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Abstract: The inverse scattering transform is developed to solve the Maxwell-Bloch
system of equations that describes two-level systems with inhomogeneous broadening,
in the case of optical pulses that do not vanish at infinity in the future. The direct problem,
which is formulated in terms of a suitably-defined uniformization variable, combines
features of the formalism with decaying as well as non-decaying fields. The inverse
problem is formulated in terms of a 2 × 2 matrix Riemann-Hilbert problem. A novel
aspect of the problem is that no reflectionless solutions can exist, and solitons are always
accompanied by radiation. At the same time, it is also shown that, when the medium
is initially in the ground state, the radiative components of the solutions decay upon
propagation into the medium, giving rise to an asymptotically reflectionless states. Like
what happens when the optical pulse decays rapidly in the distant past and the distant
future, a medium that is initially excited decays to the stable ground state as t → ∞ and
for sufficiently large propagation distances. Finally, the asymptotic state of the medium
and certain features of the optical pulse inside the medium are considered, and the
emergence of a transition region upon propagation in the medium is briefly discussed.

1. Introduction

Resonant interaction between light and optical media underlies several types of practi-
cal devices such as lasers and optical amplifiers [19,57,66,67]. Typically, only narrow
ranges of light colors interact resonantly with electron transitions between a small num-
ber of specific pairs of working energy levels in the active atoms [6,19,20,38,59]. Fre-
quently, there is only one resonant transition and light is monochromatic, yet even this
simple case produces a host of important physical effects such as: electromagnetically
induced/self-induced transparency [10,17,23,30,37,41,45,52,55,56,68,72], superradi-
ance and superflourescence [18,25,36,39,61,69], chaos and instabilities [7–9,73], pho-
ton echo [34,35,46,60,75], and remarkably even the slowing down of light to a tiny
fraction of its speed in vacuum [29,40,58,63,64].
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For many experimental and practical setups, a sufficient theoretical description of
the interaction between light and an active optical medium is semi-classical, with the
light described classically and the medium quantum-mechanically [6]. In the case of a
finite number of resonant electron transitions, the quantum description reduces to a finite
number of ordinary differential equations for the elements of the corresponding density
matrix [20]. When averaged over appropriate portions of the medium, this matrix renders
a description of the macroscopic medium polarization as well as its average local level
occupation [19,20]. The large separation between the period(s) of the electromagnetic
field oscillations corresponding to the color(s) of the light and the scale of its pulse
width(s) further simplifies the theoretical description. In particular, one can extract, and
average over, the fast oscillations, and thus find the description only in terms of the
slowly-varying envelopes corresponding to the evolution of the light intensity and phase
[6]. Moreover, backscattering is neglected and thus only unidirectional propagation is
assumed. The resulting equations are called the Maxwell-Bloch equations (MBEs), and
are one of the fundamental models in modern nonlinear optics [2,47–49,65].

The Maxwell-Bloch equations for two- and certain three-level media are completely
integrable in the sense of possessing a Lax Pair (zero-curvature) representation [2]. Inte-
grability makes it possible to linearize exactly these equations via the Inverse Scattering
Transform (IST) [3,21,22,31–33,53,54,70], and enables the use of various transforma-
tion methods to “dress” simple exact solutions into more complicated and physically
relevant ones [71]. At first, only pulses whose intensity decays rapidly in both the distant
past and the distant future were studied using IST. Recently, however, the IST formal-
ism was extended to optical pulses with nonzero background (NZBG) in both the distant
past and the distant future, and pulses riding on top of continuous light beams were also
studied in [14,50]. In all these cases, the NZBG was assumed to be symmetric, i.e., ap-
proaching the same nonzero amplitude as t → ±∞. The MBEs in the laboratory frame
with periodic boundary conditions were also recently investigated in [27,28]. In this
work we investigate Maxwell-Bloch systems with one-sided NZBG, corresponding to
light pulses riding on continuous waves that are in the process of either turning on or off.
Specifically, we consider one-sided boundary conditions with nonzero background in
the distant future. The integrable Maxwell-Bloch equations are special among integrable
equations, in that even the simplest problem involving them is an initial-boundary-value
problem. In some situations, the medium can be assumed to be semi-infinite, and “pre-
pared” in the distant past (mathematically, in the limit as t → −∞) in a (known) state
characterized by assigned values for the distribution of atoms in the ground and excited
states, and for the polarizations at every point. In the case of a 2-level system, macro-
scopically the medium can be in: (i) a pure ground state (with all atoms in the lowest
energy level); (ii) a pure excited state (i.e., a medium with a complete “population in-
version”, with all the atoms in the excited state); (iii) a mixed state with an assigned
fraction of atoms in each state (in this case, the medium exhibits nontrivial polarization
fluctuations, encoded by the off-diagonal entries of the density matrix). A light pulse is
then injected into the medium at the origin, and it propagates to the right. The Maxwell-
Bloch equations determine the optical pulse in each point of the medium at any given
time (and, in particular, the residual optical pulse along the medium), as well as the final
state of the entire medium after a long time (i.e., the asymptotics of the density matrix
as t → +∞). The state of the medium sample in the distant future cannot be assumed to
be known, but it can be deduced from the state in the distant past (and the IST scattering
data) by a rather sophisticated procedure first introduced in [2,33].
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As in all signaling-type problems, the role of the spatial and temporal variables in
Maxwell-Bloch systems is reversed as compared to pure initial-value problems. This is
reflected in the IST treatment: the scattering and inverse scattering of the pulses takes
place in time, and the “evolution” is actually propagation along the medium [2,49]. If
all atoms in the medium are initially in the ground state, the propagation damps the
“continuous-radiation” components of the solutions, and is thus not time-reversible [2].
In this case, the response of the medium to an incident electric field, to which the medium
is totally transparent and which undergoes lossless propagation, is known as self-induced
transparency. The properties of the system change drastically when atoms are initially
all in the excited state, in which case the dynamics can give rise to the phenomenon
called superfluorescence [32,34,70].

Two classes of solutions of the MBEs are naturally distinguished. If the medium is
initially prepared in a pure state, and hence does not exhibit polarization fluctuations as
t → −∞, then the solution is completely determined by the incident pulse (in this work,
q(t, 0)). According to [33], such solutions are called “causal” solutions, in consideration
of the fact that if q(t, 0) = 0 for all t < to for some to ∈ R, then one can show that
q(t, z) = 0 for all t < to + z, which means that the causal solution for a potential of
finite range has a front which propagates into the medium with the velocity of light,
in agreement with the notion of causality. On the other hand, for a medium that is not
initially in a pure state, the MBEs admit nontrivial solutions even if q(t, 0) ≡ 0, i.e.,
in the absence of an incident pulse. In this case, the solution is entirely determined by
the polarization fluctuations as t → −∞, and, following the terminology introduced in
[33,74], such solutions are called “spontaneous” solutions. The solution of the MBEs is
in general a superposition of a causal and a spontaneous solution.

To avoid confusion, we emphasize that the definition of “causal” solutions introduced
in [33], which we also adopt in this work, is different from the one recently introduced in
[51], where the term “causal” was used to denote solutions for which the incident pulse
q(t, 0) is identically zero for all t < 0, and the optical field q(t, z) vanishes for all t < 0
and z ≥ 0. (The reason for the latter definition is that the MBEs are typically written
in a comoving reference frame translating at the speed of light in vacuum—including
in this work, as well as in [33,51]—and therefore solutions with t < 0 lie outside the
light-cone frame and therefore are deemed to be unphysical.) While the two definitions
of “causality” agree when q(t, 0) = 0, the first definition does not necessarily require the
incident pulse to be of finite range. A related issue is the question of whether solitons are
to be considered unphysical in the Maxwell-Bloch system because of the exponentially
decaying tail, which extends to infinity in time. This is true, strictly speaking. However,
it is still useful to include solitons in the description of two-level systems. Indeed, the
situation is exactly the same as for the nonlinear Schrödinger (NLS) equation. The NLS
equation is also written in a comoving frame like the Maxwell-Bloch system. Still,
solitons have been enormously fruitful objects in order to understand the properties
of optical systems governed by the NLS equation. In fact, a truncated soliton (i.e., a
soliton with its exponential tail “chopped off”) is described spectrally by a discrete
eigenvalue plus a small radiative component. Such an initial system configuration is
certainly physical. Moreover, since in the Maxwell-Bloch system in a stable system
configuration (e.g., when atoms are initially in the ground state) the radiation decays
upon propagation, and approximating the solution with solitons becomes increasingly
more accurate upon propagation.

Another important feature of our work is that we do not limit ourselves to the sharp-
line limit, but instead deal explicitly with the presence of inhomogeneous broadening.
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(Recall that, in optical media, the density matrix depends on the detuning from the
exact quantum transition frequency due to the Doppler shift caused by the thermal
motion of the atoms in the medium, and the associated MBEs must account for the
inhomogeneous broadening effect by averaging over the range of detuning with the
atomic velocity distribution function. The sharp-line limit, sometimes also referred to
as “infinitely narrow line”, corresponds to the limiting case in which the broadening
function is taken to be a Dirac delta.) As a byproduct, our treatment is not limited to
media that are initially in a pure state. Indeed, accounting for inhomogeneous broadening
also allows considering a medium initially in a mixed state without requiring a compatible
non-vanishing optical pulse in the distant past, the latter becoming a constraint only in
the sharp-line limit. Besides the obvious physical relevance, including inhomogeneous
broadening is also crucial to circumvent one of the drawbacks highlighted in [51], namely
the fact that no matter how fast the incident pulse q(t, 0) decays as t → +∞, after an
infinitesimal propagation distance the optical pulse q(t, z) always decays at a fixed slow
rate as t → +∞. This of course has consequences regarding the well-posedness of the
IST, which in the case of zero boundary conditions requires that q(·, z) ∈ L1(R) for all
z ≥ 0, while even if this condition is imposed at z = 0, it is generically violated for all
z > 0 (see Corollary 3 in [51]). Such slow decay of the optical field was also noted in [33],
but in both cases it can be attributed to the fact that neglecting inhomogeneous broadening
results in the second operator of the Lax pair exhibiting an essential singularity at the
origin in the spectral plane. With inhomogeneous broadening, there is no such essential
singularity, and the behavior of the reflection coefficient at the origin cannot play any
role in inducing a slow decay of the optical field as t → +∞.

The outline of this work is as follows. In Sect. 2 we briefly present some preliminary
mathematical facts about the problem, to set up the framework for what follows. In
Sect. 3 we formulate the direct scattering problem of the IST, including the Jost solutions,
scattering matrix, symmetries, discrete eigenvalues, asymptotic behavior at the branch
points, etc. In Sect. 4 we formulate the inverse problem both in terms of a Riemann-
Hilbert problem from the left and one from the right, and we derive the trace formulae,
which are needed to evaluate the propagation of the norming constants. In Sect. 5 we
discuss the asymptotic values of the density matrix in the distant past and distant future,
and in Sect. 6 we discuss the evolution (i.e., propagation) of the scattering data. In Sect. 7
we use the IST formalism to briefly discuss the asymptotic behavior of the medium and
of the optical pulse. Finally, in Sect. 8 we offer some concluding remarks.

2. Maxwell–Bloch Equations, Lax Pair and Problem Formulation

Up to rescalings of dependent and independent variables, the MBE that describe the
propagation of an electromagnetic pulse q(t, z) in a two-level medium characterized by
a (real) population density function D(t, z, k) and (complex) polarization fluctuation
P(t, z, k) for the atoms can be written in dimensionless form [48] as

qz(t, z) = −
∫ ∞

−∞
P(t, z, k) g(k) dk, (2.1a)

Pt (t, z, k) − 2ik P(t, z, k) = −2D(t, z, k)q(t, z), (2.1b)

Dt (t, z, k) = 2 Re
[
q∗(t, z)P(t, z, k)

]
, (2.1c)

where z = zlab is the propagation distance, t = tlab − zlab/c is a retarded time (c
being the speed of light in vacuum), subscripts z and t denote partial differentiation,
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the parameter k is the deviation of the transition frequency of the atoms from its mean
value, and the asterisk ∗ denotes complex conjugation. The function g(k) is the so-called
inhomogeneous broadening function, which describes the shape of the spectral line. A
prototypical example is given by a Lorentzian distribution, i.e., g(k) = π−1δ/(k2 + δ2),
where δ > 0 represents the width of the spectral line (the case g(k) = δ(k − ko)
corresponding to the so-called sharp-line limit, or infinitely narrow line). In the present
work, we treat the case of a fairly arbitrary inhomogeneous broadening function g(k),
subject to the only physical constraints that g(k) ≥ 0 for all k ∈ R is in L1(R), and
normalized by the condition

∫ ∞
−∞ g(k)dk = 1.

Introducing the matrix describing the optical field and the so-called density matrix
of the medium,

Q(t, z) =
(

0 q
−q∗ 0

)
, ρ(t, z, k) =

(
D P
P∗ −D

)
, (2.2)

respectively, (2.1) can be written compactly as

ρt = [ikσ3 + Q, ρ], (2.3a)

Qz = −1

2

∫ +∞

−∞
[σ3, ρ] g(k) dk (2.3b)

where [A, B] = AB − BA is the matrix commutator, and σ j for j = 1, 2, 3 are the
standard Pauli matrices, with σ3 = diag(1,−1). It was then shown in [2,49] that (2.3)
are integrable, with a Lax pair given by

vt = Xv, (2.4a)

vz = T v, (2.4b)

with

X (t, z, k) = ikσ3 + Q, T (t, z, k) = iπ

2
Hk[ρ(t, z, ξ)g(ξ)], (2.4c)

where Hk[ f (ξ)] is the Hilbert transform,

Hk[ f (ξ)] = 1

π
−
∫
R

f (ξ)

ξ − k
dξ, (2.5)

and the symbol −
∫

denotes the principal value integral.
In the following, the medium is assumed to be semi-infinite, i.e., z ≥ 0, and “pre-

pared” in the distant past (i.e., as t → −∞) in a (known) state characterized by assigned
values for the distribution of atoms in the ground and excited states via D(t, z, k), and
for the polarization P(t, z, k) at every point.

