

Hydrological, Geochemical, and Microbiological Controls on Iron Mineralization in an Intermittent Stream

Zackry Stevenson¹, Mia Riddley¹, Tamara McConnell¹, Elizabeth D. Swanner^{1*}

¹Iowa State University, Department of Geological and Atmospheric Sciences, Ames, IA, USA

*** Correspondence:**

Elizabeth D. Swanner

eswanner@iastate.edu

Abstract

In Clear Creek, which runs through the Iowa State University campus in Ames, Iowa, U.S.A., several types of iron mineralization occur within stagnant pools and slow-moving water. This includes rusty flocs, commonly observed in mineral springs, rust-stained sediments, and iridescent films (“schwimmeisen”) on the pool surfaces. Observations of iron mineralization over the course of more than a year in a single reach indicated that mineralization occurred after precipitation events, once water levels in the stream had dropped. Iron extracted and quantified from Clear Creek sediments and pool waters indicated the stream and its sediments were unlikely to be supplying the iron for mineralization. We hypothesize that the observed mineralization could result from the discharge of shallow, reducing, groundwater-bearing Fe(II) into stagnant pools that form in debris-dammed areas of the stream. Piezometers installed next to the creek documented that shallow groundwater contained dissolved Fe, with the source of Fe being the floodplain sediments, and the hydraulic gradient promoted groundwater discharge into the stream. Microorganisms identified in mineralized pools using 16S rRNA amplicon sequencing revealed an elevated presence of putative iron-oxidizing and iron-reducing microorganisms in mineralized vs. non-mineralized pools. Further investigation of the iridescent films revealed them to be composed of amorphous Fe(III) minerals. We further hypothesize that microbial exudates reduce surface tension and potential micro-zones for subsequent microbial iron redox cycling with dissolved organic matter in the pools. Determining the processes controlling mineralization can lead to a better understanding of the ecological role of iron mineralization in agricultural watersheds, and the importance in contaminant degradation and nutrient cycling.

Introduction

Streams are important conduits of elements between watersheds, downstream rivers, or estuaries. A stream's chemical inputs reflect the local watershed characteristics. Specifically, the hyporheic zone is influenced by groundwater quality and neighboring ecosystems that impact the cycling of nitrogen, phosphorus, and sulfur (Lawrence et al., 2013). Agricultural watersheds with forested riparian zones can enhance nitrogen and phosphorus cycling through biotic uptake, sediment deposition, agricultural runoff, and seasonal dynamics (Kreiling et al., 2021). However, there is less work to address the hydrology and biogeochemistry of iron cycling in lower-order agricultural streams. Slow-moving water contributes to intermittent suspended organic material deposition, which aids in the development and maintenance of oxygen gradients in water and sediment porewaters, which can alter the mobility of iron and other redox-active trace metals

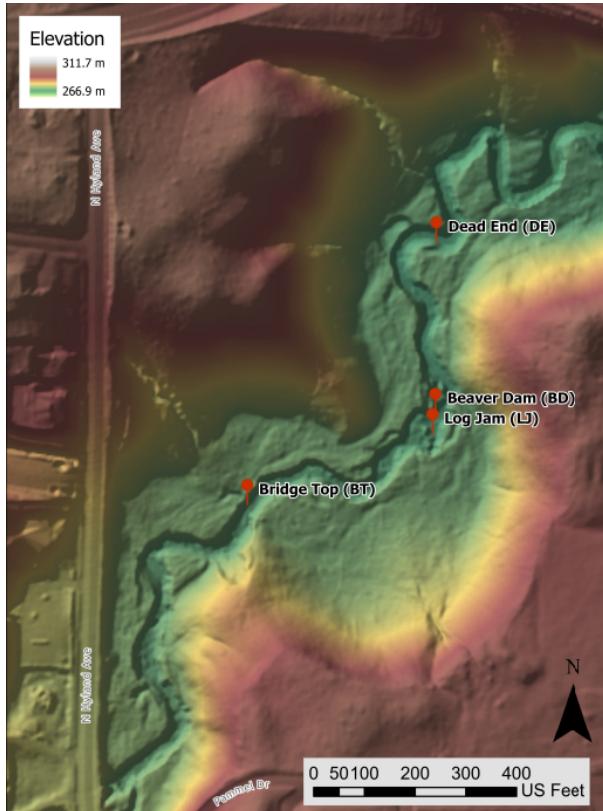
43 (Rosenburg & Schroth, 2017). In particular, the hyporheic zone in these streams is an interface
44 between the anoxic and/or trace-metal-rich groundwater, with an oxidative and reductive
45 capacity that can affect elemental cycling (Boano et al., 2014; Hoagland et al., 2020; Yang et al.,
46 2018), including iron redox cycling (Boulton et al., 1998). Determining where and how iron
47 enters such streams is important to identify hot spots of microbial iron and nutrient cycling,
48 which can drive contaminant degradation or immobilization through processes such as
49 adsorption onto iron minerals. This is particularly important for agricultural watersheds or those
50 with other disturbances that affect water quality and ecology.

51
52 Iron is present in Earth's surface environment as a major crustal cation, as oxides during
53 weathering, as an ion dissolved in water, and within biological organisms as a requisite trace
54 nutrient. Iron moves between these different reservoirs when it is transformed between its
55 primary oxidation states (i.e., Fe(II) and Fe(III)) and distinct chemical species, which control the
56 solubility and mobility of iron (Kappler et al., 2021). Seeps and springs where anoxic
57 groundwater discharges to the oxygenated surface are hot spots for microbial redox cycling and
58 iron mineralization at such sites have previously been observed (Kozubal et al., 2008; Mori et al.,
59 2015; Pierson & Parenteau, 2000). Several possibilities for iron inputs exist for creek beds and
60 streams, including iron mobilization within the riparian zone, from the hyporheic zone, during
61 shallow or deep groundwater discharge, or inputs from the larger watershed during rain events
62 (Lautz & Fanelli, 2008; Rivett et al., 2011; Sarkkola et al., 2013). Two other common iron
63 sources are from acid rock drainage, where iron sulfides are weathered (Ahn et al., 2015; Dold et
64 al., 2013), or through acid mine drainage in mine-impacted areas (Méndez-García et al., 2015).

65
66 Seeps and springs can introduce Fe(II) from anoxic groundwater, utilized by iron-
67 oxidizing organisms as it discharges into oxygenated water. Iron-oxidizing bacteria (FeOB) can
68 oxidize Fe(II) to Fe(III) under both oxic and anoxic aquatic conditions and have previously been
69 recognized as contributing to in-creek iron deposits (Emerson, 2012; Roden et al., 2012).
70 Freshwater environments with circumneutral pH are generally dominated by FeOB within the
71 *Gallionellaceae* family (*Gallionella capsiferriformans*) (Almaraz et al., 2017; Roden et al.,
72 2012). In contrast, *Sideroxydans* sp. are FeOB found in acidic and circumneutral environments
73 (Fabisch et al., 2013; Roden et al., 2012). Moreover, these FeOB make up flocculent iron mats in
74 various freshwater systems (Brooks and Field, 2020). In circumneutral pH and oxygenated
75 conditions, Fe(III) is the favored valence, which is relatively insoluble and forms Fe(III)-
76 (oxyhydr)oxides (Cornell et al., 1996; Sobolev & Roden, 2002). *Acidithiobacillus* and
77 *Lepstospirillum* have been found in acidic streams and are known FeOB that contribute heavily
78 to the iron oxidation in these systems (Méndez-García et al., 2015). Variations in pH, nutrients,
79 oxygen content, and organic matter inputs can control the identity and compositions of Fe(III)-
80 (oxyhydr)oxide minerals, which then provide electron sources for various iron-respiring
81 organisms (Bruun et al., 2010; Chan et al., 2016; Emerson et al., 2010; Roden et al., 2012).
82 Oxygen-poor conditions could result from water stagnation and particulate organic carbon input,
83 allowing iron-reducing bacteria (FeRB) to reductively dissolve mineralized Fe(III) (Brooks and
84 Field, 2020; Dubinsky et al., 2010; Lovley, 1987). Floating surface films of iron have been
85 detected in multiple seeps, springs, and creeks, and could be a hotspot for microbial activity
86 (Almaraz et al., 2017; Dong et al., 2024; Grathoff et al., 2007; Sánchez-España et al., 2023).
87 However, the oxidation state and mineralogy of floating iron films are not well-characterized,
88 and there is conflicting evidence on whether these formations are Fe(II), Fe(III), or a mixture of

