Communications on Pure and Applied Analysis
ATMS

doi:10.3934 /cpaa.2023105

LAYER AND STABLE SOLUTIONS TO A NONLOCAL MODEL

XIAODONG YAN™
University of Connecticut, USA

In celebration of Professor Vladimir Sverdk’s 65th birthday

ABSTRACT. We study the layer and stable solutions of nonlocal problem
—Au+ F'(u) (-A)® F(u) + G'(u) = 0 in R

where F € C} _(R) satisfies F(0) = 0 and G is a double well potential. For

n =2, >0and n =3, s > 1/2, we establish the 1-d symmetry of layer

solutions for this equation. When n = 2 and F” is bounded away from zero, we

prove the 1-d symmetry of stable solutions for this equation. Using a different
approach, we also prove the 1-d symmetry of stable solutions for

F'(u) (=A)® F(u) + G'(u) = 0 in R?.

1. Introduction. In this paper, we study the layer and stable solutions for the
following model problem

—Au+ F'(u) (-A)° F(u) + G'(u) =0 in R", (1.1)
where 0 < s < 1, F is a C2_ function satisfying F(0) = 0 and G is a double well
potential satisfying

GeC*R), G(+1)=0and G(t) >0 for t # +1. (1.2)

Here the fractional Laplacian is defined as

(—Afvu):cdﬁfﬂi/‘i&?;:ﬁgﬂ/ (1.3)

n

where c,(s) = w2228 1}((238))5(1 — s) so that the Fourier symbol for (—A)® is

|€|%¢. Tt is known that the pointwise formula (1.3) gives a continuous function for
v € C%TE(Q) (or CL25+e71(Q) if s > 1/2) for some € > 0 [42, 43] which satisfies

/R ﬂdw<oo.

o T+ [a]r s

The energy functional associated with (1.1) is
1
”MWZ/TJWM+GWﬂW
Q
c

n(S) |F(u)(3;) — F(u)(y)|2
" //JR”X]R"\(QcXQu) dydx

4 |z — y|nt2s
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= JL(u, Q) + c"f) J5(u, Q). (1.4)

A solution u of (1.1) is called a layer solution if u satisfies 88—;1 > 0 and the asymp-
totic behavior
lim w(zy,2') = -1, lim u(z,2') =1
T1——00 T —00
for all z’ € R"~1. A solution u is called a stable solution of (1.1) if the second local
variation of J(-,R™) at u is nonnegative, i.e.

[ VO + G0 + 262 () (-2 Pla) + 2 ()o(=A)° (F/(u)g) > 0

for any ¢ € CZ(R™). Our main interest in this paper is the 1-d symmetry of such
solutions, namely if u = wug (ap - ) for some function uy and a constant vector
ag € R™.

Our work is partly motivated by recent work by Cabré and Serra [12] where they
studied the 1-d symmetry of layer solutions of nonlocal Allen-Cahn type equation

Lu+ G (u) =0 in R", (1.5)
here G is a double well potential satisfying (1.2) and, for some s* € (0,1),

Lu= /[s*,1] (—A)° udp (s)

with p being a probablity measure supported in [s*,1]. Assuming either n = 2,
s*>0orn=23,s" > %, they proved the 1-d symmetry for layer solutions of (1.5).
A special case covered by their theorem is the following equation

K .
3w (~A) u+ G (u) =0 in R,
=1

where p; > 0, Zfiluizl,0<51 << sg <1

Cabré and Serra’s result is an extension of the famous De Giorgi conjecture for
semilinear equation

—Au+G'(u) =0in R, (1.6)

which states that a solution of (1.6) which is montone in one direction is one di-
mensional for n < 8. The De Giorgi conjecture was completely solved for n = 2 and
3 [2, 4, 27] and proved by Savin [39] for 4 < n < 8 under the additional limiting
conditions limg, 4. u(21,2’) = £1. Partial results on De Giorgi conjecture can
also be found in [6, 28]. A counterexample was constructed in [19] for n > 9.

De Giorgi’s conjecture has been generalized to fractional Allen-Cahn equation

—A*u+ G'(u) =0 in R™. (1.7)

The fractional De Giorgi’s conjecture holds for the case n = 2,s € (0,1) [13, 14, 15,
44], and for n = 3and s > 1 [9, 10]. Under the additional limit conditions, fractional
De Giorgi’s conjecture was proved for n = 3 and s € (O, %) by Dipierro, Serra and
Valdinoci in [23] and by Savin in [40, 41] for 4 < n < 8 and s € [4,1). Under
the additional limit condition, the best known results for fractional De Giorgi’s
conjecture in higher dimensions says there exists ¢y € (0, %] such that for any
s € (3 — e0,1], a layer solution is 1-d if n < 8 [23]. Similar conclusion holds when
n < 7 if the solution is a minimizer. The limit condition is removed in [22] for

n=3and s € (0,3). Figalli and Serra [24] solved the De Giorgi’s conjecture for
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half-Laplacian when n = 4 (such result is not known for the classical case s = 1).
A counter example for n =9, % < s < 1 was announced in [18].

Stable solutions for Allen Cahn equation in the classical and fractional cases
have also received a lot of attention over the years. The corresponding De Giorgi
conjecture for stable solutions states that a stable solution to (1.6) or (1.7) is 1-d
when n < 7. This conjecture holds true for n = 2 [4, 27] and remains a long standing
open problem when n > 3 for the classical Allen Cahn equation (1.6). For fractional
Allen Cahn equation, this conjecture was proved for n = 2,0 < s < 1 (see [15] for
the case s = 1/2 and [14, 44] for 0 < s < 1 ) and n = 3,s = 1/2 [24]. Recently,
Cabré, Cinti and Serra [11] established the stable De Gorigi conjecture for n = 3
and s € (s«,1/2) for some s, < 1/2. For Allen-Cahn equations (1.6) and (1.7), it
is known that layer solutions are stable solutions. Moreover, if any entire stable
solution to in R"~! is 1-d, then any layer solution to in R™ is 1-d for s € (0, 1) when
n < 3, and for s € (1/2 — €, 1) for some constant gy € (0,1/2) when 4 <n <7 (a
proof can be found in the appendix in [29]).

