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Abstract. We study the layer and stable solutions of nonlocal problem

−∆u+ F ′(u) (−∆)s F (u) +G′(u) = 0 in Rn

where F ∈ C2
loc(R) satisfies F (0) = 0 and G is a double well potential. For

n = 2, s > 0 and n = 3, s ≥ 1/2, we establish the 1-d symmetry of layer
solutions for this equation. When n = 2 and F ′ is bounded away from zero, we

prove the 1-d symmetry of stable solutions for this equation. Using a different
approach, we also prove the 1-d symmetry of stable solutions for

F ′(u) (−∆)s F (u) +G′(u) = 0 in R2.

1. Introduction. In this paper, we study the layer and stable solutions for the
following model problem

−∆u+ F ′(u) (−∆)
s
F (u) +G′(u) = 0 in Rn, (1.1)

where 0 < s < 1, F is a C2
loc function satisfying F (0) = 0 and G is a double well

potential satisfying

G ∈ C3 (R) , G (±1) = 0 and G (t) > 0 for t ̸= ±1. (1.2)

Here the fractional Laplacian is defined as

(−∆)sv(x) = cn(s)P.V.

∫
Rn

v(x)− v(y)

|x− y|n+2s
dy (1.3)

where cn(s) = π−n
2 22s

Γ(n+2s
2 )

Γ(2−s) s(1 − s) so that the Fourier symbol for (−∆)s is

|ξ|2s. It is known that the pointwise formula (1.3) gives a continuous function for
v ∈ C2s+ϵ(Ω) ( or C1,2s+ϵ−1(Ω) if s ≥ 1/2) for some ϵ > 0 [42, 43] which satisfies∫

Rn

|v(x)|
1 + |x|n+2s

dx <∞.

The energy functional associated with (1.1) is

J(u,Ω) =

∫
Ω

[
1

2
|∇u|2 +G(u)

]
dx

+
cn(s)

4

∫∫
Rn×Rn\(Ωc×Ωc)

|F (u)(x)− F (u)(y)|2

|x− y|n+2s
dydx
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= JL(u,Ω) +
cn(s)

4
Js(u,Ω). (1.4)

A solution u of (1.1) is called a layer solution if u satisfies ∂u
∂x1

≥ 0 and the asymp-
totic behavior

lim
x1→−∞

u (x1, x
′) = −1, lim

x1→∞
u (x1, x

′) = 1

for all x′ ∈ Rn−1. A solution u is called a stable solution of (1.1) if the second local
variation of J(·,Rn) at u is nonnegative, i.e.∫

Rn

|∇ϕ|2 +G′′(u)ϕ2 + 2ϕ2F ′′(u)(−∆)sF (u) + 2F ′(u)ϕ(−∆)s (F ′(u)ϕ) ≥ 0

for any ϕ ∈ C2
0 (Rn). Our main interest in this paper is the 1-d symmetry of such

solutions, namely if u = u0 (a0 · x) for some function u0 and a constant vector
a0 ∈ Rn.

Our work is partly motivated by recent work by Cabré and Serra [12] where they
studied the 1-d symmetry of layer solutions of nonlocal Allen-Cahn type equation

Lu+G′ (u) = 0 in Rn, (1.5)

here G is a double well potential satisfying (1.2) and, for some s∗ ∈ (0, 1) ,

Lu =

∫
[s∗,1]

(−∆)
s
udµ (s)

with µ being a probablity measure supported in [s∗, 1] . Assuming either n = 2,
s∗ > 0 or n = 3, s∗ ≥ 1

2 , they proved the 1-d symmetry for layer solutions of (1.5).
A special case covered by their theorem is the following equation

K∑
i=1

µi (−∆)
si
u+G′ (u) = 0 in Rn,

where µi > 0,
∑K

i=1 µi = 1, 0 < s1 < · · · < sK ≤ 1.
Cabré and Serra’s result is an extension of the famous De Giorgi conjecture for

semilinear equation

−∆u+G′(u) = 0 in Rn, (1.6)

which states that a solution of (1.6) which is montone in one direction is one di-
mensional for n ≤ 8. The De Giorgi conjecture was completely solved for n = 2 and
3 [2, 4, 27] and proved by Savin [39] for 4 ≤ n ≤ 8 under the additional limiting
conditions limx1→±∞ u (x1, x

′) = ±1. Partial results on De Giorgi conjecture can
also be found in [6, 28]. A counterexample was constructed in [19] for n ≥ 9.

De Giorgi’s conjecture has been generalized to fractional Allen-Cahn equation

−∆su+G′(u) = 0 in Rn. (1.7)

The fractional De Giorgi’s conjecture holds for the case n = 2, s ∈ (0, 1) [13, 14, 15,
44], and for n = 3 and s ≥ 1

2 [9, 10]. Under the additional limit conditions, fractional

De Giorgi’s conjecture was proved for n = 3 and s ∈
(
0, 12

)
by Dipierro, Serra and

Valdinoci in [23] and by Savin in [40, 41] for 4 ≤ n ≤ 8 and s ∈ [ 12 , 1). Under
the additional limit condition, the best known results for fractional De Giorgi’s
conjecture in higher dimensions says there exists ε0 ∈ (0, 12 ] such that for any

s ∈ ( 12 − ε0, 1], a layer solution is 1-d if n ≤ 8 [23]. Similar conclusion holds when
n ≤ 7 if the solution is a minimizer. The limit condition is removed in [22] for
n = 3 and s ∈

(
0, 12

)
. Figalli and Serra [24] solved the De Giorgi’s conjecture for
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half-Laplacian when n = 4 (such result is not known for the classical case s = 1).
A counter example for n = 9, 1

2 < s < 1 was announced in [18].
Stable solutions for Allen Cahn equation in the classical and fractional cases

have also received a lot of attention over the years. The corresponding De Giorgi
conjecture for stable solutions states that a stable solution to (1.6) or (1.7) is 1-d
when n ≤ 7. This conjecture holds true for n = 2 [4, 27] and remains a long standing
open problem when n ≥ 3 for the classical Allen Cahn equation (1.6). For fractional
Allen Cahn equation, this conjecture was proved for n = 2, 0 < s < 1 (see [15] for
the case s = 1/2 and [14, 44] for 0 < s < 1 ) and n = 3, s = 1/2 [24]. Recently,
Cabré, Cinti and Serra [11] established the stable De Gorigi conjecture for n = 3
and s ∈ (s∗, 1/2) for some s∗ < 1/2. For Allen-Cahn equations (1.6) and (1.7), it
is known that layer solutions are stable solutions. Moreover, if any entire stable
solution to in Rn−1 is 1-d, then any layer solution to in Rn is 1-d for s ∈ (0, 1) when
n ≤ 3, and for s ∈ (1/2− ε0, 1) for some constant ε0 ∈ (0, 1/2) when 4 ≤ n ≤ 7 (a
proof can be found in the appendix in [29]).

