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Abstract
In this paper, we investigate the dynamics of solutions of the Muskat equation with
initial interface consisting of multiple corners allowing for linear growth at infinity.
Specifically, we prove that if the initial data contains a finite set of small corners
then we can find a precise description of the solution showing how these corners
desingularize and move at the same time. At the analytical level, we are solving
a small data critical problem which requires renormalization. This is accomplished
using a nonlinear change of variables which serves as a logarithmic correction and
accurately describes the motion of the corners during the evolution.

1 Introduction

TheMuskat problemmodels the interactions between two immiscible, incompressible
fluids propagating throughporousmedia.Theirmotion is governedby the experimental
Darcy’s law under the restoring force of gravity. Since the interface between the two
fluid regions is an unknown which needs to be solved for as part of any solution, this
is a free boundary problem. Its formulation can be reduced to an integral evolution
equation on the interface and in the case when the viscosities of the two fluids are
equal and the profile of the interface is graphical, this formulation has a particularly
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compact form. In the last two decades, the Muskat problem has generated a rapidly
growing interest and has been studied extensively. A great majority of the work carried
out on this problem has been done in the sub-critical setting, which is well-understood
by now.

In this paper we study the small-data critical theory for the Muskat equation and
more precisely, we seek to understand the behavior of an interface whose initial data
consists of a superposition of a finite number of small corners. Despite the fact that the
problem is quasi-linear, its parabolic nature enables us to construct our solutions using
semi-linear methods such as a renormalization process and a fixed-point argument.
This allows us to get a good understanding of the behavior and shape of the corners
as well as of the spaces in which they live. Moreover, we can even explicitly calculate
how they move as they desingularize.

1.1 Presentation of the Problem

We denote by�± the two fluid domains in the (x, y)-plane, separated by the graphical
interface η(t, x). Since the fluids are propagating through porous media, the fluid
velocities u± and pressures p± satisfy Darcy’s law in their respective domains

∇ · u± = 0 in �±,

μ±u± = −∇x,y p
± − (0, ρ±) in �±,

where μ± > 0 and ρ± > 0 denote the viscosity and density constants in �±. More-
over, we assume that ρ− > ρ+, ensuring that the denser fluid lies below. Denoting
by

n = 1
√
1 + (∂xη)2

(−∂xη, 1)

the upward pointing normal vector on the interface, these equations are coupled with
the dynamic boundary conditions

u+ · n = u− · n on η(t, x)

p+ = p− on η(t, x),

guaranteeing continuity of the normal velocity fields and pressures of the fluids across
the interface, as well as the kinematic boundary condition

∂tη =
√
1 + (∂xη)2u− · n on η(t, x),

ensuring that the interface moves with the fluids. The Muskat problem can be refor-
mulated as an integral evolution problem on the interface and specifically, in the case
of equal viscosities μ− = μ+, it admits a particularly elegant and compact formula-
tion. Upon renormalizing all physical constants we get the one-dimensional evolution
equation of the form
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Fig. 1 The Muskat problem. The interface η separates the two fluids

∂tη = 1

π

∫

R

∂x�αη

1 + (�αη)2
dα, �αη(x, α) := η(x) − η(x − α)

α
, (1.1)

which we refer to as the Muskat equation (see [24, 43] for the derivation of (1.1)).
The problem admits a scaling invariance in the sense that if η(t, x) is a solution to
the problem, then so is λ−1η(λt, λx) for any λ > 0. Spaces like Ḣ3/2 and Ẇ 1,∞ are
thus critical. For the rest of this paper, it will be convenient to work with the slope of
the interface h(t, x) := ∂xη(t, x). We can hence rewrite (1.1) as the following initial
value problem

∂t h(t, x) = 1

π

d

dx

∫

R

∂xh∗(t, x, α)

1 + (h∗(t, x, α))2
dα with h∗(t, x, α) := 1

α

∫ x

x−α

h(t, y) dy,

h(0, ·) = h0. (1.2)

Our goal is to prove local well-posedness of (1.2) in a critical space that allows for
discontinuous initial data and to describe the evolution of such discontinuities:

h0(x) =
∑

j∈J
h j,0(x),

where the integers j ∈ J := {1, . . . , M} index elements in the finite set of points
C = {a1, . . . , aM } and h j,0 has a discontinuity at x = a j ∈ R . To analyze the problem
it is important to allow for a renormalization procedure

h(t, x) = g(t, x + q(t, x)). (1.3)

We require the function q to satisfy the bounds

|q(t, x)| � ε t ln(2/t)�≤0(x), sup
x∈R

|∂xq(t, x)| � ε, ∂t q(t, x) = 0 for t ≥ 1,

(1.4)

for some suitable, smooth cutoff function �≤0 defined more precisely in (2.1). We
then perform a fixed point argument in the critical spaces Z1 and Z2. Here Z1 denotes
the space of functions F : [0,∞) × R → C induced by the norm
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‖F‖Z1 := sup
t∈[0,∞)

{
‖F(t)‖L∞ + sup

k∈Z
(2k t)1/10‖Pk F(t)‖L∞

+‖x∂x F(t)‖L∞ + sup
k∈Z

(2k t)1/10‖Pk(x∂x F(t))‖L∞
}
, (1.5)

and Z2 denotes the space of functions F : [0,∞) × R → C induced by the norm

‖F‖Z2 := sup
t∈[0,∞)

{
sup
k∈Z

2k/2 max{2k t, 1/(2k t)}1/10‖Pk F(t)‖L2
}
. (1.6)

We define the Z space as the sum space Z = Z1+Z2.We notice that the spaces Z1 and
Z2 are critical in the sense that their norms are invariant with respect to the scaling of
the equation. The space Z1 is designed to contain functions given by the free evolution
of a corner under the fractional heat equation, such as e−t |∇|sign(x) = 2

π
arctan (x/t).

The space Z2 will be use to control the perturbative part of the solution. It can be

understood as the intersection of time-weighted versions of the Besov spaces Ḃ
1
2− 1

10
2,∞

and Ḃ
1
2+ 1

10
2,∞ , providing extra control for low and large frequencies.

Here and above, Pk , k ∈ Z, denote standard Littlewood-Paley operators onR, given
by Pk f (x) = F−1(ϕk(ξ) f̂ (ξ))(x), where F−1 denotes inverse Fourier transform, f̂
denotes the Fourier transform of the function f , and ϕk(·) = ϕ0(2−k ·) with ϕ0 an
even, smooth function compactly supported on an annulus, such that {ϕk}k is a dyadic
partition of unity.

Furthermore, it will be useful to define N to be the space of functions F : [0,∞)×
R → C induced by the norm

‖F‖N := sup
t∈[0,∞)

{
sup
k∈Z

2k/2(2k t)−1/10‖Pk F‖L2
}

(1.7)

whichmeasures the nonlinearity.We remark that the N -norm admits a loss for 2k t < 1.
However, this will not be an issue after running Duhamel’s formula for the fixed point
argument.

1.2 Statement of theMain Result

The main result of this paper is the following theorem.

Theorem 1.1 Let C = {a1, . . . , aM } be a finite set of points indexed by j ∈ J =
{1, . . . , M} and let ε0 > 0 depend only on C. Let h0 = ∑

j∈J h j,0 be such that

∑

j∈J

(‖h j,0‖L∞ + ‖(x − a j )∂xh j,0‖L∞) = ε ≤ ε0 
 1, and

∑

j∈J
‖h j,0(x + a j ) + h j,0(a j − x)‖L p ≤ 1,
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Fig. 2 The initial data: the interface η consists of a superposition of corners

for some p ∈ [1,∞). Then there is a unique solution h : [0,∞) × R → R to the
initial value problem of the form

h(t, x) =
∑

j∈J
g j (t, x − a j + q(t, x))

for a suitable change of variables q(t, x)which satisfies the bounds (1.4) and functions
g j ∈ Z with ‖g j‖Z � ε.

Definition 1.2 We define a symmetric corner at a point a on the interface η, to
be a solution for which the derivative h(t, x) = ∂xη(t, x) is odd up to lower
order terms, in a neighborhood of a. More specifically, this means that the quantity
[h(t, x + a) + h(t, a − x)]/x is integrable around x = 0.

Remark 1.3 Informally stated, we assume the initial data of the interface η(t, x) to
be a finite superposition of not necessarily symmetric corners, see Figure 2. We then
show that the equation admits a solution for which the corners desingularize – as if
the solution were a superposition of free evolutions – and move, before reaching time
T = 1. After the desingularization takes place, we fall back into a traditional small-
data critical theory in Sobolev spaces setting and our solutions exist globally in time.
We further point out that the function q(t, x) is only relevant until time T = 1, hence
the extra assumption ∂t q(t, x) = 0 for t ≥ 1 in (1.4). Furthermore, the L p condition
on the initial data ensures that any potential corner at infinity will be symmetric.

Remark 1.4 This theorem provides a precise description of the solution we construct.
We are able to identify the location of each corner through the definition of the Z1
norm, and then capture the nonlinear movement of these corners (of order t log(t)), as
they desingularize through the normalization in q. The parabolic nature of the problem
ensures that these corners do indeed smooth out (see (2.6)). We point out that after
time t > 0, the solution is given by a shifted free evolution plus a remainder that lands
in subcritical spaces (see the definition of the Z2 norm in (1.6)), and hence become
instantaneously C∞.
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Remark 1.5 In comparison with previous results, Theorem 1.1 allows interfaces with
linear growth at infinity. Therefore, it includes as a particular case the self-similar solu-
tions constructed in [33]. Moreover, Theorem 1.1 also allows to construct discretely
self-similar solutions, h(t, x) = f (log t, x/t), with f (s, y) bounded, periodic in s
and Hölder regular in y (discretely self-similar solutions originate from initial data
such as h0 = ε sign(x) sin (log (|x |))).

In this regard, we notice that while our main interest is the description of evolving
corners, the result also covers other types of discontinuities.

Remark 1.6 In the case of a single, symmetric corner, there is no need for the logarithm
correction term q(t, x). Indeed, in this setting, our choice of function spaces for Z1
and Z2 are sufficient for closing the fixed point argument. As will become apparent in
the proof, the logarithmic loss arises either when a corner is not symmetric, or when
two neighboring corners interact in a given setting.

Remark 1.7 The natural analogue of Theorem1.1 also holds for periodic initial data h0.
The proof follows in a very similar fashion,with Fourier transforms replaced byFourier
series (since frequencies are now integers instead of real numbers). Furthermore, we
have the additional conservation law

∫
T
h(t, x) dx = 0, and the additional condition

on the initial data
∑

j∈J ‖h j,0(x + a j ) + h j,0(a j − x)‖L p ≤ 1 is not needed in this
setting.

Remark 1.8 Although we prove well-posedness in the sum space Z = Z1+ Z2, the Z1
space only captures the free evolution and the Z2 space, the nonlinearity after applying
Duhamel’s formula. More specifically, we will show that the solution h(t, x) can be
written as the free evolution of each corner translated by q(t, x) plus a perturbation
term h2 satisfying better bounds,

h(t, x) =
∑

j∈J
h1j (t, x) + h2(t, x), where

h1j (t, x) = e−t |∇|h j,0(t, x + q(t, x)). (1.8)

An important observation is that the correction function q(t, x) only appears in the
part of the solution which lies in the Z1 space, and hence only depends on the free
evolution. In particular, it can be calculated explicitly as a bilinear expression of the
initial data. This significantly disentangles the problem when it comes to carrying out
the fixed point iterations with Duhamel’s formula.

1.3 Historical Considerations

The Muskat problem [37] was derived in the 1930’s by Morris Muskat as a model for
oil extraction. It has since attracted a lot of attention both analytically and numerically,
and has proven to have many interesting behaviors. These include the formation of
singularities, such as the ones in the works by Castro et al. [12, 14] in the form of
overhanging interfaces leading to loss of regularity, switch of stability as shown by
Córdoba, Gómez-Serrano and Zlatoš [25, 26], with interfaces that turn but then go
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back to their equilibrium, and splash singularities in the one-phase setting [13]. See
also the recent work of Zlatoš on formation of singularities in the half-plane case [46,
47] and the work of Shi [41] on analyticity of solutions that have turned over. We
refer to the excellent surveys by Gancedo and Granero-Belinchón-Lazar [30], [34] for
extended background on the problem.

Concerning well-posedness, there has been a flurry of work done for the sub-
critical regime in the last two and a half decades. The local in time well-posedness
of the Cauchy problem on sub-critical Sobolev spaces, as well as the global existence
for small data are now well understood. The first results in high-regularity Sobolev
spaces date back to Yi [44, 45], Ambrose [8] and Caflisch, Howison, and Siegel [42],
who additionally showed that some unstable settings are ill-posed. D. Córdoba and
Gancedo [24] proved well-posedness in the infinite depth setting without viscosity
jump in the space Hd+2(Rd), for d = 1, 2, and later, with A. Córdoba, extended this
result to allow for viscosity jump and non-graphical interface [22], [23]. The work
by Cheng, Granero-Belinchón and Shkoller [16] lowered the regularity needed in
two dimensions to H2, without relying on the contour equation and hence permitting
more general domains. Later works focused on lowering the regularity up to barely
subcritical spaces. In the case of constant viscosity, Constantin, Gancedo, Shvydkoy
and Vicol [21] constructed solutions with initial data in W 2,p for p ∈ (1,∞], Matioc
[35, 36] with initial data in H2 and H3/2+ε respectively and Abels and Matioc [1]
for the L p-Sobolev subcritical range. Alazard and Lazar [3] were able to allow non
L2-data. Finally, H. Q. Nguyen and Pausader [39] proved that the full d-dimensional
Muskat problem (with or without bottom and with or without viscosity jump) is well-
posed in Hs(Rd) for all s > d/2 + 1.

We now turn to the study of the Muskat problem in critical spaces. The first results
are small data solutions in theWiener algebraL1,1, space which consists of taking one
derivative of the function and evaluating the L1-norm in Fourier space. Constantin,
Córdoba, Gancedo and Strain [20] proved the existence of small-data solutions, with-
out viscosity jump, and then, along with Piazza in [19], extended this result to the 3D
setting. This result was improved by Gancedo, García-Juárez, Patel and Strain [31]
who constructed small-data strong solutions allowing for a viscosity jump in both 2D
and 3D. Further small data critical results include H. Q. Nguyen [38] who proved a
well-posedness result in the Besov space Ḃ1∞,1, a space embedded in the critical space

Ẇ 1,∞, and Cameron, who first studied well-posedness for interfaces in Ẇ 1,∞ ∩ L2

in 2D [10], and then in 3D with just sub-linear growth at infinity [11]. Cameron’s
works have the additional particularity of allowing for “medium"-sized initial data,
in the sense that it is bounded by 1 as opposed to by some small ε-value. For large
data, global solutions are not generally expected given that singularities may arise.
Nonetheless, Deng, Lei and Lin [28] constructed global weak solutions assuming that
the initial interface is monotonic.

Recently, there has also been significant work done in the critical Sobolev space
Ḣ3/2. The first result dates back to Córdoba and Lazar [27], who although working in
the subcritical space Ḣ5/2, considered smallness and derived the a priori estimates in
the critical space. This result was then extended to the 3D setting byGancedo andLazar
[32]. The first fully critical result is due to Alazard and Q. H. Nguyen, constructing
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2D solutions with initial data in H3/2 ∩ Ẇ 1,∞ [4], together with the log-subcritical
work [5] where unbounded slopes are allowed. In these works, the solutions are either
large data, local in time, or small data global in time. They later were able to obtain
well-posedness in H3/2 [7], dropping the L∞ assumption altogether. They then [6]
further extended this to the 3D setting in Ḣ2 ∩ W 1,∞.

Critical well-posedness in the Sobolev norm does not allow for corners, which
leads us to the work of Chen, Q. H. Nguyen and Xu [15] who studied initial data
for the interface in Ċ1, again, either large data, local in time, or small data, global
in time. In this work, although the interface is smooth, the uniqueness result does
allow for discontinuities. Very recently [33], three of the authors of this paper proved
the existence of small data self-similar solutions, starting from exact corners, which
desingularize instantaneously.

Our result differs from the previous ones in the sense that we carry out our analysis
by using a fixed point argument, rather than energy estimates or maximum principles.
We start our fixed point method from an ansatz differing from the free evolution (cf.
Remark 1.8). This argument enables us to describe the solution in amuchmore precise
way as a convergent series in well-adapted function spaces in which a suitable shifted
free evolution is the first term. As a result, we can attain a better understanding of
which space the corners lie in, what they look like (not necessarily symmetric) as well
as what their behavior is (movement and immediate desingularization). Moreover,
as opposed to [10, 11] and all previous works, the space Z1 includes functions with
linear growth at infinity: these encompass not only self-similar solutions [33] but also
discretely self-similar solutions (see Remark 1.5).

Finally, it is interesting to notice that we show instant desingularization of the
corners, hence no ‘waiting time’ phenomena is possible for small corners in two-
phase Muskat. We refer to [9, 17, 18] for related results in the one-phase setting and
in Hele-Shaw flows.

We finish this subsection highlighting the following recent papers on the one-
phase problem: [2, 29, 40]. In [2], Agrawal–Patel–Wu prove local well-posedness for
interfaces that are smooth or can have singularities such as acute angle corners and
cusps. In such case, the angle of the corner is preserved for a finite time and there
is no rotation at the tip. Note that this does not contradict our results since we are
considering a class of initial data consisting of obtuse-angled corners, which become
smooth instantaneously.

1.4 Outline of the Paper

The main difficulty of this problem is that unless we restrict ourselves to the setting of
a single, symmetric corner, we end up with a logarithmic loss in our a priori estimates.
As a result, the first crucial step we must do is a renormalization of the problem, and
subsequently, in (2.9), a reformulation of the problem in terms of the renormalized
function g(t, x − x j + q(t, x)). This necessitates the introduction of the function
q(t, x) (see equations (2.1)-(2.2)). These ensure on the one hand, that we do in fact
have a change of variables, and on the other, that the function spaces remain invariant
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by the renormalization, Lemma 2.5. The definition of q(t, x) will depend only on the
free evolution of the initial data, hence avoiding a circular argument (see Remark 1.8).

After performing a Taylor expansion on the denominator of the integral term in
(2.5), which reveals the parabolicity of the problem (2.6), we reformulate it as a
pseudoproduct in order to study the interactions between the various frequencies. In
an effort to keep the arguments transparent and easier to follow, we first carry out the
entire analysis for the trilinear setting (in which we only consider the first term in the
Taylor expansion). We provide a generalization of all lemmas to the full nonlinearity
in Section 5.

Ourmain goalwill nowbe to find suitable a priori bounds on the localized nonlinear-
ity, ensuring that the integral term inDuhamel’s formula remains amere perturbation in
the Z2 space. To this end, we carefully study the kernels of the pseudoproduct in Lem-
mas 3.1-3.2, which in turn enable us to perform localized L2 estimates, Lemma 4.1.
These estimates will prove to yield desired bounds on all high-high frequency inter-
actions, Lemma 4.2 as well as for all high-low interactions which contain at least one
function in the Z2 space, Lemma 4.4. We remark that from the definition of the Z2
space in (1.6), this space allows us to sum over each frequency at a time.

The remaining difficulty is the setting for which all functions in the pseudoproduct
are in the Z1 space. The difficulty is two-fold. On the one hand, we need to put the
highest frequency in L2 to prevent a loss of derivative, an inflexible restriction which
prevents us from getting any more gain from this function. On the other hand, the Z1
norm as defined in (1.5), does not contain any Pk . By considering the elements in this
space localized in frequencies, we lose information which in turn is responsible for
logarithmic losses. To rectify this, we carry out a more careful study of the functions
in the Z1 space, Lemma 3.3. In particular, we find that they can be split into core and
error terms.

Upon further pursuing the analysis of the pseudoproduct when all functions lie
in Z1, we seek to identify the exact term for which the logarithmic loss occurs. By
gradually peeling away all bounded terms, Lemmas 4.5-4.7, we are eventually left
with a velocity-like bilinear expression (4.20). Indeed, it then becomes apparent that
subtracting this velocity term from the localized pseudoproduct yields the desired
bounds on the nonlinearity, Lemma 4.8.