Equations (2.3) imply that the determinant of the density matrix, det ρ(t, z, k) =
−(D2(t, z, k)+|P(t, z, k)|2), is independent of t . Moreover, (2.3) are invariant under the
transformation ρ(t, z, k) �→ ρ(t, k, k) + c I , with c an arbitrary constant and I the 2 × 2
identity matrix. Thus, without loss of generality, the density matrix can be redefined to be
traceless, and with determinant equal to −1 for all z ≥ 0, so D2(t, z, k)+ |P(t, z, k)|2 =
1. An electromagnetic pulse q(t, 0) is then injected into the medium at the origin and it
propagates into it (z > 0). As mentioned above, the inhomogeneous broadening function
is assumed to be integrable, and the entries of the density matrix ρ(t, z, k) are bounded
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functions for all k, t ∈ R and all z ≥ 0, ensuring that the integrals in Eqs. (2.3) and the
Hilbert transform (2.4c) are well-defined.

The IST to solve the initial-value problem for the above MBEs with localized fields
[i.e., with q(t, z) → 0 as t → ±∞] was developed in [2] in the case of an initially
stable medium limt→−∞ D(t, z, k) = −1) and in [33] in the case of an arbitrary initial
state of the medium. The IST with a symmetric NZBG [i.e., q(t, z) → q±(z) with
|q+(z)| = |q−(z)| = qo as t → ±∞] was carried out in [14]. Here, we develop the IST
for one-sided NZBG, namely:

q(t, z) →
{

0 t → −∞,

q+(z) t → +∞,
(2.6)

with |q+(z)| = A > 0 for all z ≥ 0. This type of boundary conditions describes optical
fields that start from zero and then never return back to zero, remaining as a continuous
wave (CW). We point out that the same methodology can be used to study the situation
when q+(z) ≡ 0 and q(t, z) → q−(z) 	= 0 as t → −∞, corresponding to optical
fields that start as a CW and then get extinguished. For brevity, however, we omit the
details. Note that, as in all earlier works and like in the study of optical fibers [5], in the
formulation of the IST the set up is essentially that of a signaling problem, in which the
propagation distance z is the evolution variable, and t is treated as a transverse variable.

The first half of the Lax pair, namely (2.4a), which is referred to as the scattering
problem, coincides with the scattering problem for the focusing NLS equation [4,76].
As a result, the formulation of the direct problem is similar to that for the IST for the
focusing NLS equation with one-sided nonzero background [62]. On the other hand, the
“evolution” of the scattering data for the MBEs with a one-sided NZBG is substantially
different and more complicated than for the NLS equation, and also from the case
of the MBEs with a zero background [2], and a symmetric NZBG [14]. Moreover,
the formulation of the inverse problem in the present work is also substantially more
involved than in the focusing NLS case [62], or in the MBEs with either rapidly decaying
or symmetric NZBG.

The asymptotic scattering problem as t → −∞ reduces to the one with zero back-
ground, while when t → +∞ it becomes vt = X+v where X+ = ikσ3 + Q+, Q+(z)
being Q(t, z) with q(t, z) replaced by its boundary value q+(z). The eigenvalues of X+
are ±iλ with λ2 = k2 + A2, where, as mentioned before, A = |q+|. As with the focusing
NLS equation [15], to deal with the branching of the scattering parameter we consider
the two-sheeted Riemann surface defined by λ(k) = (k2 + A2)1/2 with a branch cut
along the segment of the imaginary axis [−i A, i A], and then introduce a uniformization
variable defined by the conformal mapping [26].

ζ = k + λ(k), (2.7a)

which is inverted by the identities

k = 1
2

(
ζ − A2/ζ

)
, λ = ζ − k = 1

2

(
ζ + A2/ζ

)
. (2.7b)

The above transformation maps the two-sheeted Riemann surface defined by λ(k) onto
the complex ζ -plane. Specifically, one has the following results (cf. Fig. 1): (i) Sheet I and
sheet II of the Riemann surface are mapped, respectively, onto the exterior and the interior
of the circle C of radius A. (ii) The branch cut 	 on either sheet is mapped onto C . (iii)
The real k-axis on sheet I and sheet II is mapped, respectively, onto (−∞,−A)∪(A, +∞)
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Fig. 1. Left and center: the two sheets of the Riemann surface associated with λ2 = k2 + A2. Right: the
complex plane for the uniformization variable ζ = k + λ. The grey regions (D+

in and D+
out) correspond to

values of ζ for which Im λ > 0, while the white regions (D−
in and D−

out) correspond to Im λ < 0. The circle
C (in red) corresponds to the cut 	 on either sheet, while (−∞, −A) ∪ (A, +∞) (blue) and (−A, A) (green)
correspond to the real k-axis on sheets I and II, respectively

and (−A, A). (iv) ζ(±i A) = ±i A from either sheet, while ζ(0±
I ) = ±A and ζ(0±

II ) =
∓A. (v) The upper half-planes Im k > 0 on sheet I and sheet II are mapped, respectively,
into the exterior and the interior of the circleC in the upper half-plane Im ζ > 0, whereas
the lower half-planes Im k < 0 on sheet I and sheet II are mapped, respectively, into the
exterior and the interior of the circle C in the lower half-plane Im ζ < 0. It is therefore
convenient to introduce the following regions in the complex ζ -plane:

D+ = {ζ ∈ C : (|ζ |2 − A2) Im ζ > 0}, D− = {ζ ∈ C : (|ζ |2 − A2) Im ζ < 0},
which correspond to the regions where Im λ > 0 and Im λ < 0, respectively, on either
sheet. The complex ζ -plane is then partitioned into four regions: the upper/lower half
ζ -plane outside the circle C , denoted as D±

out, respectively, and the lower/upper half
ζ -plane inside the circle C denoted as D±

in , respectively. In the following, we will also
denote with C± the upper and lower semicircles of radius A, respectively.

Note that in general the density matrix ρ(t, z, k) is only defined for k ∈ R. In terms of
the uniformization variable ζ , we can evaluate it for all ζ ∈ R, specifically for |ζ | > A on
sheet I, and for −A < ζ < A on sheet II, where obviously ρ(t, z,−A2/ζ ) = ρ(t, z, ζ )

since ρ is a single-valued function of k. But we cannot assume ρ is defined off the real
k axis.

Note also that, in analogy with what happens for the symmetric NZBG, the back-
ground solution should reduce to ρ = h3σ3 with h3 = ±1 in the limit A → 0, and to
maintain consistency one needs to choose the opposite sign of h3 on sheet II.

3. Direct Scattering Problem

3.1. Jost solutions, analyticity and scattering matrix. As usual, the direct problem in
the IST consists in mapping the solution of the MBEs into a suitable set of scattering
data. And, as usual, this is done by introducing Jost eigenfunctions, which are solutions
of the scattering problem with prescribed exponential asymptotic behavior at infinity.
Specifically, in light of the asymptotic behaviors of the scattering problem as t → ±∞
discussed above, we define the Jost eigenfunctions as


(t, z, ζ ) = (
φ̄(t, z, ζ ) , φ(t, z, ζ )

) = I2eik(ζ )tσ3 (1 + o(1)), t → −∞, (3.1a)
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�(t, z, ζ ) = (
ψ(t, z, ζ ), ψ̄(t, z, ζ )

) = Y+(ζ, z) eiλ(ζ )tσ3 (1 + o(1)), t → +∞,

(3.1b)

where I2 is the 2 × 2 identity matrix,

Y+(ζ, z) = I2 +
i

ζ
σ3Q+(z), (3.2)

and φ̄, φ, ψ and ψ̄ denote the first and second columns of 
 and �, respectively. (Note
that in this work the overbar is not used to denote Schwarz conjugation.) Then 
(t, z, ζ )

is defined for k(ζ ) ∈ R [i.e., for ζ ∈ R], while �(t, z, ζ ) is defined for λ(ζ ) ∈ R [i.e.,
for ζ ∈ R ∪ C ].

One can rigorously define the Jost solutions as solutions of the following integral
equations:


(t, z, ζ ) = eik(ζ )tσ3 +
∫ t

−∞
eik(ζ )(t−τ)σ3 Q(τ, z)
(τ, z, ζ )dτ, (3.3a)

�(t, z, ζ ) = Y+(ζ, z) eiλ(ζ )tσ3 −
∫ ∞

t
K+(t − τ, z, ζ )�Q+(τ, z)�(τ, z, ζ )dτ,

(3.3b)

where �Q+(t, z) = Q(t, z) − Q+(z) and K+(t, z, ζ ) := Y+(z, ζ )eiλ(ζ )tσ3Y−1
+ (z, ζ ).

Standard Neumann series iterations on these Volterra integral equations allow one to
prove the following (e.g., see Ref. [4] for details):

Theorem 3.1. If the potential q(t, z) is such that q(t, z)−q+(z) H(t) ∈ L1,1
t (R), where

H(t) is the Heaviside step function, the following columns of the Jost eigenfunctions
can be analytically extended onto the corresponding regions of the complex ζ -plane:

φ(t, z, ζ ) : ζ ∈ C
+, φ̄(t, z, ζ ) : ζ ∈ C

−, (3.4)

ψ(t, z, ζ ) : ζ ∈ D+, ψ̄(t, z, ζ ) : ζ ∈ D−.

As usual, we define the continuous spectrum of the scattering problem as the set
of values of k where all four eigenfunctions are simultaneously defined. Unlike what
happens with symmetric NZBG (for which the continuous spectrum includes C ), here
the continuous spectrum is limited to the real ζ -axis. Abel’s theorem implies that, for
any matrix solution v of the scattering problem, ∂t (det v) = 0. In addition, for all ζ ∈
R, limt→−∞ 
(t, z, ζ ) e−ik(ζ )tσ3 = I2 and limt→+∞ �(t, z, ζ ) e−iλ(ζ )tσ3 = Y+(ζ, z).
Hence, ∀t, ζ ∈ R we have det 
(t, z, ζ ) = 1 and det �(t, z, ζ ) = det Y+(ζ, z). Thus,
for all ζ ∈ R, both 
 and � are two fundamental matrix solutions of the scattering
problem, and one can express one set of eigenfunctions in terms of the other one:

�(t, z, ζ ) = 
(t, z, ζ ) S(ζ, z) , S(ζ, z) =
(
a(ζ, z) b̄(ζ, z)
b(ζ, z) ā(ζ, z)

)
, ζ ∈ R , (3.5a)


(t, z, ζ ) = �(t, z, ζ ) S−1(ζ, z) , S−1(ζ, z) =
(
c̄(ζ, z) d(ζ, z)
d̄(ζ, z) c(ζ, z)

)
, ζ ∈ R ,

(3.5b)
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where S(ζ, z) is the scattering matrix, whose entries are referred to as the scattering
coefficients. Note that unlike the case of symmetric NZBG, here the scattering matrix is
not unimodular, since (3.5) implies det S = det �, i.e., explicitly:

det S(ζ, z) = 2λ(ζ )/ζ = 1 + A2/ζ 2. (3.6)

As usual, one can express the scattering coefficients as Wronskians of the Jost solutions:

a(ζ, z) = Wr(ψ(t, z, ζ ), φ(t, z, ζ )), ā(ζ, z) = Wr(φ̄(t, z, ζ ), ψ̄(t, z, ζ )), (3.7a)

b(ζ, z) = Wr(φ̄(t, z, ζ ), ψ(t, z, ζ )), b̄(ζ, z) = Wr(ψ̄(t, z, ζ ), φ(t, z, ζ )). (3.7b)

In turn, (3.7) imply the following:

Theorem 3.2. Under the same hypotheses as in Theorem 3.1, the following scattering
coefficients can be analytically extend off the real ζ -axis in the following regions:

a(ζ, z) : ζ ∈ D+
out, ā(ζ, z) : ζ ∈ D−

out, (3.8)

b(ζ, z) : ζ ∈ D+
in, b̄(ζ, z) : ζ ∈ D−

in .

Moreover, a(ζ, z) is continuous for ζ ∈ R ∪ C +\{i A}; ā(ζ, z) is continuous for ζ ∈
R∪C− \{−i A}; b(ζ, z) is continuous for ζ ∈ R∪C−\{−i A} and b̄(ζ, z) is continuous
for ζ ∈ R ∪ C + \ {i A}.

The first set of reflection coefficients that will be needed in the inverse problem,
which we refer to as the reflection coefficients from the left, is given by:

r−(ζ, z) = b(ζ, z)

a(ζ, z)
, r̄−(ζ, z) = b̄(ζ, z)

ā(ζ, z)
, ζ ∈ R. (3.9a)

Similarly, one can define reflection coefficients from the right in terms of the entries of
S−1(ζ, z):

r+(ζ, z) = d(ζ, z)

c(ζ, z)
≡ − b̄(ζ, z)

a(ζ, z)
, r̄+(ζ, z) = d̄(ζ, z)

c̄(ζ, z)
≡ −b(ζ, z)

ā(ζ, z)
, ζ ∈ R.

(3.9b)

Note that, unlike r−(ζ, z) and r̄−(ζ, z), the reflection coefficients from the right are such
that r+(ζ, z) is also defined onC + (except, possibly, at ζ = i A, where b̄(ζ, z) and a(ζ, z)
might have a pole), and r̄+(ζ, z) is also defined on C− (except, possibly, at ζ = −i A,
where b(ζ, z) and ā(ζ, z) might have a simple pole, see [15,62]). One can also write an
integral representation of the scattering matrix S(ζ, z), which is analogous to the one
with symmetric NZBG with Y− ≡ I2. Since such a representation will not be used,
however, it is omitted for brevity.



  192 Page 10 of 40 A. Abeya, G. Biondini, G. Kovaˇ cič, B. Prinari

3.2. Symmetries of eigenfunctions and scattering coefficients. The scattering problem
admits two nontrivial symmetries: (k, λ) �→ (k∗, λ∗) (i.e., switching between the upper
and lower half k-planes) and (k, λ) �→ (k,−λ) (i.e., switching between opposite sheets).
In terms of the uniformization variable ζ , these correspond to the maps ζ �→ ζ ∗ (i.e.,
upper/lower half ζ -plane) and ζ �→ −A2/ζ (outside/inside the circle C ).

Regarding the first involution, the boundary conditions (3.1) yield the following
symmetries:

Lemma 3.3. The Jost solutions satisfy the following symmetry:

�(t, z, ζ ) = −iσ2�
∗(t, z, ζ ∗)iσ2, 
(t, z, ζ ) = −iσ2


∗(t, z, ζ ∗)iσ2, ζ ∈ R.

