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Abstract: The existing quantitative geography literature contains a dearth of articles that
span spatial autocorrelation (SA), a fundamental property of georeferenced data, and spatial
optimization, a popular form of geographic analysis. The well-known location—-allocation
problem illustrates this state of affairs, although its empirical geographic distribution of
demand virtually always exhibits positive SA. This latent redundant attribute information
alludes to other tools that may well help to solve such spatial optimization problems in
an improved, if not better than, heuristic way. Within a proof-of-concept perspective, this
paper articulates connections between extensions of the renowned Majority Theorem of the
minisum problem and especially the local indices of SA (LISA). The relationship articulation
outlined here extends to the p = 2 setting linkages already established for the p = 1 spatial
median problem. In addition, this paper presents the foundation for a novel extremely
efficient p = 2 algorithm whose formulation demonstratively exploits spatial autocorrelation.

Keywords: local spatial autocorrelation; majority theorem; spatial autocorrelation; spatial
median; spatial optimization

MSC: 62H11; 90C27

1. Introduction

One big data era theme lacking sufficient research efforts is the inter-disciplinary
intersection of applied probability, statistics, and operations research dealing with spatial
optimization involving the servicing of large numbers of demand locations with multi-
ple supplier facilities. Its high dimensionality (e.g., see [1]) derives from its number of
demand points, n, coupled with its number of spatial median supply locations, a solution
requiring numerically intensive work because of it being a daunting combinatorial problem
(e.g., see [2,3]). This paper exploits spatial statistics (e.g., [4]) to propose and develop new
methodologies and theories to resolve such real-life challenges. In doing so, it advances a
data-driven decision-making spatial optimization process.

Griffith et al. [5] discuss that the integration of spatial optimization and spatial statistics
can bring synergetic effects to answering optimal location siting questions, such as optimal
location—-allocation problems, adopting insightful findings from their individual separately
developed literatures. Location problems face computational challenges, especially when
they involve large numbers of demand and central facility (i.e., median) locations. Hence,
studies often present heuristic solutions with improved initial solutions (e.g., [6]) or con-
straints that reflect spatial characteristics such as distance thresholds (e.g., [7]) and spatial
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contiguity (e.g., [8]). Some studies (e.g., [9,10]) further discuss that the spatial patterns of
weight surfaces have an impact on location problem solutions. However, these narratives
focus on explaining associations between these two components, and generally lack in-
corporating spatial patterns into spatial optimization model formulations. Such spatial
patterns are often attributable to latent spatial autocorrelation (SA), which is a central
concept in spatial statistics. Spatial statistical models incorporate SA terms, which are
often specified with correlation parameters and linear combinations of spatial neighboring
observation attribute values (e.g., spatial optimization demand point weights), extending
traditional statistical models such as those for spatial regression techniques created from
conventional linear and generalized regression specifications (e.g., [11]).

Griffith et al. [12], augmenting Griffith [9], Griffith et al. [5], and Lee et al. [6], doc-
ument a relatively newly verbalized relationship between the p = 1 minisum solution
[i.e., the spatial median, the answer to a problem for which Drezner et al. [13] provide a
thorough review] and local SA (note: local SA is the key ingredient for global SA because
its manifestation is a particular mosaic of organized local SA clusters, as Moran eigenvector
spatial filtering demonstrates (e.g., global, regional, and local components for positive SA;
see [14]); the significant local SA clusters are extreme neighboring location dis/similar
attribute point pairs, which are positioned at the opposite ends of a Moran scatterplot
trendline data cloud, as well as pairs substantially deviating orthogonally in either direction
from the trendline itself). In doing so, they link their discovery to its associated legendary
majority theorem (MT-1; [15,16] p. 30, [17] p. 148]). The formulation of MT-1 can be found
in Griffith et al. [12]. This theorem states that when the weight on a single demand point is
greater than half of the sum of the weights on all n demand points, then this demand point
location is the optimal solution of the p = 1 spatial median problem, which finds a solution
that minimizes the sum of weighted distances [i.e., it is a minisum problem (see [15] for
its proof)]. One compelling feature of this MT-1 known analytical result is that it enables
easily verifiable numerical experiments. These most recent efforts also produced a new
egalitarian theorem (ET-1), describing essentially the opposite circumstances depicted by
the MT situation.

The selected operations research literature furnishes a contextualizing backdrop to
this mostly ignored liaison in an interface between global/local SA and optimization. In
Computers & Operations Research, Williams [18] pp. 496-497 speculates about this association
in global SA environments. Thirteen European Journal of Operational Research articles span
mentioning (e.g., [19] p. 263) to extensively employing (e.g., [20]) it when such global
manifestations exist—with its localized attention focusing on scattered micro groupings
rather than a solitary macro (i.e., global) map pattern of weights. Ten Annals of Operations
Research papers published between 2000 and 2023 also recognize SA, from incorporating
it into natural resource optimization models [21] p. 77, through missing values impu-
tation [22] and utilizing the local indicators of SA (LISA) as objectives in a multicriteria
framework [23], to geographic-clustering-informed spatial optimization [24]. And, a set
of three papers appearing in Operational Research that range from acknowledging without
explicitly accounting for it [25], through optimizing the hot/cold spot geographic clusters
it spotlights [26], to again exploiting it to spatially interpolate missing values [27]. In other
words, SA has become a more exposed spatial optimization concern during the last quarter
century, with a much greater interest in it materializing in the past decade. Nevertheless,
the connection between SA and spatial optimization still remains under investigation.
Current studies appearing in the existing literature are often limited to speculative links
between the two, or to utilizing spatial statistical tools for either missing value imputations
or the identification of geographic clustering patterns. The practical application of SA to
enhance spatial optimization has largely been unincorporated into the specifications of
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spatial optimization models [9]. Additionally, the increasing complexities of analytical
solutions for spatial optimization—particularly with the problem size growth as well as
the growth itself—have posed significant challenges. These complexities have hindered
theoretical and/or conceptual developments in this field, despite contributions by some
recent studies [5,6,28]. This literature gap underscores the need for further exploration of
the integration of these two research areas.

1.1. The Objective of This Paper

This paper extends MT-1 to a novel p = 2 MT conjecture (MTC-2), while also postulat-
ing a conjectural extension of ET-1 to the p = 2 case (ETC-2). Restricting attention here to the
p = 2 case allows a more comprehensive examination of the simplest situation (e.g., exact
solutions are feasible for massive numbers of demand locations), in which competitive
allocations of demand points occur. A noteworthy ET-1 implication arising from the gener-
alization of a single dominant weight demand point to a coterminous geographic cluster
of extremely large weight points collectively being dominant is that spatial optimization
potentially misidentifies this swath of similar nearby outlier value weights with local pos-
itive SA (the Getis-Ord G;* local SA statistic can furnish insights into this scenario [29]).
The MTC-2 model accommodates collective dominating weights rather than relying on
a single dominating weight. It incorporates the observation that p = 2 solutions tend to
emerge on opposite sides of the p = 1 solution, reminiscent of the first and third quartiles
positioning themselves on both sides of a univariate median. Additionally, the MT-1 model
can be leveraged to identify a single dominating weight within each of the two resulting
subgroups, enhancing its scalability for spatial optimization. These foci are the original
contributions of this paper that differentiate it from its earlier p = 1 counterpart. A principal
motivation latent in this confluence nucleus is a necessity to address the gap between
location—allocation research and the increasing recognition that SA is everywhere in the
real world, and, paralleling the universal role of means and variances in data analyses, is a
fundamental property of geospatial data that virtually always merits acknowledgment.