From the formulation of the problem in terms of the renormalized function (2.9)-
(2.10), it is apparent that this velocity term must be equal to the time derivative of
the correction function, ∂t q(t, x). Checking that the bounds of q(t, x) assumed at
the beginning are indeed satisfied, Lemma 4.9, hence completes the renormalization
bootstrap procedure. In Section 5 we show how all the results in the trilinear case
generalize to the full nonlinearity, and finally, we conclude with Section 6 in which
we explicitly construct the correction term q and carry out a fixed point argument to
construct the solution.
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2 Preliminaries

2.1 Reformulation of the Problem

In addition to a critical well-posedness result, we want to track the location of the
corners and understand their behavior. As mentioned previously, unless we restrict
ourselves to the setting in which the interface consists of a single, symmetric cor-
ner, our estimates produce a logarithmic term. This suggests the introduction of
a renormalization procedure. We define the new function g as in (1.3), such that
h(t, x) = g(t, x + q(t, x)). Here we define the set of functions q ∈ C1

t,x (R+ × R)

such that

q ∈ A′ ⇔ |q(t, x)| � ε t ln(2/t)�≤0(x), sup
x∈R

|∂xq(t, x)| � ε,

∂t q(t, x) = 0 for t ≥ 1. (2.1)

q̃ ∈ A ⇔ q̃ ∈ A′ and |∂ny q̃(t, y)| � ε
∑

j∈J

1

|y − a j |n−1 ,

n ∈ {1, 2, 3}, t ∈ [0,∞), y ∈ R. (2.2)

Here, for any l ∈ Z, �≤l : R → [0, 1] is a smooth cutoff function supported in
∪ j∈J (a j − 2l+2, a j + 2l+2) and equal to 1 in the set ∪ j∈J (a j − 2l−2, a j + 2l−2) and
satisfying natural bounds ‖∂nx �≤l(x)‖L∞ � 2−nl , n ∈ {1, 2, 3}.

Weassume that q̃ ∈ A and setq such that q̃(t, x) = −q(x+q̃(t, x)), or equivalently

Q(t, Q̃(t, x)) = x = Q̃(t, Q(t, x)),

Q̃(t, y) := y + q̃(t, y), Q(t, x) := x + q(t, x). (2.3)

This implies in particular that q ∈ A′, up to slight adjustments of the support of �≤0.

Remark 2.1 The bounds above can be viewed as a norm for a function space in which
q(t, x) and q̃(t, x) must lie. We remark that this space is also critical, and indeed, if
it were not, q would be perturbative and wouldn’t be necessary to begin with.

Performing a Taylor expansion in the denominator, we get for h = h(t, x) :
[0,∞) × R → R, the following one-dimensional evolution equation

(∂t + |∇|)h = N , h(0, ·) = h0, (2.4)

with

N =
∑

n≥1

Nn[h, . . . , h] where

Nn[h1, h, . . . , h](x) := (−1)n

π

d

dx

∫

R

∂xh
∗
1(x, α) · (h∗(x, α)

)2n
dα. (2.5)
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The nonlinearities are initially a priori defined for nice functions h and h1, but as part
of our proof we show that they are well-defined and can be estimated for the type
of functions h and h1 considered in our problem. From (2.4), we see that the linear
solution takes the form

h(0)(t, x) = e−t |∇|h0(x), (2.6)

thus revealing the parabolic nature of the equation. This is the key property which
enables us to treat the problem as a semi-linear one (in the sense that we can perform
a fixed point argument to construct the solution), despite the fact that the nonlinear
term contains a derivative.

We denote

Nh j (x) :=
∑

n≥1

Nn[h j , h, . . . , h](x). (2.7)

We will construct h(t, x) (correspondingly g(t, x)) as the sum

h(t, x) =
∑

j∈J
h j (t, x),

where we are denoting

h j (t, x) := g j (t, x − a j + q(t, x)), (2.8)

each g j will be defined to satisfy the following equation (see Lemma 2.6):

∂t g j (t, x)+|∇|g j (t, x) = Fj (t, x + a j ),

g j (0, x) = g j,0(x) = h j,0(x + a j ), (2.9)

with

Fj (t, x + a j ) = ∂xh j (t, Q̃(t, x + a j ))∂t q̃(t, x +a j ) + Nh j (t, Q̃(t, x + a j ))

−|∇|g j (t, x)∂xq(t, Q̃(t, x + a j )) − E j (t, Q̃(t, x + a j )),

(2.10)

and q, q̃ are defined as above and E j is defined in (2.23)

q̃(t, x) =
∑

n≥1

q̃n(t, x),

where each q̃n , (formally defined in (6.1)) intuitively serves as a logarithmic correction
term for its respective associated nonlinearity Nn , as defined in (2.5).

We need to solve the system of equations for g j , with j ∈ J . The aim is to construct
the functions g j solving (2.9) using a fixed-point argument in the space Z2. We will
decompose each g j ,
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g j = g1j + g2j = e−t |∇|g0, j +
∫ t

0
e−(t−s)|∇|Fj (s)ds,

so that g1j ∈ Z1 and g2j ∈ Z2.
From (2.9), we see that the only way to cancel any logarithmic loss which may arise

in the nonlinearity is by means of the correction term ∂t q̃ . In order to identify q̃ , we
must first strip off all the terms in the nonlinear part which can be bounded until we are
only left with the logarithmic singularity. We then conclude the bootstrap argument
by verifying that this leftover term satisfies better bounds than the ones in (2.1)-(2.2).

2.2 Function Spaces Lemmas

In this section, we gather useful lemmas concerning the functions spaces defined in
(1.5)-(1.7). Most significantly, we verify that the change of variables does not alter the
norms.

Lemma 2.2 For F1 ∈ Z1, F2 ∈ Z2, k ∈ Z and t ∈ [0,∞) we have

‖Pk F1(t)‖L2 � 2−k/2 min{1, (2k t)−1/10}‖F1‖Z1 , (2.11)

‖Pk F2(t)‖L2 � 2−k/2 min{(2k t)1/10, (2k t)−1/10}‖F2‖Z2 . (2.12)

In particular, for any F ∈ Z, we have

(1 + 2k t)1/10‖Pk F(t)‖L∞ � ‖F‖Z , (2.13)

(1 + 2k t)1/10‖Pk F(t)‖L2 � 2−k/2‖F‖Z . (2.14)

Remark 2.3 From (2.14) we see that by taking the L2 norm of frequency localized
functions, we have a gain in derivatives. As a result, since we have a loss of derivatives
in the nonlinear term, we will always take the function with the highest frequency in
L2.

Proof From the definition of Z2, for F ∈ Z2 we clearly have (1+2k t)1/10‖Pk F(t)‖L2

� 2−k/2‖F‖Z2 . That Pk F is also in L∞ follows from the Sobolev embedding

‖Pk F(t)‖L∞ � 2k/2‖Pk F(t)‖L2 .

For F ∈ Z1, we clearly have (1+2k t)1/10‖Pk F(t)‖L∞ � ‖F‖Z1 . It remains to check
that (1 + 2k t)1/10Pk F(t) is also in L2. We do this in the Fourier space. We have

P̂k F(ξ) = ϕk(ξ)

∫

R

F(x)e−i xξdx

= ϕk(ξ)

∫

|x |≤2−k
F(x)e−i xξdx + ϕk(ξ)

∫

|x |≥2−k
F(x)e−i xξdx

=: A(ξ) + B(ξ).
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We can easily check that

‖A(ξ)‖L2 � 2−k/2‖F(x)‖L∞ .

Moreover, using integration by parts (and a suitable limiting argument as described in
(2.19) in Lemma 2.4, to handle the limit at infinity), we get

∫

|x |≥2−k
F(x)e−i xξdx = F(−2−k)

−iξ
ei2

−kξ − F(2−k)

−iξ
e−i2−kξ

− i

ξ

∫

|x |≥2−k
∂x F(x)e−i xξdx

which yields

‖B(ξ)‖L2 � 2−k/2‖F(x)‖L∞ + 2−k
∥∥∥
1|x |≥2−k

x
x∂x F(x)

∥∥∥
L2

� 2−k/2‖F(x)‖L∞ + 2−k/2‖x∂x F(x)‖L∞ .

Combining with Plancherel’s theorem, we now get

‖(1 + 2k t)1/10Pk F(x)‖L2 � 2−k/2‖F(x)‖Z1 ,

which concludes the proof. ��
Since the nonlinearity is expressed in terms of the function h but we have Z -norm

control on the solutions g j , we beginwith the following two lemmas. For the remainder
of this section, we will not explicitly include the dependence on t for simplicity of
notation.

Lemma 2.4 Assume g ∈ L2, q ∈ A′, q̃ ∈ A, whereA′ andA are defined in (2.1) and
(2.2) respectively, t ∈ [0,∞), a ∈ R and h(x) := g(x − a + q(t, x)) (compare with
(2.8)). Then, for any k ∈ Z we have

‖Pkh‖L2 �
∑

k′≤k

‖Pk′g‖L2 2−(k−k′) +
∑

k′≥k

‖Pk′g‖L2 2− 1
2 (k′−k). (2.15)

Moreover, for g(y) = h(y + a + q̃(t, y + a)), for any k ∈ Z we have

‖Pkg‖L2 �
∑

k′≤k

‖Pk′h‖L2 2−(k−k′) +
∑

k′≥k

‖Pk′h‖L2 2− 1
2 (k′−k). (2.16)

Proof Given k ∈ Z we write

h(x) =
∑

k′∈Z
(Pk′g)(x − a + q(t, x)) = h1(x) + h2(x),
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h1(x) :=
∑

k′≤k+4

(Pk′g)(x − a + q(t, x)),

h2(x) :=
∑

k′≥k+5

(Pk′g)(x − a + q(t, x)). (2.17)

To estimate ‖Pkh1‖L2 we take a derivative in x and write

h′
1(x) =

∑

k′≤k+4

(1 + q ′(t, x))(Pk′g)′(x − a + q(t, x))

Therefore, since |q ′(t, x)| � ε, it follows that

‖h′
1‖L2 �

∑

k′≤k+4

‖(Pk′g)′‖L2 �
∑

k′≤k+4

2k
′ ‖Pk′g‖L2 .

Therefore

‖Pkh1‖L2 �
∑

k′≤k+4

2k
′−k‖Pk′g‖L2 . (2.18)

To estimate ‖Pkh2‖L2 we letGk′(x) := (Pk′g)(x−a+q(t, x)) and take the Fourier
transform to write

Ĝk′(ξ) =
∫

R

Gk′(x)e−i xξdx =
∫

R

(Pk′g)(x − a + q(t, x))e−i xξdx

= 1

2π

∫

R

∫

R

P̂k′g(η)eiη(x−a+q(t,x))e−i xξdxdη

= 1

2π

∫

R

P̂k′g(η)L(ξ, η)dη,

where here

L(ξ, η) :=
∫

R

e−i xξ eiη(x−a+q(t,x))dx .

We point out that the integral L does not converge absolutely, but remark that this is
the same situation as for the Fourier Inversion Formula (which would be the case if q
were equal to 0) and we can hence use the usual argument of defining the integral

Lδ(ξ, η) =
∫

R

e−i xξ eiη(x−a+q(t,x))e−δ2x2dx, (2.19)

which converges to L(ξ, η) as δ → 0.Aswemake the changeof variables x = Q̃(t, y),
this additional factor would become e−δ2 Q̃2(t,y). Although we do perform integration
by parts in y in what follows, the derivative hitting this kernel is not worse than what
we have to estimate and the final bounds we obtain in (2.21) are uniform in the sense
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that they are independent of δ. Our manipulations below, including the key bounds in
(2.20) are similar, still leading to uniform bounds in δ.

We make the change of variables x = Q̃(t, y) and decompose the kernel L as
L = L1 + L2, where

L1(ξ, η) := e−iηa
∫

R

e−iξ Q̃(t,y)eiηy Q̃′(t, y)�≤−k′(y) dy,

L2(ξ, η) := e−iηa
∫

R

e−iξ Q̃(t,y)eiηy Q̃′(t, y)(1 − �≤−k′)(y) dy,

and the functions �≤l are defined as before.
Wewould like to prove that if |ξ | ∈ [2k−1, 2k+1], |η| ∈ [2k′−1, 2k

′+1], and k′ ≥ k+5
then

|Ln(ξ, η)| � 2−k′
, n ∈ {1, 2}. (2.20)

The bounds follow easily for the function L1, due to the support restriction on y. To
bound L2 we integrate by parts in y,

L2(ξ, η) = ie−iηa
∫

R

ei(ηy−ξ Q̃(t,y)) d

dy

{ Q̃′(t, y)(1 − �≤−k′(y))

η − ξ Q̃′(t, y)

}
dy

= ie−iηa
∫

R

ei(ηy−ξ Q̃(t,y)) ηQ̃′′(t, y)
(η − ξ Q̃′(t, y))2

(1 − �≤−k′(y)) dy + O(2−k′
).

This is not enough to prove the bounds (2.20), because of the factors 1/|y − x j | in
the bounds for |Q̃′′(t, y)| in (2.2), which lead to logarithmic losses. However, we can
integrate by parts in y once more to see that

|L2(ξ, η)| � 2−k′ +
∣∣∣
∫

R

ei(ηy−ξ Q̃(t,y)) ηQ̃′′(t, y)
(η − ξ Q̃′(t, y))2

(1 − �≤−k′(y)) dy
∣∣∣

� 2−k′ + 2k
′ ∣∣∣
∫

R

ei(ηy−ξ Q̃(t,y)) d

dy

{ Q̃′′(t, y)(1 − �≤−k′(y))

(η − ξ Q̃′(t, y))3
}
dy

∣∣∣

� 2−k′ + 2k
′
∫

R

|Q̃′′′(t, y)||1 − �≤−k′(y)|
23k′ + |Q̃′′(t, y)||�′

≤−k′(y)|
23k′

+ |ξ ||Q̃′′(t, y)|2|1 − �≤−k′(y)|
24k′ dy.

Using now (2.2) we estimate
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|L2(ξ, η)| � 2−k′ + 2−2k′
∫

R

( ∑

j∈J

1

|y − x j |2
)

|1 − �≤−k′(y)|

+
( ∑

j∈J

1

|y − x j |
)

|�′
≤−k′(y)| dy

� 2−k′
. (2.21)

This completes the proof of (2.20) for n = 2.
Given (2.20) we can now use the Cauchy-Schwartz inequality to estimate

‖Pkh2‖L2 �
∑

k′≥k+5

‖PkGk′ ‖L2 �
∑

k′≥k+5

‖ϕk(ξ)Ĝk′(ξ)‖L2
ξ

�
∑

k′≥k+5

2k/2‖ϕk(ξ)Ĝk′(ξ)‖L∞
ξ

�
∑

k′≥k+5

2k/2‖ϕk(ξ)L(ξ, η)1[2k′−1,2k′+1](|η|)‖L∞
ξ L2

η
‖Pk′g‖L2

�
∑

k′≥k+5

2k/22−k′/2‖Pk′g‖L2 .

The desired bounds (2.15) follow using also (2.17) and (2.18). The proof for (2.16)
follows similarly, except that no change of variables is required. ��

As an application, we show that h satisfies similar estimates as those for g in Lemma
2.2. Moreover, the change of variables does not significantly alter the N -norm.

Lemma 2.5 For k ∈ Z, t ∈ [0,∞), f ∈ Z, and f τ defined by f τ (t, x) := f (t, x −
a + q(t, x)), we have that

‖Pk f τ (t, x)‖L2 � 2−k/2 min{1, (2k t)−1/10}‖ f ‖Z1 ,

‖Pk f τ (t, x)‖L2 � 2−k/2 min{(2k t)1/10, (2k t)−1/10}‖ f ‖Z2 .

Furthermore, for f ∈ N and f τ (t, x) as above, we have that

‖Pk f τ (t, x)‖L2 � 2k/2(2k t)−1/10‖ f ‖N . (2.22)
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Proof First, let f ∈ Z2 and assume without loss of generality that ‖ f ‖Z2 = 1. Using
Lemmas 2.4 and 2.2, we have

‖Pk f τ (t, x)‖L2 �
∑

k′≤k

2−k′/2(1 + 2k
′
t)−2/10(2k

′
t)1/102−(k−k′)

+
∑

k′≥k

2−k′/2(1 + 2k
′
t)−2/10(2k

′
t)1/102− 1

2 (k′−k)

� 2−k2
k
2 min{(2k t)1/10, (2k t)−1/10}

+ 2
k
2 2−k min{(2k t)1/10, (2k t)−1/10}

� 2− k
2 min{(2k t)1/10, (2k t)−1/10}.

Now let f ∈ Z1, ‖ f ‖Z1 = 1, then, using again Lemmas 2.4 and 2.2,

‖Pk f τ (t, x)‖L2 �
∑

k′≤k

2−k′/2(1 + 2k
′
t)−1/102−(k−k′)

+
∑

k′≥k

2−k′/2(1 + 2k
′
t)−1/102− 1

2 (k′−k)

� 2− k
2 min{1, (2k t)−1/10} + 2− k

2 min{1, (2k t)−1/10}
� 2− k

2 min{1, (2k t)−1/10}.

We now let f ∈ N , ‖ f ‖N = 1, then, using once more Lemma 2.4,

‖Pk f τ (t, x)‖L2 �
∑

k′≤k

2k
′/2(2k

′
t)−1/102−(k−k′) +

∑

k′≥k

2k
′/2(2k

′
t)−1/102− 1

2 (k′−k)

� 2−k
∑

k′≤k

2
3
2 k

′
(2k t)−1/10 + 2k/2

∑

k′≥k

(2k t)−
1
10

� 2
k
2 (2k t)−1/10,

thus concluding the proof. ��

2.3 Implementing the Change of Variables

In this section, we demonstrate how to move from the physical to the renormalized
formulation, and bound all linear error terms which arise in the process.

The first thing we consider is how the |∇| handles the change of variables. The
following lemma shows that, up to error terms with sufficiently nice bounds, we
essentially have the chain rule. We point out that in order to handle |∇|, we must
consider positive and negative frequencies independently, thus justifying the use of
frequency projection operators to positive and negative frequencies in the proof below.
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Lemma 2.6 Assume that h0 is as in Theorem 1.1 and q : [0,∞) × R → R satisfies
the bounds (2.1). Assume that the functions g j ∈ Z, j ∈ {1, . . . , M} solve the system
(2.9), with initial data g j (0, x) := h j,0(x + a j ), where

h j (t, x) := g j (t, x − a j + q(t, x)), h(t, x) =
∑

j∈J
g j (t, x − a j + q(t, x)),

E j (t, x) := (|∇|h j )(t, x) − (|∇|g j )(x − a j + q(t, x))(1 + q ′(t, x)), (2.23)

Then h solves the initial value problem (2.4). Moreover, the remainders E j satisfy
the bounds

‖Pk E j‖L2 � ε2k
∑

k′≤k

‖Pk′g j‖L2 2−(k−k′) + ε2k
∑

k′≥k

‖Pk′g j‖L2 2− 1
2 (k′−k),

‖Pk E j‖L2 � ε2k/2 min{1, (2k t)−1/10}‖g j‖Z . (2.24)

Proof Consider h j as in (2.23). Assume that

∂t h j (t, x) + |∇|h j (t, x) = Nh j (t, x), (2.25)

with h j (0, x) = h j,0(x), which implies that h = ∑
j∈J h j solves (2.4). We compute

∂t g j (t, x − a j ) = ∂t h j (t, x + q̃(t, x)) + ∂xh j (t, x + q̃(t, x))∂t q̃(t, x)

= Nh j (t, x + q̃(t, x)) − (|∇|h j )(t, x + q̃(t, x))

+ (∂xh j )(t, x + q̃(t, x))∂t q̃(t, x),

from which we get

∂t g j (t, x − a j ) + (|∇|h j )(t, x + q̃(t, x))

= Nh j (t, x + q̃(t, x)) + (∂xh j )(t, x + q̃(t, x))∂t q̃(t, x),

and consequently, using the second identity in (2.23), we obtain (2.9). Hence, reversing
the process, we conclude that the identities (2.9) and (2.25) are equivalent.

To prove the bounds (2.24) we write

ĥ j (ξ) =
∫

R

h j (x)e
−i xξ dx =

∫

R

g j (x − a j + q(x))e−i xξ dx

= 1

2π

∫

R

∫

R

ĝ j (η)eiη(x−x j+q(x))e−i xξ dxdη.

We remark here once more that the integral does not converge absolutely, but the same
argument as written in Lemma 2.4, around (2.19) applies. Therefore

|̂∇|h j (ξ) = 1

2π

∫

R

∫

R

|̂∇|g j (η)
|ξ |
|η|e

iη(x−a j+q(x))e−i xξ dxdη. (2.26)
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Let P+ and P− denote the frequency projection operators to positive and negative
frequencies,

P̂+ f (ρ) := f̂ (ρ)1+(ρ), P̂− f (ρ) := f̂ (ρ)1−(ρ).

