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Abstract. We consider solutions of the repulsive Vlasov—Poisson system which are a combina-
tion of a point charge and a small gas, i.e., measures of the form 8¢5 (), v(1)) + w2dxdv for some
(X,V):R — R and a small gas distribution z: R — L,%,v, and study asymptotic dynamics in the
associated initial value problem. If initially suitable moments on g = (¢t = 0) are small, we obtain
a global solution of the above form, and the electric field generated by the gas distribution p decays
at an almost optimal rate. Assuming in addition boundedness of suitable derivatives of ji¢, the elec-
tric field decays at an optimal rate, and we derive modified scattering dynamics for the motion of the
point charge and the gas distribution. Our proof makes crucial use of the Hamiltonian structure. The
linearized system is transport by the Kepler ODE, which we integrate exactly through an asymp-
totic action-angle transformation. Thanks to a precise understanding of the associated kinematics,
moment and derivative control is achieved via a bootstrap analysis that relies on the decay of the
electric field associated to w. The asymptotic behavior can then be deduced from the properties of
Poisson brackets in asymptotic action coordinates.

Keywords: kinetic equations, Vlasov—Poisson, plasma physics, modified scattering, two-body
problem, action-angle variables.
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1. Introduction

This article is devoted to the study of the time evolution and asymptotic behavior of
a three-dimensional collisionless gas of charged particles (i.e., a plasma) that interacts
with a point charge. Under suitable assumptions, a statistical description of such a sys-
tem is given via a measure M on R2 x R3 that models the charge distribution, which is
transported by the long-range electrostatic (Coulomb) force field generated by M itself,
resulting in the Vlasov—Poisson system

M + divgy(MB) =0, B =v-Vy+ Vaar - V. Axipps = [ Mdv. (1.1
R}

The Dirac mass M.q = §(0,0) (X, v) is a formal stationary solution of (1.1), and we propose
to investigate its stability. We thus consider solutions of the form'

M(t) = qc8(%). vy (X, V) + g (x, v, 1) dxd v,

representing a small, smooth charge distribution y?dxd v (with mass-per-particle m ¢ >0
and charge-per-particle g, > 0) coupled with a point charge located at

(X,V): R, > R3xR3

'Here the initial continuous particle distribution function fy = ,u% is assumed to be non-
negative, a condition which is then propagated by the flow and allows us to work with functions p
in an L2 framework rather than a general non-negative function f in L1 — see also the previous
work [28] for more on this.
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(of mass M, > 0 and charge g, > 0). Equations (1.1) then take the form

qg x—X .
aXx % ’
Axp =0 = 2dv, —— =7V, — =QV%p(X,1),
x$ =0 Aéu V. — T x¢ (X, 1)
2
for positive constants g = zﬁé’f;i -, 0= efri -, Q= Zjﬁ,‘( This system couples a sin-

gular, nonlinear transport (Vlasov) equation for the continuous charge distribution u? to
an equation for the trajectory of the point mass (X, V) via their electrostatic Coulomb
interaction through a Poisson equation.

Remark 1.1. (1) The physically relevant setting for these equations relates to electron
dynamics in a plasma, when magnetic effects are neglected. In this context, our sign con-
ventions correspond to a non-negative distribution function of a negatively charged gas.
In this spirit, we will denote the electric field of the gas by & = V¢, a slightly unconven-
tional choice that allows us to save some minus signs in the formulas.

(2) The crucial qualitative feature of the forces in (1.2) is the repulsive nature of inter-
actions between the gas and the point charge, i.e., the fact that ¢ > 0. Our analysis can also
accommodate the setting where the gas-gas interactions are attractive. This corresponds
to replacing Q > 0 by —Q < 0in (1.2), so that (up to minor algebraic modifications) these
two cases can be treated the same way. We shall henceforth focus on (1.2) with Q > 0,
as above. (We refer to the discussion of future perspectives below in Section 1.4 for some
comments regarding the attractive case.)

1.1. Main result

Our main result concerns (1.2) with sufficiently small and localized initial charge distri-
butions po. We establish the existence and uniqueness of global, strong solutions and we
describe their asymptotic behavior as a modified scattering dynamic. While our full result
can be most adequately stated in more adapted “action-angle” variables (see Theorem 1.8
below), for the sake of readability we begin here by giving a (weaker, slightly informal)
version in standard Cartesian coordinates.

Theorem 1.2. Given any (Xo, Vo) € R x R? and any initial data po € CH((R3\
{X0}) x R?), there exists ex > 0 such that for any 0 < & < &, there exists a unique
global strong solution of (1.2) with initial data

(X = 0),V(t =0) = (X0, Vo),  p(x, V.1 = 0) = spz0(x, V).

Moreover, the electric field decays pointwise at the optimal rate, and there exist a modified
point charge trajectory, an asymptotic profile jloo € LZ((R3 \ {0}) x R3) and a La-
grangian map (Y, W):R3 x R3 x R} — R3 x R3 along which the particle distribution
converges pointwise

w(Y(X,v, 1), WX,v,1),t) = Uoo(X,V), ¢ — 00.
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Remark 1.3. (1) Our main theorem is in fact much more precise and requires fewer
assumptions, but is better stated in adapted “action-angle” variables. We refer to Theo-
rem 1.8. In particular, we allow initial particle distributions with positive measure in any
ball around the charge (Xo, Vo) and with noncompact support supp(io) = R3 x R3.

(2) Under the weaker assumption that (o € CC0 , we still obtain in Proposition 1.7
a global solution with almost optimal decay of the electric field.

(3) The charge trajectory and the Lagrangian map can be expressed in terms of the
asymptotic “electric field profile” &°°, the asymptotic charge velocity Vo, and the asymp-
totic charge position shift X. As ¢ — 400, we have that

X (1) = Xoo + Voo — @In(1)EX(0) + O(t~1/19),

Q
V() = Voo = —€%(0) + 010,
1 ¢ ta3 q? 2 4a
Y(X, V,[) = (at — Ea—21n<7)> . m(al{ + q_ZL X R)

- 1n(f)Q8°°(a) + Vool + O(1),
q

Wev.n) =a(l- 21 ¢ (2R+4aLxR)+'V + 0(n(n)r2)
X,V, =a — . - " n ,
2ta3/) 4a2L2 +q2\q PE o
where we used the following abbreviations to allow for more compact formulas:

=P+ L L=xxv, L=|L], R=vxL+21X
x| 2 |x]

and a is defined in (2.7) below (these quantities are conservation laws for the linearized
problem associated to (1.2)).

In the dynamics of the point charge, the term @ In(¢)&°°(0) (resp. %8 %°(0)) corre-
sponds to a nonlinear modification of a free trajectory with velocity V. In addition, the
first term in the expansion of Y (involving the factor at) derives from conservation of the
energy along trajectories, the second term (involving a first logarithmic correction ln(§))
is a feature of the linear trajectories. The term ¢V, reflects a centering around the position
of the point charge, and the remaining logarithmic term is a nonlinear correction to the
position. This can be compared with the asymptotic behavior close to vacuum in [28,48]
by setting ¢ = Q = @ = 0 and ignoring the motion of the point charge.

(4) It would be interesting to track the dependence of ¢, on the various physical
parameters (Q, @ and q). Although we keep ¢ in Section 2, partly as a way to track down
the homogeneity of the formulas, we have chosen to not pursue this in later sections in
order not to overburden the presentation of the ideas and methods involved in the proof of
Theorem 1.2.

1.1.1. Prior work. In the absence of a point charge, the Vlasov—Poisson system has been
extensively studied and the corresponding literature is too vast to be surveyed here appro-
priately. We focus instead on the case of three spatial and three velocity dimensions, which
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is of particular physical relevance. Here we refer to classical works [2, 19,37,52,54] for
references on global well-posedness and dispersion analysis, to [11, 17,28,48] for more
recent results describing the asymptotic behavior (see also [6,49] for recent, related results
in the Vlasov—Maxwell setting), to [18, 53] for book references and to [3] for a historical
review.

The presence of a point charge introduces singular force fields and significantly com-
plicates the analysis. Nevertheless, when the gas-point charge interaction is repulsive,
global existence and uniqueness of strong solutions when the support of the density is
separated from the point charge has been established in [40], see also [8] and references
therein. Global existence of weak solutions for more general support was then proved
in [13] with subsequent improvements in [35,36,44], and a construction of “Lagrangian
solutions” in [12]. For attractive interactions, strong well-posedness remains open, even
locally in time, but global weak solutions have been constructed [9, 10]. Concentration,
creation of a point charge and subsequent lack of uniqueness were studied in a related sys-
tem for ions in dimension one, see [39,57]. To the best of our knowledge, the only work
concerning the asymptotic behavior of such solutions is the recent [50], which studies the
repulsive, radial case using a precursor to the asymptotic action method we develop here.

The existence and stability of other (smooth) equilibriums has been considered for the
Vlasov—Poisson system, most notably in connection to Landau damping near a homoge-
neous background in the confined or screened case [ 1,4, 15,24,47], with recent progress
also in the unconfined setting [5, 25, 29, 30]. In the case of attractive interactions or
in the presence of several species, there are many more equilibriums and a good final
state conjecture seems beyond the scope of the current theory. However, there have been
many outstanding works on the linear and orbital (in-)stability of nontrivial equilibria
[20,21,33,34,46,51]. We further highlight [14,20,22,23] which use action-angle coor-
dinates to solve efficiently an elliptic equation in order to understand the spectrum of the
linearized operator.

Finally, we note that the recent work [26] studies the interaction of a fast point charge
with a homogeneous background satisfying a Penrose condition, for a variant of (1.2) with
a screened potential (see also the related [1] on Debye screening). Towards the dynamics
near attractive charges, we also note the recent works [55, 56], which study small data
dynamics in the presence of a harmonic potential and stationary states for given fixed
background charges, respectively. We also refer to [27] which addresses the stability of
a Dirac mass in the context of the two-dimensional Euler equation.

1.2. The method of asymptotic action

We describe now our approach to the study of asymptotic dynamics in (1.2), which is
guided by their Hamiltonian structure.’

2We refer the reader to the recent work [42] for a derivation of this Hamiltonian structure from
the underlying classical many-body problem.
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Brief overview. We first study the linearized problem, i.e., the setting without nonlinear
self-interactions of the gas (i.e., we ignore the contributions of ¢). There the point charge
moves freely along a straight line, while the gas distribution is still subject to the elec-
trostatic field generated by the point charge and thus solves a singular transport equation
which can be integrated explicitly through a canonical change of coordinates to suitable
action-angle variables. Upon appropriate choice of unknown y in these variables, we can
thus reduce to the study of a purely nonlinear equation, given in terms of the electrostatic
potential ¢. This potential and the derived electric field can be conveniently expressed
(thanks to the canonical nature of the change of coordinates) as integrals of y over phase
space, and we study their boundedness properties. In particular, assuming moments and
derivatives on y, we establish that electrical functions decay pointwise. With this, we show
how to propagate such moments and derivatives, relying heavily on the Poisson bracket
structure. Finally, this reveals the asymptotic behavior through an asymptotic shear equa-
tion that builds on a phase mixing property of asymptotic actions.

Next we present our method in more detail. It is instructive to first consider the
case where the point charge is stationary, i.e., that (X (¢), V(¢)) = (0,0) in a suitable
coordinate frame. This happens naturally, e.g., if (X(0), V(0)) = (0, 0) and the initial
distribution is symmetric with respect to three coordinate planes, which is already a non-
trivial case. In practice, (1.2) then reduces to an equation for the gas distribution alone,
which (starting from its Liouville equation reformulation) can be recast in Hamiltonian
form as 1

dep —{H,u} =0, H= EHZ — Hi,
(1.3)

Ha(x, v) := |v[? + fg Ha(x,v.1) 1= Q$(x.1),

where the Poisson bracket for functions defined on the corresponding phase space % y is
given by

(flgy=Vf -Vig—Vof -Vig, Poyvi={xv)eR>*xR?: x| > 0}.

This simplified setting facilitates the presentation of the main aspects of the quantitative
analysis of the gas distribution dynamics. We will subsequently explain the (numerous)
modifications needed to incorporate the point charge motion in Section 1.3.

1.2.1. Linearized equation and asymptotic actions. We start by considering the lineariza-
tion of (1.3),
20,0 — {Hpo pt} = 0. Ha(xv) = [v]* + |%| (14)

This is nothing but transport along the characteristics of the well-known repulsive two-
body system,

.49 X
V= EW
which is, in particular, completely integrable. Due to the repulsive nature of (1.5), its
trajectories are hyperbolas (and thus open), with well-defined asymptotic velocities.

X=v,

(1.5)
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Our first main result is the construction of asymptotic action-angle variables which
provide adapted, canonical coordinates for the phase space. We denote the phase space in
these angles ¥ and actions a by

Poa =1 a) e R3xR?: |a] > 0}
and have the following statement.

Proposition 1.4. There exists a smooth diffeomorphism T : Py y— Py », given by (X,v) —
(O(x, V), A(x, V) with inverse (¥, a) — (X(3, a), V(3, a)), which

(1) is canonical, i.e.,
dxANdv=dO Adnh, (1.6)

(2) is compatible with conservation of energy and angular momentum
H(x,v) = |A|2, XXV=0 X,
(3) linearizes the flow of (1.5) in the sense that (x(t),v(t)) solves (1.5) if and only if

Ox(1), v(1)) = B(x(0), v(0)) + 1A(x(0), v(0)),
Ax(1). v(1)) = Ax(0),v(0)),

(4) satisfies the “asymptotic action property”

1.7)

|X(¢ + ta,a) —ta| = o(¢), |V(¥ +ta,a)—a|=0(1) ast— +oo. (1.8)

The asymptotic action property (4) will be crucial to the asymptotic analysis. In short,
it ensures that a parameterizes the trajectories that stay at a bounded distance from each
other’ as t — oo and connects in an effective way the trajectories of (1.5) to those of the
free streaming X = 0. Put differently, different trajectories of (1.5) asymptotically diverge
linearly with time and their difference in a, a property sometimes referred to as “shearing”
or “phase mixing”.

General dynamical systems are not, of course, completely integrable, and when they
are, there are many different action-angle coordinates. Here the asymprotic action prop-
erty fixes the actions and helps restrict the set of choices. Besides, since the actions are
defined in a natural way (as asymptotic velocities, see (1.8)), one can aim to find T
through a generating function S (x, a) by solving the following scattering problem.

Scattering problem (See Figure 1). Given an asymptotic velocity Vo, =: a € R3 and
a location xo € R3, find (if they exist) the trajectories (x(¢), v(¢)) through xo with asymp-
totic velocity a.

Once such a trajectory has been found, one can define B (x, a) as the velocity along the
trajectory at X, and look for a putative § such that B (x,a) = VS. By classical arguments

3This is a similar idea to the Gromov boundary, see also [38] where this is developed for the
Jacobi—-Maupertuis metric.
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Fig. 1. The scattering problem: Given a point X¢ and asymptotic velocity Voo, how to determine
trajectories (one possibility dashed in blue) through x¢ with asymptotic velocity veo?

(see, e.g., [41, Chapter 8]), setting ¢ := V.S then yields a (local) canonical change of
variables.

‘We note that there are two related difficulties with this approach in the present context,
namely,

(i) that given a, there are points X through which no trajectory as above passes, and

(i) when the scattering problem can be solved, there are in general two different trajec-
tories (and thus two different “velocity” maps B (x, a)) through a given point Xg.

In fact, the set of trajectories with a given asymptotic velocity has a fold.* Once we iden-
tify the correct projection (in phase space) of this fold, we are able to define a smooth
gluing of the functions B to obtain a globally smooth choice of generating function §.

Remark 1.5. (1) In the present setting, we find a generating function by calculating
trajectories. It is interesting to note that a reverse approach, solving Hamilton—Jacobi
equations to obtain trajectories through a point with prescribed asymptotic velocity, has
been used to construct families of asymptotically diverging trajectories in the more gen-
eral N-body problem [38].

(2) We note that a common way to obtain a generating function is by solving a Hamil-
ton—Jacobi equation H(x, V4S8 (X, a)) = const. Here we recover families of solutions and
observe that these solutions develop a singularity in finite time, so that the full generating
function is obtained by gluing two such solutions along each trajectory.

The action-angle property (1.7) allows us to conjugate the linearized equation (1.4) to
the free streaming for the image particle distribution jz := o 771, i.e.,

(9 +a-Vo)u =0, (O, V), AKX, V), 1) = (X, V,1),

4One can think of the set of trajectories associated to a given a and angular momentum direc-
tion % as a (planar) sheet of paper R2, flatly folded over a curve T (the fold), so that away from T’
every point X corresponds to either 0 or 2 trajectories, depending on the side of the fold.
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which can then be easily integrated to give d,(i o ®;'!) = 0, where

@, (¢}, a) = (U —ta,a). (1.9)

1.2.2. Choice of nonlinear unknown. We next integrate explicitly the linear flow as above
and introduce the nonlinear unknown y := uo 71 o @71,

y(ta,t) = un(X(J + ta,a), V(I + ra,a), 1),

(1.10)
nX, v, 1) = y(O(X,v) — tAX, V), AX,V),1),
which satisfies a purely nonlinear equation
3y +{Hs,y} =0, Hy:=0v(X.,1), X a)=X(®® +ra,a). (1.11)

Equation (1.11) involves the electric potential ¥ through the electric field & = Vi, both
of which can be expressed as integrals over phase space, both in terms of y and — since T
and ®; are canonical — also conveniently in terms of y as

y(y. 1) = // e 2(x,v,1)dxdv

= - // — X(z?—i—la oV a0 dvda.

J_x/J
Ei(y,t) :=— // y |3/L 2(x,v,1) dxdv

—X/ (9 +ta,a) ,
_ 9.a.1)dvd
i // y—X© traap] Oanddda

(1.12)

1.2.3. Analysis of the (effective) electric field and weak convergence. The proper analysis
of the electric field & in terms of y requires precise kinematic bounds on the (inverse of
the) asymptotic action-angle map (X, V) and its derivatives.

Using moment bounds on y alone, one can reduce the question of its pointwise decay
to control of an effective electric field & (see (4.4)), which captures the leading order
dynamics. This in turn can be bounded in terms of moments on y, at the cost of some
logarithmic losses, which yields almost optimal decay of the electric field. More precisely,
we note that as per (1.12), the nonlinear evolution is governed by various integrals of the
measure y2d ¥ da on phase space, and we thus aim to prove its weak convergence. Using
a variant of the continuity equation (an argument somewhat related to [37]), we can obtain
vague, scale-localized convergence of this measure, i.e.,

(@) R(.1) = /[ o(R™\(y — X(0. )2 (9.2.0) d9da — (@)F(y). 1 — oo,

uniformly in y, R. For particle distributions y solving (1.11), this allows us to obtain
uniform control on the (scale-localized) effective electric field, and, after resummation of
the scales, almost optimal control on the effective electric field &°.
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To obtain optimal decay bounds and to extract the precise asymptotic behavior of the
electric field, we need to control extra regularity on y. This turns out to be significantly
more involved than moment control, as described below.

1.2.4. Moment propagation and almost optimal decay. In order to propagate moments,
we use the Poisson bracket structure (1.11) and the fact that for any weight function
w: Px v — R or w: Py, — R it holds that

3; (wy) + {Ha, (wy)} = {Ha, why = 0&;{X7, wy,

together with bounds on the electric field and some classical identities such as

2
{X,ﬂ+i}zv, {X,|L|2}=LXX, L=xxv.
2 |x
Choosing as weight functions the conserved quantities for the linear equation a := /H,
respectively £ := ga~! and A := |L|, as well as the dynamically evolving quantity
n:i= (g)ﬁ -a,
q

this enables a bootstrap argument that leads to almost optimal moment bounds and electric
field decay, assuming only initial moments control.
Our first global result for the dynamics then reads as follows.

Theorem 1.6 (See Theorem 5.1). Let m > 30, let g > 0 be sufficiently small, and assume
that the initial density Lo = Yo Satisfies

{a)>™ woller + I146)*" wollzr + (A" wollr + 11" pollLee < €0, 1 € {2, 00}.

Then there exists a global weak solution y € CY(L* N L™) to (1.11) that satisfies the
bounds forr € {2, 00},

[{a)>™y ()L + IE* ™y ()L < 2eo.
[{A)2™y(0)||Lr < 280(In(2 + 1))?™,
Iy (t) |l Lo < 2e0(In(2 + 1))™,

and the associated electric field decays as

e2In(2 +1)
(1)

The weak solutions we construct are not guaranteed to be unique. The large number of
moments required, m > 30, is mostly technical and could be reduced at the expense of the
readability of the proof. To highlight the conceptual aspects of the control of the electric
field, we have chosen to accept moment losses (e.g., using (4.2)), while our arguments also
need to pass back and forth between different coordinate system, which leads to iterated
losses.

1€ @)lLse <
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1.2.5. Derivative propagation. In order to obtain bona fide, unique classical solutions,
we need to propagate bounds on the gradient of y. This requires considerable care, notably
because the kinematic formulas are rather involved and some derivatives produce large
factors of 7. To minimize the presence of “bad derivatives”, we make use of the fact that
the two-body problem is superintegrable: this allows us to express all kinematically rel-
evant quantities in terms of a set of “superintegrable coordinates SIC”, of which all but
one scalar variable are constant under the flow of the two-body problem (1.5) (and thus
constant along the characteristics of the linearized problem (1.4)). A natural such choice
is the reduced basis (€, n, u, L), where u = a la, L € R3, &, n € R (see also (1.16)
below), and only 71 evolves in the linear problem. This collection has a built-in redun-
dancy, as u - L = 0. In order to work with such an overdetermined set of coordinates, we
take advantage of the symplectic structure to propagate Poisson brackets with respect to
a spanning family SIC, i.e., a collection ({ f, -})resic Which spans the cotangent space.
Letting
SIC := {&,n,u,L},

we then obtain a system for such derivatives of y that reads

Loy} + {Ha { £y} = —{{ £ Haby}
= —QF !X/ yHAXEY — 06, {1 £ X7}y,

where ¥ = V2 denotes the Hessian of the electric potential. Since SIC is a spanning set,
we can then resolve {X, y} in terms of ({ /. y})resic, leading to a self-consistent system
for bounds on the Poisson brackets

ULV S D wrgllg, vil-

geSsIC

Here the coefficients my, have formally enough decay, but are ill-conditioned in the sense
that they do not admit bounds uniformly in the coordinates outside of a compact set.
To remedy this, we introduce a set of weights wy and manage to propagate appropriate
bounds on wy|{ f, ¥ }|. To account for the fact that the past (t — —o0) and future (¢ — 00)
asymptotic velocities of a linear trajectory may differ drastically in direction, we will need
to work with two different sets of spanning functions in different parts of phase space:
“past” asymptotic action-angles in an “incoming” region and “future” asymptotic action-
angles in an “outgoing” region. For simplicity, we thus prefer to work with pointwise
bounds on the above symplectic gradients.