Of course, other issues may be relevant, too, such as the MAUP [30], whose aggregation
error (e.g., using the average distance and average weight for each individual point in a local
geographic distribution) impacts on optimal solutions and already has a lengthy discussion
appearing in the literature (e.g., [31]). Meanwhile, Lee et al. [32], for example, investigate
the relationships between the MAUP and global SA. Although these and other topics are
important, and deserve careful and detailed further examination, they are beyond the scope
of this paper, and as such, constitute future research pursuits. The findings reported in this
paper are scalable in geographic resolution, planar surface partitioning, and geographic
scale, and hence should be robust to these three particular data features.

The research problem addressed in this paper is to determine the optimal locations
{(Uj, V]-), j=1,2} on a continuous surface for two facilities, with no constraint on capacity
(i.e., uncapacitated location—-allocation problems), to serve a geographically distributed
set of demand points [finding a pair of points (p = 2) on a continuous surface that jointly
minimize the sum of weighted Euclidean distances to them from a designated set of
demand points], which may be stated in the objective function form as follows:

MIN: Yo A3 wi/ (i — ) + (0~ V;)? (1)

2 .
s.t.: ijﬂﬁ =1,i=12,...,n,

where A;; denotes a pair of dichotomous 0-1 indicator variables for each location i, with
A1 = lifits allocation is to the first facility (j = 1) or A;» = 1 if its allocation is to the second
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facility (j = 2), (u;, v;) are the posited set of n demand point Cartesian coordinates, and
w; > 0 is the weight quantifying demand at point i.

The point (Uj, V;) also is the spatial median for the demand points constituting
the allocation to facility j (i.e., A;; = 1). One challenging difficulty here is that the ob-
jective function (1) minimum is not necessarily unique (see Figure 1, which also illus-
trates that the magnitude of non-uniqueness can be a function of geographic region
shape [33,34] pp. 76-77); this feature is more notorious for uniform distribution contexts.
Furthermore, if \/ (u; — Uj)z + (v — V])2 =0, then the spatial median (Uj, V;) coincides
with the location (u;, v;) of demand point i; in contrast, obviously if w; = 0, then loca-

tion i effectively disappears from the set of demand points in this spatial optimization
problem, regardless of the location of its accompanying point. Solving this p = 2 median
problem essentially reduces to, in a methodical way, iteratively allocating each of n demand
points to one of two nonoverlapping coterminous geographic regions (note: this situation
spawned the p = 2 specific TWAIN algorithm, an implementation of this conceptualization
that very efficiently solves the p = 2 median problem [35] p. 210), and then applying the
Kuhn—Kuenne [36] algorithm (note: an independent rediscovery—e.g., [37] p. 835—of
the Weiszfeld [38] algorithm for optimally solving the p = 1 Weber problem case, as was
also conducted by Miehle [39], by Cooper [40], and by Vergin and Rodgers [41], among

others) to the subset of points contained in each region [initiating this computation with
Lizq Wit M)]

. : : ) - R S =

to compute its spatial median (note: an equivalent statistical solution is to set a nonlinear

each region’s spatial mean [i.e., bivariate weighted arithmetic average (

regression’s left-hand side response variable Y identically equal to O (i.e., it becomes a

constant), and its right-hand side to /\ijZ?:l w; \/ (ui — Uj)z + (vi — V])2 This specification
yields the parameter estimates U]- and Vj for the spatial median (U]-, V]-), j=1,2); the

nr’ wiu; Ylp w,vl

. . . . . . . Yio &t Yl 4

iteration involving reallocations and spatial median [i.e., = = % |, whered;
g 1 l
i=1d izl d

denotes the Euclidean distance \/ (uj — U)z + (v; — V)2 for each of the p allocation regions]
recalculations continues until convergence.

()

-
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Figure 1. Geographic distributions of 1000 p = 2 solutions for a uniform distribution of demand across
a regular hexagonal lattice; gray and black filled circles, respectively, denote the first and second of a
spatial median pair (post-sorted by axes positions). Left (a): a unit square landscape (n = 144); equally
likely north-south or east-west solutions. Middle (b): a unit circle landscape (n = 112); very many
(e.g., an infinite number of) equally likely essentially inner-circle-diameter-length separated solution
pairs. Right (c): a single dominant weight (denoted by a solid black circle; the MT case) demand
location held constant (n = 100) across simulation replications.
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1.2. The Content Organized of This Paper

This paper has four ensuing sections. The next one addresses solving the uncapacitated
p =2 median problem. Its sequel summarizes the special formal mathematical properties of
this p = 2 median problem. Next, arguments are put forth establishing the solution utility
of a specific spatial statistical tool (i.e., local SA indices) in the presence of two dominant
demand point weights in a p = 2 median problem. The final section enumerates salient
conclusions and implications.

2. Solving the Uncapacitated p = 2 Median Problem

Rushton et al. [42] furnished a number of Fortran computer code programs to calculate
the exact solutions for this problem, including TWAIN, that very efficiently solves only
the p = 2 case. The number of possible distinct two-group demand point combinations
is 2" [one of these is the empty set, which when subtracted yields (2" — 1)]; the subset
number of non-empty two-group combinations (i.e., a requirement for the existence of two
central facilities) is the Stirling number of the second kind (i.e., 2"~! — 1; note: using p = 2
location—allocation phraseology and a combinatorial mathematics context, it is the number
of ways to partition—i.e., group—a set of n demand points into 2 non-empty subsets—i.e.,
each subset must contain at least one demand point; see [43]); subtraction of the one is
for the empty set, whereas the loss of the other 16 (for the n = 5 case) combinations is
because allocating k demand points to one group and (5 — k) to the other is the same as
allocating (5 — k) to one group and k to the other, k =1, 2, ..., 4. In other words, five of
these possibilities have one demand point in one and four in the other group, where the
group order is unimportant, and ten of these combinatoric possibilities have two in one
and three in the other group, again with the group order being unimportant.

The planar surface upon which the p = 2 spatial median problem resides allows a fur-
ther reduction in the number of candidate solution combinations to ,C, =n (n — 1)/2 [30];
for the illustrative example in this section, the number of geographic assessments is
n(n—1)/2=5(5 —1)/2 =10. This is a count of the number of possible pairs of points
supporting the construction of a Thiessen polygon boundary separating them into groups
(re all points within a Thiessen polygon are closer to its designated generator point than to
any other point on a planar surface, using the Euclidean distance metric). TWAIN is the
algorithm used to obtain solutions of this type reported in this paper.