It follows from (2.26) that

1+(ξ)|̂∇|h j (ξ) = 1+(ξ)
1

2π

∫

R

∫

R

|̂∇|g j (η)
|ξ |
|η|e

iη(x−a j+q(x))e−i xξ dxdη

= F1(ξ) + G1(ξ),

F1(ξ) := 1+(ξ)
1

2π

∫

R

∫

R

1+(η)|̂∇|g j (η)
|ξ |
|η|e

iη(x−a j+q(x))e−i xξ dxdη,

G1(ξ) := 1+(ξ)
1

2π

∫

R

∫

R

1−(η)|̂∇|g j (η)
|ξ |
|η|e

iη(x−a j+q(x))e−i xξ dxdη.

(2.27)

We can integrate by parts in x to calculate F1(ξ),

F1(ξ) = 1+(ξ)
1

2π

∫ ∞

0
|̂∇|g j (η)

∫

R

ξ

η
eiη(x−a j+q(x))e−i xξ dxdη

= 1+(ξ)
1

2π

∫ ∞

0
|̂∇|g j (η)

∫

R

i

η
eiη(x−a j+q(x)) d

dx
{e−i xξ } dxdη

= 1+(ξ)
1

2π

∫ ∞

0
|̂∇|g j (η)

∫

R

(1 + q ′(x))eiη(x−a j+q(x))e−i xξ dxdη

= 1+(ξ)

∫

R

(P+|∇|g j )(x − a j + q(x))(1 + q ′(x))e−i xξ dx .

Similarly,

G1(ξ) = −1+(ξ)

∫

R

(P−|∇|g j )(x − a j + q(x))(1 + q ′(x))e−i xξ dx . (2.28)

Similarly, wemultiply the identity (2.26) by 1−(ξ) and integrate by parts in x to derive
the identity

1−(ξ)|̂∇|h j (ξ) = F2(ξ) + G2(ξ),

F2(ξ) := 1−(ξ)

∫

R

(P−|∇|g j )(x − a j + q(x))(1 + q ′(x))e−i xξ dx,

G2(ξ) := −1−(ξ)

∫

R

(P+|∇|g j )(x − a j + q(x))(1 + q ′(x))e−i xξ dx .

(2.29)
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We add up the identities (2.27) and (2.29) and notice that

F1(ξ) =
∫

R

(P+|∇|g j )(x − a j + q(x))(1 + q ′(x))e−i xξ dx + G2(ξ),

F2(ξ) =
∫

R

(P−|∇|g j )(x − a j + q(x))(1 + q ′(x))e−i xξ dx + G1(ξ).

Thus

|̂∇|h j (ξ) =
∫

R

(|∇|g j )(x − a j + q(x))(1 + q ′(x))e−i xξ dx + 2G1(ξ) + 2G2(ξ).

Therefore, we have the precise identity

|∇|h j (x) = (|∇|g j )(x − a j + q(x))(1 + q ′(x)) + E(x),

E(x) := 1

2π

∫

R

(2G1(ξ) + 2G2(ξ))eixξ dξ.

It remains to prove the bounds (2.24) on the error term. We decompose E =
2E1 + 2E2,

E1(x) := 1

2π

∫

R

G1(ξ)eixξ dξ, E2(x) := 1

2π

∫

R

G2(ξ)eixξ dξ.

We begin with E1 and use the formula (2.28) to write

P̂k E1(ξ) = −ϕk(ξ)1+(ξ)

∫

R

∑

k′∈Z
(P−

k′ |∇|g j )(x − a j + q(x))(1 + q ′(x))e−i xξ dx

= −ϕk(ξ)1+(ξ)
1

2π

∫ 0

−∞

∑

k′∈Z
ϕk′(η)|̂∇|g j (η)

×
∫

R

eiη(x−a j+q(x))(1 + q ′(x))e−i xξ dxdη,

= −ϕk(ξ)1+(ξ)
1

2π

∫ 0

−∞

∑

k′∈Z
ϕk′(η)|̂∇|g j (η)L(ξ, η)dη, (2.30)

with

L(ξ, η) :=
∫

R

eiη(x−a j+q(x))(1 + q ′(x))e−i xξ dx .

Wemake the change of variables x = Q̃(y), as defined in (2.3), and integrate by parts
in y once to get

L(ξ, η) = e−iηa j

∫

R

e−iξ q̃(y)eiy(η−ξ)dy = ξe−iηa j

η − ξ

∫

R

q̃ ′(y)ei(ηy−ξ Q̃(y))dy.
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Notice that we expanded Q̃(y) = y + q̃(y) in order to get the necessary smallness
factor from q̃ ′(y) which we don’t have for Q̃′(y).

For any k, k′ ∈ Z we let k∗ = max(k, k′) and decompose the kernel L as L =
L1 + L2 with

L1(ξ, η) := ξe−iηa j

η − ξ

∫

R

q̃ ′(y)ei(ηy−ξ Q̃(y))�≤−k∗(y)dy,

L2(ξ, η) := ξe−iηa j

η − ξ

∫

R

q̃ ′(y)ei(ηy−ξ Q̃(y))(1 − �≤−k∗)(y)dy,

where here �≤−k∗ is defined as in (2.1). We claim that for ξ > 0, |ξ | ∈ [2k−1, 2k+1]
and η < 0, |η| ∈ [2k′−1, 2k

′+1], we have

|Ln(ξ, η)| � ε2k−2k∗
, n ∈ {1, 2}. (2.31)

The bounds for L1 follow in a straightforward way from the support of the cutoff
function and the smallness factor from (2.1). For the bounds on L2 we integrate by
parts once more in y to get

L2(ξ, η) = i
ξ

η − ξ
e−iηa j

∫

R

ei(ηy−ξ Q̃(y)) d

dy

{ q̃ ′(y)(1 − �≤−k∗(y))

η − ξ Q̃′(y)

}
dy

= iξe−iηa j

∫

R

ei(ηy−ξ Q̃(y)) q̃ ′′(y)
(η − ξ Q̃′(y))2

(1 − �≤−k∗(y)) dy + εO(2k−2k∗
).

Since the bounds for ∂2y q̃ are not sufficient and lead to logarithmic losses, we perform
another integration by parts in y to obtain

|L2(ξ, η)| � ε
2k

22k∗ + 2k
∣∣∣∣

∫

R

ei(ηy−ξ Q̃(y)) d

dy

{ q̃ ′′(y)(1 − �≤−k∗(y))

(η − ξ Q̃′(y))3
}
dy

∣∣∣∣

� ε
2k

22k∗ + 2k
∫

R

( |q̃(3)(y)| · |1 − �≤−k∗(y)|
23k∗ + |q̃ ′′(y)| · |∂y(�≤−k∗)(y)|

23k∗

+ |ξ ||q̃ ′′(y)|2 · |1 − �≤−k∗(y)|
24k∗

)
dy

� ε2k−2k∗
,

where we used (2.2) in the last line, thus proving the claim (2.31). It now follows from
(2.30) that

|P̂k E1(ξ)| � εϕk(ξ)

∫

R

∑

k′∈Z

2k

22k + 22k′ |ϕk′(η)|̂∇|g j (η)| dη

� εϕk(ξ)
∑

k′∈Z

2k2k
′

22k + 22k′ 2
k′/2‖Pk′g j‖L2
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By using the Cauchy-Schwartz inequality we now get

‖P̂k E1‖L2 � ε
∑

k′∈Z

23k/223k
′/2

22k + 22k′ ‖Pk′g j‖L2 .

The expression Pk E2(x), can be estimated in a similar way, thus concluding the proof.
��

The free evolution of g j will lie in Z1, while we will show that the forced terms
land in Z2. We thus have to study the right-hand side terms in (2.9) in Z2 for g j in
the sum space Z . The following lemma provides estimates for one of the terms. Due
to the bounds on q, given in (2.1), it is natural to expect that the term involving a first
derivative of q would be an error term.

Lemma 2.7 Let g j ∈ Z and q(t, x) satisfy (2.1). Then, for any k ∈ Z and t ∈ [0,∞),

‖Pk
(
(∂xq)(t, Q̃(t, x))|∇|g j (t, x)

)‖L2 � ε2k/2(2k t)−1/10‖g j‖Z .

Proof Let us denote u(t, x) = (∂xq)(t, Q̃(t, x)). We expand

Pk(|∇|g j · u) = Pk[(P[k−3,k+3]|∇|g j ) · P≤k−4u] + Pk[(P≤k−4|∇|g j ) · P[k−3,k+3]u]
+

∑

k1,k2≥k−3, |k1−k2|≤6

Pk[(Pk1 |∇|g j ) · Pk2u]

:= S1 + S2 + S3.

Then we estimate

‖S1‖L2 � ‖P[k−3,k+3]|∇|g j‖L2 · ‖P≤k−4u‖L∞ � ε2k/2 min{1, (2k t)−1/10}‖g j‖Z ,

‖S2‖L2 � ‖P≤k−4|∇|g j‖L2 · ‖P[k−3,k+3]u‖L∞ � ε2k/2 min{1, (2k t)−1/10}‖g j‖Z ,

(2.32)

using (2.14) and (2.1).
To estimate S3, recalling that Q(t, Q̃(t, x)) = x , we calculate that u(t, x) can be

rewritten as

u(t, x) = −∂x q̃(t, x + a j )

1 + ∂x q̃(t, x + a j )
.

We want to show that for any l ∈ Z we have

‖Plu‖L2 � ε2−l/2. (2.33)
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By translation invariance, in what follows, we can assume without loss of generality
that a j = 0. We begin by splitting Plu(t, x) = Plu1(t, x) + Plu2(t, x) where

Plu1(t, x) := Pl
( −∂x q̃(t, x)

1 + ∂x q̃(t, x)
�≤−l(x)

)
,

Plu2(t, x) := Pl
( −∂x q̃(t, x)

1 + ∂x q̃(t, x)
(1 − �≤−l(x))

)
,

where the cutoff functions �≤−l are defined as in (2.1). For Plu1(t, x), using (2.1),
we easily get

‖Plu1‖L2 � ε2−l/2. (2.34)

To estimate Plu2 we need to take an extra derivative. We write

‖Plu2‖L2 � 2−l‖Plu′
2‖L2 , (2.35)

and we compute

Pl∂xu2(t, x) = Pl

(−∂2x q̃(t, x)(1 − �≤−l(x))

(1 + ∂x q̃(t, x))2
+ ∂x q̃(t, x)(∂x�≤−l)(x)

1 + ∂x q̃(t, x)

)
,

which, using (2.2), yields

‖Pl∂xu2‖ � ε2l/2. (2.36)

Combining (2.35) with (2.36) and (2.34) yields (2.33).Using again (2.14) and the
Cauchy-Schwartz inequality,

‖S3‖L2 �
∑

k1,k2≥k−3, |k1−k2|≤6

2k/2‖Pk1 |∇|g j‖L2 · ‖Pk2u‖L2

� 2k/2
∑

k1,k2≥k−3, |k1−k2|≤6

2k1/2(1 + 2k1 t)−1/10‖g j‖Z · ε2−k2/2

� ε2k/2(2k t)−1/10‖g j‖Z . (2.37)

The desired conclusion follows from (2.32) and (2.37). ��

3 Reformulation in Terms of a Pseudoproduct

We would now like to rewrite the nonlinearityN defined in (2.5) as a pseudoproduct.
We begin by introducing some extra notation. Here and for the rest of the paper, we
will define ξ ∈ R

2n+1 as ξ := (ξ1, . . . , ξ2n+1) for scalars and similarly, for functions,
f := ( f1, f2, . . . , f2n+1).
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We now pass to Fourier variables and write

h(x) = 1

2π

∫

R

ĥ(ξ)eixξ dξ,

h∗(x, α) = 1

2π

∫ x

x−α

1

α

{ ∫

R

ĥ(ξ)eiyξ dξ
}
dy = 1

2π

∫

R

ĥ(ξ)eixξ
1 − e−iαξ

iαξ
dξ,

∂xh
∗(x, α) = 1

2π

∫

R

ĥ(ξ)eixξ
1 − e−iαξ

α
dξ.

We substitute these formulas into (2.5), and we now need to understand the multilinear
pseudoproduct

Nn(x) = (−1)n

π

1

(2π)2n+1

d

dx

{∫

R2n+1

2n+1∏

�=1

ĥ(ξ�)e
ix(ξ1+...+ξ2n+1)mn(ξ) dξ

}
,

(3.1)

where the multiplier mn : R
2n+1 → C is given by

mn(ξ) := −ξ1

2n+1∑

�=1

ξ�

∫

R

2n+1∏

ı=1

1 − e−iαξı

iαξı
dα.

By writing

f̂�(ξ�) =
∫

R

f�(y�)e
−iξ�y� dy�, � ∈ {1, . . . , 2n + 1},

the identity (3.1) can be written in the physical space

Tn( f )(x) = (−1)n

π

d

dx

∫

R2n+1

d

dy1

2n+1∏

i=1

fi (yi )Kn(x − y)dy,

with the kernel defined as

Kn(z) :=
∫

R2n+1
ei

∑2n+1
�=1 z�ξ�ms

n(ξ) dξ with

ms
n(ξ) = 1

(2π)2n+1

∫

R

2n+1∏

i=1

1 − e−iαξi

iαξi
dα.

We remark that pseudoproducts can also be analyzed in conjunction with the
Littlewood-Paley projections. Indeed, (3.1) shows that

Tn( f )(x) = (−1)n

π

d

dx

( ∑

k∈Z2n+1

∫

R2n+1
iξ1

2n+1∏

�=1

P̂k�
f�(ξ�)m

s
k dξ

)
with
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ms
k(ξ) = ms(ξ)

2n+1∏

i=1

ϕ̃ki (ξi ), (3.2)

where, with ϕ̃l := ∑
|a|≤2 ϕl+a ,

ms
k1,...,k2n+1

(ξ) := ms(ξ)

2n+1∏

�=1

ϕ̃k�
(ξ�).

Throughout our analysis, we will need frequency cutoffs in (3.2) on both the functions
(in order to estimate the pseudoproduct) and on the multiplier (to obtain bounds on
the kernel). In order to be allowed to do this, we need to ensure that ϕl ϕ̃l = ϕl , and
hence take a slightly larger support for ϕ̃l .

In order to work in the physical space, we define

Lk(x, α) = 1

2π

∫

R

ϕ̃k(ξ)
1 − e−iαξ

iξα
eixξ dξ, (3.3)

and, with ϕ̃≤k := ϕ≤k+2,

L≤k(x, α) = 1

2π

∫

R

ϕ̃≤k(ξ)
1 − e−iαξ

iξα
eixξ dξ. (3.4)

The full kernel can now be expressed as

Kk1,...,k2n+1(x) =
∫

R

2n+1∏

�=1

Lk�
(x�, α) dα. (3.5)

In physical space, the pseudoproduct hence takes the form

Tn(Pk1 f1, . . . , Pk2n+1 f2n+1)(x) = (−1)n

π

d

dx

∫

R2n+1

d

dy1

2n+1∏

�=1

Pk�
f�(y�)Kk(x − y) dy.

(3.6)

3.1 The Kernels Lk and L≤k

Our goal is to analyze the kernels Kk1,...,k2n+1 defined in (3.5). To this end, we have
the following lemma.

Lemma 3.1 (i) Let Lk and L≤k be defined as in (3.3) and (3.4). Then the following
bounds hold:

∫

R

|Lk(x, α)| dx � min(1, (2k |α|)−1), (3.7)
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and

∫

R

|L≤k(x, α)| dx � 1. (3.8)

(ii) Letting

Kk1,k2,≤k3...,≤k2n+1(x) :=
∫

R

Lk1(x1, α)Lk2(x2, α)

2n+1∏

�=3

L≤k�
(x�, α) dα,

we have

‖Kk1,k2,≤k3,...,≤k2n+1‖L1(R2n+1) � 2−max(k1,k2)(1 + |k1 − k2|). (3.9)

Proof (i) From (3.3), we have

Lk(x, α) = 1

2π

∫

R

ϕ̃0(ξ/2k)
1 − e−iαξ

iξα
eixξ dξ = 1

2π

∫

R

ϕ̃0(ξ)ei2
k xξ 1 − e−iαξ2k

iξα
dξ.

We now denote by ψ0(x) the inverse Fourier transform of ϕ̃0(ξ)/iξ and we thus
obtain the formula

Lk(x, α) = ψ0(2k x) − ψ0(2k(x − α))

α
. (3.10)

We now use (3.10) to evaluate the L1-norm of Lk . For 2k |α| ≥ 1, we can write

∫

R

∣∣∣∣
[ψ0(2k x) − ψ0(2k(x − α))]

α

∣∣∣∣ dx ≤
∫

R

∣∣∣∣
ψ0(y)

2kα

∣∣∣∣ +
∣∣∣∣
ψ0(y − 2kα)

2kα

∣∣∣∣ dy

� (2k |α|)−1,

where in the last step we used the fact that ψ0, being the inverse of the Fourier
transform of ϕ̃0(ξ)/(iξ), is a Schwartz function, and is hence bounded in L1-norm.
For 2k |α| ≤ 1, we use the property that all Schwartz functions satisfy

|ψ0(p) − ψ0(ρ + p)| � |ρ|〈p〉−4,

for |ρ| ≤ 1 and any p ∈ R. As a result, we get

∫

R

∣∣∣∣
[ψ0(2k x) − ψ0(2k(x − α))]

α

∣∣∣∣ dx �
∫

R

|α2k |〈2k x〉−4

|α| dx =
∫

R

〈y〉−4dy � 1,
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thus completing the proof for (3.7).
We now prove (3.8). We have

L≤k(x, α) = 1

2π

∫
ϕ̃≤0(ξ)ei2

k xξ 1 − e−iαξ2k

iξα
dξ.

Denoting by ψ≤0(x) the inverse Fourier transform of ϕ̃≤0(ξ)/iξ yields

L≤k(x, α) = ψ≤0(2k x) − ψ≤0(2k(x − α))

α
. (3.11)

However, since ϕ̃≤0(ξ)/iξ has a singularity at 0 the functionψ≤0 is not in the class
of Schwartz functions, thus preventing us from directly taking the L1-norm as we
did above. Instead, we notice that the derivative of ψ≤0, given by

ψ ′≤0(x) = 1

2π
∂x

(∫

R

ϕ≤2(ξ)eixξ

iξ
dξ

)
= 1

2π

∫

R

ϕ≤2(ξ)eixξ dξ,

is in the class of Schwartz functions. We thus rewrite the difference in (3.11) as

∣∣∣
ψ≤0(2k x) − ψ≤0(2k(x − α))

α

∣∣∣ = 1

|α|
∣∣∣
∫ 2k x

2k(x−α)

ψ ′≤0(y) dy
∣∣∣

� 1

|α|
∫ 2k x

2k (x−α)

〈y〉−6 dy.

We thus obtain the bounds

∣∣∣
ψ≤0(2k x) − ψ≤0(2k(x − α))

α

∣∣∣ � 1

|α|
(
1|x |≥2|α|2k |α|〈2k x〉−4 + 1|x |≤2|α|

)
.

(3.12)

Integrating (3.12) in x now yields (3.8).
(ii) Without loss of generality we may assume that k1 ≥ k2. Using (3.7)–(3.8) we

estimate

∫

R3
|Kk1,k2,≤k3,...,≤k2n+1(x)| dx �

∫

R

min(1, (2k1 |α|)−1)min(1, (2k2 |α|)−1) dα

� 2−k1(1 + |k1 − k2|),

as claimed.
��
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3.2 TheModified Kernels

For certain estimates of the pseudoproduct, working simply with the L1-norm of the
kernel will lead to a logarithmic loss. To overcome this difficulty, we introduce the
following decomposition of Lk and L≤k ,

Lk(x, α) = L̃k(x, α) + 1

α
min(1, 2kα)ψ ′

0(2
k x),

L≤k(x, α) = L̃≤k(x, α) + 1

α
min(1, 2kα)ψ ′≤0(2

k x), (3.13)

where here

L̃k(x, α) := ψ0(2k x) − ψ0(2k(x − α))

α
− 1

α
min(1, 2kα)ψ ′

0(2
k x),

L̃≤k(x, α) := ψ≤0(2k x) − ψ≤0(2k(x − α))

α
− 1

α
min(1, 2kα)ψ ′≤0(2

k x).(3.14)

The following lemma provides us with bounds on the L1-norm of the modified kernels
L̃k and L̃≤k and highlights the improvement from Lemma 3.1.