89 both (Dong et al., 2024; Grathoff et al., 2007; Perkins et al., 2016). Furthermore, there is little
90 comparative work on the microbial community composition associated with floating iron films
91 vs. flocculant iron mats or other types of in-creek iron mineralization.

92
93 This study reports observations of iron mineralization in an intermittent stream located in
94 Ames, IA, U.S.A., to provide a combined hydrological, geochemical, and microbiological
95 investigation of iron sources and microbial redox cycling. This stream is of particular interest
96 because it is in an agricultural watershed, and iron-cycling organisms can play a role in organic
97 pollutant (e.g., herbicide) degradation, or nutrient cycling. Our goals were to (1) inform the
98 source of iron to the stream, (2) document the geochemical conditions that give rise to the
99 observed iron deposits, (3) investigate the microorganisms associated with the iron
100 mineralization types, and (4), resolve the oxidation state and mineralogy of iron in floating iron
101 films. These results will elucidate the impact of hydrology, geochemistry, and microbiology on
102 in-stream iron cycling and mineralization.


103

104 **Methods**

105

106 **Field Description**

107

108
109 Figure 1: LiDAR map of Clear Creek on Iowa State University's campus in Ames, IA, produced in ArcGIS. Plotted
110 locations are sample sites. Stream flow is northeast.

111

112 Clear Creek is a small tributary for Ioway Creek in Ames, Iowa, and part of the Des Moines lobe
113 of the Wisconsinan-aged glaciation. Clear Creek has intermittent iron mineralization forming
114 predominantly within stagnant pools. Four areas with intermittent but recurring iron

115 mineralization were identified within a 0.20-mile reach of the stream running through the Iowa
116 State University campus. The upstream site is Bridge Top (BT) (42° 01' 54.90012"" N, 093° 39'
117 16.30008"" W), the two midstream sites are Log Jam (LJ) (42° 01' 56.306658"" N, 093° 39'
118 11.470572"" W) and Beaver Dam (BD) (42° 01' 56.70012"" N, 093° 39' 11.40012"" W), and the
119 downstream site is Dead End (DE) (42° 01' 58.583388"" N, 093° 39' 11.4695028"" W) (Figure
120 1). Each site had different iron accumulation patterns that may have been related to in-stream
121 debris and water flow paths. Over the past decade, the creek has experienced a maximum 24-
122 hour precipitation of 4.48 inches, with a mean annual precipitation of 34.39 inches (USGS,
123 2022).

124 **Piezometers**

125 Two piezometers were installed in April 2024 to characterize the soils near the stream
126 and determine the iron concentrations in groundwater and soil. The first piezometer was installed
127 near the stream at coordinates N 42.03220 and W 093.65303. The second one is within 5 m of
128 the first one, but further from the creek at coordinates N 42.03228 and W 093.65314
129 (Supplemental Figure 1). A bucket auger was used to drill ~20 cm deep for each section of soil
130 until hitting the water table. Soil sections were aligned sequentially and characterized using the
131 Munsell color chart. Soil samples were collected from alternating sections from the surface to the
132 water table, placed in whirlpack bags, and frozen at -20 °C until further analysis for iron
133 concentrations.

134 **Observations and Geochemical Measurements**

135 Observations of iron mineralization and geochemical measurement sampling were done
136 in tandem at each site at least weekly when temperatures were above freezing during the study
137 period (October 2021 to December 2023). When frozen, the creek was observed and/or sampled
138 at monthly intervals. During the open water season, observations were made no more often than
139 every three days with at least a three-day gap between observations.

140 Physicochemical measurements of pools were made using a YSI ProDSS multiparameter
141 probe. The measurements included dissolved oxygen (mg L⁻¹), temperature (°C), specific
142 conductance (μS cm⁻¹), pH, and ORP. For piezometer data collection the YSI ProDSS was
143 lowered to the water table for data collection. Clear Creek was sampled at the same time as
144 piezometers. When there was visible iron in the sampling pools, the observed iron type (Table 1)
145 was recorded, and the pool volume was estimated based on the dimensions of the two longest
146 axes of each pool and its maximum depth.

147 **Phosphorous Quantification**

148 Total phosphorus (TP) and orthophosphate (OP) were determined in both water table
149 samples from the piezometers and from Clear Creek using a modified TP and OP method from
150 Murphy and Riley (1962). For piezometers, a bailer was used to fill 15 mL conical tubes, and
151 separate 15 mL conical tubes were dipped into pools in Clear Creek. Samples were brought back
152 to the lab and analyzed right away. For OP, water was filtered with a 0.45 μm filter into a new 15
153 mL conical tube. To determine OP, a fresh phosphorus color reagent was made by adding
154 sulfuric acid solution, potassium antimony tartrate solution, ascorbic acid solution, and
155 molybdate solution. After 30 minutes of dark incubation, samples were analyzed on an Epoch 2
156 Microplate Reader (Biotek) at 885 nm. TP was determined with a 1.6% solution of potassium
157 persulfate. Tubes were placed in the autoclave for 30 minutes at 121.5 °C. Tubes were cooled to
158 room temperature before following the same procedure as OP for analysis of TP at 885 nm.

162

163 **Iron Quantification**

164 Two methods were used to quantify total iron in the water. Unfiltered samples were
 165 collected in a 15 mL conical tube. Samples taken immediately back to the lab were prepared for
 166 quantification using the Hach TNT 890 Metals Prep Set. Iron concentrations were determined
 167 using the TNT 858 method on a Hach DR1900 Portable Spectrophotometer. For the second
 168 method, unfiltered water was collected in a 15 ml conical tube and immediately acidified with
 169 6M hydrochloric acid (HCl) to a final concentration of 1M HCl. Ferrous iron [Fe(II)] was
 170 determined with the Ferrozine assay following a protocol adapted from Stookey (1970) and
 171 Viollier et al. (2000) using an Epoch 2 Microplate Reader (Bioteck). Total ferrous iron [Fe(II)]
 172 was determined with the Ferrozine assay and then again after hydroxylamine hydrochloride
 173 reduction to determine total Fe. Then, Fe(II) was subtracted total Fe to determine Fe(III).
 174 Samples were diluted if concentrations exceeded the detection range (10 – 300 μ M).

