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Abstract

In this paper, we investigate the dynamics of solutions of the Muskat equation with
initial interface consisting of multiple corners allowing for linear growth at infinity.
Specifically, we prove that if the initial data contains a finite set of small corners
then we can find a precise description of the solution showing how these corners
desingularize and move at the same time. At the analytical level, we are solving
a small data critical problem which requires renormalization. This is accomplished
using a nonlinear change of variables which serves as a logarithmic correction and
accurately describes the motion of the corners during the evolution.

1 Introduction

The Muskat problem models the interactions between two immiscible, incompressible
fluids propagating through porous media. Their motion is governed by the experimental
Darcy’s law under the restoring force of gravity. Since the interface between the two
fluid regions is an unknown which needs to be solved for as part of any solution, this
is a free boundary problem. Its formulation can be reduced to an integral evolution
equation on the interface and in the case when the viscosities of the two fluids are
equal and the profile of the interface is graphical, this formulation has a particularly
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compact form. In the last two decades, the Muskat problem has generated a rapidly
growing interest and has been studied extensively. A great majority of the work carried
out on this problem has been done in the sub-critical setting, which is well-understood
by now.

In this paper we study the small-data critical theory for the Muskat equation and
more precisely, we seek to understand the behavior of an interface whose initial data
consists of a superposition of a finite number of small corners. Despite the fact that the
problem is quasi-linear, its parabolic nature enables us to construct our solutions using
semi-linear methods such as a renormalization process and a fixed-point argument.
This allows us to get a good understanding of the behavior and shape of the corners
as well as of the spaces in which they live. Moreover, we can even explicitly calculate
how they move as they desingularize.

1.1 Presentation of the Problem

We denote by Q* the two fluid domains in the (x, y)-plane, separated by the graphical
interface 7n(f, x). Since the fluids are propagating through porous media, the fluid
velocities u™ and pressures p™ satisfy Darcy’s law in their respective domains

V.out=0 in QF,
pEut = —v, ,pt — (0, p*) in QF,

where u* > 0 and p* > 0 denote the viscosity and density constants in Q*. More-
over, we assume that p~ > pT, ensuring that the denser fluid lies below. Denoting
by

1
n=———===(—0m,1)

V1+ (8xﬂ)2

the upward pointing normal vector on the interface, these equations are coupled with
the dynamic boundary conditions

ut n=u"-n on n(t, x)

pr=p" on n(t, x),
guaranteeing continuity of the normal velocity fields and pressures of the fluids across
the interface, as well as the kinematic boundary condition

an=+/1+@*u" -n onn(t,x),

ensuring that the interface moves with the fluids. The Muskat problem can be refor-
mulated as an integral evolution problem on the interface and specifically, in the case
of equal viscosities = = ™, it admits a particularly elegant and compact formula-
tion. Upon renormalizing all physical constants we get the one-dimensional evolution
equation of the form
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Q-

Fig.1 The Muskat problem. The interface n separates the two fluids

9 — 1 f 8ann U(X)—U(X—Ol)
N = T A 2

— da, Agn(x,a) = ——--" "2 1.1
7 ) TE (agm2 all (X, o) a (1.1)

which we refer to as the Muskat equation (see [24, 43] for the derivation of (1.1)).
The problem admits a scaling invariance in the sense that if n(z, x) is a solution to
the problem, then so is A~ ' (Az, Ax) for any A > 0. Spaces like H3/? and W are
thus critical. For the rest of this paper, it will be convenient to work with the slope of
the interface h(z, x) := dyn(t, x). We can hence rewrite (1.1) as the following initial
value problem

1 d At (t, x, @) , 1/x
Ghit,x) = —— | 22 20T g6 with h*(x ) = — | h(r,y)dy,
M0 = R T W r a2t M = ey
h0,) = ho. (1.2)

Our goal is to prove local well-posedness of (1.2) in a critical space that allows for
discontinuous initial data and to describe the evolution of such discontinuities:

ho(x) = Z hjo(x),

jeJ
where the integers j € J := {l,..., M} index elements in the finite set of points
C ={ai,...,am}and h;ohasadiscontinuity at x = a; € R.To analyze the problem

it is important to allow for a renormalization procedure
h(t,x) = g(t,x +q(t, x)). (1.3)
We require the function ¢ to satisfy the bounds
lg(t, )| S etIn(2/D)P<o(x), suploxg(t, X)| Se, dq(t,x) =0 fort =1,

xeR

1.4
for some suitable, smooth cutoff function ® <o defined more precisely in (2.1). We
then perform a fixed point argument in the critical spaces Z; and Z,. Here Z; denotes

the space of functions F : [0, c0) x R — C induced by the norm
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I|Fllz, ;== sup {||F(r>||Loo+sup(z"r)l/‘°||PkF<r>||Loo
kel

te[0,00)

+||xaxF<r>||Loo+sup(zko”“)nPk<xaxF(r>)||Loo}, (1.5)
keZ

and Z, denotes the space of functions F : [0, c0) x R — C induced by the norm

IFlz, == sup {sup2¥/?max{2*s, 1/ 0}/ PeF(0)]l,2 ). (1.6)
t€[0,00) keZ

We define the Z space as the sum space Z = Z; 4 Z>. We notice that the spaces Z; and
Z» are critical in the sense that their norms are invariant with respect to the scaling of
the equation. The space Z is designed to contain functions given by the free evolution
of a corner under the fractional heat equation, such as e’ VI sign(x) = % arctan (x/t).
The space Z, will be use to control the perturbative part of the solution. It can be
1 1

understood as the intersection of time-weighted versions of the Besov spaces B; ;Om
1 1
- 3+10 - .
and By "%, providing extra control for low and large frequencies.

Here and above, Py, k € Z, denote standard Littlewood-Paley operators on R, given
by Py f(x) = F g (& )f(é ))(x), where F~! denotes inverse Fourier transform, f
denotes the Fourier transform of the function f, and ¢r(-) = @o(2~%-) with gy an
even, smooth function compactly supported on an annulus, such that {¢y }x is a dyadic
partition of unity.

Furthermore, it will be useful to define N to be the space of functions F : [0, 0c0) X
R — C induced by the norm

IFly = sup {sup2¥/22% )~ pF| 2} (1.7)
t€[0,00) keZ

which measures the nonlinearity. We remark that the N-norm admits a loss for 2€7 < 1.
However, this will not be an issue after running Duhamel’s formula for the fixed point
argument.

1.2 Statement of the Main Result
The main result of this paper is the following theorem.

Theorem 1.1 Let C = {ay, ..., ay} be a finite set of points indexed by j € J =
{1,..., M} and let eg > 0 depend only on C. Let hy = Zjej hj o be such that

> (ol + 11Gx — a)dshjolle) = & < &g < 1. and
jeJ

> lhjotx +aj) +hjola; —)llr <1,

jed
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Ot
;

Fig.2 The initial data: the interface n consists of a superposition of corners

for some p € [1,00). Then there is a unique solution h : [0, 00) x R — R to the
initial value problem of the form

h(t,x) =Y gj(t.x —aj +q(t.x))
jeJ

for a suitable change of variables q (t, x) which satisfies the bounds (1.4) and functions
gj € Zwith |gjllz S e.

Definition 1.2 We define a symmetric corner at a point a on the interface 7, to
be a solution for which the derivative h(t,x) = 0d,n(t, x) is odd up to lower
order terms, in a neighborhood of a. More specifically, this means that the quantity
[A(t, x + a) + h(t,a — x)]/x is integrable around x = 0.

Remark 1.3 Informally stated, we assume the initial data of the interface n(t, x) to
be a finite superposition of not necessarily symmetric corners, see Figure 2. We then
show that the equation admits a solution for which the corners desingularize — as if
the solution were a superposition of free evolutions — and move, before reaching time
T = 1. After the desingularization takes place, we fall back into a traditional small-
data critical theory in Sobolev spaces setting and our solutions exist globally in time.
We further point out that the function ¢ (¢, x) is only relevant until time 7 = 1, hence
the extra assumption d;q (¢, x) = 0 for r > 1 in (1.4). Furthermore, the L? condition
on the initial data ensures that any potential corner at infinity will be symmetric.

Remark 1.4 This theorem provides a precise description of the solution we construct.
We are able to identify the location of each corner through the definition of the Z;
norm, and then capture the nonlinear movement of these corners (of order ¢ log(¢)), as
they desingularize through the normalization in g. The parabolic nature of the problem
ensures that these corners do indeed smooth out (see (2.6)). We point out that after
time ¢ > 0, the solution is given by a shifted free evolution plus a remainder that lands
in subcritical spaces (see the definition of the Z> norm in (1.6)), and hence become
instantaneously C°.
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Remark 1.5 In comparison with previous results, Theorem 1.1 allows interfaces with
linear growth at infinity. Therefore, it includes as a particular case the self-similar solu-
tions constructed in [33]. Moreover, Theorem 1.1 also allows to construct discretely
self-similar solutions, h(f, x) = f(logt, x/t), with f(s, y) bounded, periodic in s
and Holder regular in y (discretely self-similar solutions originate from initial data
such as hg = e sign(x) sin (log (|x|))).

In this regard, we notice that while our main interest is the description of evolving
corners, the result also covers other types of discontinuities.

Remark 1.6 In the case of a single, symmetric corner, there is no need for the logarithm
correction term ¢ (¢, x). Indeed, in this setting, our choice of function spaces for Z
and Z; are sufficient for closing the fixed point argument. As will become apparent in
the proof, the logarithmic loss arises either when a corner is not symmetric, or when
two neighboring corners interact in a given setting.

Remark 1.7 The natural analogue of Theorem 1.1 also holds for periodic initial data hg.
The proof follows in a very similar fashion, with Fourier transforms replaced by Fourier
series (since frequencies are now integers instead of real numbers). Furthermore, we
have the additional conservation law fT h(t, x)dx = 0, and the additional condition
on Fhe initial data Zjej lhjo(x+aj;)+hjola; —x)|lLr < 1is not needed in this
setting.

Remark 1.8 Although we prove well-posedness in the sum space Z = Z| + Z», the Z;
space only captures the free evolution and the Z; space, the nonlinearity after applying
Duhamel’s formula. More specifically, we will show that the solution (¢, x) can be
written as the free evolution of each corner translated by ¢ (¢, x) plus a perturbation
term h? satisfying better bounds,

h(t.x) =Y hji(t.x)+h*(t.x),  where
jeJ
Wit x) =e"WVhjo(t, x +qt.x)). (1.8)

An important observation is that the correction function ¢ (¢, x) only appears in the
part of the solution which lies in the Z; space, and hence only depends on the free
evolution. In particular, it can be calculated explicitly as a bilinear expression of the
initial data. This significantly disentangles the problem when it comes to carrying out
the fixed point iterations with Duhamel’s formula.

1.3 Historical Considerations

The Muskat problem [37] was derived in the 1930’s by Morris Muskat as a model for
oil extraction. It has since attracted a lot of attention both analytically and numerically,
and has proven to have many interesting behaviors. These include the formation of
singularities, such as the ones in the works by Castro et al. [12, 14] in the form of
overhanging interfaces leading to loss of regularity, switch of stability as shown by
Cérdoba, Gémez-Serrano and Zlatos [25, 26], with interfaces that turn but then go
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back to their equilibrium, and splash singularities in the one-phase setting [13]. See
also the recent work of Zlato$ on formation of singularities in the half-plane case [46,
47] and the work of Shi [41] on analyticity of solutions that have turned over. We
refer to the excellent surveys by Gancedo and Granero-Belinchén-Lazar [30], [34] for
extended background on the problem.

Concerning well-posedness, there has been a flurry of work done for the sub-
critical regime in the last two and a half decades. The local in time well-posedness
of the Cauchy problem on sub-critical Sobolev spaces, as well as the global existence
for small data are now well understood. The first results in high-regularity Sobolev
spaces date back to Yi [44, 45], Ambrose [8] and Caflisch, Howison, and Siegel [42],
who additionally showed that some unstable settings are ill-posed. D. Cérdoba and
Gancedo [24] proved well-posedness in the infinite depth setting without viscosity
jump in the space H41t2(R?), for d = 1, 2, and later, with A. Cérdoba, extended this
result to allow for viscosity jump and non-graphical interface [22], [23]. The work
by Cheng, Granero-Belinchén and Shkoller [16] lowered the regularity needed in
two dimensions to HZ2, without relying on the contour equation and hence permitting
more general domains. Later works focused on lowering the regularity up to barely
subcritical spaces. In the case of constant viscosity, Constantin, Gancedo, Shvydkoy
and Vicol [21] constructed solutions with initial data in W>? for p € (1, o], Matioc
[35, 36] with initial data in H> and H>/?>*¢ respectively and Abels and Matioc [1]
for the L?-Sobolev subcritical range. Alazard and Lazar [3] were able to allow non
L?-data. Finally, H. Q. Nguyen and Pausader [39] proved that the full d-dimensional
Muskat problem (with or without bottom and with or without viscosity jump) is well-
posed in H*(R) forall s > d/2 + 1.

We now turn to the study of the Muskat problem in critical spaces. The first results
are small data solutions in the Wiener algebra £ 1, space which consists of taking one
derivative of the function and evaluating the L'-norm in Fourier space. Constantin,
Coérdoba, Gancedo and Strain [20] proved the existence of small-data solutions, with-
out viscosity jump, and then, along with Piazza in [19], extended this result to the 3D
setting. This result was improved by Gancedo, Garcia-Judrez, Patel and Strain [31]
who constructed small-data strong solutions allowing for a viscosity jump in both 2D
and 3D. Further small data critical results include H. Q. Nguyen [38] who proved a
well-posedness result in the Besov space B;o! 1» aspace embedded in the critical space
Wl’oo, and Cameron, who first studied well-posedness for interfaces in wheonp?
in 2D [10], and then in 3D with just sub-linear growth at infinity [11]. Cameron’s
works have the additional particularity of allowing for “medium"-sized initial data,
in the sense that it is bounded by 1 as opposed to by some small ¢-value. For large
data, global solutions are not generally expected given that singularities may arise.
Nonetheless, Deng, Lei and Lin [28] constructed global weak solutions assuming that
the initial interface is monotonic.

Recently, there has also been significant work done in the critical Sobolev space
H?3/2. The first result dates back to Cérdoba and Lazar [27], who although working in
the subcritical space H/ 2 considered smallness and derived the a priori estimates in
the critical space. This result was then extended to the 3D setting by Gancedo and Lazar
[32]. The first fully critical result is due to Alazard and Q. H. Nguyen, constructing
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2D solutions with initial data in H3/2 N W1 [4], together with the log-subcritical
work [5] where unbounded slopes are allowed. In these works, the solutions are either
large data, local in time, or small data global in time. They later were able to obtain
well-posedness in H>/? [7], dropping the L assumption altogether. They then [6]
further extended this to the 3D setting in H> N W1,

Critical well-posedness in the Sobolev norm does not allow for corners, which
leads us to the work of Chen, Q. H. Nguyen and Xu [15] who studied initial data
for the interface in C 1 again, either large data, local in time, or small data, global
in time. In this work, although the interface is smooth, the uniqueness result does
allow for discontinuities. Very recently [33], three of the authors of this paper proved
the existence of small data self-similar solutions, starting from exact corners, which
desingularize instantaneously.

Our result differs from the previous ones in the sense that we carry out our analysis
by using a fixed point argument, rather than energy estimates or maximum principles.
We start our fixed point method from an ansatz differing from the free evolution (cf.
Remark 1.8). This argument enables us to describe the solution in a much more precise
way as a convergent series in well-adapted function spaces in which a suitable shifted
free evolution is the first term. As a result, we can attain a better understanding of
which space the corners lie in, what they look like (not necessarily symmetric) as well
as what their behavior is (movement and immediate desingularization). Moreover,
as opposed to [10, 11] and all previous works, the space Z; includes functions with
linear growth at infinity: these encompass not only self-similar solutions [33] but also
discretely self-similar solutions (see Remark 1.5).

Finally, it is interesting to notice that we show instant desingularization of the
corners, hence no ‘waiting time’ phenomena is possible for small corners in two-
phase Muskat. We refer to [9, 17, 18] for related results in the one-phase setting and
in Hele-Shaw flows.