Altogether, a slightly simplified version of our result concerning global propagation
of derivatives is the following.

Proposition 1.7 (Informal version of Proposition 5.5). Let y be a global solution of (1.11)
as in Theorem 1.6, and assume that for the selection of weights wy as below in (5.23) it
holds that

Do IE +EHwplfovodllzee < eo. (1.13)

fesIc
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Then if e is sufficiently small, we have that y € C t1,19,a is a classical solution and

D £y}l S eon®Q2 +1). (1.14)

fesIC

Moreover, the electric field & decays at the optimal rate
1€@) L < e5(t)7>.

We comment on three points:

(i)  Control of one derivative of y allows us to resum the scale-localized effective elec-
tric unknowns, which implies optimal decay of the electric field (see Proposition 4.4
below) and lays the foundation for a quantitative understanding of the asymptotic
behavior.

(i) There is a “loss” of weights in § when we change coordinates between past and
future asymptotic actions, which is reflected by the extra factors in & we require on
the initial data in (1.13) as compared to the propagated derivatives in (1.14).

(iii) Derivative control also implies uniqueness of solutions.

1.2.6. Asymptotic behavior. As mentioned above, derivative control is tied to obtaining
optimal decay for the electric field, through bounds on the effective electric field defined
in (4.4). Roughly speaking, once we control a derivative of the particle density y, we can
sum the uniform bounds obtained on the scale-localized effective field and obtain conver-
gence of the effective electrical functions, which allows us to deduce that

vX.1) = ;\Ilc’o(a) +o0u™), &&= tiza,-\pW(a) + 0@, (115)

The additional ingredient we use is that, for large scales, we can perform an integration
by parts that replaces a derivative on the Coulomb kernel with a bound on the Poisson
bracket with a constant of motion for the asymptotic flow’ % = 0: for a function ¢(x) of x
only, it holds that

Oxp = t_l{z, ¢}, Z:=X-—1v.

Since z is constant along free streaming, we can show that it only increases logarithmically
along the flow of (1.5).

From (1.15), we easily obtain the asymptotic behavior: the main evolution equation
for the gas distribution function y reads

hy + 2@y = 06,

SRecall that a constant of motion denotes an expression of the form F(x, v, ) which is conserved
along the flow, as opposed to an integral of motion of the form F(x, v) which is a function on phase
space alone.
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To leading order, y is thus transported by a shear flow, which can be integrated directly
to obtain convergence of the particle distribution along modified characteristics:

y(@ —In(t)QVY¥Y>®(a),a,t) — yo(¥,a), ¢ — +o0.

This leads us to our final result (stated here in a version without point charge dy-
namics).

Theorem 1.8 (Informal version of Theorem 6.1). Let y be a global solution of (1.11) as
in Proposition 1.7. Then there exist an asymptotic electric field profile 8 € L™ (R3) and
Yoo € L, such that

y(® —In(r)Q&(a),a,t) = yo(P,a), t — +o0.

1.3. Accounting for the motion of the point charge

In general, the point charge will not remain stationary, as X # 0. However, accounting
for its motion brings in significant complications.

Using the macroscopic conservation laws (akin to the introduction of the reduced
mass for the classical two-body problem), at the cost of the introduction of a non-Galilean
frame we can reduce the analysis to a problem for the gas distribution alone, which is then
transported by a self-consistent Hamiltonian flow (see Section 1.6). Hereby, it is natural
to center the phase space for the gas distribution around the point charge, so that the new
position coordinates are given simply by the distance from the point charge X (¢). For the
velocity, we have two natural options:

(a) Center around the asymptotic velocity Vs, of the point charge: This leads to an equa-
tion for a re-centered particle distribution function v,

dv—{H,v} =0, H= %HZ —Hy, Hyx,v,t) = Qv (x,1) + (V) — Vo) - V,

with same linearized Hamiltonian as in (1.4), but adjusted perturbative term Hy that
incorporates the asymptotic velocity through V4, of the point charge. We note that
this induces a (small) uncertainty on the velocity W(¢) = V(¢) — Vo, but no acceler-
ation. This is well adapted to describing the dynamics far away from the point charge
(|x| > 1), and we thus refer to it as the “far formulation”.

(b) Center around the instantaneous velocity 'V(t) of the point charge: This is related to
a Hamiltonian equation for the new particle distribution function v/,

1 .
v —{HV}=0 H = 5 Ha —H,, Hyxv,t)=Q0y(x1t)—V-x

This formulation introduces the acceleration 17, which (although small) does not have
any spatial decay and becomes too influential when paired with |x| > 1. We thus
refer to this as the “close formulation”, and will invoke it for comparatively small
Ix| < 1.
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In practice, we will thus have to work with both formulations and their associated
nonlinear unknowns (and their respective sets of asymptotic action-angle variables), see
Section 2.3. In particular, we will split phase space into “close” and “far” regions Q¢!
and Q" in which we work with the corresponding close and far formulations and prop-
agate separately moment and derivative control, with a transition between them when
a given trajectory passes from one region to the other. We emphasize that by construction
each type of transition (far to close and close to far) happens at most once per trajectory.
Although each such transition introduces some losses in & weights (similarly to the case
of past vs. future asymptotic actions), this is simple to account for.

In conclusion, analogous results to Theorem 1.6 and Proposition 1.7 can be estab-
lished also for any initial condition on the point charge position and velocity. In particular,
one sees that its acceleration is given by an electric field that decays like =2 to leading
order, resulting in a logarithmically corrected point charge trajectory in our final result
Theorem 6.1 below.

1.4. Further remarks and perspectives

We comment on some more points of relevance.

(1) The role of superintegrability: The Kepler problem is superintegrable and as such
admits five independent conserved quantities. In many computations, it is very advan-
tageous to isolate to the largest extent possible those conserved coordinates from the
dynamical ones, since for quantities associated to the former one may hope to obtain
uniform in time bounds. This is particularly true when computing derivatives, where the
dynamical evolution can lead to large derivatives and rapid growth. Thus we do many
computations using superintegrable coordinates® which are derived from the asymptotic
action-angle as follows:

g=1
a

, ni= g15‘-a, u:= E, L:=9 x a, (1.16)
q a
and we note that the linear flow is simple in these coordinates: (£(¢), n(¢), u(t), L(¢)) =

(§0.10 + tg%£3, 19, L) and only one scalar coordinate changes over time (out of seven).

(2) Types of trajectories: It is worth distinguishing several types of trajectories in the
linearized problem with respect to the above close and far regions of phase space Q¢! =
{Ix| < 10(z)} and Qf = {|x| > (r)}. For relatively small actions a, particles remain far
from the point charge and move slowly. In particular, depending on their initial location,
they may start in the far or close region, but will end up in the close region. In contrast,
for large velocities, trajectories may start far away with high velocity, come close to the
point charge and then speed off again, passing from Q" to Q¢! and back to Q1. Together
with the distinction between incoming/outgoing dynamics, this gives four dynamically
relevant, distinct regions of phase space (see also Remark 5.8).

These are related to the Delaunay variables, see, e.g., [16].
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(3) Possible simplifications: We emphasize that as discussed, the analysis simplifies
significantly if the charge has no dynamics, i.e., if (X (¢), V(¢)) = (0,0). In a similar vein,
if the initial gas distribution has compact support (and the support of velocities is thus
bounded from below and above), it suffices to work with either close or far formulation.
This shows a clear benefit and drastic simplification if an assumption of compact support
is made.

Future perspectives. We hope that the methods introduced in this work provide a template
for the analysis of a large class of (collisionless) kinetic problems, for which the linearized
equation is given as transport by a completely integrable ODE whose trajectories are
open.’

To be concrete, we highlight some examples to this effect and further related open
problems, on which we hope the analysis developed here can shed some new light.

(1) The gravitational case of attractive interactions between the point charge and gas
is of great importance in astrophysics. Despite this, as briefly hinted at above its mathe-
matical investigation is in its infancy. In this case, the linear energy is no longer coercive
and strong solutions are not even known to exist locally in time, only global weak solu-
tions have been constructed [9,10]. In addition, a key mathematical challenge for the study
of the asymptotic behavior lies in the presence of trapped trajectories, which already arise
in the linearized system and drastically hinder the stabilization effect of dispersion. In this
context, we expect Proposition 1.4 to extend in the region of positive energy, while the
transition to zero and negative energies (with parabolic or elliptic orbits) introduces sig-
nificant new challenges. This work should also inform on the modifications needed to
account for the geometry of such trajectories.

(2) Along similar lines, the case of several species would also be relevant in plasma
physics and may pose related challenges. On the other hand, even for repulsive inter-
actions it would be interesting to consider a perturbation of several point charges, i.e.,
a solution to the N -body problem to which a small, smooth gas distribution is added. The
natural starting point here is the case of two charges surrounded by a gas, which already
at the linear level brings the (restricted) 3-body problem into play. We refer to [7,32] for
works in this direction for Vlasov—Poisson and related equations.

(3) We believe that the Vlasov—Poisson evolution of measures which are not abso-
lutely continuous with respect to Lebesgue measure is an interesting general problem
which merits further investigation. Here and in [8, 9, 12, 13, 35, 36, 40, 50], the case of
a sum of pure point and smooth density is considered, but it would be interesting to have
examples where the support of the measure has (say) intermediate Hausdorff dimensions
(as suggested, e.g., by some models of star formation, see, e.g., [45, Section 9.6.2]).

7In the case of more complicated (e.g., non-integrable) ODEs, the linear analysis may already
be very challenging, and even for systems relatively close to the 2-body problem one would need to
account for Arnold diffusion (see, e.g., [31]).
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1.5. Organization of the paper

We conclude this introduction by showing in Section 1.6 how to reduce equations (1.2)
to a problem on the gas distribution alone. Section 2 then studies the dynamics in the
linearized problem, starting with more explanations on the method of asymptotic action
(Section 2.1). Following this we discuss the Kepler problem (Section 2.2) and solve the
related scalar scattering problem (Section 2.2.1), which then allows us to introduce the
asymptotic action-angle variables (Section 2.2.2). Building on this, further coordinates
are introduced in Section 2.3.

Section 3 establishes quantitative bounds on some of the kinematically relevant quan-
tities, including in particular their Poisson brackets with various coordinates.

The electric functions are studied in Section 4. We first show that they are well
approximated by simpler effective functions (Proposition 4.1), and obtain convergence
on effective fields (Proposition 4.4), building on the available control of moments and
derivatives.

Section 5 establishes the main bootstrap arguments for the propagation of moments
and derivative control. We introduce the main nonlinear unknowns in Section 5.1, and first
close a bootstrap involving only moment bounds in Section 5.2. Building on this, a second
(and much more involved) bootstrap then yields control of derivatives in Section 5.3.

Finally, in Section 6 we derive the asymptotic behavior of the gas distribution function
and prove our main Theorem 6.1.

In Appendix A, we collect some auxiliary results.

Notation. We will use the notation 4 < B to denote the existence of a constant C > 0
such that A < CB, when C > 0 is independent of quantities of relevance, and write
A <p B to highlight a dependence of C on a parameter p. Moreover, to simplify some
expressions we shall use the slight modification of the standard Japanese bracket as (r) :=
(94 r»)V/2 r € R, so that in particular 1 < In(0).

1.6. Reduction to a problem for the gas distribution alone

System (1.2) can be transformed into a system that better accounts for the linear dynam-
ics and is more easily connected to the case of radial data already investigated in [50].
For this, it will be convenient to recenter the phase space at the point charge.

1.6.1. Conservation laws. In a similar way as for the standard 2-body problem, one can
simplify the system somewhat by using the conservation laws. In order to study conserved
quantities, it is convenient to observe that, when u solves (1.2), for any function w(x, v, t),
it holds that

%// wrwdxdv

=[/u2(at+v-vx+(%;_‘—;%wvxqs)%)wdxdv. (1.17)
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By testing with various choices of w, one can obtain conservation laws. We will do this
for the first three moments in v.

The total charge is conserved and using w = 1 in (1.17) leads to conservation of the
0-moment,

dt

The total momentum is conserved and using @ = v in (1.17) leads to conservation of the
I-moment,

d
—Mg(n) =0, Mg(p):=mg /fﬂzdxdv.

%P(,u) =0, P(u):=m, // wAvdxdv + M. V.

Finally, the total energy is conserved and this leads to conservation of the 2-moment,
d E(u,X,V)=0
d[ /JL, £l - E)

EG1.%.V) = mg [[ w2(vP =209 dxdv+ (VP =202 g x.).

1.6.2. Modulation and reduced equations. Since the Vlasov—Poisson system is invariant
by Galilean transformation, we can choose a frame where the total momentum vanishes:
P(n) = 0. This determines the motion of the point charge in terms of the motion of

the gas,
V() = e // wvdxdv
: M, .

As explained in Section 1.3, we will need a “close” and a “far” chart, which we introduce
next.

Far formulation. Given a solution y on some time interval [0, 7*), we define
Voo 1= lim V(t), W) := V() — Vo, (1.18)
t—>T*

and we introduce the new unknowns
y=x—X(t), w:i=v— "V,
v(y,w, 1) := pu(y + X)), w + Voo, 1), (1.19)
wxv,t) =v(x—X(),v—Veo,t).

The new equation for terms of v(y, w, #) becomes self-consistent with a parameter Voo,

q

0 Vy
(t+W +2||3

.vw)v + OVyy - Vv = W(1) - Yy,

v =g+ xX0.0 =~ [

W) = - Me + Me ;M // w2(y. w. 1) dydw.

vz(r, m,t)drdm, (1.20)
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‘We introduce the Hamiltonians

q

1
H = _-H, —Hy, Ha(y,w):=|w?+ =,
2 Iyl (1.21)

H4(va9t) = QW(yvl) + W(Z) *W.

Note that H, is independent of the unknown v and will give the linearized equation,
while H4 = O(v?) and decays in time. The density v is transported by the corresponding
Hamiltonian vector field in (1.21) in the sense that the first equation in (1.20) is equiva-
lent to

d;v—{H,v} =0.

Lemma 1.9. Given C! functions (n,v, X, V) on a time interval [0, T*) and a constant
Voo € R3, related by (1.18)—(1.19). The functions (u, X, V) solve (1.2) if and only if
(v, Vo) solves

d,v—{H,v} =0, lim W() =0,
t—>T*
with H defined in (1.21).
Proof. We recall that dd—pf = V. With notations in (1.19), we have

Vyv(y, w, 1) = Vxu(x, v, 1), Vv (¥, W, 1) = Vyu(x, v, 1),
dev(y,w,1) = (0 + V(@) - Vux,v. 1), Vy(y,t) = Vxg(x,1).

Then in terms of u, X, v, the first equation in (1.20) becomes

g x=X()
i V()= Vo) Vx+ =——75 - V. Vi - V
(,+(V+ () oo) +2|X—X(l‘)|3 v)ﬂ+Q ¢ viL
= (V(t) = Vao) - Vit
which is exactly the first equation in (1.2). |

Close formulation. Close to the point charge or for large velocities, we will prefer to
center our coordinate frame around the instantaneous velocity of the point charge, and
thus let

YV=y=x—-X(), wW=v-V()=w-—W().

This can be obtained by means of the generating function S(y',w,?) =y - (w — W(t))
and leads to the new Hamiltonian

H'(y,w)=H(y,w) —9,S
1 . 1
= EHz(y’,w’) — OV (. )+ W)y — EI'W(I)IZ- (1.22)
We also note for further use that

W(r) = QVyy (0, 1).
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We let
V(Y W) = py + X)W+ V(). 1),

Then equation (1.2) is equivalent to
9,0 — {H',v'} =0,
or

/
(a, +w o Vy+ 1Y Vw/)v’ + OV - Vot = @V (0,1) - Vg,

2y3
vy 1) = + X().1).

2. Analysis of the linearized flow

In this section, we solve the linearized equation (1.4) using asymptotic action-angle vari-
ables and introduce various other adapted coordinates.

2.1. General comments on the asymptotic action-angle method

2.1.1. Overview of the method of asymptotic actions. There is no general way to find
“good choices” of action-angle variables (®, 4) besides trial and error; however, a few
guidelines can be useful.

(1) Itis desirable that the change of variables (x, v) — (¥, a) is canonical, i.e., dX A
dv = d?¥ A da. This in particular ensures that the Jacobian of the change of variables
is 1. A good way to enforce this is to use a generating function S(x, a) such that v = V,S§
and ¥ = V,S. In this case,

as . a8 .
- — J A
O—ddS—d<andx + 8afda ) = d(vdx + ¥da).
Such functions are however often difficult to find explicitly.

(2) Since we are concerned with longtime behavior, we choose a such that it cap-
tures the dispersive nature of the problem, i.e., that trajectories corresponding to differ-
ent choices of a diverge as 7da. In scattering situations, one has a natural Hamiltonian
at 0o, often Ho, = % and a useful choice is a = V. In this case, in the simplest situa-
tion, one needs to solve a scattering problem to define v = V(x, V) (i.e., compute the full
trajectory knowing the incoming velocity and the position at one time), then integrate V'

to recover the generating function
V(X, Vo) = (VxS) (X, Vo),

and then deduce the angle .

Note that this leads to a cascade of Hamiltonians which describe various components
of the dynamics: H — H, to describe solutions to the perturbed problem as envelopes of
solutions to the linearized problem, and H, +— H, to describe solutions of the linearized
problem via their asymptotic state.
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2.1.2. The case of radial data. The strategy laid out above can be most easily carried out
for the case of radial data, a problem already treated in [50]. Starting from the energy,

we can express the outgoing velocity as a function of a and r,

V(r,a) = \/az—g :a\/l —iz,
r ra

and integrating in r, we find the generating function

S(r,a) = gK(rz_Z) = arminK<L), ) =7V,

F'min or

where K is defined in (2.2) below. This gives a formula for the angle

BN q  (ra? q q  (ra? Vv
®=—=——K(— 2 ,/1——=——K(_ 22
da a? q >+ " ra a? q >+ "a

This simplifies to

rv

NCEEE

and since rpy;,, a are invariant along the trajectory, we can verify that

e = _rminK(L> + 22 = _rminK(L

T'min a "'min

)+2

v? v2 g

Fv ro
)+2—+2—=——+2—+—=a,
a a a a ra

r

O = —r'K’(

Fmin
where we have used that

r "min v . . q
K/( ): 1— =—, F=v, ==
'min r a 2r

In the discussion above, we have used the function K defined by

111/2

2.1)

K'(s) = [1 - ;] L K1) =0, K(s):=+sG -1 —In(v/5+~s—1). (22

Since we can verify that

G(s) =2v/s(s—1)— K(s), G'(s) = [1 - é]_l/z, G(1) =0,

we see that, in the outgoing case v > 0, this gives a similar choice of unknown as in [50],
but through a different approach. In the incoming case v < 0, we need to change sign

in (2.1), and this leads to the new generating function

Sin(r,a) := _g,{(rz_z)

and in turn we obtain

O = rmmK(

T'min ra |v| "'min a |U|

! )—2r 1—L = [—rminK(L) +2rm] = Fmin Y G(

: )
"'min
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We thus see that, in the radial case, the scattering problem is degenerate in the sense that
there are, in general, fwo trajectories that pass through r at time ¢ and have asymptotic
velocity a (one incoming, one outgoing). This fold degeneracy can be resolved by intro-

ducing a function o = ﬁ = I%I and defining

Ser = O'%K(r:—z)

with a choice of sign that is not expressed in terms of (r, a) alone.

2.2. Action-angle coordinates for the Kepler problem
We want to study the Kepler system (1.5), which we recall here:

dx dv gx

=y, —=2 23

dt dt  2|x|? @3)
in the repulsive case ¢ > 0. All the orbits are open and can be described using the conser-
vation of energy H, angular momentum L and Runge—Lenz vector R,

H=pw+2L L.=xxv, Ri=vxL+2X 2.4)
x| 2 x|
In the following formulas, it will be very useful to keep track of the homogeneity, and we
note that®

[[Hﬂ_@_ _ lq]

= E [v]* = &l la] = [R] = [x]¥]*.  [L] = [x][v].  (25)
The conservation laws (2.4) give five functionally independent conservation laws, al-
though of course only three of these can be in involution. A classical choice is { H, |L|, L3}
which leads to the classical solution of the 2-body problem by reducing it to a planar prob-
lem. Indeed, if one chooses the z axis such that L = L, = 0, then they remain O for all
time and the motion remains in the plane {z = 0}. This allows us to exhibit a convenient
action-angle transformation satisfying the asymptotic action property (1.8).
We define the phase space to be

Pev =1, V) e R2xR3: x| > 0}, Py,:={(Pa) e R?>xR3:|a| >0},

where the angles ¢ and actions a will have the dimension of length [¢] = [x] and velocity
[a] = [V].

Our main result in this section is the construction of asymptotic action-angle variables
in Proposition 1.4 which will provide adapted coordinates for the phase space. This will be
proved later in Section 2.2.2 after we have solved a scattering problem. Here we highlight

8Here [x] denotes the dimension of spatial length, [¢] the dimension of time, [v] = [x] [¢]~*
the dimension of velocity and [¢] = [x]3[¢] 2 the dimension of an electric charge.
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that by construction as a canonical transformation, the change of variables I preserves
the Liouville measure

0O, A) _  IXYV) _
A(x, V) 3(d,a)

Remark 2.1. Using that (2.3) is superintegrable, one can express five of the six coor-

det

dinates of a trajectory in terms of conserved quantities. The last one corresponds to the
“trace” of time and cannot be deduced by the conservation laws alone. In our case, a good
proxy for the “trace” of time are the quantities x - v and ¢ - a. That this measures time
lapsed is obvious in action-angle coordinates from (1.7). For the physical variables, this
follows from virial-type computations

d 2
x| Xx-v, —(x-v)=

[ s B — | |2 q — |V|2
dt 2 dt

—_— —H 2.6
= 2 T (2.6)
Although not very illuminating, we can obtain explicit expressions using (2.18)

and (2.19),

2q~H 4H
A(X, V) = 1 R+ L xR,
4HL? + ¢2 4HL? + g2 2.7
a x| / x )
O(x.v) = 3IxK'(0)( + (o - S) —oTy A=Ay,
|| Ial) 2 \[x| |a la |3
where K is defined in (2.2), and
~HL?
t=sign<x-v+ ), o=—tIn(\/p+ vp—1),
q
H 1 2 2 2
o= —qu(|x|«/H LR+ VHx| + 2qL «/H)).
This follows by combining (2.17) and (2.19) for ¢, (2.27) for o and (2.15) and (2.23) for p.
In the radial case, L = 0, p = -, and we recover the formulas from the paper [50].