175 Pool sediments were sampled into 15 mL conical tubes for iron extractions. If not
 176 processed immediately, samples were stored in a -80°C freezer. Thawed or newly collected
 177 samples were placed in a Captair Pyramid 2200A Multi-function Disposable Glovebox flushed
 178 with N₂ gas (Erlab, #17404CN) for Fe extraction to prevent speciation changes in iron due to the
 179 presence of oxygen. In the glove bag, half a gram of wet sediment was weighed and placed into
 180 stoppered serum bottles. Anoxic sodium acetate solution (25 mL) was added to the bottles and
 181 shaken at room temperature for 1 hour to solubilize the sorbed iron from sediments. After
 182 centrifugation for 20 minutes at 2300 g, the supernatant was extracted to quantify sorbed iron
 183 with Ferrozine as described above. The crystalline ferriferous phase was extracted with 25 mL of
 184 anoxic 6M HCl. For this treatment, samples were shaken for 24 hours at room temperature and
 185 centrifuged to extract the supernatant. Both extractions were analyzed with the ferrozine assay to
 186 quantify iron. Three sub-samples were extracted from each sample for triplicate measurements.

187 Soils that were frozen after piezometer installation were processed similarly to the pool
 188 sediments, with one change to the protocol. One gram of soil was weighed and placed into a
 189 serum bottle instead of 0.5 g for better detection of the low-quantity adsorbed fraction.

190

191 **Microbial community analysis**

192 To investigate the microbial community of pools, 500 mL of water was passed through a
 193 series of sequential filters (11 μ m nylon and 3 and 0.22 μ m PES filters; Millipore) with a
 194 Masterflex Portable Peristaltic Sampler (Cole/Parmer). The 11 μ m filter captured larger
 195 phytoplankton, and this study did not investigate these samples further. The 3 and 0.22 μ m were
 196 expected to capture particle-associated and planktonic microbial cells, respectively. Filters were
 197 stored at -80°C in cryovial tubes with RNase later (Lambrecht et al., 2020). Total community
 198 DNA was then extracted from the biomass on the filters using a modified DNeasy Powerbiofilm
 199 Kit: the original centrifugation step was omitted as the entire filter was used. Also, 30 μ L of
 200 elution buffer was used instead of the recommended 100 μ L to concentrate the DNA. Prior to
 201 sample submission, DNA concentration was quantified by Qubit 2.0 Fluorometer at the Iowa
 202 State University DNA sequencing facility. All samples were diluted to a concentration of ~20 ng.
 203 The V4 region of the 16S rRNA gene was amplified using the primer pair 515 F (5'-
 204 GTGCCAGCMGCCGCG GGTAA-3') and 805R (5'-GACTACVSGGGTATCTAAT-3') using a
 205 dual index approach (Kozich et al., 2013). Samples were sequenced on an (Illumina Miseq)
 206 using 2 \times 250 bp at the Iowa State University DNA Facility.

207 Sequences were trimmed and quality screened using DADA2 package in R (Callahan et
208 al., 2016). Forward and reverse sequences were trimmed at 225 and 195 bases, to account for
209 differences in quality plots of reverse and forward reads. Reads were denoised, merged, and
210 screened for chimeric sequences for removal, and actual sequence variants (ASV). The phyloseq
211 package was used to create the taxonomy and sample table for further analysis. The decontam
212 package was used to identify and remove ASVs associated with negative controls (Davis et al.,
213 2018). Negative controls from elution buffer and water were run through the same DNA
214 isolation kit and evaluated using the prevalence method. A threshold value of 0.5 was set and
215 used to create a new phyloseq object. We assigned taxonomy with an updated cyanobacteria
216 inventory, Cyanoseq database, which encompasses the Silva database (CyanoSeq 1.2; Silva
217 138.1) for better accuracy of this phylum (Lefler et al., 2023). For further analysis, sequencing
218 reads from the 0.22 and 3 μ m filters were pooled for each sample. Relative abundance of
219 microbes were rarefied, and all organisms were grouped into an “other” category, while putative
220 iron-reducing and oxidizing ASVs were graphed separately to interpret abundance change in
221 samples. Principal Coordinates Analysis (PCoA) was conducted in phyloseq using the default
222 Bray-Curtis dissimilarity and differences were declared significant based on p-values <0.05 . All
223 sequences from the tagged Illumina MiSeq libraries were submitted to the NCBI short-read
224 archive under bioproject number (PRJNA1053376).

225

226 **Scanning Electron Microscopy and Transmission Electron Microscopy Analysis**

227 Field-Emission Scanning Electron Microscopy (FE-SEM) was used to image iridescent
228 films. The iridescent film was scooped onto a silica oxide wafer. Samples were analyzed both
229 without preventing oxygen and exposure, and by keeping anoxic. In the second case, the sample
230 was transported in a Pyrex container with an AnaeroPack (Fischer Scientific) prior to placing in
231 an anoxic glovebox (100% N₂) to prevent further oxidation before analysis. Images of the
232 iridescent iron film deposited on the wafer were analyzed using a ThermoFisher (FEI) Teneo
233 Lovac microscope at the Ames National Laboratory’s Sensitive Instrument Facility. Secondary
234 electron images were taken of the stub on low magnification with no coating and low vacuum
235 mode. Backscatter images were taken at varying accelerating voltages of 1, 3, 15, and 20 kV, and
236 high magnification low voltage was used to image the film ‘crust.’ Additional images were taken
237 in Optiplan mode, and high vacuum/Standard mode, using a Lo-vac (LVD detector), or an
238 Everhard-Thornley Detector (ETD).

239 For TEM analysis, an acid-washed petri dish was used to scoop water with iridescent film
240 and placed in a glass Pyrex container with an AnaeroPack (Fischer Scientific), which reacted
241 with any trace oxygen in the container to maintain an anoxic atmosphere during transport, so no
242 further oxidation occurred before analysis. The FEI Titan Themis Cubed Aberration Corrected
243 Scanning Transmission Electron Microscope (STEM) was utilized to acquire TEM images of the
244 films. The sample was placed on a copper grid with a carbon film. Energy dispersive
245 spectroscopy (EDS) was used to determine the elemental composition of the films. The FEI
246 Tecnai G2-F20 scanning transmission electron microscope was utilized for Selected Area
247 Diffraction Pattern (SADP) to obtain diffraction patterns of iridescent films to determine the
248 mineralogy based on available reference data. High-angle Annular Dark Field (HAADF) was
249 paired with Electron energy loss spectroscopy (EELS) to obtain high-contrast images and
250 determine iridescent films iron oxidation state and chemical composition. Reference spectra for
251 the iron oxidation state were made with 2-line ferrihydrite [Fe(III)] (precipitated according to

252 Schwertmann and Cornell, 2000) and hercynite [predominantly Fe(II), but our sample likely
253 contained some Fe(III)].

254

255 **Results & Discussion**

256 **Iron Mineralization**

257 Observations across a year-long sampling period led to the categorization of three main
258 iron mineralization types within four sites of Clear Creek (Table 1).

259

260 Table 1: Iron mineralization types. Scale bars are in centimeters.

Mineralization Type	Description	Image of iron mineralization type
Flocculent Iron Mats	Soft, fluffy orange-brown mat attached to sediment surfaces that has the appearance of wet peanut butter. Found in areas of low or no flow.	
Iridescent Films (“schwimmeisen”)	Floating, iridescent and/or metallic surface films that resemble oil but break up upon disturbance, unlike oil. Found only in stagnant pools.	
Solid mineral precipitates	Bright orange minerals staining the sediment surface of stagnant pools.	