A second motivation of our work comes from the ferromagnetic thin films. Letting
F(u) = sinu and G(u) = i (sinu — h)? in (1.1), where h € [0,1) is a constant, we
arrive at the following equation:

—Au+cosu (—A)’ sinu + cosu(sinu — h) =0 in R". (1.8)
When n =1 and s = 3, (1.8) reduces to

—A9+(sin@—h)cosG—&—cosH(—A)%sinH:O in R. (1.9)

Equation (1.9) is the associated Euler-Lagrange equation for energy functional

2\ 2
E0) = %/R {|9I|2 + %Sin@ (—dde> sin@ + (sinf (x) — h)2} dx, (1.10)

which is the reduced magnetic energy per unit length for magnetization varying
along one direction. Indeed, we consider a two-dimensional horizontal section of
a magnetic sample that is infinite in the x; direction and L—periodic in x5 direc-
tion, with external field applied in e; direction, the reduced thin film energy (after
suitable scaling) can be written as

1 2 1 2
_ 1 L e 111
£(m)= /RX[O?L)|Vm| dr+ o /R><[O,L) (m ey — h)?do (1.11)

V- V- /
. m ) Vem ()
8L% Jrx[o,L) JRx[0,L) Ix — x|

where m : R?2 — S! is the unit magnetization vector in the film plane, e; is the
unit vector in the i-th coordinate. h € [0,1) represents the rescaled strength of the
applied field. Assuming e, is the easy axis, let 6 () be the phase angle between m
and eg in the counter-clockwise direction. Thus m (z) = (sinf (x), cosf (z)), the
reduced thin film energy (1.11) becomes

EO)= i/ (|V0 ()] + - (—A)7i (V-m (2)) 2—i—(sin@ (x) —h)2> dx.
2L Jrx(0,1) 2
(1.12)
Under the assumption that 6 varies only along e; direction, (1.12) reduces to (1.10).
A minimizer of (1.10) subject to limiting conditions 6 (—oo) = 6, = arcsin h and
0 (00) = m—arcsin h is called Néel wall. Néel wall has been studied extensively over
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the last few decades and its structure is well understood at current stage[l, 3, 7,
17, 21, 20, 25, 26, 30, 31, 33, 34, 35, 36, 37, 38]. One interesting question is the
stability of Néel walls under arbitrary two dimensional perturbations. Our model
(1.8) can be viewed as toy models to study the stability problem for Néel walls.

Following the arguments in [4, 27], the symmetry results for layer solutions of
(1.6) are deduced from a Liouville type theorem. If a layer solution u satisfies certain
energy estimates, this Liouville type theorem would imply that % is a constant.
This is equivalent to the 1-d symmetry of u. The symmetry results for solutions
of (1.7) [9, 10, 13, 14, 15] are derived using the extension problem introduced by
Caffarelli and Silverstre [16] and a Liouville theorem for the extended problem. A
main contribution in [12] is the introduction of an extension problem and the related
Liouville theorem for the extended problem for operators in the form of a sum of
fractional Laplacians. We shall adapt their ideas to introduce a suitable extension
problem for (1.1) and prove a generalized Liouvile type theorem (c.f. Theorem
2.11). The 1-d symmetry for the layer solutions of (1.1) can be deduced from the
energy estimates and the generalized Liouville theorem.

To prove the 1-d symmetry for stable solutions of (1.1), we adapt ideas from
[13, 27]. Under the additional assumptions that when F' is strictly monotone with
F’ bounded away from zero, we prove the equivalence between the stability of u
and the existence of a positive solution to the linearized equation of (1.1) at u (c.f.
proposition 3.1). From this, energy estimates and the generalized Liouville theorem,
we obtain the 1-d symmetry of stable solutions.

A different proof for the 1-d symmetry of stable solutions to Allen-Cahn equation
relies on the suitable BV estimates for stable solutions [11, 24, 29]. As a general-
ization of this method, we study the stable solutions of the following equation.

F'(u)(=A)°F(u) + G'(u) = 0. (1.13)
When n = 2 and F is strictly monotone with derivative bounded away from zero,
we can adapt the ideas in [11, 24, 29] to obtain suitable BV estimates for the stable
solutions of (1.13). From those estimates, we obtain the 1-d symmetry of stable
solutions of (1.13) when n = 2.

This paper is organized as follows. Section 2 discusses the 1-d symmetry of layer
solutions for (1.1) and section 3 is devoted to the 1-d symmetry of stable solutions
to (1.1) under the additional assumption that F is strictly monotone. In the last
section, we prove the 1-d symmetry for stable solutions of (1.13).

2. 1-d symmetry of layer solutions. In this section, we consider layer solutions
of (1.1). Our main theorem is the following.

Theorem 2.1. Assume that F € C? (R) satisfies F(0) = 0 and G € C3(R") s
a double well potential satisfying (1.2). Let uw € L™ (R™) be a layer solution of
(1.1) satisfying (—A)*F(u) € L®. Ifn =2 and s > 0 orn =3 and s > 3, then
u(z) =g (a-x) where a € R™ is a unit vector and ug is a layer solution of

—Au+ F'(u) (—A)° F(u) + G'(u) =0 in R.

A crucial step in proving the 1-d symmetry for layer solutions is to establish sharp
energy estimates in a ball of radius R > 2. Let Bp = {z € R" : |z| < R} . We shall
first prove an energy bound on J (u, Br) using the regularity results on solutions

o (1.1). Next we introduce an extension problem following the idea in [12]. Lastly
we derive a Liouville theorem for the extension problem, which, together with the
energy bound, would imply the 1-d symmetry for layer solutions of (1.1).
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2.1. Regularity. Let Ku = —Au + F'(u) (—A)° F(u). For Q C R", we call u a
solution to (1.1) in Q in the sense of distribution if

/Q [Vu -V + G (u)p] de
cn(s) (F(u)(z)=F(u)(y)) (F'(u)(x)p(@) = F'(u) (y)e(y))
M //ann\(vaQc)

|z —y|nt2s

dydzx

=0 (2.1)
for all p € C° ().