(3.10a)

Componentwise, we have

ψ̄∗(t, z, ζ ∗) = −iσ2ψ(t, z, ζ ), ζ ∈ D+ ∪ C ∪ R, (3.10b)

ψ∗(t, z, ζ ∗) = iσ2ψ̄(t, z, ζ ), ζ ∈ D− ∪ C ∪ R, (3.10c)

φ∗(t, z, ζ ∗) = −iσ2φ̄(t, z, ζ ), ζ ∈ C
− ∪ R, (3.10d)

φ̄∗(t, z, ζ ∗) = iσ2φ(t, z, ζ ), ζ ∈ C
+ ∪ R. (3.10e)

Lemma 3.4. The scattering matrix and reflection coefficients obey the following sym-
metry relations:

S∗(ζ ∗, z) = −iσ2S(ζ, z)iσ2, ζ ∈ R, (3.11a)

r̄∗−(ζ ∗, z) = −r−(ζ, z), ζ ∈ R, (3.11b)

r̄∗
+(ζ ∗, z) = −r+(ζ, z), ζ ∈ C + ∪ R \ {i A}. (3.11c)

Componentwise, we have

ā∗(ζ ∗, z) = a(ζ, z) : ζ ∈ D+
out ∪ C + ∪ R, (3.11d)

b̄∗(ζ ∗, z) = −b(ζ, z) : ζ ∈ D−
in ∪ C− ∪ R.

Using the above symmetries, (3.6) can then be written as

|a(ζ, z)|2 + |b(ζ, z)|2 = 2λ/ζ ζ ∈ R, z ≥ 0. (3.12)

For the second involution, since λ(−A2/ζ ) = −λ(ζ ) and k(−A2/ζ ) = k(ζ ), tak-
ing into account the boundary conditions (3.1), one can easily establish the following
additional symmetry relations:

Lemma 3.5. The Jost solutions satisfy the following symmetry relations:

�(t, z, ζ ) = i

ζ
�(t, z,−A2/ζ )σ3Q+(z), 
(t, z, ζ ) = 
(t, z,−A2/ζ ), ζ ∈ R.

(3.13a)

Componentwise, we have

ψ̄(t, z, ζ ) = iq+(z)

ζ
ψ(t, z,−A2/ζ ), ζ ∈ D− ∪ C , (3.13b)

ψ(t, z, ζ ) = iq∗
+(z)

ζ
ψ̄(t, z,−A2/ζ ), ζ ∈ D+ ∪ C , (3.13c)

φ(t, z, ζ ) = φ(t, z,−A2/ζ ), ζ ∈ R ∪ C +, (3.13d)

φ̄(t, z, ζ ) = φ̄(t, z,−A2/ζ ), ζ ∈ R ∪ C−. (3.13e)
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Lemma 3.6. The scattering matrix satisfy the following symmetry relations:

S(ζ, z) = i
ζ
S(−A2/ζ, z)σ3Q+(z), ζ ∈ R. (3.14a)

Componentwise, we have

a(ζ, z) = iq∗
+(z)

ζ
b̄(−A2/ζ, z), ζ ∈ D+

out ∪ R ∪ C +, (3.14b)

ā(ζ, z) = iq+(z)

ζ
b(−A2/ζ, z), ζ ∈ D−

out ∪ R ∪ C−. (3.14c)

c(ζ, z) = − iζ

q+(z)
d(−A2/ζ, z), ζ ∈ D+

out ∪ R ∪ C +, (3.14d)

c̄(ζ, z) = − iζ

q∗
+(z)

d̄(−A2/ζ, z), ζ ∈ D−
out ∪ R ∪ C−. (3.14e)

Note that, unlike what happens for the focusing NLS equation, the above symmetries
depend explicitly on z. The explicit z-dependence will be determined in Sect. 6, where
we discuss the propagation of the background, as well as that of all relevant quantities
in the inverse scattering formalism.

Combining the first and second involutions above also yields the following symmetry
for the scattering matrix:

S∗(ζ ∗, z) = i

ζ
σ2S(−A2/ζ, z)σ3Q+(z)σ2. (3.15)

As a direct consequence we have the following symmetry for the reflection coefficients
from the left:

r∗−(ζ ∗, z) r−(−A2/ζ, z) = r̄−(ζ, z) r̄∗−(−A2/ζ ∗, z) = −1, ζ ∈ R (3.16)

On the other hand, the second symmetry implies that the reflection coefficients from the
right satisfy the symmetry:

r+(ζ, z) r+(−A2/ζ, z) = e2i arg q+(z), ζ ∈ R. (3.17)

Importantly, (3.16) and (3.17) imply that r±(ζ, z) 	= 0 for all ζ ∈ R. This is signif-
icant for two reasons: (i) It means that no reflectionless solutions exist for the problem
with one-sided NZBG. This situation is similar to what happens for the focusing and
defocusing NLS equation with asymmetric NZBG [13,24], as well for the defocusing
Manakov system with non-parallel boundary conditions [1]. (ii) Since r±(ζ, z) appear in
the denominator of the jump matrices in the inverse problem (cf. Sect. 4), it ensures that
the jump condition does not introduce singularities in the Riemann-Hilbert problem.

3.3. Discrete eigenvalues and residue conditions. A discrete eigenvalue of the scattering
problem is a value ζ ∈ D+ ∪ D− for which there exists a nontrivial solution v(t, z, ζ )

to the scattering problem in (2.4) with entries in L2(R, dt). These eigenvalues occur
for ζ ∈ D+

out iff the functions φ(t, z, ζ ) and ψ(t, z, ζ ) are linearly dependent (i.e.,
iff a(ζ, z) = 0); for ζ ∈ D−

out iff the functions ψ̄(t, z, ζ ) and φ̄(t, z, ζ ) are linearly
dependent (i.e., iff ā(ζ, z) = 0); for ζ ∈ D−

in iff the functions φ(t, z, ζ ) and ψ̄(t, z, ζ ) are
linearly dependent (i.e., iff b̄(ζ, z) = 0); finally, for ζ ∈ D+

in iff the functions ψ(t, z, ζ )
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and φ̄(t, z, ζ ) are linearly dependent (i.e., iff b(ζ, z) = 0). The conjugation symmetry
(3.11a) and the second symmetry (3.14b) then imply that the discrete eigenvalues occur

in quartets:
{
ζn , ζ ∗

n ,−A2/ζn ,−A2/ζ ∗
n

}N
n=1.

Next, we derive the residue conditions at each of the discrete eigenvalues. Here we
assume that discrete eigenvalues are simple and finite in number, and that there are no
spectral singularities, i.e., no real zeros of the scattering coefficients. In the case of rapidly
decaying optical pulses, sufficient conditions that guarantee the absence of spectral sin-
gularities and a finite number (or absence) of discrete eigenvalues were established in
[42–44,77]. On the other hand, when a non-zero background is considered, the charac-
terization of incident pulses without spectral singularities is an open problem, even for
the focusing NLS equation in the case of a symmetric NZBG, and it therefore is beyond
the scope of the present work. On the other hand, it is not difficult to construct explicit
examples of incident optical pulses (e.g., see [12,16]) for which no spectral singularities
are present. And most importantly, we emphasize that potentials with spectral singular-
ities are non-generic, and therefore the IST formulation in the present work covers the
generic case. Similarly, the assumption that the discrete eigenvalues are simple has only
the purpose of simplifying the notation/presentation.

Theorem 3.7. Consider a discrete eigenvalue ζn ∈ D+
out, i.e., a simple zero of a(ζ, z).

The Wronskian relation (3.7a) imply that there exist bn, b̄n 	= 0 independent of t such
that

ψ(t, z, ζn) = bn(z)φ(t, z, ζn), ψ̄(t, z, ζ ∗
n ) = b̄n(z)φ̄(t, z, ζ ∗

n ). (3.18)

In terms of the modified eigenfunctions μ = (μ− μ+) = 
 e−iktσ3 and ν = (ν+ ν−) =
� e−iλtσ3 we obtain

Resζ=ζn [ν+(t, z, ζ )/a(ζ, z)] = Cn(z) e−iζn tμ+(t, z, ζn), (3.19a)

Resζ=ζ ∗
n
[ν−(t, z, ζ )/ā(ζ, z)] = C̄n(z) eiζ

∗
n tμ−(t, z, ζ ∗

n ), (3.19b)

where the norming constants are Cn(z) = bn(z)/a′(ζn, z) and C̄n(z) = b̄n(z)/ā′(ζ ∗
n , z).

Hereafter, primes will denote differentiation with respect to the spectral parameter
ζ . Note that, since we assumed the eigenvalues to be simple, we have a(ζn, z) = 0
and a′(ζn, z) 	= 0. The first symmetry implies that b̄n(z) = −b∗

n(z) and a′(ζn, z) =
(ā′(ζ ∗

n , z))∗, which yields the following:

Lemma 3.8. Assume that a(ζ, z) has simple zeros {ζn}N1
n=1 ∈ D+

out. Then the norming
constants defined in the Theorem 3.7 obey the following symmetry relation:

C̄n(z) = −C∗
n (z), n = 1, . . . , N1. (3.20)

In turn, ζ̂n = −A2/ζ ∗
n ∈ D+

in and ζ̂ ∗
n ≡ −A2/ζn ∈ D−

in , and as a result of the
second symmetry b(−A2/ζ ∗

n , z) = 0 and b̄(z,−A2/ζn) = 0. Then, from the Wronskian
representations it follows:

Theorem 3.9. Let ζn be a simple zero of a(ζ, z). Then there exist b̂n,
¯̂bn 	= 0 independent

of t such that

ψ(t, z,−A2/ζ ∗
n ) = b̂n(z)φ̄(t, z,−A2/ζ ∗

n ), (3.21)

ψ(t, z,−A2/ζn) = ¯̂bn(z)φ(t, z,−A2/ζ ∗
n ).
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Similar symmetries exist for the norming constants associated to eigenvalues inside C ,
namely:

Res
ζ=ζ̂n

[ν+(t, z, ζ )/b(ζ, z)] = Ĉn(z) eiζ
∗
n tμ−(t, z, ζ̂n), (3.22a)

Res
ζ=ζ̂ ∗

n
[ν−(t, z, ζ )/b̄(ζ, z)] = ¯̂Cn(z) e−iζn tμ+(t, z, ζ̂ ∗

n ), (3.22b)

with

Ĉn(z) = b̂n(z)

b′(ζ̂n, z)
,

¯̂Cn(z) =
¯̂bn(z)

b̄′(ζ̂ ∗
n , z)

. (3.22c)

Note that the proportionality constants satisfy different symmetries for discrete eigen-
values inside and outsideC : for discrete eigenvalues outsideC one has b̄n(z) = −b∗

n(z),

while inside C one has ¯̂bn(z) = b̂∗
n(z). This is a result of the problem having asymmet-

ric boundary conditions as t → ±∞. Inside C the first symmetry implies b̄′(ζ̂ ∗
n , z) =

−b′(ζ̂n, z), which yields the following:

Lemma 3.10. Under the same hypotheses as in Lemma 3.8, norming constants defined
in the Theorem 3.9 satisfy the following symmetry:

¯̂Cn(z) = −Ĉ∗
n (z), n = 1, . . . , N1. (3.23)

From the second symmetry for the eigenfunctions we have (−iζ ∗
n /q+(z))ψ̄∗(t, z,

ζ ∗
n ) = b̂n(z)φ̄(t, z, ζ ∗

n ), and on the other hand (−iζ ∗
n /q+(z))ψ̄(t, z, ζ ∗

n ) ≡ (−iζ ∗
n /q+(z))

b̄n(z)φ̄(t, z, ζ ∗
n ) . Therefore,

b̂n(z) = − iζ ∗
n

q+(z)
b̄n(z). (3.24)

Using again the second symmetry one can obtain

¯̂bn(z) = − iζn
q∗

+(z)
bn(z). (3.25)

Finally, note that the definition of Ĉn(z) and the second symmetry imply, respectively,

Ĉn(z) = − iζ ∗
n

q+(z)

b̄n(z)

b′(ζ̂n, z)
, b′(ζ̂n, z) = −i

(ζ ∗
n )3

q+(z)A2 ā
′(ζ ∗

n , z).

We then obtain the following relationship between the norming constants inside and
outside C :

Ĉn(z) = (A/ζ ∗
n )2C̄n(z) ≡ −(A/ζ ∗

n )2C∗
n (z). (3.26)
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3.4. Asymptotic behavior as ζ → ∞ and ζ → 0. To normalize the inverse problem in
Sect. 4, we will need the asymptotic behavior of the eigenfunctions and the scattering
coefficients. Note that k → ∞ corresponds to ζ → ∞ in Sheet I, and ζ → 0 in Sheet
II. Standard Wentzel-Kramers-Brillouin (WKB) expansions in the scattering problem
rewritten in terms of ζ yield the following asymptotic behaviors for the eigenfunctions:

Proposition 3.11. As ζ → ∞ in the appropriate regions of the complex plane,

�d(t, z, ζ ) e−iλ(ζ )tσ3 = I2 + o(1),

�o(t, z, ζ ) e−iλ(ζ )tσ3 = i
ζ
σ3Q(t, z) + o(1/ζ ), (3.27a)


d(t, z, ζ ) e−ik(ζ )tσ3 = I2 + o(1),


o(t, z, ζ ) e−ik(ζ )tσ3 = i
ζ
σ3Q(t, z) + o(1/ζ ), (3.27b)

where subscripts “d” and “o” denote diagonal and off-diagonal part of a matrix. Sim-
ilarly, as ζ → 0 in the appropriate regions of the complex plan,

�o(t, z, ζ ) e−iλ(ζ )tσ3 = i
ζ
σ3Q+(z) + O(1),

�d(t, z, ζ ) e−iλ(ζ )tσ3 = Q(t, z)Q−1
+ (z) + o(1), (3.27c)


d(t, z, ζ ) e−ik(ζ )tσ3 = I2 + O(ζ ), (3.27d)


o(t, z, ζ ) e−ik(ζ )tσ3 = − iζ
A2 σ3Q(t, z) + o(ζ ).