261

262 Flocculent iron mats were found in the midstream sites (LJ and BD). Multiple studies
263 have found flocculent mats in different aquatic habitats ranging from neutral groundwater seeps,

264 sea mounts, deep hydrothermal vents, or roadside ditches (Emerson & Revsbech, 1994; Rentz et
265 al., 2007; Roden et al., 2012). Flocculent iron mats that house FeOB play a significant role in the
266 biogeochemistry of the environments in which they occur through the degradation of organic
267 compounds and pesticides, and the removal of heavy metals and phosphorous (Fabisch et al.,
268 2013; Rentz et al., 2009).

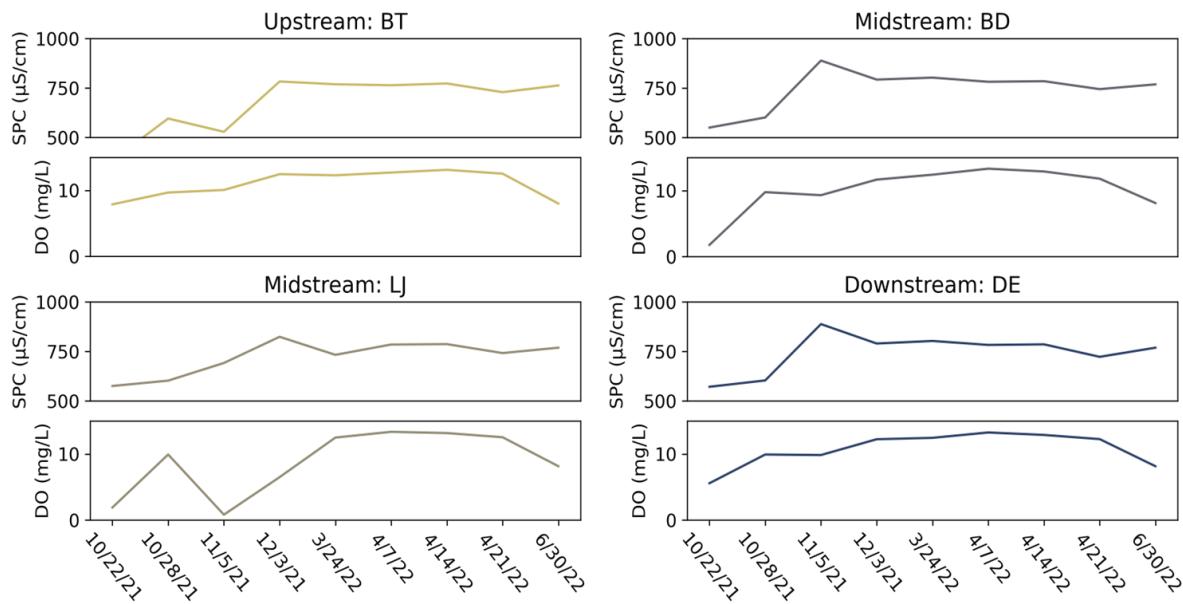
269 Iridescent surface film found only at stagnant pools in the midstream sites. In the
270 literature, these films have been called ‘schwimmeisen’, German for ‘floating iron’ (Grathoff et
271 al., 2007). However, multiple studies have also observed an iron ‘sheen’ that sits on top of
272 stagnant water (Almaraz et al., 2017; Perkins et al., 2016; Sánchez-España et al., 2023).
273 Moreover, it has been observed that rainfall and wind will disturb these films (Grathoff et al.,
274 2007).

275 Lastly, rust-colored solid mineral precipitates were found in some sample sites.

276
277 Table 2: Persistent pool locations and features. Characterizations of iron persistence will be identified based on
278 Table 1. Includes size of the pool, stagnant or flowing water, or iron types. Areal extent of iron was based on
279 average measurements of the pool area with measuring tapes as seen in Table 1.

Pool Name	Location	Water Flow	Iron Types	Areal extent of visible iron
Bridge Top (BT)	42° 01' 54.90012"" N, 093° 39' 16.30008"" W	Medium flow into a stagnant side pool	Little mineralization	Small area 10 in ² – 20 in ²
Log Jam (LJ)	42° 01' 56.306658"" N, 093° 39' 11.470572"" W	Stagnant to low flow during rain events, stagnant pools after rain	Iridescent films and precipitates	Large area 24 in ² – 36 in ²
Beaver Dam (BD)	42° 01' 56.70012"" N, 093° 39' 11.40012"" W	Low flow on the dammed side; Medium flow on upstream side	Iridescent, flocculent, and precipitates (medium flow)	Large area 36 in ² – 48 in ²
Dead End (DE)	42° 01' 58.583388"" N, 093° 39' 11.4695028"" W	High flow with a meander	Little mineralization (only 2 days of visible iron)	N/A

280 281 Temporal In-Stream Hydrological and Geochemical Conditions

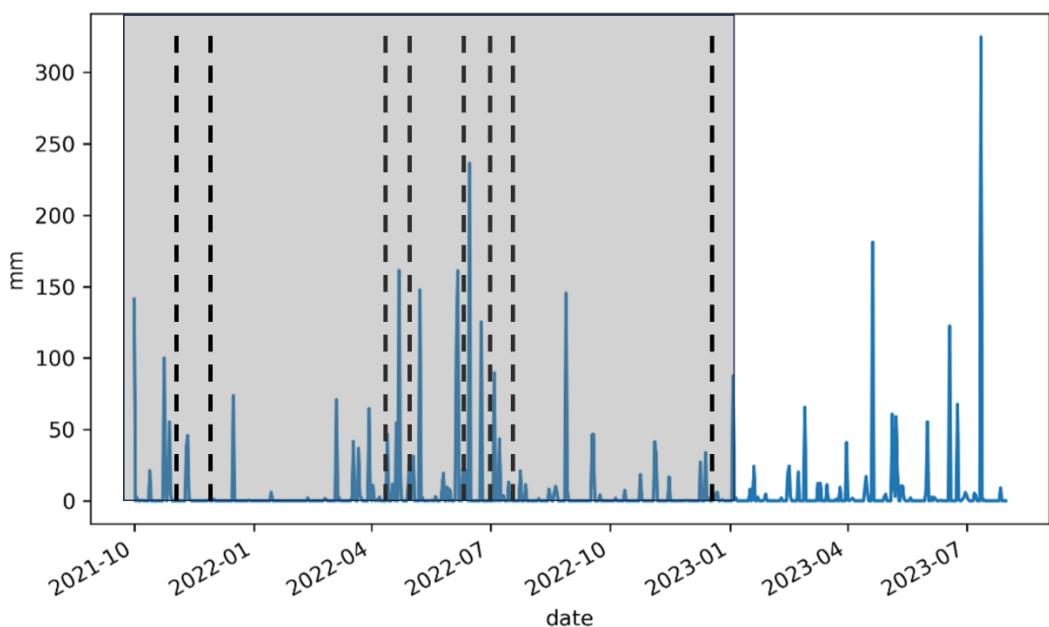

282 Clear Creek was repeatedly sampled at four unique locations for water chemistry, iron
283 concentrations, and speciation in water and sediments, and observations of the three iron
284 mineralization types throughout a single year across three seasons. Locations of sampling sites
285 are found in (Figure 1), while the pool characterization data is found in (Table 2).

286 Site BT (Figure 1), furthest upstream, was near the start of the deciduous forest zone of
287 our sampling area. The site had small accumulations of organic debris near the stream’s edge
288 where the water was not obstructed. Consistent flows were observed throughout sampling,
289 although only a small pool remained during prolonged dry periods. Dissolved oxygen (DO) was
290 consistently above 7 mg L⁻¹, but this site had the lowest specific conductivity of all sites
291 throughout the sampling period, ~400 µS cm⁻¹ (Figure 2).