Our regularity result states the following.

Proposition 2.2. Let u € L>®(R"™) satisfies (1.1) in the sense of distribution and
(—=A)*F(u) € L>®(R"), then u € C*7 (R"™) and [ull g2 gny < C for some v >0
and C = C(n, s,F,G,v) is a constant depending only on n,s, F,G,~.

The proof of propositon 2.2 follows from the following propositions in [43].

Proposition 2.3. (Proposition 2.8 in [43]) Let w=(—A)u. Assume we C%*(R™)
and u € L (R™) for a € (0,1] and o > 0.
o Ifa+20 <1, then u € C%*T27 (R™). Moreover
[ullgo.arzo @ny < C (lull s + [[w]go.a)

for a constant C' depending only on n,a, 0.
o Ifa+20 > 1, then u € CHoT20=1(R") . Moreover

[ullgraszo—r@ny < C (lull g + llwllcos)
for a constant C' depending only on n,a, 0.

Proposition 2.4. (Proposition 2.9 in [43]) Let w=(—A)u. Assume w € L>*(R"™)
and v € L= (R™) for o > 0.

o If20 <1, then u € C%* (R") for any o < 20. Moreover
ullgo.a@mny < C (ull o + lwll o)

for a constant C depending only on n, a, 0.
o If20 > 1, then u € C* (R™) for any o < 20 — 1. Moreover

[ullgra@ny < C (Jull poo + [lw]] o)
for a constant C depending only on n,a,o.
Proof of proposition 2.2. Let v = (—A)®u. (2.1) can be written as
(~A)' o =w,w=—F'(u) (—A)® F(u) — G'(u). (2.2)
Since F € C% (R) and G € C3(R"™), by assumption on u, we have w € L>®(R"). If
s < %, apply Proposition 2.4 to (2.2), we have
[0l g1 @ny < C (vl e + lwllpee)
< C(vllpee + Mo [[(=A)° F(w)]| oo + Lo) (2.3)

for any § < 1 —2s, where My, Lo are upper bounds for ||F’(u)||re and ||G’(u)||re=
respectively and C' is a constant depending only on n, § and s. Fix §, apply propo-
sition 2.3 (see also classial Riesz potential estimates [32]) to v = (—A)® u, we have

[ullgo.svzs ey < C (lull oo + [0l cos) (2.4)
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and (since §/2 + 2s > 2s),
[0l < Cllullgo.s/ates s (2.5)
1(=2)° F(w)ll e < CIF@)gossaine < C (ullnsrara, + Mo)
Combining (2.3), (2.4) and (2.5), we have
[ull o, 5420 mny < C (lull oo + lullco.s/zres +1).
By interpolation inequality, we conclude
[ull o, st20mny < C (lull o +1),

where C' = C(n, s, My, Lo, 6) is a constant independent of u. This gives

1(=8) F@)llgos < IP@lce. sv2:ny < € ([0l co. 3420z + Mo) -

Therefore

—Au=—F'(u) (=A)’ F(u) — G'(u)
with w = —F'(u) (—A)® F(u) — G'(u) € C%. The C*? regularity and estimates for
u follows from standard Holder estimates for Laplace equation. s > % case can be
proved similarly. O

2.2. Energy bound. Let

(I)n,s (R) = {

we establish the following energy bound for layer solutions.

RV (RV"2 —1)(1-25)"" ifs# 1,
R 1lnR ifs:%.

Proposition 2.5. Let u € L (R™) be a layer solution of (1.1) with (—A)*F(u) €
L, then J (u, Bgr) < C®, s (R) for some constant C = C (n,s, F,G).

A main step in the proof of Proposition 2.5 is the following estimates on energy
difference.

Proposition 2.6. Let u be a layer solution of (1.8) which is monotone in the xy
direction. Definew : R™ = R by u (z1,2') = w(2') = limg, oo u (x1,2") . Then there
exists a constant C = C (n, s) such that

J (v, Br) —J (u,Br) < C®, , (R)
for all R > 2.

Proof. We consider the slided function u (z1,2’) = u (t + x1,2") . Direct calculation
via integration by parts shows

ij(u Bg) = (u', 0’y + G’ (u')oputdx
it B [,

= / [Ku' + G (u)] Opu'da
Br
F') (@) - Fu') () ,
+cn (5)/§dx/BR dy g Oru

F') (@) — F(u') () , 4
3)/de - dy opu’,

|l' _ y|n+2s

here we used Ku' + G'(u') = 0 everywhere in  in the last step.



LAYER AND STABLE SOLUTIONS 7

By Propositon 2.2, ||u’|| 52, < C for some constant C' indepedent of ¢. Recall that
u is monotone in x; direction, we have u’ — @ in Cp.7 (R") and |uf (z) — u (y)| <
Cmin {1, |z — y|}. Therefore

J (v, Bg) — J (u, Br)
:—A aJ(u BR)d

. [ Fh @) - Fah ),
= n()/ dt/cd BRdy O

|l‘ _ |n+23

< Cc, (s / dt/ dac/ mln{l |i+2§/|} oiu
C BR J—

:C’cn(s)/ dx dy mm{l |:1;+2:79;|}/ Ou'd
R Br -

|z
< Ocn (3) ull Lo (gny Pros (R) -

Here we used dyu’ = 9., u’ > 0 and estimate (claim 4.1 in [12])

min{l, |z —y
/L dx/B {_ 'n%'} < P, (R). 0

LE

Proof of Proposition 2.5. Proposition 2.5 follows immediately from Proposition 2.6
since w =1 and J (u, Br) = 0. O

2.3. Extension problem. Let Q) C ]R’frl be a relatively open Lipschitz domain
and QT =QN{A >0}, Q=0N{\=0}. Given any w defined on £, we consider
the energy functional

T ) = [ |5190f + 6w o+ Tw.0).

where J
I (w,Q) = ) [ yi-as |Vwl|* dzdX
2 Jay
with d(s) = % and w is the s—extension of F(w) to the upper half space R,
ie.
V- (AlfQSVw) =0 in R’frl,
w(x,0) = F(w) (z) on {A=0}.