Explicit expressions for X(?, a), V(19 a) will be most useful and are given in (2.25)
and (2.26) below.

2.2.1. Planar dynamics. To study the geometry of trajectories in the Kepler problem
(2.3), we note that by the conservation laws (2.4) we may choose coordinates such that
the motion takes place in the x y-plane with angular momentum (0, 0, L) for some L > 0
(see also Figure 2). Switching to polar coordinates (r, ¢),” we find that

. . L?
H=i+r+% L=r§ R=(T+2)e —iLe,

and these can be used to integrate the equation.

9Note that x = r(cos ¢, sin ¢, 0). We recall vectors e, = (cos ¢, sin¢, 0) and ey = (—sin ¢,
cos ¢, 0) in the basis.
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Fig. 2. A sample trajectory of the Kepler problem (in blue), with conserved quantities (in red).

More precisely, we have that

d d d
_d: = —232(cos¢,sin¢,0), L= rzd—dt) = d_; = %(COS@SHNI%O),
and hence

v(g) = %(singb, —cos¢,0) + (c1,¢2,0),

where ¢ = (c1, ¢3, 0) is the constant of integration. Thus v moves along a circle (the so-
called “velocity circle”, see, e.g., [43] and Figure 3) with center ¢ and satisfiesv —c¢ L X,
with periapsis in direction —c*.' As is well known, in the repulsive case (¢ > 0, H > 0)
the trajectories are hyperbolas, and asymptotic velocities V4, are thus well defined.'!

Scattering problem. In order to obtain our asymptotic action, we need to understand to
which extent knowledge of x and v, allows us to determine the full trajectory, i.e., to
solve the following problem: Find the trajectories passing through x at time ¢ and whose
(forward) asymptotic velocity is Veo.

Inspecting the behavior of the conservation laws at oo and at periapsis, we find that'?

L g L* g\. q. ol
H= o=l R (Co0)% = Pl L8 09

and in particular

IR = JIHL 1 4 1 Vg*+4HL? —¢q q++q*+4HL?

Fori 202 v fmin = 2H ’

10For a vector ¢ = (c1,¢2,0), we denote el = (—c2,c1,0).
T the present formulation, this can be seen, for example, by assuming that the velocity circle is

centered on the positive y—azxis, ie,c1=0,cp =€- ﬁ > 0, so that from the equation (0,0, L) =
x x v it follows that r = % ﬁ where € > 1 is the eccentricity of the hyperbola.

12Here and in the following, given a nonzero vector v, we denote by ¥ = ﬁ its direction vector.
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Fig. 3. An illustration of a sample trajectory of the Kepler problem with associated velocity circle
(in blue) and asymptotic velocities V_s and Voo (in red).

so that only the direction of R will be important (and we recover ry;, = % in the radial
case).

For the sake of definiteness, for a given v, let us further rotate our coordinates such
that voo = (v H, 0, 0) is parallel to the (positive) x-axis (see also Figure 1). Then the
possible trajectories in this setup all lie in the lower half-plane {y < 0}, and the center c
of the velocity circle is determined by the requirement that v(2z) = (v H,0,0), i.e.,

v(p) = %(sin¢,—cos¢,0) + («/H,%,O), 2.9)
and periapsis lies in direction —ct+ = (3% .—+/H,0). The quantity

o(r,¢) = rzﬁ(l + cos ¢) (2.10)
q

plays a key role for the dynamics, as illustrated by the following lemma (see also Fig-
ure 4).

Lemma 2.2. Let xg = ro(cos ¢o, sin g, 0) be given with ro > 0 and ¢o € (7, 27).

(1) If p(ro, ¢o) < 1, there does not exist a trajectory through Xo with asymptotic ve-
locity V.

(2) If p(ro, o) = 1, there exists exactly one trajectory through Xo with asymptotic veloc-
ity Voo. If Vg denotes the instantaneous velocity, it holds that Xo - vo = —@ < 0.

(3) If p(ro, o) > 1, there are two trajectories h+ through xo with asymptotic velocity Vo,
corresponding to values 0 < L_ < L for the angular momentum.

Besides, in case (3), we have that, locally around (Xo, Vo), p decreases along h_ and
increases along hy.

Proof. On the one hand, since (0,0, L) = x x v, we obtain directly that
L= r(—% + %cosqb —~H sin¢>)

PN L2+Lr«/Hsin¢+%(l—cos¢)=O. 2.11)
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h+

Fig. 4. An illustration of Lemma 2.2 with two trajectories £— (red) and /4 (blue) with asymptotic
velocity Voo through a given point Xg, and their corresponding velocity circles. The green line is the
level set {p = 1}.

This has real solutions if and only if

FH(1 4+ cosg) = 24 & p(r.¢) = %(1 eos) = 1,

. r\/ﬁ 1
L=—sing— (liwll—p(mﬁ)). (2.12)

Since each choice of L leads to a trajectory by (2.9), this yields the claimed trichotomy.
Along a trajectory, we see from (2.11) that

and they are given by

L2
LVHsing + 4(1 —cos¢)’

and therefore,

r r
cos¢>+sin¢>) = Zc-xz Zv-x.

gL? <2L\/H
2[LVH sing + £(1—cos ¢)]?
Using (2.10) and (2.12), we see that

¢\ _ —sing  LVH 1 _VHL 1
—tan(z)—l_'_cos(P— pRry e R [IZF‘/I ;], (2.13)

and therefore, when p = 1, we can plug in the equation above and obtain d4r < 0. Deriv-
ing both side of (2.13), we obtain

1 o\\ _ _LVH 1 d
—§(1+tan2(5))—:F q 2pm%[l)(”(¢)»¢)],

dpr(¢) =
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Fig. 5. An illustration of the utility of the velocity circle.

which is enough since we know that, along a trajectory, ¢ = r—2L > 0. ]

From the proof, we observe that, via the velocity circle, we can directly compute the

angle from periapsis to asymptotic velocity as ¢, = 5 — $, where tan ¢ = 3 L[f/ﬁ (see
also Figure 5).
In addition, by (2.11) and (2.9) it holds that
q singp L L
e vH, —,0)=—(VvH + —— — 2.14
V@) = Le¢+< 2L ) ( +l—cos¢>r)r+ €. 219
This can be integrated using that, with K as defined in (2.2), and (2.12), it holds that
L v H 1 0 r~H
S =y SRl (o] = o[£ K (o )+ cos
—sing L vH
P L Y0t cosplt £ K(ptr. )]
l—cos¢ r 2

d q rvH
= 5 [ E T Ko + =+ cosp) |
so that, using (2.14), we can write

v=VS(r¢). S(r.¢)= i%K(p(r, ) — @(1 — cos ).

2.2.2. Towards action-angle variables. In general geometry, for a given “action” a = v
(with |a|> = H) the dimensionless (see (2.5)) function p generalizes as

p(x.a) = (IXIIaI +a-x), (2.15)

and by the above we have established the following lemma.
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Lemma 2.3. The functions

Se(x.) =7 |K(U(x a+ [xllal)) - '”a"%
with K defined in (2.2) are generating functions in the sense that if x,a € R3 are given
with p(x,a) > 1, then v1 = V81 define velocities corresponding to trajectories of the
ODE (2.3) passing through X with asymptotic velocity a. Moreover, these are the only
such velocities.

In addition, the generating functions preserve the angular momentum in the sense that
for the aforementioned trajectories their angular momenta are given by

Li =X X VxSi = VaSi X a, (2.16)
and we have that |Ly| > |L_|.
We are now ready to prove Proposition 1.4.

Proof of Proposition 1.4. We first give the explicit definition of the change of variables,
with some additional explicit formulas.

The fold. Lemma 2.3 gives us two local diffeomorphisms defined through the scattering
problem. We also see from Lemma 2.2 that the mapping (x, a) — v has a fold, but we can
hope to define a nice change of variables on either side £2,,, Q2 of the set I" defined by

T:= {x'v:— HLz}, Qp::{x-v<— HL2}7
a 4 2.17)
Qp = {x-v>— I;IILZ},

and we choose the generating function $_ in €, and the generating function § in Q.
From Lemma 2.2, we see that this corresponds to selecting the trajectory in the past of "

when (X, V) € 2, and the trajectory in the future of I" when (x, v) € Q. Note also that

since, along trajectories, dgtv) > 7, each trajectory meets 2, and §2¢ exactly once.

Construction of T. To construct our action-angle variables, we note that for given (X, v) €
R3 x R3, we can use the conservation laws to find the corresponding asymptotic velocity
and thus action A(X, V) = Veo. Using (2.8), we see that |4| = v/ H, that L - 4 = 0 and
that R- A = f , so that (since L. - R = 0)

2gvH 4H

AX.V) = R
®V =R T i s g

L xR. (2.18)

By Lemma 2.2, p(x, #A(xX,Vv)) > 1 and we can define the corresponding angle as

VaS_(x, A(x,v)) for (x,v) € Qp,

(2.19)
Vad i (x, A(x,v)) for (x,v) € Qp.

O,v) = {
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This is well defined by Lemma 2.3 and extends by continuity to I" to give a mapping
(x,v) = (¥, a) continuous'? on Py .

Rescaling of the generating function. Looking at the action of scaling on the generating
function,

x-a— x|l

S, (Ax, A"la) = L/\iK()t_lm(x-a n |x||a|)) - . Lef{+ )
|al 2q 2
and differentiating at A = 1 yields that
X-V—a-ﬁztﬁ?'[K(p)—pK/(p)]. (2.20)
Noting that
i[K(x) —xK'(x)] = —xK"(x) = N S K)-K'(1)=0
dx 2/ x(x — 1)’ ’
it follows that if p(x, #4(x,v)) > 1, then
x-v—>"0-a<0, =+, (221)
x-v—90-a>0, (=—,

whereas x- v = 9 - a if and only if p = 1, in which case S4 = S_. The function 0 =
(%l)(x -v — ¢ - a) will be used to resolve the fold degeneracy corresponding to the choice
of t € {+,—}.

Inverse of T. We can now define 7!
with (2.17) and (2.21):

roe {ﬁ-a= —aqu}, Q = {a-l? <_aq£}, Q4 = {a-ﬁ >—aq£},

so that (for points with p(x,a) > 1)

on either side of the (image of the) fold, consistent

(Vx$_(x,a),V,8_(x,a)) when (d,a) € Q_, (x,V) € Qp,

(2.22)
(Vi$1(x,a), VoS4 (x,a)) when (3,a) € Q4, (X,V) € Qr.

We now compute the inverse transformation (9, a) > (X, V). This is more challeng-
ing since both X and V evolve over the trajectory, while the only trace of “time” in (9, a)
variables follows from ¢ - a. Using the conservation laws, we can already express trajec-
tories in terms of the “time-proxy” x - v. We have that

1 2 2/ 2/
L (2.23)
— / 3

131n fact, any choice of sign for S4+ on Q r or Q2p would give a continuous mapping, smooth
away from the fold I", but our choice will give a smooth gluing at the fold.
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and since
q
|V|2+— L? = xPvP—(x-v)*> = L?>=]x"H —q|x| - (x-v)*,

we can express |x| in terms of (x-v) = ¢ -a + (&)0 as

q 4a2L2+q 2 )
IX| = 22P+¢—jﬁ——+q(xw] (2.24)

which gives a first formula for X as

_qrl q? (2R)2  4a’L’*a a
X‘az[ +<2R)2\/ VT g +W5(’”)]E

To give explicit formulas for V, we use that by the conservation laws it holds

_ q®> a(x-v) 4a*L? > q
A= G W ere ()
_ qal? g 2a(x-v)
V- (L X eA)) = (2R)2 (202 — m — T),

so that since v- L = 0, we obtain

:[ q*> x-v 4a2L2( q )]g 2q2[ q X-V]an

CR2 x| T @R2 T 2alx] 2R L

2alx| x| 1 ¢
. q? a|x|—x-v[a 2an] 9> q [4a2L23+ an]
T eR? K a q (2R)*2alx|L ¢ a q ¥
which together with (2.24) yields
\/ (x-v)? + a2L2+‘—‘(X V+3ra _Lxa
V=a—a [— -2 ]
2 2
(ZR) \/q_z(x . V)Z a“ L= L + + 2 a q
2 4a’L?* a L x
'Xiy . “zu 1 [“25+2 a} (2.26)
a a
2\/q—2(X'V)2+q—2+2+1 4 4
Global functions. We can now introduce the function
a
o(9,a) = 5(x -v—1-a) = (K(p) — pK'(p)] = —tIn({/p+ Vp—1), 027

(9,2) € Q..
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In particular, |o| defines p uniquely and vice versa, which shows that p can indeed be
defined as a function of (1, a) or as a function of (x, v). We obtain the global function

B q (1 a q ¢ a 2R

GRp (2.28)
D(y):=4/»*+ gz

Properties of T. Having given the detailed construction of the diffeomorphism 7, we can
quickly deduce the properties listed in Proposition 1.4: by construction via a generat-
ing function, we directly have (1.6) and the change of variables is canonical as in (1).
The compatibility with conservation laws (2) follows from the definition. For a trajectory
(x(2), v(t)) of the Kepler problem (2.3), we note that by (2.18) #4A(x(t), v(¢)) is indepen-
dent of time, whereas by (2.22) we have

9,0, (x(1), V(1)) = 9:0a; S.(x(1), AX(), V(1))
= Oy 0a; Su(X(1), AX(1), ¥(1))) ;. S (X(1), AX(1), V(1))

= 2, (A0 = L) = Ay x(0.v()),

x(2)]
and (3) is established. Finally, the asymptotic action property (4) follows from (2.25)
and (2.26) after some more quantitative bounds on ¢ below in Lemma 2.5. [

2.2.3. The functions p, 0 and X - v. As we saw in Section 2.2, the function p of (2.15)
plays an important role. It is naturally defined in terms of the mixed variables (x, a),
but we can estimate it in terms of (3, a) through an implicit relation. We introduce the
functions, defined for y > 1,

G(y):=+vVyy—D+h(/y+Vy—1,

(2.29)
Pr(y) =2y -1£2yy(y -1,
and note that G appears naturally in the study of the radial case in [50], where
a’r r
Prad = — =
q Fmin
plays an important role.
Lemma 2.4. The functions
a a
p=—x-a+x|la]) and n=—-9-a (2.30)
2q q
are related by the equation
5 . al
n—tG(p) + k" P (p) =0 inQ, «:= 7 e{+.—} (2.31)

All three quantities p, 1, k are dimensionless, as can be seen from (2.5).
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Proof of Lemma 2.4. We start with an expression for p which follows from its definition
in (2.15) via the first line in (2.23) and (2.24):

272 272 2
po by 20012 e 2004 vy deLEe )
2 4a’l?+q% ¢ 44212442 T 4gr
In order to simplify the computations, we introduce the notations 8, k such that
2R
B = ln(—>, sinh(—p + k) = L% x.v),
q 2R q
so that - 5 .
2a°L* + . 2a°L
cosh(B) = ﬁ, sinh(B) = a—’
q+/4a?L? + ¢> q+/4a?L? + ¢>
and (2.32) gives that
cosh(k) — 1 . a2k
=207 Ginh (—) (2.33)
2 2
Finally, we can rewrite the equation defining k to get
1 2841 k ky e*—1 k
c—l(x-v) = —ePsinh(—B + k) = et sinh(—) cosh(—) _¢ (2005h2(—) - 1).
q 2 2 2 2 4 2

Plugging in (2.33) and using that coshz(’%) = p, we get that

a 2B 41 2P — 1
g(X-V)=ﬂE Ve(p—1) — 2 (2p—1).

2

Furthermore, we recall from (2.20) that it holds
C—l(x-v— v-a)=—In(y/p++/p—1) inQ,
q

so that combining the two equations above, we finally find that for two choices of signs
1,12 € {4, —} (both of which can a priori change depending on the region Q2_, Q)

-1
, (2p—1—w2yp(p—1)).

Now we observe that when 8 = 0, we are in the radial case and, in this case, we know
that we must have (; = (5. [

28
n=uln(yp+vp—1) +uyolo—1)—°

We can now verify that p and o are well-defined functions on phase space.

Lemma 2.5. For/(— L relation (2.31) defines a C* map p(n,«), with p=>p(—k2, k) =1.
For fixedk > 0, n — p(n k), R — [1, 00) is two-to-one, decreasing for —o0o < n < —k?
and increasing for n > —k?2.

Moreover, we have the following estimates: On Q4 = {n > —«?}, it holds

—(K+n)<p<l+l< +1 (plnl <« ® 1 <p<1+k, when —«> <n<0)
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while on Q_ = {n < —k?}, we have

Ll 1+ [n]

- <p< :
41+ 2 1+ «2

As a consequence, the function o(n, k) = —tIn(/p + +/p — 1) is well defined, and
for fixed k > 0, n +— o (n,«) is a bijection on R, and we have the bounds

lo| < In(1 4+ 2+/|n| + 2«),
(0 +1)10,0| + (k + 1 Hdeo| S 1, (2.34)
(p+ K)21020] + (k) (p + ©)|950c0]? + (k)?|020] < 1.

Besides, on 24, we obtain slightly improved bounds

| 2

|0ca| S ol < (2.35)

K
p2+K2’ p2+K2'

Proof. With the functions G, P, of (2.29), we define the implicit function F;: R x [0, c0) x
[1,00) = R by

F(n.k.y) :=n—1G(y) + k> P_(y),

so that per (2.31), p is defined by F,(n,«2, p) = 0on Q,,t € {—, +}. We note that

GH=0. G = |-
J ) (2.36)
L
P()y=1, P-(P+(») =1 POy =1—x,
y(y =1
and we have the bounds (see [50, Lemma 2.2])
y=1=<G®y) <y+InQ2yy) <2y, @37
@) =P =y =P =1=P() =y = Pr(y) =4y '
Hence we see that when F, = 0, we have n = —«? if and only if y = 1. For n < —«2,
we see that
F_(n.k,1) =n+«><0, lim F_(n,k,y) = +o0,
y—>+o0
and similarly with reversed signs for F, when n > —«2, so F_ = 0 has at least one

solution for 7 < —«2 and F = 0 has at least one solution for > —«2. We now compute
the derivatives
anFL =1, 0F =2KP—¢(y),

and by (2.36)
y

P_
0y F, = —t Kzﬁ],
y—1

[1+
y
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so that by (2.37)

17-1/2 2 17-1/2
—oyFez[i-—] T+ ()] arz[i-=] T
Y 2y y
This shows that F,(n, «, y) = 0 has a unique solution and gives the bounds on the first

derivatives in (2.34). Explicitly, we have that

1 Voo —1
= T 2 pr =t p(;o ) » Oep = 2P (p)yp,
tG'(p) —k>PL(p)  p+Kk>P_(p)
1 _ kP_.(p)
_f’ aKo- - _2—5
2(p + k2 P-(p)) o+ «2P_i(p)

which shows that the gradient of p vanishes at the “curve of surgery” I' = {p = 1} and
that the gradient of o is smooth there.
The estimates for p follow from the bounds

Inp
(2.38)

0,0 =

n+Kk*y +y—1<F_(n,ky) <n+ 42y + 2y,
K2 K2

n+-——=2y<Fy(nk,y)<n+—+1-y,
4y y

which in turn follow from the definitions of F, and bounds (2.37).
Finally, we compute the second-order derivatives of o by deriving (2.38) one more
time. This gives

s —K*P_(p) +ty/p(p—1) _ 1+ P_(p)

TP ) R At TPy s b
P_.(p) 2 2 4 p2

—m(l) — k(1 + P_(p)) — k" PZ(p)),

and direct computations give the bounds on the second derivatives in formula (2.34).
Bounds (2.35) follow by direct inspection using that ¢ = +. |

25 —
0,0 =

Remark 2.6. It follows from (2.38) that the only smooth matching of action-angle vari-
able at I" is the one that changes the sign of S1. See also Figure 6 for illustration.

2.3. Further coordinates

In order to parametrize the trajectories of (2.3), further choices of coordinates will be
important.

2.3.1. Superintegrable coordinates. The Kepler problem (2.3) is superintegrable, and
therefore in an appropriate system of coordinates, only one scalar function evolves
along a trajectory. When we consider derivatives, it will be crucial to use this simplifi-
cation.
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Ju—

Fig. 6. A foliation of planar dynamics of (2.3) near a given trajectory (in black) with v H =
asymptotic velocity Voo = (1,0,0) and L = 1. Left: trajectories (in red) for fixed v H = 1, Voo
(1,0, 0), varying L. Right: trajectories (in blue) for fixed L = 1, varying ~/H (and thus Voo =
(vV'H,0,0)).

Inspecting (1.7), we see that such a system can be obtained from our asymptotic
action-angle coordinates by using (£, 7, A, u, L), where'*

a a
=L p=%9.a A:=L, = (2.39)

a q
and L is the angular momentum, for the direction of which we write 1 = % In particular,
note that £, A and L have dimension” [x][v], while 7 and u are dimensionless (com-
pare (2.5)). Only n evolves along a trajectory of (2.3), namely as
72
’7'—>Tl+t§—3, (2.40)
and using that 9 L L (see, e.g., (2.16)), we can recover our action-angle variables from
the superintegrable coordinates via
2
ﬁ:é—nu—ngu, a= C—Iu. 2.41)
q q §
Remark 2.7. Clearly, the collection (€, 7, A,u, L) is not independent (since, e.g., A = |L|),
and in a strict sense only gives coordinates modulo further conditions. However, the slight
redundancy is convenient in that it provides relatively simple expressions for kinematic
quantities, and satisfies favorable Poisson bracket properties — see, for example, (3.11)
below.

14These are related to the Delaunay variables, where £ would correspond to the “total orbital
action” and 7 to the “mean anomaly”, see, e.g., [16].
1580 that their Poisson brackets are dimensionless, e.g., [{£, f}] = [f].
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Moreover, with (2.8) and (2.31) we can write

A 2R
K:E, — =u— 2«1 xu.