292 The midstream sites LJ and BD (Figure 1) were impacted by wood and organic debris
293 that created small dams, effectively slowing the water flow through these two stretches and

294 creating pools. The midstream sites had the lowest DO concentrations during October 2021, < 2 mg L $^{-1}$ (hypoxic). Specific conductance was also consistently $> 500 \mu\text{S cm}^{-1}$ at these sites during 295 all sampling periods (Figure 2). Increased specific conductance from the upstream site (BT) to 296 the midstream sites (LJ and BD) indicates input of an additional water source with higher 297 dissolved solutes. There are no surface inlets along any of the four sites (Figure 1). 298

299 Downstream site DE (Figure 1) had similar specific conductivity measurements as the 300 midstream sites $> 500 \mu\text{S cm}^{-1}$ (Figure 2). However, the DO concentrations were consistently 301 above ~ 4 mg L $^{-1}$ (Figure 2). Like the upstream site, little debris obstructed the water flow. The 302 higher specific conductance at site DE compared to the upstream site BT was likely due to 303 sourcing water from the pools developed in sites LJ and BD. 304


306
307 Figure 2: Each site listed in Table 2 was measured once at each sampling time for specific conductivity (SPC) and
308 dissolved oxygen (DO).
309

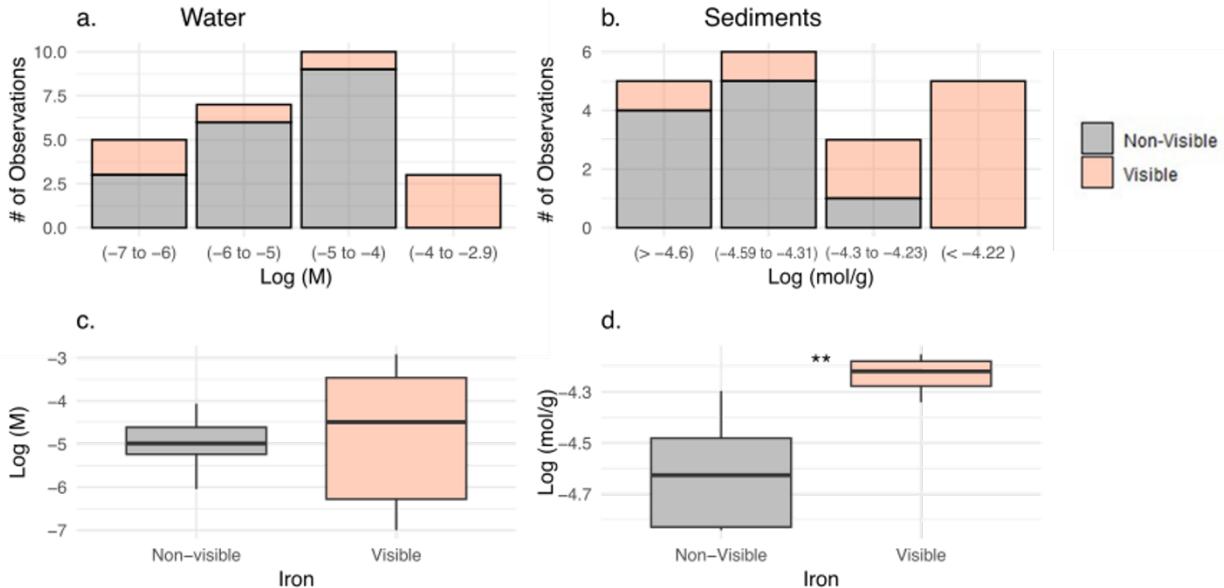
310 Precipitation data were retrieved from the Ames Municipal Airport (KAMW) in Ames,
311 Iowa, and the Automated Surface Observing System (ASOS) data was downloaded from Iowa
312 State University's Mesonet (<https://mesonet.agron.iastate.edu/request/download.phtml>). Publicly
313 available rainfall records over three seasons, from October 2021 to July 2023, are presented in
314 Figure 3. Regular monitoring observations during the open water season indicate that iron
315 mineralization occurred in the stream days after rain events, but not when the creek was dry. At
316 the end of 2021, several precipitation events were followed by visible mineralization (dashed
317 lines in Figure 3). Little precipitation fell from January until March 2022, and the stream was
318 frozen. Precipitation and snowmelt enhanced observed creek flows and iron mineralization was
319 observed in the weeks after. Very little rain fell from late May to early June 2022, leading to a
320 dry creek bed and no iron mineralization. Mineralization was observed again after several multi-
321 inch rainfall events in December 2022. However, mineralization was not observed following a 9-
322 inch rainfall event in late June 2022. This is likely due to high flows preventing standing pools of

323 water, as mineralization was typically observed in standing pools, and /or high flows washing
324 away mineralization.

325

326

327
328 Figure 3: Average precipitation based on weather data collected from the local system. Dashed lines indicate times
329 when iron mineralization types were visible. A grey box indicates the time frame for observations of iron
330 visualizations with geochemical data presented in Figure 2 and Table 3.


331

332 **Processes for enhancing iron concentrations in mineralized pools**

333 We wanted to understand if iron in the pools was mobilized from rain and direct runoff or
334 added from sediments or groundwater. Enhanced iron contents and mineralization in the creek
335 could result from runoff transporting iron from the watershed into the creek and pools. Previous
336 work on the Corbeira catchment in NW Spain found that higher rainfall years led to increased Fe
337 loads in the stream compared to lower rainfall events coinciding with lower Fe loads (Soto-
338 Varela et al., 2015). Increased precipitation can correlate with elevated dissolved iron levels,
339 along with varied colloidal iron, compared to dry events (Rosenberg & Schroth, 2017; Zhang et
340 al., 2020). If this were the case, we would predict similar total iron concentrations in water from
341 the pools with and without visible iron mineralization (Figure 4). There was no statistical
342 difference in total iron concentrations from water in pools with visible iron mineralization than
343 those without (Figure 4), indicating that the water in the pool is unlikely to supply iron for
344 mineralization. Consistently oxic conditions in the upstream and downstream sites with flowing
345 water indicate that any dissolved Fe(II) would be oxidized to Fe(III) and rapidly precipitated in
346 circumneutral waters, resulting in minimal in-creek transport. Our methods did not specifically
347 assess the presence of complexed or colloidal iron that could be transported simultaneously with
348 the dissolved load of the creek.

349

350

351
352

353 Figure 4: Histogram comparing visible and non-visible mineralization of iron frequency and range of total iron
354 concentrations in a) water or b) sediments. Box and whisker plot depicting ranges of iron concentrations in c) water
355 or d) sediments. Stars indicate statistically significant values (** = < 0.01).

356

357 However, there was a significant increase in the amount of iron within sediments of pools
358 with visible iron mineralization compared to those without. The higher iron content in
359 mineralized sediments indicates that iron must be added to the mineralized pools from another
360 source besides pool or creek water (Figure 4). A process that adds iron to the creek sediments is
361 required to explain the observation that visibly mineralized pools have higher sedimentary iron
362 contents but not higher water iron contents. A plausible mechanism from the discharge of anoxic
363 groundwater bearing dissolved Fe(II) from the surrounding soils/sediments, and/or hyporheic
364 circulation of creek water, picking up dissolved Fe(II) as seen from the soil and groundwater Fe
365 concentrations (Table 3). Groundwater inputs and/or enhanced hyporheic exchange would
366 increase dissolved ions relative to water from precipitation and inputs could account for the
367 higher specific conductance values (Figure 2) in the midstream sites (LJ, BD) relative to the
368 upstream site (BT). The lowest DO values in midstream sites (LJ and BD) also correspond to
369 times when mineralization occurred and are consistent with either discharge of anoxic
370 groundwater or development of reducing conditions that could draw down in pool dissolved
371 oxygen. Notably, the mean percentage of baseflow to annual stream flow in Clear Creek is
372 53.98%, underscoring the substantial contribution of groundwater discharge to the water budget
373 of the system (USGS, 2022).