We finish this subsection highlighting the following recent papers on the one-
phase problem: [2, 29, 40]. In [2], Agrawal-Patel-Wu prove local well-posedness for
interfaces that are smooth or can have singularities such as acute angle corners and
cusps. In such case, the angle of the corner is preserved for a finite time and there
is no rotation at the tip. Note that this does not contradict our results since we are
considering a class of initial data consisting of obtuse-angled corners, which become
smooth instantaneously.

1.4 Outline of the Paper

The main difficulty of this problem is that unless we restrict ourselves to the setting of
a single, symmetric corner, we end up with a logarithmic loss in our a priori estimates.
As a result, the first crucial step we must do is a renormalization of the problem, and
subsequently, in (2.9), a reformulation of the problem in terms of the renormalized
function g(t,x — x; + q(t, x)). This necessitates the introduction of the function
q(t, x) (see equations (2.1)-(2.2)). These ensure on the one hand, that we do in fact
have a change of variables, and on the other, that the function spaces remain invariant
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by the renormalization, Lemma 2.5. The definition of ¢ (¢, x) will depend only on the
free evolution of the initial data, hence avoiding a circular argument (see Remark 1.8).

After performing a Taylor expansion on the denominator of the integral term in
(2.5), which reveals the parabolicity of the problem (2.6), we reformulate it as a
pseudoproduct in order to study the interactions between the various frequencies. In
an effort to keep the arguments transparent and easier to follow, we first carry out the
entire analysis for the trilinear setting (in which we only consider the first term in the
Taylor expansion). We provide a generalization of all lemmas to the full nonlinearity
in Section 5.

Our main goal will now be to find suitable a priori bounds on the localized nonlinear-
ity, ensuring that the integral term in Duhamel’s formula remains a mere perturbation in
the Z; space. To this end, we carefully study the kernels of the pseudoproduct in Lem-
mas 3.1-3.2, which in turn enable us to perform localized L? estimates, Lemma 4.1.
These estimates will prove to yield desired bounds on all high-high frequency inter-
actions, Lemma 4.2 as well as for all high-low interactions which contain at least one
function in the Z, space, Lemma 4.4. We remark that from the definition of the Z;
space in (1.6), this space allows us to sum over each frequency at a time.

The remaining difficulty is the setting for which all functions in the pseudoproduct
are in the Z; space. The difficulty is two-fold. On the one hand, we need to put the
highest frequency in L to prevent a loss of derivative, an inflexible restriction which
prevents us from getting any more gain from this function. On the other hand, the Z
norm as defined in (1.5), does not contain any Pj. By considering the elements in this
space localized in frequencies, we lose information which in turn is responsible for
logarithmic losses. To rectify this, we carry out a more careful study of the functions
in the Z; space, Lemma 3.3. In particular, we find that they can be split into core and
error terms.

Upon further pursuing the analysis of the pseudoproduct when all functions lie
in Z, we seek to identify the exact term for which the logarithmic loss occurs. By
gradually peeling away all bounded terms, Lemmas 4.5-4.7, we are eventually left
with a velocity-like bilinear expression (4.20). Indeed, it then becomes apparent that
subtracting this velocity term from the localized pseudoproduct yields the desired
bounds on the nonlinearity, Lemma 4.8.

From the formulation of the problem in terms of the renormalized function (2.9)-
(2.10), it is apparent that this velocity term must be equal to the time derivative of
the correction function, d;¢q (¢, x). Checking that the bounds of ¢(z, x) assumed at
the beginning are indeed satisfied, Lemma 4.9, hence completes the renormalization
bootstrap procedure. In Section 5 we show how all the results in the trilinear case
generalize to the full nonlinearity, and finally, we conclude with Section 6 in which
we explicitly construct the correction term g and carry out a fixed point argument to
construct the solution.
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2 Preliminaries
2.1 Reformulation of the Problem

In addition to a critical well-posedness result, we want to track the location of the
corners and understand their behavior. As mentioned previously, unless we restrict
ourselves to the setting in which the interface consists of a single, symmetric cor-
ner, our estimates produce a logarithmic term. This suggests the introduction of
a renormalization procedure. We define the new function g as in (1.3), such that
h(t,x) = g(t,x + q(t, x)). Here we define the set of functions g € C,l’x(IRJr x R)
such that

geA & |qt,x)| Setln2/t)®<p(x), sup |0xq(t, x)| S e,

xeR
orq(t,x) =0 fort > 1. 2.1
1
- ~ , ~
C]EA < CIE.A and Iaﬁq(t,y)lﬁezm,
jed '
ne(l,2,3),1e[0,00), y € R. 2.2)

Here, for any [ € Z, ®<; : R — [0, 1] is a smooth cutoff function supported in
Ujeg(aj —2%2, a; +2*2) and equal to 1 in the set U;c 7 (a; —2/72, a; +2/72) and
satisfying natural bounds ||37 ®<;(x)|lp> < 27 ne{l,2,3).

We assumethatg € Aandsetg suchthatg(z, x) = —q(x+¢(¢, x)), orequivalently

o, 0(1,x) =x = 0, O(t, x)),
O(t,y):=y+q(t,y), Q@ x):=x+q(,x). (2.3)

This implies in particular that ¢ € A’, up to slight adjustments of the support of ® <.
Remark 2.1 The bounds above can be viewed as a norm for a function space in which
q(t, x) and g(z, x) must lie. We remark that this space is also critical, and indeed, if

it were not, ¢ would be perturbative and wouldn’t be necessary to begin with.

Performing a Taylor expansion in the denominator, we get for 1 = h(t, x) :
[0, 00) x R — R, the following one-dimensional evolution equation

@ +IVDh =N,  h(0,-) = hy, 2.4
with
N = ZN,,[h,...,h] where

n>1

(_1)"i/ dcht(x, @) - (h*(x,0))" da. (2.5
R

Nulhy, k..o h](x) = I
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The nonlinearities are initially a priori defined for nice functions  and &, but as part
of our proof we show that they are well-defined and can be estimated for the type
of functions 4 and h considered in our problem. From (2.4), we see that the linear
solution takes the form

RO, x) = e Vo (x), (2.6)

thus revealing the parabolic nature of the equation. This is the key property which
enables us to treat the problem as a semi-linear one (in the sense that we can perform
a fixed point argument to construct the solution), despite the fact that the nonlinear
term contains a derivative.

We denote

Ny () := Y Nulhj. b, ... h](x). 2.7

n>1

We will construct A (t, x) (correspondingly g(#, x)) as the sum

h(t,x) = Zhj(t,x),
jeJ

where we are denoting
hjt,x):=gjt,x —a; +q(t,x)), 2.8)
each g; will be defined to satisfy the following equation (see Lemma 2.6):

98t x)+IVIg;(t,x) = Fj(t,x +aj),
8j(0,x) = gjolx) =hjolx+aj), 2.9

with

Fi(t,x +a;) = d:hj(t, Q(t, x + ap)dG(t, x +a;) + Ny, (t, Q(t, x + a;))

—|V|gj(t, x)dxq(t, O(t, x +aj)) — Ejt, O(t, x +aj)),
(2.10)

and g, g are defined as above and E; is defined in (2.23)

G(t.x) =Y Gu(t, x),

n>1

where each g, (formally defined in (6.1)) intuitively serves as a logarithmic correction
term for its respective associated nonlinearity ,,, as defined in (2.5).

We need to solve the system of equations for g ;, with j € J. The aim is to construct
the functions g; solving (2.9) using a fixed-point argument in the space Z;. We will
decompose each g;,
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t
gj = g} + g? = e_t‘vlgo,j +/0 6‘_(t_s)‘v|Fj(S)dS,

so that gjl. € Zyand g2 € Zs.

From (2.9), we see that the only way to cancel any logarithmic loss which may arise
in the nonlinearity is by means of the correction term 9,g. In order to identify g, we
must first strip off all the terms in the nonlinear part which can be bounded until we are
only left with the logarithmic singularity. We then conclude the bootstrap argument
by verifying that this leftover term satisfies better bounds than the ones in (2.1)-(2.2).

2.2 Function Spaces Lemmas

In this section, we gather useful lemmas concerning the functions spaces defined in
(1.5)-(1.7). Most significantly, we verify that the change of variables does not alter the
norms.

Lemma2.2 For F1 € Z1, F, € Zy, k € Zandt € [0, 00) we have

IPeFi(0)l2 S 272 min(1, @50~ V1Y Fylz,, 2.11)
I PcF2 (D)2 S 2752 min{ 250110, 250~V 10V By ) 2,. (2.12)

In particular, for any F € Z, we have

(14201 P F (D)l S IIF |z, (2.13)
A+ 2°0Y10 P F )l 2 S 2742 F )2 (2.14)
Remark 2.3 From (2.14) we see that by taking the L? norm of frequency localized
functions, we have a gain in derivatives. As a result, since we have a loss of derivatives

in the nonlinear term, we will always take the function with the highest frequency in
L2

Proof From the definition of Z, for F € Z, we clearly have (14 25V 10 P F (1) Il 72
< 27k12) 1 F| 7,. That Pi F is also in L* follows from the Sobolev embedding

IPeF (@)l S 2K P F ()]l 2.

For F € Zi, we clearly have (14 2%0)1/10 Py F (1) | 1 S |IF ||z, - It remains to check
that (1 + 2%)1/10 P F(¢) is also in L>. We do this in the Fourier space. We have

PF(E) = gr(€) /R F(x)e € dx
= (&) F(x)e ™ dx + pi(8) F(x)e ™ dx

x|<27% |x|>2-k

=1 A(§) + B().
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We can easily check that
IA@®) L2 S 2721 F @)l Lee.

Moreover, using integration by parts (and a suitable limiting argument as described in
(2.19) in Lemma 2.4, to handle the limit at infinity), we get

/ F(x)e *$dx =—F(_2_k)ei27k§ — —F(z_k)e_izikg
x| =2k —i§ —i§

- = 9, F(x)e "8 dx
& Jix|>2-+

which yields

1B®lz2 < 272 IF @)l +27 X8 F )|

K H Lok
X L?
S2MIF@) e + 27 xc F ()| e
Combining with Plancherel’s theorem, we now get
I+ 20O P F o)l 2 S 272 IF ()|,
which concludes the proof. O

Since the nonlinearity is expressed in terms of the function / but we have Z-norm
control on the solutions g ;, we begin with the following two lemmas. For the remainder
of this section, we will not explicitly include the dependence on ¢ for simplicity of
notation.

Lemma 2.4 Assume g € L?, g € A, § € A, where A" and A are defined in (2.1) and
(2.2) respectively, t € [0,00), a € Rand h(x) := g(x —a + q(t, x)) (compare with
(2.8)). Then, for any k € Z we have

—(fe—F' T
1Pehllze S D IPegl2 2 ) + 3 " | Pegll 2272070 (2.15)
k'<k k'>k

Moreover, for g(y) = h(y +a+ q(t,y + a)), for any k € Z we have

1Pegllzz S D0 1Pehll 227 ) 13 | Pok) 227300 216)
k' <k k'>k

Proof Given k € 7Z we write

h(x) = Z(Pk/g)(x —a+q(t,x)) = hi(x) + ha(x),
k'eZ
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hx) = Y (Pug)x —a+q(t, x)),

k' <k-+4

ha(x) = ) (Pug)x —a+q(t,x). 2.17)
k' >k+5

To estimate || Pyh1]|| ;2 we take a derivative in x and write

h@) = Y (1+4' . 0))(Prg) (x —a+q(t. x)
k' <k+4

Therefore, since |¢'(7, x)| < ¢, it follows that

Il S Y IPeg) e S ) 25 I Puglipe.

k' <k+4 K <k+4

Therefore

1Pchill2 S ) 28 I Peglle. (2.18)
k' <k+4

To estimate || Pih2 |2 welet Gy (x) := (P g)(x —a-+q(¢, x)) and take the Fourier
transform to write

Gu(®) = f G (e dx = / (Prg)(x —a+ q(t.x)e *dx
R R

-5 / / Prrg (el 10~ gy
27T R JR
1 —

= 2—f Prg(mL(&, n)dn,
T JR

where here

L&,n) = / o~ ixE pin(x—a+q(t.x)) g,
R

We point out that the integral L does not converge absolutely, but remark that this is
the same situation as for the Fourier Inversion Formula (which would be the case if g
were equal to 0) and we can hence use the usual argument of defining the integral

Ly, n) = / o Xk QI —atq (1)) =8 g (2.19)
R

which convergesto L(§, n) as§ — 0. As we make the change of variables x = é (t,y),
this additional factor would become ¢ =823 Although we do perform integration
by parts in y in what follows, the derivative hitting this kernel is not worse than what
we have to estimate and the final bounds we obtain in (2.21) are uniform in the sense
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that they are independent of §. Our manipulations below, including the key bounds in
(2.20) are similar, still leading to uniform bounds in 3.

We make the change of variables x = Q(¢, y) and decompose the kernel L as
L =L+ L, where

Ll(é‘_, n) = e—i”]d/ e—iéé(l,,\))eiﬁyé/(l" y)(bf—k’()’) dy’
R

La(t, n) = e~ / eEBED G 5 (1 (1 — D) () dy,
R

and the functions ®<; are defined as before.
We would like to prove thatif |&| € [25~1, 2K+1] || € [2K' 1, 2K +1] and k’ > k+5
then

L., mI <277, nef{l,2). (2.20)

The bounds follow easily for the function L1, due to the support restriction on y. To
bound L, we integrate by parts in y,

L vt d [0, (1 =D p(y))
— ina itny—=§Q(1.y)) = =
Lo, m =t /ﬂée i 1—£0/.y) E

_ i,—ina i(ny—S@(l,y))M 1—®d__, dy + O 27K
ie /Re Lm0 ™),

This is not enough to prove the bounds (2.20), because of the factors 1/]y — x;| in
the bounds for |Q/ '(z, y)| in (2.2), which lead to logarithmic losses. However, we can
integrate by parts in y once more to see that

n0"(t.y)
(n—§0'G, ¥))?
Sz—k'_i_zk"/ei(ny—éé(t,y))i Q”(t,y)(l: ©57k/(Y))}d ‘
R dy (n—£Q'(t, y))?
<ok ¥ / 10" (1. |1 — PO, 10"t MNPy ()]

23k 23k

L€ ml s 270 +| fR el =E o) (1= () dy]

I€IIQ”(I VL — oo kDI

24k’

Using now (2.2) we estimate
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17 Page160f71 E. Garcia-Judrez et al.

ILag,ml S 27K 427 /

1
( > —|2)|1 — Py ()

R ]€j|y_xj
1
d__ . (yd
+<Z|y—x;|>' -k Oy
jed '
<27¥, 2.21)

This completes the proof of (2.20) for n = 2.
Given (2.20) we can now use the Cauchy-Schwartz inequality to estimate

|Pehallz S 3 1RGNz ) lew@Gr©ll

k' >k+5 k'>k+5
S D 2P ®Ge® gy
k' >k+5
S D 2Pl ®LE ML get yeny (Dl o2 1 Pegl 2
k' >k+5
S > 2R Pegl e,
k'>k+5

The desired bounds (2.15) follow using also (2.17) and (2.18). The proof for (2.16)
follows similarly, except that no change of variables is required. O

As an application, we show that & satisfies similar estimates as those for g in Lemma
2.2. Moreover, the change of variables does not significantly alter the N-norm.

Lemma2.5 Fork € Z,t € [0,00), f € Z, and T defined by f*(t,x) := f(t,x —
a+ q(t, x)), we have that

1Pt 0l 2 S 2752 min{1, @50~ V1%) £z,
1P (2, )12 S 2752 min{(2) /10, (2k6) =110 11 ,.