With the notations

1
D(k,y) = ,/y2+/<2+z—y,
(2.42)
1 1 1
N(k,y) = ‘/y2+/<2+z+§ =D(/<,y)+y+§,

we can then use (2.25), (2.28) and (2.26) to see that with 0 = (1, k) as in Lemma 2.5 it
holds

£ I Dicnto)y k¢ 2D(.n+o)
X =2 S TN (4 2T TN e,
(r+o+3+ 1+ 4x2 Ju- g (1 1+ 4k2 )
1 1 D
v="2(1- - (0t 0)>u (2.43)
£ 2Nk, n+0) 1+4+4k2 N(k,n+0)
+i 2  D(k,n+o0)

214 4k%2 N(k,n+ 0)

2.3.2. Past asymptotic action. The action-angle variables of Section 2.2 are constructed
such that the asymptotic action property (1.8) holds for the “future” evolution, i.e., as
t — +o00. However, we will also need to resolve the earlier “past” part of a trajectory,
for which the direction can differ markedly from its evolution in the long run (see, e.g.,
Figure 2). For this, we will need the past asymptotic action-angle coordinates (), a(),
with inverse (X(7), V() defined in a similar way, except that we require instead that

lim VOB 4720 a0) = a0,
t—>—00

Using that the trajectory is symmetric under reflexion from the plane spanned by L, R,
we easily see that the past asymptotic velocity is given by

© _ _ 2gvH R4 4H
4HL? 4 ¢? 4HL? + g2
We can proceed as before using the solutions of the Hamilton—Jacobi equation §1. More
precisely, we define the change of variables on

L xR.

v H _ vH
Q) = {X-V<L2—} and Qi):z {X-V>L2—}
q q
to be given by the generating functions St(_) (x,a0)) = —§_,(x, —a)), thus

2gvH 4H

=) N L
AT = e T s g R
) Va4 (x, —AO (x,v)) for (x,v) € QO
OV (x,v) = ©
VaS_(x, —A)(x,v)) for (x,v) € Q},
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and similarly define (X(), V(7)). We will need to understand the properties of the transi-
tion map (9, a) — (9, a()). Using the conservation laws, we see that

2R a®) 2
KO = Kk, — =————-Lx a(_),
q a q

and taking the dot product of the last equality with a and L x a, we find that

0O —a. LO = 9O xaO =L,

a®.a  4k?—1
a> 42+ 1

and therefore
a®)  4?—1a 4c 1xa

v a2 tla a1l a

Once again, looking at the action of scaling, we observe that, in £ &),
X-V= 19(_) . a(_) _ LC_I ln( p(f) + p(i) _ l),
a
_ _ . a 3 -
PO = px =) = S (Nl -2 ).

Since we will transition between the past and future asymptotic actions at periapsis,
we compute that

a x a)  x s 1 ing 2K
— = — =C08¢y = ———, sing, = ——,
a x| a x| P VT T 42 P T+ 4
o r+)?
1
—p =0p =—7 In(1 + 4x?%) = 015_ = —77; ),

Together with their favorable Poisson bracket properties (see (3.48) below), this motivates
the following definition of the new coordinates as

1
£ =& 1O =+ 5 (1 + 4k%), A =,

o . 1—42 1 4 - (244
u = - Lxu= I/ =1,
w21 S E4kP 41 a
and thus 5 )
1 — 4k dic
L& =) —
S pesny el R Fresn L

Moreover, we see that the evolution of (2.3) in these coordinates reads

O +9) =120+ =55 (E( ))3,

and using that

E+0)=x-v=£D07 +0),
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we also verify that for the formulas in (2.43), we have
X(En. 4w L) = XEO, 1O 40,00, L0),

(2.45)
V(E 7. A, u, L) = —V(ED, 1O, 10w L),

2.3.3. Far and close formulations. To control weights and derivatives, we will have to
work with the far and close formulations of Section 1.6.2 in terms of v (resp. v’). The
associated nonlinear unknowns (see also (1.10)) are then

y=voT 1o th_l, y(0,a,t) = v(X(¥ + ta,a), V(I + ra,a), 1),
Y i=voT tod y(8a,t)=vX® +ta,a), V(O +ta,a) + W(t),1),

with 7 defined in Proposition 1.4 and ®, defined in (1.9). These unknowns y and y’
satisfy the purely nonlinear equations (compare (1.21), respectively, (1.22))

dy +{Hay} =0, y(t=0)=vy, Hy=0yX) —W-V, (246)
0y +1{Hy, ¥} =0, Y/t =0)=v;, Hy=0yX)-W-X, (247

with, as in (1.20),
1 1 N2
) =—— —_— 0,a,t)d0d
v = [ g 0 e dode

! // L 20,a,1) dbda,
4 ly — X(0, )|

W=aviy©.0. W) — 0.
With the notation
Sut Py — Py, X V)= (X, v4+u), uc R3,
by construction in (2.47), we have that
Y =yoM;, M;:=D 0T 0Ty oT 'od !, (2.48)

and M;: Py 5 — Py, is a canonical diffeomorphism.
This distinction is relevant when X = X o d>t_1 is relatively small or large, i.e., in the
“close” and “far” regions

Q= {(0.2) 1 [X(D.2)| < 10(1)}. Q= {(W.2): [X(D.2)| = (1)},
which decompose phase space Py, = Q¢ U Q. We note that
XoM, =X, (2.49)

so 7, * € {cl, far} are invariant under .M, and in particular

// F(X(9,a))y%(9,a) ddda = // F(X(%,2))(y")%(9,a) ddda.
Qr Q7
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Remark 2.8. We highlight that the close formulation (2.47) provides an initial value
problem for y’, for which only W (and not ‘W) is involved. Different choices of normal-
ization of ‘W a priori correspond to different solutions y in the far formulation, which
however all share the same electric potential, as is clear from (2.49). On a given time
interval [0, T*], it is the choice of normalization of ‘W such that W(t) —;_.7+ 0 which
yields the equivalent far formulation in terms of y.

If w: Py, — R is a weight function, then we have that
wy’ = (Wy)oM;, w:i=woM; ", (2.50)

and we have the following bounds between primed and unprimed weights (in the super-
integrable coordinates (2.39) of Section 2.3.1).
Lemma 2.9. Let (¢’,§', ), ) :== (a,&,A,n) o M;'. Then
&/
il /S |
133

la —d'| SERAGIPSRY 2.51)

and on Q?l, it holds that

A=A < ()W),
In—1'] < @)WDI@* + (@) +a+d)+In(l +2/(a+a) )| W)l).

In particular, moments in a on 'y, y’ are comparable in the sense that
[{a)?y1llLr < 2[{a)? y2llr + Cp| WP [ly2lLr (2.52)

forvi,ya €{y.y'}, p=0,r €{2,00}.
Proof. We have that

a’>—(@)? =|V]* + &' —|V=—w@®)]* - I;IK_I =2W()-V— W), (2.53)

and thus (e.g., by distinguishing whether a < |W(¢)| ora > |W(?)])
la —d'| < [W(@)].
The bound for £ = % follows directly, whereas we compute that
A= IXx V=Xx (V= W)l £ ()W)l
Finally, we have by (2.27) that n = 329 -a= g(X -V) — o, and thus
n+z‘;—3 = nod;! = ;—’(X.V)—ooop;l,

"3
/+lﬂ

I
0 =n0d; oM = L X (V= W) —o 0 o b;
q
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so that
adY¥—-a® a—-d ~ ~ d =~
SPPLCR MU R, 38 W 37
q q q
+@o®toM; ' —ood ). (2.54)

The first three terms are bounded directly, whereas for the last one we observe that (as can
be seen directly from definition (2.15) of p in terms of x and a) it holds that

lpo @ oM, —po® ! < la—d|(a+d)t),

and thus from (2.27) we obtain

loo th_l o Mt_l —0o q)t_1| = )ln(%ﬂ
< ‘m(l + 20— 1) )‘
< (VB + Voo —T+ o =1

<In(1 +2+/|la —a'|(a + a’)(t)).

Now the equivalence of norms (2.52) follows from the bounds in (2.51) using (2.50)
as well. ]

Furthermore, we need to detail how the linear trajectories interplay with the close/far
regions. The following lemma shows that a trajectory of the linearized system (2.3) can
enter or exit the close region ¢! at most once.

Lemma 2.10. Let (X(¢), V(t)) be a trajectory of (2.3). Assume that for t; < t, we
have that ‘X(ll) € Q;ll \ foir and X(t;) € Qg‘;r \ Q‘t‘lz Then for all t > t,, it holds that
X(t) € Qb

Proof. We recall from Remark 2.1 that

detz—Vtz H dXt2—2Xt V(t
ﬁl OF=IVOI"+ H, E' (D)7 =2X() - V(2),

X(®)-V@)
X0

y (2.55)
E|V(I)|2 =q

so that ¢ — |X(¢)|? is convex, and in particular has at most one minimum, and |X| and | V|
have same monotonicity.
To prove the claim, we assume that 0 < #; < #; and

X)) = {r1),  [X(12)| = 10{t2).

Since |X(#;)| > |X(#1)|, we have that the periapsis occurs before 75, and thus |V(?)| is
monotone increasing on [z, 00).
By convexity, we see that |X(s)| < |X(#,)| for t; < s < 15, and by conservation of

energy, this implies that |V(s)| < |V(z2)]. If |V(£2)| < 9, we obtain that

IX(22)| < (12 — 1)V ()| + [X(11)] < 12 —11) + {t1) < 10{2),
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which is impossible. Now, since |V(?)] is increasing on (3, 00), integrating twice the first

equation in (2.55), we find that, for t > ¢,

(V@) + H)(t = 12)?
2

and thus X(z) € QM. [

(t —1)?
t2t2>

X0 = [X()* + > 92(1 +i2 > 3(1 +12),

3. Some kinematics and Poisson brackets

We now develop quantitative estimates on some dynamically relevant quantities. We recall
from (2.43) the expressions of X and V in terms of the superintegrable coordinates as

X = X1(5.n. Mu+ X3(5, 7. ML xu,

(3.1)
V=W¢EnMu+ Vi n AL xu
with
£ 1 D £ 2D
X A) =2 -+ —), X 1) =-—=(1
q 1 1 D qg 2 '
V AMN)=—(1—-—— ——— V- = — - =
1(5.0.2) s( N TTaay)  End ETT N

where we abbreviated
D=Dk,n+0) and N = N(k,n+0).

Since only 7 evolves along a trajectory of (2.3), with (2.40) we directly obtain the corre-
sponding expressions

X =X n+1g%€ 3 2, u L),
V=V n+1q%€ 3, A, u,L).

In the following, it will be useful to recall some simple bounds on the functions
involved in the formulas defined in (2.42):

/ 1
0<D(k,y)<2 y2+K2+Z’
K2+
1=y D(k,y) < ————2—,
ly2+K2+%

dyD(k,y) = — D7)

’ (3.3)
1
VY e+ g
K
\/:1 = 3KN(K,y),
y2 +K2 + I

max{l, |y|.k} < N(k,y) = 1+ [y| +«,
-1 = 8yN(K7J’)yaxN(K7Y) = 1»

0Dk, y) =
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and

D(k,y) Y+ +i+y
1 b
y2+K2+Z /y2+K2+%

_ _ Yk
3K3yD(K,y)—3x3yN(K,y)— (y2+/<2+%)3/2’

¥ +3
4
(y2 + K2+ %)3/2'

3 D(k,y) =Nk, y) =

ZD(k,y) = 0zN(k,y) =

Estimates on X. Looking at (2.24) at periapsis (when x - v = 0), we find that

2
|X|>§—q<>

but we need more precise bounds.

Corollary 3.1. We have the uniform bounds

[ 1 1 / 1
— 2 24 = . 2 2 +-<10 2 —
oV +x 4 \/ (x-v)* +« 4 n? 4+« +4

ta q
105 — 100 [1 + (Il + K)] < [X(9 + ra,a)|

and

< 100ta +100- [1 + L (n] + 0]
a
Proof. Bounds (3.6) follow from (2.34) since

X-v=1n-+o0.

(3.4)

(3.5)

(3.6)

3.7

The bound for X_; follows from estimates (3.3). The bound on |X| follows from the first

formula in (2.25). If x - v > 0, or if 4«2 ¢ [%, 2],

a qgrl q? a? (QR)?  4d*L%a
23 Bl e+ B ]
=Xal=a 2+<2R>2J42(X Ve ere Y
9q

> 1 . ),
- a2 ( Ty q |X vl
while if x - v < 0 and % < 4x? < 2, we use the orthogonal direction to get
Lxa 2aL )
X| > ‘X - L x-v)2+
Xl = alL 1~ a2 (2R)2 \/ x-v)*+

=L,
2a? a
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3.1. Poisson brackets

We will make extensive use of the properties of the Poisson bracket

gy =Vf Vg —Vyf - Vig.

Recalling that by construction the change of variables 7: (x, v) — (4, ®) in Proposi-
tion 1.4 is canonical, we see that 7 leaves the Poisson bracket invariant: for any func-
tions f, g, we have that

{fgy={foT.goT}oT 1 ={foT 1 goT }oT.

In other words, we can compute Poisson brackets in either system of physical (x, v) or
action-angle coordinates (¢, a), and will slightly abuse the notation by simply writing
this as

gt =Vf -Vig—=Vyf - Vig=Vy [ -Vag—Vaf - Vsg.

Two further useful facts are the Leibniz rule and the Jacobi identity

0={fAg.hi} +{g.th. [} + .S g}) (3.8)

which can be verified by straightforward computations. Finally, the nonlinear analysis
will exploit in important ways that the integral of a Poisson bracket vanishes

/ {f. g} dxdv =0, 3.9)

provided that the derivatives of the functions have appropriate decay.
Moreover, the Poisson brackets define symplectic gradients which we will use as vec-
tor fields to control regularity.

Remark 3.2. Not all vector fields are symplectic gradients (symplectic gradients are
divergence-free), but the canonical basis is made of symplectic gradients. In addition,
we have a few distinguished vector fields:'®
{.,aZ} = {., |V|2 + i} =2v-Vy + 26]% -V,
x| Ix|
(L) = efklgkyy, + e/*aky,,
{,0-a} =19 -Vy —a-V,.

We recognize that the first vector field above is nothing but the Hamiltonian vector field
associated to the linearized dynamics, while the next two are the Noether vector fields as-
sociated to the invariance of the equations under rotations (x, v) — (Rx, Rv), R € SO(3)
and to the invariance of the equation under rescaling (x, v) — (Ax, A7!v), 1 € Ry.

16Here and in what follows, we use €/ to denote the Levi-Civita-symbol in three dimensions.
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A crucial first Poisson bracket identity is the one showing that the Kepler problem is
integrable, i.e.,
{a®>, L} ={H,L} = 0.
We have several nice properties in coordinates (X, v), in which the nonlinearity has a sim-
ple expression,

1
{x,a} = 2—{X |V|2 + i} =aly, {x,L} =1xx,
q" . x| (3.10)
ay = ——, L} =1xv.
tvap = 3o (v.Ly=1xv

Both classical coordinates (x, v) and action-angle coordinates (1, a) satisfy the canon-
ical Poisson bracket relations
(97, 0%) = {a/ 2k} = 0 = (x/ xk} = (v/ vF),  (97,a%) =8, = (x/,vF).

While the superintegrable coordinates (2.39) are better adapted to the linear evolution,
their Poisson bracket relations are not canonical anymore, but still relatively convenient:
we have that

=1 0={21={¢u={L={ni={nu={nL={1L}
{(Au)y=—-Ixu {u vy =0, (3.11)
(L) u*) = /b, (L7 LK) = e/FaLe,
and {(L x u)?,L?} = L%u® — Lbu®

Remark 3.3. Note that Poisson brackets with A follow from those with L, since for any
scalar function ¢ it holds that

LAy =V {1},
However, for some computations it is useful to keep treating the Poisson bracket with A
separately.

3.1.1. Estimates on derivatives of X and V. In treating the nonlinear terms, Poisson
brackets of the kinematic quantities X and V with the superintegrable coordinates arise.
With (3.10), we can explicitly compute some of the relevant Poisson brackets:

%y =-". (£.X) = £y - X)) =-1xX
; 3 53 ai (3.12)
{a,V}:_§@7 {%—7 } 2q| |3 {A,V}Z—IXV
As a consequence,
2
e =1 [3Vf{s ¢+ (V7. 8.
52 % e (3.13)
v/ _ 25 X/ Sk
(V0 =350 260+ 5 e [(R0- 3 % X 8]
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More generally, for a vector of the form U = U; (&, n, A)u + Us(&, 7, A)L x u (such
as X and Vin (3.1) and (3.2)), and « € {£, n, A}, we slightly abuse notation by writing
0qU = 0,U1u + 0, UsL x u, and can then use the chain rule and the Poisson bracket
relations (3.11) to resolve Poisson brackets of a scalar function ¢ with U as

(U7.8) ={U/ e 0 — (U7 610 O + U7 {0, 8 + Uno? . )
+ Uz L fu? £} + Use/“Tud{Le, ¢}, (3.14)
where we have used that 0: U = {U, n} and 0,U = —{U, &}.
We now collect bounds on the Poisson brackets. From (3.12), it directly follows that
- 2 - - - 3 1 - -
6. X} ==, {AXH=IX]. REVH ===, KAV} =IV[. (3.15)
q 2q X2
Furthermore, we have the following.

Lemma 3.4. We have the following bounds for first-order Poisson brackets:

103X < E i) XL (X S ETNX| 4 1gE 2

_ N - (3.16)
0V S g€ 2c(k) 7>, V. S g672(1+1EX72),

and for second-order Poisson brackets for X:

2.3
) X

(R eh 80 < (=
q

(R e < fl (1 + X1,

X, b | < E72X] 4 1qE 3 + 12qE 72X 72,

2RI < 200K 10246, K)] < f;-x(x)‘%

(3.17)

34X, ) < E72 ()T (X] + g€,

and for second-order Poisson brackets for V:

g £ %, £ %2144
I A R () )

V. by < g8 + g 72X]72 + 12¢26 31X 73,

~ ~ 2 ~
2V] < qlo) 3 1046 V) < %K<K>—2|X|—2,

(3.18)

|03V < g&73 (k) (k) !+ tEIX2).

Proof. We begin by noting that we can rewrite (2.43) as

X 52( N e ( + +1)) & (1+ 2D )i
=2 o+ =) )Ju— -« u,
g \T+dez T 1122 2 q 11 42
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and therefore (e.g., by distinguishing whether « > % ork < % and using the bound on N
in (3.3)),

2
%(x)(l + (k) 7?D) < IXI. (3.19)

and in particular |X3| < £71(x)"!|X|. Moreover, since k = % and o essentially only
depends on p(n, k) (see (2.27)), we have that

—£0exk = A0k =k, —£0z0 = 10,0 = Kk0kO,
and thus for D = D(k,n + o), we have that —£9¢ D = 19, D, (§0g)*D = (19;)*D and

£0,D = 8,D + 9,00, D,
(£92)°D = 9D + 20,00,y D + (3,0)*93 D + 0700, D,

(3.20)
EOWN = 3D + 9,00, N,
(£02)>N = 97D 4 20,009,9y D + (3.0)*3N + 92009y N.
Using (2.34) and (3.3)—(3.4), we obtain that
K _
£10,01 £ (1 +(k)72D), ()|(E9)*DI 5 1, (3.21)
and similarly
_ 1 K
EILN| S () + 1) 3 W (1)|(£0,)°>N| < 1. (3.22)

Step 1: First-order derivatives. We are now ready to prove (3.16). From (3.2), we have
that

da,D D 8
81X1=§<8KU—I— §020 ).
q 14+4k2 1+ 4k2 1+ 4k (3.23)
) e 2< £0,D D & ) '
AT T U T Tt a2)
and thus
|04 X1 | + £[0, X3| < E7ie(i) X,
so that
01X] < £ ke (k) 2 IX.
Since
Qe X1 = 2X, — A0, X1, £05X3 = X3 — A0, X3, (3.24)

it directly follows that
1§0X] < IX].

Moreover, we have that

X, [ =1{X, fod}od, !,
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and thus in particular, using (3.12),
X.ny = {X,n—1¢%6 3} o &7 = 8:X 0 @ = 31£7'V, (3.25)
which gives the bound
(Xon)| < 611K +1g672

For V, we compute that

9.V = i(LE&N B 1 2(53)&13 B EOLN 8 ))
PMTT 2NN 1+42NU D N 1+ 42))
(3.26)
g 2 D/EHD EHN 8k ’
V= —( - - ),
E31+4k2 N D N 1+ 4«2
and thus, using (3.21) and (3.22),
102 V] S g6 (k).
With
E0Vi = —Vi — A0 V1. E0:Va = —2V3 — 10, Vs, (3.27)
we obtain the bound
|£0: V| S q67" (3.28)
Using (3.12), we have
~ 3 X
(V.n} ={V.n—1q*§ o' =9 Vod; ' — Z1g6™ ' —, (3.29)
t H t ) |X|3

and we deduce that
{V. i S q&72(1 + 161X]72).

Step 2: Second-order derivatives. We now turn to (3.17). The double Poisson brackets
involving & follow from (3.13) and (3.15)—(3.16). From (3.23), we have that

£RD gD 8 D 81— 12«2
1+4x2 1+4k2 1+4k2 1+4k? 1+4k2 1442

1
X1 =~ (00 + ,

1 (3.30)
2 (§293D £0,D Sk D 8 1-—12?

O e — )
AT T GE\T a2 I M L+ 4k 1+ 42 1+ 42 1 + 42

and using (2.34) and (3.21)—(3.22), then (3.19), we obtain
03X] < E72 (k) 72X,
which, deriving once more the equality in (3.24), also implies that

(K)12.9X] + 195X < £7%[X].
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By (3.25), we have that
{Xonhon} = {0eX.n —1g?6 3} 0 @' — (3167 V. p}
= 03X 0 ;' = 31722V + £0:V 0 @) — 3tE7 (V. ),

where we have used that {0:X, £} = 0¢{X, £} = —0¢ (¢ ~2V). Hence by (3.16), it holds
that

HXond ] S §721K1 + 1573 + 25 72q1X) 72
From (3.25), it also follows that
94X, ) = 9,0:X 0 @1 — 3719, V, (3.31)
which gives the bound

03X 0} S E720) T (X + 1gE7).