374
375
376
377
378
379
380
381

Clear Creek receives water from precipitation amended with groundwater discharge and runoff from surrounding sediments and deciduous vegetation. Research in northeastern Belgium at the Kleine Nete catchment found that increased base flow introduces enriched Fe(II) groundwater, which is oxidized and precipitated on the stream bed (Baken et al., 2015). Another site with iron mineralization - West Berry Creek in Santa Cruz, California, U.S.A., has average regional precipitation less than ~1 inch and also likely receives iron inputs from groundwater (Duckworth et al., 2009). The damming effect at sites LJ and BD in Clear Creek could have created a longer hydraulic residence time of stream water, enhancing hyporheic exchange or

382 shallow groundwater recharge/discharge. Similarly, beaver dams sites in Coal Creek and East
383 River, Colorado, U.S.A. had higher specific conductivity in groundwater compared to the stream,
384 with recharge flows transporting dissolved Fe(II) to stream beds (Briggs et al., 2019).

385 Shallow groundwater could provide a source of dissolved Fe(II) due to microbial
386 reductive dissolution of Fe(III) (oxyhydr)oxides with organic carbon within the floodplain
387 sediments. These floodplain sediments adjacent to Clear Creek are materials such as silt and clay
388 that can naturally accumulate leaf litter and wood debris over time. Water infiltrates the
389 floodplain during high rainfall, and ensuing anoxia allow microbial Fe(III) reduction with clay
390 materials and organics due to the high surface area and saturated environment to enhance Fe(II)
391 mobilization (Table 3). Rainwater mobilizes this Fe(II), allowing a recharge to the groundwater
392 due to the porosity of the deeper floodplain sediments composed of massive pebbly sand, and
393 massive gravelly sand (Table 3). Soils surrounding Clear Creek are > 98% soil Type B from the
394 Soil Survey Geographic Database (SSURGO), composed of sandy soils, an above-average
395 infiltration, and less aggregated loess (Table 3; USGS, 2022). The rising water table establishes
396 the hydraulic gradient, causing Fe-rich groundwater to flow into the creek.

397 The sediments retrieved during piezometer installation had noticeable iron mineralization
398 at the water table. The piezometers were placed within 5-8 m of the creek, upgradient due to high
399 ground on an adjacent hillslope. In September 2024, the water table elevation measurements in
400 both wells indicated shallow groundwater flow toward the stream with a hydraulic gradient of
401 0.07245 m m^{-1} . Our data indicates a plausible mechanism for the introduction of Fe(II) into the
402 creek through shallow groundwater discharge that is elevated in the days following precipitation
403 events, noticeable as iron mineralization, but after the runoff through the creek has subsided
404 enough so mineralization is not washed away.

405
406 Table 3: Representative sediment characteristics ascertained during piezometer installation, and resulting
407 groundwater geochemistry within the piezometer (blue shading) Abbreviations: Dissolved Oxygen (DO), Oxidation-
408 Reduction Potential (ORP), Specific Conductance (SPC), Orthophosphate (OP), and Total Phosphorous (TP) are
409 represented within the table. Averages of Clear Creek geochemical data compared to the same time point of
410 piezometer sampling appear as a sidebar.

411
412

Piezometer Well #1, nearest to Clear Creek				
Depth (m)	Soluble Fe fraction (log mol/g)	Total Fe mineral fraction (log mol/g)	Soil Type *Subangular blocky (SBK)	Munsell color scale
0 – 0.20	-5.66	-4.17	Granular silty clay	10YR2/2
0.20 – 0.41			SBK silty clay	10YR2/2
0.41 – 0.61	-4.83	-4.09	SBK silty clay	10YR2/2
0.61 – 0.81			SBK silty clay	10YR2/2
0.81 – 1.02	-5.48	-3.82	SBK silty clay	10YR2/2
1.02 – 1.22			mottled, SBK sandy clay	10YR2/2
1.22 – 1.42	-5.12	-3.66	mottled, SBK sandy clay	10YR2/2
1.42 – 1.63			mottled, SBK sandy clay	10YR2/2
1.63 – 1.83	-5.46	-4.39	Massive loam	5Y2.5/1
1.83 – 2.03			Massive sand	2.5Y3/2
2.03 – 2.24	-5.84	-5.04	Massive sand	2.5Y3/2
2.24 – 2.44			Massive pebbly sand	7.5YR3/4
2.44 – 2.64	-5.21	-4.18	Massive pebbly sand	7.5YR3/4
2.64 – 2.85			Massive gravelly sand	7.5YR3/2
2.85 – 3.05	-5.31	-3.99	Massive gravelly sand	7.5YR3/2
Water Table	OP = 20.83 ± 1.07 µg L⁻¹	pH = 6.92 ± 0.07	SPC = 922 ± 30.74 µS cm⁻¹	DO = 1.02 ± 0.17 mg L⁻¹
Total depth below surface = 3.35 m	TP = 57.27 ± 1.39 µg L⁻¹	ORP = 181.2 ± 33.34 mV	Total Fe = 46.64 ± 12.95 µM	Temperature = 13 ± 0.17 °C
Depth to water table = 1.42 m	OP/TP ratio = 0.36 ± 0.01			

Clear Creek Average Geochemical Conditions
pH 8.01 ± 0.36
ORP 181.53 ± 12.72 mV
SPC 762.14 ± 38.82 µS cm⁻¹
DO 11.96 ± 0.87 mg L⁻¹
Temp 13.1 ± 0.83 °C
OP 65.05 ± 3.14 µg L⁻¹
TP 116.51 ± 13.91 µg L⁻¹
OP/TP ratio 0.61 ± 0.075

413
414
415
416
417
418
419
420
421
422

Soil samples from piezometer installation were used to determine the iron fractions in each soil type to test for Fe availability (Table 3). Loosely adsorbed iron fractions ranged from -5.84 to -4.83 log mol/g, with the highest concentration found in the depth interval of 0.41 – 0.61 m below the ground surface (Table 3). The total Fe mineral fraction exhibited higher concentrations, ranging from -5.04 to -3.66 log mol/g (Table 3). These numbers are consistent with previous literature on sandy soils from Iowa, where free iron in whole soils was between -4.90 to -4.10 log mol/g (Folks and Riecken, 1956). Moreover, a report by (Leopold, 2010) indicated on average deep Iowa soils contained -3.32 log mol/g Fe and -3.38 log mol/g Fe in shallow soils.