Furthermore, for f € N and f*(t, x) as above, we have that

1P fT (e, )2 S 2825010 F . (2.22)
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Proof First, let f € Z, and assume without loss of generality that || ||z, = 1. Using
Lemmas 2.4 and 2.2, we have

IPfT 0l S Y 272 4287210k 1102704
k' <k

n Z K121 4 2k/t)72/10(2k’t)]/1027%(k/7k)
K>k

< 27528 min{24n) /10, 241y 7110y
+ 259k min{(27)1/10, (2k;)=1/10y
< 275 min{(2k) /10, (2kp)~1/10y,

Now let f € Zy, || fllz, = 1, then, using again Lemmas 2.4 and 2.2,

1PfT @0l € 2720+ 2871102700

k'<k
i Z 2—k’/2(1 + 2k/t)—1/102—%(k’—k)
k'>k
<275 min(1, 1) ~1/1%) 4275 min(1, (2kr)~1/10)
< 275 min{1, %)~ 1/19).

We now let f € N, || f|lx = 1, then, using once more Lemma 2.4,

’ / / ’ ’ 1pr
1P STt 0l < Z K2k 1y~ 1/10 ==K . Z oK' [2(ok 1y =1/109=3 K'—k)

k' <k k'>k
<ok Z Z%k/(zkt)—l/l() 1 ok/2 Z(zkt)—%
K<k K>k

< zg(zkt)q/lo’
thus concluding the proof. O

2.3 Implementing the Change of Variables

In this section, we demonstrate how to move from the physical to the renormalized
formulation, and bound all linear error terms which arise in the process.

The first thing we consider is how the |V| handles the change of variables. The
following lemma shows that, up to error terms with sufficiently nice bounds, we
essentially have the chain rule. We point out that in order to handle |V|, we must
consider positive and negative frequencies independently, thus justifying the use of
frequency projection operators to positive and negative frequencies in the proof below.
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Lemma 2.6 Assume that hg is as in Theorem 1.1 and g : [0, 00) x R — R satisfies
the bounds (2.1). Assume that the functions g; € Z, j € {1, ..., M} solve the system
(2.9), with initial data g;(0, x) := hj o(x + a;), where

hj(t,x):=gjt,x —aj +q(t,x)), h(t,x) = Z git,x —aj +q(t,x)),
jed
Ej(t,x) == (IVIhj)(t,x) = (IV|gj)(x —aj +q(t,x))(1 +¢'(, x)), (2.23)

Then h solves the initial value problem (2.4). Moreover, the remainders E j satisfy
the bounds

/ 1.7
IPLE Iz S 625 ) 1 Pegjll 227 7 +625 Y "l Prgll 2272470,
k' <k k'>k
IPeE; |2 < €252 min{1, 25 )~ /1%) gl 2. (224)
Proof Consider /; as in (2.23). Assume that
dchj(t,x) +|VIhj(t, x) = Ny, (1, x), (2.25)
with /;(0, x) = h; o(x), which implies that 1 = Zjej hj solves (2.4). We compute

08j(t,x —aj) =0ihj(t,x +q(t,x)) + dchjt, x +q(t,x))3q(t, x)
=N (t,x + 4, x)) = (VIR x +q(t, x))
+ (Ochj)(t, x 4+ q(t, x))0:q (1, x),

from which we get

0gjt,x —aj)+ (IVIhj)(t, x +q(t, x))
= N, (t, x + G2, x)) + @xhj)(t, x +G(t, X)), G (¢, x),

and consequently, using the second identity in (2.23), we obtain (2.9). Hence, reversing

the process, we conclude that the identities (2.9) and (2.25) are equivalent.
To prove the bounds (2.24) we write

hi€) = /]th(x)fixé dx = /ﬂ;gj(x —aj +q(x)e € dx
1 7 .
o /R fR§J(ﬂ)6‘”(x‘)‘f+"(x”e“xé dxdn.

We remark here once more that the integral does not converge absolutely, but the same
argument as written in Lemma 2.4, around (2.19) applies. Therefore

V6 = o= [ [ W00 e axan. @26)
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Let P and P~ denote the frequency projection operators to positive and negative
frequencies,

PTF(p) = F(01s(p), P~ f(p):= F(p)1_(p).
It follows from (2.26) that
L OF 6 = 1@ 5 [ [ 97,005 et vy

In
= F&)+Gi),
1 —_— . .
Fi (&) = 1+(§)2—/ / 1+(77)|V|gj(77)Ee’"(’C"’J'JFQ("))e*”‘g dxdn,
7 JrJR |

n
1 _ . .
Gi1(§) = 1+(E)Z/R/Rl—(n)lvlg,-(n):in:e’”("*"f*q“‘))e*”“s dxdn.
(2.27)

We can integrate by parts in x to calculate Fj(§),

1 ©_— £ . i
Fi(¢) = 1_,_(5)—2]_[ /0 |V|gj(n)‘/R;eln(x aj+q(x) ,—ix§ dxdn
1 ® == i in(x—a;+q(x)) d —ix€
=14(8) IVig;(m) | —e J —{e " }dxdn
2 Jo RN dx
1 o . .
= 1+(§‘)—2n /0 |V|g./~ n) ,/R(l + q/(x))elﬂ(X—aj-Fq(x))e—sz dxdn

=L® /R<P+Ivlgj><x —aj+q))(1+q'(x)e " dx.
Similarly,
Gi(§) = —14(5) /R (PTIVIgN& —aj +q))(1 +¢'(x))e " dx. (2.28)

Similarly, we multiply the identity (2.26) by 1_ (&) and integrate by parts in x to derive
the identity

1_®IVIR;E) = F2E) + G2(8),
Fy&) = 1_(¢) /R<P‘|V|g,-)(x — ) + ()1 + ' (x)e ¥ d,

G2(8) == —-1_(§) /R(P“lelgj)(x —aj+q0))(1+¢'(x))e " dx.
(2.29)
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We add up the identities (2.27) and (2.29) and notice that

Fi(¢) = /R(P+|V|gj)<x —a; +q))(1+ ¢’ (x))e ™ dx + G (&),
Fy(¢) = /R(P*w,-)(x —aj +q)(1+ ¢’ (x)e ™ dx + G (&).
Thus

IVIhjE) = meg,-)(x —a; +q))(1+q' (x))e ™ dx +2G1(§) + 2G(£).

Therefore, we have the precise identity
[VIhj(x) = (IVIg)x —aj +q@))(1+4q'(x) + E(x),

1 .
E@ =5 fR (2G1(8) +2G(6))e ™ de.

It remains to prove the bounds (2.24) on the error term. We decompose E =
2E1 +2E,,

1 : 1 .
Ei(x) = 2—f Gi(E)e™  ds,  Ex(x) = —/ Ga(&)e™* d.
T JR 2 R

We begin with £ and use the formula (2.28) to write

PeE1(€) = —gr()11.(8) fR D (PEIVIgN(x —aj +q))(1 +¢'(x)e ™ dx
k'€l

1 0 —
——a@OL©O- [ > amTign
“Xrez
x / MmO (1 4 g’ (x))e ™ dxdn,
R

1 o _—
= _¢k(§)1+($)g/m Z o (MIVIg;(mLE, n)dn, (2.30)

T K el

with

L= [ M 1 g e d,
R

We make the change of variables x = 0( v), as defined in (2.3), and integrate by parts
in y once to get

A e N e e_ina./' N -
L, n):e‘”’”-//e‘lfq(”ely(" S)dyzé /q/(y)ezmy E0) gy
R n—§& Jr
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Notice that we expanded O(y) = y + G¢(y) in order to get the necessary smallness
factor from §’(y) which we don’t have for Q’(y).

For any k, k' € 7Z we let k* = max(k, k') and decompose the kernel L as L =
L1 + Ly with

e [y iy—£00)

L n) = /q(y)e’(”y FEND s (v)dy,
n—=§ Jr
e—inaj ~ . -

Lot i= S [ G P 00— 000y,

where here ®~_;« is defined as in (2.1). We claim that for £ > 0, €] € [2F1, 24+1]
and n < 0, [n] € [2K~1, 2 +1], we have

L€, )| S 282K nefl,2). (2.31)

The bounds for L follow in a straightforward way from the support of the cutoff
function and the smallness factor from (2.1). For the bounds on L, we integrate by
parts once more in y to get

et =i e [ o-sdon 4 (70100,
n—=§ R

dy n—£0'(y)
e —ivas D 7" () okt
— ;;: ”7”// iny—§0(y) 4q - (1—(b<_ *( ))d +80(2k 2k )
kS —EQ (e Ew

Since the bounds for ayzq are not sufficient and lead to logarithmic losses, we perform
another integration by parts in y to obtain

2k y—e0y 4 (7" = P (y))
Lo )| < &2 +2kf iny-£00n 4 o< d ‘
IS e + 2 f € e T

2 / <|q<3>(y)|'|1—d>5_k*(y>| L3O 1y (@) )

<eg
~ 50k 93k 23k

11" WP - 11 = @i (V)]
+ 24k* dy

k—2k*
<e2 ,

where we used (2.2) in the last line, thus proving the claim (2.31). It now follows from
(2.30) that

k

— 2 —_—
P.E < ——— | Vigi d
| Py 1(s)|Ne¢k<S)Aézzk+zzk, e MV g ()l dn

/

242 :
S epr(§) Z mzk /2||Pk/gj||L2
k'el
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By using the Cauchy-Schwartz inequality we now get

_ 23k/293K /2
IPEL S e ) a1 Pesiloe.
k'el

The expression Py E(x), can be estimated in a similar way, thus concluding the proof.
O

The free evolution of g; will lie in Z;, while we will show that the forced terms
land in Z,. We thus have to study the right-hand side terms in (2.9) in Z; for g; in
the sum space Z. The following lemma provides estimates for one of the terms. Due
to the bounds on ¢, given in (2.1), it is natural to expect that the term involving a first
derivative of ¢ would be an error term.

Lemma2.7 Letg; € Z and q(t, x) satisfy (2.1). Then, forany k € Z and t € [0, 00),

1P (Bxq)(t, O, x)IVIg;(t, )l 2 < 2522 ) 110 g1 2.

Proof Let us denote u(t, x) = (3xq)(t, Q(z, x)). We expand

Pr(IV|gj - u) = Prl(Pr-34+311VIg)) - P<k—aul + Pu[(P<k-41V|g;)) - Px—3k+31u]
+ > Pil(Py|V1g)) - Piyt]
k1,ka>k—3, |k1—k2|<6
=81+ 5+ 8.

Then we estimate

IStll2 < I Puk—3as31IVIgj 2 - | P<k—aullzoe < €282 min{l, 250 ~1% g1z,
1820112 S 1 P<k—alVlgjll 2 - | Pr—sarsiullzoe < €282 minfl, 240 ~V1% g1l 7,
(2.32)

using (2.14) and (2.1). 3
To estimate S3, recalling that Q(¢, Q(¢, x)) = x, we calculate that u(z, x) can be
rewritten as

—0xq(t,x +aj)

1, = — .
u(t, x) I+ 0xq(t,x +aj)

We want to show that for any / € Z we have
1Pl 2 S 627172, (2.33)
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By translation invariance, in what follows, we can assume without loss of generality
that a; = 0. We begin by splitting Pju(t, x) = Pjui(t, x) + Pua(t, x) where

—0xq (2, x)
14 0,q(t, x)
_axé(tsx)
1+ 0xq(t, x)

Puur(t, x) = P i),

Piua(t, x) = Pi( (1= &),

where the cutoff functions ®<_; are defined as in (2.1). For Pju;(t, x), using (2.1),
we easily get

Pl 2 S 27172, (2.34)
To estimate Pju, we need to take an extra derivative. We write
-1
| Pruzll2 S 270 1Pl g2, (2.35)

and we compute

—03q (1, x)(1 = P<y(x)) | 3:G (@, X)(3x¢<—z)(X))

Piocus(t,x) = P, ~ g
10x U2 (1, Xx) 1( (1 + 8.1, x))? 1+ 0,g(t, x)

which, using (2.2), yields
I Prdusll < e2'/2. (2.36)

Combining (2.35) with (2.36) and (2.34) yields (2.33).Using again (2.14) and the
Cauchy-Schwartz inequality,

18302 < > 22\ Py Vgl 2 - | Pyl 2
ki,ka>k—3, |ky —kz|<6
< ok/2 Z k21 4 2k1t)—1/10”gj||z g2 ke/2
ki,ka>k—3, |ky—k2|<6
< e2M22f 1062 (2.37)
The desired conclusion follows from (2.32) and (2.37). O

3 Reformulation in Terms of a Pseudoproduct

We would now like to rewrite the nonlinearity A defined in (2.5) as a pseudoproduct.
We begin by introducing some extra notation. Here and for the rest of the paper, we
will define & € R21+1 a5 g = (&1, ..., &py) for scalars and similarly, for functions,

fo= fe s fangn)-
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We now pass to Fourier variables and write
1 ix&
h(x) = h(E )e' dg,

1 | 1 — e—ioé
ot [ [Roct o= [R5

1 R 1= —ia&
Okt (x, @) = — / nEeE—C g
2 R o
We substitute these formulas into (2.5), and we now need to understand the multilinear
pseudoproduct
2n+1

Ny = ED° ! [] Aee~Ert-tomm, &) ds ¢,
T R2n+1 =1 - -

(2n)2n+1 dx
3.1
where the multiplier m,, : R*"*! — C is given by
2n+1 2n+1 —10551

COEEDY qf 1"[

ok,
By writing
fe(&) = /Rfe(yz)fi&” dye, Lefl,...,2n+1},

the identity (3.1) can be written in the physical space

2n+1

_&hd d s _
T(H) = — E/Rzn+1d_ylgﬁ(y’)’(”(x y)dy.

with the kernel defined as

K, (g) = / ei Z%Elr' zeélmfl (é-) d§ with
R2n+1

2n+1 —lﬂté:z

m© = G . H =

We remark that pseudoproducts can also be analyzed in conjunction with the
Littlewood-Paley projections. Indeed, (3.1) shows that

2n+1
T,(f)(x =0 ( > / i& H Pk@fe(ée)mkdé*) with

k 72n+1
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2n+1

my @) =m' @) [ o). (3.2)

i=1
where, with ¢ 1= 3,12, @l+as

2n+1

,,,,,

(=1

Throughout our analysis, we will need frequency cutoffs in (3.2) on both the functions
(in order to estimate the pseudoproduct) and on the multiplier (to obtain bounds on
the kernel). In order to be allowed to do this, we need to ensure that ¢;¢; = ¢, and
hence take a slightly larger support for ¢;.