The conceivable partitionings for a randomly selected specimen unit square example
appear in Figure 2; the various Thiessen polygon boundary lines traversing this geographic
landscape are superimposed perpendicular bisectors (the corresponding equation comes
from [44]) for the 10 possible point pairs.

The specimen set of demand points portrayed in Figure 2 also has a primary (#2,
w = 14) and a secondary (#4, w = 10) dominant weight; for the optimal solution, 14 > 6 + 5,
and 10 > 2. Table 1 tabulates all possible planar and non-empty set outcomes, demonstrating
that this TWAIN solution approach eliminates by fiat five infeasible combinations of
demand points from the number of non-empty two-group possibilities, as well as another
four lacking a Thiessen polygon derivable combination. In other words, four partitionings
automatically yield the optimal solution, and five additional partitionings iterate to the
optimal solution. A substantial reduction in the original number of necessitated branch-
and-bound executions to achieve optimality occurs with this tactic, making much larger
demand point sets amenable to solving. Note that the optimal solutions in each of the two
subgroups can be derived from MT-1. For example, MT-1 indicates that the optimal p =1
solutions in each Thiessen polygon in Figure 2b are #2 and #4, respectively, because their
weights are greater than 50% of the sum of all weights within each Thiessen polygon. This



Mathematics 2025, 13, 249 6 of 21

reflection provides some insight, paralleling how MT-2 is derivable from MT-1, which is
presented in Section 3.

(a)

0 /

Figure 2. The geographic distribution of all possible non-empty planar groups of a specimen set
of five demand points in a unit square: gray circles are proportional to weight quantities, asterisks
denote the pair of optimal spatial medians, and the line transects are the perpendicular bisectors of
straight lines connecting a pair of designated demand points; the integer name order of weights is
{6, 14, 2,10, 5}. Top left (a): {1; 2, 3, 4, 5}. Top middle (b): {4; 1, 2, 3, 5}. Top right (c): {5; 1, 2, 3, 4}.
Bottom left (d): {4, 5; 1, 2, 3}. Bottom middle (e): {3, 4; 1, 2, 5} from two partitionings; the optimal
solution. Bottom right (f): {1, 2; 3, 4, 5} from four partitionings.

Table 1. Enumeration of TWAIN-inspired Figure 2 specimen demand point set combinations.

ey ey Member Points Group 1 Group 2 Obijective
Possibility Group 1 Group 2 U P \Y% U P \Y% Fu:wtion
5 1 2,3,4,5 0.1237 0.4915 0.6198 0.5184 9.7654
6 4 1,2,3,5 0.9541 0.8621 0.4764 0.4483 5.6900
7 5 1,2,3,4 0.9982 0.2925 0.4764 0.4483 9.2870
1-4 1,2 3,4,5 0.4764 0.4483 0.9541 0.8621 5.4176
8-9: optimal 3,4 1,2,5 0.9541 0.8621 0.4764 0.4483 5.2838
10 4,5 1,2,3 0.9541 0.8621 0.4764 0.4483 5.8238
3 1,2,4,5
infeasible because of L5 2,3,4
planar constraints 2,3 1,4,5
2,4 1,3,5
3,5 1,2,4
2 1,3,4,5
absence of necessary 1,3 2,4,5
perpendicular bisectors 1,4 2,3,5
2,5 1,3,4

Note: bold denotes an initial solution appearing in Figure 2 that iterates to the optimal central facility location

(but not necessarily allocation) solution; bold italic denotes the objective function minimum.
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3. Special Formal Mathematical Properties of the p = 2 Median Problem

The past, present, and continual future improvement of computing environments
(e.g., Moore’s Law; note: the number of transistors in a dense integrated circuit (i.e., a chip)
doubles roughly every two years, a claim holding since 1975 [45]) has been a boon to spatial
optimization; in particular, the growth in the size of solvable problems attributable to computa-
tional advances (e.g., computing power and sophisticated solution algorithms/procedures)
increasingly pushes the boundaries of tractability outward. In combination, the refinements
advocated by these developments rationalized the implementation and performance of spatial
optimization in geographic information systems (GISs), allowing such geospatial analyses to
contribute to both GIScience theory and practice. This section expressly adds to this theory part
by creating several innovative conjectures that serendipitously allude to global and local SA.

3.1. An ETC-2 Proposition

Griffith et al. [12] provide a theorem stating that the p = 1 solution concentrates in
the center of a set of demand points with either a constant, or, on average, an identically
distributed random variable (RV; the arithmetic mean is a constant) weight across them.
Neither LISA [46], highlighting geographically clustering contrasting weights, nor G;* [29],
highlighting geographically clustering similar weights, statistics identify at least a potential
solution point in these settings because global SA is zero, and hence, local SA fluctu-
ates within the bounds of independent stochastic behavior. However, such a geospatial
landscape is empirically unlikely, in general, because most socio-economic/demographic
attributes display moderate, and most remotely sensed quantities display very strong,
global positive SA. Nevertheless, this situation is enlightening to examine because it both
is theoretically interesting and illuminating, and establishes a null hypothesis type of
benchmark for comparative purposes with landscapes containing strong global SA.

The following is a formal conjecture statement verbalizing the p = 2 spatial median
problem affiliated with the preceding constant weights scenario:

Conjecture 1 (Egalitarian, p = 2; ETC-2). For an n destination p = 2 source location—allocation
(i.e., p-median) problem in continuous space, with n > 2 and Euclidean distance, if all weights
w; (i=1,2,...,n)areidentical (i.e., the same value) and form a uniform geographic distribution
across the landscape, then the subsets-generated optimal spatial median pair locate on opposite
sides of a geographic landscape (a la geographic market area conceptualizations; see [47,48]), with a
straight line connecting these two locations being (nearly) collinear with the p = 1 spatial median for
that landscape, which lies between them. (Note: three points are collinear if their composite pairwise
interpoint connections fall on the same single straight line; Appendix A summarizes an exploratory
investigation about conditions coexisting with this property).

Rationale for Conjecture 1. For a unit square. Bisecting a square creates equal area shapes ranging

from a rectangle of dimension 1-by-12 (or vice versa), with centroid (Xcentroid, Yeentoid) = (Y2, 14),

through a trapezoid sequence of dimension 1-by-(12 — c)-&-(1/2 + c), with centroid ( 3+62C,3T22C )

for 0 < ¢ <12, to a right triangle of dimension 1-by-1, with centroid (33, 1/3). Based upon integrating

the Euclidean distance function \/ (x — xcemmid)z + (- ymtmid)z, the average within region
distance incrementally increases from roughly 0.297 for each rectangle, to approximately 0.366 for
each triangle. .. the pair of optimal locations is either the set {(1/2, Y4), (12, 3/4)} or {(14, 1), (344, 12)},
depending upon whether the two rectangles are the products of a horizontal or a vertical division;
see Figure 1a.