We have the following estimates.

Lemma 2.7. Let u,v be such that J° (u,R™) < oo and J* (v,R") < 0o and u = v
outside B, let @, U be the s—extension of F(u) and F(v) to R respectively, then

I(u, R = J° (u,RY)

and
I(a,RTY) — T (3,RTY) = J° (u, Bg) — J° (v, Bg) .

Proof. We first assume u € C2° (R™), integrating by parts, we have

/ L) A2 |Vl ded
-

— _d(s) / AV (N2VE) —d(s) lim [ @ (e A) AN (2, \) da
Rn+1

A—=0t Jrn
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= / F(u) (=A)° F(u)dx
RTI,
" F —F 2
_ o (5) / / (F(u) (z) n+(;t) W) jray
2 Jen Jre =y
First conclusion follows. General case follows via approximation argument. Second
claim can be proved similarly. O

Next we derive energy estimates for J. We first quote the following estimates
from [12].

Lemma 2.8 (Lemma 5.7 [12], see also Proposition 4.6 in [13]). Assume that |w| <
Ci1 and |Vw| < Cq in R™. Then, for s € (0,1), the s-extension ws of w satisfies

|Ba] < C1 and V| < Cs (2.6)
in all Riﬂ, Moreover,

cCy
A

|Votbs| + [Oxts| < for A >0, (2.7)
where C depends only on n (and not on s).

Let
Cr={(z,N),|z] < R,0< A< R}
be the open cylinder in R?_H with height R in the A\ direction and bottom Br € R"”,
we have the following relation between I (@i, Cg) and J* (u, Bg).

Lemma 2.9. Let u € C*7 (R") with [ull g2v(mny < Co. Let u be the s—extension
of F(u) to Ri"'l, then for R > 2, we have
I(i,Cr) — J* (u, Br)| < CM3Co®,, . (R).
Here C is a constant depending only on n,s and Mo = ||F(u)||c1—cy,co]-
Proof. Since F' € C'(R) and [ull g2, (rny < Co, there exists Mo > 0 such that
|F(u) (2) = F(u) (y)| < Mo u(z) —u(y)l, [VF(u)] < Mo|Vul,

and
2l (,Cr) = [ d(s)\'"%|Va|® dzdA
Cr
R ~
:/ /d(s)AHSaS%deA (2.8)
OBRr J0 ov

+ / d(s)R* 2% (11407 ls ) x=pdT — / <lim d(s))\l_%ams> Usda
Br Br ANO

Apply bounds (2.6) and (2.7) from Lemma 2.8 to w = F(u) with C; = My,
Cy = MyCy, we obtain

R ~

on
d(s)A\25a,—2dSd\

/BBR/O ( ) ov

R
< d(s)MZCy|0Bg| / min{\' 725 A725d\} < CMZCo®,, o(R).
0

(2.9)

Here we used d(s)/(1 —s) < C for s € (0,1) in the last inequality.
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Similarly, we can bound the second term of (2.8) by

[ R @ onn s
Br

< C|Bgld(s)R*"*M3Co/R < CM{Co®,, 5(R).
To estimate the third term of (2.8), by the well known identity

enls) (u(x) — u(y)) (v(x) — v(y))
2 //]R xR\ (Q€ x Q) |z — y|nt2s

:/Q (@)(=A)*u(x)dz + e (s /Sde/d |x_y‘n+zs v()

which holds for any u,v € C?(R™), we have

C”T(‘S)JS(U,BR):/ F(u(z))(—A)*F(u(z))dz
— F(u(y))
+cn(s /C dx/BR y|”+29 F(u(z)).
Recall that

— ;1{‘% d(s)A 720 (2, \)Oniis (2, A) = F(u(z))(=A)*F(u(z)),

(2.10)

therefore
21 (,Cr) — 2J° (u, Bg)

= d( YAL25 |Vl dad\ — F(u) (=A)® F(u)dx
BR

“euto) [t [ T ELRW ) o

_ / / d(s)Al—%aﬁdeH d (s) B2 Tniil,_p da
OBRr Br

ov

- / lim d(s) \' 2% ud\udx — F(u) (—A)° F(u)dx
Br A—0+ Br

F(u) (z) = F(u) (y)
—cp (8) / ) dx - dy z— |n+23 F(u) (x)
/BBR/ s) AT 2” de/\—i—/BRd(s) R U0\, _p dx
—cn ( /( dx i dy )gi _) |,i(21z) (y)F(U) ().

From (2.9), (2.10) and
/C d:E/B |£(;:) ) F(u) (z)
min{1, |z — y|}

< C’MgCo/ dx dy

Br |z — y[n+2s

< CMZCy®, +(R),

we conclude the lemma. O
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Next we obtain the following energy estimate on 7 (i, Cg) .

Lemma 2.10. Let u be a layer solution in R™ of (1.1) and u is the s—extenson of
F(u) to R, Then J (u, @, Cr) < C®,, s (R), where C depends only onn,s, F,G.

Proof. Since
J(u,ﬂ, CR) — J(U,BR) = I(ﬂ,CR) - JS(U,BR),
the conclusion follows from Proposition 2.2, Proposition 2.5 and Lemma 2.9. O
2.4. Liouville type theorem and the 1-d symmetry of layer solutions. In
this section, we prove the following Liouville type theorem.
Theorem 2.11. Let o satisfy
—oV - (A1725p?Vo) <0 in R
o (z,0) =0o (x) on R" (2.11)
—gfz limy_o+ d(s) A~ 238>\0 —oV- ( QVQ) <0 onR"
where ¢ and p are continuous functions defined on RQL_‘H and R™ respectively and
p(z) = ¢(x,0). Assume A\'725¢?|Vo|? € LZOC(RTrl) and for R > 2,
d(s) [ A% (p0)® dedh + / (p*c)? de < CR2G (R) (2.12)
CR Br
for some constant C' independent of R and some nondecreasing function G : Ry —
Ry satisfying

= 1

E — = +o00.
+1

= G (27+1)

Then o is constant.