A second motivation of our work comes from the ferromagnetic thin films. Letting
F (u) = sinu and G(u) = 1

2 (sinu − h)2 in (1.1), where h ∈ [0, 1) is a constant, we
arrive at the following equation:

−∆u+ cosu (−∆)
s
sinu+ cosu(sinu− h) = 0 in Rn. (1.8)

When n = 1 and s = 1
2 , (1.8) reduces to

−∆θ + (sin θ − h) cos θ + cos θ (−∆)
1
2 sin θ = 0 in R. (1.9)

Equation (1.9) is the associated Euler-Lagrange equation for energy functional

E (θ) =
1

2

∫
R

{
|θx|2 +

ν

2
sin θ

(
− d2

dx2

) 1
2

sin θ + (sin θ (x)− h)
2

}
dx, (1.10)

which is the reduced magnetic energy per unit length for magnetization varying
along one direction. Indeed, we consider a two-dimensional horizontal section of
a magnetic sample that is infinite in the x1 direction and L−periodic in x2 direc-
tion, with external field applied in e1 direction, the reduced thin film energy (after
suitable scaling) can be written as

E (m) =
1

2L

∫
R×[0,L)

|∇m|2 dx+
1

2L

∫
R×[0,L)

(m · e1 − h)
2
dx (1.11)

+
ν

8L2

∫
R×[0,L)

∫
R×[0,L)

∇ ·m (x)∇ ·m (x′)

|x− x′|
dxdx′,

where m : R2 → S1 is the unit magnetization vector in the film plane, ei is the
unit vector in the i-th coordinate. h ∈ [0, 1) represents the rescaled strength of the
applied field. Assuming e2 is the easy axis, let θ (x) be the phase angle between m
and e2 in the counter-clockwise direction. Thus m (x) = (sin θ (x) , cos θ (x)), the
reduced thin film energy (1.11) becomes

E (θ)=
1

2L

∫
R×[0,L)

(
|∇θ (x)|2+ ν

2

∣∣∣(−∆)
− 1

4 (∇·m (x))
∣∣∣2+(sin θ (x)−h)2

)
dx.

(1.12)
Under the assumption that θ varies only along e1 direction, (1.12) reduces to (1.10).

A minimizer of (1.10) subject to limiting conditions θ (−∞) = θh = arcsinh and
θ (∞) = π−arcsinh is called Néel wall. Néel wall has been studied extensively over



4 XIAODONG YAN

the last few decades and its structure is well understood at current stage[1, 3, 7,
17, 21, 20, 25, 26, 30, 31, 33, 34, 35, 36, 37, 38]. One interesting question is the
stability of Néel walls under arbitrary two dimensional perturbations. Our model
(1.8) can be viewed as toy models to study the stability problem for Néel walls.

Following the arguments in [4, 27], the symmetry results for layer solutions of
(1.6) are deduced from a Liouville type theorem. If a layer solution u satisfies certain
energy estimates, this Liouville type theorem would imply that ∂iu

∂1u
is a constant.

This is equivalent to the 1-d symmetry of u. The symmetry results for solutions
of (1.7) [9, 10, 13, 14, 15] are derived using the extension problem introduced by
Caffarelli and Silverstre [16] and a Liouville theorem for the extended problem. A
main contribution in [12] is the introduction of an extension problem and the related
Liouville theorem for the extended problem for operators in the form of a sum of
fractional Laplacians. We shall adapt their ideas to introduce a suitable extension
problem for (1.1) and prove a generalized Liouvile type theorem (c.f. Theorem
2.11). The 1-d symmetry for the layer solutions of (1.1) can be deduced from the
energy estimates and the generalized Liouville theorem.

To prove the 1-d symmetry for stable solutions of (1.1), we adapt ideas from
[13, 27]. Under the additional assumptions that when F is strictly monotone with
F ′ bounded away from zero, we prove the equivalence between the stability of u
and the existence of a positive solution to the linearized equation of (1.1) at u (c.f.
proposition 3.1). From this, energy estimates and the generalized Liouville theorem,
we obtain the 1-d symmetry of stable solutions.

A different proof for the 1-d symmetry of stable solutions to Allen-Cahn equation
relies on the suitable BV estimates for stable solutions [11, 24, 29]. As a general-
ization of this method, we study the stable solutions of the following equation.

F ′(u)(−∆)sF (u) +G′(u) = 0. (1.13)

When n = 2 and F is strictly monotone with derivative bounded away from zero,
we can adapt the ideas in [11, 24, 29] to obtain suitable BV estimates for the stable
solutions of (1.13). From those estimates, we obtain the 1-d symmetry of stable
solutions of (1.13) when n = 2.

This paper is organized as follows. Section 2 discusses the 1-d symmetry of layer
solutions for (1.1) and section 3 is devoted to the 1-d symmetry of stable solutions
to (1.1) under the additional assumption that F is strictly monotone. In the last
section, we prove the 1-d symmetry for stable solutions of (1.13).

2. 1-d symmetry of layer solutions. In this section, we consider layer solutions
of (1.1) . Our main theorem is the following.

Theorem 2.1. Assume that F ∈ C2
loc(R) satisfies F (0) = 0 and G ∈ C3(Rn) is

a double well potential satisfying (1.2). Let u ∈ L∞ (Rn) be a layer solution of
(1.1) satisfying (−∆)sF (u) ∈ L∞. If n = 2 and s > 0 or n = 3 and s ≥ 1

2 , then
u (x) = u0 (a · x) where a ∈ Rn is a unit vector and u0 is a layer solution of

−∆u+ F ′(u) (−∆)
s
F (u) +G′(u) = 0 in R.

A crucial step in proving the 1-d symmetry for layer solutions is to establish sharp
energy estimates in a ball of radius R ≥ 2. Let BR = {x ∈ Rn : |x| < R} . We shall
first prove an energy bound on J (u,BR) using the regularity results on solutions
to (1.1) . Next we introduce an extension problem following the idea in [12]. Lastly
we derive a Liouville theorem for the extension problem, which, together with the
energy bound, would imply the 1-d symmetry for layer solutions of (1.1) .
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2.1. Regularity. Let Ku = −∆u + F ′(u) (−∆)
s
F (u). For Ω ⊂ Rn, we call u a

solution to (1.1) in Ω in the sense of distribution if∫
Ω

[∇u · ∇φ+G′(u)φ] dx

+
cn(s)

2

∫∫
Rn×Rn\(Ωc×Ωc)

(F (u)(x)−F (u)(y)) (F ′(u)(x)φ(x)−F ′(u)(y)φ(y))

|x−y|n+2s
dydx

= 0 (2.1)

for all φ ∈ C∞
c (Ω).

Our regularity result states the following.

Proposition 2.2. Let u ∈ L∞(Rn) satisfies (1.1) in the sense of distribution and
(−∆)sF (u) ∈ L∞(Rn), then u ∈ C2,γ (Rn) and ∥u∥C2,γ(Rn) ≤ C for some γ > 0

and C = C (n, s, F,G, γ) is a constant depending only on n, s, F,G, γ.

The proof of propositon 2.2 follows from the following propositions in [43].

Proposition 2.3. (Proposition 2.8 in [43]) Let w=(−∆)σu. Assume w∈C0,α(Rn)
and u ∈ L∞ (Rn) for α ∈ (0, 1] and σ > 0.

• If α+ 2σ ≤ 1, then u ∈ C0,α+2σ (Rn) . Moreover

∥u∥C0,α+2σ(Rn) ≤ C (∥u∥L∞ + ∥w∥C0,α)

for a constant C depending only on n, α, σ.
• If α+ 2σ > 1, then u ∈ C1,α+2σ−1 (Rn) . Moreover

∥u∥C1,α+2σ−1(Rn) ≤ C (∥u∥L∞ + ∥w∥C0,α)

for a constant C depending only on n, α, σ.

Proposition 2.4. (Proposition 2.9 in [43]) Let w=(−∆)σu. Assume w∈L∞(Rn)
and u ∈ L∞(Rn) for σ > 0.

• If 2σ ≤ 1, then u ∈ C0,α (Rn) for any α < 2σ. Moreover

∥u∥C0,α(Rn) ≤ C (∥u∥L∞ + ∥w∥L∞)

for a constant C depending only on n, α, σ.
• If 2σ > 1, then u ∈ C1,α (Rn) for any α < 2σ − 1. Moreover

∥u∥C1,α(Rn) ≤ C (∥u∥L∞ + ∥w∥L∞)

for a constant C depending only on n, α, σ.