The bounds on V in (3.18) are obtained similarly. The Poisson brackets involving & follow
from (3.13) and (3.15)—(3.16). For the other bounds, we compute from (3.26) that

§20N §aLN D (£, D EBN 8
W=l v (V) e (5 )
1 D/ (£3;D E202D QN 202 N
e (ORI T ()
8 1—4k?
1 + 4k2 Tznl;)] (3.32)

2 Dr/&0,D N 8k \2 9, D\2 292D
2y = 4 _{(Ex N )_(EA)JFEA
E41+4k2N D N 1 + 4«2 D D
9 N\2 E202N 8 1 —4x2
(S-S }
N N 1+ 4k2 1+ 4k2

and thus, observing that the terms involving (EB%D)2

(3.21)=(3.22),

cancel in each terms, and using

103V] S qlk) 2673,
which, deriving (3.27), also implies that
(1)?1020¢ V| + |07 V] < g6,

By (3.29), we have that

(V.0).0) = 0V, 1267 0 07!~ Sugle™! )

:agvocb:l_%tqé* (2%4_5 E(p?l?))o(b:l)_thgfl{ X 7]}
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and hence
V. b | S 677 + 1q€ X2 + 2¢76 X2
Note that (3.29) also gives

0, (V.n} = 0,0:V o &' — -tqg la*<|x|3) (3.33)
and thus
0,4V, 1} < qle) 267 + 172 (k)X u
3.2. Improvements in the outgoing direction
In addition, we can obtain an improvement in the “bulk region”
q 1'* -3, 2
={@a) e Praiatis ) 1o Gl A =107 b6

which will be important for obtaining precise bounds on the electric field as in Proposi-
tions 4.1 and 4.4.

Lemma 3.5. In the bulk region, it holds that Z:=X—tVandV satisfy better bounds

£ £ 1

2
Z| < =In{t) + =1+ |n| +«), |V—a|< , (3.35)
q q q (1)

and in particular
< § §
X —ra| < ;ln( ) + —(1 + In| + «). (3.36)
Proof. Using (2.43), we directly express
=& ta’/q £ £ D ta’/q\ 2R
e Slova o e St £ (14 150). 2
n+ao +2+ N U K( “)+q1+4;c2 +—

V-a= _%(““L 1+D4K2?) B _%«1 * 1+D4/<2)“_21 iﬁkz”“)’

and using Corollary 3.1, we find that, in the bulk,

’

tq’
537 DS

Hence (3.35) follows by direct inspection and directly implies (3.36). ]

X| Sta, |G| <In(t), Nz

1.

Remark 3.6. In fact, using the equations above, one can push the asymptotic develop-
ment further

_ 2 3 (’“) 2,2
2= (—3m(“E)+n+m(5) -4 = S Ju- Saxw oS %H)
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and in particular, we have the asymptotics of trajectories

X = (ar— %%1 (73)) : #:qz(gll-i- z—ZL xR) + O(1),
Vol 5) e (R ) 0w

Along the “future” part of a trajectory, i.e., after periapsis (roughly speaking), some
important improvements for the A derivatives in these bounds are possible.

Lemma 3.7. In the region {X -V > —&(k)}, we have the bounds

EE £ 18
[X3| + 10,X]| < K_W < 7w 103X S X[
£2 1 « E 1
al+ oVl 5 5o EAEHCRES (3.37)
5
|mmsn<$ FX (V. S %—ﬂm

? (k) (r)
Moreover, for t > 0 we also have that, in the region {i V> —E(K)},

§ (§lk) 1 1 & ¢
& s -2 (=) s (G ) 639

q|X] IX] X2 [X]
Remark 3.8. Along the “past” part of a trajectory, i.e., in the region {X - V < —£ (k) }, we
can use the past asymptotic actions of Section 2.3.2 to obtain the same, improved bounds:
this follows from the fact that the expressions of X and V are identical (see (2.45)), and

satisfy the same Poisson bracket relations (see (3.48)).

Proof of Lemma 3.7. We treat separately the regions {|X - V| < (k)&} and {X -V > (k)&}.

(1) The region {|X - V| < (k)&}. Since by formula (2.6) along a trajectory of (2.3) it
holds

a trajectory passes through the region {|X - V| < ()&} in time at most
28(k) - 2a7% = 4q €3 (k).

Letting #,, denote the time of periapsis (where by (2.24), |X(z,)| > ( )), we thus have
by (2.6) that in this region

4 t
%WFSMPSMWW+[

d 2 54 2
GiXOP|ds £ 5 ()

The claimed bounds then follow from those in Lemma 3.4.
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(2) The region {X-V > (k)&}. Here the claim follows from the bounds on D, N and
their derivatives in (3.3). (Here again, we write D = D(x,n+ o) and N = N(k,n + o)
if not specified otherwise.) To begin, we observe that since n + o = £ 1X-V > (k) > 0,
we can use the bound from (3.3),

K2+ 1 K+ g
Iy>0D(k,y) = 1y>o 4 =< 2 ,
Y242+ 4y 24K+
to deduce from (3.2) the bounds
2 2
-S—N <[Xi| = 2E—N, 5 <|X3| < 25 (3.39)
24 q q q
Since moreover )
p s <,
N
we can strengthen (3.21) and (3.22) to
K K
2 D| < —, (NS —. 3.40
§|A|~N E[0AN| 7 (3.40)

Furthermore, we note from (2.30) that, after periapsis, p = ¢£~2|X| and using (2.35), we

see that
2

90| <kp ! S—=—.
0

q1X]|
From (3.23) and (3.39)—(3.40), it thus follows that
£ £ 1« 1 1 K E?
102 X1| < —K— WX3l S -5 v S 7o e (3.41)
qIX|’ q KN~ ‘1( q1X]

and this gives the first and second bounds in (3.37). From (3.2), we have that

q 1
|Vl|s§7 |V3|<§:2N2,

and by (3.26), we obtain

1 2
03V] < V] + Moaval s L L€ 8 Lk

B2 N2 [ (3.42)

-
= |
E
[}
—
=
-

where we used that |X| < %N by (3.39).
Inspecting (3.20), (3.3)—(3.4) with the improved bound in (2.35), we obtain the bound
|(£04)2D| < N~!, and we obtain from (3.30) that

o1&
I e [/ €1

102 X1] < () , —
Aot qlX| g€ (k)2 N

which gives
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Similarly, deriving (3.24), we obtain that

(k) &

10,0:X| < -
§ g qX|’

and using (3.31) and (3.42), we obtain (3.38). Similarly, starting from (3.32), we obtain
the improved bound

1 & 1
82V < 1 < Sl
BVIS G507 7 5 00
and deriving (3.27) and using (3.42), we find that
E 1 «
10607V < =5 7>
f g IXP (<)
and thus the second bound in (3.38) follows from (3.33). [

We can now compute some bounds which will be instrumental for the propagation
of moments and derivatives in Section 5. We begin with some Poisson brackets that are
simple to compute.

Corollary 3.9. We have the general bounds

2
3 < q
X,a}| < X V,a}| £ ——,
{X.a}| < 52| | [{V.a}| )2
while in the bulk region, we have the stronger bounds
X < < 53 -2 \ < 4
and the more precise formula
o
1g]0:X —2X]| < —« < [X]. (3.43)
q

Proof. Using (3.12) and (3.11), we compute that
{ij,ak} = {ij,a}uk + a)?gej’””{Lm,uk}u” =a 'Viuk —a)?g(Sjk — ujuk),

~ . ~ . - X/
(V7 aky = (V7 aw® + aVse/™ (" k" = %Wuk —aVs(87% —u/ub).

The first four bounds follow by inspection using (3.2) and (3.19). The bound on {’\7 n}
follows using (3.28) and (3.29). For (3.43), we observe that by (3.24) we have

£0:X = 2X — 203 X1ju — (X3 + 19; X3)L x u,

which we can estimate in the bulk 8 with (3.39) and (3.41) from the proof of Lem-
ma 3.7. ]

We will also need some derivative bounds.
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Lemma 3.10. We have the general derivative bounds

XY+ HZyY Sq tE +E)+ THE + >+ 27 ) wel{ £y}l
fesICc

_ -1
a1V 5 [T+ 2] 3wkt
|X| fesIC

(3.44)

and in the bulk, we have the more precise bounds

18{Z, v} S (€)°In()- Y wel{ £y},

fesIC

> wrll Ayl

fesIc

+ g3 (3.45)

t

e

1g/{V—a,p}| <

Proof. For control of {X, y}, we use (3.14) to get

- (X7 ) (1+ £){X/, £)
Xy} = T s{é,y}—g—z
+ (1 +EHXTF - w {LF, ) + Xwa{u/, y)

+ XL - wafud, yy +ud (1 + &) - wi{LE, p)),

wn{% y}

and using (3.15) and (3.16) with (3.7), this gives the bound on {)~(, y} in (3.44). The
general bounds for {V, y} follows similarly, while the improved bounds follow from
Corollary 3.9. In addition,

SZ{E yiu+ S{u 4z

The estimates of {Z, y} follow along similar lines. Starting with

{a,y} =

Z = lel—‘rZ:;LXll,
2 tqz

7, =& =(n+5+ (1 2 )1+ 2%))
O ~ b
VAN 1+ 4k? E3IN
~ 26 /1 D 1q?
B2 )
? s a0 N
where D = D(k,n + ) and similarly for ¢ and N, we compute that

{ZV} [221 — i—z(lca,(ff +

3t 1 D tq?
qa )q

Ziu,y) = —/
(Zyu,y} = ,,0+(2~|—1+4K2 oF

N £ N

b (1 ) (60D + 50D - D))

y (3 B Kkd N B 3tq? 8,,]V)
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2

+ {n,y}u%[l + 950 — (% + l:ﬁ)anﬁ * 1+14,(2 (1 + ;3;)8"5]

Ay} &1~ (1 D\ tq® 3N
—u—|0,0— (= = ——=
+ £ u [ o (2+1+4K2)§3N I

1 tq? ~ 8k  ~ ~
1 _ (a D——D)] 7wy},
+1+4K2( +§-‘3N) oD~ 7 D) | + Zituy)

and similarly

2

L ey o5 2% tq Y S
(Zsyy =2 ‘[—Z3+;1+4K2(1+ésﬁ)(xaKD— b 3,D)

28 /1 3 29, N
ith m)w( 3 +K,% )]
~2f D a, N
+{r1,V}-[— (1+—) ;(- 1+D4Kz)€3qN NN]
2 ~ ~
{Aéy} 2;[1 +14K2 (1 + ;ZN)(—KBKD + l_f—’;KzD)
1 D 2 9N
(§+1+4x2);3qﬁ I;V ]
In general, we have that
5 £2 1q 3 ~ ~ -1
1Z1] < ;(1 + D) + % Z3] £ = (1 Il + - 52, k0 o] S 1. [050] < (),

and we obtain the bound
3

. S g (S nl+ 1+ rg) - weltep

14 £
1+£ In| +1q%€7>
() il
EZ
(e + 20l +0) - waltu )
14§ In| +19%€73
1 . L.y},
(T )
from which we deduce (3.44). In the bulk B, we have that
_ 2 _ 6 3 ta?
Zi0 <o metn. 1ZasE 0l s S s, 1<,
q q t2q* tq®>" €3N
3 1 2 - 6 1 2 - - 3 -
D<M’ |8,,D|§M, |8KN|=|8KD|§S—K, 19,N| < 1,
tq 12q4 lq2
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and this gives that

- 3 1 2
181{Z. 7} < ﬁl (1) - wg €, y}|+%E w . y}|+§ In{t) - mafu, 7}
+wul{Ly.

from which (3.45) follows. Similarly, we compute that

V2 Ry + (7 - Dl y)

+ 173ejkl{Lk, y}ul + 173ejlek{ul v}

g 1 [ ~
- —= D,
2N 1+4k? {D.vi=

Since in the bulk we also have

(V/ —al y}=—

2D e+ e 7y —2cax ).

8k
1+4 2 &2

- - g_-3 - 56
V—-a|+ || <=, |V3] < ==k,
| |+ VAl > V3] 23"

we deduce that

5 3 4 3
¥ —a <o Swgle 4 Sl + St + S ) m

Remark 3.11. In view of the terms arising in the nonlinearity, for the sake of complete-
ness we also compute that

EVs) = A YE V) (Ixu) = A1 83X (Ixu) 53 X3

2 IXP O 2qXP
In the region {X - V > —(k)£}, as in the above lemma we obtain from (3.39) that
52 1 52
VB S = —=. |0 Va}| S —=.
9 X1 qlX] qIX|?
and thus also
= - - = §
. V3l < [{n. Va} o @71 + Bt57*q (6. Val S —2— + = (3.46)
gl x> XP
Similarly,
£ E1 _§& 1
X5 = | 33 5 o 5 g
qN* "~ ¢* X]?
: X (3.47)
Xl S M X < (14 55
X% o Kl +|X|2)

3.3. Transition maps

Since we propagate derivative control through Poisson brackets with the superintegrable
coordinates, we will need to understand the relation between Poisson brackets in past
versus future asymptotic actions, and compare the close and far formulations.
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Transition from past to future asymptotic actions. By construction, the past asymptotic
actions are anchored at the periapsis in (2.44) in such a way that the Poisson bracket
relations (3.11) remain almost unchanged. Using that

{n,k} = {k,u} = —l(l xu), {kIxu}= éu,

K

g §

we can verify with (2.44) that
(ED Oy =1, 0={D, 1O = (5O, 1)),
{f(_),u(_)} — {77(_),“(_)} =0= {E(_)7L(_)} — {U(_)vL(_)} — {)L(_),L(_)}
{X(_),u(_)} =19 % u(_), {u(_)’j,u(_)’k} =0,

(LOW uOky = gikayra (0] 1Ok = crkap (),

(3.48)

The relation between Poisson brackets in past and future asymptotic actions is now easily
established: for a scalar function ¢, we have

D0 =—0 09.0= 54;”“{5 & =0y + 1 g
DO =000, L9 =1{Lg,
w0y = é[_ (4K126i21)2“ + 4(2212;4116)22)1 x “]{5’ & (3.49)
+ é[(4,(126i21)2“ ta 32216:1)21 xultr. &)
e T LT 1]

In particular, we highlight that the transition from past to future asymptotic actions (e.g.,
at the periapsis) can be carried out along a given trajectory.

Transition between far and close formulations. With the notation of Section 2.3.3, we re-
call that the transition between the close and far formulations is given by the canonical
diffeomorphism M; of (2.48). In particular, for Poisson brackets with a scalar function w
on phase space we have

{w,y"} ={w,y o M;} ={w',y}oM;, w:=woM;". (3.50)

The derivative control of Section 5.3 will be given in terms of a collection of Poisson
brackets of the unknown y with the functions f € {£, n, L, u}, weighted by ws € R,
collected as

D@Wa):= Y wl{fy}l.
Selgn Ly
The corresponding transition maps are collected in Lemma 5.10 (resp. Lemma A.1) be-
low.
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4. Bounds on the electric field

From here on, we stop tracking the homogeneity of the quantities since the magnitude of
electric quantities will be compared to powers of /12 + |y|? which are not homogeneous.

4.1. Electric field, localized electric field and effective field

Given a density y, we define the electric field and its derivative as
1 ~
E(y.1) = . // U;(y — X(#,2)) - y*(¥,a,t) ddda,
i

1 ~
1) = - // Moy — K(0.2)) - 72 (0. 2.0) dOda,

where

—1 y/ -1 1 y/ yk
Uj) =y = o M) 1= 0y b = = (85 = 350,
! Yoyl owp R TR TER S T
Here we show how to bound the electric field and its derivative using moments on the
unknown y. Towards this, we define the bulk region as in (3.34)
g V4
B = {(ﬁ,a) €Poaiat+b =< ~—— En+A= 10—3m2},
{g) 10
and we notice from Corollary 3.1 and Lemma 3.5 that if (},a) € 8, then (¥ + ra,a) € Q4
for > 0, and we have the simple bounds

ta3 1ta’ 1ta3 ~
2 >n(d +ta,a) > Ei’ o(% +ta,a) > gi, 1073ta < |X| < 10%ta. (4.1)
q q q

In the complement B¢, we can trade moments for decay in the sense that for all k > 0,
Lge Skt F[E7 [N + A% +a* + £*F 1 5c. (4.2)

In order to obtain refined bounds on the electric field, we decompose it onto scales.
Let ¢ € CX(R?) be a standard, radial cutoff function with supp(p) C {% < |x| <2} and
Jr3 %dx = 1. Note that since

°° dR B
4JT|X| - /I;:O (PR(X) ﬁ» ¢R(X) = W(R IX), (4.3)

W€ can decompose

oo dR
Ei(y.1) = / € ,r(y. 1) =

1 ~
&ir(y,t) = Rz // 8j<pR(y—X(l9,a))y2(z9,a,t) dvda.
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‘We also introduce the effective electric field

© dR
600 = [ gk G
R=0
4.4)

5. = —R 2 [[ 0ry — 120y20.0.0 dvda

We proceed similarly with the derivative of the electric field

o dR
T = [~ Fatrn G-
R=0

Far.0) = — R / 3, 0c0r(y — X(9.2)) - y2(9. a.1) d9da,

o0 dR
/ F o y.1)

Fie(y. 1) :
ik Reo * R

Tt i= = B [ 0000m(s— 1) y20.0.0) d9da

When R is too small, volume bounds are not enough to overcome the singularity at R = 0,
and we rewrite, using formula (3.9), and the constant of motion z for the asymptotic
equation

Fik,r(Y, 1) = R™? //{8j(pR(y—X),Vk}'/L2(X, v,t)dxdv
= —R_zt_l/ {ngoR(y—x),xk — vk} pP(x, v, 1) dxdv
=R / {3;0r(y — X(8,2)), ZF} - y2(9.2,1) dVda

— R // 8,0r(y — X0, (7K, v} - y(9,a.0)ddda,  (45)

which has a similar structure as &;, except that we have replaced one copy of y with
a derivative.

4.2. Approximating the electric field by the effective electric field

Assuming only bounds on the moments, we can obtain good bounds on the electric field,
and assuming control on Poisson brackets leads to control on the derivatives of the electric
field.

Proposition 4.1. The electric field is well approximated by the effective field as defined
in (4.4):

[12 + [y2] - [&(y. 1) — € (y. )| < t7/° NNy, we)
[+ 1Y% |7 (y. 1) — F My, 0 S 7VEN,,
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with
Nyi= 62 +a + P+ Ayl7s +IE +a® + ' + Ayl @D

Noi= Ny + 82 +a® + P + 2212y o + 3 gt £} B,
" fesiC

Proof. We first observe that &g satisfies the simple bound
R?|Er(y, )] + R?IER (v, )] + R¥|FR(y. O + RIFR (v, O S Y175 -

If t <4 1, the bounds follow from simple estimates on the convolution kernel. In what
follows, we assume that ¢ >, 1.

(A) The electric field. We prove the first bound in (4.6).

(A1) Large scales: R > W. We first compare at each scale

&Ry, 1) — ER(y. 1)
= 12 [ {0ats — 1)~ 0,00ty - K@)l 0.0.0) d0d
+R7? /3 [0,9r(y — t2) — ;0 (y — X(9, 2))]y*(9,a,1) d9da
=Ig + Ige.
In the bulk, we can use (3.36) to get
|Ig| <R3 /f IX(9,a) —ra|y?(d,a,1)ddda
3
< R™3(Int) //[1 + &4+ 0t + A2y (9, a,1) dvda.
Outside the bulk, we estimate each term separately
1| < [gel + 13e].
If |y| < 10¢, we can use (4.2) to deduce that
[[Le|+ 13| S R72 // 7R [E2 2K 4 A% 4 a** 4 £%))2(9,a,1) dVda
S @+ Iy TPRE + @+ P+ 2y
If |y| > 10¢ and R > %‘, the same bound gives

el + 113el S R0 ™ Ugoaaiyizyvzgioy - IE + @ + I + A5y,
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Iyl

5 and we can

Else, we see that, on the support of d; ¢r(y — ta), we must have that a >
modify the bound above to bound the effective field

12| = )// 8, 0r(y — 1a)y2(9.a.1) d9da
<R // ER[EH 2 + 2% 4 a* 4 £%))2(9,0.0) dDda
S @+ YPTPRIE + @ + 0P+ 2%y,

On the support of d;¢r(y — X (9, a)), we have that | X (9, a)| > \g_l and therefore

- 8 4
2y <4+ I1XP) <20 +a®) + gt + i— + = e (4.8)

and we can use a variation of the previous argument,
thel=| [[ dent-K.apr*0.a.0 avda
Bc
S @+ YPTPRZNE + @ + 0P+ 257,

Taking k = 1 and integrating over R > (> + |y|?)%/8

tribution to the first line in (4.6) since

, we obtain an acceptable con-

oo

2 2 2 29-1/2 .
t°+ -+ + (f
[ lyl”] R y[2) 5 [[ lyl”] ™! /t2+|y|2}

< ().

(lnt)]dR
R3

(A2) Small scales: R < w contributions of the electric field. In this case, we
again observe that (4.8) contmues to hold on the support of 9, YR (y — X(ﬂ a)) (this is
clear if |y| < 10¢, while if |y| > 10¢, then the bound on R forces X to have a similar size).
Using also that |i7| < a, we can bound the contribution outside the bulk

@ + yP) 2 |6r.ge| < R / 19,0R(¥ — KO 2)] - (@) (7' + 26 +a'2 1 £12)

Cl4
X —=" )/2(7.9, a, t) ddda
(V)

dvd
<22 [ Byonty - Xeo.an)- T
<N [ lor -l T T S MR, 49)

where in the last line, we have used the fact that (3, a) — (X {7) is canonical.
3/4
In the bulk, since ta > — o and using (3.36), we have that

lyl ,
ly—tal = =5, 12 4 Iy|* < min{lyl*(§)*, 1% (a)?}, (4.10)
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and we can use Lemma 4.2 to get

1+ v l6R 0] 5 20 [ erty K@)l €720.a0) dbda
B

S RIE) + () + (1)3]V||igf>a7

and we can deduce a control over the small scales

L, [EHDYE
12+ yPI /

R
(€r.8] o < (@ + ¥ 16)°
(A3) Small scales: R < -+
the support of integration

+ () + AP lLs -

contributions of the effective field. Using that, on

2
(9) < §—|n|+$— M <,
q t

which follows from (2.41) for the first inequality and direct inspection (separating the
case |y| <t and |y| > t) for the second. A simple rescaling gives

2+ [y2P216 < R “[ 19,0r(y — 1)|(a)*y2(3.2.1) dDda

S RID2@) Y30 S Rlla® + & + Inf* + A%y 150 .
We conclude that the small scales give an acceptable contribution to the first line
of (4.6) since

2 2 USRS 2 21-3/2 2 21-1/10
i +|y|]-/“ [ + yPI72dR < [ + IyI?]