Proof. Since o satisfies (2.11), we have

V- (0’)\1_254,02v0') > >\1_25§02 |VO’|2 ]

Set
H(R):/ p2|Vg|2dx+/ d(s) \'=20? Vo |* dad).
BR CR
‘We have
/ p*|Val* dz =/ [V (2p*Va) —aV - (p°Va)] da
Br Br
_ 2 2
—/ ap®0d,0dS, —/ oV - (,0 Vg) dx (2.13)
BBR BR
<(/ (Up)2d5x> (/ pQIVo*zdSm) —/ aV-(p*Va) da,
OBRr OBRr Br
and
/ M=25,2 |Vo|* dadA (2.14)
< / - (A'T*0p? Vo) dudA

/ M=2600%0,0dS — / op? lim M 7%0\0dx
9+Cr Br A—0Tt
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g( / A”S(w)st) ( / )\125<p2(aua)2d5>
8+CR 6+CR

f/ op? lim \'"%*0yodz.
Br — A—0t

11

Here 07Cr = 0Cgr\ {\ =0} and v is the unit outer normal on 9*Cg. It follows
from (2.11), (2.13) and (2.14) that
H(R) < ( / <ap>2dsz) ( [ 7 |Va|2dsx)
(9BR aBR

+d(s) (/(%CR A% (o) dS) : (/{MR A=202(9,0)? dS) :
< (/WCR d(s) N7 (0p)* dS +/

OBR

(op)? dsw) :

' (/mcR d(s)\' 7% (9,0)" dS +/ ;

p*|Va|® dsx)

(f AN s [ (e as.

OBRr

-

< (H'(R))?

If H (R) > 0, then

[SIE

(/WCR d(5) N2 (o) dS +/

O0BR

—. 2.15
Assume o were not constant. Then there exists Ry > 0 such that H (R) > 0 for
all R > Rq. For ro > r1 > Ry, integrating (2.15) and applying Schwartz inequality,
we yield

(op)QdSm)_ < IR

[ ([t s

—1
(ap)? dSz> dR
OBRr

> o) ( (f AN o i+

dBR (ar) de) dR)
2 1-2s 2 2
> (rq —r1) </CT2\CT1 d(s) A (cp)”dS + /BTZ\BT1 (ap) d:zc) (2.16)

Let Ny be such that 2Vo > Ry. ry = 27+ | = 27 with j > Ny. Summing over j
from Ny to N, (2.12) and (2.16) imply

1 - 1
> — .
H(2%) = 1 XJ; G 2)
2

Let N — o0, a contradiction to the assumption

> 1
)
= G(2J+1)
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Proof of Theorem 2.1. Let u be a layer solution of (1.1) and u be the s—extension of
F(u) to R For i > 1, take 0% = a L ¢ = 01w and p = O1u. Then ¢ = F'(u)o1u

and o’ = a = on R". We will show o*, ¢, p, ¢, o' satisfy the assumptions of Theorem
2.11. Indeed we have

V- (A720?Ve') = V- (1a0;\' 2 VU — 9;u N2 Va)
=A% (0,Vau - 0,V — 0; Vi - 0, V)
+ 010V - (A'7FVa) — 0;u0 v - (M Va)
=0 in R}
For boundary flux, we have
—a'¢? lim d(s) N!0z (2.0) — 'V - (1 Vie)
— _ip?d(s) lim O (x,\) Oi)\l‘zsa,\ﬂ(x,/\N) - &-ﬂgat,)\) NAL=2505\1 (2, N)
- A—0+ (01 (x,N))
— o'V (01u0;Vu — 0;ud Vu)
' F'(u) (01u0; — 0;udy) (—A)° F(u) + o' (1ud; — diudy) (—Au)
= o' (01ud; — Qudy) [F'(u) (=A)° F(u)] + ¢ (01ud; — dudy) (—Au)
= o' (01ud; — Oyud,) G’ (u)
= o'G" (u) (Dyudiu — dudiu) = 0 on R™.

[
q@.

Moreover, by energy estimates when n =2, s >0 or 3, s > %7

d(s) A2 ((,00")2 dxd\ + / (pi)2 dx<J (u,u, BR) <C®, , (R)<CR*InR.

Cr Br

Since G (R) = In R satisfies
1
Jj=1 G2

We conclude from Theorem 2.11 that ¢ is equal to a constant a’ for 4 > 1. Therefore
Vu = (l,az) O1u when n = 2 and Vu = (l,az,a?’) O1u when n = 3, which is
equivalent to the 1-d symmetry of u. O

3. 1-d symmetry of stable solutions of (1.1). In this section, we study the
1-d symmetry of stable solutions of (1.1) under the additional assumption that
F € C3(R) is strictly monotone with F’ bounded away from zero. We first prove
the following proposition.

Proposition 3.1. Assuming F € C3(R) is a strictly monotone function with |F’| >
0o > 0 for some dyg. Then a solution u to (1.1)is stable iff the linearized equation
of (1.1) has a positive solution. Here v is a solution of the linearized equation of
(1.1) at uw if

—Av + F"(u)v(=A)°F(u) + F'(u)(—A)°[F'(u)v] + G"(uw)v =0 in R™.  (3.1)

Proof. Assume (3.1) has a positive solution v. Given any ¢ € CZ(R"), multiply %2
o (3.1), we get

0= /n |:—A’UU2 + F"(u)? (—A)* F(u)
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= [ [P ear@Eu +arwe]. (32)

When F'(u) > 0 or F'(u) < 0 for all u, we can bound the third term on the right
hand side of (3.2) by

/ n F’(u)(b—(—A)s(F’(u)v)d:c

s ()= F' () (o)) (P - Flenon )
- //]R”XR" |JJ y|n+28 dydx
0 // (F'(u >> EE@WI
nxRn y|n s
enls) W) (P | P
2L |xf \Ms ( o(2) v() )dydw
_ als) (F (u)(2)$(2))? — 2F(u) () F' (u) () ()b (v)
// [y dyde
6(1))?
//RWXR" \x = |n+23 ~—— 2 dydx (3.3)
- / F' () g(~A)* (F'(u)6)da,
R’IL

together with integration by parts of the first term in (3.2), we conclude

Hess(u)(0,0) = | [IV6 +G"(0)o] da
+ / [P @)(-A) Fu) + F(w)6(~A) (F (w)9)] dr
[ fean® ‘¢>
2
<[ [F”(W(A)S (W) + P/ (-8 F(uw)] do

>/? 2
o

> dx > 0.