If the potential satisfies the condition in Theorem 3.1, the Wronskian representations
(3.7) and the above asymptotic behavior of the eigenfunctions then yield the following
asymptotic behavior for the scattering coefficients:

Proposition 3.12. As ζ → ∞ in the appropriate regions of the complex plane,

lim
ζ→∞ a(ζ, z) = 1, ζ ∈ D+

out ∪ R, (3.28a)

lim
ζ→∞ ā(ζ, z) = 1, ζ ∈ D−

out ∪ R, (3.28b)

lim
ζ→∞ b(ζ, z) = lim

ζ→∞ b̄(ζ, z) = 0, ζ ∈ R. (3.28c)

Similarly, as ζ → 0 in the appropriate regions of the complex plane,

b(ζ, z) = iq∗
+(z)

ζ
+ O(1), ζ ∈ D+

in ∪ (−A, A), (3.28d)

b̄(ζ, z) = iq+(z)

ζ
+ O(1), ζ ∈ D−

in ∪ (−A, A), (3.28e)

lim
ζ→0

a(ζ, z) = lim
ζ→0

ā(ζ, z) = 0, ζ ∈ (−A, A), (3.28f)

r±(ζ, z) = O(1/ζ 2), ζ ∈ (−A, A). (3.28g)

Using (3.9a) and (3.9b) one then obtains following:

Proposition 3.13. As ζ → ∞ on the real ζ - axis,

lim
ζ→∞ r±(ζ, z) = 0, ζ ∈ R. (3.29a)

Similarly, as ζ → 0 on the real ζ - axis,

r±(ζ, z) = O(1/ζ 2), ζ ∈ (−A, A). (3.29b)

Note that b, b̄ and r± all have poles at ζ = 0. We will see that this is not an obstacle
to the formulation of the inverse problem, however.
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3.5. Behavior at the branch points. Next we discuss the behavior of the Jost eigen-
functions and the scattering coefficients at the points ζ = ±i A, which correspond to
the branch points k = ±i A of λ(k) in the k-plane, and are therefore still referred to as
branch points even if there is no branching in the ζ -plane.

Since λ(±i A) = 0, at ζ = ±i A the two columns of Y+(ζ, z), which specify the
asymptotic behavior of the Jost eigenfunctions �(t, z, ζ ), become linearly dependent,
and the two exponentials e±iλ(ζ )t reduce to the identity. It is convenient to introduce the
weighted spaces L1, j (R±

t ) := { f : R → C |(1 + |t |) j f (t) ∈ L1(R±
t )}, and consider the

integral equations (3.3). Notice that even though Y+(z,±i A) is not invertible, the term
K+(t − τ, z, ζ ) appearing in the (3.3b) remains finite as ζ → ±i A:

limζ→±i A K+(t − τ, z, ζ ) = I2 + (t − τ)(Q+(z) ∓ Aσ3), (3.30)

limζ→±i A
∂ K+(t−τ,z,ζ )

∂ζ
= O2×2.

Thus, if q(t, z) − q+(z) ∈ L1,1(R+
t ), the integral in (3.3b) is convergent at ζ = ±i A.

Moreover, �(t, z, ζ ) is well-defined and continuous at the branch points ζ = ±i A, with

�(t, z, ζ ) = �±,1(t, z) + o(1), ζ → ±i A, (3.31)

where �±,1(t, z) ≡ (
ψ±,1(t, z), ψ̄±,1(t, z)

) := �(t, z,±i A).
Furthermore, if q(t, z) − q+(z) ∈ L1,2(R+

t ), it follows that ∂�+(t, z, ζ )/∂ζ is well-
defined and continuous as ζ → ±i A. Therefore one obtains

�(t, z, ζ ) = �±,1(t, z) + �±,2(t, z)(ζ ∓ i A) + o(ζ ∓ i A), ζ → ±i A, (3.32a)

with �±,1(t, z) given above, and

�±,2(t, z) ≡ (
ψ±,2(t, z), ψ̄±,2(t, z)

) := ∂�(t, z, ζ )

∂ζ

∣∣∣∣
ζ=±i A

. (3.32b)

Higher order expansions can be found similarly by placing further restrictions on the
potential and looking at higher order derivatives in ζ .

Recall that det �(t, z,±i A) = 0, and therefore the columns of �(t, z,±i A) are
proportional to each other. Using the asymptotic behavior of �(t, z, ζ ) when t → ∞
and the fact that λ(ζ ) = 0 when ζ → ±i A, one can show that

ψ(t, z,±i A) = ±e−i arg q+(z)ψ̄(t,±i A). (3.33)

On the other hand, the Jost eigenfunction 
(t, z, ζ ) is not defined at ζ = ±i A, but the
individual columns are continuous at the appropriate branch point (cf. 3.3a). Namely,
φ(t, z, i A) and φ̄(t, z,−i A) are well-defined and continuous. Using the Wronskian rep-
resentations (3.7a) and (3.7b), one can obtain the behavior of the scattering coefficients
at the points ±i A.

If q(t, z) − q+(z) ∈ L1,1(R+
t ) then using (3.31) one obtains

a(ζ, z) = Wr(ψ+,1(t, z), φ(t, z, ζ )) + o(1) , ζ → i A , (3.34a)

ā(ζ, z) = Wr(φ̄(t, z, ζ ), ψ̄+,1(t, z)) + o(1), ζ → −i A , (3.34b)

b(ζ, z) = Wr(φ̄(t, z, ζ ), ψ+,1(t, z)) + o(1), ζ → −i A , (3.34c)

b̄(ζ, z) = Wr(ψ̄+,1(t, z), φ(t, z, ζ )) + o(1), ζ → i A . (3.34d)
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Similarly, assuming q(t, z) − q+(z) ∈ L1,2(R+
t ) and using (3.32) we have:

a(ζ, z) = Wr(ψ+,1(t, z), φ(t, z, ζ )) (3.35a)

+ Wr(ψ+,2(t, z), φ(t, z, ζ ))(ζ − i A) + o(ζ − i A) , ζ → i A ,

ā(ζ, z) = Wr(φ̄(t, z, ζ ), ψ̄+,1(t, z)) (3.35b)

+ Wr(φ̄(t, z, ζ ), ψ̄+,2(t, z))(ζ + i A) + o(ζ + i A), ζ → −i A ,

b(ζ, z) = Wr(φ̄(t, z, ζ ), ψ+,1(t, z)) (3.35c)

+ Wr(φ̄(t, z, ζ ), ψ+,2(t, z))(ζ + i A) + o(ζ + i A), ζ → −i A ,

b̄(ζ, z) = Wr(ψ̄+,1(t, z), φ(t, z, ζ )) (3.35d)

+ Wr(ψ̄+,2(t, z), φ(t, z, ζ ))(ζ − i A) + o(ζ − i A), ζ → i A .

One could continue this analysis by placing further restrictions on the potential if higher
order terms of the scattering coefficients are needed.

Finally, we discuss the limiting behavior of the reflection coefficients near the branch
points. Recalling the definition of the reflection coefficient from the left and right, (3.9a)
and (3.9b) imply that the branch points ±i A are in the domain of the latter, while the
reflection coefficients from the left are only defined for ζ ∈ R. To find the branch
behavior of r+(ζ, z) (resp. r̄+(ζ, z)) near ζ = i A (resp. ζ = −i A), we first compare
the Wronskian representations of the scattering coefficients (3.7a) and (3.7b) with the
proportionality relations (3.33) and obtain

a(i A, z) = e−i arg q+(z)b̄(i A, z), b(−i A, z) = −e−i arg q+(z)ā(−i A, z). (3.36)

Thus, if q(t, z) − q+(z) ∈ L1,1(R+
t ), (3.9b) yields

lim
ζ→i A

r+(ζ, z) = −e−i arg q+(z), lim
ζ→−i A

r̄+(ζ, z) = e−i arg q+(z). (3.37)

4. Inverse Problem

We now discuss the inverse problem in the IST, namely the reconstruction of the solution
of the MBEs (2.3) from the knowledge of the scattering data. We formulate the inverse
problem of the IST in terms of a matrix Riemann-Hilbert problem (RHP) for a suitable set
of sectionally meromorphic functions in D+ ∪ D−, with assigned jumps across R ∪ C ,
i.e., the oriented contour in the complex ζ -plane as in Fig. 1. We show that one can
obtain two different RHP formulations, namely a RHP “from the left” and one “from
the right”, depending on which scattering relation is used. The jump across C is then
removed using the symmetries of the eigenfunctions.

4.1. Riemann-Hilbert problem from the left. We begin by introducing the following
meromorphic matrix-valued function M(t, z, ζ ) based on the analyticity properties of
the Jost eigenfunctions and scattering coefficients discussed in Sect. 3:



On Maxwell-Bloch Systems with Inhomogeneous Page 17 of 40   192 

Lemma 4.1. Let M(t, z, ζ ) be the sectionally meromorphic matrix defined as

M(t, z, ζ ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
ψ(ζ )

a(ζ )
e−iλ(ζ )t , φ(ζ )eik(ζ )t

)
, ζ ∈ D+

out,(
ψ̄(−ζ ∗)
b̄(−ζ ∗)

e−iλ(ζ ∗)t , φ(−ζ ∗)e−ik(ζ ∗)t
)

, ζ ∈ D−
in,(

φ̄(−ζ ∗)eik(ζ ∗)t ,
ψ(−ζ ∗)
b(−ζ ∗)

eiλ(ζ ∗)t
)

, ζ ∈ D+
in,(

φ̄(ζ )e−ik(ζ )t ,
ψ̄(ζ )

ā(ζ )
eiλ(ζ )t

)
, ζ ∈ D−

out.

(4.1a)

where the t and z dependence of the eigenfunctions and the z dependence of the scattering
coefficients in the right-hand side was omitted for brevity. The matrix M(t, z, ζ ) satisfies
the jump condition

M+(t, z, ζ ) = M−(t, z, ζ ) J1(t, z, ζ ), ζ ∈ R, (4.1b)

where the superscripts ± denote the limit being taken from the left/right of the side of
the oriented contour in the complex ζ -plane, respectively, and where

J1(t, z, ζ ) =
{
Jo(t, z, ζ ), ζ ∈ (−∞,−A) ∪ (A,∞),

Jo(t, z,−ζ ), ζ ∈ (−A, A),
(4.1c)

with

Jo(t, z, ζ ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(
(1 − r−(z, ζ ) r̄−(z, ζ ))ei(k(ζ )−λ(ζ ))t −r̄−(z, ζ )e2ik(ζ )t

r−(z, ζ ) e−2iλ(ζ )t ei(k(ζ )−λ(ζ ))t

)
, ζ ∈ (−∞, −A) ∪ (A, ∞),

⎛
⎜⎝

e−iζ t 1

r−(z, ζ )
e−2iλ(ζ )t

− 1

r̄−(z, ζ )
e−2ik(ζ )t

(
1 − 1

r−(z, ζ ) r̄−(z, ζ )

)
e−iζ t

⎞
⎟⎠ , ζ ∈ (−A, A).

(4.1d)

Proof. One can use the scattering relation form the left (3.5a) as well as the second
symmetry (3.14b), (3.13) along with the fact that −A2/ζ = −ζ ∗ when ζ ∈ C , to obtain
the above jump condition across ζ ∈ R∪C . Note that, as a result of having augmented
the RHP to circumvent the nonlocality, there is no jump across C . ��

Recall that the asymptotic behavior of the eigenfunctions and the scattering matrix
is given by (3.27) and (3.28). Accordingly, we have the following:

Lemma 4.2. The sectionally meromorphic matrix M(t, z, ζ ) in (4.1a) has the following
asymptotic behavior:

M±(t, z, ζ ) = M∞ + o(1), ζ → ∞, ζ ∈ Dout± , (4.2a)

M±(t, z, ζ ) = Mo + o(1), ζ → 0, ζ ∈ Din±, (4.2b)

where M∞ = Mo = I2×2.
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Lemma 4.3. The meromorphic matrices defined in Lemma 4.1 satisfy the following
residue conditions at the discrete eigenvalues:

Resζ=ζn M(t, z, ζ ) =
(
Cn(z)e

−iζn t M2(t, z, ζn) , 0
)

, (4.3a)

Resζ=ζ ∗
n
M(t, z, ζ ) =

(
0 , C̄n(z)e

iζ ∗
n t M1(t, z, ζ

∗
n )

)
, (4.3b)

Res
ζ=−ζ̂ ∗

n
M(t, z, ζ ) =

(
0 , Ĉn(z)e

iζ ∗
n t M1(t, z,−ζ̂ ∗

n )
)

, (4.3c)

Res
ζ=−ζ̂n

M(t, z, ζ ) =
( ¯̂Cn(z)e

−iζn t M2(t, z,−ζ̂n) , 0
)

, (4.3d)

where M1 and M2 denote the columns of M(t, z, ζ ) and the constants Cn, C̄n, Ĉn and
¯̂Cn were defined in (3.19a), (3.19b) and (3.22), respectively.

Remark 4.4. Summarizing, the RHP from the left consists in determining a matrix func-
tion M(t, z, ζ ), meromorphic in C\R, satisfying the jump condition (4.1b), the normal-
ization condition (4.2) and the residue conditions (4.3). The minimal set of scattering
data needed to define the RHP is comprised of: (i) the reflection coefficient r−(ζ, 0)

for ζ ∈ (−∞,−A) ∪ (A,∞), which (as discussed in detail in Sect. 6) combined with
the “boundary conditions” D−(ζ, z) and P−(ζ, z) determines r−(z, ζ ) via (6.30a) (and
also D+(ζ, z) and P+(ζ, z) via (6.10b)) for all ζ ∈ R and all z > 0, (ii) the discrete
eigenvalues ζ1, . . . , ζN and (iii) the associated norming constants Cn(z), C∗

n (z), C̄n(z),

Ĉn(z) and ¯̂Cn(z) satisfying the symmetries (3.19b), (3.23) and (3.26) (again, see Sect. 6
for a detailed discussion of the propagation of the norming constants).