Proof of proposition 2.2. Let v = (−∆)
s
u. (2.1) can be written as

(−∆)
1−s

v = w , w = −F ′(u) (−∆)
s
F (u)−G′(u). (2.2)

Since F ∈ C2
loc(R) and G ∈ C3(Rn), by assumption on u, we have w ∈ L∞(Rn). If

s < 1
2 , apply Proposition 2.4 to (2.2) , we have

∥v∥C1,δ(Rn) ≤ C (∥v∥L∞ + ∥w∥L∞)

≤ C (∥v∥L∞ +M0 ∥(−∆)
s
F (u)∥L∞ + L0) , (2.3)

for any δ < 1− 2s, where M0, L0 are upper bounds for ||F ′(u)||L∞ and ||G′(u)||L∞

respectively and C is a constant depending only on n, δ and s. Fix δ, apply propo-
sition 2.3 (see also classial Riesz potential estimates [32]) to v = (−∆)

s
u, we have

∥u∥C0,δ+2s(Rn) ≤ C (∥u∥L∞ + ∥v∥C0,δ ) , (2.4)
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and (since δ/2 + 2s > 2s),

∥v∥L∞ ≤ C ∥u∥C0,δ/2+2s , (2.5)

∥(−∆)
s
F (u)∥L∞ ≤ C ∥F (u)∥C0,δ/2+2s ≤ C (∥u∥C0,δ/2+2s +M0) .

Combining (2.3) , (2.4) and (2.5) , we have

∥u∥C0, δ+2s(Rn) ≤ C (∥u∥L∞ + ∥u∥C0,δ/2+2s + 1) .

By interpolation inequality, we conclude

∥u∥C0, δ+2s(Rn) ≤ C (∥u∥L∞ + 1) ,

where C = C(n, s,M0, L0, δ) is a constant independent of u. This gives

∥(−∆)
s
F (u)∥C0,δ ≤ ∥F (u)∥C0, δ+2s(Rn) ≤ C

(
∥u∥C0, δ+2s(Rn) +M0

)
.

Therefore
−∆u = −F ′(u) (−∆)

s
F (u)−G′(u)

with w = −F ′(u) (−∆)
s
F (u)−G′(u) ∈ C0,δ. The C2,δ regularity and estimates for

u follows from standard Hölder estimates for Laplace equation. s ≥ 1
2 case can be

proved similarly.

2.2. Energy bound. Let

Φn,s (R) =

{
Rn−1

(
R1−2s − 1

)
(1− 2s)

−1
if s ̸= 1

2 ,

Rn−1 lnR if s = 1
2 .

we establish the following energy bound for layer solutions.

Proposition 2.5. Let u ∈ L∞ (Rn) be a layer solution of (1.1) with (−∆)sF (u) ∈
L∞, then J (u,BR) ≤ CΦn,s (R) for some constant C = C (n, s, F,G) .

A main step in the proof of Proposition 2.5 is the following estimates on energy
difference.

Proposition 2.6. Let u be a layer solution of (1.8) which is monotone in the x1
direction. Define u : Rn → R by u (x1, x

′) = u (x′) = limx1→∞ u (x1, x
′) . Then there

exists a constant C = C (n, s) such that

J (u,BR)− J (u,BR) ≤ CΦn,s (R)

for all R ≥ 2.

Proof. We consider the slided function ut (x1, x
′) = u (t+ x1, x

′) . Direct calculation
via integration by parts shows

d

dt
J
(
ut, BR

)
=
〈
ut, ∂tu

t
〉
BR

+

∫
BR

G′(ut)∂tu
tdx

=

∫
BR

[
Kut +G′(ut)

]
∂tu

tdx

+ cn (s)

∫
Bc

R

dx

∫
BR

dy
F (ut) (x)− F (ut) (y)

|x− y|n+2s ∂tu
t

= cn (s)

∫
Bc

R

dx

∫
BR

dy
F (ut) (x)− F (ut) (y)

|x− y|n+2s ∂tu
t,

here we used Kut +G′(ut) = 0 everywhere in Ω in the last step.
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By Propositon 2.2, ∥ut∥C2,γ ≤ C for some constant C indepedent of t. Recall that

u is monotone in x1 direction, we have ut → u in C2,γ
loc (Rn) and |ut (x)− ut (y)| ≤

Cmin {1, |x− y|} . Therefore
J (u,BR)− J (u,BR)

= −
∫ ∞

0

d

dt
J
(
ut, BR

)
dt

= −cn (s)
∫ ∞

0

dt

∫
Bc

R

dx

∫
BR

dy
F (ut) (x)− F (ut) (y)

|x− y|n+2s ∂tu
t

≤ Ccn (s)

∫ ∞

0

dt

∫
Bc

R

dx

∫
BR

dy
min {1, |x− y|}
|x− y|n+2s ∂tu

t

= Ccn (s)

∫
Bc

R

dx

∫
BR

dy
min {1, |x− y|}
|x− y|n+2s

∫ ∞

0

∂tu
tdt

≤ Ccn (s) ∥u∥L∞(Rn) Φn,s (R) .

Here we used ∂tu
t = ∂x1u

t ≥ 0 and estimate (claim 4.1 in [12])∫
Bc

R

dx

∫
BR

dy
min {1, |x− y|}
|x− y|n+2s ≤ CΦn,s (R) .

Proof of Proposition 2.5. Proposition 2.5 follows immediately from Proposition 2.6
since u = 1 and J (u,BR) = 0.

2.3. Extension problem. Let Ω ⊂ Rn+1
+ be a relatively open Lipschitz domain

and Ω+ = Ω ∩ {λ > 0} , Ω = Ω ∩ {λ = 0} . Given any w defined on Ω, we consider
the energy functional

J̃ (w,w,Ω) =

∫
Ω

[
1

2
|∇w|2 +G(w)(x)

]
dx+ Ĩ (w,Ω) ,

where

Ĩ (w,Ω) =
d(s)

2

∫
Ω+

λ1−2s |∇w|2 dxdλ

with d(s) = 22sΓ(s)
Γ(1−s) and w is the s−extension of F (w) to the upper half space Rn+1

+ ,

i.e. {
∇ ·
(
λ1−2s∇w

)
= 0 in Rn+1

+ ,
w (x, 0) = F (w) (x) on {λ = 0} .

We have the following estimates.

Lemma 2.7. Let u, v be such that Js (u,Rn) < ∞ and Js (v,Rn) < ∞ and u ≡ v
outside BR, let ũ, ṽ be the s−extension of F (u) and F (v) to Rn+1

+ respectively, then

Ĩ
(
ũ,Rn+1

+

)
= Js (u,Rn)

and
Ĩ
(
ũ,Rn+1

+

)
− Ĩ

(
ṽ,Rn+1

+

)
= Js (u,BR)− Js (v,BR) .

Proof. We first assume u ∈ C∞
c (Rn) , integrating by parts, we have∫

Rn+1
+

d (s)λ1−2s |∇ũ|2 dxdλ

= −d (s)
∫
Rn+1

+

ũ∇ ·
(
λ1−2s∇ũ

)
− d (s) lim

λ→0+

∫
Rn

ũ (x, λ)λ1−2s∂λũ (x, λ) dx
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=

∫
Rn

F (u) (−∆)
s
F (u)dx

=
cn (s)

2

∫
Rn

∫
Rn

(F (u) (x)− F (u) (y))
2

|x− y|n+2s dxdy.

First conclusion follows. General case follows via approximation argument. Second
claim can be proved similarly.

Next we derive energy estimates for J̃ . We first quote the following estimates
from [12].

Lemma 2.8 (Lemma 5.7 [12], see also Proposition 4.6 in [13]). Assume that |w| ≤
C1 and |∇w| ≤ C2 in Rn. Then, for s ∈ (0, 1), the s-extension w̃s of w satisfies

|w̃s| ≤ C1 and |∇xw̃s| ≤ C2 (2.6)

in all Rn+1
+ . Moreover,

|∇xw̃s|+ |∂λw̃s| ≤
CC1

λ
for λ > 0, (2.7)

where C depends only on n (and not on s).