Lemma 3.2 (i) Let L̃k and L̃≤k be defined as in (3.14). Then

∫

R

|L̃k(x, α)| dx � min(2k |α|, (2k |α|)−1),

∫

R

|L̃≤k(x, α)| dx � min(2k |α|, 1). (3.15)

(ii) In particular, if

K̃k1,k2,≤k3,...,≤k2n+1(x):=
∫

R

Lk1(x1, α)L̃k2(x2, α)L≤k3(x3, α) . . . L≤k2n+1 dα,

(3.16)

and if k1 ≥ k2, then

‖K̃k1,k2,≤k3...,≤k2n+1‖L1(R2n+1) � 2−k1 . (3.17)

Proof For 2k |α| ≥ 1, the bounds follow from Lemma 3.1 and (3.13).
When 2k |α| ≤ 1 we have

L̃k(x, α) = ψ0(2k x) − ψ0(2k(x − α)) − 2kαψ ′
0(2

k x)

α
,
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from which we get

∫

R

∣∣∣∣
ψ0(2k x) − ψ0(2k(x − α)) − 2kαψ ′

0(2
k x)

α

∣∣∣∣ dx

≤
∫

R

1

2k |α|
∣∣∣∣

∫ y

y−2kα
[ψ ′

0(p) − ψ ′
0(y)] dp

∣∣∣∣dy

≤ 1

2k |α|
∫

R

∫ y

y−2kα

∫ p

y
|ψ ′′

0 (s)| dsdpdy

� 2k |α|.

thus concluding the proof of the bounds in the first line of (3.15).
The proof of the bounds in the second line of (3.15) is similar, since ψ ′≤0 is a

Schwarz function. Finally, to prove (3.17) we estimate

∫

R3
|K̃k1,k2,≤k3(x1, x2, x3)| dx1dx2dx3

�
∫

R

min(1, (2k1 |α|)−1)min((2k2 |α|, (2k2 |α|)−1) dα

� 2−k1 ,

as claimed. ��

3.3 Study of the Functions in the Z1 Space

Finally, before we can begin estimating the pseudoproducts, we need a further under-
standing of the space Z1. Specifically, in the following lemmas, we take advantage
of the shape of the functions in the space Z1 to split them into core and error terms.
Assume that g ∈ Z1 and define

T (g)(t, x, α, k) :=
∫

R

g(t, x − a − y + q(t, x − y))

×ψ≤0(2k y) − ψ≤0(2k(y − α))

α
dy, (3.18)

where k ∈ Z and a ∈ R. Recall that

ψ≤0(x) = 1

2π

∫

R

1

iξ
eixξ ϕ≤2(ξ) dξ.

It is easy to see that ψ≤0 is an odd function on R and

(∂xψ≤0)(x) = 1

2π

∫

R

eixξ ϕ≤2(ξ) dξ,

lim
x→∞ ψ≤0(x) = 1/2, lim

x→−∞ ψ≤0(x) = −1/2. (3.19)
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By looking at (3.18), we notice that if 1/α had a power that is only slightly better
than 1, the expression would be integrable. This motivates the following lemma.

Lemma 3.3 (Decomposition of functions in Z1) Assume ‖g‖Z1 = 1, k ∈ Z, a ∈ R,
and |α| � 2−k . Then

∣∣T (t, x, α, k) − p(t, x, α)
∣∣ �

[ |α||x − a + q(t, x)|
|x − a + q(t, x)|2 + |α|2

]9/10
+ 1

2k |α| ,

where here

p(t, x, α) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if |α| ∈ [|x − a + q(t, x)|/4, 4|x − a + q(t, x)|],
g+(t, x, α) if |α| > 4|x − a + q(t, x)|, α > 0,

g−(t, x, α) if |α| > 4|x − a + q(t, x)|, α < 0,

g(t, x − a + q(t, x)) if |α| < |x − a + q(t, x)|/4,
(3.20)

g+(t, x, α) := 1

α

∫ α

0
g(t,−y + q(t, x − y) − q(t, x)) dy,

g−(t, x, α) := −1

α

∫ 0

α

g(t,−y + q(t, x − y) − q(t, x)) dy. (3.21)

Proof We fix |α| � 2−k and x ∈ R. For |x − a + q(t, x)| ≤ |α|/4 and α > 0, we
begin by observing that

ψ≤0(2
k y) − ψ≤0(2

k(y − α)) = 2k
∫ y

y−α

ψ ′≤0(2
k z) dz =

∫ 2k y

2k (y−α)

ψ ′≤0(ρ) dρ,

where ψ ′≤0 is a Schwartz function. As a result, for the values of y such that y and
y − α have the same sign we get error terms. In fact, for y ≥ α, we have

∣∣∣∣

∫

y≥α

g(t, x − a − y + q(t, x − y))
ψ≤0(2k y) − ψ≤0(2k(y − α))

α
dy

∣∣∣∣

� ‖g‖L∞

|α|
∣∣∣∣

∫

y≥α

〈2k(y − α)〉−2dy

∣∣∣∣ � 1

2k |α| .

Similarly, for y ≤ 0, we get

∣∣∣∣

∫

y≤0
g(t, x − a − y + q(t, x − y))

ψ≤0(2k y) − ψ≤0(2k(y − α))

α
dy

∣∣∣∣

� ‖g‖L∞

|α|
∣∣∣∣

∫

y≤0
〈2k y〉−2dy

∣∣∣∣ � 1

2k |α| .

It remains to understand the core terms, when y ∈ [0, α] and we have to integrate
through 0. The idea here is to approximate the ψ≤0(2k y) and ψ≤0(2k(y − α)) terms
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by the value of ψ≤0 at ±∞ respectively. More precisely, using (3.19) we write

|ψ≤0(2
k y) − 1/2| =

∣∣∣
∫ ∞

2k y
ψ ′≤0(ρ)dρ

∣∣∣ � 〈2k y〉−2,

|ψ≤0(2
k(y − α)) + 1/2| =

∣∣∣
∫ 2k (y−α)

−∞
ψ ′≤0(ρ)dρ

∣∣∣ � 〈2k(y − α)〉−2. (3.22)

Estimating as before and recalling also the definition (3.21) we have

∫ α

0
g(t, x − a − y + q(t, x − y))

× ψ≤0(2k y) − 1/2 + 1/2 − (ψ≤0(2k(y − α)) + 1/2 − 1/2)

α
dy

=
∫ α

0

g(t, x − a − y + q(t, x − y))

α
dy + O

(‖g‖L∞

2k |α|
)

= g+(t, x, α)

+
∫ α

0

g(t, x − a − y + q(t, x − y)) − g(t,−y + q(t, x − y) − q(t, x))

α
dy

+ O

(
1

2k |α|
)

.

To estimate the last error term, for simplicity of notation, we set

X(t, x) := x − a + q(t, x),

and we recall that we are assuming |X(t, x)| ≤ |α|/4. Then
∣∣∣
∫ α

0

g(t, x − a − y + q(t, x − y)) − g(t,−y + q(t, x − y) − q(t, x))

α
dy

∣∣∣

� |X(t, x)|
α

‖g‖L∞

+ 1

α

∣∣∣
∫ α

2|X(t,x)|

∫ X(t,x)

0
g′(t, β − y + q(t, x − y) − q(t, x)) dβdy

∣∣∣

� |X(t, x)|
α

+ 1

α

∫ α

2|X(t,x)|
|X(t, x)|

|y| dy �
[ |X(t, x)|

α

]9/10
, (3.23)

since from the definition of the Z1-norm, we know that |y||g′(t, β − y+q(t, x − y)−
q(t, x))| � 1. Indeed, since |y| ≥ 2|X(t, x)| and |β| ≤ |X(t, x)|, we can assume that
the argument in the second line of (3.23) is of size y. This completes the proof in the
case |x − a + q(t, x)| ≤ |α|/4 and α > 0.

Assume now that |x − a + q(t, x)| ≤ |α|/4 and α < 0. The error estimates follow
identically and we can thus assume that y ∈ [α, 0]. Arguing exactly as above, we

123



17 Page 32 of 71 E. García-Juárez et al.

obtain

∫ 0

α

g(t, x − a − y + q(t, x − y))

× ψ≤0(2k y) + 1/2 − 1/2 − (ψ≤0(2k(y−α)) − 1/2 + 1/2)

α
dy

= −
∫ 0

α

g(t, x − a − y + q(t, x − y))

α
dy + 1

2k |α|O(‖g‖L∞)

= g−(t, x, α)

−
∫ 0

α

g(t, x − a − y + q(t, x − y)) − g(t,−y + q(t, x − y) − q(t, x))

α
dy

+ 1

2k |α|O(1).

The error term can be estimated as in (3.23), and the desired conclusion follows in
this case as well.

We consider now the case |x − a + q(t, x)| ≥ 4|α| with α > 0. For y ≥ α and
y ≤ 0, we get the same error terms as for the previous case. It remains to set y ∈ [0, α].
Using (3.22) and estimating any remaining error terms as above, we obtain

∫ α

0
g(t, x − a − y + q(t, x − y))

ψ≤0(2k y) − ψ≤0(2k(y − α))

α
dy

=
∫ α

0

g(t, x − a − y + q(t, x − y))

α
dy + 1

2k |α|O(1)

= 1

α

∫ α

0

(
g(t, x − a + q(t, x)) +

∫ x−a−y+q(t,x−y)

x−a+q(t,x)
g′(t, ρ)dρ

)
dy + 1

2k |α|O(1)

= g(t, x − a + q(t, x)) +
( |α|

|x − a + q(t, x)| + 1

2k |α|
)
O(1).

The last step follows from the fact that ‖xg′‖L∞ ≤ ‖g‖Z1 ≤ 1, the regularity of q in
(2.1), and the assumption 4|α| ≤ |x−a+q(t, x)|. The case α < 0 follows identically.
This completes the proof. ��

Remark 3.4 Using the change of variable (2.3), we can rewrite the core terms p in
terms of y to get

p̃ j (t, y, α) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if |α| ∈ [|y − a j |/4, 4|y − a j |],
g̃+
j (t, y, α) if |α| > 4|y − a j |, α > 0,

g̃−
j (t, y, α) if |α| > 4|y − a j |, α < 0,

g j (t, y − a j ) if |α| < |y − a j |/4,
(3.24)

g̃+
j (t, y, α) := 1

α

∫ α

0
g j [t,−ρ + q(t, Q̃(t, y) − ρ) − q(t, Q̃(t, y))] dρ,
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g̃−
j (t, y, α) := −1

α

∫ 0

α

g j [t,−ρ + q(t, Q̃(t, y) − ρ) − q(t, Q̃(t, y))] dρ.

(3.25)

We can further approximate the core terms p of functions in the Z1 space, provided
2k t ≥ 2 and |α| ≤ 2t . The idea of this lemma comes from the uncertainty principle,
which tells us that a functionwith frequencies less than 2k must be constant on intervals
of size 2−k .

Lemma 3.5 Assume ‖g‖Z1 = 1, a ∈ R, and define the function p = p(g) as in
(3.20)–(3.21). Then

∣∣p(t, x, α) − p∗(t, x, α)
∣∣ � [|α|/t]1/50,

provided that |α| ≤ 2t , k(t, |α|) is the smallest integer satisfying 2k(t,|α|) ≥ (|α|t)−1/2,
and

p∗(t, x, α) :=

⎧
⎪⎨

⎪⎩

0 if |α| ∈ [|x − a + q(t, x)|/4, 4|x − a + q(t, x)|],
P≤k(t,α)g(t, 0) if |α| > 4|x − a + q(t, x)|,
g(t, x − a + q(t, x)) if |α| < |x − a + q(t, x)|/4.

Proof We only need to consider the case |α| > 4|x − a + q(t, x)|. We decompose

g = P≤k(t,|α|)g +
∑

l≥k(t,|α|)+1

Plg.

We examine the formula (3.21). For α > 0 we estimate

∣∣∣
1

α

∫ α

0
g(t,−y + q(t, x − y) − q(t, x)) dy − P≤k(t,α)g(t, 0)

∣∣∣

≤ 1

α

∣∣∣
∫ α

0
[P≤k(t,|α|)g(t,−y + q(t, x − y) − q(t, x)) − P≤k(t,α)g(t, 0)] dy

∣∣∣

+
∑

l≥k(t,|α|)+1

1

α

∫ α

0

∣∣Plg(t,−y + q(t, x − y) − q(t, x))
∣∣ dy

� |α|‖∂x P≤k(t,|α|)g(t)‖L∞
x

+
∑

l≥k(t,|α|)+1

‖Plg(t)‖L∞

� |α|2k(t,|α|) + (2k(t,|α|)t)−1/10,

where we used the definition of the Z1 norm in the last line. The desired bounds follow
due to the choice of k(t, |α|), 2k(t,|α|) ≈ (|α|t)−1/2. The analysis is similar in the case
α < 0, and the lemma is proved. ��
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4 Bounds on Trilinear Operators

In this section we start our analysis of the nonlinearities Nh j defined in (2.7). We
decompose these nonlinearities and show that most of the components satisfy suitable
perturbative estimates, while one particular component requires renormalization.

For the benefit of the reader, we carry out the analysis for the trilinear nonlinearity
(taking into account only the first term of the Taylor expansion in (2.5)). A general-
ization to the full nonlinearity is carried out in the next section. We hence define the
trilinear operator

N3[ f1, f2, f3](x) := − 1

π

d

dx

{∫

R

∂x f
∗
1 (x, α) f ∗

2 (x, α) f ∗
3 (x, α)dα

}

and denote

N3,h j (x) := N [h j , h, h](x),

where h = h(t, x) : [0,∞) × R → R solves

(∂t + |∇|)h = N3, h(0, ·) = h0.

Since each logarithmic correction q2n+1 cancels the logarithmic loss arising in the
respective nonlinearity N2n+1, we also denote by

q(t, x) := q{2n+1=3}(t, x), associated to N3,

as defined above. Similarly we define

Q(t, x) := x + q(t, x) and Q̃(t, y) := y + q̃(t, y), (4.1)

the analogues of Q and Q̃ as defined in (2.3), for the trilinear setting.
From (3.6), we see that the trilinear pseudoproducts we need to understand are of

the form

T3(Pk1 f1, Pk2 f2, Pk3 f3)(x)

= − 1

π

d

dx

∫

R3

d

dy1
(Pk1 f1)(y1)(Pk2 f2)(y2)(Pk3 f3)(y3)

×Kk1,k2,k3(x − y1, x − y2, x − y3) dy1dy2dy3. (4.2)

4.1 Localized L2 Estimates

The following lemma provides bounds for trilinear pseudoproducts and will prove to
be of fundamental importance throughout the rest of our analysis.
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Lemma 4.1 Let T3(Pk1 f1, Pk2 f2, Pk3 f3) be defined as in (4.2). Then we have

‖Pk
[
T3(Pk1 f1, Pk2 f2, Pk3 f3)

]‖L2 � 2k‖Pk1 f1‖L2‖Pk2 f2‖L∞‖Pk3 f3‖L∞ .

Alternatively, we also have

‖Pk
[
T3(Pk1 f1, Pk2 f2, Pk3 f3)

]‖L2 � 2k2k/2‖Pk1 f1‖L2‖Pk2 f2‖L2‖Pk3 f3‖L∞ .

Proof Without loss of generality we may assume that k1 ≥ k2 ≥ k3. We introduce
(3.14) to split

Kk1,k2,k3(z1, z2, z3) = K 1
k1,k2,k3(z1, z2, z3) + K 2

k1,k2,k3(z1, z2, z3) + K 3
k1,k2,k3(z1, z2, z3),

where

K 1
k1,k2,k3(z1, z2, z3) :=

∫

R

Lk1(z1, α)L̃k2(z2, α)Lk3(z3, α) dα,

K 2
k1,k2,k3 := K 2a

k1,k2,k3 + K 2b
k1,k2,k3 + K 2c

k1,k2,k3 ,

with

K 2a
k1,k2,k3(z1, z2, z3) :=

∫

R

Lk1(z1, α)
1

α
min(1, 2k2α)ψ ′

0(2
k2 z2)L̃k3(z3, α) dα,

K 2b
k1,k2,k3(z1, z2, z3) :=

∫

|α|≤2−k1
Lk1(z1, α)

1

α
min(1, 2k2α)ψ ′

0(2
k2 z2)

× 1

α
min(1, 2k3α)ψ ′

0(2
k3 z3) dα,

K 2c
k1,k2,k3(z1, z2, z3) :=

∫

|α|≥2−k2
Lk1(z1, α)

1

α
min(1, 2k2α)ψ ′

0(2
k2 z2)

× 1

α
min(1, 2k3α)ψ ′

0(2
k3 z3) dα,

and

K 3
k1,k2,k3(z1, z2, z3) := 2k2+k3ψ ′

0(2
k2 z2)ψ

′
0(2

k3 z3)
∫

|α|∈[2−k1 ,2−k2 ]
Lk1(z1, α) dα.

Using Lemmas 3.1 and 3.2 we get

‖K 1
k1,k2,k3‖L1(R3) � 2−k1 , ‖K 2a

k1,k2,k3‖L1(R3) � 2−k1 ,

‖K 2b
k1,k2,k3‖L1(R3) � 2−k1 , ‖K 2c

k1,k2,k3‖L1(R3) � 2−k1 . (4.3)

By expressing Lk1 using (3.10) we obtain

∫

|α|∈[2−k1 ,2−k2 ]
[ψ0(2k1x) − ψ0(2k1(x − α))]

α
dα

123



17 Page 36 of 71 E. García-Juárez et al.

=
∫

|α|∈[2−k1 ,2−k2 ]
[−ψ0(2k1(x − α))]

α
dα, (4.4)

where the cancellation is a result of 1/α being odd. Reinserting (4.4) into K 3 yields

K 3
k1,k2,k3 = 2k2+k3ψ ′

0(2
k2 z2)ψ

′
0(2

k3 z3)
∫

|α|∈[2−k1 ,2−k2 ]
[−ψ0(2k1(x − α))]

α
dα.

For l ∈ {1, 2, 3} we define

T l
3 (Pk1 f1, Pk2 f2, Pk3 f3)(x)

:= − 1

π

d

dx

∫

R3

d

dy1
(Pk1 f1)(y1)(Pk2 f2)(y2)(Pk3 f3)(y3)

× Kl
k1,k2,k3(x − y1, x − y2, x − y3) dy1dy2dy3.

In view of (4.3), for l ∈ {1, 2} we have

‖Pk
[
T l
3 (Pk1 f1, Pk2 f2, Pk3 f3)

]‖L2 � 2k‖Pk1 f1‖L2‖Pk2 f2‖L∞‖Pk3 f3‖L∞ ,

‖Pk
[
T l
3 (Pk1 f1, Pk2 f2, Pk3 f3)

]‖L2 � 2k2k/2‖Pk1 f1‖L2‖Pk2 f2‖L2‖Pk3 f3‖L∞ . (4.5)

We would like to prove similar bounds for l = 3. By rearranging all the terms, we
obtain

T 3
3 (Pk1h1, Pk2h2, Pk3h3)(x)

= − 1

π

d

dx

{
Pk2h2(x)Pk3h3(x)

∫

|α|∈[2−k1 ,2−k2 ]
−Pk1h1(x − α)

α
dα

}
, (4.6)

where we have used that by definition ∂̂xψ0 = ϕ̃0, hence

Pk j f j (x) =
∫

R

2k j (Pk j f j )(x − y j )ψ
′
0(2

k j y j ) dy j , j ∈ {1, 2, 3}.

From the boundedness of the truncated Hilbert transform we have

∥∥∥
∫

|α|∈[2−k1 ,2−k2 ]
−Pk1h1(x − α)

α
dα

∥∥∥
L2
x

� ‖Pk1h1‖L2 , (4.7)

uniformly in k1 and k2. The bounds (4.5) for l = 3 follow from (4.6) and (4.7). This
completes the proof of the lemma. ��
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4.2 Trilinear Estimates in the Space Z2

For any triple (k1, k2, k3) ∈ Z
3 we let (k∗

1 , k
∗
2 , k

∗
3) ∈ Z

3 denote its non-increasing
rearrangement, k∗

1 ≥ k∗
2 ≥ k∗

3 . Given k ∈ Z we define two sets:

Sk,1 := {(k1, k2, k3) ∈ Z
3 : k∗

1 ∈ [k − 3, k + 3] and k∗
2 , k

∗
3 ≤ k − 6},

Sk,2 := {(k1, k2, k3) ∈ Z
3 : |k∗

1 − k∗
2 | ≤ 10 where k∗

1 ≥ k − 3 and k∗
2 ≥ k − 5}.

We localize and decompose the nonlinearities N3; more generally we decompose

Pk
[
T3(h1, h2, h3)

]
(x) = Gk,1(x) + Gk,2(x),

where, for l ∈ {1, 2},

Gk,l [h1, h2, h3](x)
:= − 1

π

∑

k1,k2,k3∈Sk,l
Pk

d

dx

∫

R3

d

dy1
Pk1h1(y1)Pk2h2(y2)Pk3h3(y3)

× Kk1,k2,k3(x − y1, x − y2, x − y3) dy1dy2dy3.