For a unit circle Bisecting a circle creates equal area semicircles. Without loss of generality,
considering the pair whose diameters are parallel to the horizontal axis, having respective centroids
(1,1 /2 & 3%), the average distance increases from roughly 0.292 for the centroid focal point, to
approximately 0.354 for the center of the circle focal point, and, in the reverse vertical direction,
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0.851 for the semicircle pinnacle focal point. Any other pair of semicircles is obtainable by rotating
the aforesaid centroids to a specified angle. .. numerous pairs of optimal locations form an inner
circle of radius 1/2 + %; see Figure 1b.

Figure 1 exemplifies this general situation. The unit square solution aligns with the
quartiles of the horizontal or vertical axes (re the solution lacks uniqueness), reminiscent
of the socially optimal Hotelling problem outcome [49]. The unit circle optimal locations
almost share this trait, locating, for example, at 0.29 and 0.71 along the horizontal axis
interval [0, 1].

A principal implication from ETC-2, beyond the existence of multiple optima, is that a
pronounced tendency exists for p = 2 spatial medians to disperse, hinting that the expression

(1) metric term \/ (u; — llj)2 + (v; — V])z potentially governs its associated weights term
wi, a noteworthy finding. In addition, just like for ET-1, ETC-2 implies a corollary for
identically distributed RV weights (because their expected values also are constant weights,
as previously discussed; see Appendix A).

3.2. More About the Collinearity Conjecture

The preceding collinearity of p = 1 and p = 2 optimal solution coordinate pairs appears
to be an exploitable property for efficiently and effectively solving a p = 2 location—allocation
problem. However, doing so requires preprocessing calculations of the p = 1 solution as
well as the weighted spatial mean (which almost always is the adopted initial starting
solution for the Kuhn-Kuenne algorithm), and the angle of rotation and major axis ver-
tices of a directional ellipse (see [50-52]) portraying the geographic orientation of the n
weights, both of which are simple and fast computations. The final solution begins with
these aforementioned vertices as an initial solution for a call to a heuristic algorithm such
as ALTERN [53], followed by 179 equal incremental clockwise angle increases (i.e., +1°
tracking a semi-circle) to establish sequential initial heuristic algorithm solutions, each
succeeded by a call to ALTERN. In other words, the optimal guided systematic search
strategy here involves about a sixth as many calls to ALTERN as the common random
search approach; a more sophisticated implementation of this novel algorithm should
reduce this number of calls (e.g., if the search rotation fails to change the initial allocation of
demand points to initializing centers, then an ALTERN call is not made) while increasing
its success rate from near to exactly 100%.

Figure 3a visualizes aspects of the solution approach proposed here. This illustration
depicts a tendency for the major axis of a directional ellipse to align with a prominent SA
map pattern. It also shows the near-collinearity of the p = 1 and p = 2 solution coordinate
pairs. Some software packages, such as ESRI© ArcMap, present this type of analysis in
terms of a clockwise rotation from the vertical axis. Figure 4 portrays a systematic search
counterclockwise rotation around a given dataset’s p = 1 optimal solution, initiated with
the directional ellipse major axis vertices. This strategy requires only a semicircle search
region because each of these two points aligns with and locates on the opposite side of their
affiliated p = 1 solution coordinates (see the dyad connections portrayed in Figure 4a). The
Table 2 tabulations reinforce a contention that this restricted search, which executes 180 calls
to a location—allocation heuristic algorithm (e.g., ALTERN), considerably outperforms the
popular practice of executing thousands—here 1000—of random calls to the same heuristic
algorithm. Moreover, a p = 1 solution provides discoverable and useful information about
its associated p = 2 solution.
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Figure 3. Selected directional ellipse empirical applications; black dots denote the 50 weight locations,
solid black filled circles denote p = 1 solutions, solid red filled circles denote p = 2 solutions, and
graduated orange and gray dots, respectively, denote cold and hot spots. Left (a): Goodwin’s [52]
example; black dotted lines denote counterclockwise horizontal axis rotation through angle 8 with
the pair of ellipse vertices circled. Right (b): failed solution unit square (borders designated by corner
solid black triangles) linear trend weights (n = 50) simulation case; filled white circles denote an
incorrect p = 2 local minimum solution, and merged pink-orange semicircles denote the employed

rotation search tack.
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Figure 4. Unit square specimen point patterns; black dots denote the 50 weighted locations, and
brown and blue filled circles, respectively, denote the p =1 and p = 2 solutions. Left (a): A successful
rotation search example; red circled dots denote the directional ellipse vertices, and each black/gray
linked red-gray point pair denotes an incrementally rotated (here by 10°) initial ALTERN solution.
Right (b): p =1, 2, and 3 solutions, strong spatial autocorrelation, n = 50; blue circled dots denote the
p = 3 solution.
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Table 2. Exploratory collinearity algorithm and random search comparisons; 100 replications, a unit
square geographic landscape, and Poisson distributed weights of at least one.

. . Spatial . .
Geographic Trend Weights Equation AutocI;rrelation n Optimal Solutions *

Parameter Coefficient ~MC GR Collinear Algorithm ¥  Random Search * Match

slope 3 50 98 (96; 96.861%) 89 (82; 71.863%) 89 (82)

linear exponent 1 0.85 0.14 100 99 (97; 99.623%) 95 (89; 80.183%) 95 (89)
N(0,1) 0.1 500 100 (100; 99.995%) 100 (100; 99.971%) 100 (100)

slope 2 50 96 (95; 78.233% *) 67 (57; 85.707%) 66 (56)

quadratic exponent 2 0.75 0.42 100 99 (99; 96.515%) 70 (61; 86.952%) 69 (60)

N(0,1) 0.1 500 100 (100; 99.980%) 82 (82; 93.808%) 82 (82)

Periodic (25 evenly slope 0.6 50 99 (98; 98.062% *) 67 (56; 90.615%) 56 (56)

spaced sine exponent 1 0.27 0.74 100 98 (97; 92.691%) 75 (61; 92.999%) 73 (59)

function mounds) N(0,1) 0.2 500 100 (99; 99.895%) 74 (74; 96.856%) 74 (74)

slope 0 50 100 (96; 99.489%) 69 (55; 89.199%) 69 (54)

random exponent 0 0.00 1.00 100 98 (98; 88.218%) 61 (67; 91.605%) 61 (67)

N(0,1) 0 500 99 (99; 97.394%) 66 (67; 94.936%) 66 (67)

Note: parentheses contain the number of solutions within 99.9% of their corresponding optimal objective function
values, followed by the smallest of these percentages for each simulation set; counts themselves satisfy a 0.1
maximum standard distance threshold of nearness to their corresponding optimal solution coordinate pairs (the
largest possible distance is roughly 1.41421; 0.1 is approximately 7.1% of this value). Note: bold face counts denote
best performance. * 96.999% is the second smallest, a value more comparable with those for other cases. * TWAIN
produced all optimal solutions. ¥ a directional ellipse guided systematic search employing ALTERN initiates
with the major axis vertex coordinate pairs, succeeded by, in turn, a sequence of 179 clockwise rotations of these
coordinate pairs around the p = 1 solution constructed with 1° augmented increments; the smallest computed
objective function value designates a final solution. * a Bernoulli pseudo-random number generated each arbitrary
starting allocation with p = 0.5, initiating each of the 1000 ALTERN executions; the smallest calculated objective
function value designates a final solution.