Let
CR = {(x, λ), |x| < R, 0 ≤ λ < R}

be the open cylinder in Rn+1
+ with height R in the λ direction and bottom BR ∈ Rn,

we have the following relation between Ĩ (ũ, CR) and J
s (u,BR).

Lemma 2.9. Let u ∈ C2,γ (Rn) with ∥u∥C2,γ(Rn) ≤ C0. Let ũ be the s−extension

of F (u) to Rn+1
+ , then for R ≥ 2, we have∣∣∣Ĩ (ũ, CR)− Js (u,BR)

∣∣∣ ≤ CM2
0C0Φn,s (R) .

Here C is a constant depending only on n, s and M0 = ||F (u)||C1[−C0,C0].

Proof. Since F ∈ C1(R) and ∥u∥C2,γ(Rn) ≤ C0, there exists M0 > 0 such that

|F (u) (x)− F (u) (y)| ≤M0 |u (x)− u (y)| , |∇F (u)| ≤M0 |∇u| ,
and

2Ĩ (ũ, CR) =

∫
CR

d (s)λ1−2s |∇ũ|2 dxdλ

=

∫
∂BR

∫ R

0

d(s)λ1−2sũs
∂ũs
∂ν

dSdλ (2.8)

+

∫
BR

d(s)R1−2s(ũs∂λũs)λ=Rdx−
∫
BR

(
lim
λ↘0

d(s)λ1−2s∂λũs

)
ũsdx

Apply bounds (2.6) and (2.7) from Lemma 2.8 to w = F (u) with C1 = M0,
C2 =M0C0, we obtain∣∣∣∣∣

∫
∂BR

∫ R

0

d(s)λ1−2sũs
∂ũs
∂ν

dSdλ

∣∣∣∣∣ (2.9)

≤ d(s)M2
0C0|∂BR|

∫ R

0

min{λ1−2s, λ−2sdλ} ≤ CM2
0C0Φn,s(R).

Here we used d(s)/(1− s) ≤ C for s ∈ (0, 1) in the last inequality.
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Similarly, we can bound the second term of (2.8) by∣∣∣∣∫
BR

d(s)R1−2s(ũs∂λũs)λ=Rdx

∣∣∣∣ (2.10)

≤ C|BR|d(s)R1−2sM2
0C0/R ≤ CM2

0C0Φn,s(R).

To estimate the third term of (2.8), by the well known identity

cn(s)

2

∫∫
Rn×Rn\(Ωc×Ωc)

(u(x)− u(y)) (v(x)− v(y))

|x− y|n+2s

=

∫
Ω

v(x)(−∆)su(x)dx+ cn(s)

∫
Ωc

dx

∫
Ω

dy
u(x)− u(y)

|x− y|n+2s
v(x)

which holds for any u, v ∈ C2(Rn), we have

cn(s)

2
Js(u,BR) =

∫
BR

F (u(x))(−∆)sF (u(x))dx

+ cn(s)

∫
Bc

R

dx

∫
BR

dy
F (u(x))− F (u(y))

|x− y|n+2s
F (u(x)).

Recall that

− lim
λ↘0

d(s)λ1−2sũs(x, λ)∂λũs(x, λ) = F (u(x))(−∆)sF (u(x)),

therefore

2Ĩ (ũ, CR)− 2Js (u,BR)

=

∫
CR

d (s)λ1−2s |∇ũ|2 dxdλ−
∫
BR

F (u) (−∆)
s
F (u)dx

− cn (s)

∫
Bc

R

dx

∫
BR

dy
F (u) (x)F (u) (y)

|x− y|n+2s F (u) (x)

=

∫
∂BR

∫ R

0

d (s)λ1−2sũ
∂ũ

∂ν
dSdλ+

∫
BR

d (s)R1−2s ũ∂λũ|λ=R dx

−
∫
BR

lim
λ→0+

d (s)λ1−2sũ∂λũdx−
∫
BR

F (u) (−∆)
s
F (u)dx

− cn (s)

∫
Bc

R

dx

∫
BR

dy
F (u) (x)− F (u) (y)

|x− y|n+2s F (u) (x)

=

∫
∂BR

∫ R

0

d (s)λ1−2sũ
∂ũ

∂ν
dSdλ+

∫
BR

d (s)R1−2s ũ∂λũ|λ=R dx

− cn (s)

∫
Bc

R

dx

∫
BR

dy
F (u) (x)− F (u) (y)

|x− y|n+2s F (u) (x) .

From (2.9), (2.10) and∣∣∣∣∣
∫
Bc

R

dx

∫
BR

dy
F (u) (x)− F (u) (y)

|x− y|n+2s F (u) (x)

∣∣∣∣∣
≤ CM2

0C0

∫
Bc

R

dx

∫
BR

dy
min{1, |x− y|}
|x− y|n+2s

≤ CM2
0C0Φn,s(R),

we conclude the lemma.
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Next we obtain the following energy estimate on J̃ (ũ, CR) .

Lemma 2.10. Let u be a layer solution in Rn of (1.1) and ũ is the s−extenson of

F (u) to Rn+1
+ . Then J̃ (u, ũ, CR) ≤ CΦn,s (R) , where C depends only on n, s, F,G.

Proof. Since

J̃(u, ũ, CR)− J(u,BR) = Ĩ(ũ, CR)− Js(u,BR),

the conclusion follows from Proposition 2.2, Proposition 2.5 and Lemma 2.9.

2.4. Liouville type theorem and the 1-d symmetry of layer solutions. In
this section, we prove the following Liouville type theorem.

Theorem 2.11. Let σ satisfy −σ∇ ·
(
λ1−2sφ2∇σ

)
≤ 0 in Rn+1

+

σ (x, 0) = σ (x) on Rn

−σφ2 limλ→0+ d (s)λ
1−2s∂λσ − σ∇ ·

(
ρ2∇σ

)
≤ 0 on Rn,

(2.11)

where φ and ρ are continuous functions defined on Rn+1
+ and Rn respectively and

φ(x) = φ(x, 0). Assume λ1−2sφ2|∇σ|2 ∈ L1
loc(R

n+1
+ ) and for R ≥ 2,

d (s)

∫
CR

λ1−2s (φσ)
2
dxdλ+

∫
BR

(
ρ2σ
)2
dx ≤ CR2G (R) (2.12)

for some constant C independent of R and some nondecreasing function G : R+ →
R+ satisfying

∞∑
j=1

1

G (2j+1)
= +∞.

Then σ is constant.

Proof. Since σ satisfies (2.11) , we have

∇ ·
(
σλ1−2sφ2∇σ

)
≥ λ1−2sφ2 |∇σ|2 .

Set

H (R) =

∫
BR

ρ2 |∇σ|2 dx+

∫
CR

d (s)λ1−2sφ2 |∇σ|2 dxdλ.

We have∫
BR

ρ2 |∇σ|2 dx =

∫
BR

[
∇ ·
(
σρ2∇σ

)
− σ∇ ·

(
ρ2∇σ

)]
dx

=

∫
∂BR

σρ2∂νσdSx −
∫
BR

σ∇ ·
(
ρ2∇σ

)
dx (2.13)

≤
(∫

∂BR

(σρ)
2
dSx

) 1
2
(∫

∂BR

ρ2 |∇σ|2 dSx

) 1
2

−
∫
BR

σ∇·
(
ρ2∇σ

)
dx,

and ∫
CR

λ1−2sφ2 |∇σ|2 dxdλ (2.14)

≤
∫
CR

∇ ·
(
λ1−2sσφ2∇σ

)
dxdλ

=

∫
∂+CR

λ1−2sσφ2∂νσdS −
∫
BR

σφ2 lim
λ→0+

λ1−2s∂λσdx
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≤
(∫

∂+CR

λ1−2s (σφ)
2
dS

) 1
2
(∫

∂+CR

λ1−2sφ2 (∂νσ)
2
dS

) 1
2

−
∫
BR

σφ2 lim
λ→0+

λ1−2s∂λσdx.