2

Vv —-Vo¢

+ G”(u)qﬁﬂ dx

Vv —-Vo¢

Conversely, assume u is a stable solution on (1.1). Let

h(z) = F"(u(x))(=A) F(u) + G"(u()).
For every R > 0, let Ag be the infimum of the quadratic form

Qn(©) = [ 5 1V8@)P + )¢ (@)] do

enls) (F'(u(x))E(z) — F'(u(y))E(y))? .
T //Rann\BRng |z — y[nt2s dyd.

among functions in the class

AR:{geHg(BR): : 52:1}.
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By stability assumption, we conclude that A > 0 for each R and is a nonincreas-
ing function of R. Since h(zx) is a bounded function, the functional Qg is bounded
from below in the class Ar and any minimizing sequence {&;} has {|V&,} uniformly
bounded in L?(Bg). By compact embedding of H}(Bg) CC L?(Bgr), we conclude
that the infimum of Qg is achieved by a function ¢p € Agr. Moreover, we can
take ¢r > 0 since |@pg| is a minimizer when ¢p is a minimizer from the following
inequalities:

| IveE@P + h@g@?) o= [ [Vl + o) @)?] de,
Br Br
and

(F'(u(@))€(@) = F'(w@)EW)” > (F' (@))€ (@) - F'(uly) €] @)*
when F' is monotone.
Note ¢r > 0 is a solution, not identically zero, of

{ Lor = —A¢r + h(x)pr + F'(u)(=A)* (F'(u)pr) = Arér  on Bg,
¢r=0 on 0BpR.

We claim that ¢z > 0 on Bg. In fact, let

9(x) = (h(z) = Ar)¢r + F'(u)(=A)*(F'(u)dr)),
since F'(u)¢r € Wy?(Bgr), we have F'(u)(—A)*(F'(u)¢r)) € W'=252(Bg), thus
g(z) € L?(Br) when 0 < s < 1/2 and g(z) € W'=2%2(Bg) when s > 1/2. From
standard elliptic estimates and iteration, we conclude ¢r € C?* for some y > 0.
Assuming F’ > 0, if ¢r(xo) = 0 for some zy € Bg, we must have —A¢r(zg) < 0
and

which leads to
Lér(zo) — Ardr(z0)
= —A¢r(x0) + d(x0)pr(x0) + F'(u)(=A)° (F'(u)¢r) (x0) — Ar¢r(z0) <0,

a contradiction. F’ < 0 case can be proved similarly.
Next we prove that A\p is decreasing in R. Indeed, assume there exists Ry < Ro
such that A, = Ag,. Multiply ¢r, to

Lor, — Ar,¢r, =0

and integrate by parts, we have

0= /B [Vor,|* + (h(x) = Ar,) Ok, + F'()dr, (—A)*(F'(u)dr,)- (3.4)

2
Multiply 22 to
Ld)RQ - )\R2¢R2 = 07

and integrate by parts, we obtain

¢ 2
0= [~ [SmT0n, - on| +1V0r P + (he) - A
Bpg, ¢R2
1O
F 1
+ . (u) oy

(—=A)*(F'(u)dr,)- (3.5)
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When F' is monotone, following the same calculation in (3.3), we get
7 5
/ F'(U)f(—A)S(F'(UWRz) < Fl(u)pr,(=8)*(F'(u)¢r,).  (3.6)
Br, Ro Br,
Since Ag, = Ag, and ¢g, # @r,, (3.5) and (3.6) yield

/B IVor, > + (h(z) = Ar,) 0k, + F'(w)dr, (—A)*(F'(w)dr,) > 0,

contradiction to (3.4).
Next, using Ag > 0, we obtain

Qr(6) = / V€ + h(@)€ + F/(un)e(— AP (F'(w)e) > Ap | €

Br Br
> _6R d(]?)fQ
Br
for all ¢ € H(Bgr) and dr chosen such that 0 < dg < Ag/||d||r~. From this, we
deduce that

or 5
Q) > 7% [ 1 (37)

for all £ € H}(Bg).
For every given constant C'r > 0, consider the functional

Qr(€) = Qr(e) + /B crh(z)€

for ¢ € HY(Bg). (3.7) implies Qr is bounded below and coercive. The existence
of a minimizer ¢¥r € H}(Bgr) of Qg then follows from the compact embedding
H}(Br) cc L*(Bg). Moreover, following the same proof as ¢, we conclude that
Yr € C?V for some v > 0. Setting @r = g + cr, then @g is a solution of
—A¢g+h(z)or + F'(u)(—A)*(F'(u)pr) =0 in Bg,
(3.8)
QR = CR on 8BR

Next, we claim that @ > 0 in Bg. By assumption, the negative part ¢ of @r
vanises on 0Bgr. Multiplying @}, to (3.8) and integrating by parts, we obtain

0=Qrlop)+ | F'(u)@(=A)*(F'(u) o). (3.9)
R
Since F' is monotone, direct calculation using the integral expression (1.3) for (—A)®

gives
/B F(u)@i(—A) (F'(u) @) > 0,

thus Qr(9@g) < 0 by (3.9). On the other hand, since u is a stable solution, we have
Qr(9®g) = 0. Therefore Qr(9y) = 0. By definition of the first eigenvalue Ar and
the fact that Ag > 0, this implies that ¢ =0, i.e. o > 0in Bg.