Next we show how the above RHP can be converted to a set of linear algebraic-integral
equations. We introduce the standard Cauchy projectors:

(
P± f

)
(ζ ) = 1

2π i

∫
R

f (s)

s − ζ
ds, ζ ∈ C \ R, (4.4)

which are well-defined for any function f ∈ L1(R). If f ± are analytic in C
± and

f ± = O(1/ζ ) as ζ → ∞ in the appropriate half-plane, then P±( f ±) = ± f ± and
P∓( f ±) = 0. Applying the Cauchy projectors (4.4) to the RHP defined by Eqs. (4.1a),
(4.1b), and (4.2) yields the solution of the RHP in terms of the following system of linear
algebraic-integral equations:

Theorem 4.5. The solution of the RHP defined by Lemmas 4.1, 4.2, and 4.3 is given by

M(t, z, ζ ) = M∞ +
1

2π i

∫
R

M−(s)L(s)
ds

s − ζ
+

N∑
n=1

(
Resζ=ζn M(ζ )

ζ − ζn
(4.5a)

+
Resζ=ζ ∗

n
M(ζ )

ζ − ζ ∗
n

+
Res

ζ=−ζ̂n
M(ζ )

ζ + ζ̂n
+
Res

ζ=−ζ̂ ∗
n
M(ζ )

ζ + ζ̂ ∗
n

)
,

M1(t, z, ω) =
(

1
0

)
+

1

2π i

∫
R

(
M−(s)L(s)

)
1

ds

s − ω
(4.5b)

+
N∑

n=1

(
Cne−iζn t M2(ζn)

(ω − ζn)
+

¯̂Cne−iζn t M2(−ζ̂n)

(ω + ζ̂n)

)
, ω = ζ ∗

n ,−ζ̂ ∗
n ,
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M2(t, z, ω) =
(

0
1

)
+

1

2π i

∫
R

(
M−(s)L(s)

)
2

ds

s − ω
(4.5c)

+
N∑

n=1

(
C̄neiζ

∗
n t M1(ζ

∗
n )

(ω − ζ ∗
n )

+
Ĉneiζ

∗
n t M1(−ζ̂ ∗

n )

(ω + ζ̂ ∗
n )

)
, ω = ζn,−ζ̂n ,

where L(ζ ) = J1(ζ )− I2×2, and the (t, z)-dependence in the right-hand side was again
omitted for brevity.

Once the solution of the above RHP has been obtained, one can reconstruct the
potential in terms of the scattering data by comparing the resulting asymptotics of the
eigenfunctions in (4.5b) to (3.27), yielding:

Theorem 4.6. (Reconstruction formula). Let M(t, z, ζ ) be the solution of the RHP in
Theorem 4.5. The corresponding solution q(t, z) of the MBEs with one-sided NZBG is
reconstructed as

q(t, z) = 1
2π i

∫
R

(
M−(t, z, s)L(z, s)

)
12 ds (4.6)

−∑N
n=1

(
1 + i A2

(ζ ∗
n )2

)
C̄n(z)eiζ

∗
n t M11(t, z, ζ ∗

n ).

4.2. Riemann-Hilbert problem from the right. The inverse problem of the IST can also
be formulated as a RHP from the right, as we discuss next. The reason why this could
also be useful is that the MBEs are not symmetric under t �→ −t , and in the case of
one-sided NZBG, the two RHPs have different properties, depending on whether the
NZBG are given in the past or in the future. This is reflected in the fact that, as we will
see below, in the RHP from the right, the jump matrix will be given in terms of r+(ζ, z)
[cf. (4.8) below], whereas, in the RHP from the left, the jump matrix (4.1c) is given in
terms of r−(ζ, z).

Like the RHP from the left, the RHP from the right can be formulated as a local RHP
for a 2 × 2 matrix involving only the eigenfunctions evaluated at ζ and the reflection
coefficients from the right on C . Specifically, we introduce the following 2 × 2 matrix
of modified eigenfunctions:

M(t, z, ζ ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
ψ(ζ )e−iλ(ζ )t ,

φ(ζ )

c(ζ )
eik(ζ )t

)
, ζ ∈ D+

out,( iq∗
+ζ ∗

A2 ψ̄(−ζ ∗)e−iλ(ζ ∗)t ,
iq+ζ ∗

A2

φ(−ζ ∗)
d(−ζ ∗)

e−ik(ζ ∗)t
)
, ζ ∈ D−

in,

( iq∗
+ζ ∗

A2

φ̄(−ζ ∗)
d̄(−ζ ∗)

eik(ζ
∗)t ,

iq+ζ ∗

A2 ψ(−ζ ∗)eiλ(ζ ∗)t
)
, ζ ∈ D+

in,

( φ̄(ζ )

c̄(ζ )
e−ik(ζ )t , ψ̄(ζ )eiλ(ζ )t

)
, ζ ∈ D−

out,

(4.7)

which should be compared with (4.1a), and where the t and z dependence in the right-
hand side was again omitted for brevity. Now using the scattering relation from the
right (3.5b) and the second symmetry (3.13), along with the fact that −A2/ζ = −ζ ∗
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when ζ ∈ C , we obtain that the jump condition across ζ ∈ R is still expressed by (4.1b),
with J1(z, ζ ) still given by (4.1c), except that now

Jo(t, z, ζ ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(
ei(k(ζ )−λ(ζ ))t r+(ζ, z)e2ik(ζ )t

−r̄+(ζ, z) e−2iλ(ζ )t (1 − r+(ζ, z) r̄+(ζ, z))ei(k(ζ )−λ(ζ ))t

)
, ζ ∈ (−∞, −A) ∪ (A, ∞),

⎛
⎜⎜⎝

eiζ t
q+(z)

q∗
+(z) r+(ζ, z)

e2ik(ζ )t

− q∗
+(z)

q+(z) r̄+(ζ, z)
e2iλ(ζ )t

(
1 − 1

r+(ζ, z) r̄+(ζ, z)

)
eiζ t

⎞
⎟⎟⎠ , ζ ∈ (−A, A).

(4.8)

Again, note that no jump is present across C . As before, the above jump condition must
be supplemented by appropriate normalization condition and residue conditions. Since
these are obtained using similar methods as above, we omit the details for brevity.

4.3. Trace formulae. As usual, one can also obtain “trace formulae” to recover the
analytic scattering coefficients in terms of the scattering data. We begin by defining the
following functions:

β+(ζ, z) = a(ζ, z)
∏N

n=1
ζ−ζ ∗

n
ζ−ζn

, (4.9a)

β−(ζ, z) = ā(ζ, z)
∏N

n=1
ζ−ζn
ζ−ζ ∗

n
,

α+(ζ, z) = − iζ
q∗

+(z) b(ζ, z)
∏N

n=1
ζn(ζ−ζ̂ ∗

n )

ζ ∗
n (ζ−ζ̂n)

, (4.9b)

α−(ζ, z) = − iζ
q+(z) b̄(ζ, z)

∏N
n=1

ζ ∗
n (ζ−ζ̂n)

ζn(ζ−ζ̂ ∗
n )

.

Recalling (3.7), one can see that β± are analytic in D±
out, while α± analytic in D±

in .
Moreover, using the asymptotic behavior of the scattering coefficients (3.28) one can

show that

lim
ζ→∞ β± = 1, ζ ∈ D±

out, lim
ζ→0

α± = 1, ζ ∈ D±
in . (4.10)

Also, by construction β± and α± have no zeros. Now we define the following sectionally
analytic vector function:

Lemma 4.7. Consider the meromorphic vector function N (ζ, z) defined as

N (ζ, z) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(
log

(
β+(ζ, z)

)
, log

(
β+(−ζ ∗, z)

))
, ζ ∈ D+

out,(
log

(
α−(−ζ ∗, z)

)
, log

(
α−(ζ, z)

))
, ζ ∈ D−

in,(
− log

(
α+(−ζ ∗, z)

)
, − log

(
α+(ζ, z)

))
, ζ ∈ D+

in,(
− log

(
β−(ζ, z)

)
, − log

(
β−(−ζ ∗, z)

))
, ζ ∈ D−

out.

(4.11a)

N (ζ, z) satisfies the jump condition

N+(ζ, z) − N−(ζ, z) = K (ζ, z), ζ ∈ R, (4.11b)
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where the superscripts ± denote the limit being taken from the left/right of the nega-
tive/positive side of the oriented contour in complex ζ -plane, respectively, and

K (ζ, z) =
⎧⎨
⎩
(
Ko(ζ, z) , Ko(−ζ, z)

)
, ζ ∈ (−∞,−A) ∪ (A,∞),(

Ko(−ζ, z) , Ko(ζ, z)
)
, ζ ∈ (−A, A),

(4.11c)

with

Ko(ζ, z) =
⎧⎨
⎩

− log
[

ζ 2

ζ 2+A2 (1 + |r−(ζ, z)|2)
]
, ζ ∈ (−∞,−A) ∪ (A,∞),

log
[

A2

ζ 2+A2

(
1 + 1

|r−(ζ,z)|2
)]

, ζ ∈ (−A, A).
(4.11d)

Note that using the determinant of the scattering matrix form the left (3.5a) and (3.6)
as well as the second symmetry of the scattering coefficients (3.14b), along with the
fact that −A2/ζ = −ζ ∗ when ζ ∈ C , one can derive the above jump condition across
ζ ∈ R. Applying the Cauchy projectors (4.4) to the RHP defined by Eqs. (4.11a) and
(4.11b) yields

N (ζ, z) = 1

2π i

∫
	

K (s, z)

s − ζ
ds, ζ ∈ C \ R, (4.12)

where

	 = (−∞,−A) ∪ (A,∞) ∪ (A,−A).

Now using the solution of the RHP, one can recover the analytic scattering coefficient
from the knowledge of the reflection coefficients and discrete eigenvalues, as follows:

Theorem 4.8. The analytic scattering coefficients defined in (3.5) are given by

a(ζ, z) =
N∏

n=1

ζ − ζn

ζ − ζ ∗
n

exp
{ 1

2π i

∫
	

K1(s, z)

s − ζ
ds

}
, ζ ∈ D+

out, (4.13a)

ā(ζ, z) =
N∏

n=1

ζ − ζ ∗
n

ζ − ζn
exp

{
− 1

2π i

∫
	

K1(s, z)

s − ζ
ds

}
, ζ ∈ D−

out, (4.13b)

b(ζ, z) = iq∗
+(z)

ζ

N∏
n=1

ζ ∗
n (ζ −ζ̂n)

ζn(ζ −ζ̂ ∗
n )

exp
{
− 1

2π i

∫
	

K2(s, z)

s − ζ
ds

}
, ζ ∈ D+

in,

(4.13c)

b̄(ζ, z) = iq+(z)

ζ

N∏
n=1

ζn(ζ − ζ̂ ∗
n )

ζ ∗
n (ζ − ζ̂n)

exp
{ 1

2π i

∫
	

K2(s, z)

s − ζ
ds

}
, ζ ∈ D−

in,

(4.13d)

where K (ζ, z) is given by (4.11c) and the subscript j = 1, 2 denotes its j -th column.

We reiterate that, unlike what happens in the IST for the focusing NLS equation and
for the MBEs with zero background, the above trace formulae are needed in order to
obtain the correct propagation equation for the norming constants (cf. Sect. 6.4).
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5. Asymptotics of the Density Matrix as t → ±∞
The behavior of the density matrix is one of the novel aspects of the IST for the MBEs
compared to that for the NLS equation.

Proposition 5.1. If v(t, z, ζ ) is any fundamental matrix solution of the scattering prob-
lem (2.4a), the quantity v−1(t, z, ζ )ρ(t, z, ζ )v(t, z, ζ ) is time-independent.

As a consequence, it is convenient to define asymptotic values for the density matrix as
follows:

ρ−(ζ, z) = 
−1(t, z, ζ )ρ(t, z, ζ )
(t, z, ζ ), (5.1)

ρ+(ζ, z) = �−1(t, z, ζ )ρ(t, z, ζ )�(t, z, ζ ),

and conversely

ρ(t, z, ζ ) = 
(t, z, ζ )ρ−(ζ, z)
−1(t, z, ζ ) ≡ �(t, z, ζ )ρ+(ζ, z)�−1(t, z, ζ ). (5.2)

Taking into account the asymptotics as t → ±∞ of the Jost eigenfunctions we obtain:

Proposition 5.2. For all ζ ∈ R and all z ≥ 0, one has:

ρ−(ζ, z) = lim
t→−∞ e−iktσ3ρ(t, z, ζ )eiktσ3 , (5.3)

ρ+(ζ, z) = lim
t→+∞ e−iλtσ3Y−1

+ (ζ, z)ρ(t, z, ζ )Y+(ζ, z)eiλtσ3 .

Note, however, that the density matrix does not have a limit per se, i.e., ρ±(ζ, z) are not
simply the limits of ρ(t, z, ζ ) as t → ±∞. One can also check by direct calculation
that Sρ+ = ρ−S = 
−1ρ�. As a result, one has:

Proposition 5.3. For all ζ ∈ R and all z ≥ 0, the asymptotic values of the density matrix
are related as follows:

ρ+(z, ζ ) = S−1(ζ, z)ρ−(ζ, z)S(ζ, z). (5.4)

Equation (5.4) relates the asymptotic values of the density matrix as t → ±∞, and
allows one to obtain ρ+ from knowledge of ρ− and S (in turn, the latter can be completely
determined by q(t, z)]. Thus, one can only choose one between ρ±, and, due to causality,
it makes sense to choose ρ−. Note also that the density matrix is a single-valued function
of k, which means that ρ(t, z,−A2/ζ ) = ρ(t, z, ζ ), and the same holds for ρ−(ζ, z)
(which depends on the Jost eigenfunction 
), but not for ρ+(ζ, z), which is defined via
�.

The properties of the density matrix trρ = 0 and det ρ = −1 imply that trρ± = 0
and det ρ± = −1. Also, since ρ† = ρ for ζ ∈ R, the same holds for ρ± = ρ

†
±. Thus we

can denote the entries of ρ± as

ρ±(ζ, z) =
(
D± P±
P∗± −D±

)
ζ ∈ R, (5.5)

with P±(ζ, z) = P±(ζ ∗, z). As for the density matrix itself, D± and P± are not limits
of D and P as t → ±∞, as such limits in general do not exist. Combining the second
symmetry of the eigenfunctions with the definition (5.3) we obtain:
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Proposition 5.4. For all ζ ∈ R, the matrices ρ±(ζ, z) satisfy the following symmetries:

ρ−(−A2/ζ, z) = ρ−(ζ, z), ρ+(−A2/ζ, z) = σ3Q+(z)ρ+(ζ, z)Q−1
+ (z)σ3. (5.6)

Proposition 5.4 implies that one does not have the freedom to pick the asymptotic states
ρ± for all values of k (or ζ ). One can only pick ρ± for k ∈ R on first sheet, or, equivalently,
for ζ ∈ (−∞,−A] ∩ [A,∞). Specifically,

D± ∈ R, P± ∈ C, D2± + |P±|2 = 1, (5.7a)

D−(−A2/ζ, z) = D−(ζ, z), D+(−A2/ζ, z) = −D+(ζ, z), (5.7b)

P−(−A2/ζ, z) = P−(ζ, z), P+(−A2/ζ, z) = (q+(z)/q∗
+(z))P∗

+ (ζ, z).

(5.7c)

Equation (5.4) can then be used to obtain D+ and P+ from D− and P−, respectively.
Note that in principle D± and P± depend on k on each sheet.