In order to work in the physical space, we define

1 1 —eio ixt
Lo = 5 /R 6 e s, (33)

and, with @< = @<k42,

1 [ - 1 —ei8
Le(x,0) = 5— f Pk(§)— et db. 3.4
21 JR iEa
The full kernel can now be expressed as
2n+1
Ky (¥) = / [ LrCxe. ) da. (3.5)
R
=1

In physical space, the pseudoproduct hence takes the form

(—1)” d d 2n+1
Tn(Pr, f1,..., P n = — — P Ki(x — .
P frvee P ) = S [ [T Arsonkate = yay

(3.6)

3.1 The Kernels L, and L

Our goal is to analyze the kernels Ky,
the following lemma.

konyy defined in (3.5). To this end, we have

,,,,,

Lemma3.1 (i) Let Ly and L<i be defined as in (3.3) and (3.4). Then the following
bounds hold:

/ |Ly(x, )| dx < min(1, ¥a)™), (3.7)
R
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and
/ |L<i(x,)|dx < 1. (3.8)
R
(ii) Letting
2n+1
Kk ko, <ks..., <o (X) 1= / Ly, (x1, ) Ly, (x2, @) l_[ Lk, (x¢, @) da,
R
(=3
we have
1Kk ko <kis.oe <k N1 @21y S 27 ™ E R A4k — ko). (39)

Proof (i) From (3.3), we have

—iag2k

. 1 - kel —e
et ds=—/ Po(&)e'* ™ ———— d&.
27 Jr ifa

—iag

1 - 1 —
Li(r.a) = Eé¢o<s/2k)@%

We now denote by v/o(x) the inverse Fourier transform of @o(¢)/i& and we thus
obtain the formula

_ %@ — Yo — )

o

Li(x,a) (3.10)

We now use (3.10) to evaluate the L'-norm of Ly. For 2¥|«| > 1, we can write

J

< Qa7

Yo(y)

kg

dy

[¥0(2"x) — Yo" (x — @))] ‘ Iy < /
IR

L[ty —2ka)
o 2k

where in the last step we used the fact that v, being the inverse of the Fourier
transform of go(£)/(i€), is a Schwartz function, and is hence bounded in L'-norm.
For 2%|a| < 1, we use the property that all Schwartz functions satisfy

Yo (p) — Yolo + p)I < lol(p) ™,

for |p] < 1 and any p € R. As aresult, we get

J
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(ii)

thus completing the proof for (3.7).
We now prove (3.8). We have

[ e 1 — emios2!
La(x, @) = 5= / G0 (§)e? ¥ ———d&.
2 iEa
Denoting by ¥ <o(x) the inverse Fourier transform of @<((&)/i§ yields

Y<0(2kx) — Yot (x — @)

o

Lp(x,a) = (3.11)

However, since ¢<(£)/i§ has a singularity at 0 the function ¥ < is not in the class
of Schwartz functions, thus preventing us from directly taking the L'-norm as we
did above. Instead, we notice that the derivative of {¥<, given by

;o1 p<a@)e 1 ixt
w<o<x>—§ax(/RTds> —ngwfz@e dt,

is in the class of Schwartz functions. We thus rewrite the difference in (3.11) as

< 2kx) — < 2K (x — 1 2 /
Y<0(2"x) — Y<0(2*(x — ) ‘ m‘ /M ) Ylo(y)dy
12

o
2
S — (y)"°dy.
o] Jok(x—a)
‘We thus obtain the bounds
<02 %) — Y0 x —a)) | _ 1 _
Vs I{; ‘ < ol 1|x\22|a\2k|a|(2kx> ‘4 Lixj<2fal )-

(3.12)

Integrating (3.12) in x now yields (3.8).
Without loss of generality we may assume that k; > k. Using (3.7)—(3.8) we
estimate

f VKo Sk shan D dX S / min(1, 2% )™ min(1, @2 }a)™") de
R R
2700+ = ka),

as claimed.
O
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3.2 The Modified Kernels
For certain estimates of the pseudoproduct, working simply with the L'-norm of the

kernel will lead to a logarithmic loss. To overcome this difficulty, we introduce the
following decomposition of Ly and L,

~ 1
Li(x, @) = Li(x, @) + — min(1, 2%a)y(2),
o

Lox(x, o) = L (x, ) + émin(l, )yl (25 x), (3.13)
where here
Ti(x,a) = Yo2x) - g[g)(Zk(x —) _ émin(l, k)l 2kx),
Lo(x,a) = Y=o ‘/;50(2](()6 —) _ émin(l, Kyl (25x).(3.14)

The following lemma provides us with bounds on the L !_norm of the modified kernels
Lj and L <4 and highlights the improvement from Lemma 3.1.

Lemma3.2 (i) Let Zk and ka be defined as in (3.14). Then

f |Li(x, )| dx < min(2|ee|, 2K|a))™h),
R

/ |Z§k(x, a)|dx < min(2¥|al, 1). (3.15)
R
(ii) In particular, if

Ekl,kz,fky.‘.,gkzn“ (@2=/ Ly (x1, @) Ly (x2, @) Ly (x3, @) . .. L<k,, ., do,
R
(3.16)

and if k1 > kp, then
1Ky ey, <kl | L1 21y S 2751 (3.17)

Proof For 2F || > 1, the bounds follow from Lemma 3.1 and (3.13).
When 2¢|a| < 1 we have

Tilx.a) = Yo (2¥x) — Yok (x — ) — ZkOllﬂ{)(ka)’

o
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from which we get

.
1 y ) /
< ./R 2k|a| v[y_zk(x[lpo(p) - wo(y)] dp‘dy

1 y P p
S [V ()| dsdpdy
2Kl Jr y—2ka Jy

< 2Kal.

Y0 (25x) — Yo 2K (x — @) — 2Ky (2Fx)
o

dx

thus concluding the proof of the bounds in the first line of (3.15).
The proof of the bounds in the second line of (3.15) is similar, since ¥, is a
Schwarz function. Finally, to prove (3.17) we estimate B

/% | Ky k. <ks (X1, X2, X3)| dx1dxadxs

R.

< : ki —1 : kp ko —1

N/mln(l,(Z le[)™") min((2** o], 2% |e|) ™) dox
R

<o ki,

as claimed. O

3.3 Study of the Functions in the Z; Space

Finally, before we can begin estimating the pseudoproducts, we need a further under-
standing of the space Z;. Specifically, in the following lemmas, we take advantage
of the shape of the functions in the space Z; to split them into core and error terms.
Assume that g € Z; and define

T(g)(tv-x7a7k) :=A;g(t,x—a—y+q(t,x—y))

Y<02*y) — ¥<0F(y — @)
X dy,

(3.18)
o
where k € Z and a € R. Recall that
1 1 e
V<o(x) = 5— | —eo<(§)ds.
2 R ZE
It is easy to see that {<q is an odd function on R and
1 ix&
Ocy<0)(x) = — | e p<a(§)dE,
T JR
lim Y¥<o(x) = 1/2, lim Y¥<o(x) = —1/2. (3.19)
X—> 00 X—>—00

@ Springer



17 Page300f71 E. Garcia-Judrez et al.

By looking at (3.18), we notice that if 1/« had a power that is only slightly better
than 1, the expression would be integrable. This motivates the following lemma.

Lemma 3.3 (Decomposition of functions in Z;) Assume ||gllz, =1, k € Z, a € R,
and |a| > 27K, Then

9/10
_ ‘ |
|T(t,x,a, k) — p(t,x,a)| < |: lo|lx —a +q(t, x)| }

Ix —a+q(t, x)]> + ||? 2K |’
where here
0 iflal € [lx —a+q(t, x)|/4,4x —a+q(t, 0)|],
+ i 4|x —
ot x.q) = gr(t,x,a) l:f|0l| >4lx —a+q(t,x)], a>0, (3.20)
g (t,x,) ifla| >4|lx —a+q(t,x)], a<O,

glt,x —a+q(t, x)) ifla| <|x —a+q( x)|/4,

1 o
gtt, x ) = 5/0 gt,—y +qt,x —y) —q(t,x)dy,

-1 O
g (t,x,a): 7/ glt, =y +q(t,x —y) —q(t, x))dy. (3.21)

Proof We fix || > 27% and x € R. For |x — a + ¢(t,x)| < |a|/4 and « > 0, we
begin by observing that

2ky

y
Y<0(2*y) — <0 (y — a)) = 2* / Yoz dz = /2 Ylo(p)dp.
y—(x

K(y—a)

where ¥, is a Schwartz function. As a result, for the values of y such that y and
y — o have the same sign we get error terms. In fact, for y > o, we have

Y<02Fy) — Y=o (y — ) J )
y

‘/ gt,x —a—y+q@t,x—y))
y=a o

1

gl .
< lgli> / Oty — ) 2dy| S .
y>a 2¥]a|

= e

Similarly, for y < 0, we get

Y<0(2ky) — Y=o (y — ) J ‘
y
o

/Ogmx—a—y+qu—yn
y=

1
<2ky>‘2dy‘ < :
/;50 2K o

It remains to understand the core terms, when y € [0, o] and we have to integrate
through 0. The idea here is to approximate the w50(2k y) and 1/f§0(2k (y — a)) terms

_ gl
o]
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by the value of ¥<¢ at 200 respectively. More precisely, using (3.19) we write
o0
weo@ 9 = 1721= | [ wlooadp| S @22
y

(-
0@ (=) +1/21 = | / Vao()dp| S @4y — )2 (322)

Estimating as before and recalling also the definition (3.21) we have

/0 git,x—a—y+q(t,x—y))

y Y<0(ky) — 1/241/2 — (W<0(2*(y — ) + 1/2 — 1/2) dy
(07

o — — — 00
:/ gt.x —a—y+qt.x y))dy+0<||gI|L )
0

o 2K |«

=gt x, @
f”‘ gt,x —a—y+qt,x—y)—gt,—y+qt,x—y) —q(t, x))
+ ; dy

o
+ 0 !
Hlal)

To estimate the last error term, for simplicity of notation, we set

X(t,x)=x—a+q(,x),

and we recall that we are assuming | X (¢, x)| < |«|/4. Then

)/“ gt,x —a—y+qt,x—y)) —glt, —y+q(t,x—y)—q(t,x))dy‘
o

IX(t x)l|| I

X(t,x)
+—’/ / g/(t,ﬂ—y+q(t,x—y)—q(t,x))dﬁdy‘
ol J21x(t,x)]
X, x| 1 %X, x) 1X (¢, x)| 17710
S Seay g |
2

(3.23)
o X 1Yl o

since from the definition of the Z{-norm, we know that |y||g’(t, B—y +q(t, x —y) —
q(t, x))| < 1. 1Indeed, since |y| > 2|X (¢, x)| and |B| < | X (¢, x)|, we can assume that
the argument in the second line of (3.23) is of size y. This completes the proof in the
case [x —a +q(t,x)| <|a|/4 and @ > O.

Assume now that [x —a + ¢ (¢, x)| < |a|/4 and o < 0. The error estimates follow
identically and we can thus assume that y € [«, 0]. Arguing exactly as above, we
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obtain

0
/ gt,x —a—y+qt,x—y))

y Y<0(2ky) +1/2 = 1/2 = (Y=o (y—a)) — 1/2+ 1/2) dy

o
0
z_/a gt,x —a ya+q(t,x y))dy+2k|a|0(”g”L°°)
=g (t,x,a)
_fog(t,x—a—y—f—q(t,x—y))—g(t,—y+q(t,x—y)—q(t,x))dy
o o
+ o,
2|

The error term can be estimated as in (3.23), and the desired conclusion follows in
this case as well.

We consider now the case |x —a + g (¢, x)| > 4|a| with @ > 0. For y > o and
y < 0, we get the same error terms as for the previous case. [t remains to set y € [0, «].
Using (3.22) and estimating any remaining error terms as above, we obtain

¢ < 2kyy — < 2k(y —
/Og(t’x_a_)"f‘CI(l‘,x—y))w—O( ) '/;_o( (v a))dy

Yo(t,x—a—y+q(t,x —
=/ 8( y+q( y))a,ij Lo
0 o 2%«
1 o x—a—y+q(t,x—y) , 1
= */ (g(t,x—a+q(t,X))+/ g(t,p)dp)dy-i-TO(l)
a Jo x—a+q(t,x) 2K o

||
O(1).
X —a+q@t ] +2k|oz|) M

g(f7x—a+Q(l,X))+<

The last step follows from the fact that ||xg’||z~ < [|gllz, < 1, the regularity of ¢ in

(2.1), and the assumption 4|c| < |x —a+¢q(t, x)|. The case @ < 0 follows identically.
This completes the proof. O

Remark 3.4 Using the change of variable (2.3), we can rewrite the core terms p in
terms of y to get

0 if | € [ly —ajl/4,4ly — a;]l,
_ gra,y,0) iflal >4y —ajl, a>0,
pj(t,y’a) = -/_ . J (3.24)
gty ) ifla] >4y —ajl, a<0,
git,y—aj) ifla| <|y—ajl/4,
1

gray = ;/0 gjlt.—p+q(t, 0, y) = p) —qt, O(t, )1 dp,
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~ -1 (0 ~ -
gty )= 7/ gjlt,=p +q(t, Q@t, y) = p) —q(z, Q@, y)ldp.
(3.25)

We can further approximate the core terms p of functions in the Z; space, provided
2kt > 2 and || < 2t. The idea of this lemma comes from the uncertainty principle,
which tells us that a function with frequencies less than 2X must be constant on intervals
of size 27,

Lemma 3.5 Assume ||gllz, = 1, a € R, and define the function p = p(g) as in
(3.20)—(3.21). Then

P, x, ) — p*(t. x, )| < [leel /1],

provided that |a| < 2t, k(t, |c|) is the smallest integer satisfying 2kl > (|o|r)~1/2,
and

0 iflal € [Ix —a +q(t, ©)|/4, 4lx —a +q(t, O],
PH(t,x, @) i= { Petr.mg(t, 0) iflal > 4lx —a +q(t, )],
gt x —a+q(t,) iflal < |x —a+q(t,x)/4.

Proof We only need to consider the case |«| > 4|x — a + ¢(¢, x)|. We decompose

8 = P<ka,lapg + Z Fig.
I1>k(t,|a])+1

We examine the formula (3.21). For @ > 0 we estimate

1 o
’5/0 gt =y +q(t,x = y) —qt, X)) dy — Pk, 8t 0)‘
1 o
= —| | [Praieng(t. =y +q(t.x = 3) = (1. ) = Petyag (s, 0)1dy
0

l o
+ D ;/ |Pig(t,—y +q(t, x —y) —q(t,x))|dy
1=kt la)+1 70

S a9y P<ijan@Olize + Y I1Pg@®)re
I=k(t,]a])+1
< |a|2k(t,|ot|) + (Zk(t‘m')t)_l/lo,

where we used the definition of the Z; norm in the last line. The desired bounds follow
due to the choice of k(¢, |a|), 21D ~ (|a|r)~1/2. The analysis is similar in the case
o < 0, and the lemma is proved. O
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4 Bounds on Trilinear Operators

In this section we start our analysis of the nonlinearities N}, i defined in (2.7). We

decompose these nonlinearities and show that most of the components satisfy suitable

perturbative estimates, while one particular component requires renormalization.
For the benefit of the reader, we carry out the analysis for the trilinear nonlinearity

(taking into account only the first term of the Taylor expansion in (2.5)). A general-

ization to the full nonlinearity is carried out in the next section. We hence define the
trilinear operator

1 d * * *
Nl i, for f31) 1= —;E{fRaxfl (o) f3 (5 0) f (x,a)da}

and denote
N3 (x) := Nlhj, b, h](x),
where h = h(t, x) : [0, 00) x R — R solves
O +|VDh=N3,  h(0,-) = ho.

Since each logarithmic correction gy,41 cancels the logarithmic loss arising in the
respective nonlinearity N>, 11, we also denote by

q(t, x) := qpn41=3)(t, x), associated to N3,
as defined above. Similarly we define
Q@t,x) :=x+qt,x) and Q@ y) =y +3§ y), 4.1
the analogues of Q and é as defined in (2.3), for the trilinear setting.

From (3.6), we see that the trilinear pseudoproducts we need to understand are of
the form

T(Py, f1, P, f2, Prs f3) (%)
1 d d
=——— — (P SO (Pry f2) (32) (Piy f3)(3)
mwdx Jr3 dy

X Kk ko s (X — Y1, X — y2,x — y3) dy1dysdys. 4.2)
4.1 Localized L2 Estimates

The following lemma provides bounds for trilinear pseudoproducts and will prove to
be of fundamental importance throughout the rest of our analysis.
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Lemma4.1 Let T3(Py, f1, Pk, f2, P, f3) be defined as in (4.2). Then we have
I Pe[ T3 (P, f1. Py fa P f) ]Il S 280 Pay fill 121 Py S2ll oo | Pay f3l oo
Alternatively, we also have

I P[T3(Px, f1, Pes foo Pis f3)]ll2 S 252821 Py, fill 211 Py ol 1211 Prs 31 0o

Proof Without loss of generality we may assume that k; > k» > k3. We introduce
(3.14) to split

1 2 3
Kk k3 (215 225 23) = Ky, gy 1, (215 225 23) + K gy 1, (215 22, 23) + K§ 4, 45 (215 22, 23)s

where

1 . 7

Ky, koks (21,22, 23) -=/RLkl(m,a)Lkz(Z2,a)Lk3(za,a)da,
2 . 2a 2b 2¢

Kiy ko ks = Ky ko ks T Kiiy o ks T Ky kg ks

with
K2 = [ L L min(1, 226y 2%20) I d
Ky ey (215 22, 23) 1= k (21, @) — min(1, 2% )Y (2% 22) Li; (23, o) da,
o, . o

-
K2, (a1 22.23) = / Liy (a1, mind1, 22a) i 2422)

loe| <271

1
x —min(1, 28 )y (25 23) da,
o

1
K 4121222, 23) = f Liy (21, )~ min(1, 22)yr(222)

la|>27*2

1
x — min(1, 2k3ot)1/f6(2k3Z3) da,
o
and

KR\ ks (21522, 23) := 29100 (22 20) 9 (29 23) Ly, (21, ) dor.
laje[271,27%2]

Using Lemmas 3.1 and 3.2 we get

1 —k 2a —k
1Kk, ks I 3y S 277, 1K ks liwyy S 277,
2b —k 2¢ —k
1K ks iy S 277 K ks iy S 277 (4.3)

By expressing Ly, using (3.10) we obtain

/ [0 (2K1x) — Yo (28 (x — a))] J
o
laje[27F1 27k

o
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_ kicy —
=/ (Y0 (2" (x — )] da. (4.4
laje[27F1 27k

o

where the cancellation is a result of 1/« being odd. Reinserting (4.4) into K> yields

[— Y025 (x — )] o

lale[27F1,27k2] a

Ki iy = 255052220025 23)

Forl € {1, 2, 3} we define

TPy, 1. Pay fo. Pay f3) ()

1 d

d
= - d—yl(Pkl SO (Pry 12)(y2) (Prs f3)(3)

X Kp ks O = V1. X = y2,x — y3) dyrdy,dys.