Table 2 corroborates the general contention that SA furnishes invaluable but, to date,
mostly overlooked information about spatial optimization and its accompanying opti-
mal solutions, an assertion supported by circumstantial evidence appearing in Figure 3
(i.e., the colocation of hot/cold spots and p = 2 solution coordinate pairs). In addition,
Table 2 reports optimization achievement frequencies, buttressing the notion that exploiting
p =1 and p =2 (near-)collinearity improves the efficiency and success rate of finding an op-
timal solution with ALTERN, vis-a-vis random searching, by as much as a factor of roughly
1.5 (e.g., from 61 to 98; the random, n = 100 scenario). As an aside, supplemental simulations
for n = 50 with 10,000 replications verify the general nature of these results, yielding the
new proposed algorithm success rates by weight category type of approximately 97.6%
for linear, 97.7% for quadratic, 98.0% for periodic, and 97.9% for random. This discovery
should be transformative, and hence should motivate much more future research about
the relationships between spatial autocorrelation and spatial optima. Nevertheless, this
pursuit merits further work, given that the systematic search based upon the map pattern
presented in this section of this paper fails to uncover the p = 2 solution for every one of
the studied random coordinate sets (sampled from a bivariate uniform distribution) and
weights [sampled from a spatially (un)autocorrelated Poisson RV] case (e.g., Figure 3b); the
culprit could be edge effects or more extensive deviation from collinearity (see Figure 3b).
This particular analysis employed the Overton-Stehman [54] simulation experiment design.
Interestingly, the last Table 2 column reveals that the random search sometimes (although
apparently rarely) identifies an optimal solution not found by the systematic search.

3.3. A Conjecture Relating to MT-1 for the p = 2 Spatial Median Problem

The fundamental change from p = 1 to p = 2 is the addition of a second central facility
(i.e., another subset with a spatial median). Consequently, if any demand point k has a
dominant weight that axiomatically places the p = 1 optimal solution there because wy
is greater than the sum of the remaining (n — 1) weights, then partitioning the demand
points into two subsets (see the preceding section) only reinforces demand point k’s wy



Mathematics 2025, 13, 249

11 of 21

dominance within its neighborhood subset of points, which is <(n — 1) in size, regardless
of the extent of its subset. Figure 1c embodies this notion, stressing the dispersive nature of
the p = 2 pair of optimal locations, and documenting the continuance of the MT-1 solution
in a p = 2 context. The p = 1 spatial optimization-SA relationships already uncovered by
Griffith et al. [12] transfer to this p = 2 situation. Furthermore, the following conjecture
encapsulates a more sweeping insinuation:

Conjecture 2 (MT-1 for p = 2; MTC-1&2). For an n destination p = 1 source location—allocation
(i.e., p-median) problem in continuous space, with n > 1 and Euclidean distance, if a single dominant
weight wy > #, then the optimal location set for any uncapacitated p > 1 medium problem

contains the demand point (xy, yy) as one of its entries.

Conceptualization for Conjecture 2. If wy, is dominant among a set of n demand point weights,
it is dominant among any subset of these weights (i.e., being greater than the sum of all of them
means being greater than the sum of any subset of them).

This conjecture is not cast as a theorem here because, although its rationale signals that
it is true, it lacks a formal and complete proof for all 1 < p < n; however, it is true for p =n
because all demand points by themselves become optimal locations [i.e., expression (1)
becomes zero].

One immediate consequence of this location—allocation property is that the p = 2
problem reduces in size from a maximum of n(n — 1)/2 to (n — 1), converting it from
order O(n?) to O(n): the only perpendicular bisector construction necessary is for those
links connecting the dominant weight demand point and the (n — 1) other demand points.
Accordingly, the feasible problem size in terms of n now rivals that for the p = 1 problem.
Meanwhile, local SA is informative during the initial screening for dominance of a set of
weights (see [12]).

3.4. An MTC-2 Formulation

MT-1 states that a single wy needs to compose a majority of the sum of a given
set of weights. Griffith et al. [12] show that collective dominance can exist when this
total is uniformly spread across all entries in a relatively compact geographic cluster of
demand points; the p = 1 optimization mechanics detects this cluster in terms of global
positive SA. Expanding to the p = 2 problem invokes its dispersive property to avoid this
mechanical reaction. Assigning 50%+ of the total weights to a sole dominant weight allows
a minimum of 25%+ for the other dominant weight; the expectation is that each comprises
50%+ of the total sum of weights in its respective subregion. The binary indicator variable
Aij (j =1, 2) in expression (1) designates this regionalization duet, with subregions H and K,
respectively, labeling the demand points symbolized by A;; and A;», and housing weights
wy, and wy. Adhering to the preceding Thiessen polygon viewpoint promoted by TWAIN,
if two weights exist such that each conforms to these two percentage conditions, then their
corresponding demand points are the pair of optimal locations:

Conjecture 3 (Majority for p = 2; MTC-2). For an n destination p = 2 source location—allocation
(i.e., p-median) problem in continuous space (see Figures 2 and 3), with n > 2 sufficiently large

and Euclidean distance, if two distinct weights are such that wy, > # (i # h) and wy > %

(i # k), with wy,/Y_; w; + we/Y g w; < 1, and wy, > Ail@ (i # h) and wy, > Aiz@
(i # k), with their collocated demand points (xy, yy,) and (xy, yi) located on opposite sides of the
transect passing through the p = 1 spatial median for an underlying continuous demand surface
perpendicular to the straight line connecting them (see the spatial economics market area literature;
i.e., realizations are samples from a two-dimensional population), then this pair of demand points
also is the set of the optimal locations (i.e., subset spatial medians) solution.
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Rationale for Conjecture 3. This is an asymptotic consequence. The sum of the two dominant
weights needs to exceed 50%, to which MT-1 attests. Then, in an ideal situation (e.g., n is large),
the dominant weight affiliated with each subset has to constitute more than 50% of its weight sum
for MT-1 also to apply to it. These necessary percentages increase for smaller n (see Table 3) because
integer weight sums distribute across fewer locations, causing indivisibility/lumpiness complications
(i.e., designated precise percentages are not always attainable—e.g., half of an odd number is not
an integer, resulting in the closest possible empirical majority percentage to 50% necessarily being
greater than it).

Table 3. The random distribution of weights is w ~ Poisson (i = 4) + 1; 1000 replications.