4.2.1 High-High-to-Low Estimates

We estimate first the term Gk,2, for all input functions in the space Z .

Lemma 4.2 Assume that f1, f2, f3 ∈ Z, and define h j (t, x) := f j (t, x−a j +q(t, x))
as in (2.8), for some points a j ∈ R. Then for any k ∈ Z and t ∈ [0,∞) we have

‖Gk,2[h1, h2, h3](t)‖L2 � 2k/2(1 + 2k t)−2/10‖ f1‖Z‖ f2‖Z‖ f3‖Z . (4.8)

Proof We write Sk,2 as a disjoint union Sk,2 = S1k,2 ∪ S2k,2 ∪ S3k,2 where

S1k,2 := {(k1, k2, k3) ∈ Sk,2 : k1 ≤ min(k2 − 1, k3 − 1)},
S2k,2 := {(k1, k2, k3) ∈ Sk,2 : k2 ≤ min(k1, k3 − 1)},
S3k,2 := {(k1, k2, k3) ∈ Sk,2 : k3 ≤ min(k1, k2)}.

Then we decompose the functions accordingly, Gk,2 = G1
k,2 + G2

k,2 + G3
k,2, where

Ga
k,2[h1, h2, h3](x)

:= − 1

π

∑

k1,k2,k3∈Sak,2
Pk

d

dx

∫

R3

d

dy1
Pk1h1(y1)Pk2h2(y2)Pk3h3(y3)

× Kk1,k2,k3(x − y1, x − y2, x − y3) dy1dy2dy3,

for a ∈ {1, 2, 3}.
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We will only prove the estimates (4.8) for the functions G3
k,2; the estimates for

the functions G2
k,2 are similar, while the estimates for G1

k,2 are easier because the
derivative hits the low frequency factor.

Assume without loss of generality that ‖ f j‖Z = 1. As in the proof of Lemma 4.1
and using (3.9) and Lemma 2.5, we estimate

‖G3
k,2(t)‖L2

�
∑

|k1−k2|≤10, k1,k2≥k−5

2k2k/22k1‖Pk1h1(t)‖L2‖Pk2h2(t)‖L2‖h3(t)‖L∞‖Kk1,k2,≤min(k1,k2)‖L1

�
∑

k1≥k−5

2k2k/22−k1 min{1, (2k1 t)−2/10}

� 2k/2 min{1, (2k t)−2/10},

as claimed. ��

4.2.2 Low-High-to-High Estimates

We estimate now most of the components of the trilinear expressions Gk,1. We write
Sk,1 as the union Sk,1 = S1k,1 ∪ S2k,1 ∪ S3k,1 where

Slk,1 := {(k1, k2, k3) ∈ Sk,1 : kl = max(k1, k2, k3)}, l ∈ {1, 2, 3}.

Then we decompose the functions accordingly, Gk,1 = G1
k,1 + G2

k,1 + G3
k,1, where,

for a ∈ {1, 2, 3},

Ga
k,1[h1, h2, h3](x)

:= − 1

π

∑

k1,k2,k3∈Sak,1
Pk

d

dx

∫

R3

d

dy1
Pk1h1(y1)Pk2h2(y2)Pk3h3(y3)

×Kk1,k2,k3(x − y1, x − y2, x − y3) dy1dy2dy3. (4.9)

We show first how to bound the trilinear expressions G2
k,1 and G3

k,1.

Lemma 4.3 Assume that f1, f2, f3 ∈ Z and define h j (t, x) := f j (t, x −a j +q(t, x))
as in (2.8) for some points a j ∈ R. Then, for a ∈ {2, 3}, k ∈ Z and t ∈ [0,∞) we
have

‖Ga
k,1(t)‖L2 � 2k/2(1 + 2k t)−2/10‖ f1‖Z‖ f2‖Z‖ f3‖Z .

Proof The two cases are similar, so we will assume that a = 2. We may also assume
that ‖ f j‖Z = 1. As in the proof of Lemma 4.1 and using (3.9) and Lemma 2.5, we

123



Desingularization of Small Moving Corners for the Muskat Equation Page 39 of 71 17

estimate

‖G2
k,1(t)‖L2 �

∑

|k2−k|≤3, k1≤k−6

2k2k1‖Pk1h1(t)‖L∞‖Pk2h2(t)‖L2‖h3(t)‖L∞‖Kk1,k2,≤k−6‖L1

�
∑

k1≤k−6

2k2k1 min{1, (2k1 t)−1/10}2−k/2 min{1, (2k t)−1/10}2−k |k − k1|

�
∑

k1≤k−6

2k/22k1−k |k − k1|min{1, (2k1 t)−1/10}min{1, (2k t)−1/10}

� 2k/2 min{1, (2k t)−1/10}2,

as claimed. ��

We estimate now the trilinear expressionG1
k,1 when one of the low frequency inputs

is in the space Z2.

Lemma 4.4 Assume that ( f1, f2, f3) ∈ Z × Z × Z2 or ( f1, f2, f3) ∈ Z × Z2 × Z
and define h j (t, x) = f j (t, x − a j + q(t, x)) as before. Then, for any k ∈ Z and
t ∈ [0,∞),

‖G1
k,1‖L2 � 2k/2 min{1, (2k t)−1/10}‖ f1‖Z‖ f2‖Z‖ f3‖Z2 ,

‖G1
k,1‖L2 � 2k/2 min{1, (2k t)−1/10}‖ f1‖Z‖ f2‖Z2‖ f3‖Z .

Proof The two bounds are similar, so we will only prove the bounds in the second
line, corresponding to ( f1, f2, f3) ∈ Z × Z2 × Z . We have two cases: if f3 ∈ Z2 then
we may assume that ‖ f1‖Z = ‖ f2‖Z2 = ‖ f3‖Z2 = 1 and use Lemmas 4.1 and 2.5 to
estimate

‖G1
k,1(t)‖L2 �

∑

k1∈[k−3,k+3], k2,k3≤k−6

2k‖Pk1h1(t)‖L2‖Pk2h2(t)‖L∞‖Pk3h3(t)‖L∞

� 2k2−k/2 min{1, (2k t)−1/10)}
( ∑

k2≤k−6

min{(2k2 t)1/10, (2k2 t)−1/10)}
)2

� 2k/2 min{(2k t)2/10, (2k t)−1/10}.
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as claimed.On the other hand, if f3 ∈ Z1 thenwemay assume that ‖ f1‖Z = ‖ f2‖Z2 =
‖ f3‖Z1 = 1.We examine the formula (4.9) and decomposeG1

k,1 = G1,a
k,1+G1,b

k,1 where

G1,a
k,1[h1, h2, h3](x) := − 1

π

∑

|k1−k|≤3, k2≤k−6, k3∈[k2−3,k−6]

Pk
d

dx

∫

R3

d

dy1
Pk1h1(y1)Pk2h2(y2)Pk3h3(y3)

× Kk1,k2,k3(x − y1, x − y2, x − y3) dy1dy2dy3,

G1,b
k,1[h1, h2, h3](x) := − 1

π

∑

|k1−k|≤3, k2≤k−6

Pk
d

dx

∫

R3

d

dy1
Pk1h1(y1)Pk2h2(y2)P≤k2−4h3(y3)

× Kk1,k2,≤k2−4(x − y1, x − y2, x − y3) dy1dy2dy3.

The function G1,a
k,1 can be estimated using just Lemmas 4.1 and 2.5,

‖G1,a
k,1(t)‖L2 � 2k

∑

k1∈[k−3,k+3]

∑

k2≤k−6,k3∈[k2−3,k−6]
‖Pk1h1(t)‖L2‖Pk2h2(t)‖L∞‖Pk3h3(t)‖L∞

�
∑

k2≤k−6,k3∈[k2−3,k−6]
2k/2(1 + 2k t)−1/10(1 + 2k2 t)−2/10(2k2 t)1/10(1 + 2k3 t)−1/10

� 2k/2 min{1, (2k t)−1/10}, (4.10)

as desired. To estimate G1,b
k,1, we further decompose G1,b

k,1 = G1,c
k,1 + G1,d

k,1 where

G1,c
k,1[h1, h2, h3](x) := − 1

π

∑

|k1−k|≤3, k2≤k−6

Pk
d

dx

∫

R3

d

dy1
Pk1h1(y1)Pk2h2(y2)P≤k2−4h3(y3)

×K̃k1,k2,≤k2−4(x − y1, x − y2, x − y3) dy1dy2dy3,

G1,d
k,1 [h1, h2, h3](x) := − 1

π

∑

|k1−k|≤3, k2≤k−6

Pk
d

dx

∫

R3

d

dy1
Pk1h1(y1)Pk2h2(y2)P≤k2−4h3(y3)

×(Kk1,k2,≤k2−4 − K̃k1,k2,≤k2−4)(x − y1, x − y2, x − y3) dy1dy2dy3. (4.11)

The kernels K̃ are defined in (3.16). Using (3.17) and Lemma 2.5 we estimate

‖G1,c
k,1(t)‖L2 � 2k

∑

k1∈[k−3,k+3]

∑

k2≤k−6

2k1‖Pk1h1(t)‖L2‖Pk2h2(t)‖L∞‖P≤k2−4h3(t)‖L∞2−k1

�
∑

k2≤k−6

2k/2(1 + 2k t)−1/10(1 + 2k2 t)−2/10(2k2 t)1/10
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� 2k/2 min{1, (2k t)−1/10}. (4.12)

To bound G1,d
k,1 we write

(Kk1,k2,≤k2−4 − K̃k1,k2,≤k2−4)(y1, y2, y3)

=
∫

R

Lk1(y1, α)
min(1, 2k2α)

α
ψ ′
0(2

k2 y2)L≤k2−4(y3, α) dα

= J 1k1,k2(y1, y2, y3) + J 2k1,k2(y1, y2, y3) + J 3k1,k2(y1, y2, y3),

where, using also the decomposition (3.13),

J 1k1,k2(y1, y2, y3)

:=
∫

|α|/∈[2−k1 ,2−k2 ]
Lk1(y1, α)

min(1, 2k2α)

α
ψ ′
0(2

k2 y2)L≤k2−4(y3, α) dα,

J 2k1,k2(y1, y2, y3)

:=
∫

|α|∈[2−k1 ,2−k2 ]
Lk1(y1, α)

min(1, 2k2α)

α
ψ ′
0(2

k2 y2)L̃≤k2−4(y3, α) dα,

J 3k1,k2(y1, y2, y3)

:=
∫

|α|∈[2−k1 ,2−k2 ]
Lk1(y1, α)

min(1, 2k2α)

α
ψ ′
0(2

k2 y2)
min(1, 2k2−4α)

α
ψ ′≤0(2

k2−4y3) dα.

Then we define the operatorsG1,e
k,1,G

1, f
k.1 , andG

1,g
k,1 as in (4.11), by replacing the kernel

(Kk1,k2,≤k2−4 − K̃k1,k2,≤k2−4) with the kernels J 1k1,k2 , J
2
k1,k2

, and J 3k1,k2 respectively.
In view of Lemmas 3.1 and 3.2 we have

‖J 1k1,k2‖L1(R3) + ‖J 2k1,k2‖L1(R3) � 2−k1 ,

so one can estimate as in (4.12)

‖G1,e
k,1(t)‖L2 + ‖G1, f

k,1 (t)‖L2 � 2k/2 min{1, (2k t)−1/10}. (4.13)

Finally, to bound the functions G1,g
k,1 we notice that

∫

R

Pk2h2(x − y2)2
k2ψ ′

0(2
k2 y2) dy2 = Pk2h2(x),

∫

R

P≤k2−4h3(x − y3)2
k2−4ψ ′≤0(2

k2−4y2) dy2 = P≤k2−4h3(x).

Moreover, using the formula (3.10) and integration by parts in y1,

∫

R

d

dy1
Pk1h1(y1)Lk1(x − y1, α) dy1 = Pk1h1(x) − Pk1h1(x − α)

α
. (4.14)
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Therefore

G1,g
k,1[h1, h2, h3](x) := − 1

π

∑

|k1−k|≤3, k2≤k−6

Pk
d

dx

{
Pk2h2(x)P≤k2−4h3(x)

×
∫

|α|∈[2−k1 ,2−k2 ]
Pk1h1(x) − Pk1h1(x − α)

α
dα

}
.

In view of the boundedness of the truncated Hilbert transform we can now estimate

‖G1,g
k,1(t)‖L2 � 2k

∑

k1∈[k−3,k+3]

∑

k2≤k−6

‖Pk1h1(t)‖L2‖Pk2h2(t)‖L∞‖P≤k2−4h3(t)‖L∞

�
∑

k2≤k−6

2k/2(1 + 2k t)−1/10(1 + 2k2 t)−2/10(2k2 t)1/10

� 2k/2 min{1, (2k t)−1/10}. (4.15)

The conclusion of the lemma follows from (4.10), (4.12), (4.13), and (4.15). ��

4.2.3 Estimating the High-Low-to-High Term for Z1 Inputs

It remains to understand the term G1
k,1

G1
k,1[h1, h2, h3](x)
= − 1

π

∑

k1∈[k−3,k+3]
Pk

d

dx

∫

R4

d

dx
Pk1h1(x − y1)P≤k−6h2(x − y2)P≤k−6h3(x − y3)

× Lk1(y1, α)L≤k−6(y2, α)L≤k−6(y3, α)dαdy1dy2dy3.

for inputs f2 and f3 in Z1. Ideally we would like to prove similar bounds as before

‖G1
k,1(t)‖L2 � 2k/2 min{1, (2k t)−1/10}‖ f1‖Z‖ f2‖Z1‖ f3‖Z1 .

Unfortunately this is not possible due to a logarithmic loss. In the next three lemmas
we prove these bounds for certain parts of the trilinear operators G1

k,1.

Lemma 4.5 Assume that f1 ∈ Z, f2, f3 ∈ Z1, and define h j (t, x) := f j (t, x − a j +
q(t, x)) as before, for some points a j ∈ R. Define

G1,1
k,1[h1, h2, h3](x) := − 1

π

∑

k1∈[k−3,k+3]
Pk

d

dx

∫

|α|≤2−k

∫

R3

d

dx
Pk1h1(x − y1)P≤k−6h2(x − y2)P≤k−6h3(x − y3)

× Lk1(y1, α)L≤k−6(y2, α)L≤k−6(y3, α)dαdy1dy2dy3.

123



Desingularization of Small Moving Corners for the Muskat Equation Page 43 of 71 17

Then

‖G1,1
k,1(t)‖L2 � 2k/2 min{1, (2k t)−1/10}‖ f1‖Z‖ f2‖L∞‖ f3‖L∞ .

Proof This follows directly from Lemmas 3.1 and 2.5:

‖G1,1
k,1(t)‖L2 � 2k

∑

k1∈[k−3,k+3]
2k1‖Pk1h1(t)‖L2‖P≤k−6h2(t)‖L∞‖P≤k−6h3(t)‖L∞2−k1

� 2k/2(1 + 2k t)−1/10‖ f1‖Z‖ f2‖L∞‖ f3‖L∞ ,

as claimed. ��
Next, we proceed with the integral over 2k |α| ≥ 1. We recall the formulas (3.10)

(which we use for the kernel Lk1 ) and (4.14) and decompose G1
k,1 − G1,1

k,1 = G1,2
k,1 +

G1,3
k,1 + G1,4

k,1 where

G1,2
k,1[h1, h2, h3](x) := − 1

π

∑

k1∈[k−3,k+3]
Pk

∫

|α|≥2−k

∫

R3

d

dx
Pk1h1(x − y1)

d

dx

{
P≤k−6h2(x − y2)P≤k−6h3(x − y3)

}

×Lk1(y1, α)L≤k−6(y2, α)L≤k−6(y3, α)dαdy1dy2dy3. (4.16)

G1,3
k,1[h1, h2, h3] := 1

π

∑

k1∈[k−3,k+3]
Pk

∫

|α|≥2−k

∫

R2

d

dx
Pk1h1(x − α)P≤k−6h2(x − y2)P≤k−6h3(x − y3)

× L≤k−6(y2, α)L≤k−6(y3, α)

α
dαdy2dy3. (4.17)

G1,4
k,1[h1, h2, h3] := − 1

π

∑

k1∈[k−3,k+3]
Pk

{ d

dx
Pk1h1(x)

∫

|α|≥2−k

∫

R2
P≤k−6h2(x − y2)P≤k−6h3(x − y3)

× L≤k−6(y2, α)L≤k−6(y3, α)

α
dαdy2dy3

}
. (4.18)

We remark that we used integration by parts for the term in (4.17), as was done in
(4.14). We prove now suitable bounds on the functions G1,2

k,1.

Lemma 4.6 Assume that f1 ∈ Z, f2, f3 ∈ Z1, and define h j (t, x) := f j (t, x − a j +
q(t, x)) as before, for some points a j ∈ R. Then, with G1,2

k,1 as in (4.16),

‖G1,2
k,1(t)‖L2 � 2k/2 min{1, (2k t)−1/10}‖ f1‖Z‖ f2‖L∞‖ f3‖L∞ .
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Proof The d/dx derivative can hit either the function h2 or h3. The two cases are
identical. Using Lemma 3.1 (ii) and 2.5 we estimate

‖G1,2
k,1(t)‖L2 �

∑

k1∈[k−3,k+3]

∑

k2≤k−6

2k1‖Pk1h1(t)‖L22k2‖Pk2h2(t)‖L∞

× ‖P≤k−6h3(t)‖L∞2−k1 |k1 − k2|
�

∑

k2≤k−6

2k/2(1 + 2k t)−1/102k2−k |k − k2|‖ f1‖Z‖ f2‖L∞‖ f3‖L∞

� 2k/2 min{1, (2k t)−1/10}‖ f1‖Z‖ f2‖L∞‖ f3‖L∞ ,

as claimed. ��
In the following lemma, we estimate the nonlocal term G1,3

k,1.

Lemma 4.7 Assume that f1 ∈ Z, f2, f3 ∈ Z1, and define h j (t, x) := f j (t, x − a j +
q(t, x)) as before, for some points a j ∈ R. Then, with G1,3

k,1 as in (4.17),

‖G1,3
k,1(t)‖L2 � 2k/2 min{1, (2k t)−1/10}‖ f1‖Z‖ f2‖Z1‖ f3‖Z1 .

Proof We may assume that ‖ f1‖Z = ‖ f2‖Z1 = ‖ f3‖Z1 = 1. Formula (4.17) shows
that

G1,3
1,k = 1

π

∑

k1∈[k−3,k+3]
Pk

∫

|α|≥2−k

d

dx
Pk1h1(x − α)

T2(x, α, k − 8)T3(x, α, k − 8)

α
dα,

where T2 = T ( f2) and T3 = T ( f3) are defined as in (3.18). We begin by denoting

K (x, α) := T2(x, α, k − 8)T3(x, α, k − 8)

α
,

and we notice that, for all α and x , we have

|K (x, α)| � 1

|α| and |∂αK (α, x)| � 1

α2 . (4.19)

Since a simple change of variable yields d
dx Pk1h1(x − α) = − d

dα
[Pk1h1(x − α)], we

can integrate by parts to see that

−
∫

|α|≥2−k

d

dx
Pk1h1(x − α)K (x, α) dα = −

∫

|α|≥2−k
Pk1h1(x − α)∂αK (x, α) dα

− Pk1h1(x − 2−k)K (x, 2−k) + Pk1h1(x + 2−k)K (x,−2−k).

Using the bounds (4.19) and Lemma 2.5 we have

‖G1,3
k,1(t)‖L2 �

∑

k1∈[k−3,k+3]
2k‖Pk1h1(t)‖L2 � 2k/2 min{1, (2k t)−1/10},

123



Desingularization of Small Moving Corners for the Muskat Equation Page 45 of 71 17

as claimed. ��
It remains to understand the term G1,4

k,1 in (4.18). To this end, we need to define a
new object, whichwe refer to as the associated velocity field.We provide the following
general definition: for any two functions g1, g2 ∈ Z1 and any two base points a1, a2 ∈
R we define the bilinear expression

V [g1, g2](t, x) := − 1

π

∫

|α|≥t

p1(t, x, α)p2(t, x, α)

α
dα, (4.20)

where p1 and p2 are defined as in (3.20), with the indices {1, 2} referring to the
numbering of the base points a1 and a2.