Picking cg > 0 in (3.8) so that @g(0,0) = 1. Let (g = F'(u)@gr, then (g
satisfyies

1 s -~
V. (WVCR> +g@)Cr + (~A)Cr =0,

where
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Apply Harnack inequality to (g [5], we have

sup dp@s < sup(s < Cg for S > 4R.

R Br

Standard elliptic estimates and Sobolev embedding theorem give uniform C?(Bg /2)
bound on @g. Thus a subsequence converges locally to a positive solution ¢. [

As a direct corollary of Proposition 3.1, we conclude that a layer solution of (1.1)
is a stable solution when F' is monotone.

Corollary 3.2. If F € C3(R) is a strictly monotone function with F' bounded away
from zero, then any layer solution of (1.1) is a stable solution.

Proof. Let u be a layer solution of (1.1), then u,, is a positive solution of (3.1),
conclusion follows from Proposition 3.1. O

Theorem 3.3. If F € C3(R) is a strictly monotone function with F' bounded away
from zero and u € C*(R?)NL>(R?) is a stable solution to (1.1) in R?, then u is
1-d.

Proof. Assume u is a stable solution of (1.1) and ¢ is a positive solution to the
linearlized equation (3.1). Let #° be the s—extension of F’(u)u,, to R and ¢ be
the s—extension of F'(u)¢ to R, Set of = %, ¢ =¢and p = ¢, then p=F'(u)p

and o' = “21 on R". We show that o, ¢, p, ¢, o® satisfy the assumptions of Theorem
2.11. Indeed,
V. (A282V0l) = VAT (GVE — V)
= ¢V - (A17VE) — 'V - ATV
=0in R},
and

—0'd" lim_d(s)\ 2050 (3, )) — 0'Vs - (0 Vo)

=gt 32 lim d(s) /\1_28(8/\{}?& — ﬁia}‘@
— A—07t ¢2

= g [F'(u)¢(=A)" (F' (u)ug,) — F'(u)ug, (=) (F'(u))] — o' [pAuq, — g, Ad)]

= 0" [ph(x)ug, — U, h(x)¢] = 0 on R™.

Moreover, let 1 be a cut off function which is supported in By and equals to 1 on
Bgr. Multiplying un? to (1.1) and integrating by parts, we obtain

/ |Vul?n?dz
Bar

<C U2|V77|2d96+|/ G'(u)un?| + | F'(u)un?(=A)*F(u))|
B2r\Br Bar Bar

< CR2.

We conclude from theorem 2.11 that o is equal to a constant a’. Therefore u is
1-d. O
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4. 1-d symmetry of stable solutions of (1.13). In this section, we prove the 1-d
symmetry of stable solutions of (1.13), which is (1.1) without the Laplace term. We

shall use a different approach here, mainly following ideas from [11, 24, 29] to obtain
suitable BV estimates for stable solutions. We introduce the following notations.

2
wor= [ ) —u)
Rr xR\ (QexQe) [T — Y[
and

0 Q) — W+ 28) |Fu(@) = Flu@)l®
I 7Q)i/QG( Jdo + 2 //]R"XJR"\(QCXQC) |z — y|rt2s dd

- Jl(u,Q)+C”T(S)JS(u,Q).

Fix a unit vector v € R", following [11, 24, 29], we construct suitable variations
of energy with respect to v as follows. Let R > 1 and

Yy (x) =z +tr(z)v,

where
1, lz| < g
T(@)=4¢ 22 B <y <R (4.1)
0, |z| > R.

For |t| small, ¢, v is a Lipschitz diffeomorphism and we define
P yu(z) :==u (1/11‘_7&(:17)) .
Then P, yu(zx) := u(wt_i(x)) = u(x —tv) for z € By, and [t| small. Following the
notations in [29] (see also [8, 24]), we define the second variation operator A! with
respect to v on any functional F as
AL F(u, Q) = F(Pyyu, Q) + F(P_y yu, Q) — 2F (u, Q).
We first quote the following Lemma from [29)].

Lemma 4.1 (Lemma 3.2 from [29], see also Lemma 4.3 from [8] and Lemma 2.1
from [24]). There exists a universal constant C(n,s) such that

J*(u, Bgr)
R?,

Following the same proof of the above lemma, we can get the following estimates
on the second variations of fractional energy for

Af/vjs(uwBR) < C(n7 S) VR > 1.

Lemma 4.2. Given any F with |F'| < My, we have

B
AYyL(u, Br) = ALYy J* (u, Br) < C(n, S)MQ%

Proof. Let 1 be a smooth vector field supported in Bg, we consider the map

Fy() =z + tn(a),

VR > 1.

and set
Pou(x) := u(F;(2)).
We use B to denote R x R™\(Bg x Bg) and estimate
A'J*(u, BR) := J*(Pyu, Br) + J*(P_u, Br) — 2J°(u, Br).
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Direct calculation shows
AtJS(U,BR)
=[] 1)) = PP (5 +tel2D T Fa) TFi)
+ K(z —telz|) JF_i(x) JF_¢(y) — 2K (2)] dydx

<03 [[ o)~ w)P K+ elD IR IE )
LK z—Rts|z|>JF (VTP o) — 2K (2)] dyda
= M AT, Br) < MEC(,5) [ Vl[2 e (3 K ()1
Here z =z —y, K(2) = IZI"%’ e(z,y) := %
JF(x) = 1+ tdivy(x) + A(n(x))t*

with A(n) = w. The last step follows from estimates in Lemma 3.2 [29]
and

and

[F(u(z)) = F(u(y))| < Mo|u(z) — u(y)].
Choosing n = 7v where 7(z) is defined by (4.1) and observing

Al JY(u, Bg) =0,
the conclusion follows. O

Lemma 4.3 (Lemma 2.2 [29]). Assume |u| < 1 and ||Vul|p=p,) < Lo, where
Lo > 2, then for s € [1/2 1)

(y)|?
/131 /13‘1 \;1:7 |n+2s o aias drdy

< 17$|S"_1\L0|25_1 ((2 —2s)log(2Lo) + 1)/ |Vu(z)|dx
_ B

= C(n, S)Lgsfllog(Lo)/ |Vu(z)|de.
By

Lemma 4.4 (Lemma 1.8 [29]). For any ball Bg C R™ and u which belongs to
appropriate space with |u| < 1, and let s € (0,3), there ezists universal constant
C =C(n,s) >0 such that for any R > 1,

J*(u,Bg) < C (/ |Vu|dr + R"™% + R”) .
Bar

If% < s <1 and u is assumed to be a Lipschitz function with ||Vul|p=p,) < Lo,
Lo > 2. then there exists C = C(n,s) > 0 such that

J*(u,Bg) < C (R”Qs + L2t log(2L0R)/ |Vu> )
Bar
When F is monotone, we have the following counterparts of Lemma 3.3 and
Remark 3.4 in [29].