Equation (5.3) yield an explicit relation between ρ± and ρ, which, in component
form, is

D+(z, ζ ) = lim
t→+∞

[
k

λ
D − 1

λ
Im(q∗

+ P)

]
, (5.8a)

P+(z, ζ ) = 1

2λ
lim

t→+∞ e−2iλt
[

2iq+D + ζ P +
q2

+

ζ
P∗

]
. (5.8b)

Conversely, (5.2) also implies that

ρ(t, z, ζ ) = eiktσ3ρ−(ζ, z)e−iktσ3 + o(1), t → −∞, (5.9a)

ρ(t, z, ζ ) = Y+(ζ, z)eiλtσ3ρ+(ζ, z)e−iλtσ3Y−1
+ (ζ, z) + o(1), t → −∞, (5.9b)

i.e.

D(t, z, ζ ) = D− + o(1), P(t, z, ζ ) = e−2ikt P− + o(1), t → −∞, (5.10a)

D(t, z, ζ ) = k

λ
D+ − 1

λ
Im

(
e−2iλt P∗

+ q+

)
+ o(1), t → ∞, (5.10b)

P(t, z, ζ ) = − i

λ
q+D+ +

ζ

2λ
e2iλt P+ +

q+

2λζ
e−2iλt P∗

+ + o(1), t → ∞. (5.10c)

Remark 5.5. Note that, as in the case of zero background (ZBG) and of symmetric
NZBG, P does not have a limit as t → ±∞, but instead it oscillates in time. The
quantity D, on the other hand, has a constant limit D− as t → −∞, but due to the
nonzero background radiation as t → +∞, it also does not have a limit and instead
oscillates. Moreover, P 	= 0 as t → +∞ even in the particular case in which D and P
are time-independent and do tend to a limit as t → +∞, which is when P+ = 0. The
nonzero contribution arises from the polarization induced by the limiting value q+ of the
optical field via D+. [Recall that the normalization det ρ− = −1 implies the constraint
D2± + |P±|2 = 1, which in turn implies that one does not have the freedom to assign
D± and P± independently. In particular, in the special case when ρ− is diagonal, then
D− = ±1 and P− = 0].
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Remark 5.6. Recall that the density matrix ρ(t, z, k) describes the physical properties of
the medium. Therefore its value is independent of the choice of sign for λ and is therefore
the same for ζ ∈ (−∞,−A] ∪ [A,∞) (i.e., the continuous spectrum on sheet I) or
ζ ∈ [−A, A] (i.e., the continuous spectrum on sheet II). The same is true for the first set of
Jost solutions, 
(t, z, ζ ). Conversely, the Jost solutions �(t, z, ζ ) are defined explicitly
in terms of λ, and therefore take on different values for ζ ∈ (−∞,−A] ∪ [A,∞) or
ζ ∈ [−A, A] (as discussed in Sect. 3.2). Similarly, ρ−(ζ, z), which is defined in terms
of 
(t, z, ζ ), is independent of the choice of sign for λ, whereas ρ+(ζ, z), which is
defined in terms of �(t, z, ζ ), depends on the sign of λ, and is therefore different on
different sheets. Equation (5.7) reflect this difference. In turn, this sheet dependence
is also reflected in (5.10), and it should be taken into account when reconstructing the
asymptotic behavior of the medium. For example, if P± = 0, the sign of D+ coincides
with that of D(z, ζ ) on the first sheet, not the second one.

6. Propagation

Recall that in the MBEs the role of the evolution variable is played by the physical prop-
agation distance z, and therefore we will refer to the z-dependence as the propagation.
The evolution of the scattering data is another aspect of the IST formalism where the
treatment for the MBEs differs significantly from (and is considerably more complicated
than) that for the NLS equation.

6.1. Propagation of the background. Let us first discuss the z-dependence of the asymp-
totic values of the optical field.

Lemma 6.1. The limiting values q±(z) = limt→±∞ q(z, t) are given by

q−(z) = 0, q+(z) = e2iW+(z)q+(0), (6.1a)

where

W+(z) =
∫ z

0
w+(s) ds, w+(z) = 1

2

∫
R

D+(ξ, z)g(ξ)

λ(ξ)
dξ. (6.1b)

Proof. The propagation of q±(z) is governed by the limits as t → ±∞ of (2.3), i.e.

∂Q±
∂z

= −1

2
lim

t→±∞

∫
R

[σ3, ρ(t, z, k)]g(k)dk.

Using (5.2) we can express

ρ(t, z, ζ ) = eiktσ3ρ−(z, ζ )e−iktσ3 + o(1) as t → −∞, (6.2)

ρ(t, z, ζ ) = Y+(ζ, z)eiλtσ3ρ+(z, ζ )e−iλtσ3Y−1
+ (ζ, z) + o(1) as t → +∞. (6.3)

Consequently, one has

∂Q−
∂z

= 0,
∂Q+

∂z
= iw+[σ3, Q+], (6.4)
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with w+(z) as in (6.1b). Next, recall that trρ± = trρ = 0 and D+ has opposite sign on
sheets I and II. Since λ also changes sign on opposite sheets, w+ is single-valued, as it
should be. Integrating (6.4) we find

Q−(z) = Q−(0) ≡ 0, Q+(z) = eiW+(z)σ3 Q+(0)e−iW+(z)σ3, (6.5)

whose components yield (6.1a). ��
Equation (6.1a) provide the explicit z-dependence in the symmetries in Sect. 3.2. In

particular, the propagation of the asymptotic eigenvector matrix Y+(ζ, z) is given by:

Y+(ζ, z) = I2 + (i/ζ )σ3Q+(z) = eiW+(z)σ3Y+(ζ, 0)e−iW+(z)σ3, (6.6)

and consequently the asymptotic behavior of the Jost solutions is


(t, z, ζ ) = I2eik(ζ )tσ3(1 + o(1)), as t → −∞ (6.7a)

�(t, z, ζ ) = eiW+(z)σ3Y+(ζ, 0)ei(λ(ζ )t−W+(z))σ3(1 + o(1)), as t → +∞. (6.7b)

We can use (5.4) to express 2w+(z)σ3 = ∫
(ρ+,d(k, z)g(k)/λ)dk in terms of ρ−,d as:

ρ+,d = (S−1ρ−S)d = ρ−,d +
ζ

2λ

(
2bb̄ D− + P−āb − P∗−ab̄

)
σ3. (6.8)

Note that the above expression has an extra term proportional to bb̄ compared to [14],
and this extra term is also present in the case of symmetric NZBG studied there.

Lemma 6.2. The asymptotic values D+ and P+ can be obtained from the initial state of
the medium as follows:

D+ = 1

1 + |r−|2
((

1 − |r−|2)D− + 2Re(r− P−)
)
, (6.9a)

P+ = e−2i arg(a)

1 + |r−|2
(
P− − (r2− P−)∗ − 2r∗− D−

)
, (6.9b)

where we omitted the dependence on ζ and z for brevity.

Proof. Considering (6.8) and (5.4), and using the symmetries (3.10), we can express the
diagonal and off-diagonal entries of ρ+ in terms of those of ρ−:

D+ = ζ

2λ

((|a|2 − |b|2)D− + a∗bP− + ab∗P∗−
)
. (6.10a)

P+ = ζ

2λ

(
(a∗)2P− − (b2P−)∗ − 2a∗b∗D−

)
. (6.10b)

Using (3.9a) and (3.12) one can then rewrite above D+ and P+ explicitly as in (6.9b). ��
Equations (6.9a) and (6.9b), which are the same as in the case of ZBG except for the

additional presence of the factor ζ/(2λ) (which is a direct consequence of the fact that
det S 	= 1, and which reduces to 1 in the case of ZBG), show that even if the medium is
initially prepared so that P− = 0 and D− = ±1, in general one has P+ 	= 0, since r−
cannot be chosen to be identically zero. (We note that in the case of symmetric NZBG,
P− = 0 does not imply P+ = 0 except in the reflectionless case.) The limiting values of
these quantities as z → ∞ will be discussed in Sect. 7.
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6.2. Simultaneous solutions of the Lax pair. To obtain propagation equations for the
scattering data, which will be done in Sects. 6.3 and 6.4, one needs to introduce simul-
taneous solutions of both parts of the Lax pair. Since the asymptotic behavior of the Jost
solutions 
(t, z, ζ ) and �(t, z, ζ ) as t → ±∞ is independent of z, in general they will
not be solutions of (2.4c). However, the Jost solutions can be used to define simultaneous
solutions of the Lax pair as follows.

Lemma 6.3. If �(t, z, ζ ) is any fundamental matrix solution of the scattering prob-
lem (2.4a), it can be written as

�(t, z, ζ ) = �(t, z, ζ )C+(ζ, z) = 
(t, z, ζ )C−(ζ, z), ζ ∈ R, (6.11)

where C±(ζ, z) are 2 × 2 matrices independent of t which evolve according to

∂C±
∂z

= i

2
R±C±, (6.12)

with

R−(ζ, z) = −2i
−1[T
 − ∂z
], R+(ζ, z) = −2i�−1[T� − ∂z�]. (6.13)

Proof. Since both 
 and � are fundamental matrix solutions of the scattering problem,
any other solution �(t, z, ζ ) of (2.4a) can then be written as (6.11) with suitable matrices
C±(ζ, z).

Then, if �(t, z, ζ ) is a simultaneous solution of both parts of the Lax pair (2.4), (i.e.,
it also satisfies �z = T�), (6.12) follows, where we have taken into account that for our
one-sided NZBG 
 can be chosen independent of z. Although it is not obvious a priori
that the RHS of (6.13) is independent of t , (6.12) shows that it must be. Moreover, even
though g(k) and ρ(t, z, k) are only defined for k ∈ R, R± in (6.13) can be evaluated for
all ζ ∈ R. ��
Lemma 6.4. Denoting by R±,i j the (i, j)-th entry of the matrices R±(ζ, z), these entries
are given by:

R+,11 = −R+,22 = −
∫
R

(λ(k) + ξ − k)D+(ξ, z)g(ξ)

λ(ξ)(ξ − k)
dξ ζ ∈ R , (6.14a)

R−,11 = −R−,22 = −
∫
R

D−(ξ, z)g(ξ)

ξ − k
dξ ζ ∈ R , (6.14b)

R+,12 = R∗
+,21 =

{
iσπg(k(ζ ))P+(ζ, z) ζ ∈ R ,

0 ζ ∈ C \ {±A} ,
(6.14c)

R−,12 = R∗−,21 = −iπg(k(ζ ))P−(ζ, z) ζ ∈ R . (6.14d)

Proof. Note that, in general, both C± and R± have different values on either sheet of
the Riemann surface. Using (5.2), we can write the second operator in the Lax pair as

T (t, z, ζ ) = iπ

2
Hk[
(t, z, ζ(ξ))ρ−(ξ, z)
−1(t, z, ζ(ξ) g(ξ)]

= iπ

2
Hk[�(t, z, ζ(ξ))ρ+(ξ, z)�−1(t, z, ζ(ξ) g(ξ)], (6.15)

where the subscript k in the Hilbert transform is to be intended as k(ζ ) henceforth.
As in [14], even though the individual terms on the RHS of the second equality are
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only single-valued for k ∈ R, the whole RHS is a single-valued function for k ∈ C.
In fact, one can use the symmetries of the Jost solution � and of ρ+ to show that
T (t, z, ζ ) = T (t, z,−A2/ζ ).

Next, we can evaluate the RHS of the first of (6.13) in the limit t → −∞. Assuming
that ∂z and the limit t → −∞ of the Jost eigenfunctions can be interchanged, i.e., that
the Jost eigenfunctions approach their asymptotic values as t → ±∞ uniformly for all
z ≥ 0, we obtain

R−(ζ, z) = −2i lim
t→−∞ e−iktσ3

[
T (t, z, ζ )eiktσ3 − ∂ze

iktσ3
]

= π Hk

[
e−i(k−ξ)tσ3ρ−(ξ, z)ei(k−ξ)tσ3 g(ξ)

]
. (6.16)

Now the second of (6.13) in the limit t → +∞ yields:

R+(ζ, z)= lim
t→+∞

{
2i�−1(t, z, ζ )∂z�(t, z, ζ ) + πe−iλ(k)tσ3Y+(k, z)

×Hk

[
Y+(ξ, z)eiλ(ξ)tσ3ρ+(ξ, z)e−iλ(ξ)tσ3Y−1

+ (ξ, z)g(ξ)
]
Y+(k, z)eiλ(k)tσ3

}
.

(6.17)

The limits can be computed explicitly by noting that

lim
t→±∞ −

∫
R

e2i(k−ξ)t f (ξ, k)

ξ − k
dξ = ∓iπ f (k, k) k ∈ R (6.18)

lim
t→±∞ −

∫
R

e±i(λ(ξ)−λ(k))t f (ξ, k)

ξ − k
dξ =

{±iσπ f (k, k) k ∈ R

0 k ∈ i[−A, A] (6.19)

where σ = ±1 when k is on sheet I or II, respectively. Then, if R± = R±,d + R±,o
where as before the subscripts “d” and “o” denote the diagonal and off-diagonal parts
of the corresponding matrices, we find:

R−,d(ζ, z) = πHk[ρ−,d(ξ, z)g(ξ)], ζ ∈ C

R+,d(ζ, z) = πλ(ζ )Hk[ρ+,d(ξ, z)g(ξ)/λ(ξ)] + 2w+(z)σ3, ζ ∈ C (6.20a)

R−,o(ζ, z) = iπg(k(ζ ))ρ−,o(ζ, z)σ3,

R+,o(ζ, z) =
{−iσπg(k(ζ ))ρ+,o(ζ, z)σ3 ζ ∈ R

0 ζ ∈ C \ {±A} (6.20b)

where σ = 1 for ζ ∈ (−∞,−A]∪[A, +∞) and σ = −1 for ζ ∈ (−A, A). In component
form, the above equations are given by (6.14). ��

Note that, in (6.20), both ρ+,d and λ inside the Hilbert transform take opposite signs
on sheets I and II, so the Hilbert transform yields the same result on the two sheets,
as it should be. We conclude that the matrix R+,d is determined independently of the
choice of the integration variable. Importantly notice that, since R±(ζ, z) are defined as
principal value integrals, even when they admit extension to the complex k-plane, their
values are going to be discontinuous across the real k-axis.