Here ∂+CR = ∂CR\ {λ = 0} and ν is the unit outer normal on ∂+CR. It follows
from (2.11) , (2.13) and (2.14) that

H (R) ≤
(∫

∂BR

(σρ)
2
dSx

) 1
2
(∫

∂BR

ρ2 |∇σ|2 dSx

) 1
2

+ d (s)

(∫
∂+CR

λ1−2s (σφ)
2
dS

) 1
2
(∫

∂+CR

λ1−2sφ2 (∂νσ)
2
dS

) 1
2

≤
(∫

∂+CR

d (s)λ1−2s (σφ)
2
dS +

∫
∂BR

(σρ)
2
dSx

) 1
2

·
(∫

∂+CR

d (s)λ1−2sφ2 (∂νσ)
2
dS +

∫
∂BR

ρ2 |∇σ|2 dSx

) 1
2

≤ (H ′ (R))
1
2

(∫
∂+CR

d (s)λ1−2s (σφ)
2
dS +

∫
∂BR

(σρ)
2
dSx

) 1
2

.

If H (R) > 0, then(∫
∂+CR

d (s)λ1−2s (σφ)
2
dS +

∫
∂BR

(σρ)
2
dSx

)−1

≤ H ′ (R)

H2 (R)
. (2.15)

Assume σ were not constant. Then there exists R0 > 0 such that H (R) > 0 for
all R ≥ R0. For r2 > r1 > R0, integrating (2.15) and applying Schwartz inequality,
we yield

1

H (r1)
− 1

H (r2)

≥
∫ r2

r1

(∫
∂+CR

d (s)λ1−2s (σφ)
2
dS +

∫
∂BR

(σρ)
2
dSx

)−1

dR

≥ (r2 − r1)
2

(∫ r2

r1

(∫
∂+CR

d (s)λ1−2s (σφ)
2
dS +

∫
∂BR

(σρ)
2
dSx

)
dR

)−1

≥ (r2 − r1)
2

(∫
Cr2\Cr1

d (s)λ1−2s (σφ)
2
dS +

∫
Br2\Br1

(σρ)
2
dx

)−1

(2.16)

Let N0 be such that 2N0 > R0. r2 = 2j+1, r1 = 2j with j ≥ N0. Summing over j
from N0 to N, (2.12) and (2.16) imply

1

H (2N0)
≥ 1

4C

N∑
j=N0

1

G (2j+1)
.

Let N → ∞, a contradiction to the assumption

∞∑
j=1

1

G (2j+1)
= +∞.
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Proof of Theorem 2.1. Let u be a layer solution of (1.1) and ũ be the s−extension of

F (u) to Rn+1
+ . For i > 1, take σi = ∂iũ

∂1ũ
, φ = ∂1ũ and ρ = ∂1u. Then φ = F ′(u)∂1u

and σi = ∂iu
∂1u

on Rn.We will show σi, φ, ρ, φ, σi satisfy the assumptions of Theorem
2.11. Indeed, we have

∇ ·
(
λ1−2sφ2∇σi

)
= ∇ ·

(
∂1ũ∂iλ

1−2s∇ũ− ∂iũ∂1λ
1−2s∇ũ

)
= λ1−2s (∂1∇ũ · ∂i∇ũ− ∂i∇ũ · ∂1∇ũ)
+ ∂1ũ∂i∇ ·

(
λ1−2s∇ũ

)
− ∂iũ∂1∇ ·

(
λ1−2s∇ũ

)
= 0 in Rn+1

+ .

For boundary flux, we have

− σiφ2 lim
λ→0+

d (s)λ1−2s∂λσ
i (x, λ)− σi∇x ·

(
ρ2∇xσ

i
)

= −σiφ2d (s) lim
λ→0+

∂1ũ (x, λ) ∂iλ
1−2s∂λũ (x, λ)− ∂iũ (x, λ) ∂1λ

1−2s∂λũ (x, λ)

(∂1ũ (x, λ))
2

− σi∇ · (∂1u∂i∇u− ∂iu∂1∇u)
= σiF ′(u) (∂1u∂i − ∂iu∂1) (−∆)

s
F (u) + σi (∂1u∂i − ∂iu∂1) (−∆u)

= σi (∂1u∂i − ∂iu∂1) [F
′(u) (−∆)

s
F (u)] + σi (∂1u∂i − ∂iu∂1) (−∆u)

= σi (∂1u∂i − ∂iu∂1)G
′(u)

= σiG′′(u) (∂1u∂iu− ∂iu∂1u) = 0 on Rn.

Moreover, by energy estimates when n = 2, s > 0 or 3, s ≥ 1
2 ,∫

CR

d (s)λ1−2s
(
φσi

)2
dxdλ+

∫
BR

(
ρσi
)2
dx≤ J̃ (u, ũ, BR)≤CΦn,s (R)≤CR2 lnR.

Since G (R) = lnR satisfies
∞∑
j=1

1

G (2j+1)
= ∞.

We conclude from Theorem 2.11 that σi is equal to a constant ai for i > 1. Therefore
∇u =

(
1, a2

)
∂1u when n = 2 and ∇u =

(
1, a2, a3

)
∂1u when n = 3, which is

equivalent to the 1-d symmetry of u.

3. 1-d symmetry of stable solutions of (1.1). In this section, we study the
1-d symmetry of stable solutions of (1.1) under the additional assumption that
F ∈ C3(R) is strictly monotone with F ′ bounded away from zero. We first prove
the following proposition.

Proposition 3.1. Assuming F ∈ C3(R) is a strictly monotone function with |F ′| ≥
δ0 > 0 for some δ0. Then a solution u to (1.1)is stable iff the linearized equation
of (1.1) has a positive solution. Here v is a solution of the linearized equation of
(1.1) at u if

−∆v + F ′′(u)v(−∆)sF (u) + F ′(u)(−∆)s[F ′(u)v] +G′′(u)v = 0 in Rn. (3.1)

Proof. Assume (3.1) has a positive solution v. Given any ϕ ∈ C2
0 (Rn), multiply ϕ2

v
to (3.1), we get

0 =

∫
Rn

[
−∆v

ϕ2

v
+ F ′′(u)ϕ2(−∆)sF (u)

]
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+

∫
Rn

[
F ′(u)

ϕ2

v
(−∆)s(F ′(u)v) +G′′(u)ϕ2

]
. (3.2)

When F ′(u) ≥ 0 or F ′(u) ≤ 0 for all u, we can bound the third term on the right
hand side of (3.2) by∫

Rn

F ′(u)
ϕ2

v
(−∆)s(F ′(u)v)dx

=
cn(s)

2

∫∫
Rn×Rn

(F ′(u)(x)v(x)−F ′(u)(y)v(y))
(

F ′(u)(x)ϕ2(x)
v(x) − F ′(u)(y)ϕ2(y)

v(y)

)
|x−y|n+2s

dydx

=
cn(s)

2

∫∫
Rn×Rn

(F ′(u)(x)ϕ(x))2 + (F ′(u)(y)ϕ(y))2

|x− y|n+2s
dydx

− cn(s)

2

∫∫
Rn×Rn

F ′(u)(x)F ′(u)(y)

|x− y|n+2s

(
ϕ2(x)v(y)

v(x)
+
ϕ2(y)v(x)

v(y)

)
dydx

≤ cn(s)

