1)+(k—1)(0(2,1,...,1,0)+c(1,2,...,1,0)+-~-+C(1,...,2,0))

=k-C(1)+(k—1(@—-1C2).

By definition of C(1) and C(2), the terms cancel, yielding 0.
Let nown' = (m,1,...,1,0,...,0) with g — m entries 1. If 2 < £ < g — m, then

n, > 1 and c(n’ + e,) = 0 by definition. We then have
c(n/—l—el)=c(m+1,1,...,1,0,...,0)=C(m+1).

Ifg—m+1 < ¢ then n' + e, is of type (m,1,...,1,0,...,0), (m,1,...,1,0,1,0,...,0),
...,or (m,1,...,1,0,...,0,1): in all these cases n’' + e, has g — m entries 1, and thus
c(n’ +e,) = C(m). So LHS of (17) is given by

(k—m)C(m + 1) + km - C(m),

which also vanishes by our definition of the constants C(m). |
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Example 6.15. In the case g = 2, we obtain

2 2
Q,q =R(1,1) - alm(z,O)— alm(o,z),

2a — 2a —
where we have used k = 2a. This is a special case of the discussion in [14].

Proof of Theorem 6.2. The polynomial Q defined in Section 6.3, belongs to

a’
CIR;, ..., Rgly and is pluriharmonic by Propozition 6.13. Then (i) and the first part of
(ii) follow from Theorem 6.10. Moreover, since DQg,a (Fy,... ,Fg) is C-linear in each Fj, and
since Fj, and g% have the same vanishing order at the boundary for all  and all ,j, it
follows that Do, ,(F,...,F) has vanishing order 8 > gb. This completes the proof of (ii).

As for (iii), note that 2a > g > 2 ensures that the constant C(1) defined in Section

6.3 is non-zero and so, by construction,

Rn).

(22 - g)t o)
2.

Q,, =RA,..., 1)+ , (2a—-Dlg-1

By Corollary 6.6, it follows that
Daga(F, ..., F) =g! det(dF) (mod F),

and so (iii) is proven. The last claim is an immediate consequence of (i) and (iii), as the

modular form Dag,a (F) — DOQQ(F) vanishes along {F = 0}. |

We make one last remark on the above proof. We are not claiming that Q , or the
associated differential operator Dy,, are unique. Since we are looking for polynomials
inCIRy, ... ,Rg]Z, these must be linear combinations of the 9i(n)’s by Lemma 6.4. If O’g,a €

CIRy, ..., Ry, satisfies property (iii) in Theorem 6.2, then it must take the form

Qy,=RA1,....H+ > JdmRm)

by Corollary 6.6. Hence, the restrictions of D% L) and Dag ,(F) to the locus {F = 0} agree.

Note that the coefficients ¢’(n) may differ from the c(n) that were defined in Section 6.3.
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