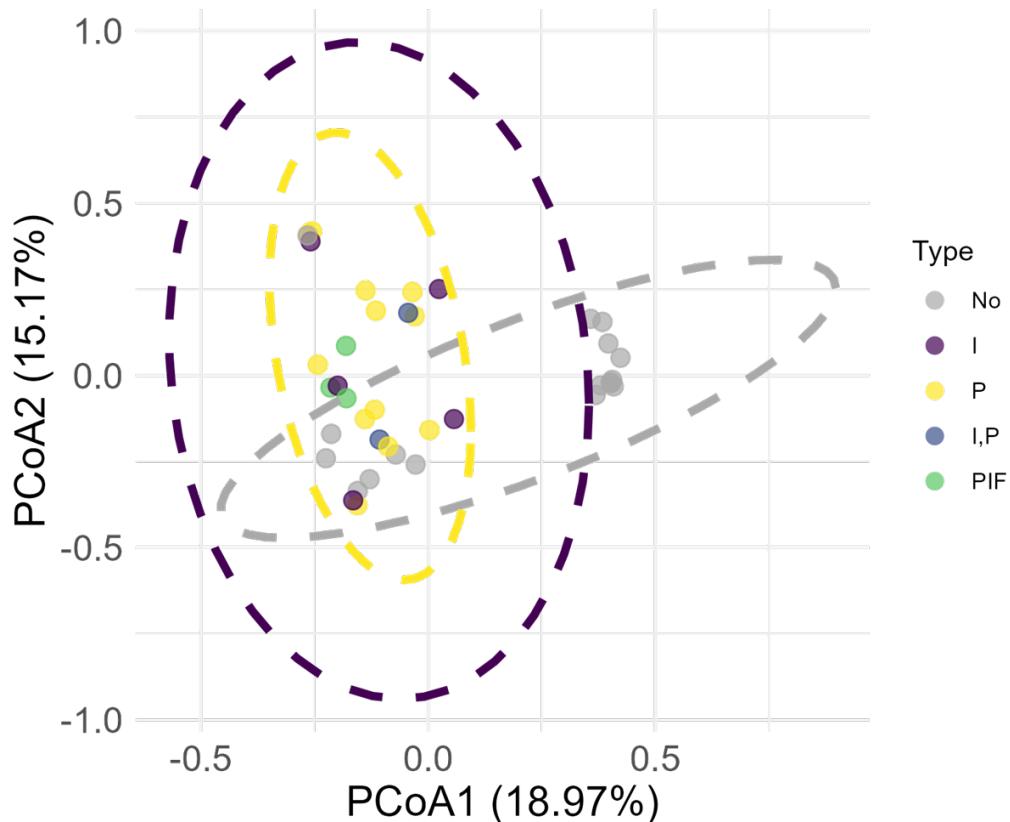
The wells were screened over the entire interval to capture the water table. The water was analyzed for various geochemical parameters to identify differences between the in-stream

425 profiling. Orthophosphate (OP) averaged $20.83 \mu\text{g L}^{-1}$, and total phosphorus (TP) averaged $57.27 \mu\text{g L}^{-1}$ (Table 3). These findings align with a larger-scale study of different streams and river
426 systems around Iowa, which report OP concentrations ranging from $40 - 210 \mu\text{g L}^{-1}$ OP and TP
427 concentrations between $280 - 550 \mu\text{g L}^{-1}$ TP (Schilling et al., 2017). Notably, Clear Creek had on
428 average higher OP/TP ratios than groundwater, suggesting an external source of P loading to the
429 system. This could be indicative of soil erosion, runoff, or due to the watershed being
430 predominantly agricultural (Fox et al., 2016; Gentry et al., 2007). However, some geochemical
431 parameters differed between in-stream and groundwater measurements. For instance, dissolved
432 oxygen in piezometers was consistently lower on average ($1.02 \pm 0.17 \text{ mg L}^{-1}$) than the in-creek
433 sampling sites ($11.96 \pm 0.87 \text{ mg L}^{-1}$), and the pH was (6.92 ± 0.07) compared to (8.01 ± 0.36) in
434 the creek (Table 3). These parameters indicate a reducing environment, which could supply
435 Fe(II) to the stream.
436

437

438 **Putative Fe-cycling Microbial Community**

439 Our data support the hypothesis that recent rainfall drives enhanced groundwater
440 discharge and/or hyporheic exchange, particularly through dammed sections of the stream,
441 bringing in a source of dissolved Fe(II) to the pools from the surrounding soils and sediments
442 that result in visible mineralization. Discharge of Fe(II) can promote the development of in-pool
443 iron mineralization by microbes such as FeOB. Inputs of organic carbon such as are supplied
444 from in-creek wood, could support heterotrophic microbes and FeRB. This has been documented
445 in streams with organic debris or beaver dams, which divert water through sediments and result
446 in iron staining (Briggs et al., 2019; Lautz et al., 2006). Both Fe(II) and Fe(III) in Clear Creek's
447 sediments suggest active redox cycling of iron.


448 We therefore assessed whether putative Fe(II) oxidizing and/or Fe(III) reducing microbes
449 were more prevalent in mineralized vs. non-mineralized pools. Moreover, previous work on
450 regenerative stream water conveyance structures found flocculant mat formations forming near
451 site structures where groundwater carries Fe(II) leaching from constructed material promoting
452 FeOB growth (Williams et al., 2016). Iron seeps located in Prince William County, Virginia,
453 U.S.A. discharged anoxic, Fe(II) rich groundwater to the microbial community, aiding in co-
454 occurring iron mineralization and microbial mats (Rentz et al., 2007).

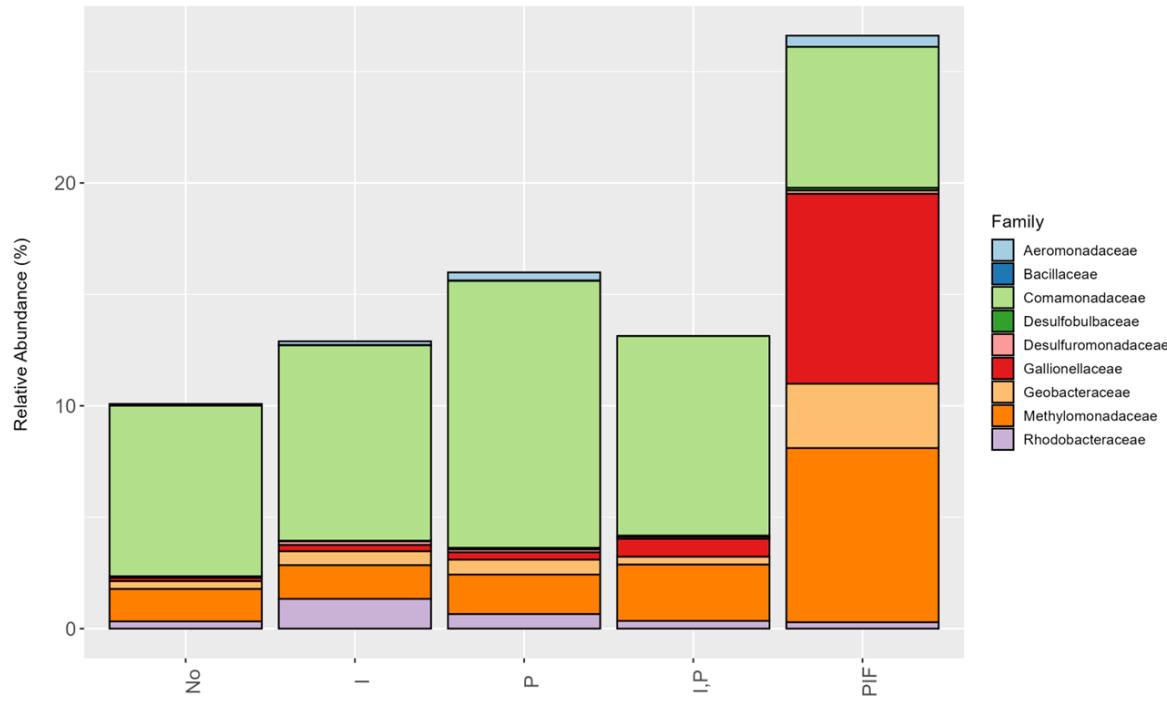
455 16S rRNA sequencing was performed on 22 water samples from pools with visible and
456 17 water samples from pools with no visible mineralization. The samples from pools that
457 contained visible iron mineralization were further demarcated based on the mineralization type
458 present during sampling: I: iridescent (5), P: precipitates (12), I, P: both iridescence and
459 precipitates (2), and PIF: all three iron types but dominated by flocculant iron mats (3). Further
460 analysis determined grouping differences through microbial richness, evenness, and relative
461 abundance. Four samples were removed from further analysis due to inadequate initial library
462 sizes $<40,000$, due to control samples containing an equal or greater number of sequences. A
463 total of ~ 200 contaminant taxa were removed from the remaining samples after decontamination.