Lemma 4.8 Assume that f1 ∈ Z, f2, f3 ∈ Z1, and define h j (t, x) := f j (t, x − a j +
q(t, x)) as before, for some points a j ∈ R. Then, with G1,4

k,1 as in (4.18),

∥∥∥G1,4
k,1(t, x) − Pk

{ d

dx
h1(t, x) · P≤k−4V [ f2, f3](t, x)

}∥∥∥
L2
x

� 2k/2(2k t)−1/10‖ f1‖Z‖ f2‖Z1‖ f3‖Z1 .

Proof From the definitions and Lemma 2.5 it suffices to prove that

∥∥∥ − 1

π

∫

|α|≥2−k

T2(t, x, α, k − 8)T3(t, x, α, k − 8)

α
dα − V [ f2, f3](t, x)

∥∥∥
L∞
x

� [1 + (2k t)−1/10]‖ f2‖Z1‖ f3‖Z1 , (4.21)

where T2 = T2( f2) and T3 = T3( f3) are defined as in (3.18).
We may assume that ‖ f2‖Z1 = ‖ f3‖Z1 = 1. In order to prove (4.21), we proceed

in various steps. We begin by exploiting the structure of the functions in the Z1 space
to remove all the error terms. Indeed, from Lemma 3.3, for any t, x ∈ [0,∞) × R we
have

∣∣∣
∫

|α|≥2−k

T2(t, x, α, k − 8)T3(t, x, α, k − 8) − p2(t, x, α)p3(t, x, α)

α
dα

�
∫

|α|≥2−k

1

|α|
{ |α||x − a2 + q(t, x)|
|x − a2 + q(t, x)|2 + |α|2

+ |α||x − a3 + q(t, x)|
|x − a3 + q(t, x)|2 + |α|2 + 1

2k |α|
}9/10

dα

� 1. (4.22)

Next, we notice that if 2k t � 1 then

∣∣∣
∫

|α|≥2−k

p2(t, x, α)p3(t, x, α)

α
dα −

∫

|α|≥t

p2(t, x, α)p3(t, x, α)

α
dα

∣∣∣

� log(2 + (2k t)−1), (4.23)
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since |p2(t, x, α)|+ |p3(t, x, α)| � 1. We see now that the bounds (4.21) follow from
(4.22) and (4.23) if 2k t � 1.

It remains to prove that

∣∣∣
∫

|α|≥2−k

p2(t, x, α)p3(t, x, α)

α
dα −

∫

|α|≥t

p2(t, x, α)p3(t, x, α)

α
dα

∣∣∣ � 1,

uniformly for any (t, x) ∈ [0,∞)×R satisfying2k t ≥ 2.This follows fromLemma3.5
in which we show that for 2k t ≥ 2 and |α| ≤ 2t , the functions p can be approximated
by some function p∗, which is even in α. Thus we obtain

∫

|α|∈[2−k ,t]
p∗
2(t, x, α)p∗

3(t, x, α)

α
dα = 0.

for any (t, x) ∈ [0,∞) × R satisfying 2k t ≥ 2. ��

4.3 TheVelocity Field V

We examine now the formula (4.20) defining the velocity field V [g1, g2]. Assume that
q satisfies the bounds (2.1) and, in addition,

‖∂xq(t, .)‖L4
x

� εt1/4 for any t ∈ [0, T ]. (4.24)

Assume that the functions g1, g2 ∈ Z1 satisfy the bounds

‖g1‖Z1 + ‖g2‖Z1 � ε, ‖ge1‖L∞
t L p

x
+ ‖ge2‖L∞

t L p
x

� 1, (4.25)

for some p ∈ [1,∞), where here gej (t, x) := g j (t, x) + g j (t,−x), denotes the even
part of the function g j . Assume that a1, a2 ∈ R are two points, and define the velocity
field V [g1, g2] as in (4.20). Then:
Lemma 4.9 With the assumptions above and Q̃ defined as in (4.1) and (2.3), we can
decompose

V [g1, g2](t, Q̃(t, y)) = V1[g1, g2](t, y) + V2[g1, g2](t, y),

where

|V1[g1, g2](t, y)| � ε2 log(2/t)1[0,2−20](t)
∑

j∈{1,2}
1[a j−2−10,a j+2−10](y),

|∂ny V1[g1, g2](t, y)| � ε2
∑

j∈{1,2}, |y−a j |≥t

1

|y − a j |n ln
(2|y − a j |

t

)
, (4.26)

for n ∈ {1, 2, 3}, and

|V2[g1, g2](t, y)| � ε. (4.27)
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The sum in the second line of (4.26) is taken over all the indices j with the property
that |y − a j | ≥ t (so it vanishes if |y − a j | ≤ t for all j ∈ {1, 2}).

Proof From the definitions, we have

V [g1, g2](t, Q̃(t, y)) = − 1

π

∫

|α|≥t

p̃1(t, y, α) p̃2(t, y, α)

α
dα,

where Q̃ is defined as in (4.1), and for j ∈ {1, 2}, p̃ j , using the change of variables
(2.3), is defined as in (3.24)-(3.25). Moreover, recall the definition of g∗

j (t, 0, α) for
j ∈ {1, 2}, defined in (1.2):

g∗
j (t, 0, α) := 1

α

∫ α

0
g j (t,−ρ) dρ. (4.28)

Step 1. We begin by showing an important inequality which will be used several
times in the proof of this lemma. We have that

|g∗
j (t, 0, α) − g̃ j (t, y, α)| � ε

|y − a j |
|α| + ε|t |1/4|α|−1/4 (4.29)

for j ∈ {1, 2} and t, α, y satisfying |α| ≥ 4|y − a j |, |α| ≥ t , where g̃ j (t, y, α) :=
g̃+
j (t, y, α)1[0,∞)(α)+g̃−

j (t, y, α)1(−∞,0](α). Indeed, assuming for example thatα >

0 and using the bounds |g j (t, z)|+|zg′
j (t, z)| � ‖g j‖Z1 � ε for any (t, z) ∈ [0,∞)×

R we estimate

|g∗
j (t, 0, α) − g̃ j (t, y, α)|
� ε|y − a j |

|α|
+ 1

α

∫ α

2|y−a j |
∣∣g j (t,−ρ) − g j [t,−ρ + q(t, Q̃(t, y) − ρ) − q(t, Q̃(t, y))]∣∣ dρ

� ε|y − a j |
|α| + ε

α

∫ α

2|y−a j |

∣∣∣∣

∫ −ρ

−ρ+q(t,Q̃(t,y)−ρ)−q(t,Q̃(t,y))
|η|−1dη

∣∣∣∣ dρ

= ε|y − a j |
|α| + ε

α

∫ α

2|y−a j |

∣∣∣∣ log
(
1 − q(t, Q̃(t, y) − ρ) − q(t, Q̃(t, y))

ρ

)∣∣∣∣ dρ,
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thus we obtain

|g∗
j (t, 0, α) − g̃ j (t, y, α)|

� ε|y − a j |
|α| + ε

α

∫ α

2|y−a j |

∣∣q(t, Q̃(t, y) − ρ) − q(t, Q̃(t, y))
∣∣

|ρ| dρ

� ε|y − a j |
|α| + ε

α

∫ α

2|y−a j |
|ρ|3/4‖∂xq(t, .)‖L4

|ρ| dρ

� ε|y − a j |
|α| + ε2t1/4|α|−1/4,

using Hölder’s inequality in the second line and the assumption (4.24) to prove the
last bounds.

Step 2. We define the first L∞ error

V 1
2 [g1, g2](t, y) := − 1

π

∫

|α|≥max(t,2−20)

p̃1(t, y, α) p̃2(t, y, α)

α
dα.

We prove that V 1
2 satisfies the L∞ bounds (4.27). Without loss of generality we may

assume that |y − a1| ≤ |y − a2|. Clearly
∫

|α|∈[max(t,2−20),|y−a1|]
p̃1(t, y, α) p̃2(t, y, α)

α
dα = 0, (4.30)

due to the definition (3.20) and the oddness of the integrand. For |α| ∈ [|y − a1|, |y −
a2|], using the fact that | p̃ j (t, y, α)| � ‖g j (t)‖L∞ � ε for j ∈ {1, 2}, and that α lies
in a unit size interval, we get

∫

|α|∈[|y−a1|,|y−a2|]

∣∣∣
p̃1(t, y, α) p̃2(t, y, α)

α

∣∣∣ dα � ε2.

On the other hand, if |α| ≥ |y − a2| then we rewrite

∫

|α|≥max (2−20,|y−a2|)
p̃1(t, y, α) p̃2(t, y, α)

α
dα

=
∫

α≥max (2−20,|y−a2|)
[ p̃1(t, y, α) + p̃1(t, y,−α)] p̃2(t, y, α)

α
dα

−
∫

α≥max (2−20,|y−a2|)
[ p̃2(t, y, α) + p̃2(t, y,−α)] p̃1(t, y,−α)

α
dα.(4.31)

Using (3.24)-(3.25), we see that

p̃1(t, y, α) + p̃1(t, y,−α) = g̃+
j (t, y, α) + g̃−

j (t, y,−α).
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From (4.28) and (4.29), we get

| p̃1(t, y, α) + p̃1(t, y,−α)|
� ε

|y − a j |
|α| + ε|t |1/4|α|−1/4 + |g∗

j (t, 0, α) + g∗
j (t, 0,−α)|

� ε
|y − a j |

|α| + ε|t |1/4|α|−1/4 + |α|−1/p‖g(t, x) + g(t,−x)‖L p

� ε
|y − a j |

|α| + ε|t |1/4|α|−1/4 + |α|−1/p,

for some p ∈ [1,∞), where we used (4.25) in the last line. Since | p̃2(t, y, α)| �
‖g2(t)‖L∞ � ε it follows that

∫

α≥max(2−20,|y−a1|)

∣∣∣
[ p̃1(t, y, α) + p̃1(t, y,−α)] p̃2(t, y, α)

α

∣∣∣ dα � ε.

A similar argument follows for the second term on the right hand side of (4.31). We
thus get

∫

|α|≥max (2−20,|y−a2|)

∣∣∣
p̃1(t, y, α) p̃2(t, y, α)

α

∣∣∣dα � ε. (4.32)

It follows from (4.30) and (4.32) that

|V 1
2 [g1, g2](t, y)| � ε.

Step 3. We notice that for t ≤ 2−20

V [g1, g2](t, Q̃(t, y)) − V 1
2 [g1, g2](t, y) = − 1

π

∫

|α|∈[t,2−20]
p̃1(t, y, α) p̃2(t, y, α)

α
dα.

(4.33)

We would like to remove now the y-dependence from the functions g̃±
j . We define

r j (t, y, α) := g∗
j (t, 0, α)ϕ≤−4((y − a j )/α) + g j (t, y − a j )ϕ≤−4(α/(y − a j )).

(4.34)

Moreover, we define

V1[g1, g2](t, y) := − 1

π

∫

|α|∈[t,2−20]
r1(t, y, α)r2(t, y, α)

α
dα,

V 2
2 [g1, g2](t, y) := V [g1, g2](t, Q̃(t, y)) − V 1

2 [g1, g2](t, y) − V1[g1, g2](t, y).
(4.35)
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Step 4. We would like to show that V 2
2 satisfies the L∞ bounds (4.27), which

follows from (4.29). Using the formulas (4.33) and (4.35) we have

|V 2
2 [g1, g2](t, y)| �

∫

|α|∈[t,2−20]

∣∣∣
p̃1(t, y, α) p̃2(t, y, α)

α
− r1(t, y, α)r2(t, y, α)

α

∣∣∣ dα

� ε
∑

j∈{1,2}

∫

|α|∈[t,2−20]
| p̃ j (t, y, α) − r j (t, y, α)|

|α| dα

� ε2 + ε
∑

j∈{1,2}

∫

|α|≥max(t,|y−a j |)

|̃g j (t, y, α) − g∗
j (t, 0, α)|

|α| dα

� ε2,

where, from the second to the third lines, we pulled out finitely many dyadic pieces.
Step 5.We now prove the bounds (4.26) on V1. The bounds in the first line follow

easily once we notice that the integrand r1(t,y,α)r2(t,y,α)
α

is odd in α if |y − a j | ≥ 2−10

for all j ∈ {1, 2}, thus V1[g1, g2](t, y) vanishes in this case.
To prove the derivative bounds we begin by rewriting

V1[g1, g2] = V 1
1 [g1, g2] + V 2

1 [g1, g2] + V 3
1 [g1, g2] + V 4

1 [g1, g2]

where

V 1
1 [g1, g2](t, y)
:= − 1

π

∫

|α|∈[t,2−20]
g∗
1(t, 0, α)ϕ≤−4((y − a1)/α)g∗

2(t, 0, α)ϕ≤−4((y − a2)/α)

α
dα,

V 2
1 [g1, g2](t, y)
:= − 1

π

∫

|α|∈[t,2−20]
g∗
1(t, 0, α)ϕ≤−4((y − a1)/α)g2(t, y − a2)ϕ≤−4(α/(y − a2))

α
dα,

V 3
1 [g1, g2](t, y)
:= − 1

π

∫

|α|∈[t,2−20]
g1(t, y − a1)ϕ≤−4(α/(y − a1))g∗

2(t, 0, α)ϕ≤−4((y − a2)/α)

α
dα,

V 4
1 [g1, g2](t, y)
:= − 1

π

∫

|α|∈[t,2−20]
g1(t, y − a1)ϕ≤−4(α/(y − a1))g2(t, y − a2)ϕ≤−4(α/(y − a2))

α
dα.

To begin with, due to the oddness of 1/α, we have

V 4
1 [g1, g2](t, y) ≡ 0.

Without loss of generality, in proving the derivative bounds in (4.26)wemay assume
that |y − a1| ≤ |y − a2|. In this case we notice that V 3

1 [g1, g2](t, y) ≡ 0 as well.
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We calculate

∂yV
1
1 [g1, g2](t, y)

= − 1

π

∫

|α|∈[t,2−20]
g∗
1(t, 0, α) 1

α
ϕ′≤−4((y − a1)/α)g∗

2(t, 0, α)ϕ≤−4((y − a2)/α)

α
dα

− 1

π

∫

|α|∈[t,2−20]
g∗
1(t, 0, α)ϕ≤−4((y − a1)/α)g∗

2(t, 0, α) 1
α
ϕ′≤−4((y − a2)/α)

α
dα.

Since ϕ′≤−4

( y−ai
α

) = 0 unless |y−ai |
|α| ∈ [2−5, 2−3], and |α| ≥ t , we easily get

|∂yV 1
1 [g1, g2](t, y)| � ε2

⎧
⎪⎨

⎪⎩

1
|y−a1| if |y − a1|, |y − a2| ≥ t,

1
|y−a2| if |y − a1| ≤ t ≤ |y − a2|,
0 if |y − a1|, |y − a2| ≤ t,

(4.36)

since we estimate |g∗
j (t, 0, α)| � ε and integrate α only over one dyadic piece at a

time, yielding integrals of order 1. Similarly, for n ∈ {2, 3} we get

|∂ny V 1
1 [g1, g2](t, y)| � ε2

⎧
⎪⎨

⎪⎩

1
|y−a1|n if |y − a1|, |y − a2| ≥ t,

1
|y−a2|n if |y − a1| ≤ t ≤ |y − a2|,
0 if |y − a1|, |y − a2| ≤ t .

(4.37)

Taking the derivative in y of V 2
1 yields

∂yV
2
1 [g1, g2](t, y)

= − 1

π

∫

|α|∈[t,2−20]
g∗
1(t, 0, α) 1

α
ϕ′≤−4((y − a1)/α)g2(t, y − a2)ϕ≤−4(α/(y − a2))

α
dα

− 1

π

∫

|α|∈[t,2−20]

g∗
1(t, 0, α)ϕ≤−4((y − a1)/α)g2(t, y − a2)

α
(y−a2)2

ϕ′≤−4(α/(y − a2))

α
dα

− 1

π

∫

|α|∈[t,2−20]
g∗
1(t, 0, α)ϕ≤−4((y − a1)/α)g′

2(t, y − a2)ϕ≤−4(α/(y − a2))

α
dα.

The first two terms are treated as for V 1
1 , where the integral in α is taken over each

dyadic piece at a time. For the last term, use the fact that |x∂x g(x)| � ε and we
integrate 1/α over the interval [t, |y − a2|], and hence we get

|∂yV 2
1 [g1, g2](t, y)| � ε2

⎧
⎪⎨

⎪⎩

1
|y−a1| + 1

|y−a2| log
( 2|y−a2|

t

)
if |y − a1|, |y − a2| ≥ t,

1
|y−a2| log

( 2|y−a2|
t

)
if |y − a1| ≤ t ≤ |y − a2|,

0 if |y − a1|, |y − a2| ≤ t .

(4.38)
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Similarly, for n ∈ {2, 3} we get

|∂ny V 2
1 [g1, g2](t, y)| � ε2

⎧
⎪⎨

⎪⎩

1
|y−a1|n + 1

|y−a2|n log
( y−a2

t

)
if |y − a1|, |y − a2| ≥ t,

1
|y−a2|n log

( 2|y−a2|
t

)
if |y − a1| ≤ t ≤ |y − a2|,

0 if |y − a1|, |y − a2| ≤ t .

(4.39)

The desired bounds (4.26) follow from (4.36)–(4.37) and (4.38)–(4.39) in the case
|y−a1| ≤ |y−a2| (once we recall that V 3

1 [g1, g2](t, y) ≡ 0 and V 4
1 [g1, g2](t, y) ≡ 0

in this case. ��
Corollary 4.10 With the assumptions and the notation of Lemma 4.9 above, let

W [g1, g2](t, y) :=
∫ t

0
V1[g1, g2](s, y) ds.

Then, for n ∈ {1, 2, 3},

|W [g1, g2](t, y)| �ε2t log(2/t)
∑

j∈{1,2}
1[a j−2−10,a j+2−10](y),

|∂ny W [g1, g2](t, y)| �ε2
∑

j∈{1,2}, |y−a j |≥t

t

|y − a j |n ln
(2|y − a j |

t

)

+ ε2
∑

j∈{1,2}, |y−a j |≤t

1

|y − a j |n−1 .

In particular,

‖∂yW [g1, g2](t, y)‖L4
x

� εt1/4.

Proof The bounds follow directly by integrating the bounds (4.26) for s ∈ [0, t]. ��
The following lemma provides additional bounds on V1 which will be very useful

for constructing the solution in Sect. 6.

Lemma 4.11 Let V1[ f1, f2](t, y) be defined as in (4.35), with ( f1, f2) ∈ Z1 × Z1.
Then, for t < 2−20,

∣∣V1[Pk f1, f2](t, y)
∣∣ � (2k t)−1/10‖ f1‖Z1‖ f2‖Z1 . (4.40)

Proof Wemay assume that ‖ f1‖Z1 = ‖ f2‖Z1 = 1 and that the function f̂1 is supported
in the set {ξ : |ξ | ∈ [2k−2, 2k+2]}. Recalling the definition of V1 in (4.35), we have

∣∣V1[Pk f1, f2](t, y)
∣∣ �

∫

|α|∈[t,2−20]
|r1(t, y, α)|

|α| dα, (4.41)
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with

r1(t, y, α) = f ∗
1 (t, 0, α)ϕ≤−4

(
y − a1

α

)
+ Pk f1(t, y − a1)ϕ≤−4

(
α

y − a1

)
,

(4.42)

where

f ∗
1 (t, 0, α) = 1

α

∫ α

0
Pk f1(t,−ρ) dρ.

We split the integral in (4.41),

∫

|α|∈[t,2−20]
|r1(t, y, α)|

|α| dα = I1 + I2,

so that |α| > 2−k in I1. We begin with I1. We find that

| f ∗
1 (t, 0, α)| � (2k |α|)−1‖Pk f1‖L∞ � (1 + 2k t)−1/10(2k |α|)−1‖ f1‖Z1 .

Moreover, setting x = y − a1 we have

Pk f1(x) =
∫

R

f1(x − z)Kk(z) dz =
∫

R

[ f1(x − z) − f1(x)]Kk(z) dz

where Kk(z), the inverse Fourier transform of the cutoff function, is a dilation of a
Schwarz function. We thus get

|Pk f1(x)| =
∣∣∣∣

∫

|z|≤|x |/2
[ f1(x − z) − f1(x)]Kk(z) dz

+
∫

|z|≥|x |/2
[ f1(x − z) − f1(x)]Kk(z) dz

∣∣∣∣

� (1 + 2k t)−1/10
(∫

|z|≤|x |/2
|z|
|x | |Kk(z)| dz +

∫

|z|≥|x |/2
|Kk(z)| dz

)

� (1 + 2k t)−1/10(2k |x |)−1,

where we used the fact that f ∈ Z1 in the second line and that Kk is rapidly decaying
in the last line. Since the second term in (4.42) requires that |x | > |α|, we get

|r1(t, y, α)| � (1 + 2k t)−1/10(2k |α|)−1 for |α| > 2−k,

which upon integration yields

I1 � (1 + 2k t)−1/10.
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For t < |α| < 2−k , we simply integrate to get

I2 � | log(2k t)|,

thus concluding the proof of (4.40). ��

5 The Full Nonlinearity

Before we proceed to run the fixed point argument to conclude the proof of our main
result, we now show how the previous results can be extended to the full nonlinearity
as defined in (2.5). We recall the notation ξ ∈ R

2n+1 as ξ := (ξ1, . . . , ξ2n+1) for
scalars and similarly, for functions, f := ( f1, f2, . . . , f2n+1). Moreover, we will use
the symbol �n for whenever a term is bounded by a constant of size Cn .