% Total Weights Regional Subsets Selected Distances
n Wi Wi rlhPomt Countsrl ) Mlall:num w;j SUb:,it %o dii dh centroid di centroid
uniform geographic distribution of random demand point locations
[p = 1 spatial median = (0.500, 0.500)]
5 50.0 30.7 2.7 2.3 717 60.8 0.706 0.396 0.424
(0.000) (0.220) (0.895) (0.895) ’ ’ (0.149) (0.136) (0.130)
25 40.0 25.2 14.1 10.9 544 503 0.705 0.367 0.447
(0.086) (0.085) (3.527) (3.527) : : (0.144) (0.141) (0.120)
50 35.1 25.1 28.7 21.3 50.1 50.2 0.706 0.354 0.460
(0.043) (0.043) (5.858) (5.858) : : (0.151) (0.140) (0.105)
75 30.0 25.1 413 33.7 501 501 0.726 0.382 0.453
(0.027) (0.029) (4.815) (4.815) : : (0.157) (0.111) (0.094)
30.0 25.1 55.8 452 0.732 0.387 0.455
100 (0.021) (0.022) (6.262) (6.262) 501 501 (0.154) (0.108) (0.088)
skewed geographic distribution (e.g., see Figure 5d) of random demand point locations
[p = 1 spatial median = (0.235, 0.235)]
5 50.0 25.8 2.8 22 671 511 0.332 0.171 0.209
(0.000) (0.191) (0.970) (0.970) ’ ’ (0.072) (0.080) (0.092)
25 40.0 252 16.4 8.6 53.4 503 0.325 0.134 0.232
(0.086) (0.084) (4.338) (4.338) ’ ’ (0.065) (0.064) (0.083)
50 35.1 25.1 32.2 17.8 50.1 502 0.321 0.133 0.223
(0.041) (0.042) (6.637) (6.637) ’ ’ (0.061) (0.054) (0.064)
75 30.0 25.1 42.2 32.8 501 501 0.318 0.155 0.191
(0.029) (0.31) (4.943) (4.943) : : (0.057) (0.040) (0.043)
30.0 25.1 56.4 44.6 0.315 0.155 0.191
100 (0.021) (0.022) (6.640) (6.640) 501 501 (0.055) (0.041) (0.043)

Note: total weight percentages almost exactly equal their input counterparts; standard errors appear in parentheses
below their respective statistics.

Remark for Conjecture 3. Simulation experiments imply that the percentage for MT-1-oriented
dominant weight wy, decreases from 50% to 25% with increasing n, being approximately 25% for a
sufficiently large n (e.g., 200); the accompanying secondary dominant weight, wy, appears to be a
minimum of 25% (see Table 3), as long as the two percentages sum to at least 50% in total, as well
as for each of their subsets of weights; this is a very appealing feature because a large n is a chief
source of computational difficulties. Bounds for these percentages merit future research attention
(Table 3 reports selective confirmatory instances).

This is a completely new finding that offers a transformative possibility for parts of
spatial optimization.

Table 3 tabulates selected confirmatory MTC-2 output from a collection of simulation
experiments employing 1000 replications; these are merely a handful of the total number of
completed experiments, some involving as many as 10,000 replications, used to crystalize
the conjecture theorized in this section (note: one noteworthy finding undocumented in
Table 1 is that when the aggregate percentage of total weight for (wj, + wy) is less than
50%, none of the MTC-2 solutions materialize—or at least their emergence probability is
extraordinarily low (i.e., extremely difficult to detect)—although conjectures MTC-1&2
certainly hold). The distance separating the two globally quasi-dominant weights relates
to the underlying population spatial median of a demand points generating process, as
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V coordinate

1.0

well as coincides with the dispersive nature of the p = 2 solution, emphasizing that the
mechanics of TWAIN may well routinely confuse nearby outlier weights with local positive
SA. The reported distance measures also reflect the dispersion tendency of p = 2 optimal
solution pairs (the prevailing population spatial median constrains the distance between
dominant demand points; note: when the distance between two dominant demand weight
locations is too small, then the probability of them being the optimal solution may be
less than 1), with particular reference to the preceding unit square answers concerning
uniqueness questions. Another conspicuous feature is the average percentages for the pair
of dominant weights, which very closely approximates their respective input parameter
values. Finally, the number of demand points captured by each dominant demand point’s
Thiessen polygon demarcated geographic subregion relates to its relative magnitude.

(©)H

V coordinate

=40.235

04 0.6
U coordinate

\ ®

(e)

Figure 5. Specimen n = 500 simulated datasets; the top row displays a uniform, whereas the bottom
row displays a skewed, random points realization (medians denoted by superimposed red dotted
lines), with a 1 to 15 nondominant weights range for illustrative purposes. Left top (a) uniform vs.
bottom (d) skewed: benchmark distributions of 1000 (n = 100) simulated p = 2 solutions, respectively,
denoted by filled gray and black circles. Middle top (b) uniform vs. bottom (e) skewed: distributions
of n = 500 demand points with their weights depicted by proportional gray filled circles, their
superimposed Thiessen polygon partitionings denoted by red lines, and their two dominant weight
locations denoted by filled black stars. Right top (c) uniform/bottom (f) skewed: LISA maps with a
high-low (HL) outlier denoted by red in the uniform distribution results appear only in (c), whereas
the two clusters of low-high (LH) outliers denoted by dark blue (the optimal solutions), and a
scattering of low—low (LL) weights denoted by light blue appear in (f).

Although MTC-2 might not appear to yield a theoretical solution by simple inspection
as does MT-1 (e.g., for MT-1, summing the weights and checking to see if any one of them
is greater than half of that calculated total), the procedure implementing MTC-2 is the
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following sequence of three steps for a reasonably large n (future research needs to establish
a threshold for this n):

Step 1: sum the weights and check to see if each of any two of them is greater than a
specified percentage of that calculated total (each of the two weights must be at
least 25% of the computed sum);

Step 2: if Step 1 identifies two weights, check that their respective positions are on opposite
sides of the geographic landscape’s transect passing through the p = 1 spatial
median perpendicular to the straight line connecting; and,

Step 3: if Step 2 conditions hold, construct a perpendicular bisector of the line connecting
the two identified demand points (this construction can be completed with a GIS
Thiessen polygon tool; it is equivalent to allocating each demand point to its closest
of the two dominant weight points), and then check to see if each identified weight
is at least 50% of its respective subset’s total weight sum.

If Step 1 validates that one of the two largest weights exceeds 50% of the total demand,
then, at a minimum, invoking MTC-1&2 allows a reduction in the complexity of the problem
to be solved. If Step 1 validates that both of the two largest weights exceed the prespecified
percentages (at least 25%) of the total demand, MTC-2 potentially furnishes the solution to
the problem, depending upon n. However, if no validation occurs, then an exact or heuristic
solution algorithm, such as TWAIN [35] and ALTERN, must provide the location—allocation
problem solution.