Lemma 4.5. Let Q C R™. Assume F(u) is monotone function in u. For any
functions u,v in appropriate space, let u A v = max{u,v}, v Vv := min{u, v}, we
have the following identity

I (u, Q) + (v, Q) = T (uAv,Q) — T (uVo,Q)
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- / / (F(v) — F(w)+ (2)(F(v) — F(w)_ () K (z — y)dydz,
R™ xR™\ (Q2¢x°)
where K(z) = Wﬁ, (F(v) = F(uw)y = (F(u) — F(v)) V0 and (F(v) — F(u))- =
(F(u) — F(v)) AO.

Proof. Set
A:={zeR":v(z) > u(z)}
and B
Q:=R" x R™"\(02° x Q°).
Direct calculation gives
T (u, Q)+ I (v,Q) = TP (uAv,Q) — J*(uVv,Q)

-/ /(Awm (IF(u(@)) ~ Flu@)? ~ |F(u(z)) — F)]?) Kz - y)dyde
+ / /( o UF6() = O = [F(0)) ~ PG K~ v
! //(ACXA)OQ (17 (u(@)) = Flu@)l® = [F(v(@)) = F(u(y)]") K(@ - y)dydz
! //<A) (IF (@) = P(o()? = [F(u(x)) = F(o(y))|?) K (= - y)dyda

_ 2//WAC)mQ (F(u(z)) — F(u(@))) (F(u(y)) — Fo())) K (z — y)dydz
+2 / /( g (PO = FOGD) (Foty) ~ Plu0) Ko~ iy

-2/ (F(v) ~ F(w) (a)(F(v) ~ F(w)-(4) K (« — y)dyd,
R xXR™\ (¢ xQ°)
where we used the monotonicity of F' in the last step. O

Remark 4.6. The above lemma implies
I (u, Q) + I (0, Q) > T (uAv, Q)+ J*(uVo,Q)
if F'is a montone function and “=" holds only if either v < u or u < v in .
We can prove the following lemma.

Lemma 4.7. Let F' be a monotone function with |[F'| > a > 0. If u is a stable
solution to (1.13), then there exists a universal constant C = C(n,s) such that for

any R>1,
C S
(/Bl/z(f)vu(y)ﬁ) (/Bl/z(avu(y))—> < 73/ (u. Br). (4.2)

/B Vu(z)|dz < C (1 + /T, BR)) . (4.3)
1/2

Proof. We follow the proof of Lemma 3.6 in [29]. Let u = max{P,yu,u}, u =
min{P; yu,u}. According to Lemma 4.5 and Remark 4.6, we have

J*(u, Br) + J*(u, Br)

and
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f [ e Plu(a)), (Pluly = t¥) = Plulw)_,
By /Bi)s |z — y|n—2s
< J*(Pivu,Br) + J*(u, Br).
Since |z — y| < 1 when 2,y € By, and
JY (P yu, Bg) + J'(u, Br) = J'(4, Br) + J'(u, Bg),
we have
L(u, Br) + L(u, Br) (4.4)

v202 [ [l v) = u(o) (uly — ) — uly) dydo
B2 Y Bi/2

< L(Pt v, BR +L(u BR)

Adding L(P-;vu,Br) — 3L(u, Br) to both sides of (4.4) and using the stability
condition of 4 and Lemma 4.2, we have

202 /131/2 /131/2 u(z —tv) —u(x )) (uly — tv) — u(y))_ dyda

%)+ AL L(u, Bp) < Ct*J*(u, Bg)/R?.
Dividing t2 on both sides and pass to the limit as t — 0, (4.2) follows. (4.3) can be
derived from (4.4) by the same proof in Lemma 3.6 [29]. O

The following BV and energy estimates for stable solutions of (1.13) can be
proved by following the proof of Proposition 1.7 in [29].

Proposition 4.8. Let |F'| < My and u € C*(R™) be a stable solution to (1.13)
in R™ with |u| < 1, then there exists constants C1 = Ci(n,s, My) and Cy =
Cy(n, G, My, s) such that for any ball B C R™, R > 1, we have

C1R"! 0<s<3
/;R|vu|g{ CQRn+2sf2 %§S<1

and )
CyR"—2 0
s <
J*(u, Br) { CoR" 2 210g*(KoR) 3

where Ko > 2 is an upper bound for ||G||L .

Proof. Since
J*(u, Br) < M3J*(u, Br),
Lemma 4.7 yields

/B |Vu(z)|de < C(n, My, s) (1 + m) .
1/2

We can then repeat the proof of Proposition 1.7 in [29] line by line to finish the
proof. O

As a direct corollary of Lemma 4.7 and Proposition 4.8, we can prove the following
theorem.

Theorem 4.9. If F € C3(R) is a strictly monotone function with F' bounded away
from zero and u € C*(R?) is a stable solution to (1.13) in R? and |u| < 1, then u
is 1-d.
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Proof. Letting R — oo in (4.2), by Proposition 4.8, we have

/ (Bvuly))s / (Bvuly))_ | = 0. (4.5)
B2 B2

Hence u is monotone in By /5 along direction v. Since (4.5) holds for any v and any
half ball, we conclude u is 1-d by continuity of w. O
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