2

∫∫
Rn×Rn

(F ′(u)(x)ϕ(x))2 − 2F ′(u)(x)F ′(u)(y)ϕ(x)ϕ(y)

|x− y|n+2s
dydx

+
cn(s)

2

∫∫
Rn×Rn

(F ′(u)(y)ϕ(y))2

|x− y|n+2s
dydx (3.3)

=

∫
Rn

F ′(u)ϕ(−∆)s(F ′(u)ϕ)dx,

together with integration by parts of the first term in (3.2), we conclude

Hess(u)(ϕ, ϕ) =

∫
Rn

[
|∇ϕ|2 +G′′(u)ϕ2

]
dx

+

∫
Rn

[
ϕ2F ′′(u)(−∆)sF (u) + F ′(u)ϕ(−∆)s(F ′(u)ϕ)

]
dx

≥
∫
Rn

[
(−∆v)

ϕ2

v
+

∣∣∣∣ϕv∇v −∇ϕ
∣∣∣∣2 +G′′(u)ϕ2

]
dx

+

∫
Rn

[
F ′′(u)ϕ2(−∆)sF (u) + F ′(u)

ϕ2

v
(−∆)sF ′(u)v)

]
dx

≥
∫
Rn

∣∣∣∣ϕv∇v −∇ϕ
∣∣∣∣2 dx ≥ 0.

Conversely, assume u is a stable solution on (1.1). Let

h(x) = F ′′(u(x))(−∆)sF (u) +G′′(u(x)).

For every R > 0, let λR be the infimum of the quadratic form

QR(ξ) =

∫
BR

1

2

[
|∇ξ(x)|2 + h(x)ξ2(x)

]
dx

+
cn(s)

4

∫∫
Rn×Rn\BR×BR

(F ′(u(x))ξ(x)− F ′(u(y))ξ(y))
2

|x− y|n+2s
dydx

among functions in the class

AR =

{
ξ ∈ H1

0 (BR) :

∫
BR

ξ2 = 1

}
.
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By stability assumption, we conclude that λR ≥ 0 for each R and is a nonincreas-
ing function of R. Since h(x) is a bounded function, the functional QR is bounded
from below in the class AR and any minimizing sequence {ξk} has {|∇ξk} uniformly
bounded in L2(BR). By compact embedding of H1

0 (BR) ⊂⊂ L2(BR), we conclude
that the infimum of QR is achieved by a function ϕR ∈ AR. Moreover, we can
take ϕR ≥ 0 since |ϕR| is a minimizer when ϕR is a minimizer from the following
inequalities:∫

BR

[
|∇ξ(x)|2 + h(x)ξ(x)2

]
dx ≥

∫
BR

[
|∇|ξ|(x)|2 + h(x)ξ(x)2

]
dx,

and

(F ′(u(x))ξ(x)− F ′(u(y))ξ(y))
2 ≥ (F ′(u(x))|ξ|(x)− F ′(u(y))|ξ|(y))2

when F is monotone.
Note ϕR ≥ 0 is a solution, not identically zero, of{

LϕR = −∆ϕR + h(x)ϕR + F ′(u)(−∆)s (F ′(u)ϕR) = λRϕR on BR,
ϕR = 0 on ∂BR.

We claim that ϕR > 0 on BR. In fact, let

g(x) = (h(x)− λR)ϕR + F ′(u)(−∆)s(F ′(u)ϕR)),

since F ′(u)ϕR ∈ W 1,2
0 (BR), we have F ′(u)(−∆)s(F ′(u)ϕR)) ∈ W 1−2s,2(BR), thus

g(x) ∈ L2(BR) when 0 < s < 1/2 and g(x) ∈ W 1−2s,2(BR) when s ≥ 1/2. From
standard elliptic estimates and iteration, we conclude ϕR ∈ C2,µ for some µ > 0.
Assuming F ′ > 0, if ϕR(x0) = 0 for some x0 ∈ BR, we must have −∆ϕR(x0) ≤ 0
and

(−∆)s (F ′(u)ϕR) (x0) = c(n, s)P.V.

∫
F ′(u(x0))ϕR(x0)− F ′(u(y))ϕR(y)

|x− y|n+2s
dy < 0.

which leads to

LϕR(x0)− λRϕR(x0)

= −∆ϕR(x0) + d(x0)ϕR(x0) + F ′(u)(−∆)s (F ′(u)ϕR) (x0)− λRϕR(x0) < 0,

a contradiction. F ′ < 0 case can be proved similarly.
Next we prove that λR is decreasing in R. Indeed, assume there exists R1 < R2

such that λR1
= λR2

. Multiply ϕR1
to

LϕR1
− λR1

ϕR1
= 0

and integrate by parts, we have

0 =

∫
BR1

|∇ϕR1
|2 + (h(x)− λR1

)ϕ2R1
+ F ′(u)ϕR1

(−∆)s(F ′(u)ϕR1
). (3.4)

Multiply
ϕ2
R1

ϕR2
to

LϕR2
− λR2

ϕR2
= 0,

and integrate by parts, we obtain

0 =

∫
BR1

−
∣∣∣∣ϕR1

ϕR2

∇ϕR2 −∇ϕR1

∣∣∣∣2 + |∇ϕR1 |2 + (h(x)− λR2)ϕ
2
R1

+

∫
BR1

F ′(u)
ϕ2R1

ϕR2

(−∆)s(F ′(u)ϕR2
). (3.5)
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When F is monotone, following the same calculation in (3.3), we get∫
BR1

F ′(u)
ϕ2R1

ϕR2

(−∆)s(F ′(u)ϕR2) ≤
∫
BR1

F ′(u)ϕR1(−∆)s(F ′(u)ϕR1). (3.6)

Since λR1
= λR2

and ϕR1
̸= ϕR2

, (3.5) and (3.6) yield∫
BR1

|∇ϕR1
|2 + (h(x)− λR1

)ϕ2R1
+ F ′(u)ϕR1

(−∆)s(F ′(u)ϕR1
) > 0,

contradiction to (3.4).
Next, using λR > 0, we obtain

QR(ξ) =

∫
BR

|∇ξ|2 + h(x)ξ2 + F ′(u)ξ(−∆)s(F ′(u)ξ) ≥ λR

∫
BR

ξ2

≥ −δR
∫
BR

d(x)ξ2

for all ξ ∈ H1
0 (BR) and δR chosen such that 0 < δR ≤ λR/||d||L∞ . From this, we

deduce that

QR(ξ) ≥
δR

1 + δR

∫
BR

|∇ξ|2 (3.7)

for all ξ ∈ H1
0 (BR).

For every given constant CR > 0, consider the functional

Q̃R(ξ) = QR(ξ) +

∫
BR

cRh(x)ξ

for ξ ∈ H1
0 (BR). (3.7) implies Q̃R is bounded below and coercive. The existence

of a minimizer ψR ∈ H1
0 (BR) of Q̃R then follows from the compact embedding

H1
0 (BR) ⊂⊂ L2(BR). Moreover, following the same proof as ϕR, we conclude that

ψR ∈ C2,ν for some ν > 0. Setting φR = ψR + cR, then φR is a solution of{
−∆φR + h(x)φR + F ′(u)(−∆)s(F ′(u)φR) = 0 in BR,
φR = cR on ∂BR.

(3.8)

Next, we claim that φR > 0 in BR. By assumption, the negative part φ−
R of φR

vanises on ∂BR. Multiplying φ−
R to (3.8) and integrating by parts, we obtain

0 = QR(φ
−
R) +

∫
BR

F ′(u)φ−
R(−∆)s(F ′(u)φ+

R). (3.9)

Since F is monotone, direct calculation using the integral expression (1.3) for (−∆)s

gives ∫
BR

F ′(u)φ−
R(−∆)s(F ′(u)φ+

R) ≥ 0,

thus QR(φ
−
R) ≤ 0 by (3.9). On the other hand, since u is a stable solution, we have

QR(φ
−
R) ≥ 0. Therefore QR(φ

−
R) = 0. By definition of the first eigenvalue λR and

the fact that λR > 0, this implies that φ−
R ≡ 0, i.e. φR > 0 in BR.