In view of (4.3), for [ € {1, 2} we have

I Pe[T5 (Pi, f1, Pio for Pis 1322 S 281 Pry fill 21 P foll oo | Pas f3 I oo
I Pe[ T3 (Piy f1, Pio fos Pis )]l 2 S 2528211 Py f1ll 211 Py 2l 1211 Py f3ll Lo . (4.5)

We would like to prove similar bounds for [ = 3. By rearranging all the terms, we
obtain

T3 (P, by, Piyha, Pish3)(x)

1d
= _;ﬁ{szhz(x)ben(x)

— P hi(x —a)

lee|e[27F1,27k2] o

da } , (4.6)
where we have used that by definition w = @, hence

Py fi(x) = /R2kj(Pk,—fj)(x — @Yy dy;.  jefl,2.3)
From the boundedness of the truncated Hilbert transform we have

—Prhi(x —a)
I/ | B VWA 15 A7
lerle2741,272] Ly

o

uniformly in k1 and k3. The bounds (4.5) for [ = 3 follow from (4.6) and (4.7). This
completes the proof of the lemma. O
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4.2 Trilinear Estimates in the Space Z;

For any triple (k1, k2, k3) € Z3 we let (k*, k3, k3) € Z3 denote its non-increasing
rearrangement, kj > k3 > k3. Given k € Z we define two sets:

Sit o= {(ki. k. k3) € Z : k¥ € [k — 3,k + 3] and k3, k% < k — 6},
Sk = 1{(ki, k. k3) € Z ¢ |k* — k%] < 10 where k¥ > k — 3 and k¥ > k — 5).

We localize and decompose the nonlinearities N3; more generally we decompose
Pi[T3(h1, ha, h3)](x) = Gr1(x) + Gra(x),
where, for [ € {1, 2},
Grlhi, ha, h3](x)

1 d d
=== Y P | =Py (n)Pryha(y2) Pish3(y3)
b4 dx Jr3 dy,
ki.ka.k3 €Sk 1

X Kiy ko ks (X — Y1, X — y2,x — y3) dy1dysdys.
4.2.1 High-High-to-Low Estimates

We estimate first the term Gy 2, for all input functions in the space Z.

Lemma 4.2 Assumethat f1, f2, f3 € Z, and define h;(t,x) := f;(t,x—a;+q(t, x))
as in (2.8), for some points aj € R. Then for any k € Z and t € [0, 00) we have

Gk alht, ha, i3] 2 S 252+ 25071 fillzll Al llz. (48)

Proof We write Sy » as a disjoint union Sk 2 = S,l U S,% U S,*Z , where

Sta = (k1 k2, k3) € S s ki < mintka — 1, ks — D),
Sto = {(k1. k2, k3) € S2 : ko < min(ki, k3 — 1)},
Sp o o= {(k1, ka2, k3) € Sk2 : k3 < min(ky, k2)}.

Then we decompose the functions accordingly, Gy » = G 1&,2 + G%’z + Gi,z, where

Gy olhy, ha, h3](x)

1 d d
=—— E P — — Pi hi(31) Py ho (y2) Prs hi3(y3)
dx Jr3 dy
kl,kz,k3€S,?’2

X Kij ko ks (X — Y1, X — y2,x — y3) dy1dysdys,

fora € {1, 2, 3}.
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We will only prove the estimates (4.8) for the functions G,% »; the estimates for

the functions G% , are similar, while the estimates for G! k. are easier because the

derivative hits the low frequency factor.
Assume without loss of generality that || f;||z = 1. As in the proof of Lemma 4.1
and using (3.9) and Lemma 2.5, we estimate

1GRL ()2
< > 2424228 || Py iy () 2 | Pry ha (O] 12 173 (0| 2 | K ky ey, <minhy o)l 1

~

[kt —kz| <10, ki ko =k—5

< Y 2R Rimingr, 2410
k1>k—5
<22 min{1, 251},

as claimed. O

4.2.2 Low-High-to-High Estimates

We estimate now most of the components of the trilinear expressions G, 1. We write
Sk.1 as the union S| = S,: U S,fl U S,?l where

S;lc,l = {(k1, ko, k3) € Sk,1: kj = max(ky, k2, k3)}, 1 e{l,2,3}.

Then we decompose the functions accordingly, Gx.1 = G ,1(,1 + G%,l + Gz |» Where,
fora € {1, 2, 3},

Gy 1lhy, ha, h3](x)

1 d d
= —— P— —Prh P h Pr.h
- > “ax Jos dyy H 10y1) Piy ha(y2) Pigh3(y3)
k],kz,k3€S;:,l
X Ky o ks (X = Y1, X — y2, X — y3) dyidyadys. (4.9)

We show first how to bound the trilinear expressions G,%’ | and G,%’ 1
Lemma 4.3 Assume that f1, f2, f3 € Z and define h(t, x) := f;j(t,x —a;+q(t, x))

as in (2.8) for some points a; € R. Then, fora € {2,3}, k € Zand t € [0, 00) we
have

I1GE Oz S 252 + 207210 fulizll 2Dzl f3 1z

Proof The two cases are similar, so we will assume that a = 2. We may also assume
that || f;]|z = 1. As in the proof of Lemma 4.1 and using (3.9) and Lemma 2.5, we
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estimate
IGR Ol S Y. 225 P k@) oo | Pryha (0112 3 ()L oo 1 K ky k. <k 61 1
ko —k| <3, k) <k—6
< Y0 2928 min{l, @9V 2 min(1, 2401027 F k- & |
k1<k—6
< Y0 2MRR Rk — Ky min(1, 28H 710 min(1, 25 ~1/10)
ki <k—6
<22 min{1, 2% ~110P2,
as claimed. O

We estimate now the trilinear expression G ,1 | when one of the low frequency inputs
is in the space Z».

Lemma 4.4 Assume that (fi1, f2, f3) € Z X Z X Zy or (f1, 2, f3) € Z X Zr X Z
and define hj(t,x) = f;(t,x — aj + q(t, x)) as before. Then, for any k € Z and
t € [0, 00),

IG} 1 llz2 S 252 min{1, 0~V Al zll ANzl 2,
IG} 112 S 252 min{l, @0~V fillzll Aol 2, N £l 2

Proof The two bounds are similar, so we will only prove the bounds in the second
line, corresponding to (f1, f2, f3) € Z x Z, x Z. We have two cases: if f3 € Z, then
we may assume that || 1|z = || f2llz, = || f3llz, = 1 and use Lemmas 4.1 and 2.5 to
estimate

G Dl S > 24 Py hy () 22 1| Piyho (0) || oo || Pes 3 (£) ] o
k1€lk—3,k+3], kp,k3<k—6

2
<2272 ming1, @010 min(2n!10, @ 7110))
ko <k—6

< 2k12 min((2k1)2/10, (2K 1)~ 1/19).
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as claimed. On the other hand, if f3 € Z| then we may assume that || fi ||z = || f2llz, =
I f31lz, = 1. We examine the formula (4.9) and decompose G,i,l = G,i[{ + G,l:lf where

La . 1
Gk’l[hl s ho, h3l(x) == ——
|k1—k| <3, ky<k—6, k3€[kp—3,k—6]

d d
— — P h P h Pr.h
o s dnn k1 (y1) Py ho (y2) Py ha(y3)

X Kiy ko ks (X — Y1, X — y2, X — y3) dy1dy2dys,

1
Gy lhi, hy, h3l(x) = —— Y
|k1—k|<3, ko<k—6

d d

— — P h P h P<j,_ah

ko s dn ki1 (1) Py ho (y2) P<ky—ah3(y3)

X K ky,<kn—a(X — Y1, X — y2, x — y3) dy1dy2dys.

The function G,i? can be estimated using just Lemmas 4.1 and 2.5,

1GOOI S2 Y > Il Py h (D1l 12 1| Piy ha (D) 225 | Pey b ()| 100
ki elk—3,k+3] kp<k—6,kze€[ka—3,k—6]
< Z 21</2(1 +2kp)=1/10(1 +2k2t)72/10(2k2t)1/10(1 4+ 2k3p=1/10
ko <k—6,k3€[ky—3,k—6]
< 2K/2 minf1, (2kr)~1/10y, (4.10)

as desired. To estimate G ,1(’11’, we further decompose G,lc’}f = G]"i + G,lc”f where

1
G¢ =—— >
kﬁl[hls h2, ]’l3](.X) T
|k1—k|<3, ko<k—6

d d

— | o Puh P,h Peiy_sh

Ydx Jgs dy " 1) Pioh2(y2) Py —4h3(y3)
X Kk, ky.<ky—a(Xx — y1, X — y2,x — y3) dy1dy»dys,

1
Gyl hahsl@) = — )
lk1—k|<3, ko<k—6

P L Py (31) Pesha(32) Pt aha ()
kdx r3 dyi ki 1Y) iy 12(Y2) F<ky —4713 (Y3

X (K, ka,<kr—4 — Ky ko, <ho—4) (X = Y1, X — y2, x — y3) dyidyrdys.  (4.11)
The kernels K are defined in (3.16). Using (3.17) and Lemma 2.5 we estimate

IGE0Iz 525 Y 3 2P Oll 2 1Pkl | Pg-shs @l 27
ki€lk—3,k+3] ka<k—6

< Z 2k/2(1+2kl)_l/10(l+2k2l)_2/10(2k2t)1/10
ky<k—6
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< 242 minf1, 2k~ 1/10}, (4.12)

To bound G,i’f we write

(Kky ko, <kr—4 — Ekl,k2,§k274)(y17 ¥2,¥3)
min(1, 2R2q)
= | Ly, @) —————

R

=T} 013293 + IR O v2, 3) + I, 01, v2, 33),

V(22 y) Lagy—a(y3, @) da

where, using also the decomposition (3.13),

1
Jklﬁkz(ylv Y2, y3)

= / L, (y1, @)
loe|¢[27F1,27F2]

2
Jiy ko 15 ¥2, ¥3)

= f Ly, (y1, @)
lale[27%1,27%2]

T2 1o 1, y2, v3)

min(1, 2%2q)
Y 2Ry Lgy—a(y3, @) da,

min(1, 2%2¢) ~
—— Y (22 y) Ly —a(y3, @) da,

min(1, 2F2¢) ,

min(1, 2k2—4y
= / Liy 1, @) —————yy (2R yy) —————
lale[27%1,27F2] o

)wgo<2k2—4y3>da.

Then we define the operators G,i"i, G ,i{ ,and G,l("f asin (4.11), by replacing the kernel
(Kky ky,<ks—4 — Kk ky,<ky—4) with the kernels Jkll,kz, szl,kz’ and Jl?l,kz respectively.
In view of Lemmas 3.1 and 3.2 we have
1 2 —k
eyt Nt w3y + 15 g L ey S 277
S0 one can estimate as in (4.12)

1, . _
1G5 Ol 2 + 1G] (Ol 2 < 2% min{1, 2% =1/10), (4.13)
Finally, to bound the functions G,lc:f we notice that
/ Py ha(x — y2) 22922 y2) dyy = Piyha(x),
R
Pey—ahz(x — y3)252 74y L 12527y dyy = Poyy_ah
A <ky—ah3(x — y3) Yoo y2)dy2 <ky—ah3(x).

Moreover, using the formula (3.10) and integration by parts in yq,

d Py hi(x) — P hi(x — @)
/—Pk.hl(yl)Lkl(x—yl,Oé)dyl = ! .

(4.14)
R dy1 a

@ Springer



17 Page420f71 E. Garcia-Judrez et al.

Therefore

d
Gy U, b, h3l() = — Yo P Puha() Patyoahi )

|k1—k|=3, ko<k—6

/ P hi(x) — P hi(x —a) }
X dot.
lale[27k1 27k2]

8-

o

In view of the boundedness of the truncated Hilbert transform we can now estimate

1,
||Gk,‘;”(f)||L2 N 2¢ E E | Pyt (Ol 2 | Py 2 () | oo | P<gey —ah3 (2) || Loo
ki €[k—3,k+3] ky<k—6

S Z 2k/2(1+2kt)_1/10(1+2k2t)_2/10(2k2t)1/10

ky<k—6
< 252 min{1, 2% ~1/19). (4.15)
The conclusion of the lemma follows from (4.10), (4.12), (4.13), and (4.15). O

4.2.3 Estimating the High-Low-to-High Term for Z; Inputs

It remains to understand the term G ,1 1

Gy ([hy, ha, h3](x)

1 d d
=—— 2 P | Py = y)Pakoeha(x = y2) Paiohs(x = y3)
T pelh—kt3 4F IR AX

X L, (y1, ) L<k—6(y2, @) L<k—6(y3, a)dadyidyrdys.

for inputs f» and f3 in Z;. Ideally we would like to prove similar bounds as before

1GE 1 l2 < 2K min{1, @50~ fillz 1l fall 2, f3l1 2, -

Unfortunately this is not possible due to a logarithmic loss. In the next three lemmas
we prove these bounds for certain parts of the trilinear operators G ,1 1

Lemma 4.5 Assume that f1 € Z, f2, f3 € Z1, and define h(t,x) := fj(t,x —a; +
q(t, x)) as before, for some points a; € R. Define

1 d
Geilh,ho 3l = —— 37 P
T elh—3.k+3] X g2t
d
/ — P b (x — y1) P<g—6ha(x — y2) P<x—ch3(x — y3)
R3 dx
X Ly (y1, @) L<j—6(y2, ) L<k—6(y3, @)dadyidy>dys.
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Then

Gy 1Oz < 2 min{1, @50 fill 2l fall oo | f3 ] os-

Proof This follows directly from Lemmas 3.1 and 2.5:

1,1 _
IGE OS2 30 2Pkl 2| Pek—sha (Ol || Pag—shs ()| 1275
ki€lk—3,k+3]

S22 4+ 250710 fz ) Al |l f3ll oo
as claimed. O

Next, we proceed with the integral over 2%|a| > 1. We recall the formulas (3.10)
(which we use for the kernel Ly, ) and (4.14) and decompose G,Ll — G}{} = G}C% +

1,3 1,4
Gk’] + kal where

1
Gyithi hy h3)(x) === ) Pk/

—k
k1 €lk—3,k+3] lor|>2

d d

/ — Pr by (x — y1)—{ P<k—6h2(x — y2) P<g—h3(x — y3)}
R3 dx dx

X L (y1, @) L<k—6(y2, @) L<k—6(y3, )daedyidyrdys. (4.16)

1
Gy 3hy, hy, b3l == — Pk/

ki €[k—3,k+3]
d
/2 o ki (x — o) P<g_cha(x — y2) P<x—ch3(x — y3)
R

o L<k—6(y2, @) L<j—6(y3, )
o

1 d
Gitthihohsli=—— 3 R{Pum@ [
T felk—3.k+3] * loe|=27

/2 P<j_cho(x — y2) P<k—6h3(x — y3)
R

» L<i—6(y2, @) L<j—6(y3, )
o

dady,dys. 4.17)

dady,dys } (4.18)

We remark that we used integration by parts for the term in (4.17), as was done in
(4.14). We prove now suitable bounds on the functions G,i%

Lemma 4.6 Assume that f1 € Z, f2, f3 € Z1, and define h(t,x) := fj(t,x —a; +
q(t, x)) as before, for some points a; € R. Then, with G',IC% asin (4.16),

IG T2 < 22 min{1, @50~ Y il 2l fall oo f3 ] os-
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Proof The d/dx derivative can hit either the function 4, or 43. The two cases are
identical. Using Lemma 3.1 (ii) and 2.5 we estimate

1,2
IGETOI S > >0 28 Py @)1 22" Py o (0) ]
kie€lk—3,k+3] ko<k—6

X || P<k—6h3(t) | o251 |kt — ko

< 2 2Pa+ 27V ik — kol fillzl fall e ]l
ko <k—6

<22 min(1, @507V Azl ll el £l e
as claimed. O
In the following lemma, we estimate the nonlocal term G,]{?