(B) Derivatives of the electric field. The bound on & follows similar lines, with a varia-
tion on small scales, where we make use of (4.5) to improve the summability as R — 0
For large scales, we compare similarly

FiR(.1) = Tl o (3.1)

= &7 [[ 3y000r(y 1) = 0,800y — K. )y20.0.0) dd
B

+ R // (9, 3k 0r (Y — 12) — 3; D r(y — K (3. )]y* (0. a.1) ddda
=1Ilg + llgec,
and again
Hg| < R~

Hin) [0+ &%+ 0" + A2y 175

e | + 0G| S R + P17+ 1 syt DIE® +a + [0l +K]V||Lz :
and we conclude similarly
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For small scales, we make use of (4.5) and adapt the above computations, finding the
contribution of each term separately. Outside of the bulk, we use (4.8) and (4.2) together
with bounds (3.44) to get

[ + 1y1*)*| &, 2|

- - 4
SR [ ponty - K@)+ + bl + E y}|% ddda

dvda R

< [ lenty K- TN 5

- N,. 4.11)
In the bulk, using (4.5) and (4.10), we can estimate
2 212| ¢ < |y[\3 , 3 31,07
[+ Iy 17r.8] < R( 55 10jor(y — X (0, @))| - (a)(§)°|y{Z.y}| dVda,
B
and using (3.45) with Lemma 4.2, we obtain the bound

[t + |y*1?| Fr.8] < R{Int)Na,

and this leads to an acceptable contribution. Finally, the bound on the effective field is
treated similarly using (2.41) to get bounds on the Poisson bracket with ¢:

Ty = R [[ 0805000 = )2 0..1) dida

= 2R %1 // dor(y —ta) - (9%, y} - y(9,a,1) dVda.

Therefore, in the bulk, using Lemma 4.2,

_ ddda

[+ yPPIF RGOl S R 213/ 10,9r(y — ta)|{@)* (D) (D%, v} - (9,2, 1) o)
< RN»,

and we can proceed similarly outside the bulk using (4.11) instead. ]

Lemma 4.2. Let § € CX°(R) be a radial cutoff function, supp(¢) C [0, 3], and let > 0
on [0,2]. Then on B, we have the following bound.:

[ 7R K=y s a0 d9an < Q0P Sz, ()
B =yl

Proof. For any unit vector e with X -e = 0, we observe that
X—yP=(e-y)’+X—-yi, yL=-ex(exy),

so that
GRX—y) S@R e yDF(R X —yL]).
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We can consider the symplectic disintegration of the Liouville measure associated to
the mapping AMom: (¢, a) — 1 = % € S2, and we obtain accordingly

[/dz?da:/ dv(l) || ddoda, P={3-1=0=a-l}.
1eS2 2

Indeed, both sides are invariant under joint rotations (3, a) — (R, Ra) and their restric-
tion to a plane agrees.'”
Thus it suffices to consider the planar case. When 1 = (0, 0, 1), we choose coordi-
nates &, 1, A, ¢ such that
2
a
a= C—I(cos @,sing,0), ¢ = arctan(—)
§ al
which are in involution,

En=1=H{p. A}, {&EA =4 =0={§¢}={n¢}

On P N B, the mapping Y: (£, ¢) — X (£, 1, A, ¢) is an embedding'® I x ST — R2\ {0}
for some interval I(n, A, t), and, using (3.10) and (3.43), we see that, on the support of
integration, we have the bound on the Jacobian

) <
£|det ~ [X]* ~ |yl
‘ 8(5,90)‘

and we deduce that

// FRYX—y) f(Da,1)ddda
B

< [Lae ([ gty avan) dvay

SN0 1oz () .

4.3. The effective fields

In this section, we complement Proposition 4.1 by obtaining bounds on the effective fields
for particle distributions following the evolution equation (5.2). These follow from varia-
tions on the continuity equation.

To control various terms, we introduce an appropriate weighted envelope function.
For ¢ € C°(R?), define

M(y.1;) i= // $(R™\(y — a))y>(9.a.1) dPda.

17 Alternatively, one may observe that wp o0 = AMom*wg> + wg,, where wy stands for the
natural symplectic form on Y. We thank P. Gérard for this observation.
18This can be seen since changing ¢ amounts to rotate about 0, while g IX|2 > 0.
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Bounds on the effective electric potential, field and derivative will be related to the con-
vergence properties of Mg in various norms (see (4.12) and (4.14)). In particular, they
allow us to obtain global bounds on the initial data. For conciseness, we introduce the
near identity

Iy, R) := 1+ [1+ |yP12 - Lgy<10m).

and we can state our bounds in terms of I (y, R).
Lemma 4.3. We have bounds for the initial data
[+ [¥P12MR(y.0:¢) S Le(y. R min{L. R} [[[{@)**yol75 + 119)*a) ol 0 ]
and in particular
[1+ [y*]- 16" (y, 0)| < II(a)Vollilzh + ||(a)(l9)23/0||i§<;,
[+ IyPP2 170 01 S @) roll7s + (@) 2(0)poll7ge + Na(0).
Proof. Indeed,
Me(y.0:9) < lly[72 . [0+ P12 Mr(y.0:0)Lqy12108 < )27 115
and when R < 1,

MR(y.0:9) < R*[|{9)?y 7o .
[L+ IyP12 - MR(3. 0: )L gyiz10m) S RI(9)* @)y [ o0 .
The bounds on &° and F ¢ follow from direct integrations decomposing into {|y| < 10R}

and {|y| > 10R}, and using a variant of (4.5) with v instead of z, and (3.44) for # T when
R« 1. |

Assuming only moment bounds, we can obtain almost sharp decay for the effective
electric field, and assuming moments and Poisson brackets, we can obtain sharp decay for
the effective electric and almost sharp decay for its derivatives.

Proposition 4.4. (i) Assume that y satisfies (5.2) and the bounded moment bootstrap
assumptions (5.8) for m = 30. For any fixed p € C°(R3) andany0 <5 <t < T,
it holds that, uniformly in R,y and 0 < k < 3,

[1+ yP1*/2| MR (y, t: ) — Mr(y. s:$)|

t
<¢ 31y, R)-min{Rz,R*I}/ (u)™3% du. (4.12)
N

In particular, Mg(y, t; ¢) converges uniformly to a limit Moo (y; ¢). This implies
almost optimal decay on the effective electric field

[t + [y]- 16 (y. )| < &3 In(z). (4.13)
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(i1) Assume in addition that y satisfies the stronger bootstrap assumption (5.36), then
we can strengthen (4.12) to

[1+ [yP1*/2| MR (y, 1: ) — Mr(y. s; $)|

t
<4 gflk(y,R)./ min{R>, R™ )"V )" In®*° (u) du,  (4.14)
S

so that . . N .
[+ IyI°]- 1€ (y. O] S €7,

12+ |y2P% 17 (y, 1)) S 2 Infe).
1

(iii) In addition, under the hypothesis of (ii), there exist V*° and & j‘?o = d; ¥ such that

(4.15)

(@) (0= (ra, 1) — U (@))l|zee + [[(a)(12E5" (ra,1) — €7° ()|
< et (4.16)
and consequently

11T (X(,a), 1) — T°(@)|| oo (m) + 126 (X(D.a). 1) — € ()| L (3)
< 2710, 4.17)

Proof. Let pr(x) := ¢(R™'x). Using (5.2), we compute that
0uM(y.t:9) = [ 9ry —a)(Ea.y?) dida
— [ ¥t 00~ a avaa
— R //ﬂ y2(6;(%7a'} + W, (V7 20190y — a) dDda

R /f VEHXI aly + WiV a'}](019R) (v —a) dDda,

and, using Corollary 3.9, (2.41) and a crude estimate, we can get a good bound in the bulk
region,

uMr.05.01 5 B [ 716 (R al) 4 WT ol N @iy — ) d0d
S €1 + @7 W mingR% R Q122+ 109) I3 )
and assuming that |y| > 10R,
(14 1215218, Mg 8(y, )| 1{yj=10R)
< K2 [ 520604, ]9 5 - ) d v

< I€lzee + (1)~ W] - min{R?, R™"} - [Il(a)k/zylli;a + II(a)k/z(ﬁ)ZVIIfgfa]-
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Outside the bulk, we also use (4.2) to get

M a0 B [ 52060y 490,595 - ) d v
< RIxI€lLe + (W]
- // . ;—Z(G)W +E 0t + 222 (91¢r)(y — )| dDda
< er(t)7* min{R?, R™1} N1,
and similarly
[1 + [y1*/?(0; Mg 8¢ (y. 1) |Lqyi=10R)
SR+ Iylz]k/z‘ //ﬂc y2[6,{X7,al}y + Wi{V/ a}|(8,¢r)(y — a) d¥da
< RMII[xIEllzo + (W]
- [/ . ;—z(a)k+l[a4 +E 0t + 222 1(91¢r)(y — )| dDda
< &1 (t)7"* min{R%, R"}N;.
Adding the two lines above, we get that for k < 3,
|0, MR(y.1: )| < &3(t)”"/* Ny - min{R?, R™"},

[L+ [yP1¥/2 - |0, MR(y. : )| Lgy=10y < €3 (¢)"7/* Ny - min{R?, R™'},

which gives (4.12).
We can now fix ¢ > 0 such that ¢pp = ¢ (with ¢ from (4.3)), and let Ml(zz) (y, 1) :=
MR(y, t; ¢). Letting

(4.18)

Ry = min{t, (1> + |y|»)*/®},

we see that

% dR
(1% + Iy 65" (y. 1) = [1> + |y|2]/ // 8j§0R(y_ta)V2(19,a,t)dl9daF

1+‘y‘ /rO/ @) (r ——a))yz(ﬁ,a,t)dﬁda%,

where r = % To go further, we observe the simple bounds as in Lemma 4.3,

(W)* - Mr(y.1:9)
S Le(y, Rymin{L, RU(@) 2y )7, + 1)@ Py@)l7), @19

and therefore we can estimate the case of low scales 0 < r <ry := Ry <1,

/Oﬂ/ @)(r a))yz(ﬁ,a,t)dﬂda#

2 ri
< (X m@ (Y ) 9r < 2N,
t o |\t r3
r=

Ilow :— ‘y)
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while for the higher scale, we integrate in time using (4.19) at time # = 0 and (4.18):

dr
Ihigh = 1+‘y‘ r2 (8]90) a))yz(ﬁ,a,t)dﬁda—‘
ri
2 [o® d
< [ ) G [ )
r=rq
o
58%4‘8%]\,1[ W ,\,80"‘81(1117'1)
r=ri

which gives (4.13).
We now turn to (4.14). For R > 1, we can still use (4.18). In the case R < 1,

0 Mr(y,t:¢) = —/ Pr(y —a){Hy4, y*} ddda

S f Ry — &K, ) + W, (V. 1)y doda,

and therefore, using Lemmas 3.10 and 4.2 inside the bulk region, and Lemma 3.10, (4.2)
and (4.9) outside the bulk region, we obtain that

R73[1+ [yP1¥2|8, Mg| < Ix(y. R) - [t]|€ Lo + | W] - N2,

which leads to (4.14). Proceeding as above, but using the bound above instead of (4.12),
we get the electric field bound in (4.15). To get the bound on F° in (4.15) by using
part (B) of the proof of Proposition 4.1 when R < and (4.14) for R larger. This
also implies (4.16) since

t
(In309¢z))
(a)2|128]e-ff(ta, t)— szgfﬁ(sa, )|

P 2 2 dr
< {a) _0‘ djer(a—o)ly™(®.a.1) —y"(0.a.5)] d0de|

o dr
< [ @M 60 - MO @) 5,
r=

which gives (4.16). Finally, (4.17) follows from (4.15), (4.16), Proposition 4.1 and (3.36)
once we observe that, for (9, a) € B,

1&;(X(9,2),1) — & (1a,1)| 5 || F|reo - [X(9,2) —ra| S &7 (1)™2. .

5. Nonlinear analysis: Bootstrap propagation

In this section, we will establish moment and derivative control in the nonlinear dynamics.
In our terminology, “linear” will henceforth refer to features of the linearized equations.
In particular, the linear characteristics are the solutions of the linearized equations, i.e., of
the Kepler problem (2.3), and thus by no means straight lines.
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In this section, we will work with weak solutions, which satisfy the equations in a dis-
tributional sense. Under our assumption (5.4) (and assuming for notational simplicity that
(X0, Vo) = (0,0)), the existence of a global weak solution px of (1.2) can be obtained
following (small variations of) the arguments in [13]. Through a bootstrap argument in
Proposition 5.2, we will show the propagation of moments on such a solution, which
yields (in Theorem 5.1) a global solution for which the associated electric field decays at
an almost sharp rate. Proposition 5.5 then shows that also derivatives can be propagated,
which leads to unique, classical solutions via (weak-strong) uniqueness.

5.1. Nonlinear unknowns

We now switch to a new unknown adapted to the study of nonlinear asymptotic dynamics.
We fix the (forward) asymptotic action map 7: (x, v) — (¥, a) of Proposition 1.4 and
define

Y =voT lod !, yi=voT lod; !,

where ®; is the flow of the linear characteristics, i.e., of the Kepler problem (2.3). While
we will work mostly with y for which we can obtain slightly stronger bounds, we recall
from Section 2.3.3 that only ' is unambiguously defined via an initial-value problem.
Once we fix W, the two are related by (2.48), so that in particular

y(%,a,t) = v (X +ta,a), V(& +ra,a) — W(),1)

= v(X(¢ +ta,a), V(¥ + ta,a),t). (5.1)

Since the canonical transformation 7! o ®;! filters out the linear flow (Proposition 1.4),

we observe that y (resp. y’) evolves under the purely nonlinear Hamiltonian H4 o 7! o

dbt_l (resp. H o T 1o Cbt_l) of (1.21): with a slight abuse of notation, we keep the same
notation for the Hamiltonian in the new variables and recall from (2.46) that

8y +{Hay} =0, y(t =0)=vo, Hy=QyX) +W-V,
1 1
(y,t =——//~— 20,a,1) dbda, 5.2
V.0 =— |y_X(9,a)|V( ) (5.2)
W= @V.y(0,1),
where W(t) is fixed by imposing the boundary condition
W) -0 ast— oo. (5.3)

We will focus on this equation.

5.2. Moment propagation

In this section, we will show that control of moments and (almost sharp) decay of the
electric field can be obtained independently of derivative bounds.
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Theorem 5.1. There exists €, > 0 such that the following holds for all 0 < &g < &x.
Let m > 30, and assume that the initial density Ly satisfies

1%~ 4 x> + (V1) pollzz, < €0, 7 € {2, 00} (5.4)

X,v —

Then there exist a global solution y € C2([0, 00) : L%a N L) to (5.2) and ‘W satisfy-
ing (5.3), with an electric field decaying at the almost sharp rate,

{r)

1€(t) Lo < e2In =

(t)*
and the bounds for r € {2, 00},
@)™y @) les  + IE" vl < 2e0,
A2y (@)l | < 260 2™ (1), (5.5)
™y (@) lLge, < 280 In*™ (7).

The proof also shows the continuity of the above moments on y. No claim of unique-
ness is made for this topology involving only moments. However, (weak-strong) unique-
ness holds as soon as we control derivatives of y, see Proposition 5.5. (We remark also that
if the support of p¢ is separated from the origin, uniqueness follows from the well-known
arguments [40].)

As we will show below, in order to establish Theorem 5.1, it suffices to prove the
following result concerning the propagation of moments.

Proposition 5.2. Let m > 30, and assume that the initial density vq satisfies
la® + & + 22" llg, + )™l S €0 7€ (200 (56)
Assume that for 0 <t < T*, one has
(£)W(r)| < 10g91In(2 + 1), (5.7)
and y is a weak solution of (5.2) satisfying the bounds
I[a® + & + 221"y Oll g, + 10" O g, < 1@+ 0}, r € (2,00}
VI+2 4+ yPIE.0l < e12+1)712,

for 1 > 0 sufficiently small. Then we have the almost optimal bound for 0 <t < T*,

(5.8)

[1+ 12+ |y*]|6(y. 1) < &3 (In2 + 1)), (5.9)

and in fact we have the improved moment bounds for r € {2, 00}: there exists C > 0 such
that for0 <t < T*,

lla® + &1y (0)llLy , < €0 + Cef, (5.10)
1Ay @)Ly, < €0+ Cej(n2+0)*", 1<n<2m,  (511)
I y@)llLse, < 0+ Cei(ln@ + 1), 1<k <m. (5.12)
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Remark 5.3. (1) Moments in a are relevant when a is large, and thus when the trajecto-
ries of the linearized problem closely approach the point charge. In this setting, it is more
favorable to work with the close formulation of Section 1.6.2, where the microscopic
velocities are centered around that of the point charge.

(2) Moments in a and £ can be propagated by themselves, and we only make use
of one moment in L (resp. 1) to obtain a uniform in time (rather than logarithmically
growing) bound for £ moments.

(3) Moments in L and 7 lead to a slow logarithmic growth. Here 7 is not conserved
under the linear flow, and we are only able to propagate fewer of the associated moments
(and only in L*°), see (5.12).

Proof of Theorem 5.1. Assumption (5.4) provides a global weak solution i € C2([0, 00) :
L}, N L) of (1.2) and a corresponding electric field & such that

[+ 2 + [x]?]|6(x,1) € C2C2*
for some « > 0; see, for instance, [13]. We claim that in fact we have the global bound
1412+ x2]|6(x.1)| < eoIn(2 + 1). (5.13)

This follows from a bootstrap. Let P(T") be the proposition that (5.13) holds for0 <7 < T

and all x € R3. Let!? .

Wr(t) =-Q | &(0,s)ds,

s=t
and define y7 via (5.1) as the associated solution of (5.2) on [0, T]. We note that Wr
satisfies (5.7), and observe that whenever 1 satisfies (5.4), we obtain (5.6). This follows
from the fact that | Wz (0)| < &¢ and the simple bounds

a® < V2 + W] + |q—| £ < 2g|x|,

A < [x[[Iv] + W], (n) < 1+ IxI[v] + W%

We can now invoke Proposition 5.2 with &y = sg/ 3 to obtain improved bounds on [0, T7],
and in particular that &(x, t) satisfies (5.9). By continuity, this ensures that the set of
times 7" for which P(T') holds is open and closed in [0, c0) and contains a neighborhood
of the origin.

We deduce that (5.13) holds globally, and we can define

o
W) = —é‘Z/ &(0,s)ds
s=t
and the corresponding y. Applying once again Proposition 5.2, we obtain (5.5). ]

19We note that this is only a choice of one scalar parameter, since the time derivative of ‘W is
determined by (5.2).
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The proof of Proposition 5.2 relies on the observation that for any weight function
w: Py — Ror w: Py, — R it holds that

9 (wv) — {H. (wv)} = —v{H, w}, 9, (wy) + {Ha, (wy)} = y{H4, w}.  (5.14)

Proof of Proposition 5.2. Since m > 30, recalling the definition of N; in (4.7), we get
from (5.8) that
N1 < 3(In@ + 1)

The electric field decay (5.9) follows by combining Propositions 4.1 and 4.4. From this
and (5.2), it directly follows that
T*
WOl [ Jewlds < éme -+ o). (5.15)
s=t

Proof of formula (5.10). Moments in a. As explained in Remark 5.3, we use the close for-
mulation. Using (2.52), it suffices to prove the bound for y’ for which we can use (2.47).
Using (5.14), we obtain that

3:((a)"y") + {H}, (a)"y'y = y'{HY, (@)") = ¥’ -nala)"2[0&;(X) — WX/, a},

and using (3.15), (5.9) and (5.15), we deduce that

d
@y llLr < 1) 2 (In@ + 1) - [{a)" 'y ller,

which gives the uniform bounds for moments in a in (5.10).

Moments in €. Letting 1 < n < 2m, we have that
{Ha, (§)"} = n(§)"726[6;X, 1) - {X) £} + WiV, )], (5.16)
and using (3.15) followed by (3.5) then (5.9), we get that
(€)72El6; (X0 (X7 g8} s Ele X)) S IXIVPleXon)| S5 (1)8 (517)

For the Poisson bracket with \~7, we split into bulk and non-bulk regions. In the bulk,
using (4.1), we get

3 5

- £ £ s
< < 2 <
|{V,$}|1£~q|~|211£~ t2q3ﬂ£~(l) ,

while outside the bulk, we use (3.5) to get

£ q€

' lge < .
alXp " TR

{V,E}|Lge < ()74 (gt £ A2 at 4 gV

and thus

€ ZEW V8 S (WL ™0+ 0T 0+ D] (58)
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Using (5.14), (5.16), (5.17) and (5.18), we deduce that

[ T [T
+ ()T AWOLINE Yl + Inyller + Ay ller],
and using (5.15) and the bootstrap hypothesis (5.8), we obtain a uniform bound. ]
Proof of formula (5.11). For 1 <n < 2m, we compute with (3.10) that
{Hy, A"} = nA" YOy (X, 1) + W(t) -V, A}
=" 0EX. 1) - A1xX) = W()- A x V),

and thus via (5.14), the decay estimates (5.15) and (5.9) as well as the bootstrap assump-
tions (5.8) and the uniform bounds (5.10) for moments in a just established, it holds
that

d - _
E|MV”L’ S IXIEX. Oz llylier + WO llay|r < &)~ (In2 + 1)),

and forn > 2,

d - _ .
T2yl < NKIEE. Dl A"yl + WO ay e

S NXKIEX. D)o A" Y lLr + W@ - A"y |50y 2

< e () M2 + 1)) - (In2 + 1))*" 2. n

Proof of formula (5.12). Note that here we only propagate L°° bounds. This is because
the Poisson bracket bounds of (3.16) favor the formulation in terms of y on Q?", while
on Q¢! the alternative formulation in terms of y’ is advantageous.

To this end, we note that

Iy llzee < 7Y oo + 171V Il Lo (s
where by Lemma 2.9 and (5.15)
" = ()*| S et - [(In@ + 0)*(1 + a*)* + min{n, n'}¥],
and thus it holds that
7Y ooy < MI7* = @Y Ty llse@eny + 10V Il zoo e
< e @+ )+ 02)kV||Loo(sz;‘) + 2||(n/)k7/||L°°(S2§l)'

Furthermore, by invariance of le under M, (see (2.49)) and (2.50), we have that

1Y Il ooty = 10 Y) 0 Mellzoogey = 11V | oo (gsh-
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Similarly, the bootstrap assumptions (5.8) imply 7 moment bounds also on y’, namely

10 Y llpoo ey S €12+ DV NI+ @) Il oo (@e) + 200 Y 1oy (5:19)

In conclusion, since trajectories can enter/exit the close/far regions at most once (see
Lemma 2.10) and Q%" 0 Q¢ = {(r) < |X| < 10(r)}, to establish the claim it suffices to
propagate n moments on ' for trajectories in ¢!, while for trajectories in Q" we work
with y directly. ]

On anr. With the Poisson bracket bounds (3.16), we have for 1 <k <m
[{Ha, 0} = kn* QY (X, 1) + W) - V. 0}

q
18R DIE IR+ 19872 + W) (957 +E|X|2)]

S0 Ma +a?] - [t + IXDIEX. )] + [ WD),

and using (5.9), (5.15) and (5.10) with the bootstrap assumption (5.8), we see that on Qﬁar

d
Iy O1 S 1) @ + ) I YOI ) v )l
< e3) T (In@ + 1)1, (5.20)

On Q?. On the other hand, we have that

{H, nF} = kn* POy (X, 1) — W(t) - X, )|
< THIEO] + WO ETX] + 1gE72),

which will be used when |)~(| < (t). This gives as before

d . _
Y12 OHE Iz + WO 17y OlfS g 1@ O, o)
< () HIn@ + 1)1, (5.21)

where we have also used (2.52) and (5.19) to bound the norms of Y’ in terms of bounds
on y. Finally, combining (5.20) and (5.21) gives the claim. ]

5.3. Derivative propagation

In this section, we will propagate derivative control on our nonlinear unknowns. To exploit
the symplectic structure, we do this by means of Poisson brackets with a suitable “span-
ning” set of functions S.