Picking cR > 0 in (3.8) so that φR(0, 0) = 1. Let ζR = F ′(u)φR, then ζR
satisfyies

−∇ ·
(

1

[F ′(u)]2
∇ζR

)
+ g(x)ζR + (−∆)sζR = 0,

where

g(x) =
h(x)

[F ′(u)]2
− 1

F ′(u)
∆

1

F ′(u)
.
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Apply Harnack inequality to ζR [5], we have

sup
BR

δ0φS ≤ sup
BR

ζS ≤ CR for S > 4R.

Standard elliptic estimates and Sobolev embedding theorem give uniform Cβ(BR/2)
bound on φS . Thus a subsequence converges locally to a positive solution φ.

As a direct corollary of Proposition 3.1, we conclude that a layer solution of (1.1)
is a stable solution when F is monotone.

Corollary 3.2. If F ∈ C3(R) is a strictly monotone function with F ′ bounded away
from zero, then any layer solution of (1.1) is a stable solution.

Proof. Let u be a layer solution of (1.1), then ux1
is a positive solution of (3.1),

conclusion follows from Proposition 3.1.

Theorem 3.3. If F ∈ C3(R) is a strictly monotone function with F ′ bounded away
from zero and u ∈ C2(R2)∩L∞(R2) is a stable solution to (1.1) in R2, then u is
1-d.

Proof. Assume u is a stable solution of (1.1) and ϕ is a positive solution to the

linearlized equation (3.1). Let ṽi be the s−extension of F ′(u)uxi
to Rn+1

+ and ϕ̃ be

the s−extension of F ′(u)ϕ to Rn+1
+ . Set σi = ṽi

ϕ̃
, φ = ϕ̃ and ρ = ϕ, then φ = F ′(u)ϕ

and σi =
uxi

ϕ on Rn. We show that σi, φ, ρ, φ, σi satisfy the assumptions of Theorem

2.11. Indeed,

∇ · (λ1−2sϕ̃2∇σi) = ∇ · λ1−2s(ϕ̃∇ṽi − ṽi∇ϕ̃)

= ϕ̃∇ · (λ1−2s∇ṽi)− ṽi∇ · (λ1−2s∇ϕ̃)
= 0 in Rn+1

+ ,

and

− σiϕ̃
2

lim
λ→0+

d(s)λ1−2s∂λσ
i(x, λ)− σi∇x · (ρ2∇xσ

i)

= −σiϕ̃
2

lim
λ→0+

d(s)
λ1−2s(∂λṽ

iϕ̃− ṽi∂λϕ̃)

ϕ̃2
− σi∇x · (ϕ∇xuxi − uxi∇xϕ)

= σi [F ′(u)ϕ(−∆)s(F ′(u)uxi)− F ′(u)uxi(−∆)s(F ′(u)ϕ)]− σi [ϕ∆uxi − uxi∆ϕ]

= −σi [ϕh(x)uxi − uxih(x)ϕ] = 0 on Rn.

Moreover, let η be a cut off function which is supported in B2R and equals to 1 on
BR. Multiplying uη2 to (1.1) and integrating by parts, we obtain∫

B2R

|∇u|2η2dx

≤ C

∫
B2R\BR

u2|∇η|2dx+ |
∫
B2R

G′(u)uη2|+ |
∫
B2R

F ′(u)uη2(−∆)sF (u)|

≤ CR2.

We conclude from theorem 2.11 that σi is equal to a constant ai. Therefore u is
1-d.
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4. 1-d symmetry of stable solutions of (1.13). In this section, we prove the 1-d
symmetry of stable solutions of (1.13), which is (1.1) without the Laplace term. We
shall use a different approach here, mainly following ideas from [11, 24, 29] to obtain
suitable BV estimates for stable solutions. We introduce the following notations.

J s(u,Ω) =

∫ ∫
Rn×Rn\(Ωc×Ωc)

|u(x)− u(y)|2

|x− y|n+2s
dydx,

and

L(u,Ω) =

∫
Ω

G(u)dx+
cn(s)

2

∫ ∫
Rn×Rn\(Ωc×Ωc)

|F (u(x))− F (u(y))|2

|x− y|n+2s
dydx

= J l(u,Ω) +
cn(s)

2
Js(u,Ω).

Fix a unit vector v ∈ Rn, following [11, 24, 29], we construct suitable variations
of energy with respect to v as follows. Let R ≥ 1 and

ψt,v(x) := x+ tτ(x)v,

where

τ(x) =


1, |x| ≤ R

2

2− 2 |x|
R ,

R
2 ≤ |x| ≤ R

0, |x| ≥ R.

(4.1)

For |t| small, ψt,v is a Lipschitz diffeomorphism and we define

Pt,vu(x) := u
(
ψ−1
t,v(x)

)
.

Then Pt,vu(x) := u(ψ−1
t,v(x)) = u(x− tv) for x ∈ B1/2 and |t| small. Following the

notations in [29] (see also [8, 24]), we define the second variation operator ∆t
vv with

respect to v on any functional F as

∆t
vvF(u,Ω) := F(Pt,vu,Ω) + F(P−t,vu,Ω)− 2F(u,Ω).

We first quote the following Lemma from [29].

Lemma 4.1 (Lemma 3.2 from [29], see also Lemma 4.3 from [8] and Lemma 2.1
from [24]). There exists a universal constant C(n, s) such that

∆t
vvJ s(u,BR) ≤ C(n, s)

J s(u,BR)

R2,
∀R ≥ 1.

Following the same proof of the above lemma, we can get the following estimates
on the second variations of fractional energy for

Lemma 4.2. Given any F with |F ′| ≤M0, we have

∆t
vvL(u,BR) = ∆t

vvJ
s(u,BR) ≤ C(n, s)M2

0

Js(u,BR)

R2,
∀R ≥ 1.

Proof. Let η be a smooth vector field supported in BR, we consider the map

Ft(x) = x+ tη(x),

and set

Ptu(x) := u(F−1
t (x)).

We use B̃R to denote Rn × Rn\(BR ×BR) and estimate

∆tJs(u,BR) := Js(Ptu,BR) + Js(P−tu,BR)− 2Js(u,BR).



18 XIAODONG YAN

Direct calculation shows

∆tJs(u,BR)

=

∫∫
B̃R

|F (u(x))− F (u(y))|2 [K(z + tε|z|)JFt(x)JFt(y)

+ K(z − tε|z|)JF−t(x)JF−t(y)− 2K(z)] dydx

≤M2
0

∫∫
B̃R

|u(x)− u(y)|2 [K(z + tε|z|)JFt(x)JFt(y)

+ K(z − tε|z|)JF−t(x)JF−t(y)− 2K(z)] dydx

=M0
2∆tJ s(u,BR) ≤M2

0C(n, s)||∇η||2L∞(BR)K(z)t2.

Here z = x− y, K(z) = 1
|z|n+2s , ε(x, y) :=

η(x)−η(y)
|x−y| and

JFt(x) = 1 + tdivη(x) + A(η(x))t2,

with A(η) = (divη)2−tr(∇η)2

2 . The last step follows from estimates in Lemma 3.2 [29]
and

|F (u(x))− F (u(y))| ≤M0|u(x)− u(y)|.
Choosing η = τv where τ(x) is defined by (4.1) and observing

∆t
vvJ

l(u,BR) = 0,

the conclusion follows.