Lemma 4.7 Assume that f1 € Z, f>, f3 € Z1, and define h(t,x) := fj(t,x —a; +
q(t, x)) as before, for some points a; € R. Then, with Gi? asin (4.17),

GOz < 2 min{1, @50~ Y il 2l 2l 2,1 311z,

Proof We may assume that || f1]|z = || f2llz, = || f3llz, = 1. Formula (4.17) shows
that

1 d h(x,o,k—8)T3(x,a,k —8
G%,Z = — Z Pk/ kalh](x —a) 2x, @ )hx, a )da,
T ki elk—3,k+3] la|z27F X o

where 7> = T'(f2) and T3 = T'(f3) are defined as in (3.18). We begin by denoting

Tr(x,o, k—8)T3(x,a,k —8)

Kx,a) =
o

and we notice that, for all « and x, we have

1 1

[K(x,0)] S — and  [duK(a, )] S —. (4.19)

o o
Since a simple change of variable yields % P hi(x —a) = —%[Pk] hi(x —a)], we
can integrate by parts to see that

d
— — P hi(x —a)K(x, o) da = — Prhi(x — )i K(x, o) do
a2k dX |22

— Piyhi(x = 279K (6,275 + Py (x + 27 K (x, =279,
Using the bounds (4.19) and Lemma 2.5 we have

1 ' -
IGO0 S Y 2XPyle S 27 minl, 25711,
k1€lk—3,k+3]
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as claimed. O

It remains to understand the term G ,i? in (4.18). To this end, we need to define a
new object, which we refer to as the associated velocity field. We provide the following
general definition: for any two functions g1, g2 € Z; and any two base points aj, a; €
R we define the bilinear expression

1 pi(t, x,0)pa(t, x, o)
Vigl, g21(t, x) := —— do
T Jla|=t a

, (4.20)

where p; and p, are defined as in (3.20), with the indices {1, 2} referring to the
numbering of the base points a; and a;.

Lemma 4.8 Assume that f1 € Z, f2, f3 € Z1, and define h(t, x) := fj(t,x —a; +
q(t, x)) as before, for some points a; € R. Then, with Gi:? asin (4.18),

[t = B Soni@ 0 - PaVis, A6 0]

S22 TN Azl Al fl 2

L3

Proof From the definitions and Lemma 2.5 it suffices to prove that

da = Vip, 100

” 1 / Tr(t,x, o,k —8)T5(t, x,a, k — 8)
T |a|32_/‘ o

S+ Cn7VN Al I fZ, 4.21)

where 7> = T>(f>) and T3 = T5(f3) are defined as in (3.18).

We may assume that || f21|z, = |l f3llz, = 1. In order to prove (4.21), we proceed
in various steps. We begin by exploiting the structure of the functions in the Z; space
to remove all the error terms. Indeed, from Lemma 3.3, for any ¢, x € [0, c0) x R we
have

‘ / T(t, x,a,k —8)T3(t, x,a, k — 8) — pa(t, x, ) p3(t, x, a)d
(07
loe| =2k o

<f L{ ol x — a2 + q(z, x)|
~ Japsrk lal Ux —ax + q(t, )2 + |2
a|lx —asz +q(t, x 1 9/10
ellx —as +at. 0l 17" da
Ix —az +q@, )" + o> 2]
<1 (4.22)

Next, we notice that if 2¢7 < 1 then

p2(t, x, ) p3(t, x, @) p2(t, x, ) p3(t, x, )
do — do
la|>2-F a la|>t a

<log(2+ (2™, (4.23)
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since | pa2(t, x, )|+ | p3(t, x, )| < 1. We see now that the bounds (4.21) follow from
(4.22) and (4.23) if 2k < 1.
It remains to prove that

‘[ pz(t,x,a)ps(t,x,oz)da_/ Pt x, )p3(t, x, @) , |
| =27 | >t

~
o o

uniformly forany (¢, x) € [0, 0o) xR satisfying 27 > 2. This follows from Lemma 3.5
in which we show that for 2% > 2 and || < 2t, the functions p can be approximated
by some function p*, which is even in «. Thus we obtain

e, x, ) pit,x, o
/ Ps( )p3( )doz -0
|27, 1] o

for any (¢, x) € [0, 00) x R satisfying 2k > 2, |

4.3 The Velocity Field V

We examine now the formula (4.20) defining the velocity field V[g1, g2]. Assume that
q satisfies the bounds (2.1) and, in addition,

19:q(t, Mips Ser'/* forany s € [0, T]. (4.24)

Assume that the functions g1, g2 € Z; satisfy the bounds
Igilizy +llg2llzy S e MgTllpeerr + 183N Loorr S 1. (4.25)
for some p € [1, 00), where here g;(t, x) = g;(t, x) + g;(t, —x), denotes the even

part of the function g ;. Assume that ay, a; € R are two points, and define the velocity
field V[g1, g2] as in (4.20). Then:

Lemma 4.9 With the assumptions above and Q defined as in (4.1) and (2.3), we can
decompose

Vigi, £21(t, Q. ) = Vilgi, g21(t, y) + Valgi, £21(7, y),

where

Vilgr, g21(t, )| S &*1og(2/1)11g r-20) (1) Z L, 2-10 ;427107 (),
St

1 2ly —aj|
VilgLglen S Y (). @20
jelt2hy—ajize ¥ T4

forn € {1, 2,3}, and

[Valgi, g21(t, y)| S e. (4.27)
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The sum in the second line of (4.26) is taken over all the indices j with the property
that |y — aj| > t (so it vanishes if |y — aj| <t forall j € {1,2}).

Proof From the definitions, we have

)

~ 1 D A %Y A
V[gl,gz](r,zz(t,y)):—;f Pty Onty.o 4,

loe| =t a

where f} is defined as in (4.1), and for j € {1, 2}, ﬁj, using the change of variables
(2.3), is defined as in (3.24)-(3.25). Moreover, recall the definition of g;f (t,0, o) for
j € {1, 2}, defined in (1.2):

1 o
8;(t,0,0) = Efo gjt,—p)dp. (4.28)

Step 1. We begin by showing an important inequality which will be used several
times in the proof of this lemma. We have that

ly —ajl
o]

1/4

1g5(1,0,0) =g, y, ) S & + et/ o 71 (4.29)

for j € {1,2} and 1, , y satisfying |«| > 4|y — a;j|, l¢| > 1, where g;(t, y, @) :=
§f(t, v, @)1{0,00) (a)—i—g; (t, ¥, )1 (—oo,01(@). Indeed, assuming for example that o >
0 and using the bounds |g; (, Z)I—l-lzg;(t, 2| S lgjllz, S eforany (¢, z) € [0, 00) x
R we estimate

872, 0,0) —gj(t,y, )]

< Ey=ajl
lo]
1 [ ~ ~
+ E/ lgit, —p) — gjlt, —p +q(t, Qt, y) — p) — q(t, Qt, y)]| dp
2ly—ajl
ely —ajl & (¢ -7 _
< J+—/ . _ Inl7ldn|dp
|| & Jajy—aj| | J=p+q. 20,0 -p)—at. Q)

log (1 _ q([,Q(l, y) _10; _q(taD(lv W))‘dp’

ely—ajl e [¢
— —/+_/
|Ol| o 2|y—aj|
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thus we obtain

<ﬂy—wl+§/“ la¢ 20, y) = p) — 2. D |,

~

lex| o Joly—a;| ol
ely —aj o 3410,q(t, .
< ly —ajl +_/ lol” " 110xq(t, )l g dp
lex| o Joy—q;| lol
ely —a;
< ly J|+82t1/4|a|71/47

||

using Holder’s inequality in the second line and the assumption (4.24) to prove the
last bounds.
Step 2. We define the first L> error

1 P, y, a)pa(t, y, )
thmmqw=——/ da.
T J|o|>max(t,2-20) o

We prove that Vzl satisfies the L° bounds (4.27). Without loss of generality we may
assume that |y — a;| < |y — az|. Clearly

P1(t, y, 0)pa(t, y, ) P
o

f -0, (4.30)
lrl€[max(1,2720),|y—ai ] o

due to the definition (3.20) and the oddness of the integrand. For |a| € [|y — a1, |y —
az|], using the fact that |p;(, y, )| < llgj(D)llr= S e for j € {1,2}, and that « lies
in a unit size interval, we get

p1(t, y, )pa(t, y, o
/ pit,y,a)pa(t,y )dasgz.
lel€lly—ail,ly—azll a
On the other hand, if |«| > |y — az| then we rewrite
/ 171(t,y,a)172(t,y,a)d
o
la|>max (2720, |y—az]) 4
_/ [Zil(tvyaa)"_ﬁl(t»ys _a)]ﬁz(t’ysa)da
azmax 2720, |y—az|) «
D: ta , % tv , —o D ts , —O
_/ [p2(t, y, ) + p2(t, y, —e)|p1(t, y )da.(4'31)
azmax 2720, |y—az|) «

Using (3.24)-(3.25), we see that
Py, @) +pit,y, —) =87 (t, y, @) + &5 (1,5, —a).
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From (4.28) and (4.29), we get

Ip1(t, y, @) + pi(t, y, —a)|

o
se%+s|t|“4|a|—”4+|g;<r,o,a>+gj(r,o, —a)|
ly —ajl _ _
58T|’+e|t|1/4|a| VA jal ~Pg(r, x) + gt —x)llLr
o
< el gy 114 g1,

T el

for some p € [I, c0), where we used (4.25) in the last line. Since |pa(t, y, )| <
lg2(®) Lo < e it follows that

da < e.

/ [Pi(t, y, o) + pi(t, y, —)1pa(t, y, @)
a>max(2=20,|y—aj|) @

A similar argument follows for the second term on the right hand side of (4.31). We
thus get

pi(t,y,a)pa(t, y,
/ p1t,y,a)pa(t, y, @) do <e. 4.32)
loe|=max (2720, |y—az|) o

It follows from (4.30) and (4.32) that

Vg1, g1t )| S e

Step 3. We notice that for r < 2720

pit,y,)pa(t, y, &) d
.

o

Vigt, g1, @, y) — V3 lg1, 8211, y) = 7/| lelt.2-20]
alelt,2™

(4.33)

We would like to remove now the y-dependence from the functions Ef We define

ri(t,y, ) =gi(t,0,)p<—4((y — aj)/a) + g;(t.y — aj)p=—sala/(y —a;)).
(4.34)

Moreover, we define

1 ri(t, y,a)ra(t, y, a)
Vilgt, g21(t, y) = ——/ da,
lo|e[t,2720]

T o

VZlg, g1, y) := Vigi, g21(t, Qt, ) — Vi lg1, 21, y) — Vilgi, g1, y).
(4.35)
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Step 4. We would like to show that V22 satisfies the L°° bounds (4.27), which
follows from (4.29). Using the formulas (4.33) and (4.35) we have

Pty pa(t.y.@) ity ony.o
o o

pit,y, o) —ri(t,y, o
<& Z / |pjt,y,a) —rj(t,y )Ida
jeay Y lalel220] lor]
. _ *
/ 80 y.0 - g0l
Joe|>max(t,|y—a;]) |Ol|

IVilg1, g21(t, y) 5/

lrl€[r,2720]

<e+te
Jefl.2}

o

Sé

’

where, from the second to the third lines, we pulled out finitely many dyadic pieces.
Step 5. We now prove the bounds (4.26) on V;. The bounds in the first line follow
easily once we notice that the integrand wa isoddinaif |y —a;| > 2710
for all j € {1, 2}, thus Vi[g1, g21(¢, y) vanishes in this case.
To prove the derivative bounds we begin by rewriting

Vilg1, 21 = Vi'lg1, g2 + Vilg1, g21 + Viler, g21 + Vi'lgr, g2]

where

Vi'lg1, g21(, y)

1 81(1,0,0)9<—4((y —a1)/a)g5(1,0, 0)p<—4((y — az) /o) da.
7T Jialelr,220] o
Vilgr g1, y)
__ ! 8110, )p=—s((y —an)/w)g2t, y — a)p<—4(a/(y — a2)) de.
b3 |0t|E[t,2720] o
Vilgr. g1, y)
_ 1 g1ty —anp<—a(e/(y —a1)g>(t,0,)p<_4((y — az)/a) do.
T Jlalelr,2720] o
Viler, g1, )
__ ! 81ty —aez—a(@/(y —a))&a(t,y — a)p<—s(¥/(y — @)
T Jlalelr,2720] o

To begin with, due to the oddness of 1/«, we have

Vg g21(t. y) = 0.

Without loss of generality, in proving the derivative bounds in (4.26) we may assume
that |y — ay| < |y — az|. In this case we notice that V13[g1 ,21(t, y) = 0 as well.
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We calculate

3 Viler, g1, y)

_ 1 87,0, a)§¢;,4((y —ayp)/a)g;(t,0,0)p<4((y — a2)/a) Jo
|| €[7,2720] a

1 / 81,0, )p<—a((y —a)/a)g3(t.0,a) Lol _,((y — az)/e) o
laeft,220] o

Since ¢ _,(35%) = 0 unless Iyl T' €[272,273], and |a| > 1, we easily get

if|ly—ail, |y —az| > ¢,

ly—ail
By Viler 2l NI S e gy ifly—al st <ly—al (436
0 if |y —ail, |y —asl =1,

since we estimate | g;.‘ (,0,a)| < ¢ and integrate « only over one dyadic piece at a
time, yielding integrals of order 1. Similarly, for n € {2, 3} we get

1 .
if |y —ail, ly —as| > t,

ly—ai|"
D3V lg1. el DI S e* g ifly—all st <ly—al, (437
0 if [y —ail, |y —al =t.

Taking the derivative in y of V12 yields

aVilgr g1, )
| / g1, 0, ) Lol _,((y —a)/a)ga(t, y — a)p<—a(e/(y — a2)) o
lor|€[r,2720]

o
1 81,0, )g<—a((y —an/mgat, y — a2) =394 (@/(y — a2)) .,
lofer,2720] @ ¢
1 811, 0. 0)¢=—4((y —an)/g (. y — a)p=—4(@/(y — @)
lalelr,2-20] a

The first two terms are treated as for Vll, where the integral in « is taken over each
dyadic piece at a time. For the last term, use the fact that |xd,g(x)| < ¢ and we
integrate 1/« over the interval [z, |y — a>|], and hence we get

2|ly— .
ly— ll1| + [y— azl log( lyta2|) if|y—all,|ly —al =1,

10y Viler. 821t Y| S €% | ey log (2272)) ifly—al <t <ly-al
0 if |y —ail, [y —a2] = 1.
(4.38)
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Similarly, for n € {2, 3} we get

1
Tl + =a log (5

az

) ifly—ail,ly—al >1,

07 V781, g21(t, y)| S €2 e log (22l ifly—ail <t <ly—al,
0 ifly —ail,ly —az| <1t.
(4.39)

The desired bounds (4.26) follow from (4.36)—(4.37) and (4.38)—(4.39) in the case
|y —ai| < |y—ax| (once we recall that V?[g1, g21(7, y) = 0and V{[g1, g21(1, y) = 0
in this case. O

Corollary 4.10 With the assumptions and the notation of Lemma 4.9 above, let

t
Wigr, g1, y) = /0 Vilgr, g21(s, y) ds.
Then, forn € {1, 2, 3},
(Wlg1, g21(t, )| Se7tlog(2/1) Y iy, 0-10 4 2-10)(¥),

Je(1,2}

t 2y —ajl
|3;1W[g1,g2](t,y)|582 Z m( tj)

—a; n
jell 2 Ireayize ¥ 4

+ &2 Z :

—a; n—1"
jell 2 Ioeayl<e Y 4

In particular,

19y Wig1. g2t )l e S et/
Proof The bounds follow directly by integrating the bounds (4.26) for s € [0,7]. O

The following lemma provides additional bounds on V| which will be very useful
for constructing the solution in Sect. 6.