Definition 5.4. Let S C C!(Pp 4, R) be a set of smooth, scalar functions on phase space.
Then S is a spanning set if at all points of $y , the collection of associated symplectic
gradients { f,-}, f € S, spans the cotangent space of P
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We note that the functions in a spanning set S need not be independent. By composi-
tion with the canonical diffeomorphism 7! of Proposition 1.4, we obtain an equivalent
description in terms of the “physical” phase space & y.

Guided by the superintegrable coordinates (Section 2.3.1, see also equations (5.27)
and (5.28) below), we choose the collection SIC := {£, n,u, L} as spanning set. For a suit-
able choice of weight functions wy > 0, f € SIC, defined in (5.23) below, we will then
propagate derivative control through a functional of the form

D@ a;0) = Y wel{f,LHBa), Lelny), (5.22)

fesIC

with weight functions

1+§ £ §
= , = , =1, =—. 523
we = Wy =7 E wy WL =7 F (5.23)
Due to the motion of the point charge, as in Section 5.2, we will work with both “close”

and “far” formulations of our equations, and thus consider

Dyl i),  (9,a) € QF,

D= {@[y’](ﬁ,a;t), (9.2) € 5.

The remainder of this section then establishes the following result.

Proposition 5.5. Up to decreasing e« > 0, we have that if y is a global solution to (5.2)
as in Theorem 5.1 that also satisfies the initial data bounds

IE° + £%) D@, a;0)l|se, < o, (5.24)
theny € C tl 9.2 I8 Infact a classical solution, and we have the global bounds
D@, a:0)l|Lse. < £010*(2 +1). (5.25)

Remark 5.6. The smallness conditions (5.24) are stated on yp, as this gives the sharpest
requirement. In general, only po (and not y) is known a priori, but one can guaran-
tee (5.24), for example, by assuming that p¢ satisfies

III* + X7 + [VI") VaymollLgs, < %o, (5.26)

as can be checked using the estimates from Section 3.

Remark 5.7. The proof proceeds through control of D (¥, a; ) along trajectories of (2.3).

(1) We note that all weights in (5.23) are functions exclusively of &, which is con-
served along such trajectories. Consequently, additional weights in £ on D (¥, a;¢) can be
propagated as well.

(2) The proof shows that a slightly weaker assumption than (5.24) (expressed in
terms of another £-dependent weight function (5.34)) suffices, and in fact gives a slightly
stronger conclusion.
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5.3.1. Proof setup. To understand the evolution of symplectic gradients on our nonlinear
unknowns, we begin by observing that by the chain rule, one has that for any functions
gi:Ppa—> R, 1<j =<3 and G:R? — R, it holds that

1G(g1.82). 83} = 01G - {g1, 83} + 02G - {g2. g3}

Using the Jacobi identity (3.8) and equations (5.2), we thus find

o fiyy +{Ha, {fiv})
= —{{f Ha}.y} = - QUL Vv X)hy) — W{ £V )y}
= —QF !X/ yHAXEY = 08 (LA X Ly = WL £V Ly} (5.2T)

Alternatively, if we choose formulation (2.47) with velocities centered on the point charge,
we obtain

ALYy +HL ALY ]
= —{fHLy} = -QULvXLY} + Wi £ X}y

= —QFl L XX Y = (08 - WHUL X)), (5.28)
Using (3.14), we can then express (5.27) as
ALy} + {Ha{ Sy} = ) myglg.y) (5.29)
geSIC

for a suitable coefficient matrix (m g )7 gesic, and similarly for (5.28),

ALY+ HL ALY = ) wide. v}, (5.30)

geSsIC

In addition to the distinction between “far” and “close” dynamics and the corre-
sponding formulations (5.29) and (5.30), we will separate “incoming” from “outgoing”
dynamics through the decomposition Py, = 4; U O, with

4, = {(19, a):X-V< (L2 + Z—z)l/z}’ (5.31)

~ ~ ) g*\1/2

O, = {(19,a) X.V> —(L + (7) }
This reflects the fact that along a trajectory of (2.3) the asymptotic velocities at oo
may differ drastically in direction. As a consequence, on J; their location X is better
approximated by the past asymptotic action, and there we will thus work with the past
action-angle coordinates of Section 2.3.2. Moreover, the splitting is chosen such that peri-
apsis occurs in d; N O;: recall that the time of periapsis #, (%9, a9) € R of a trajectory
of (2.3) starting at a given (¢, a9) is such that

X -V (99,20) =0 whent = 1,(, a).
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We thus have four dynamically relevant regions of phase space Py, = d; U O; =
Qfar y Q¢

Jr=yg, nQ O =9, nQM 4=y, NnQY, 08:=0,nQd (532)

Remark 5.8. (1) The four regions of (5.32) have overlap.

(2) General trajectories of (2.3) can visit all four dynamically distinct regions: starting
far away from periapsis and incoming in 4™, a trajectory with sufficiently large velocity
a > 1(ie., £ < 1) will proceed to 45" and through O¢! to end up in O

(3) If at initial time our unknown has compact support in phase space, we can dras-
tically simplify the proof (at the cost of making our assumptions dependent on the radius
of the initial support) and work with only one formulation. For the forward in time evo-
lution, it then suffices to consider future asymptotic actions, and if we redefine the close
(resp. far) regions to account for the largest and smallest asymptotic actions of the initial
data, we can reduce to the case where all trajectories lie in either O™ or O¢!.

Proof of Proposition 5.5. To establish Proposition 5.5, we obtain a priori bounds on the
function D (¥, a; t), from which the existence of a classical solution follows. To demon-
strate its (weak-strong) uniqueness, let (! be another weak solution to (5.2), set
y@:=y, and denote their electric fields, Hamiltonians etc. with corresponding super-
scripts. Then their difference satisfies

0,y —y®) + (HP .y V — @y = (P - HP, y )
= 0P X.1) - e X )X .y?)
+ (W2 () = WP OUV y@) (533

Since the electric field &® is quadratic in y@, i = 1,2, we have that

1 y—X(9,a)
W (y,1)—€PD(y,1 =—[/—~ (YD =y +y@)®,a,1) ddda.
(y.1) ¥.0)=— v X0 =y ) @.a0)

With arguments as in Section 4 and Lemma 3. 10, under the assumptions of Proposition 5.5
we obtain that

IEDP (1) — P ONUXT, yPY||Le < 22 (1) (1) |y — y@ || Lo,
and it follows similarly that
WD (1) = WOOUV, y P} Lo S 2102 (t) (1)2 ][y — y@ | poo.

Uniqueness then follows from Gronwall’s lemma upon combining these bounds with for-
mula (5.33), since

YD) = y@ @)l < Iy 0) — y@(0)]| oo exp(Ce2 () ()?).
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A priori bounds on D (9, a;t). We control D (¥, a; t) pointwise along trajectories of (2.3).
For a given trajectory, we do this separately in the four phase space regions defined
in (5.32), and then combine with bounds for the transition between the coordinates/for-
mulations:

e Incoming to outgoing (from d; to O;): We work with incoming asymptotic actions on
J; = 45 U 45, and outgoing asymptotic actions on O, = O U O If a trajectory
passes through periapsis (which it can do at most once), we transition between coor-
dinates there. Hereby, we recall from (2.44) that & ) = —£& and A) = A, so that in
particular the splitting in (5.31) is well defined. By Lemma 5.9 below, we have that

DLW a:1,(%,2) < (€2 + £7)D[EO T, a7 1,(0,2), L e{ny).

e Far to close, or close to far (between Q" and Q¢!): We recall that since y’ = y o M,
are related by the canonical diffeomorphism M; of (2.48), their Poisson brackets are
related by (3.50), and we have in particular that

DY =D ylo M. D'yl:= D wel{f .y}l
fesIc

where we used the notation of (2.50) to denote f’:= f o M; . We recall further
that Q¢!, Q" and the transition region Q¢ N Q" are left invariant by M, and by the
below Lemma 5.10 the weights £ and £’ are comparable on Q¢ and it holds that

DI £ E+EHD' N0 £ (E+E)°DlyI() on @ N

We recall also that by Lemma 2.10, per trajectory at most two transitions between
close and far regions are possible.

We highlight that the weight functions wy, f € SIC depend solely on &, which is con-
stant along a trajectory of (2.3). The above “losses” in £ are thus only incurred at the tran-
sitions, and propagated along the trajectories otherwise. To properly account for this, we
introduce the following function that tracks the £ weights that will be used for transition:

E2+EDE+E3? ondir,
(E2+E2)(E+E3  ondg,
E+£7?) on O,

1 on O,

T: Pya— R, (.a)— (£)- (5.34)

Since (5.24) implies that || YD (0)|| Lo < €0, to establish Proposition 5.5 it then suffices
to show the following bootstrap argument. If for 0 < 77 < T, we have that for some
0 < § « 1, it holds that

ITD@) Ly, < eln®(2 + 1), (5.35)

for some g9 < & < &4, then in fact (up to shrinking &, again)

t
272
[TO@ g, <0+ In (71)
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We note that while by construction (5.35) only gives control of D[y] on Q (resp. D[y’]
on Q‘;l), under assumption (5.35), we obtain from Lemma A.1 via (A.3) (resp. (A.4))
bounds for D[y] across both far and close regions

1Dyl Seln’(t). 1geDy] < e(l + (1)g€~>) In*(1). (5.36)
In particular, by Proposition 4.4 (ii) it then holds that

V142 + y2lE(y, )| S ()71,

sup [1+ 12 + [yl F (y.0) < e*Ine) - (1) 7"
yeR3

(5.37)

We note that the expressions for the kinematically relevant quantities X, V (and thus
also for their derivatives) agree up to signs in both incoming and outgoing asymptotic
actions (see (2.45)), and can thus be treated analogously. We will henceforth focus on
the case of outgoing asymptotic actions; the diligent reader can easily trace the necessary
adaptations for the incoming asymptotic actions. To complete the proof, it thus suffices
to provide a bootstrap argument showing that if a trajectory stays in (9§ar (resp. O¢!) on
a time interval ¢ € [T}, T»], its weighted symplectic gradients D[y] (resp. D’[y]) grow by
at most a factor of 1 + lnz(TL]). This is done in Lemma 5.11 (resp. Lemma 5.13) below.
Once these are established (see Sections 5.3.3 and 5.3.4 below), the proof of Proposi-
tion 5.5 is thus complete. ]

As aresult of direct computation (see Section 3.3), we have the following assertion.

Lemma 5.9 (Transition from incoming to outgoing). Consider a trajectory of (2.3) start-
ing at (¥, a), with periapsis t, (0, a). Then

D@, a1, (3, ) < (& +E 2D, as,(9,2), Lelny')
Proof. This follows directly by collecting the terms in (3.49). ]

Lemma 5.10 (Transition between close and far). Under the assumptions of Proposi-
tion 5.5, consider outgoing (resp. incoming) asymptotic actions on Oy (resp. d;). Then
on Q¢ it holds that for some C > 0

cl¢ <g=<ce, (5.38)
and on Q' N QI we have that

D'YI(1) S E+EHDYIC). DY) S E+EHD']0). (5.39)

Proof. We note that by construction, the expressions for y in terms of y’ and vice versa
are analogous (see (2.48) and observe also that y = y’ o eMt_l, where Mt_l =T od,0
YX_w) o (IDI_I o 7~1) and thus once (5.38) is established, by symmetry it suffices to
prove the first estimate of (5.39). This follows from Lemma A.1 of Appendix A (see also
Remark A.2 (1)), where we prove more precise estimates for the relation between Poisson
brackets in the close and far formulation. ]
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5.3.2. The coefficients my,. Since the kinematic quantities X, Vare naturally expressed
in terms of the slightly larger spanning set SIC U {1} =: SIC, which we also used in the
computation of Poisson bracket bounds in Section 3.1, it is convenient to carry on using A
explicitly for computations. We note from Remark 3.3 that Poisson brackets with A follow
directly from those with L.

Using (3.14), we express the right-hand side of (5.27) in the form (5.29). This yields
that for f € SIC, we have that

—mype = QF X/ nHA XS} + QUL X bm) + WLV ),
mpy = QF X/ EMA XS} + 06 LX) 6) + Wil £V}, 6)
—msy = QFk (XN X Y + Q&9 (LX) + Wi ({£. V7)),
—mpge = QFj(PEXN£.X5} + Q&P £ KT} + WPH £V},
—msre = QF (BEX){ £, X5} + 08; - PI{L X/} + WP/ V),

where we used the notation P, to denote the a-th component of the projection onto
a vector”’ U € R3. We thus obtain the following expressions for the multipliers:

eIné:
—mge = QFu X e XK + 06, ({6 X7}, ) + Wi {{E. V),
mgy = QF (X7 EHE XK} + 06 (6. K76} + Wilie. Vg,
—mg; = OF D XE XK) + 06,0, ({6. X/ + W;a,({6. V7)),
—tigge = O[Far X1 + Fii X3/ L){£, XK} (5.40)
+ O[8.48 X1} + {8, X3} L]
+ [ Wale, Vi) + Wi, Va)e/OLe],
—wmgre = QFXae/ Nl (6. X5) + 08;{8 Xa)eud + Wis, Vaje/tdu.
oInn:
—mpe = O FudX7 . XK} + Q& {(n. X7}k + Wi{n. V/ . ),
gy = QFdX7 EHn. XY + 08 {(n. X7 ). 6} + Willn. V). 6) = —wmge,
—ttyn = QFjk(0:X){n, X5} + 06,0, (In. X7 }) + W91 ({n, V),
—ttpue = Q[Fark X1 + Fjx X3€/LY{n, XK} (5.41)
+ Q[Ea{n. X1} + &;{n, X3}€/°9LF]
+ [Waln, Vi) + W, {n, V3}e/°eLe],
—ye = QFj X3 ul (n, X5} + 08;{n, Xs}e/*Iu’ + Wi, Va}e/u?,

20With the understanding that P& (X3 efedeyd) = x3e/cdLesad and P (X3 eledeydy =
X3€jcdud sac.
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e In u: Noting that by (3.14) and (3.11), we have that
(k. X7} = 9,X7 51 u® + X5(87% — u/uF)
= 0, X0/ XTI u® + 10, X3e/P1 ks 1Pydl v
+ X3(8% —u/ub), (5.42)
it holds that
—myag = QFdXY mu®, X + 0&; ({u®, X/}, 0} + Wit{u, V), ),
myay = QFrdX EHu X + Q& {{u’, X7} €} + W {{u’, V/}, &),
—myas = QFr (X)) {u?, XM} + 080, (fu®, X7 }) + W9, ({u, V),
ey = Q[Fpe X1 + Fjx X3€/PL Y, Xk}
+ 016,03 X 1€Y1 0 + €;0; X u/ €270
+ 08,20, X31P1 (7P €975 ub 4 e/Paerbyd)

— 0 X3(Epu° 4 &;ul 59)

- - . (5.43)
+ [ Wy 0, V€971 0 + W; 0, Viu/ €271
+ W, 10, V31V (e7PP sy’ 4 e/Pdarbyd)
— Va(Wpu® + W/ §°),
_ = O0F: X" jbd d . .a ik g.k—la )2' j ~abs_ s
Myarp = QFj X370 (0, X"} + Q6 AL 1wt er
+ 088, Xzulu® (€21€975) 4 /P4 cabs|P)
+ W;A719;, Viwd €905’
+ W;d; Vsulu® (e/29ems1 4 e/Pieabsyp),
e In L: Using that {L*, X/} = €k/PX? and {L¥, V/} = €k/PV?we have that
—mpag = QF(X/ iy PXP + 06, €V (XP n) + WP (VP 1),
wipay = QF (X7, £)ekPXP Q& VP (XP £} + W, eVP(VP £},
—Mypay) = QJ’«‘jkE),xije“k”f(” + Q8je“fpap~(1’ + 'W,-e“jpakffp,
—Mypagp = O[Fpi X1 + Fix X3€/PL]eokPXP
Law = O[Fpi X1 kX3 ] (5.44)

+ 08;[€¥P X, + €¥P X3ePPLe]
+ W;[€¥P V) + P3Pt L],

—tparp = QFj X3Pl e PXP + 0 X3(59°€;u’ — Epu?)
+ V3(8%° Wiju/ — Wyu?).

The coefficients m}g. Inspecting (5.28) and comparing with (5.27), we see that the coef-
ficients m’, can be read off from my, by ignoring the terms in W and replacing Q§&;
by ng - Wj.
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5.3.3. Propagation in the far formulation. We now demonstrate how derivative control
as in (5.22) can be propagated in the far region Q1 = {|i| > (t)}. As it turns out, Poisson
brackets with respect to &, u have more favorable bounds than those with respect to 1, L.
We thus define

(0, a;1) == wel[{§, y}|(0, a:1) + wal{u, y}{(F,a:7),
U@, a;1) := wyl{n, y}|(Da:1) + wi[{L, y}[(¥,a; 1),
for the weight functions wy, f € SIC, defined in (5.23). We then have the following.

(5.45)

Lemma 5.11. Assume that (9, a) is such that for some 0 < Ty < T, we have (¥,a) € O™
for Ty <t < T,. Assume also that y is a solution of (5.29) defined on the time interval
[Ty, T] satisfying

DlyI(¥,a;1) S eln’(r),

and the decay estimate (5.37) holds, i.e.,

1+ 2+ |yP2le@y. )] < &2(1) 7,

sup [1+ 12 + [yPP1|F (v. 0)] < & Ine) - (1)~ (5:46)
yeR3
Then, with §, U defined in (5.45),
d
g, a0) < 2(1) 4G9, ait) + UW, a3 1)),
dt (5.47)

d
U@ a:0) S e In() - (1)1 E @, ar0) + () UG, ar0),
and thus, for Ty <s <t < T,
t
900 - g0 S [UDa0) - UD.ais)] 521+ 12() ]
T,

Proof. By construction, we have that

d w
Twrlfrh= 30wyt welgy),
t W,
f,geSIC
and to prove the claim, it thus suffices to sultably bound the expressions mi s, - (—) For
this, we will use the Poisson bracket bounds on X and V established in Section 3.1, “in par-
ticular also the refinements in outgoing asymptotic actions (see Lemma 3.7), the decay
estimates (5.46) and the fact that |X| = (¢).
From (5.40), (3.17) and (3.37), we have the bounds

§

lrod E e — Y|— Y|~ %‘2 -1x|—
lmge| < Ifl'c—I[IXIJrlCIE 1]+|f°3|6—1'[1+f‘§|X| 1+ WIX] 2?[1+IQ§ X

S UF X+ 1ENIXIY 272 + X7 + WXL + 1gM2 X732,

& & &
gy | <—[|37|+|8| X~ 2]+I'WI 51X,
52 — < |-

RUEN S ;[IJ* [IX] + |&] + €l WIIX| 2],
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and

2 5 1 3
el + vl 5 5171051+ 3% + 1615 o + 2 10:1)

T T
+ W5 == + =1 XX

(qz |X|3 q )
s £ g
(|5~‘|+|8|| |2)+|‘W|—| I
so that by (5.23), (5.46) and |X| 2 (¢) it holds that

lge| < e2(r) >4,

1+ 5)2 < 82<[)—5/47

Wwg
m — = m
| Enlmn | §n|

54
© e ) (5.48)
|m§L|;i = |mg S3s < e (r) ™4,
we (148
el = a5 8 <25,

Similarly, from (5.41) and using (3.38) and (3.47), we obtain that

ltge] < | FIE2IXIP + 2¢26 2] + 6167 2[X] + 1gE 7" + 12q1X] 2]
+ [ WIgE [+ 11X 72 + 129/X] ),
[,y | = |mggl,

[ntpea| < [1F|X]+ €06 IX] + 1g&7 1] + [W]gE2(1 + 1£]X]72),

~ ~ ~ 1 &
mgra| + [uga] S 1F K|+ X0 IX] + 167" + €)= [1 + ==
g + ] < 17108l + 02K0 0K + g7+ 61 1+ 12

1 t &

1w —[= +2].

X]2LIX] g

implying that

| 2 = |y, |L S IXPF X)) + IX]1€X)| + (1) 7]
"oy~ T e Y ’
[ty | = Jmeel,
w,, £2 oo L (5.49)
Imnulmj = Imnulm < IXPFIF X+ X[[EX)] + ()],

u

wy 2/.\—3/2
ImpLl—" = |mpLlE < &%(t) /2,
wy,

which suffices by (5.46).
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For Poisson brackets with u, we note that by (5.42) and (3.37), it holds that

T AT
{u®, X7} S [0 X] + [X3]] < =, Hu®, V/}| < Z———,
q q |X]?
) 2 ) ¢
3,k X7y < - L, 3 {uk, V7 < 2L,
[0 {u } K| [0 {u } P
and with (3.37) and (3.47) it follows that
K} 8)] < (0K B+ ()] < 5 55 ke < &
|X|2 |X|2
Furthermore, using (5.42), (3.38) and (3.46)—(3.47),
1 t
e Xy 0 < g7 (14 %) RGNS @(g - @)

We deduce from (5.43) that

] < 07 IFIR 4601+ o]+ 19 (5 ),

£X| X|2\q  [X]|
3 1
|ttyay| < ——[|f||X|+|8|]+|'W|——
q X| q X2
£ £
Wyays | < —[|3«“||X| + €]+ |W|—2
X|
52 1 £ 1
gan| + [Wyaps| < ——[|f||X| BN+ W2 =
T X q X?
and hence
w 2 w, + _
e 22 = g < 200 g2 = g o < 200y,
w 14+¢£ w £2
m" 4 (5.50)
[t S £5(0) 7, ] % = | —= S e5(1) 7"

Finally, from (5.44) we have the bounds

lmpag] < ETIF X+ 1EIX] + tg& "] + [ Wge 21 + t£[X| 2.
2 3

1

mpan| < =[FIIX|+ |E|]] + |W]|Z———

Impay| < [||||||]|||X|2
[wpa | < NF1X|+ 1E1X] + |W|§,
s + | |<[|F||X|+|8|1S+|W|52 :

Mya MWyay b -

v ¢ XP
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from which we see that

3 ~ ~ ~ ~
Imle%z = Imle(lj’;W S IXPIF X))+ XINEX)| + (1) '],

wy, 1 —
|an|UT = |mpy|= S (1) 54

n 3 (5.51)

w S s Sip S _
ImLuIUTL = |yl S IXPIF X))+ XIEX)| + ()71,

§
u 1+§&
| S &7 ()74,
In conclusion, the first line of (5.47) follows by combining (5.48) and (5.50), while
the second line of (5.47) follows from (5.49) and (5.51). [

5.3.4. Propagation in the close formulation. In contrast to the far region, in the close
region Q¢! = {IX| < 10(t)} the spatial location of a trajectory X(¢) may be comparatively
small. As a consequence, for the Gronwall arguments for derivative propagation we need
some refined estimates on the dynamics.