Lemma 4.3 (Lemma 2.2 [29]). Assume |u| ≤ 1 and ||∇u||L∞(B1) ≤ L0, where
L0 ≥ 2, then for s ∈ [1/2, 1),∫

B1

∫
B1

|u(x)− u(y)|2

|x− y|n+2s
dxdy

≤ 1

1− s
|Sn−1|L0|2s−1 ((2− 2s) log(2L0) + 1)

∫
B1

|∇u(x)|dx

= C(n, s)L2s−1
0 log(L0)

∫
B1

|∇u(x)|dx.

Lemma 4.4 (Lemma 1.8 [29]). For any ball BR ⊂ Rn and u which belongs to
appropriate space with |u| ≤ 1, and let s ∈ (0, 12 ), there exists universal constant
C = C(n, s) > 0 such that for any R ≥ 1,

J s(u,BR) ≤ C

(∫
B2R

|∇u|dx+Rn−2s +Rn

)
.

If 1
2 ≤ s < 1 and u is assumed to be a Lipschitz function with ||∇u||L∞(BR) ≤ L0,

L0 ≥ 2. then there exists C = C(n, s) > 0 such that

J s(u,BR) ≤ C

(
Rn−2s + L2s−1

0 log(2L0R)

∫
B2R

|∇u|
)
.

When F is monotone, we have the following counterparts of Lemma 3.3 and
Remark 3.4 in [29].

Lemma 4.5. Let Ω ⊂ Rn. Assume F (u) is monotone function in u. For any
functions u, v in appropriate space, let u ∧ v = max{u, v}, u ∨ v := min{u, v}, we
have the following identity

Js(u,Ω) + Js(v,Ω)− Js(u ∧ v,Ω)− Js(u ∨ v,Ω)
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= 2

∫∫
Rn×Rn\(Ωc×Ωc)

(F (v)− F (u))+(x)(F (v)− F (u))−(y)K(x− y)dydx,

where K(z) = 1
|z|n+2s , (F (v)− F (u))+ = (F (u)− F (v)) ∨ 0 and (F (v)− F (u))− =

(F (u)− F (v)) ∧ 0.

Proof. Set

A := {x ∈ Rn : v(x) > u(x)}
and

Ω̃ := Rn × Rn\(Ωc × Ωc).

Direct calculation gives

Js(u,Ω) + Js(v,Ω)− Js(u ∧ v,Ω)− Js(u ∨ v,Ω)

=

∫∫
(A×Ac)∩Ω̃

(
|F (u(x))− F (u(y))|2 − |F (u(x))− F (v(y))|2

)
K(x− y)dydx

+

∫∫
(A×Ac)∩Ω̃

(
|F (v(x))− F (v(y))|2 − |F (v(x))− F (u(y))|2

)
K(x− y)dydx

+

∫∫
(Ac×A)∩Ω̃

(
|F (u(x))− F (u(y))|2 − |F (v(x))− F (u(y))|2

)
K(x− y)dydx

+

∫∫
(Ac×A)∩Ω̃

(
|F (v(x))− F (v(y))|2 − |F (u(x))− F (v(y))|2

)
K(x− y)dydx

= 2

∫∫
(A×Ac)∩Ω̃

(F (v(x))− F (u(x))) (F (u(y))− F (v(y)))K(x− y)dydx

+ 2

∫∫
(Ac×A)∩Ω̃

(F (u(x))− F (v(x))) (F (v(y)− F (u(y)))K(x− y)dydx

= 2

∫∫
Rn×Rn\(Ωc×Ωc)

(F (v)− F (u))+(x)(F (v)− F (u))−(y)K(x− y)dydx,

where we used the monotonicity of F in the last step.

Remark 4.6. The above lemma implies

Js(u,Ω) + Js(v,Ω) ≥ Js(u ∧ v,Ω) + Js(u ∨ v,Ω)
if F is a montone function and “=” holds only if either v ≤ u or u ≤ v in Ω.

We can prove the following lemma.

Lemma 4.7. Let F be a monotone function with |F ′| ≥ α > 0. If u is a stable
solution to (1.13), then there exists a universal constant C = C(n, s) such that for
any R ≥ 1, (∫

B1/2

(∂vu(y))+

)(∫
B1/2

(∂vu(y))−

)
≤ C

α2R2
Js(u,BR). (4.2)

and ∫
B1/2

|∇u(x)|dx ≤ C
(
1 +

√
Js(u,BR)

)
. (4.3)

Proof. We follow the proof of Lemma 3.6 in [29]. Let u = max{Pt,vu, u}, u =
min{Pt,vu, u}. According to Lemma 4.5 and Remark 4.6, we have

Js(u,BR) + Js(u,BR)
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+ 2

∫
B1/2

∫
B1/2

(F (u(x− tv))− F (u(x)))+ (F (u(y − tv))− F (u(y)))−
|x− y|n−2s

dydx

≤ Js(Pt,vu,BR) + Js(u,BR).

Since |x− y| < 1 when x, y ∈ B1/2 and

J l(Pt,vu,BR) + J l(u,BR) = J l(u,BR) + J l(u,BR),

we have

L(u,BR) + L(u,BR) (4.4)

+ 2α2

∫
B1/2

∫
B1/2

(u(x− tv)− u(x))+ (u(y − tv)− u(y))− dydx

≤ L(Pt,vu,BR) + L(u,BR).

Adding L(P−t,vu,BR) − 3L(u,BR) to both sides of (4.4) and using the stability
condition of u and Lemma 4.2, we have

2α2

∫
B1/2

∫
B1/2

(u(x− tv)− u(x))+ (u(y − tv)− u(y))− dydx

≤ o(t2) + ∆t
vvL(u,BR) ≤ Ct2Js(u,BR)/R

2.

Dividing t2 on both sides and pass to the limit as t→ 0, (4.2) follows. (4.3) can be
derived from (4.4) by the same proof in Lemma 3.6 [29].

The following BV and energy estimates for stable solutions of (1.13) can be
proved by following the proof of Proposition 1.7 in [29].

Proposition 4.8. Let |F ′| ≤ M0 and u ∈ C2(Rn) be a stable solution to (1.13)
in Rn with |u| ≤ 1, then there exists constants C1 = C1(n, s,M0) and C2 =
C2(n,G,M0, s) such that for any ball BR ⊂ Rn, R ≥ 1, we have∫

BR

|∇u| ≤
{
C1R

n−1 0 < s < 1
2

C2R
n+2s−2 1

2 ≤ s < 1

and

Js(u,BR) ≤
{
C1R

n−2s 0 < s < 1
2

C2R
n+2s−2 log2(K0R)

1
2 ≤ s < 1,

where K0 ≥ 2 is an upper bound for ||G||L∞ .

Proof. Since

Js(u,BR) ≤M2
0J s(u,BR),

Lemma 4.7 yields∫
B1/2

|∇u(x)|dx ≤ C(n,M0, s)
(
1 +

√
J s(u,BR)

)
.

We can then repeat the proof of Proposition 1.7 in [29] line by line to finish the
proof.

As a direct corollary of Lemma 4.7 and Proposition 4.8, we can prove the following
theorem.

Theorem 4.9. If F ∈ C3(R) is a strictly monotone function with F ′ bounded away
from zero and u ∈ C2(R2) is a stable solution to (1.13) in R2 and |u| ≤ 1, then u
is 1-d.
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Proof. Letting R→ ∞ in (4.2), by Proposition 4.8, we have(∫
B1/2

(∂vu(y))+

)(∫
B1/2

(∂vu(y))−

)
= 0. (4.5)

Hence u is monotone in B1/2 along direction v. Since (4.5) holds for any v and any
half ball, we conclude u is 1-d by continuity of u.
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[25] C. J. Garćıa-Cervera, Magnetic Domains and Magnetic Domain Walls, Ph.D thesis, New

York University, 1999.
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