4. Local SA in the Presence of a Two Dominant Demand Point Weights in
a p =2 Median Problem

The ultimate purpose of this paper is to demonstrate how this MTC-2 mathematical
solution coincides with the local SA latent in dominant geographic clusters of weights,
paralleling and expanding the MT-1 findings by Griffith et al. [12]. Its rationale builds upon
the expectation that because spatial optimization identifies favored points in a geographic
landscape, often in terms of their aggregate accessibility, these preferential points relate to
local SA statistics. As noted previously, two popular indices quantify this notion. The local
Getis-Ord G;* statistic [29]—which includes the attribute value y; of random variable (RV)
Y in its calculation—a ratio of the sum of a local subset to the total of a given attribute’s
values in a geographic landscape (i.e., 2]?1:1 ciy;/ Zj”:l yj); this local SA statistic can highlight
geographic clusters of similar attribute values (i.e., hot and cold spots), like a coterminous
geographic cluster of weights forming a collectively dominant region [12], but not outliers
like the dispersed pair of dominant weights in MTC-2. In other words, MTC-2, like MT-1,
tends to relate to concentrations of contrasting high—low weights. The alternative second
popular index is the local indices of SA (LISA; [46]) related to the Moran scatterplot [55], in
which the second and fourth quadrants of its graph, respectively, identify concentrations
of relatively high and low neighboring values (i.e., global negative SA). A fundamental
advantage of this index is that, because it involves cross-product calculations, it is able to
differentiate between a spatial outlier and other more similar (i.e., high-high and low-low)
values in local neighborhoods. This local SA statistic may be defined for the RV Y and
binary 0-1 spatial weight matrix (SWM) C in its z-score form as follows:

- (Vi =)L sz'j (v —79) / )
Z;l:l (yi—9)"/(n—-1)

where ¢;; is the (i, j) cell entry in SWM C, and y denotes the arithmetic mean of RV Y. This
quantity is called local Moran’s I, which indicates a correlation between the ith observation
in a geographic distribution and the average of its neighbors’ values, all expressed in their
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z-score forms. This measure is a localized index of the global Moran'’s I, this latter composite
statistic being the same as the mean of its constituent local Morna’s I values. Similarity
between neighboring demand weights leads to positive SA, whereas dissimilarity leads to
negative SA; noteworthy is that this formula has essentially the same form as Pearson’s
well-known product-moment correlation coefficient. Local SA is commonly used to detect
localized SA patterns: positive SA for spatial clusters and negative SA for spatial outliers.
A LISA map can represent the spatial patterns of weights associated with demands, which
in turn can impact location model solutions. Although spatial patterns of demands points
and SA in weight surfaces have been recognized in spatial optimization (e.g., [56]), local SA
indices have not been utilized in spatial optimization model specifications. Only recently,
Griffith [9] articulates some of the more conspicuous relationships between local SA indices
on spatial optimization.

This is the popular local SA index used in this paper for traditional MTC-2 settings
(i.e., geographic landscapes with a more dispersed distribution of demand points). Griffith
et al. [12] furnish details about it for MT-1 that extend to MTC-2 because the positions of a pair
of dominant weights are located on opposite sides of the transect passing through a geographic
landscape’s population spatial median that is perpendicular to a straight line connecting them.
Accordingly, given that peripheral demand points pull optimal locations toward multiple
landscape borders, the case of nearby dominant weight locations never materializes.

In keeping with the construction of Figure 5c¢,f, empirical LISA calculations utilized a
distance threshold such that all neighboring points within a specified radius greater than
zero had an SWM value of one rather than zero. Table 4 reports these thresholds whose
judicious selection ensured that each demand point had at least one neighboring point.
As Figure 5 entries demonstrate, the geographic distributions of LISA tend to constitute
two groups, the pair coinciding with the MTC-2 optimal locations, and essentially all
others; these were the criteria used to classify the LISA for comparison purposes (see
Table 4). Not surprisingly, the LISA groups neither conform to bell-shaped curves nor
display constant variance (i.e., they are non-normal RVs), compelling the application of
non-parametric statistical techniques. Table 4 tabulates analysis of variance type of output
for Kruskal-Wallis treatments of these data. The computed chi-square statistics based upon
1000 observations are roughly a thousand times greater than even the rather extreme null
hypothesis o« = 0.01 critical value of 6.635; in other words, the LISA results are tremendously
inconsistent with a null hypothesis stating that they are the same for the MTC-2 optimal and
the (n — 2) other demand point locations (and certainly satisfy a practical decision-making
criterion such as being at least four times greater than the designated critical value [57]).

Table 4. Kruskal-Wallis results for difference of MTC-2 and all other LISA, for two distinct underlying
geographic distributions of random demand point locations; 1000 replications.

Uniform Skewed
" ety Neighon " US040 o NG, e ChiSqure 140
25 0.10 1-6 v 524.801) 0.03 1-6 (p : 705.(5)501)
50 0.10 1-10 @ fifgm) 0.03 =9 v : ?)?301)
75 0.10 1-11 v f%%on 0.03 -1 (p <5 %?301)
100 0.10 1-13 v f?)?gon 0.03 =13 (p : %?(?01)

Note: df denotes degrees of freedom; threshold distances differ because the nearest neighbor distance differs
between landscapes (see Figure 5).
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Specimen LISA Examples for n = 500

Ostresh [35] mentions n = 100 as a relatively large problem. Here, thanks to the ad-
vent of superior computer technology, the basis of Figure 5 output is n = 500 (and some
Appendix A output is for n = 729); his computing time estimation equation predicts the solu-
tion should take approximately 166,250 s, whereas this solution took on the order of 100 s of
CPU time on a modern (albeit not state-of-the-art) desktop computer—in contrast, MTC-2
demonstrates a greater reduction of this time to just a few seconds. Figure 5a,d illustrate the
gap within the unit square geographic landscape arising from the dispersive nature of the
p = 2 solution. Figure 5b,e reproduce the type of Thiessen polygon partitioning appearing
in Figure 2 for n = 5. Figure 5c¢,f exemplify the coinciding of extreme low-high (LH) LISA
(residing in the third quadrant of the Moran scatterplot) with the dominant weights.

5. Conclusions

This paper complements Griffith et al. [12] by summarizing new research examining
as well as establishing additional relationships between spatial optimization and global
and local SA. This is its primary novelty, one translated into an implementable heuristic
algorithm enhancement, with demonstrable (e.g., see Table 2) over unsupervised heuristic
executions, a common practice. It formulates and then utilizes the MTC-2, so that the
optimization solution is known theoretically, to further establish a proof of concept. Its
primary conclusion, a spectacular finding, is that the p = 2 spatial median pair co-locate
with local SA hot spots. Other important findings include the following: (1) supplemental
documentation that the LISA are the appropriate local SA statistics for assessing a MTC-2
geographic landscape; and, (2) distance separating optimal location pairs plays an impor-
tant role in the MTC-2 context. The collection essentially is the new findings’ contribution
of this paper.

Another important class of conclusions pertains to MTC-2-competing alternative
optimal location propensities, summarized here in the newly posited ETC-2. These two
innovative conjectures add to the corpus of existing ones, such as MT-1 and those already
devised by Cooper [53]. Following Cooper’s logic, another conjecture would be that the
pair of subset spatial means provide an upper bound for the p = 2 objective function value.
The simulation experiments employed in the research foundation for this paper corroborate
this contention.