Lemma 5.12. Let X(t) be a trajectory of the ODE (2.3). Then for any t > 0, we have that

*® dr 1
/_oo XoOP ~° 6:32)

Proof. We recall that by (2.6), it holds that
2 2 2
W'X(t )" Za”>0.

Denoting by ¢, the time of periapsis, we have with |X(z,)| 2 ;Lz that
2 q 2 2 40,2 6 2
XOP 2 L+ a2 -1, = a7 @? + a1 - 1,)?),

Since the trajectories of (2.3) (and thus the integral in (5.52)) are symmetric with respect
to periapsis, we may assume without loss of generality that 7, = 0. We then have that

/°° dt 2/°° dr  _ 4/‘q/a3dt+ 4/°° dt . 4a i
— = —— <a — +a —_— 5 -
-0 [X(0)|? o X2 0 q* qla3 a®(t —1p)* ~ q

Also in the close region, Poisson brackets with respect to &, u have more favorable
bounds than those with respect to 7, L, and, as in (5.45), we define

we[{€, '} (9, a:1) + waul{u, y'}|(D, a;1),
tn?}|{777 yl}l(ﬁ» a; t) + le{L’ 7//}|(29’ a; t)»

g'(%,at):
U, a;t):

for the weight functions wy, f € SIC, defined in (5.23). We then have the following
statement.
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Lemma 5.13. Assume that (9, ) is such that for some T > Ty > 0 we have (¥,a) € Q¢!
for Ty <t < T,. Assume also that y' is a solution of (5.30) defined on the time interval
[Ty, T3] satisfying

DYV, a:t) S eln*2+1),
and we have the decay estimates (5.46). Then, for Ty <s <t < T»,
|§'(9,a;1) — &' (D, a;5)| < &,

W20 - W@ ass)] <1+ 1n2(TL)]_ (5.53)
1

Proof. As note at the end of Section 5.3.2, the coefficients m/ e can be deduced easily
from m ., and thus from the proof of Lemma 5.11 we directly have the bounds

] < 1] flnfq 1987 + (18] + |W|)§ 1+ IR,
g 2 gt
= |F & W) X ,
| = 17125+ (18] 19D 5 (5 1K172)

2
[t o | < ;[l?IIXI + &+ W],

£ o £
[ |+ [pal S 5 1F |+ (8] + W) 5 ==,
2 §L g2 g3 X2

as well as
| S |F[E2IXI + 1277
+ (18] + [WDE2X| + 1€ ™" + 12 |X| 7).
), | = [mil.
el S [FIX] + 18] + [ WNEIX] + 1957,
[, + el < IF (X + 10X [1X] + 1967

.1 ~
+ (&l + |W|)c_1[1 +1€1X]7%],

and

— PO . q
[ttyae| < g 1[|Jf||X|+|8|_|-|'W|].|:1+ﬁ:|
1
[tgay | < —|ff |+ (€] + |W|)_

9> X]>*
E
Moy S [IJ*I|X|+|8|+|WI]

2):2
Imw|+|muaLb|< SUF |+ e+ W -1X[71],



Stability of a point charge for the repulsive Vlasov—Poisson system

85

and also
el S ETIFIX] + €]+ [WNIX] + 19571,

£ o :
W] S =7 IR+ 161+ W]

!, ] S NFIX]+ €]+ | WX,

L4ub

£ o :
Impanl + Mgl < a[IFIIXI +16] + W],

Observing that in the close region we have < |X| < (¢), it follows that

52

t
Il < |91 /4\3/2 ; —1/2,\1/2 q
el 5 17102 + &1+ WD (g™ 200" + 25)
£
S () 4 )T
(0 0
e a+e? ) (1462
wme |— = |m Fla+ + (8] +|W
gyl = 10y g S0+ 607 + (8] + W)=

2

S e (O e

X2
2 ( 525
iy |5 = At I ‘;5) <|f|(1+|X|)+T‘1<|8|+|W|>
£2
S+ e%)‘zé,
g 26 = gy 8 < (1 IR 4 18]+ W) < 240,
- e

and this suffices, since by Lemma 5.12 and Eq—z < |X| < (t) we have that

|

|0 e S 0 minte 7% 5, 1

Similarly, it holds that
2 1/2
el 22 = g < 200 (071 4 5).
w; 1+£ X
;) ®u 1+§ 2/,\—5/4 51/2
W = ity | =g 5 6700 (1+ﬁ),
< 82<t>_5/4

14+¢ - g2
wly | — = |mly | —= < &%t 5/4(1~|——~ ),
| UL|II)L | uL| g () |X|

and hence the bounds for &' in (5.53) are established.
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Turning to U’, we have that

Pl L < g2 -1 i
|m71€|m§ _lmn§|(1+§)2 N € <(t) In{t) + |i|2),
[y | = e,
;1 Wy / %-2 o A tord . =~ 2 1
|mnu|nT = |mr]u|1 TE S UF XX+ [EX)| + WX + 1) < &7(r)” In(r),
1B 2n—1{-1/4 , 4
| = o6 5 62007 (07 + =)

and since in the Q¢' we have g < (£)'/2, it holds that

wy, £ A < IR 2/\—1
|m;$|t_7$ = |mig|m < [1F X)X+ [6X)] + [WI(X] + 1) < e2(r) " In(e),
w , 1 _
|m’L,7|U7; = [miylg < e2(1)™5/4,
|2 = ey | —— < (RIFE)] + 1) + [WIK] < £2(0)" Infr)
Lu w, - Lu 1+é‘- ~ ~ ’

lmiy | < 0F X)X]+ [EX)| + [W)(t)"/? < e2(r)~/4.

As above, the terms involving |)’Z|_2 will give bounded contributions by Lemma 5.12, and
we thus obtain the bounds for U’ in (5.53). [ ]

6. Main theorem and asymptotic behavior

We are now ready to state and prove our main theorem which asserts global existence
of small perturbations, optimal decay of the electric field and convergence of the particle
distribution along modified linear trajectories. In particular, this implies Theorem 1.2.

Theorem 6.1. There exists e« > 0 such that the following holds for all 0 < g¢ < &x.
If o € Liv N L, satisfies the smallness of moments condition (5.4) and the small-
ness of derivatives condition (5.26), then there exists a unique global C tl, Sa solution y of
(5.2)—(5.3) satisfying the moment bounds (5.5) of Theorem 5.1 as well as the slow growth
of derivatives (5.25) as in Proposition 5.5.

The associated electric field decays at an optimal rate,
[+ 2+ yPNEW. )] < 5. ©6.1)
and there exists an asymptotic field & that converges along linearized trajectories
I(a)> (2 € (ra, 1) — €°@)) L5, < ()" (6.2)

Moreover, there exists a limit gas distribution Yo to which y converges along a modified
scattering dynamic

[y(® = In()[QE= () ~ QEX(O)]. a.1) — Yoo(D. )0 12 < e0(r) ™/,
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and the point charge has an almost free asymptotic dynamic. There exists (Xoo, Voo) €
R3 x R3 such that

X(t) = Xoo + Vool — QEX(0)In(t) + O(~/10),

V(1) = Voo — ?8“’(0) + O@~11/19), (©3)
Expressed in terms of [1(t), this implies that 1(t) converges to Yoo ast — +00
nwY(X, v, 1), WX, v,1),1) = Yoo (X, V), t— 400, (6.4)
along the modified trajectories
3 2
Y. v.0) = (ar - %f—z ln(%» : 4612qu—+q2<§R + 2—ZL xR)
- ln(%)Q&"o(a) T Voot + O(1), 6.5)
W(x,v,1) = a(l _ 1 3) — 6’22 . (3R+ 4—ZL x R) 4 Voo + O(In(1)t72).
2ta 4a’L? 4 g \q q

Remark 6.2. As is clear from the discussion in Section 5, if we know a priori that (in
a suitable coordinate frame) the point charge does not move, the moment and derivative
assumptions of Theorem 6.1 can be more easily and sharply stated directly in terms of yg
in (5.6) and (5.24).

Proof of Theorem 6.1. In view of the hypothesis, from Theorem 5.1 we obtain a global
solution y(¢) with the required moment bounds, and Proposition 5.5 provides the claimed
derivative control, resulting in a unique, classical global solution. Optimal decay (6.1) and
the convergence (6.2) for the electric field then follow from (ii) and (iii) of Proposition 4.4,
respectively.

We deduce next the motion of the point charge. Starting from the fact that

W(r) = QE(0,1), W(r) =0
—>00
we obtain Vs, € R3 for which
X = Voo + W),

and from (6.2) and integration, we deduce that there exists X, such that

win) + L) < eyt 0, oo

|6(1) — Vool + QE®(0)In(r) — Xoo| < e§(t)~1/1°.

This gives (6.3), and informs the derivation of the modified scattering dynamic for the gas
distribution, which we give next.
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Since we have the convergence of the electric field, we can now integrate the leading
order evolution of the gas distribution. We do this in the far formulation of the equa-
tions. Motivated by the above convergence and the expression for Hamiltonian (5.2), we
introduce the asymptotic Hamiltonian

I
HE = —[QW™(a) — QE™(0) - a].

The flow of H3° can be integrated explicitly: its characteristics simply shear with the
diffeomorphism

Soo: (#,2) > (F —In(t)[Q & (a) — QE(0)],a).
To account for this dynamic, we thus introduce
0=y 050, o(P.a.1):=y®—In@)[QE® (@) — QEX(0)].a.1),

which satisfies
3o = (9ry +{HZ", ¥}) 0 500 = (—{Ha4, y} + {H®, ¥}) 0 50

= (—0& XX/ v} = WiV v} +171(Q€°(a) — QEF(0)fa’ . ¥}) 0 500

= =08 (X.{Z .y} o500 — (1QE; (X, 1) + Wi (){V/ —a’ .y} 0500

+ 06 @) — 126X 1) — (@ EX0) + Wi ()){al .y} 05, (67)

In the bulk, these terms can be bounded as follows. By bounds (3.45) in Lemma 3.10
and (6.1), we have that

11806 X.OZ .y} + 115108 (X.1) + Wi ()){V/ —al y}|
< e3(t)72 - (£)° In(t) g | DIyI(0)] < e3(t) 2 In(r),

where in the last inequality, we have used (A.4) to control the contribution from the deriva-
tives of y in the close region. Similarly, using also (4.16) and (6.6) we obtain that

1817 Q(E°(a) — 126;(X, 1)) — (@' €™(0) + W; (1))|[{a’, v}
< g3 ()10 In (1),
where we used (A.4) to bound ]l:BmQ?lHaj, YH S (4 ENH(E2 4+ 3)|DY1(1)] in the
close region. Altogether, we thus see from the last two lines of (6.7) that

3,-21/20
ILgdiollrse, < gt 2"

Upon mollification, it follows that 1 go converges in L to a limit yo, as t — co. We
thus have that

ly( —In(@)[Q€(a) — QE=(0)].a. 1) — Yoo (P 2) L3y,

=< ”U]liiCHLgf’a + |lolg — yOO”Lg(‘,a < 80(1‘)_21/20,
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where outside of the bulk we used (4.2) and (5.5). Convergence in L? then follows from
interpolation with the conserved L' norm of y.

It remains to establish the expression for the modified trajectories (6.5) and the con-
vergence of u (6.4) along them. By construction, from (5.1) and (1.19) we have that

y(,a,t) = v(X( +ta,a), V(O + ta,a),t)
= w(X(¥ +ra,a) + X(z), V(¥ + ta,a) + Vo, 1).

Hence j(¢) converges along the trajectories

Y(x,v,1) = X(® — In(1)[0 € (a) — QEX(0)] + ta,a) + X (1)
_ lg (ta® q> 2. 4a
= (e~ 5?‘“(7)) ' m(g‘” pEle R)
- 1n(£)Q8°°(a) T Voot + O(1),
q

WX, v,7) = V(® — In(t)[0E®(a) — QE®(0)] + ra,a) + Voo

2

4q q 2 4a _2
—af1- ) (_R “L R) Voo + O(In(1)172),
a( 2ta3) 44212 +q2 \q +q2 XR) 4 Voo + O(In(1)1™)

where we have used (2.43). [

Appendix A. Auxiliary results

Lemma A.1. Under the assumptions of Proposition 5.5 (where (t)|W(t)| < &2 in partic-
ular) and with outgoing (resp. incoming) asymptotic actions, on the close region Q< it
holds that for some C > 0

cTl¢ =g =cé, (A1)

and for any scalar function { we have
we (£, 0} S wel{E. 8} + ()72 + X 7HD[L] ).
wr (L, £} S wil{L. g} + D[] (1),
', 8} < Ew L. 8} + (1 + 267" + &2 |X[7H D[] (1), (A2)
wy {1 CH S w {0, EH + wL[{L. 3] + (1 + &) (1) X wg |{€. ¢}
+&2(1+ ()X 7HD[E]).

The analogous estimates hold with the roles of the primed and unprimed variables inter-
changed.

Remark A.2. We highlight two consequences of these bounds:

(1) For the transition from close to far (resp. far to close), on Q¢ N Q" we have that
(t) <|X| <10({t), and thus bounds (5.39) from Lemma 5.10 follow, i.e., we have that

DY) £ E+EDHDYIM), Dlyl0) < (¢ +E)DY10).
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(2) On Q¢ we have the following control of Poisson brackets of y in terms of those of ’:

LoaD[Y](1) 5 (6 +E72)(1+ ()X[THD[Y10). (A.3)
By (4.1), in the bulk this improves to
LaangDIY1() < (€2 +E73)DIY(0). (A4)

Proof of Lemma A.1. We will use repeatedly the following bounds which follow from
(3.2), (3.15)~(3.16) and (3.37), together with the bound |X| < (z) on Q¢ (with outgoing,
respectively, incoming, asymptotic actions):

§ £ £
V.0 < = = [1 + W]HE SH + 2I% |2|{77 L+ VI g+ o |2|{ Net
_ 3 £(€)
<™ (1 o Joelte 1+ bl o)+ Lhw. o)
£ s
v o) (A5)
S 10 1q 52 3
KX, O < [IX + ?H{E,CH + —|{77 o+ XI{w g + —|{L ¢H

S (wg[{E, 8} + %wn“’l’ &} + X[{u, &) + %—)wLI{L, G}

On Q¢, it holds that |X| < (z), and thus & < (r)"/2. It then follows for £ # 0 that

&E_ &, § , £, §
gza(l 25((1 _Cl)+1, 6—I|a —a|§45|W([)|S q([)l/z
= %5’ <&<2f, (A.6)

which gives (A.1).
(1) In &: Note that since {a, {} = L{a2 ¢}, we have that

£ P2
6.8 = ——{ = —ﬁ{a,é}

and thus by (2.53)
3 3 3 /
€0 =S - wro - e = (5) &0,
Hence
welte'. 01 5“5 won. o+ S w0
&) ; £(€)
S(659 (HW)'W()H cg e
£ £(e) £(6)
+ WOI( w1+ .0l + sl 8)). (A7)
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By (A.6), we then have
wg[{§. 8} < (1 + n) 6.8} + ¢ E(wnl{n $H + wr {L, £})
+e2(0) 72 {u, 5. (A8)
This gives the first inequality in (A.2).
(2) InL: Since L’ — L = —X x W =: —§L, we have that

(.0} —{L.L} = W) x {X.Z}.
Hence

ML ¢} < UL, &+ W) 1{X. ¢}
and thus

L) oy )
q

+ [ W lwr (0w, £ + f—>wn|{n, &3+ 1Kl w. ).

w6 5 (S + W0

and hence

wi [{L, 8} S wol{L, &} + € (we [{E, &} + wy[{n, &3] + Hu, §)]),
where we used that mLm_l < 1 by (A.6). This gives the second inequality in (A.2).

(3) In u: Recall that R = gél + Vx L = Zu + au x L and thus

R.¢} = E{u,l} —g{E7 ' Lxu, 5}
= %{u,é} +gE 2L xwiE. &} — g L x {u, g} —ux {L.£}].

It follows that

Lx (R.{) = 2L u.¢) - );—zu{é 6+ E02.0) F LG L2 +ulL (L))
and hence
(R ¢+ 267 'L x (R, ¢}
= gE (L X WE. £} +g& u x (L. £} — 26719226 Pulg ¢}
+ 2§72 [L@- (L 0D + ul- (L )]+ (£ + 205722 ) u, g3,

i.e.,
%(1 + 4w, &y = {R, &} 4+ 267 'L x {R. &} — g2 (L x w){€. &} — g& Tux {L. ¢}

+2qk*ugHE, ¢ — 2¢E 7 [L(u - {L. &) +u(L - {L, ¢})]
= {R.$} + 21 (R, 5} + ¢& 7 260 — k(A x W{E, £}
—q&  ux {L, &) + 2c((u - {L, &) + ud - {L, {))].
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Applying this to (w/,R’, &, k", L), we get
W81 S ()T R G+ @ THEL O+ ()T @ L. gl

e For the third term, we obtain

() HETIHLL LS ()7 E) ! wn L ¢+ )TN E T WK, ¢

with, using (A.1),

() wp ! - w{L. ] S ()82 wl{L.g)]
and, using (A.5),
WO 5
S WOl () welte. 0 + <§—>mn|{n,z}| + (1) {u. ¢} + <f]—>mL|{L,c}|)
&7+ (wellE S} + (07 w0 [, B, )] + ()7 2w (L. ¢31).

e For the second term, we obtain using (A.8),

E)HE . O S we {0
S wel{&. EH A+ ()2 (wy [{n. ] + [{u, O} + wi[{L. Z})).
e The first term is more involved. With
R=R—-—WxL—-Vx§L+ Wx§L.

we obtain that

{x)

() THR G < () W x L+ V x L — W x §L, ) () R, ¢}
SIWOIK) L, G + (g8 + 1WODIX, & + XIHV. 23D
0 R )L
k')

By Lemma 2.9,

& — &I

o=k <ETHA AT+ A 2
33

S IWOIE (1) + §'x],
and thus, using also that § <, (z),

(k)
(k)

ST+EWO S 1+
Next we use that

RO} < ql{e) [{w, & + &7 l{E O} + & HL, £}]
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to conclude that

2

2
IR S (148267 + 2 Juelle. 01+ (1467 + 1 Jou L.
+e2(07 P+ + l)](Tl)mnH’?, &+ (1 + 267w, g},

Therefore,

[, 8} < (1 + 6267 + 87X Dwe (€, ¢
+ (1 + (O + X[ wyl{n. ¢}
+ (1+ 26w 8+ (1467 + 2 X Hw [{L, ¢},
which gives the third bound in (A.2).
(4) In n: By (2.54), it holds that

n+ood oM =(n+o0d)—64,

where s 5 ) )
54 :=z(a)q_“ n “;a (i-V)+%(f(-'W(t)).

Note that since o 0 ;1 o M1 = o (1 + 1¢g%(§) 73, '), we have that
{oo® oM 8y = 0yo(n +147(E) kYU &} = 3tg>(€)THE . &)
+ deo(n +1q>(E) 7 k) ¢

and similarly for o o ®;!, where by (2.38), (2.34)~(2.35) and the bound p 2 |i| -qE2,
we have that

1
|9po] = 0= <

< |0 | < min{/cp_z, (K)_l}.
2p

990 (0, 0| S — ==

N =

2IXI

Hence

|{71 O <[+ 80 +14>E) > )] - 1{n'. )
<1050 0 @7 o M 1q? () THHE' O + k0 0 @7 o MK, 8
+1{n+o 0@ 5} + [{84. 5}

Hence with § ~ &’ we have the bounds

wy - [9,0 0 @7 o M| 1q? () THHE L O £ 511845 - wer [{E' O

(1 + £)?

o 2
|5i| (wel{&", S} + &> DIED),
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and
2
w, - [0c0 0 @7 o M [{K L} S li-é ()Y TETTUN O+ HEL O
3
S w|{L'. ¢} + mw;l{é’,é}l

< Ewe[{€, O + wil{L, &} + £2(1 + £X[7H D[ @),

where we used (A.7) to absorb one extra factor of &. Similarly,

wy - [+ 0018} S wyl{n, §} + wL{L, S + (€ + 11X Hwe{E, .

Finally, we observe that with {a>, {} = 2a{a?, ¢} and using (2.53), it follows that
N3 3 3 / N2 2 3 / 2
{(a") —a,g‘}:—a{(a) —a §}+—(a —a){a”, ¢}

= —3d'W(t)-{V,t} —3(d —a)—{é ¢},

53
and
{a’—a,;}=$—{(a/)2 a® z}+$ E{ 2.0}
=—§w<r) V.0 - ~O &te0)

so that, using (2.51),

{6483 S WOl G /Y. 0} + E7°1HE G + EIXIVIAV. 0} + 67218 )]
+IWOIIXIHV. 1 + IVIK. 5
+IWOIIXIE) 2HE 0 + €7 XD

From this and (A.5), we deduce that
wy {84, 81| S e wel (8. 81| + £2(6) 2 W) [Xlwe {8, £}
+WOIXIEE) ™ + 66TV, +£2()”
S [+ (XTHwe (€. ¢ + wal{u. 7|
+ (L X7 (g [ {0, 83 + w [{L. 23]
Altogether, we obtain that

woy [{1. §} < wyln, & + wi L, L} + (1 + £) () X~ we [{£, ¢}
+&2(1 + (1) XI"H D0,

§
l_
(E)HX 4]

which gives the last inequality in (A.2). ]
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