In general, it is not possible to extend all the entries of R± off the continuous spectrum.
Similarly to what happens in the case of symmetric nonzero background in [14], however,
we have:
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Lemma 6.5. The following off-diagonal entries of R± admit analytic extension off the
real ζ axis:

R+,12(ζ, z) = 0, ζ ∈ D+, R+,21(ζ, z) = 0, ζ ∈ D−, (6.21a)

R−,21(ζ, z) = 0, ζ ∈ C
+, R−,12(ζ, z) = 0, ζ ∈ C

−. (6.21b)

Proof. The off-diagonal parts of R± can be written as

R−,o(ζ, z) = π lim
t→−∞Hk

[
g(ξ)e−i(k−ξ)tσ3ρ−,o(t, z, ξ)ei(k−ξ)tσ3

]
,

R+,o(ζ, z) = π lim
t→+∞Hk

[
g(ξ)e−i(λ(k)−λ(ξ))tσ3ρ+,o(t, z, ξ)ei(λ(k)−λ(ξ))tσ3

]
.

For each matrix element, the Hilbert transform is analytic and bounded in the complex
ζ -plane wherever the exponential inside tends to zero as t → ±∞. Hence, looking at
the regions where Im k ≶ 0 and Im λ ≶ 0, (6.21) follows. ��

6.3. Propagation of the reflection coefficients.

Lemma 6.6. For all ζ ∈ R and z ≥ 0, the scattering matrix S(ζ, z) obeys the following
propagation equation:

∂S

∂z
= i

2
(R−S − SR+). (6.22)

Proof. In light of (6.11), (3.5a) implies

S(ζ, z) = C−(ζ, z)C−1
+ (ζ, z), ∀ζ ∈ R.

Using (6.12), one then obtains (6.22). ��
Recall that we have introduced two sets of reflection coefficients: the reflection coef-

ficients from the left (i.e., r− = b/a and r̄− = b̄/ā) and the reflection coefficients from
the right (i.e., r+ = −b̄/a and r̄+ = −b/ā). In order to obtain the propagation equations
for both sets of reflection coefficients, we introduce

B(ζ, z) = So (Sd)
−1 =

(
0 r̄−
r− 0

)
, B̃(ζ, z) = (Sd)

−1So = −
(

0 r+
r̄+ 0

)
,

and observe that

∂B

∂z
= (So)z(So)

−1B − B(Sd)z(Sd)
−1,

∂ B̃

∂z
= B̃(So)

−1(So)z − (Sd)
−1(Sd)z B̃.

(6.23)

Separating (6.22) into its diagonal and off-diagonal parts and substituting into the prop-
agation equations for B and B̃ yields

−2i
∂B

∂z
= R−,o + [R−,d , B] − BR−,oB − Sd R+,o(Sd)

−1 + BSoR+,o(Sd)
−1,

(6.24a)
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−2i
∂ B̃

∂z
= −R+,o + [R+,d , B̃] + B̃ R+,o B̃ + (Sd)

−1R−,oSd − (Sd)
−1R−,oSo B̃.

(6.24b)

First, we express the RHS of (6.24a) in terms of the limiting values as t → −∞. In
order to do so, we look at the last three terms in the RHS. Recall that R±,0 is given
by (6.20b), and ρ+ is expressed in terms of ρ− via (5.4). Also, the first symmetry implies
that S−1 = S†/ det S with det S given by (3.6). Decomposing (5.4) into its diagonal and
off-diagonal parts yields:

ρ+,o = 1

det S

(
S†
d ρ−,o Sd + S†

o ρ−,o So + S†
d ρ−,d So + S†

o ρ−,d Sd
)

. (6.25a)

Moreover, since S†S = SS† = (det S)I , we have

S†
d Sd + S†

o So = Sd S
†
d + So S

†
o = (det S)I, S†

d So + S†
o Sd = Sd S

†
o + So S

†
d = O2×2.

(6.25b)

Substituting the above expressions into the last three terms in the RHS of (6.24a), after
simplifications we obtain:

−2i
∂B

∂z
= (1 + σ)R−,o + [R−,d , B] − (1 − σ) BR−,oB + iνπg[ρ−,d , B]σ3,

(6.26)

where σ = 1 for ζ ∈ (−∞,−A] ∪ [A, +∞), and σ = −1 for ζ ∈ (−A, A). Then the
(2, 1)-entry of the above matrix equation yields the propagation equation for r−(ζ, z):

∂r−
∂z

=
{

−i K out r− − πgP∗− ζ ∈ (−∞,−A] ∪ [A, +∞),

−r−
[
πg P− r− + i K in

]
ζ ∈ (−A, A),

(6.27)

where

K out/in(ζ, z) = πHk[D−(ζ, z) g(ζ )] ± iπD−(ζ, z) g(ζ ), (6.28)

with K out and K in corresponding, respectively, to the positive and negative signs in the
right-hand side of (6.28). Explicitly, we have:

∂r−
∂z

=
{

−iπHk[D− g] r−+πgD−r−−πgP∗− ζ ∈ (−∞,−A] ∪ [A, +∞),

−iπHk[D− g] r−−π P−r2−−πgD−r− ζ ∈ (−A, A).
(6.29)

One can verify that the propagation equation (6.29) for r− is consistent with the
symmetry (3.16). Both of the equations in (6.29) can be solved explicitly. In particular,
solving the linear, non-homogenous equation for ζ ∈ (−∞,−A]∪[A, +∞) then finally
yields:

Lemma 6.7. The reflection coefficient r−(ζ, z) obeys the following propagation equa-
tion:

r−(ζ, z) = e−iχ(ζ,z)
[
r−(ζ, 0) − πg(ζ )

∫ z

0
P∗−(ζ, y)eiχ(ζ,y)dy

]
,

ζ ∈ R \ (−A, A), (6.30a)
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where

χ(ζ, z) =
∫ z

0
K out(ζ, y)dy, (6.30b)

and K out is as in (6.28). The value of r−(ζ, z) in the segment (−A, A) can be obtained
using the symmetry relation (3.16) The value of the second reflection coefficient r̄−(ζ, z)
can be computed through the first symmetry relation (3.11b).

The propagation equations for the scattering coefficients from the right can be com-
puted using a similar approach. Namely, we express the RHS of (6.24b) in terms of
the limiting values as t → ∞. Like before, it is useful to write ρ−,o in terms of ρ+ as
follows:

ρ−,o = 1

det S

(
Sd ρ+,o S

†
d + So ρ+,o S

†
o + Sd ρ+,d S

†
o + So ρ+,d S

†
d

)
. (6.31)

Using the above equation along with (6.25b), one can rewrite the Eq. (6.24b) as

− 2i
∂ B̃

∂z
= − R+,o + [R+,d , B̃] + B̃ R+,o B̃ + iπgρ+,oσ3 − iπgB̃ρ+,o B̃σ3 (6.32)

+iπg[B̃, ρ+,d ]σ3.

Considering the (1, 2)-component of the above equation, we can find the propagation
equation for r+(ζ, z). Specifically, we have

∂r+

∂z
=

⎧⎪⎨
⎪⎩

−i� r+ − πgP+ ζ ∈ (−∞,−A] ∪ [A, +∞),

r+
[
πg P∗

+ r+ − i�
]

ζ ∈ (−A, A),

1
2

(
πgP∗

+ r
2
+ − 2i�r+ − πgP+

)
ζ ∈ C +,

(6.33)

where

�(ζ, z) = −πλ(ζ )Hk[D+(ζ, z) g(ζ )/λ(ζ )] − 2 w+(z) − iπg(ζ )D+(ζ, z), (6.34)

with w+(z) as in (6.1b). The above equation can be written as:

∂r+

∂z
= iπλHk[D+ g/λ] + 2iw+r−πgD+r+ (6.35)

+

⎧⎨
⎩

−πgP+ ζ ∈ (−∞,−A] ∪ [A, +∞),

+πgP∗
+ r

2
+ ζ ∈ (−A, A),

+ 1
2πgP∗

+ r
2
+ − πgP+ ζ ∈ C +.

As before, the propagation equation for r̄+ can be obtained using the symmetry rela-
tion (3.11c).

Next, we verify that the propagation equation for r+ is consistent with the symmetries.
First, we differentiate the symmetry relation (3.17) and obtain

r+(−A2/ζ, z)
∂r+(ζ, z)

∂z
+ r+(ζ, z)

∂r+(−A2/ζ, z)

∂z
= 4iw+(z)

q+(0)

q∗
+(0)

e4iW+(z). (6.36)

Then we show that (6.33) is consistent with the above symmetry. Without loss of gen-
erality, suppose ζ ∈ (−A, A). Then the LHS of the above equation becomes

r+(−A2/ζ )r+(ζ )
[
πg(ζ ) P∗

+ (ζ ) r+(ζ ) − i�(ζ)
]
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+r+(ζ )
[ − i�(−A2/ζ )r+(−A2/ζ ) − πg(−A2/ζ )P+(−A2/ζ )

]
. (6.37)

Using the definition of �(ζ) in (6.33) with Eq. (5.7) we have the following relations:

�(−A2/ζ, z) = −�(ζ, z) − 4w+(z), P+(−A2/ζ, z) = q+(0)

q∗
+(0)

e4iW+(z)P∗
+ (ζ, z),

(6.38)

where w+(z) and W+(z) defined in (6.1b) and (6.5), respectively. Combining Eqs. (6.38)
and (6.37) one can verify the symmetry relation (6.36).

6.4. Propagation of the norming constants. We now derive the propagation equation
for the norming constants.

Lemma 6.8. For all n = 1, . . . , N, the norming constant Cn obeys the following prop-
agation equation:

∂Cn

∂z
= − i

2

(
R+,11(ζn) − R−,22(ζn) + η(ζn)

)
Cn, (6.39a)

with

η(ζn) =
∫

(−∞,−A)∪(A,∞)

ζn(s2 + A2) − 2s A2

s (s − ζn)(s ζn − A2)
g(s)

(
D−(s, z) − D+(s, z)

)
ds.

(6.39b)

Proof. Using the definition of the norming constant Cn with n = 1, . . . , N we have

Cn(z) = bn(z) lim
ζ→ζn

ζ − ζn

a(ζ, z)
. (6.40)

Differentiating the above equation with respect to z and assuming the limit and the
derivative commute, namely that a(ζ, z) is uniformly continuous near each ζ = ζn for
all z ≥ 0, we obtain:

∂Cn

∂z
= ∂bn

∂z

1

a′(ζn, z)
− Cn(z) lim

ζ→ζn

( 1

a(ζ, z)

∂a(ζ, z)

∂z

)
. (6.41)

As we show next, this is another instance in which the formalism deviates signifi-
cantly from the case of zero background. This is because, in order to derive the correct
propagation equation for Cn one needs to evaluate (6.41) from the expression for a(ζ, z)
obtained using the trace formulae, which are derived in Sect. 4.3. Specifically, we begin
by differentiating (4.13a) with respect to z, which yields

∂a

∂z
= a

2π i

∫
	

∂K1

∂z
(s, z)

ds

s − ζ
, ζ ∈ D+

out. (6.42)

Using Eqs. (4.11c) and (6.27), one can show the following:

− 1

2π

∫
	

∂K1

∂z
(s, z)

ds

s − ζ
ds =

=
∫

(−∞,−A)∪(A,∞)

g(s)

(
D−(s, z)|r−(s, z)|2 − Re[r−(s, z)P−(s, z)]

1 + |r−(s, z)|2
)

ds

s − ζ
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−
∫

(−A,A)

g(s)

(
D−(s, z) + Re[r−(s, z)P−(s, z)]

1 + |r−(s, z)|2
)

ds

s + ζ
. (6.43)

One can eliminate Re[r−(s, z)P−(s, z)] using (6.9b) and obtain

∂a

∂z
= i

2
η(ζ, z) a(ζ, z) , ζ ∈ D+

out, (6.44)

where

η(ζ, z) = ∫
(−∞,−A)∪(A,∞)

D−(s, z) − D+(s, z)

s − ζ
g(s) ds (6.45)

− ∫
(−A,A)

D−(s, z) + D+(s, z)

s + ζ
g(s) ds.

Performing a change of variable s → −A2/s and using the symmetries of D± (Eqs. 5.7),
one can combine the above two integrals and obtain:

η(ζ, z) =

=
∫

(−∞,−A)∪(A,∞)

[
D−(s, z)−D+(s, z)

s − ζ
g(s)− A2 g(−A2/s)

(
D−(s, z)−D+(s, z)

)
s(s ζ − A2)

]
ds

=
∫

(−∞,−A)∪(A,∞)

(
1

s − ζ
− A2

s(s ζ − A2)

)
g(s)

(
D−(s, z) − D+(s, z)

)
ds

=
∫

(−∞,−A)∪(A,∞)

ζ(s2 + A2) − 2s A2

s (s − ζ )(s ζ − A2)
g(s)

(
D−(s, z) − D+(s, z)

)
ds . (6.46a)

Now recall from Eq. (6.13), for z ∈ R,

∂


∂z
= − i

2

R− + T
,

∂�

∂z
= − i

2
�R+ + T�. (6.47)

Now observe that some columns of the above equations can be extended into the UHP.
Namely,

∂φ

∂z
= − i

2
φR−,22 + Tφ,

∂ψ

∂z
= − i

2
ψR+,11 + Tψ, Im z > 0. (6.48)

Since at ζ = ζn one has ψ(t, z, ζn) = bn(z) φ(t, z, ζn), differentiating with respect to z
we obtain

∂ψ(ζn)

∂z
= ∂bn(z)

∂z
φ(ζn) + bn(z)

∂φ(ζn)

∂z
. (6.49)

In turn, using (6.48), this yields

∂bn(z)

∂z
= − i

2
(R+,11(ζ, z) − R−,22(ζ, z))

∣∣
ζ=ζn

bn(z). (6.50)

Finally, using Eqs. (6.50), (6.41) and (6.44) one can derive the propagation Eq. (6.39a)
for the norming constants. Importantly, (6.44) also shows that the zeros of a(ζ ), i.e., the
discrete eigenvalues of the scattering problem, are independent of z. ��
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Remark 6.9. We emphasize that the above derivation of the propagation equations for
a(ζ, z) and for the norming constants does not assume any analytic continuation beyond
what has been established in the direct problem. We show below that the propagation
equation that one obtains for a(ζ, z) assuming that Eq. (6.21) can be extended off the
real ζ -axis does not appear to coincide with (6.44).