We begin by reproving the localized L2 estimates for the pseudoproduct of the full
nonlinearity. We get the following lemma.

Lemma 5.1 LetTn(Pk1 f1, Pk2 f2, Pk3 f3, . . . , Pk2n+1 f2n+1)be defined as in (3.6). Then
we have

‖Pk
[
Tn(Pk1 f1, . . . , Pk2n+1 f2n+1)

]‖L2 �n 2k‖Pk1 f1‖L2

2n+1∏

�=2

‖Pk�
f�‖L∞ .

Alternatively, we also have

‖Pk
[
Tn(Pk1 f1, . . . , Pk2n+1 f2n+1)

]‖L2 �n 2k2k/2‖Pk1 f1‖L2‖Pk2 f2‖L2

2n+1∏

�=3

‖Pk�
f�‖L∞ .

Proof We only show here the case when k1 is the highest frequency, as the others are
easier. Then, without loss of generality, we assume the ordering k1 ≥ k2 ≥ . . . ≥
k2n+1. Following the same ideas as in Lemma 4.1, in order to introduce the modified
kernel, we split

Kk(z) = K 1,1
k (z) + K 1,2

k (z) + K 1,3
k (z),

with

K 1,1
k (z) =

∫

R

Lk1(z1, α)L̃k2(z2, α)Lk3(z3, α) . . . Lk2n+1(z2n+1, α) dα,

K 1,2
k (z)

=
∫

|α|/∈[2−k1 ,2−k2 ]
Lk1(z1, α)

1

α
min(1, 2k2α)ψ ′

0(2
k2 z2)Lk3(z3, α) . . . Lk2n+1(z2n+1, α) dα,

K 1,3
k (z) =

∫

|α|∈[2−k1 ,2−k2 ]
Lk1(z1, α)2k2ψ ′

0(2
k2 z2)Lk3(z3, α) . . . Lk2n+1(z2n+1, α) dα.
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Using Lemmas 3.1-3.2 we get

‖K 1,1
k (z)‖L1(R2n+1) + ‖K 1,2

k (z)‖L1(R2n+1) �n 2−k1 .

To estimate ‖K 1,3
k (z)‖L1(R2n+1), we now further split

K 1,3
k (z) = K 2

k (z) + K 3
k (z) + . . . + K 2n+1

k (z),

where

K 2
k (z) =

∫

|α|∈[2−k1 ,2−k2 ]
Lk1(z1, α)2k2ψ ′

0(2
k2 z2)L̃k3(z3, α) . . . Lk2n+1(z2n+1, α) dα,

K 3
k (z) =

∫

|α|∈[2−k1 ,2−k2 ]
Lk1(z1, α)2k2ψ ′

0(2
k2 z2)2

k3ψ ′
0(2

k3 z3)L̃k4(z4, α) . . .

× Lk2n+1(z2n+1, α) dα,

...

K 2n
k (z) =

∫

|α|∈[2−k1 ,2−k2 ]
Lk1(z1, α)2k2ψ ′

0(2
k2 z2)2

k3ψ ′
0(2

k3 z3) . . . 2k2nψ ′
0(2

k2n z2n)

× L̃k2n+1(z2n+1, α) dα,

K 2n+1
k (z) =

∫

|α|∈[2−k1 ,2−k2 ]
Lk1(z1, α)2k2ψ ′

0(2
k2 z2)2

k3ψ ′
0(2

k3 z3) . . .

× 2k2n+1ψ ′
0(2

k2n+1 z2n+1) dα.

From Lemmas 3.1-3.2 we get

‖K 2
k (z)‖L1(R2n+1) + . . . + ‖K 2n

k (z)‖L1(R2n+1) �n 2−k1 .

It remains to study K 2n+1
k . By expressing Lk1 as in (4.4), and inserting it into K 2n+1

k ,
we get

K 2n+1
k (z) =

2n+1∏

i=2

2ki ψ ′
0(2

ki zi )
∫

|α|∈[2−k1 ,2−k2 ]
[−ψ0(2k1(x − α))]

α
dα. (5.1)

As in the proof of Lemma 4.1, upon reinserting (5.1) back into the pseudoproduct
(3.6) and using the fact that

Pki fi (x) =
∫

R

2ki (Pki fi )(x − yi )ψ
′
0(2

ki yi ) dyi , i ∈ {1, 2, . . . , 2n + 1}.

and the boundedness of the truncatedHilbert transform in L2 yields the desired bounds.
��
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We now localize and decompose the nonlinearities. For any tuple k ∈ Z
2n+1, we let

k∗ ∈ Z
2n+1 denote its non-increasing rearrangement k∗

1 ≥ k∗
2 ≥ . . . ≥ k∗

2n+1. Given
k ∈ Z, we now define the two sets

Snk,1 := {k ∈ Z
2n+1 : k∗

1 ∈ [k − 3n, k + 3n] and k∗
2 , k

∗
3 , . . . , k

∗
2n+1 ≤ k − 6n},

Snk,2 := {k ∈ Z
2n+1 : |k∗

1 − k∗
2 | ≤ 10n where k∗

1 ≥ k − 3n and k∗
2 ≥ k − 5n}.

From (3.6), we thus get

Pk
[
Tn(h)

]
(x) = Gn

k,1(x) + Gn
k,2(x)

where, for l ∈ {1, 2},

Gn
k,l [h](x) := (−1)n

π

∑

k∈Sk,l
Pk

d

dx

∫

R2n+1

d

dy1

2n+1∏

�=1

Pk�
h�(y�)Kk(x − y) dy.

For the high-high-to-low interactions, from the Lemmas 3.1-3.2 and the Lemmas 5.1
and 2.5 we get the following bounds.

Lemma 5.2 Assume that f1, f2, . . . , f2n+1 ∈ Z, and define h j (t, x) = f j (t, x−a j +
q(t, x)) for some points a j ∈ R. Then for any k ∈ Z and t ∈ [0,∞) we have

‖Gk,2[h](t)‖L2 �n 2k/2(1 + 2k t)−2/10
2n+1∏

i=1

‖ f ji ‖Z .

For the high-low-to-high interactions, we decompose Gn
k,1 as we did previously.

We write the disjoint union Sk,1 = ⋃2n+1
i=1 Sik,1, where

Sik,1 := {k ∈ Sk,1 : ki = max(k1, k2, . . . , k2n+1)},

for all i ∈ {1, 2, . . . , 2n + 1}. As in the trilinear case, whenever the function with the
highest frequency is not hit by the derivative, the following lemma follows immediately
using Lemmas 3.1 and 3.2, and Lemmas 5.1 and 2.5.

Lemma 5.3 Assume that f1, f2, . . . , f2n+1 ∈ Z and define h j (t, x) := f j (t, x−a j +
q(t, x)) for some points a j ∈ R. Then for i ∈ {2, 3, . . . , 2n+1}, k ∈ Z and t ∈ [0,∞)

we have

‖Gi
k,1(t)‖L2 �n 2k/2(1 + 2k t)−2/10

2n+1∏

�=1

‖ f j�‖Z .

Strikingly, we get the desired nonlinear bounds on G1
k,1 provided at least one of the

lower frequency functions is in the space Z2. The proof follows a similar argument to
that of Lemma 5.1.
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Lemma 5.4 Assume that ( f1, . . . , f2n+1) ∈ Z × . . . × Z and there is some � ∈
{2, . . . , 2n + 1} such that f� ∈ Z2. Define h j (t, x) = f j (t, x − a j + q(t, x)) as
before. Then, for any k ∈ Z and t ∈ [0,∞),

‖G1
k,1‖L2 �n 2k/2 min{1, (2k t)−1/10}‖ f�‖Z2

∏

p �=�

‖ f p‖Z .

Proof We assume without loss of generality that f2 ∈ Z2. If all lower frequency
functions lie in the space Z2, the bounds follow easily from Lemmas 3.1-3.2 and
Lemmas 5.1 and 2.5. We therefore focus on the case when all other lower frequency
functions lie in the space Z1.

We decompose the set of indices {3, . . . , 2n + 1} = A+ B where for all j ∈ A we
have k j > k2 and for all i ∈ B we have ki < k2. We will then consider the following
sets.

Sk,a := {k ∈ Z
2n+1 : ∀( j, i) ∈ A × B, |k1 − k| ≤ 3n, k2 ≤ k − 6n,

k j ∈ [k2 − 3n, k − 6n], B = ∅}
Sk,b := {k ∈ Z

2n+1 : ∀( j, i) ∈ A × B, |k1 − k| ≤ 3n, k2 ≤ k − 6n,

k j ∈ [k2 − 3n, k − 6n], ki ≤ k − 6n − 1}
Sk,c := {k ∈ Z

2n+1 : ∀( j, i) ∈ A × B, |k1 − k| ≤ 3n, k2 ≤ k − 6n,

ki ≤ k − 6n − 1, A = ∅}

As in the proof of Lemma 4.4, we further decompose G1
k,1 into G1

k,1 := G1,a
k,1 +

G1,b
k,1 + G1,c

k,1 where for j �= i ∈ {3, . . . , 2n + 1}

G1,a
k,1[h](x) := (−1)n

π

∑

k∈Sk,a
Pk

d

dx

∫

R2n+1

d

dy1

2n+1∏

�=1

Pk�
h�(y�)Kk1,...,k2n+1(x − y) dy,

G1,b
k,1[h](x) := (−1)n

π

∑

k∈Sk,b
Pk

d

dx

∫

R2n+1

d

dy1

2n+1∏

�=1

Pk�
h�(y�)Kk1,k2,...,k j ...≤k2−3n−1(x − y) dy,

G1,c
k,1[h](x) := (−1)n

π

∑

k∈Sk,c
Pk

d

dx

∫

R2n+1

d

dy1

2n+1∏

�=1

Pk�
h�(y�)

×Kk1,k2,≤k2...(x − y) dy.

The function G1,a
k,1 can be estimated simply by using Lemmas 5.1 and 2.5. We now

consider the function G1,c
k,1. We decompose the kernel

Kk1,k2,≤k2...(x) = K 1,1
k1,k2,≤k2...

(x) + K 1,2
k1,k2,≤k2...

(x) + K 1,3
k1,k2,≤k2...

(x),
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where

K 1,1
k1,k2,≤k2...

(z) =
∫

R

Lk1(z1, α)L̃k2(z2, α)L≤k2−3n−1(z3, α) . . . L≤k2−3n−1(z2n+1, α) dα,

K 1,2
k1,k2,≤k2...

(z) =
∫

|α|/∈[2−k1 ,2−k2 ]
Lk1(z1, α)

1

α
min(1, 2k2α)ψ ′

0(2
k2 z2)L≤k2−3n−1(z3, α) . . .

× L≤k2−3n−1(z2n+1, α) dα,

K 1,3
k1,k2,≤k2...

(z) =
∫

|α|∈[2−k1 ,2−k2 ]
Lk1(z1, α)2k2ψ ′

0(2
k2 z2)L≤k2−3n−1(z3, α) . . .

× L≤k2−3n−1(z2n+1, α) dα.

Using Lemmas 3.1-3.2 we get

‖K 1,1
k1,k2,≤k2...

(z)‖L1(R2n+1) + ‖K 1,2
k1,k2,≤k2...

(z)‖L1(R2n+1) �n 2−k1 .

To estimate ‖K 1,3
k1,k2,≤k2...

(z)‖L1(R2n+1), we now further split

K 1,3
k1,k2,≤k2...

(z) = K 2
k1,k2,≤k2...(z) + K 3

k1,k2,≤k2...(z) + . . . + K 2n+1
k1,k2,≤k2...

(z),

where

K 2
k1,k2,≤k2...(z) =

∫

|α|∈[2−k1 ,2−k2 ]
Lk1(z1, α)2k2ψ ′

0(2
k2 z2)L̃≤k2−3n−1(z3, α) . . .

× L≤k2−3n−1(z2n+1, α) dα,

K 3
k1,k2,≤k2...(z) =

∫

|α|∈[2−k1 ,2−k2 ]
Lk1(z1, α)2k2ψ ′

0(2
k2 z2)2

k3ψ ′
0(2

k3 z3)L̃≤k2−3n−1(z4, α) . . .

× L≤k2−3n−1(z2n+1, α) dα,

...

K 2n
k1,k2,≤k2...(z) =

∫

|α|∈[2−k1 ,2−k2 ]
Lk1(z1, α)2k2ψ ′

0(2
k2 z2)2

k3ψ ′
0(2

k3 z3) . . .

× 2k2nψ ′
0(2

k2n z2n)L̃≤k2−3n−1(z2n+1, α) dα,

K 2n+1
k1,k2,≤k2...

(z) =
∫

|α|∈[2−k1 ,2−k2 ]
Lk1(z1, α)2k2ψ ′

0(2
k2 z2)2

k3ψ ′
0(2

k3 z3) . . .

× 2k2n+1ψ ′
0(2

k2n+1 z2n+1) dα.

Using once more Lemmas 3.1-3.2 we get

‖K 2
k1,k2,≤k2...(z)‖L1(R2n+1) + . . . + ‖K 2n

k1,k2,≤k2...(z)‖L1(R2n+1) �n 2−k1 .
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It remains to study K 2n+1
k . By expressing Lk1 as in (4.4), and inserting it into K 2n+1

k ,
we get

K 2n+1
k1,k2,≤k2...

(z) =
2n+1∏

i=2

2ki ψ ′
0(2

ki zi )
∫

|α|∈[2−k1 ,2−k2 ]
[−ψ0(2k1(x − α))]

α
dα.

Using the fact that

Pki fi (x) =
∫

R

2ki (Pki fi )(x − yi )ψ
′
0(2

ki yi ) dyi , i ∈ {1, 2, . . . , 2n + 1}.

and the boundedness of the truncated Hilbert transform in L2, we obtain the desired
bounds.

We now consider the function G1,b
k,1. In this case, we have some frequencies which

are greater than k2 and somewhich are less. For this function,we use a hybrid argument
of those used forG1,a

k,1 andG
1,c
k,1. That is, we treat the functions with frequencies greater

than k2 as though they were in the Z2 space and handle the functions with frequencies
less than k2 as we did above for G

1,c
k,1. ��

It remains to estimate the high-low-to-high term for Z1 inputs. As for the trilinear
setting, we further decompose G1

k,1 as follows.

G1
k,1 := G1,1

k,1 + G1,2
k,1 + G1,3

k,1 + G1,4
k,1 (5.2)

where

G1,1
k,1[h](x) := (−1)n

π

∑

k1∈[k−3,k+3]
Pk

d

dx

∫

|α|≤2−k

∫

R2n+1

d

dx
Pk1h1(x − y1)Lk1(y1, α)

×
2n+1∏

�=2

P≤k−6nh�(x − y�)L≤k−6n(y�, α) dαdy,

G1,2
k,1[h](x) := (−1)n

π

∑

k1∈[k−3,k+3]
Pk

∫

|α|≥2−k

∫

R2n+1

d

dx
Pk1h1(x − y1)Lk1(y1, α)

× d

dx

2n+1∏

�=2

P≤k−6nh�(x − y�)L≤k−6n(y�, α) dαdy,

G1,3
k,1[h](x) := (−1)n+1

π

∑

k1∈[k−3,k+3]
Pk

∫

|α|≥2−k

∫

R2n

d

dx
Pk1h1(x − α)

×
2n+1∏

�=2

P≤k−6nh�(x − y�)
L≤k−6n(y�, α)

α
dαdy2 . . . dy2n+1,
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G1,4
k,1[h](x) := (−1)n

π

∑

k1∈[k−3,k+3]
Pk

{ d

dx
Pk1h1(x)

∫

|α|≥2−k

∫

R2n+1

×
2n+1∏

�=2

P≤k−6nh�(x − y�)
L≤k−6n(y�, α)

α
dαdy2 . . . dy2n+1

}
.

Using Lemmas 5.1 and 2.5, we obtain the following.

Lemma 5.5 Assume that f1 ∈ Z, f2, . . . , f2n+1 ∈ Z1 and define h j (t, x) := f j (t, x−
a j + q(t, x)) for some points a j ∈ R. Then

‖G1,1
k,1(t)‖L2 + ‖G1,2

k,1(t)‖L2 + ‖G1,3
k,1(t)‖L2

�n 2k/2 min{1, (2k t)−1/10}‖ f1‖Z
2n∏

�=1

‖ f j�‖Z1 .

To understand the term G1,4
k,1 we define, for any functions g1, . . . g2n ∈ Z1 and any

base points a1, . . . , a2n ∈ R the following multilinear expression

V [g1, . . . , g2n](t, x) := (−1)n

π

∫

|α|≥t

2n∏

�=1

p�(t, x, α)

α
dα, (5.3)

where the p� are defined as in (3.20). As we did in the trilinear setting, by exploiting
the structure of the Z1 functions in Lemma 3.3, we get the following lemma.

Lemma 5.6 Assume that f1 ∈ Z, f2, . . . , f2n+1 ∈ Z1, and define h j (t, x) :=
f j (t, x − a j + q(t, x)) for some points a j ∈ R. Then with G1,4

k,1 defined as in (5.2),
we have

∥∥∥G1,4
k,1(t, x) − Pk

{ d

dx
h1(t, x) · P≤k−4nV [ f2, . . . , f2n+1](t, x)

}∥∥∥
L2
x

�n 2k/2(2k t)−1/10‖ f1‖Z
2n+1∏

�=2

‖ f j�‖Z1 .

Proof This proof is the analogue of the proof of Lemma 4.8 for the trilinear setting.
As for the trilinear setting, from the definitions and Lemma 2.5 it suffices to prove
that

∥∥∥ − 1

π

∫

|α|≥2−k

T2(t, x, α, k − 8n) · · · T2n+1(t, x, α, k − 8n)

α
dα

−V [ f2, · · · , f2n+1](t, x)
∥∥∥
L∞
x

� [1 + (2k t)−1/10]
2n+1∏

�=2

‖ f j�‖Z1 , (5.4)

where Ti = Ti ( fi ) for i = 2, · · · , 2n + 1 are defined as in (3.18).
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In order to prove (5.4), we now proceed exactly as in the proof of Lemma 4.8: we
exploit the structure of the functions in the Z1 space as described in Lemma 3.3 which
split each function fi into a core and error part to remove all the error terms.Moreover,
further exploiting the bounds in Lemma 3.3 yields that for small frequencies, 2k t � 1,
the remaining core terms also produce error terms. We can now apply Lemma 3.5 to
the remaining terms which shows that for 2k t ≥ 2 and |α| ≤ 2t , the core functions can
be approximated by some functions which are even in α, thus making the remaining
integral in α vanish, and hence concluding the proof. ��

Finally, we need to check that themultilinear expression V satisfies all the necessary
bounds. Assume that q satisfies the bounds (2.1) and, in addition,

‖∂xq(t, .)‖L4
x

� εt1/4 for any t ∈ [0, T ]. (5.5)

Further assume that the functions g1, . . . , g2n ∈ Z1 satisfy the bounds

2n∑

�=1

‖g�‖Z1 �n εn,

2n∑

�=1

‖g�‖L∞
t L2

x
�n 1.

Finally, assume that a1, . . . , a2n ∈ R are 2n points, and define the velocity field
V [g1, . . . , g2n] as in (5.3). Then the following lemma is a straightforward generaliza-
tion to 2n functions of Lemma 4.9.

Lemma 5.7 With the assumptions above and Q̃ defined as in (2.3), we can decompose

V [g1, . . . , g2n](t, Q̃(t, y)) = V1[g1, . . . , g2n](t, y) + V2[g1, . . . , g2n](t, y),

where

|V1[g1, . . . , g2n](t, y)| �n ε2n log(2/t)1[0,2−20](t)
∑

j∈{1,...,2n}
1[a j−2−10,a j+2−10](y),

|∂my V1[g1, . . . , g2n](t, y)| �n ε2n
∑

j∈{1,...,2n}, |y−a j |≥t

1

|y − a j |n ln
(2|y − a j |

t

)
,

(5.6)

for m ∈ {1, 2, 3}, and

|V2[g1, . . . , g2n](t, y)| �n ε2n . (5.7)

The sum in the second line of (5.6) is taken over all the indices j with the property
that |y − a j | ≥ t (so it vanishes if |y − a j | ≤ t for all j ∈ {1, . . . , 2n}).