Lemma4.11 Ler Vi[f1, f21(t, y) be defined as in (4.35), with (f1, f2) € Z1 X Zj.
Then, fort < 2720

IViLPc f1, £1 0| S QOO fillz ) Al z, - (4.40)

Proof We may assume that || f1]|z, = || f2llz, = 1 and that the function ]/‘\1 is supported
in the set {€ : |&] € [2k72, 2%*+2]}. Recalling the definition of V; in (4.35), we have

Vil Py f1, f21(2, )| §/ In@, y, o0l

leele[r,2-29] g

da, (4.41)
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with

* y —ai o
ri(t,y, o) = fi (t,O,Ol)<P<—4< )+Pkf1(t,y—al)<ﬂ<—4< )
o y—a
(4.42)

where
1 o
fl*(tvosa):a/ Pkfl(ta_p)dp
0

We split the integral in (4.41),

ri(t,y,o
/ i,y )|da=11+12,
lelels,2-20] o]

so that || > 2% in I;. We begin with /7. We find that
L2, 0,0)] S ¥l P fillee S (142507108 )™ £l 2,
Moreover, setting x = y — a; we have

P fi(x) = /Rﬁ (x —2)Ki(z)dz = A%[ﬂ (x —2) — fi0)]Kk(z) dz

where K (z), the inverse Fourier transform of the cutoff function, is a dilation of a
Schwarz function. We thus get

| Prf1(x)| = ‘/I ‘ |/2[f1(x —2) — fi)]Kk(2) dz

+f| | \/2[f1(x —2) = fit)]Ki(z) dz

_ Z

< (142%) ‘/“’(/ U|Kk<z>|dz+/ |Kk(Z)|dZ>
lzl<lxl/2 1X] 2|2 |x1/2

< (1425071002 k1,

where we used the fact that f € Z; in the second line and that K} is rapidly decaying
in the last line. Since the second term in (4.42) requires that |x| > |«|, we get

Ir(t, y, ) < A +25)71002k )=t for la| > 27F,
which upon integration yields
I < (14 2k)=110,
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For ¢ < |a| < 27%, we simply integrate to get
I < log(2* ),

thus concluding the proof of (4.40). O

5 The Full Nonlinearity

Before we proceed to run the fixed point argument to conclude the proof of our main
result, we now show how the previous results can be extended to the full nonlinearity
as defined in (2.5). We recall the notation £ € R+ as & := (&,..., &py1) for
scalars and similarly, for functions, f := ( f1_, f2, ..., fzn+1_). Moreover, we will use
the symbol <, for whenever a term is bounded by a constant of size C".

We begin by reproving the localized L?> estimates for the pseudoproduct of the full
nonlinearity. We get the following lemma.

Lemma5.1 Let T, (Px, f1. Pis f2, Py f3, - - -+ Phonsy fon+1) be defined asin (3.6). Then
we have

2n+1
1P Ta(Piy fr - Phgy Fons D22 S 250 P fill 2 T P fellos.
=2
Alternatively, we also have
2n+1
I P Ta(Piy fr -+ Py Fans D]z Sn 2221 Py fill 21 Py fall g2 [T 1 Poe fell oo
(=3

Proof We only show here the case when k is the highest frequency, as the others are
easier. Then, without loss of generality, we assume the ordering k1 > k» > ... >
kon+1. Following the same ideas as in Lemma 4.1, in order to introduce the modified
kernel, we split
1,1 1,2 1,3
K@ =K@+ K@+ K@,
with
K,f’l(g) = / Ly, (21, @) Liy (22, @) Liy (23, @) . .. Ly, (Z2n+1, @) da,
= R

1,2
K&’ €9)

|
= / Ly, (z1, @)= min(1, 22 )y (2% 20) Ly, (23, @) . . . Ly, (22041, @) dat,
lorg[27%1,27k2] o

K@) = / Li, (z1, 00229022 20) Liy (23, @) . . . Liy,, (22041, @) dar.
- lale[2—k1 27k2]
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Using Lemmas 3.1-3.2 we get

11 1,2 _
1Ke @ ganety + 1K@l ey Sn 274
To estimate || K,i’3(§) | L1 (2n+1y, we now further split

where
Kf () = / Li, (21, )220 2% 20) Liy (23, @) . . Liy, . (22041, @) dat,
- laeje[2 1,22

K} = / Liy (21, )220 (22225 9 25 23) Dy v ) .
- laeje[2F1 272

X Ly, (22n+1, @) dat,

K" (z) = f Ly, (z1, ) 2R (2% 20) 25y (283 23) . . 2Ry (2R 2)
- laeje[27F1 272
X Loy (Z2n+1, o) da,

K@) = f Liy (21, )22y (28220) 25 91 (259 23) ..

lale[2*1,27k2]

w 2kan+1 % (2k2n+1 Zong1) da.
From Lemmas 3.1-3.2 we get

||K§(§)||L1(Rzn+1) +...+ ||K§"(§)||L1(Rzn+1) <u 9—k1_

It remains to study K ,3”“. By expressing L, as in (4.4), and inserting it into K ,3”“,
we get a a

2n+1 X
— 2] _
K@ = ] 29w@hz) SLICS S D EY
T iz lale[27k1,272] o

As in the proof of Lemma 4.1, upon reinserting (5.1) back into the pseudoproduct
(3.6) and using the fact that

Pk,.ﬁ(x)=A;2"f<Pk,.ﬁ>(x—y,-wa(z"fyi)dyi, ie{l,2,....2n+1}.

and the boundedness of the truncated Hilbert transform in L? yields the desired bounds.
O
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We now localize and decompose the nonlinearities. For any tuple k € Z>"+!, we let
k* € Z?"*1 denote its non-increasing rearrangement ki > k3 > ... > k3, . Given
k € 7Z, we now define the two sets

Spy =1k e Z"" 1k} € [k —3n,k+3n]and k3, k3, ... k3, <k —6n},
Spo = {k € Z"": ki — k3| < 10n where kf > k — 3n and k3 > k — 5n}.

From (3.6), we thus get

P T, (W] (x) = G} 1 (x) + G} ,(x)
where, for [ € {1, 2},
2n+1

l_[ Prohe(yo)Ki(x — y)dy.
(=1

G} [h(x) =

d.x R2n+1 dy]

keSk.1

For the high-high-to-low interactions, from the Lemmas 3.1-3.2 and the Lemmas 5.1
and 2.5 we get the following bounds.

Lemma 5.2 Assume that fi1, f2, ..., font1 € Z, and define hj(t, x) = fj(t,x —a; +
q(t, x)) for some points aj € R. Then for any k € Z and t € [0, 00) we have

2n+1

G2l 2 Sn 22+ 20720 TT 1 £ 112
i=1

For the high-low-to-high interactions, we decompose G} | as we did previously.

2n+1 S[

We write the disjoint union S 1 = (J; 11> Where

Sty = (k€ Skt ki = max(ky, ko, ..., kous1)),

foralli € {1,2,...,2n + 1}. As in the trilinear case, whenever the function with the
highest frequency is not hit by the derivative, the following lemma follows immediately
using Lemmas 3.1 and 3.2, and Lemmas 5.1 and 2.5.

Lemma 5.3 Assumethat f1, f2, ..., font1 € Z anddefine hj(t,x) .= f;(t,x —a;+
q(t, x)) for some pointsaj € R. Thenfori € {2,3,...,2n+1}, k € Zandt € [0, c0)
we have

2n+1

G Ollz2 S 27A+ 2072 TT I fillz
=1

Strikingly, we get the desired nonlinear bounds on G k.1 Provided at least one of the

lower frequency functions is in the space Z,. The proof follows a similar argument to
that of Lemma 5.1.
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Lemma 5.4 Assume that (f1, ..., font1) € Z X ... X Z and there is some { €
{2,...,2n + 1} such that fy € Z. Define hj(t,x) = fjt,x —a; +q(t,x)) as
before. Then, for any k € Z and t € [0, 00),

G 1 ll2 S 292 mingl, Q07" fellz, [T 12
p#L

Proof We assume without loss of generality that f> € Z,. If all lower frequency
functions lie in the space Z;, the bounds follow easily from Lemmas 3.1-3.2 and
Lemmas 5.1 and 2.5. We therefore focus on the case when all other lower frequency
functions lie in the space Z;.

We decompose the set of indices {3, ...,2n+ 1} = A+ B where forall j € A we
have k; > k; and for all i € B we have k; < k. We will then consider the following
sets.

Sta = {k € Z2"*1 :V(j,i) € A x B, |ky —k| <3n,ky <k —6n,
k; € [ky — 3n, k — 6n], B =}

Sk =1k € Z*"*1:V(j,i) € Ax B, ki —k| <3n,ky <k — 6n,
kj € [ky —3n,k —6nl, ki <k —6n— 1)

St :={k € Z*" TV :V(j,i) € Ax B, |ky —k| <3n,ky <k — 6n,
ki<k—6n—1A=0)

As in the proof of Lemma 4.4, we further decompose G11<,1 into G’,lc’ =G llc‘ll +
Gy + Gy where for j #i € (3,...,2n + 1)

2n+1

La _ (=" 1)
Gyilhl(x) = > P fR oy L] Peche 0Kt (8 = y) dy.
keSk.a =1
(- 1)"
Gy ThI(x) = > Pk—
keSk.p
2n+1
/RZHI an 151_[1 Prohe(ye) K s, k... <ka—3n—1(x — y) dy,
2n+1
|
G, h = Py, h
bmw =0y pl /R oo o T B
keSk.¢ =1

XKy k. <. (x — y) dy.

The function G,i’f can be estimated simply by using Lemmas 5.1 and 2.5. We now

consider the function G}{i We decompose the kernel

1,1 1,2 1,3
Kkl,kz,gkz...(J_C) = Kkl,kz,szm(&) + Kkl,kz,sz..‘(i) + Kkl,kz,ikz-n()—c)’
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where

11 =
Ky <ty (2 =/RL1<1 (21, @) Ly (22, @) L <y —3n—1(23, @) . . . L <gy—3n—1(220+1, @) da,

1,2
Kkl,kg,sz...(g) Z/

1.
Ly, (z1, @) — min(1, 22a) 9§ (22 20) Ly _30—1 (23, @) . ...
g [27F1,27k2] o

X L<ty—3n—1(22n41, @) da,
13
K <. (2 2/ Ly (z1, )22y (2220) Loy 301 (23, @) . ..
loe|e[27*1,27%2]

X L<ty—3n—1(220+1, @) do.
Using Lemmas 3.1-3.2 we get

1,1 1,2 —k
”Kkl,kz,sz...(é)||L1(R2n+]) + ”Kkl,kz,sz...(é)||L1(R2”+]) gn 2K

. 1.3 .
To estimate || Kkl,kz,skz... (@)l 1 (m2n+1y, we now further split

1,3 2 3 2n+1
Kkl,kz,sz.,.(g) - Kkl,kz,sz...(g) + Kk],kz,sz...(g) + tet + Kkl,kz,sz...(z)’

where
Klgl,kz,gkz...(é) = /l;de[Z”ﬂ y-ta] L, (z1, 0229 (2% 20) Lty —30-1(23, @) . ..
X L<py—3n—1(22n+1, @) det,
Kivsostn. @ = /Mem. R R e e L R R
X L§k2*3ﬂ*1(22ﬂ+11 Ol) da,
Kty <. (@) = / L Ly (a1, @292 22259528 z2)
lale[27k1,27%2]

x 2kan Iﬂé(Zkz”Zzn)ngr%q (22041, @) dax,
Kilt <. @ = / Ly, (z1, )22y (272 20)20 9§ (2B z3) . ..
loe|e[27F1 27 k2]

x 2kan+1 1/,(/)(2/<2n-¢—122n+1) da.

Using once more Lemmas 3.1-3.2 we get

2 2 —k
”Kkl,kz,sz...(g)”L](RZ'H'I) + e + ”Kk.n,kz,gkz‘..(é)”L'(R2"+‘) Sn 2 l.
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It remains to study K ,f”“. By expressing Ly, as in (4.4), and inserting it into
we get -

2n+1
K& R

2n+1

. — a2k (x —
K @ =] 2Mve@bz) [0 " (x —e] |
i=2

lae[27%1,27k2] o

Using the fact that
Py, fi(x) = /Rzki(Pkifi)(x — by dy,  ie(l,2,...,2n 41}

and the boundedness of the truncated Hilbert transform in L2, we obtain the desired
bounds.

We now consider the function G- k. 1 In this case, we have some frequencies which
are greater than kp and some Wthh are less. For this function, we use a hybrid argument
of those used for G * k1 “and G K 1- That s, we treat the functions with frequencies greater
than k; as though they were in the Z» space and handle the functions with frequencies
less than k; as we did above for G,]Ci O

It remains to estimate the high-low-to-high term for Z; inputs. As for the trilinear
setting, we further decompose G ,1( | as follows.

Ghy =Gy + Gyl + Gl + Gy (5.2)

where

(=n"
Gilhl() = L I - e
kle[k 3,k+3] lo| <27k JR2H1 AX
2n+1
x [T Pek-6nhe(x = yOL <60 (e, @) dardy,
=2
(=" d
G ik (x) = > A Py — y)Liy (1, @)
' b4 -k Jr2nt+1 dx
kyelk—3,k+3] loe|>2
2n+1
X H Pg—enh¢(x — ye)L<k—6n(ye, @) dady,
1,3 (=t
G ilhl(x) i= ———— Pklhl(x a)
’ T & Jpan dx
kle[k 3k+3] loe|=27% JR
2n+1
L<j—6n(ye, )
X H Pej—gnhe(x — yo) ——""2 " dady, . .. dysn i1,
=2 o
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1,4 o (_1)n i
Gk,l[ﬁ](x) = Z Pk{dx P ) _/|a|22k /];gznﬁ

ki elk—3,k+3]
2n+1
x [T P<k—6nhe(x = yo)
=2

L<i—6n(ye, @)
§+ dady; ...dy4 }

Using Lemmas 5.1 and 2.5, we obtain the following.

Lemma 5.5 Assumethat f1 € Z, fa, ..., font1 € Z1anddefinehj(t, x) := f;(t, x—
aj +q(t, x)) for some points aj € R. Then

1,2 3
IGE Oll2 + G T2 + 1GE Ol 2

2n
Sn 292 min1, Q07N Al [ T3z -
=1

To understand the term G,i:‘l‘ we define, for any functions g, ... g2, € Z; and any
base points aj, ..., az, € R the following multilinear expression

Vigr, ..., gunlt, x) = , (5.3)

T

(—1)"/ el pet.x.@)
|

o
@zt gy

where the p, are defined as in (3.20). As we did in the trilinear setting, by exploiting
the structure of the Z; functions in Lemma 3.3, we get the following lemma.