Recall that, for ζ ∈ R, the propagation of the scattering matrix is given by (6.22).
The (1, 1) and (2, 1) entries of (6.21) yield, respectively,

∂a

∂z
= i

2

(
(R−,11 − R+,11) a + b R−,12 − b̄ R+,21

)
, ζ ∈ R, (6.51)

∂b

∂z
= i

2

(
(R−,22 − R+,11) b + a R−,21 − ā R+,21

)
, ζ ∈ R.

If one assumes that (6.21) can be extended into an arbitrarily small strip around the real
ζ axis, one also has:

∂a

∂z
= i

2
(R−,11 − R+,11) a , ζ ∈ D+

out. (6.52)

In order to compare it with (6.44), note that

R−,11 − R+,11 = −
∫
R

D−(ξ, z)

ξ − k
g(ξ)dξ − −

∫
R

λ(k) + ξ − k

λ(ξ) (ξ − k)
D+(ξ, z) g(ξ)dξ, (6.53)

and the latter has to coincide with η(z). First we perform a variable change ξ = 1
2 (s −

A2/s), which implies

dξ

ds
= 1

2

(
1 + A2

s2

)
, λ(ξ) = s − ξ = 1

2

(
s + A2

s

)
, (6.54)

ξ − k = 1
2 (s − ζ )

(s ζ + A2)

s ζ
.

Substituting the above expressions into (6.53) yields
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R−,11 − R+,11 =
∫

(−∞,−A)∪(A,∞)

(
ζ(s2 + A2)

s (s − ζ )(s ζ + A2)
D−(s, z) g(s)

− (s2 + A2)ζ + 2A2(s − ζ )

s (s − ζ )(s ζ + A2)
D+(s, z) g(s)

)
ds

=
∫

(−∞,−A)∪(A,∞)

ζ(s2 + A2)

s (s − ζ )(s ζ + A2)
g(s)

(
D−(s, z) − D+(s, z)

)
ds

− 2A2
∫

(−∞,−A)∪(A,∞)

g(s)D+(s, z)

s (s ζ + A2)
ds . (6.55)

Comparing the above equation with (6.46) shows that the two expressions coincide
when A = 0, but not, in general, in the case of nonzero background. Therefore, when
dealing with a nontrivial background, one has to take (6.44) as the correct equation for
the propagation of a(ζ, z).

7. Asymptotic States of Propagation

We now show how the IST formalism developed in the previous sections allows one to
immediately obtain certain features about the asymptotic state of the medium, as well
as information on the asymptotic behavior of the optical pulse in the medium.

Asymptotic value of the scattering coefficients. We begin by looking at the asymptotic
value of the reflection coefficient for large z. Recall that the evolution (i.e., propagation
inside the medium) of the reflection coefficient r−(ζ, z) as a function of z is given
by (6.30a), with χ(ζ, z) given by (6.30b) and K out(ζ, z) in turn by (6.28). Therefore, its
behavior as a function of z is determined by the sign of the imaginary part of K out, which
is given by (6.28). Since D−(ζ, z) and g(ζ ) are real-valued, so is the Hilbert transform
in (6.28). Therefore, since g(ζ ) is non-negative, the growth or decay of r−(ζ, z) is
completely determined by the sign of D−(ζ, z).

Let us consider first the case P−(ζ, z) ≡ 0, since it is the simplest one. Inspection
of (6.30a) shows that if the medium is initially in the stable pure state (i.e., it is prepared
so that P− = 0 and D− = −1), r−(ζ, z) is exponentially decaying as z → +∞ for
ζ ∈ (−∞,−A] ∪ [A, +∞), and exponentially growing for ζ ∈ (−A, A). Conversely,
if the medium is initially in the unstable pure state (i.e., it is prepared with P− = 0 and
D− = 1), then r−(ζ, z) is exponentially growing as z → +∞ for ζ ∈ (−∞,−A] ∪
[A, +∞), and exponentially decaying for ζ ∈ (−A, A).

Finally, it is straightforward to see from (6.30a) that similar considerations apply
when P−(ζ, z) 	≡ 0. More precisely, whenever D−(ζ, z) > 0, the reflection coefficient
r−(ζ, z) has a similar kind of exponential growth in z as when D−(ζ, z) = 1, and
whenever D−(ζ, z) < 0, r−(ζ, z) exhibits exponentially decay to a non-zero value if
P− 	= 0.

Asymptotic state of the medium. Next we look at the asymptotic state of the medium
as t → ∞, as given by D+ and P+, which are determined by the reflection coefficient
r−(ζ, z) via (6.9b).

As discussed at the end of Sect. 5, while the values of D− and P− are independent of
the sheet chosen, i.e., whether ζ ∈ (−∞,−A] ∪ [A,∞) or ζ ∈ [−A, A], the values of
D+ and P+ are different for ζ ∈ (−∞,−A]∪[A,∞) or ζ ∈ [−A, A]. At the same time,
whenever P+ ≡ 0 or P+ → 0 as z → ∞ [which happens, for example, when the system
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is initially in a pure state, i.e., P− ≡ 0], one can see from (5.10) that the sign of D+
coincides, at least for sufficiently large z, with the sign of D on ζ ∈ (−∞,−A]∪[A,∞).
Therefore, for large z one should consider the value of D+ for ζ ∈ (−∞,−A]∪ [A,∞)

(i.e., the continuous spectrum on the first sheet) as the physical value. Hence, to discuss
the asymptotic state of a medium initially in a pure state, it is sufficient to limit ourselves
to considering ζ ∈ (−∞,−A] ∪ [A,∞).

Consider first the case in which the medium is initially in the stable pure state (i.e.,
P− = 0 and D− = −1). In this case, since r−(ζ, z) decays exponentially as z → ∞
for all ζ ∈ (−∞,−A] ∪ [A,∞), (6.9b) imply that D+ → −1 and P+ → 0 for large
z. Therefore, the medium returns to the stable state for sufficiently large propagation
distances, justifying the use of the term “stable state”.

Conversely, if the medium is initially prepared in the unstable pure state (i.e., P− = 0
and D− = 1), r−(ζ, z) is exponentially growing as z → ∞ for all ζ ∈ (−∞,−A] ∪
[A,∞), and (6.10) still give D+ → −1 and P+ → 0 for large z. Therefore, the medium
reverts to the stable state for sufficiently large propagation distances. This behavior,
which is similar to what happens in the MBE system with ZBG [51], may be regarded
as a decay process induced by the incident optical pulse.

Finally, the behavior of the reflection coefficient discussed above also allows us
to draw some conclusions when P−(ζ, z) 	≡ 0. Namely, if D−(ζ, z) < 0 one has
D+(ζ, z) → D−(ζ, z) for ζ ∈ (−∞,−A] ∪ [A,∞). Conversely, if D−(ζ, z) > 0 one
has D+(ζ, z) → −D−(ζ, z) for ζ ∈ (−∞,−A] ∪ [A,∞). In both cases, one also has
|P+(ζ, z)| → |P−(ζ, z)|. There is an important difference with the previous discussion,
however: if the medium is not initially in a pure state [i.e., P−(ζ, z) 	≡ 0], (5.10) imply
that the behavior of D(t, z, ζ ) as t → ∞ is determined not only by the value of D+(ζ, z),
but also by P+(ζ, z).

Asymptotic values of the optical pulse. We now use the results of the preceding para-
graphs to discuss the behavior of the optical pulse inside the medium.

In [51] it was shown that, in the sharp limit, a boundary layer around z = 0 arises
upon propagation. Specifically, [51] showed that, for causal solutions, a transition arises
over an infinitesimally small propagation distance (see also the earlier results of [31–
33,54,74]). The analysis of the asymptotic behavior of the optical field and medium
density matrix in [51] also revealed a slow decay of the optical field as t → ∞. Both
results, however, have been established in the sharp-line limit, and they do not necessarily
hold when inhomogeneous broadening effects are taken into account.

On the other hand, as we discuss below, inspection of the RHP derived in Sect. 4 shows
that two different asymptotic behaviors arise depending on whether one is considering
z near zero or, conversely, the asymptotics at large times with z finite. To appreciate this
dichotomy, recall that the jump matrix (4.1c) that defines the jump condition (4.1b) in
the RHP is expressed in terms of the reflection coefficient r−(ζ, z) via (4.1d). Therefore,
the asymptotic behavior of r−(ζ, z) discussed in the above paragraphs determines the
asymptotic behavior of the solutions of the RHP and in turn of those of the MBE.
Specifically, when D−(ζ, z) < 0, the behavior of the reflection coefficient guarantees
that the contribution of the radiation to the solution is exponentially decaying as z → ∞.
Therefore, one can expect that, for any finite value of t , q(t, z) → 0 as z → ∞.

A markedly different scenario arises when z = 0. In this case the contribution of
the reflection coefficient cannot be ignored, and the analysis of the RHP must allow
one to recover the IC q(t, 0) of the problem, and in particular the boundary conditions
q(t, 0) → 0 as t → −∞ and q(t, 0) → A as t → ∞.
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Even though a detailed calculation of the long-distance asymptotics of the solutions
of the RHP (4.1b) is outside the scope of this work, it should be obvious that a transition
region must arise to connect the different limits for q(t, z).

Finally, it is worth mentioning that while the IST has been formulated in terms of
the uniformization variable ζ , the physical variable that measures the deviation of the
transition frequency of the atoms from its mean value is k ∈ R. All results involving
real values of ζ , including the asymptotic states of propagation discussed in this section,
can be rewritten in terms of the physical variable k by replacing ζ = k +

√
k2 + A2,

the sign of the square root corresponding to choosing the first branch of λ, i.e., ζ ∈
(∞,−A) ∪ (A, +∞).

8. Concluding Remarks

In summary, we presented the formulation of the IST for two-level systems with inho-
mogeneous broadening and one-sided nonzero background. The formalism combines
some features of the IST with zero background to others of the IST with symmetric
nonzero background. We have shown that the reflection coefficient is always nonzero,
and therefore no reflectionless solutions exist. This is similar to what happens in the
focusing and defocusing NLS equation with asymmetric NZBG [13,24,62], as well as
in the Manakov system with non-parallel NZBG [1]. As far as the inverse problem is
concerned, the specific choice of 2 × 2 matrix for the RHP allows one to bypass the
nonlocality of the jump condition, as well as to eliminate the jump across the circle C ,
both of which are novel features compared to [62].

We also briefly discussed the asymptotic behavior of the reflection coefficient for
large z, and the asymptotic states of the medium and the limiting values of the optical
pulse. In particular, we showed that if D−(ζ, z) < 0 for all z and for all ζ ∈ R, the
reflection coefficient decays exponentially as z → ∞. Therefore, for sufficiently large
z, the solution becomes effectively reflectionless. We also showed that, for the kinds of
boundary conditions considered in this work, if the initial preparation of the medium is a
pure state, the medium asymptotically tends to the stable pure state. Finally, we showed
that two different asymptotic regimes arise for the optical pulse depending on whether
one is considering the limit z → ∞ with t finite or t → ∞ with z finite.

Note that, in the limit A → 0, the formalism of the present work reduces to the one
in the case of zero background in a straightforward way. Specifically, when A = 0 one
simply has λ(k) = k and ζ = 2k; the branch cut [−i A, i A] shrinks to a single point
(the origin k = 0) and the complex ζ plane reduces to the complex k plane up to a
factor 2. The second symmetry (which relates values inside and outside the circle C )
becomes immaterial, and all integrals in ζ can be trivially converted to integrals in k (in
the principal value sense) and viceversa.

We reiterate the importance of studying the system in the presence of inhomogeneous
broadening, since this allows us to consider media in arbitrary initial preparations (i.e.,
not just pure states), unlike what happens in the sharp line limit, where the only initial
states of the medium that are compatible with the system when q(t, z) → 0 as t → −∞
are the pure ones [51].

The results of this work open up a number of interesting problems for future study.
One such problem is the question of existence and uniqueness of solutions of the RHP.
This question is nontrivial even for the NLS equation. Indeed, it is known that the RHP
for the focusing NLS equation with NZBG does not admit a unique solution even in the
symmetric case, and even when the uniformization variable is used. In the case of the NLS
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equation, it was shown in [11] that one can obtain uniqueness results by formulating the
IST without a uniformization variable and by augmenting the RHP with suitable growth
conditions at the branch points. One can conjecture that the same conditions will also
guarantee the uniqueness of solutions for the RHP for the MBE in the formulation of
the IST with the uniformization variable as presented here. A rigorous analysis of this
question remains as a problem for future work.

A related issue is that of the well-posedness of the Cauchy problem for the MBE.
If causality requirement is not imposed, the Cauchy problem for the MBEs without
inhomogeneous broadening in the initially unstable case was shown to admit multiple
non-causal solutions for the same data (and these solutions decay to both stable and
unstable pure states as t → +∞, see Corollary 4 in [51]). Conversely, given a causal
incident pulse, there exists at most one causal solution to the MBE problem without
inhomogeneous broadening (see Theorem 1 in [51]). Causality is also imposed in [74]
to guarantee uniqueness of solutions of the Gelfand-Levitan-Marchenko equations of
the inverse problem (equivalently, this is related to non-uniqueness of solution of the
Riemann-Hilbert problem for the eigenfunctions), but the MBEs considered in both
[51,74] are restricted to the sharp-line case. On the other hand, at present there is no
statement about non-well-posedness of the Cauchy problem for the MBEs with inho-
mogeneous broadening (or non-uniqueness of solutions of the GLM equations [33]). It
should be noted that the proof of uniqueness of a causal solution provided in [51] does
not rely on integrability, and will likely carry through if inhomogeneous broadening
is considered. But this does not necessarily mean that if causality is not imposed, the
Cauchy problem for the MBEs with inhomoegeneous broadening is ill-posed. In [74],
Zakharov seems to suggest that the non-uniqueness induced by the spontaneous solu-
tions is due to an arbitrary function analytic in a small neighborhood of the origin, and
that the causality requirement forces this arbitrary function to coincide with the analytic
extension of the reflection coefficient. Again, this seems to be related to the essential
singularity at the origin introduced by the sharp-line limit, and might not happen with
inhomogeneous broadening. Moreover, all the above results were established in the case
of zero background, and the presence of NZBG introduces yet another layer of compli-
cation. Based on the above considerations, a study of the well-posedness of MBEs with
inhomogeneous broadening in the case of rapidly decaying optical pulses, as well as for
pulses on a NZBG is an interesting open problem.

Finally, another obvious and interesting question concerns a detailed and rigorous
study of the “long time” — or more appropriately, in this case, long distance — behavior
of solutions. This question, and the others above, are left for future work, and we hope
that the results of work will motivate further study on these topics.
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