By integrating the bounds (5.6) for s ∈ [0, t], an analogue of Corollary 4.10 for the
full nonlinearity is now immediate.
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Corollary 5.8 With the assumptions and the notation of Lemma 5.7 above, let

W [g2, . . . , g2n+1](t, y) :=
∫ t

0
V1[g2, . . . , g2n+1](s, y) ds.

Then, for m ∈ {1, 2, 3},

|W [g2, . . . , g2n+1](t, y)| � ε2t log(2/t)
∑

j∈J
1[a j−2−10,a j+2−10](y),

|∂my W [g2, . . . , g2n+1](t, y)|
� ε2

∑

j∈J , |y−a j |≥t

t

|y − a j |m ln
(2|y − a j |

t

)
+ ε2

∑

j∈J , |y−a j |≤t

1

|y − a j |m−1 .

In particular,

‖∂yW [g2, . . . , g2n+1](t, y)‖L4
x

� εt1/4.

Finally, for the purposes of the fixed point argument in the next section, we provide
the extension of Lemma 4.11 to the full nonlinearity.

Lemma 5.9 Let V1[ f2, . . . , f2n+1](t, y) be defined as

V1[g2, . . . , g2n+1](t, y) := − 1

π

∫

|α|∈[t,2−20]

∏2n+1
�=2 r�(t, y, α)

α
dα,

where r� is defined as in (4.34), with ( f2, . . . , f2n+1) ∈ Z1 × . . . × Z1. Then, for
t < 2−20,

∣∣V1[Pk f2, . . . , f2n+1](t, y)
∣∣ � (2k t)−1/10

2n+1∏

�=2

‖ f�‖Z1 .

6 Proof of theMain Result

We begin by recalling some important notation necessary for providing a proof of
Theorem 1.1. We let C = {a1, · · · , aM } be a set of finite points indexed by by j ∈
J = {1, · · · , M}. Moreover, the function h : [0.∞) × R → R is of the form

h(t, x) =
∑

j∈J
g j (t, x − a j + q(t, x)),

where we recall that the change of variables is given in (2.1)-(2.2), and the functions
g j lie in the space Z = Z1 + Z2, defined in (1.5) and (1.6) respectively.
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6.1 Determining q̃ from the Free Evolution

We define the free evolution for initial data g0, j (x) ∈ Z1 for all j ∈ J = {1, . . . , M}
as

g(0)
j (t, x) := e−t |∇|g0, j (x).

Moreover, we define

V ∗
1 [g(0)

j,2, . . . , g
(0)
j,2n+1](t, x) := − 1

π

∫

|α|∈[t,2−20]

∏2n+1
i=2 r (0)

j,i (t, x, α)

α
dα,

where we define, as in (4.28)-(4.34), for j ∈ J ,

r (0)
j (t, x, α) := g∗(0)

j (t, 0, α)ϕ≤−4((x − a j )/α) + g(0)
j (t, x − a j )ϕ≤−4(α/(x − a j )),

where we recall that

g∗(0)
j (t, 0, α) := 1

α

∫ α

0
g(0)
j (t,−ρ) dρ.

We can now define

q̃n(t, x) :=
∑

j∈J

∫ t

0
V ∗
1 [g(0)

j,2, . . . , g
(0)
j,2n+1](s, x) ds. (6.1)

From Corollary 5.8, we see that q̃ satisfies the bounds we assumed in (2.1)-(2.2) and
(5.5).

6.2 Construction of the Solution

We can set up a fixed point argument using equation (2.9) and Duhamel’s formula.
More precisely, we define

g(m+1)
j (t, x) := e−t |∇|g0, j (x) +

∫ t

0
e−(t−s)|∇|F (m)

j (s, x)ds, (6.2)

where

F (m)
j (t, x+a j ) = ∂xh

(m)
j (t, Q̃(t, x + a j ))∂t q̃(t, x +a j ) + N (m)

h j
(t, Q̃(t, x + a j ))

−|∇|g(m)
j (t, x)∂xq(t, Q̃(t, x+a j ))+E (m)

j (t, Q̃(t, x+a j )), (6.3)

and E andN were defined in Lemmas 2.6, and (2.5)-(2.7) respectively. The goal is to
show that

‖g(m+1)
j (t, x) − g(m)

j (t, x)‖Z2 � ε2‖g(m)
j (t, x) − g(m−1)

j (t, x)‖Z2 ,
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for all m ∈ N. We begin by proving that for all m ∈ N, the functions g(m)
j are small in

the Z norm.

Lemma 6.1 For all g(m)
j ∈ Z, j ∈ J and m ∈ N, we have

‖g(m)
j − g(0)

j ‖Z2 � ε. (6.4)

Proof We argue by induction: by hypothesis, (6.4) clearly holds for the free evolution
g(0)
j . That is, there exists some constant C0 such that ‖g(0)

j ‖Z ≤ C0ε. We now assume

that (6.4) holds for some given m. This implies that ‖g(m)
j ‖Z ≤ 2C0ε. To show that

the inequality holds for m + 1, we note from Duhamel’s formula (6.2), that

‖g(m+1)
j − g(0)

j ‖Z2 ≤
∥∥∥∥

∫ t

0
e−(t−s)|∇|F (m)

j (s, x) ds

∥∥∥∥
Z2

.

We split the nonlinearity as in Sections 4 and 5 to get

F (m)
j (t, x) =

∑

n∈N

∑

k∈Z

∑

j2,..., j2n+1∈J

(
Gk,2[h(m)

1, j , h
(m)
2, j2

, . . . , h(m)
2n+1, j2n+1

](t, Q̃(t, x + a j ))

+
∑

i∈{1,2,3,4}
Gi

k,1[h(m)
1, j , h

(m)
2, j2

, . . . , h(m)
2n+1, j2n+1

](t, Q̃(t, x + a j ))
)

−|∇|g(m)
j (t, x)∂xq(t, Q̃(t, x + a j )) + E(m)

j (t, Q̃(t, x + a j )). (6.5)

The terms in the third line of (6.5) are dealtwith inLemmas 2.6 and 2.7.Moreover,Gk,2
and Gi

k,1 for i ∈ {1, 2, 3} are bounded in a straightforward way using Lemmas 5.2–
5.5, combined with Lemma 2.4 to take into account the change of variables.

It remains to considerG4
k,1. From (6.3) and (6.1), we see that we need to find bounds

on

G4
k,1 − Pk

{ d

dx
h(m)
1, j ·

∑

j2,..., j2n+1∈J
V ∗
1 [h(0)

2, j2
, . . . , h(0)

2n+1, j2n+1
]
}
.

We begin by defining the renormalized free evolution by

h(0)(t, x) :=
∑

j∈J
g(0)
j (t, x − a j + q(t, x)),

and rewrite

G1,4
k,1[h(m)

1, j , h
(m)
2 , . . . , h(m)

2n+1](t, x) = G1,4
k,1[h(m)

1, j , h
(m)
2 , . . . , h(m)

2n+1](t, x)
−G1,4

k,1[h(m)
1, j , h

(0)
2 , . . . , h(0)

2n+1](t, x)
+G1,4

k,1[h(m)
1, j , h

(0)
2 , . . . , h(0)

2n+1](t, x)
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= G1,4
k,1[h(m)

1, j , h
(m)
2 − h(0)

2 , . . . , h(m)
2n+1](t, x) + . . . +

+G1,4
k,1[h(m)

1, j , h
(0)
2 , . . . , h(m)

2n+1 − h(0)
2n+1](t, x)

+G1,4
k,1[h(m)

1, j , h
(0)
2 , . . . , h(0)

2n+1](t, x). (6.6)

We notice from Lemma 2.5 that h(m)
i −h(0)

i for i ∈ {2, . . . , 2n+1} are (renormalized)
elements in Z2, and therefore the first 2n terms in the second equality of (6.6) can be
bounded by Lemma 5.4. For the last term, we rewrite

G1,4
k,1[h(m)

1, j , h
(0)
2 , . . . , h(0)

2n+1](t, x) = G1,4
k,1[h(m)

1, j , h
(0)
2 , . . . , h(0)

2n+1](t, x)
−

∑

j2,..., j2n+1∈J
Pk

{ d

dx
h(m)
1, j (t, x) · P≤k−4V [g(0)

2, j2
, . . . , g(0)

2n+1, j2n+1
](t, x)

}

+
∑

j2,..., j2n+1∈J
Pk

{ d

dx
h(m)
1, j (t, x) · P≤k−4V2[g(0)

2, j2
, . . . , g(0)

2n+1, j2n+1
](t, x)

}

+
∑

j2,..., j2n+1∈J
Pk

{ d

dx
h(m)
1, j (t, x) · P≤k−4V1[g(0)

2, j2
, . . . , g(0)

2n+1, j2n+1
](t, x)

}
, (6.7)

where V1 and V2 are defined as in Lemma 5.7. The first term in (6.7) can be bounded
using Lemma 5.6. Using (5.7) in Lemma 5.7, we estimate

∥∥∥∥
∑

j2,..., j2n+1∈{1,...,M}
Pk

{ d

dx
h(m)
1, j (t, x) · P≤k−4V2[g(0)

2, j2
, . . . , g(0)

2n+1, j2n+1
](t, x)

}∥∥∥∥
L2

�n (1 + 2k t)−1/102k/2‖g(m)
1, j ‖Z

2n+1∏

i=2

∑

ji∈J
‖g(m)

ji
‖Z1 .

Finally, we notice that in the last term of (6.7) can be rewritten as

∑

j2,..., j2n+1∈J
Pk

{ d

dx
h(m)
1, j (t, x) · P≤k−4V1[g(0)

2, j2
, . . . , g(0)

2n+1, j2n+1
](t, x)

}

=
∑

j2,..., j2n+1∈J
Pk

{ d

dx
h(m)
1, j (t, x) · V ∗

1 [g(0)
2, j2

, . . . , g(0)
2n+1, j2n+1

](t, x)
}

−
∑

j2,..., j2n+1∈J
Pk

{ d

dx
h(m)
1, j (t, x) · P≥k−3V1[g(0)

2, j2
, . . . , g(0)

2n+1, j2n+1
](t, x)

}
. (6.8)
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Let us now consider the last term in (6.8), remarking that it is a high-high-to-low
interaction. Applying Lemma 5.9 then yields

∥∥∥∥
∑

j2,..., j2n+1∈J
Pk

{ d

dx
h(m)
1, j (t, x) · P≥k−3V1[g(0)

2, j2
, . . . , g(0)

2n+1, j2n+1
](t, x)

}∥∥∥∥
L2

�n 2k/2(2k t)−1/10‖g(m)
1, j ‖Z

2n+1∏

i=2

∑

ji∈J
‖g(m)

ji
‖Z1 .

Combining all the above yields

∥∥∥∥G
1,4
k,1(t, x) −

∑

j2,..., j2n+1∈J
Pk

{ d

dx
h(m)
1, j (t, x) · V ∗

1 [g(0)
2, j2

, . . . , g(0)
2n+1, j2n+1

](t, x)
}∥∥∥∥

L2
x

�n 2k/2(2k t)−1/10‖g(m)
j,1 ‖Z

2n+1∏

i=2

∑

ji∈J
‖g(m)

ji
‖Z1 .

Combining all the estimates and using (2.22) from Lemma 2.5, we have that

‖Pk′F (m)
j ‖L2 �

∑

n∈N
Cn2k/2(2k t)−1/10‖g(m)

j ‖Z

×
2n+1∏

i=2

∑

ji∈J
‖g(m)

ji
‖Z + ε2k/2(2k t)−1/10‖g j‖Z (6.9)

where we picked up the constant Cn from the �n . Using the induction assumption
‖g(m)

j ‖Z ≤ 2C0ε, we recover a factor of ε2n+1 in the first term on the left hand side,
which, by choosing ε to be sufficiently small, will trump the constant Cn . From the
sum over n we pick the biggest case, being n = 1, and we can thus rewrite (6.9) as

‖Pk′F (m)
j ‖L2 � ε22k/2(2k t)−1/10.

We now claim that

‖C(F (m)
j )‖Z2 � ε2, (6.10)

where

C(F (m)
j )(t, x) :=

∫ t

0
e−(t−s)|∇|F (m)

j (s, x) ds.

We assume that t ∈ (0,∞) and k ∈ Z are fixed. From the estimate (6.9) we
immediately get that

2k/2(1 + 2k t)2/10(2k t)−1/10‖PkC(F (m)
j )(t, x)‖L2
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� ε2
∫ t

0
2k/2(1 + 2k t)2/10(2k t)−1/10e−(t−s)2k/8‖Pk F (m)

j (s, x)‖L2 ds

� ε2
∫ t

0
2k

(1 + 2k t)2/10

(2ks)1/10
(2k t)−1/10

(1 + (t − s)2k)8
ds

� ε2 min{1, (2k t)8/10}.

This concludes the proof of the claim (6.10), thus concluding the proof. ��

Lemma 6.2 For all g(m)
j ∈ Z, j ∈ J and m ∈ N, we have

‖g(m+1)
j (t, x) − g(m)

j (t, x)‖Z2 � ε‖g(m)
j (t, x) − g(m−1)

j (t, x)‖Z2 . (6.11)

Proof Again, we argue by induction. By hypothesis and by Lemma 6.1, (6.11) clearly
holds for the free evolution g(0)

j . We now assume that (6.11) holds for some given m.
That is, we have

‖g(m)
j (t, x) − g(m−1)

j (t, x)‖Z2 � ε‖g(m−1)
j (t, x) − g(m−2)

j (t, x)‖Z2 .

Using Duhamel’s formula (6.2), we have

‖g(m+1)
j − g(m)

j ‖Z2 ≤
∥∥∥∥

∫ t

0
e−(t−s)|∇|[F (m)

j (s, x) − F (m−1)
j (s, x)

]
ds

∥∥∥∥
Z2

.

Webegin by considering the nonlinearity F (m)
j −F (m−1)

j whichwe split as in Sections 4
and 5 to get

(F (m)
j − F (m−1)

j )(t, x) =
∑

n∈N

∑

k∈Z
∑

j2,..., j2n+1∈J

(
Gk,2[h(m)

1, j , h
(m)
2, j2

, . . . h(m)
2n+1, j2n+1

](t, Q̃(t, x + a j ))

− Gk,2[h(m−1)
1, j , h(m−1)

2, j2
, . . . , h(m−1)

2n+1, j2n+1
](t, Q̃(t, x + a j ))

+
4∑

i=1

[
Gi

k,1[h(m)
1, j , h

(m)
2, j2

, . . . h(m)
2n+1, j2n+1

](t, Q̃(t, x + a j ))

− Gi
k,1[h(m−1)

1, j , h(m−1)
2, j2

, . . . , h(m−1)
2n+1, j2n+1

](t, Q̃(t, x + a j ))
])

− |∇|g(m)
j (t, x)∂xq(t, Q̃(t, x + a j )) − |∇|g(m−1)

j (t, x)∂xq(t, Q̃(t, x + a j ))

+ E(m)
j (t, Q̃(t, x + a j )) − E(m−1)

j (t, Q̃(t, x + a j )).
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We remark that all the difference of the form g(m)
j − g(m−1)

j are elements in the Z2
space. From Lemmas 2.6 and 2.7, we easily get

‖Pk
[
E (m)

j − E (m−1)
j

]
(t, Q̃(t, x + a j ))‖L2

� ε2k/2 min{1, (2k t)−1/10}‖g(m)
j − g(m−1)

j ‖Z2 ,

‖Pk
[|∇|(g(m)

j − g(m−1)
j )(t, x)∂xq(t, Q̃(t, x + a j ))

]‖L2

� ε2k/2(2k t)−1/10‖g(m)
j − g(m−1)

j ‖Z2

Using the fact that a difference of multilinear products can be rewritten as

G( f1, . . . , f2n+1) − G( f ∗
1 , . . . , f ∗

2n+1) = G( f1 − f ∗
1 , . . . , f2n+1) + . . .

+G( f ∗
1 , . . . , f2n+1 − f ∗

2n+1)

we rewrite the high-high-to-low interaction difference as

∑

j2,..., j2n+1∈J
‖(Gk,2[h(m)

1, j , h
(m)
2, j2

, . . . , h(m)
2n+1, j2n+1

]

−Gk,2[h(m−1)
1, j , h(m−1)

2, j2
, . . . , h(m−1)

2n+1, j2n+1
])(t, Q̃(t, x + a j ))‖L2

�n

∑

j2,..., j2n+1∈J
‖Gk,2[h(m)

1, j − h(m−1)
1, j , h(m)

2, j2
, . . . , h(m)

2n+1, j2n+1
](t, x)‖L2 + . . . +

+
∑

j2,..., j2n+1∈J
‖Gk,2[h(m−1)

1, j , h(m−1)
2,a , . . . , h(m)

2n+1, j2n+1
− h(m−1)

2n+1, j2n+1
](t, x)‖L2

�n 2k/2(1 + 2k t)−2/10
∑

j2,..., j2n+1∈J

[
‖g(m)

1, j − g(m−1)
1, j ‖Z2

2n+1∏

i=2

‖g(m)
i, ji

‖Z2 + . . . +

+‖g(m)
2n+1, j2n+1

− g(m−1)
2n+1, j2n+1

‖Z2‖g(m−1)
1, j ‖Z2

2n−1∏

i=2

‖g(m−1)
i, ji

‖Z2

]

�n ε2n2k/2(1 + 2k t)−2/10‖g(m)
j − g(m−1)

j ‖Z2 (6.12)

where we used Lemma 2.4 to take into account the change of variables, the estimate in
the third inequality follows from Lemma 5.2 and the estimate in the last line follows
from Lemma 6.1. The estimates for Gi

k,1 with i ∈ {1, 2, 3} follow similarly, using

Lemmas 5.3-5.5. It remains to consider G4
k,1. We rewrite

∑

j2,..., j2n+1∈J
G1,4

k,1[h(m)
1, j , h

(m)
2, j2

, . . . , h(m)
2n+1, j2n+1

]

−
∑

j2,..., j2n+1∈{1,...,M}
G1,4

k,1[h(m−1)
1, j , h(m−1)

2, j2
, . . . , h(m−1)

2n+1, j2n+1
]
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=
∑

j2,..., j2n+1∈J

{
G1,4

k,1[h(m)
1, j − h(m−1)

1, j , h(0)
2, j2

, . . . , h(0)
2n+1, j2n+1

]

+G1,4
k,1[h(m−1)

1, j , h(m)
2, j2

− h(m−1)
2, j2

, . . . , h(m)
2n+1, j2n+1

] + . . . +
+G1,4

k,1[h(m−1)
1, j , h(m−1)

2, j2
, . . . , h(m)

2n+1, j2n+1
− h(m−1)

2n+1, j2n+1
]

+G1,4
k,1[h(m)

1, j − h(m−1)
1, j , h(m)

2, j2
− h(0)

2, j2
, . . . , h(m)

2n+1, j2n+1
] + . . . +

+G1,4
k,1[h(m)

1, j − h(m−1)
1, j , h(0)

2, j2
, . . . , h(m)

2n+1, j2n+1
− h(0)

2n+1, j2n+1
]
}
. (6.13)

We can now further decompose and bound (6.13) similarly as in Lemma 6.1 to get
bounds as in (6.12).

Combining all estimates and using (2.22) and (6.4), we get

‖Pk′F (m)
j − Pk′F (m−1)

j ‖L2 �
∑

n∈N
Cnε2n2k/2(2k t)−1/10‖g(m)

j − g(m−1)
j ‖Z2

+ε2k/2(2k t)−1/10‖g(m)
j − g(m−1)

j ‖Z ,

where here again, we get the factor of Cn from the �n which gets trumped by the
factor of ε2n+1 we pick up from Lemma 6.1 and the induction assumption.

Arguing exactly as in the end of the proof of Lemma 6.1, we then obtain

‖C(F (m)
j − F (m−1)

j )‖Z2 � ε‖g(m)
j − g(m−1)

j ‖Z2 ,

where here

C(F (m)
j − F (m−1)

j )(t, x) :=
∫ t

0
e−(t−s)|∇|[F (m)

j − F (m−1)
j

]
(s, x) ds,

thus concluding the proof of the lemma. ��
We have now shown that g(m)

j − g(0)
j is a Cauchy sequence in Z2, thus concluding

the construction of the solution g j − g(0)
j in Z2.
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