Future research should articulate linkages between salient properties of the subset
spatial medians, such as those enumerated in Griffith et al. [12], and global and local SA.
Other fruitful research endeavors would be establishing more precise percentage bounds
for the necessary sizes of the MTC-2 weights (see Table 3), and the minimum threshold
or context for the value of n that ensures weights just exceeding 25% are sufficient to
guarantee MTC-2. Other future research themes meriting pursuit include the following:
extending p = 2 discoveries to p > 2 (e.g., converting this and other conjectures proposed in
this paper to theorem status), or, rather than a forward procedure, developing a backward
procedure to eliminate non-feasible solutions in which any optimal locations among p
cannot reside with regard to MTC-2 and ETC-2, thus narrowing the extent of the spatial
medians’ solution space. Both proposals craft a more detailed understanding of the role of
the ETC-2 with regard to spatial optimization solutions, composing a more comprehensive
classification of spatial optimization solution guidance offered by LISA and local G;*
statistics, and compiling an ample assortment of empirical evidence-based confirmations of
the theoretical contentions presented in this paper. The age of the spatial optimization-SA
interface is here!

Future research also should compare the branch-and-bound based solutions and TWAIN
solutions with the enhanced ALTERN algorithm presented here. Ostresh [58] already furnishes
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a comparison of these first two solution techniques. His analyses can be updated to include
much larger problems that advances in computer technology over the past decades now
readily enable as well as a much more diverse set of point demand weights, and then extended
to include comparisons with the bolstered heuristic. Other possible future research endeavors
include making the proposed algorithm more comprehensive, allowing it, for example, to
incorporate other forms of spatial dependence (e.g., higher-order spatial autocorrelation), or
adapting it for different types of location—allocation problems (e.g., maximizing coverage,
facility location with multiple objectives).
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Appendix A. Collinearity of p =1 and p = 2 Solutions: Simulation Evidence

If three points on a planar surface are perfectly collinear, then Euclidean geometry
dictates that the following conditions hold: (1) the absolute value of the determinant of
the matrix constructed by stacking the three coordinates—(x;, y;), i = 1, 2, 3—augmented
with a 3-by-1 column vector of ones, 1, equals zero [i.e., designating the location-
allocation solution by (xy, y2) for p = 1, and {(x1, ¥1), (x3, y3)} for p = 2, given the
hypothesis that the location of the former solution point is between the two points

X1 Y1 1
constituting the latter solution, |det|x, y, 1|| = 0]; (2) the triangle constructed
x3 yg 1

by designating the three solution coordinates as its vertices has zero area; and, (3)
[\/(xl — %)%+ (1 —y2)* + \/(xz —x3)% + (2 — y3)* } - \/(x1 —x3)* 4+ (y1-y3)* = 0

defines a pertinent Euclidean distance segmentation comparison. Employing a unit square

geographic landscape, for simplicity, the respective approximate worst-case scenario min-
imum upper limits for these three quantities in the given geographic landscape are as
follows: 0.5, 0.25, and 0.4142. Each lower limit is zero. Table Al tabulates output from an
exploratory simulation experiment (i.e., only 100 replications)—the computation of each p
= 2 solution becomes increasingly numerically intensive as n increases. This exploration
is sufficient here because the goal is to uncover trends, not optimize precision. Exact
collinearity renders a triplet of zero values; few results attain this status. In contrast, the
preponderance of near-zero numbers supports a contention that virtually all cases achieve
near-collinearity status: the three points always almost or unerringly fall on the same
straight line. Furthermore, replacing constant weights with ones that vary as an indepen-
dent and identically distributed random variable slightly increases outcome variability
while preserving this near-collinearity property, as does supplanting a uniform with a
random distribution of demand point coordinates. These trace random effects appear to
decrease with an increasing number of demand points. As an aside, another property is
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that the slopes of each of the two aforementioned line segments are equal; this property is
computationally more difficult to demonstrate numerically because p-median solutions
arranged in parallel with the vertical axis of a geographic landscape have (near-)infinite
slopes, which can distort calculations by grossly magnifying slight differences.

Table Al. Exploratory simulation results for a unit square geographic landscape; a maximum of
100 replications.

Geographic Point Collinearity #of Demand  Demand Point . Collinearity Index )
Pattern Distribution (# of Replicates) Points Weights Matr_lx Triangle Area Distance
Determinant Segments Sum
exact T (0) 36 #kk EEE ok
near (100) 0.0001 0.0001 0
. (0.0001) (<0.0001) ***)
uniform +
exact " (1) 400 0 0 0
near (99) 0.0000 0.0000 0
w=cVi (<0.0000) (<0.0000) ***)
exact T 0) 729 i #k% EEE pres
near (100) 0.0002 0.0001 0
(0.0001) (0.0001) ***)
exact t (O) 36 *%% *%% ke
near (100) 0.0081 0.0040 0.0013
(0.0065) (0.0032) (0.0020)
random +
exact " (1) 400 0 0 0
near (99) 0.0032 0.0016 0.0002
(0.0026) (0.0013) (0.0004)
t XAk *Xk *kk
exact  (0) 729 0.0019 0.0010 0.0001
near (100) ' ’ ’
(0.0014) (0.0007) (0.0001)
exact t (O) 36 *%% *%% ke
near (100) 0.0072 0.0036 0.0013
. (0.0056) (0.0028) (0.0016)
uniform + . . wtk
exact " (0) 400
near (100) ) 0.0011 0.0006 0.0000
wi~1 + Poisson (0.0009) (0.0004) (<0.0001)
exact t (1) 729 (W) 0 0 0
near (99) 0.0008 0.0004 0.0000
(0.0007) (0.0003) (<0.0001)
exact T (0) 36 Ak #kk Ak
near (100) 0.0097 0.0049 0.0018
(0.0069) (0.0035) (0.0022)
random exact T (0) 100 Ak #kk 4k
near (100) 0.0030 (0.0025) (888};) (88882)
t %% %% %%
et O 729 0.0011 0.0001
near (100) 0.0023 (0.0016) (0.0008) (0.0002)

T to five decimal places. *** denotes missing entries because of a lack of data.

Appendix B. Computer Code Information

No general scripts exist for this research. Rather, it utilized customized publicly
available and proprietary computer software.

Figure 1 Simulation

The foundational computer program code modified for this work is TWAIN, with its
Fortran script retrieved from Ostresh [58] via digital page scanning followed by optical
character recognition (OCR) conversion to courier font text. The resulting customized
computer program was executed with a Fortran 77 compiler. The customizations involved
the following:

e insertion of a DO loop enables repeated optimizations to generate the simulation
experiment replications;

e IMSL random number generator RNBET samples coordinates from either a uniform
(parameters: o« =1, 3 = 1) or a skewed distribution (parameters: « =9, = 5);
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e IMSL random number generator RNPOI samples weights from a Poisson distribution
(parameter: p = 4); the mean was 1 added to it, increasing it to i = 5, to ensure all
weights are positive.
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