Lemma 5.6 Assume that fi € Z, fa,..., fanr1 € Z1, and define hj(t,x) =
fitt,x —aj +q(t,x)) for some points a; € R. Then with G,i:? defined as in (5.2),
we have

d
[Gite 0 = P =m0 PacaVife . sl 0|

2n+1

Su 22070 Az [T 15l
=2

L3

Proof This proof is the analogue of the proof of Lemma 4.8 for the trilinear setting.
As for the trilinear setting, from the definitions and Lemma 2.5 it suffices to prove
that

H 1 / Tz(l‘,x,(x,k—8”)"'T2n+1(l‘,x,a,k—8n)d
— o
T Ji|=27* o

2n+1

“VIf e Pl 0| ST+ T W fillze 54)
X (=2

where T; = T;(f;) fori =2,---,2n + 1 are defined as in (3.18).
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In order to prove (5.4), we now proceed exactly as in the proof of Lemma 4.8: we
exploit the structure of the functions in the Z; space as described in Lemma 3.3 which
split each function f; into a core and error part to remove all the error terms. Moreover,
further exploiting the bounds in Lemma 3.3 yields that for small frequencies, 257 < 1,
the remaining core terms also produce error terms. We can now apply Lemma 3.5 to
the remaining terms which shows that for 2kt > 2 and || < 2t, the core functions can
be approximated by some functions which are even in «, thus making the remaining
integral in « vanish, and hence concluding the proof. O

Finally, we need to check that the multilinear expression V satisfies all the necessary
bounds. Assume that g satisfies the bounds (2.1) and, in addition,

[ENTCART P et'*  foranyt € [0, T]. (5.5)

Further assume that the functions g1, ..., g2, € Z; satisfy the bounds

2n 2n
D lgelz Sue” Y lgellor2 Sl
=1 =1

Finally, assume that ay,...,a2, € R are 2n points, and define the velocity field
Vg1, ..., gn]asin (5.3). Then the following lemma is a straightforward generaliza-
tion to 2n functions of Lemma 4.9.

Lemma 5.7 With the assumptions above and é defined as in (2.3), we can decompose

Vigi, .., g)t, 01, ) = Vilgi, .- .., 811, ¥) + Valgi, ..., 82211, ¥),

where
IVilgt, ... &alt, | Sn g2 10g(2/t)1[0,2720]([) Z l[aj_zflo’aj.szlo](y),
jefl,...,.2n}
1 2|y —aj]
5 ViLgr - a1t )] S € 3 o (5.
jell,an) ly—ajl=t ¥ 4
(5.6)
form € {1, 2, 3}, and
Valgis .., g2a1(t, V)| S €. (5.7)

The sum in the second line of (5.6) is taken over all the indices j with the property
that |y — aj| > t (so it vanishes if |y —a;| <t forall j € {1,...,2n}).

By integrating the bounds (5.6) for s € [0, ], an analogue of Corollary 4.10 for the
full nonlinearity is now immediate.
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Corollary 5.8 With the assumptions and the notation of Lemma 5.7 above, let

t
Wigz, ..., gu+1l(t, y) 2=/0 Vilgz, - .-, gan+11(s, y) ds.
Then, for m € {1, 2, 3},

IWlg2, ..., g2ar1](t, M| S €°110g(2/1) D Ny _p-10 42101 (¥),
jeJ
0 WIga. ... gans1](2, V)]

t 2ly —ajl 1
<6l 1n( -’) £ L
~ Z Iy—ajl’" t + Z |y_aj|m—l

JjeTJ ., ly—aj|=t JjeT, ly—aj|<t

In particular,

19y Wiga, ... gans1l(t, V)l ps S et'/™.

Finally, for the purposes of the fixed point argument in the next section, we provide
the extension of Lemma 4.11 to the full nonlinearity.

Lemma5.9 Let Vi[fa, ..., font1l(t, ¥) be defined as

2n+1

1 = re(t,y, )
Vilg2s .- s gons1l(t, y) i= —— =2 S da
T |o¢|€[t,2_20J o

)

where ry is defined as in (4.34), with (fa, ..., font1) € Z1 X ... X Z1. Then, for
t <2720

2n+1

\ViLPk fa, - fanst &, )| S @07V TT W fellzy-

=2

6 Proof of the Main Result
We begin by recalling some important notation necessary for providing a proof of

Theorem 1.1. We let C = {ay, -+, apy} be a set of finite points indexed by by j €
J ={l1,---, M}. Moreover, the function % : [0.0c0) x R — R is of the form

h(t.x) =Y gj(t.x —aj +q(t.x)).
jed

where we recall that the change of variables is given in (2.1)-(2.2), and the functions
gj lie in the space Z = Zj + Z;, defined in (1.5) and (1.6) respectively.
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6.1 Determining g from the Free Evolution

We define the free evolution for initial data go j(x) € Z; forall j € 7 = {1, ..., M}
as

0 —
g, x) == e Vlgg jx).
Moreover, we define

1—[2n+1 (O)(l X, Ol)

s, (0) ©) _ !
Vi [gjl’ 0 8, 2n+1](t’ %) = lor|e[r,2720] o da,

where we define, as in (4.28)-(4.34), for j € 7,
P, x, @) = g1 (1,0, )< a((x — aj) /@) + g0t x — ap)p<—ala/(x —a;)),
where we recall that

0 L [% o
g,V 0.a) = ;/0 gt ~p)dp.

We can now define

Gu(t, x) = Zf Vi [gjog,_..,g;O;M](s,x)ds. 6.1)
jeJ

From Corollary 5.8, we see that g satisfies the bounds we assumed in (2.1)-(2.2) and
(5.5).

6.2 Construction of the Solution

We can set up a fixed point argument using equation (2.9) and Duhamel’s formula.
More precisely, we define

t
£ x) = e-t|wg0’j(x)+/ eIV (s s, (6.2)
A .

where

F{M (@t x4aj) = 0" (1, 0, x +a)a,q(t, x +a)) + N1, 0t x +a)))
— VI8 (1. )d:q(r. Ot x+ap)+E (¢, O(t. x+a;)). (6.3)

and E and V were defined in Lemmas 2.6, and (2.5)-(2.7) respectively. The goal is to
show that

1 1
189"Vt x) — g (1 1)l 2o S €Ml (. x) — gVt )l 2,
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for all m € N. We begin by proving that for all m € N, the functions gj.m) are small in
the Z norm.

Lemma 6.1 For all g;m) e€Z, jeJandm € N, we have

0
g — PNz Se. (6.4)
Proof We argue by induction: by hypothesis, (6.4) clearly holds for the free evolution
gﬁo). That is, there exists some constant Cg such that || gj.o) lz < Cope. We now assume

that (6.4) holds for some given m. This implies that ||g(.m) lz < 2Cpe. To show that
the inequality holds for m + 1, we note from Duhamel’s formula (6.2), that

(m+1) (0)
g — ¢z, <

'
/ef(’fs)‘vngm)(s,x)ds
0 j

V%)

We split the nonlinearity as in Sections 4 and 5 to get

() m) ) (m) 5
FP00=33% Y (Gk,z[hlf';,hzf"j.z,...,hz',fﬂ,jzm](t, Ot.x +aj))

neNkEZ jp,....jans1€T

+ > G;;,l[hgﬁn;,h;@;,...,hg’;;;l,m“m,Q(I,Ha,-)))
i€{1,2,3,4}

— V18" (1, x)deq(t, Q(t, x +a;) + B (1, (¢, x + a;)). (6.5)

The terms in the third line of (6.5) are dealt with in Lemmas 2.6 and 2.7. Moreover, G 2
and G};’l fori € {1, 2, 3} are bounded in a straightforward way using Lemmas 5.2—
5.5, combined with Lemma 2.4 to take into account the change of variables.

It remains to consider Gi, |- From (6.3) and (6.1), we see that we need to find bounds
on

d m

. (m) (0) 0

Gk,l — Pk[_dxhlyj . E Ll*[hg,jzy...,/’lzn-l,-l,jz,lﬂ]].
J2seesjont1€T

We begin by defining the renormalized free evolution by

WO x) =Y eV x —aj +q. x),
jed

and rewrite

Lappm) - m) (m) 1400 () (m) (m)
Gyylhy o hy oo hyy 1, x) = Gylhy 7 hy s hy,1(2 X)
Ldr, (m) 4 (0) 0)
=Gyl hy s g 1T X)

1,4 0 0
e L SN AN (S
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=Gt hSY = RS 1)

1,j°
0 0
FG B hy — h 1)
0 0
+G "™ R )1 ). (6.6)

We notice from Lemma 2.5 that hg'") - hgo) fori € {2,...,2n+ 1} are (renormalized)
elements in Z», and therefore the first 2 terms in the second equality of (6.6) can be
bounded by Lemma 5.4. For the last term, we rewrite

Lar ) () ©) Lar ) () ©)
Gty hSY ) e x) = G RS ) 1 x)

d . m) ©) ©)
- > Pk{ahl,j (t,%) - P<aVIgy s gml,m,](r,x)}
./2 ----- j2n+l€j

d . m) ©) ©)
+ Y A n e Pacavalel gl 60
./2 ----- j2n+l€j

d 0 0
+ Y A Pacilgl g, )0 ) 6
j2 ----- j2n+l€\7

where V| and V; are defined as in Lemma 5.7. The first term in (6.7) can be bounded
using Lemma 5.6. Using (5.7) in Lemma 5.7, we estimate

L) 0) 0)
Pk{ah],j (,x) - ng—4V2[g2’j2, R g2n+1,jzn+1](t’ x)}

Joveesjan 1€, M) L
2n+1
k\—1/10~k/2
S L+ 250710282162 TT S 18z,
i=2 j,'Ej
Finally, we notice that in the last term of (6.7) can be rewritten as
d . (m 0) Q)
Yo R PacaVile) g, 100
j25-~'>j2n+leu7
d (m s _(0) )
= Y A en Vilel g g, 100
J2seesn1 €T
d 0 0
- Y A|ew  Pacailel g, N0 ) 68)
J2sees ]211+1€;7
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Let us now consider the last term in (6.8), remarking that it is a high-high-to-low
interaction. Applying Lemma 5.9 then yields

) ) ©0)
> R Pacavile) g 1000

J25e0s 12n+l€\7 L?
2n+1
Sn 22002 TT D2 188 Iz,
i=2 jieJ
Combining all the above yields
d
1.4 (m) (0) (0)
‘Gk,1<r,x) - > Pk{ahl,,- (t,%) - Vilgy ), ...,gan,W](r,x)} 2
J2seees, /2n+les7 Lx
2n+1
Sn 22070102 TT D 185Nz
i=2 jieJ
Combining all the estimates and using (2.22) from Lemma 2.5, we have that
1PeF™ 2 S )2 C 2@k 08
neN
2n+1
< T D2 1™z + 2@ ~"1g;12 - 6.9
i=2 j,'Ej

where we picked up the constant C" from the <,,. Using the induction assumption
I g(m) llz < 2Coe, we recover a factor of £2"*! in the first term on the left hand side,

which, by choosing ¢ to be sufficiently small, will trump the constant C”. From the

sum over n we pick the biggest case, being n = 1, and we can thus rewrite (6.9) as
1P F{™ 2 S €282 250,

We now claim that

ICCF™) 1z, S €%, (6.10)

where
t
C(F}’”)(t,x) ::/ e—“—”‘V'F;’”)(s,x)ds.
0

We assume that ¢+ € (0,00) and k € Z are fixed. From the estimate (6.9) we
immediately get that

221 4 250 2R T PC(FIM (1, ) 2
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t
< 82/ 21</2(1 + 2kt)2/10(2kt)—1/106—(t—s)2"/8”Pij(m)(S’ )|l 2 ds
0

<

~

Z/I 2k(1+2kt)2/10 (Zkt)—l/lo J
0 T @)U 1+ —s2bE Y
< &2 min(l1, (2%r)8/19).

This concludes the proof of the claim (6.10), thus concluding the proof. O

Lemma 6.2 For all g(.m)

j €Z, jeJandm € N, we have

1 —1
18"V, x) = g, 0)llz Sellel™ 6, x) = 8"V Dllz (61D

Proof Again, we argue by induction. By hypothesis and by Lemma 6.1, (6.11) clearly
holds for the free evolution gEO). We now assume that (6.11) holds for some given m.
That is, we have

m

Ig$

(m—1) m

-2
Y, =" V0l S ellg 2

—1
"0 =" 0z

Using Duhamel’s formula (6.2), we have

(m+1) (m)
g\ — g™z, <

t
—(t=$)|VI|[ (m) (m—1)
fo e =9 |[Fj (s,x)—Fj (s,x)]ds

Zs

We begin by considering the nonlinearity F ;m) - F;m ~1 which we split as in Sections 4
and 5 to get

RN ELTEED 3

neNkeZ
> Gralh™, n™ ™ (¢, O(t, x +aj))
k2t g P2 gy antd, g AN ’ J
j2 ----- j2n+l€j
(m—1) ; (m—1) (m—1) ~
- Gk,Z[hl’j s h2,j2 y e h2n+l,jzn+1](t’ o, x +aj))

4
i (m) 5 (m) (m) A
+ Y[k 1 B 10 O x + )
i=1

i (m—=1) 4 (m—1) (m—1) A
— GO R G 16 0+ ) ])
— V1" (1, 1)deq (1, Ot x +a))) — [VIg" Ve, 1)deqt, O, x +a;)

+E5»m)(t, Q(t,x _|_aj)) — E;mil)(t, Q(t,x +(1]))
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We remark that all the difference of the form gg.m) - g;m_l) are elements in the Z,

space. From Lemmas 2.6 and 2.7, we easily get’

—1 ~
IPLES™ = ES" D], 0. x + a2
< 22 min{1, @)~ 10))1g" — g" Pz,
—1 ~
1PV = g )t )deq (., Ot x +aj)]llp2

< £k 0 g — gD

j ”Zz

Using the fact that a difference of multilinear products can be rewritten as

G(fi, s fant1) = G ooy fopp) = GUA = fTs oo fant) + -
+G(ff' ..y fant1 = fona1)

we rewrite the high-high-to-low interaction difference as

(m)  (m) (m)
D MGkalh hy by ]

J2seesjonr1€T
(m—1) ; (m—1) (m—1) ~
_Gk,Z[hl,j s hZ,jz FII) h2n+1’j2"+1])(ts o, x +aj))||L2
(m) (m—=1)  (m) (m)
Sn > 1Gkalhy") —hy" 7 hy e hyyy 102+
j2s---vj2n+lej
(m=1) ; (m—1) (m) (m—1)
+ 0 GkalhT Yy g =, 1@ D)
J2sees ont1 €T
2n+1
- -1
S 22424070 S g™ = eVl T ez + o+
J2sees ont1 €T i=2
2n—1

(m) (m—1) (m—1) (m—1)
HIEI 1 o = &t 28 iz TT e ]
i=2

S 221420706 — gz, (6.12)

where we used Lemma 2.4 to take into account the change of variables, the estimate in
the third inequality follows from Lemma 5.2 and the estimate in the last line follows
from Lemma 6.1. The estimates for G}c’l with i € {1, 2, 3} follow similarly, using

Lemmas 5.3-5.5. It remains to consider Gé |- We rewrite

DR e U TS L

Lj> 2’]'27‘ 2”+lvj2)z+l
j2,~-,]’2n+16‘7
Ldr, (m—1) 5 (m—1) (m—1)
- > Gealhyy “ohyg, s hon ]

J2sees Jan+1 efl,...,.M}
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— (m) (m DEFA(V) 0)
- Z { [h h2vj2’ Tt h2n+1’j2n+l]

J2s- vj2n+l€j

Ay PN AR AR

NG O G N

R Tl hg’j?z LY RTRON S B
LA~ ] 61D

We can now further decompose and bound (6.13) similarly as in Lemma 6.1 to get
bounds as in (6.12).
Combining all estimates and using (2.22) and (6.4), we get

”Pk’F(m) _P F(m 1)||L2 < ch 2112k/2(2kt) l/l()“g(Wl) (m 1)” 2
neN
16242110 g — gD,

where here again, we get the factor of C” from the <, which gets trumped by the
factor of 2"+1 we pick up from Lemma 6.1 and the induction assumption.
Arguing exactly as in the end of the proof of Lemma 6.1, we then obtain
1 -1
ICCE™ = F" D)z, S ellgh™ = g Vliz,.

where here

t
C(F;m) _ F}m—l))(t’ X) = / e*(”s)lv‘[FJf’") _ F;’”_l)](s,x)ds,
: : 0

thus concluding the proof of the lemma. O
We have now shown that g(m) gjo) is a Cauchy sequence in Z, thus concluding
) .

the construction of the solution g; — g i in Z;.
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