464

465

466

467
 468 Figure 5: Principal Coordinates Analyses (PCoA) conducted based on Bray-Curtis dissimilarity highlighted the
 469 distinct communities of visibly mineralized samples, which clustered on the left side of the plot, and no visible
 470 mineralization samples, which clustered on the right side of the plot but also included some samples that clustered
 471 with visibly mineralized samples. Ellipses are plotted with a 95% confidence interval and plotted with the
 472 percentage of variability on the axis. Variables I,P and PIF did not have enough data points to calculate the ellipse
 473 for those samples. Legend labels: No: no visible iron, I: iridescent, P: iron precipitates, I,P: both iridescence and
 474 precipitates, and PIF: all three iron types. Permanova analysis revealed a p-value = 0.001.
 475


476 The Shannon, Simpson, and Chao1 indexes determined the alpha diversity of visibly
 477 mineralized and non-mineralized samples (Supplemental Figure 2). Principle Coordinates
 478 Analysis (PCoA) using the Bray-Curtis dissimilarity data between iron types revealed two major
 479 clusters (Figure 5). The first (left) cluster was comprised mostly of all visibly mineralized
 480 samples, with some non-mineralized samples. A second (right) cluster contained exclusively not
 481 visibly mineralized samples (Figure 5). Based on a Permanova analysis, there was a significant
 482 difference (<0.05) between the left and right clusters (Figure 5). This clustering was not related
 483 to site location (Supplemental Figure 3). However, a significant difference was observed by the
 484 season of observation (<0.05 ; Supplemental Figure 4). Only samples collected in winter non-
 485 mineralized samples were in the right cluster, although some winter non-mineralized samples did
 486 occur in the first cluster (Supplemental Figure 4). This analysis indicates that mineralization and
 487 season were possible drivers of microbial community composition, which is explored further
 488 below.

489 The dominant bacterial phyla detected were Bacteroidota, Proteobacteria, and
 490 Actinobacteriota, respectively (Supplemental Figure 5). The pools with iridescent films and
 491 flocculent iron had higher abundances of Proteobacteria (45-70%) than the non-visible iron and

492 solely iridescent film samples (Supplemental Figure 5). Our results are consistent with the
493 previous report on iron films in circumneutral wetlands, which indicated Proteobacteria were the
494 highest abundant taxa (~80%) compared to other taxonomic groups (Dong et al., 2024).
495 Proteobacteria relative abundance in porewater and sediments in Mineral and Cement Creeks
496 was between 22 – 78% (Hoagland et al., 2024). Moreover, previous reports support that
497 Proteobacteria are associated with iron cycling and contribute to different iron mineralization
498 (Melton et al., 2014; Kappler et al., 2021), and could be important in various elemental cycling
499 in Clear Creek. Samples clustered on the left in the PCoA (Figure 5) had a higher abundance of
500 Proteobacteria than sample clusters on the right (Supplemental Figures 6 & 7). These findings
501 indicate that visibly mineralized samples may encompass distinct habitats and communities
502 compared to the non-mineralized samples.

503 To further investigate this, we assessed the relative abundance of 16S rRNA sequences
504 typically assigned as iron-cycling bacteria in the different visible iron types compared to non-
505 visible iron samples (Figure 6). Putative FeOB included the families *Gallionellaceae*,
506 *Comamonadaceae*, and *Bacillaceae*, and known FeRB included the families *Geobacteraceae*,
507 *Aeromonadaceae*, *Desulfovibrionaceae*, and *Shewanellaceae*,
508 and *Rhodobacteraceae*, respectively (Figure 6). Not all organisms within these families are
509 putative FeOB. We also included a family of methane oxidizers (*Methylomonadaceae*) because
510 of their potential role in iron film formation (Dong et al., 2024). Moreover, in anoxic waters,
511 these methane oxidizers have a syntrophic relationship with FeRB (Cabrol et al., 2020). Known
512 iron-cycling bacteria do not make up the majority of the microbial community. Specifically, the
513 relative abundance of FeRB found in freshwater lake sediments contained between 3 and 7%,
514 with the highest contributions from *Geobacter* and *Desulfuromonas*, respectively (Fan et al.,
515 2018). One study found in acid rock drainage that the relative abundance of *Gallionella* was (1.5
516 - 4.8%) in sediments from Mineral Creek (Hoagland et al., 2024), compared to our results from
517 water samples, found *Gallionellaceae* to be between 0.5 – 9% in visible iron types. Within the
518 iron films Dong et al. studied (2024), *Geobacter* composed 6.8% and *Gallionella* 6.9% of the
519 microbial community. Our visible iron types are consistent with the previous studies, with the
520 relative abundance of iron-cycling organisms increasing by 3 – 17% overall compared to non-
521 visible iron samples (Figure 6).

522

523

524 Figure 6: Relative abundance at the Family level of putative iron cycling bacteria in
 525 the different iron mineralization types. Legend labels: No: no visible iron, I: iridescent, P: iron precipitates, I,P:
 526 both iridescence and precipitates and PIF: all three iron types.

527

528 *Gallionellaceae* or *Comamonadaceae* were the two most abundant putative FeOB in all
 529 samples. *Comamonadaceae* has the highest abundance in mineralized samples but were similarly
 530 abundant to *Gallionellaceae* when flocculent mats are present (Figure 6). Previous studies found
 531 mineralized iron with a high abundance in both gene copies and relative abundance of
 532 *Gallionellaceae* and *Comamonadaceae* in multiple freshwater systems (Blöthe and Roden, 2009;
 533 Dong et al., 2024; Fabisch et al., 2013), and these bacteria have been associated with the
 534 prevalence of flocculent iron in these different aquatic systems (Brooks and Field, 2020;
 535 Williams et al., 2016). The *Methylomonadaceae* relative abundance was elevated in PIF samples
 536 compared to all other samples (Figure 6).

537 Seasonality also affected community composition, with summer having the highest
 538 relative abundance of *Comamonadaceae* and *Methylomonadaceae*, while *Gallionellaceae* had its
 539 highest abundance in the winter (Supplemental Figure 8). Previous work in Belgium on streams
 540 to the Demer River reflected that biological oxidation could outpace the abiotic iron oxidation in
 541 the winter months, leading to increased FeOB bacteria (Baken et al., 2015). Another study found
 542 similar results with *Gallionella* sp. growth observed under fully oxic conditions, and neutral pH
 543 and speculated that biological iron oxidation could outpace chemical iron oxidation at moderate
 544 or low temperatures ~13°C (de Vet et al., 2011). Four areas of Graubünden canton in the Swiss
 545 Alps with 8 – 12 °C temperatures and a pH <7.4 supported microbial iron oxidation (St Clair et
 546 al., 2019). The differences in community composition in non-mineralized samples were also
 547 strongly affected by seasonality (Supplementary Figure 4).

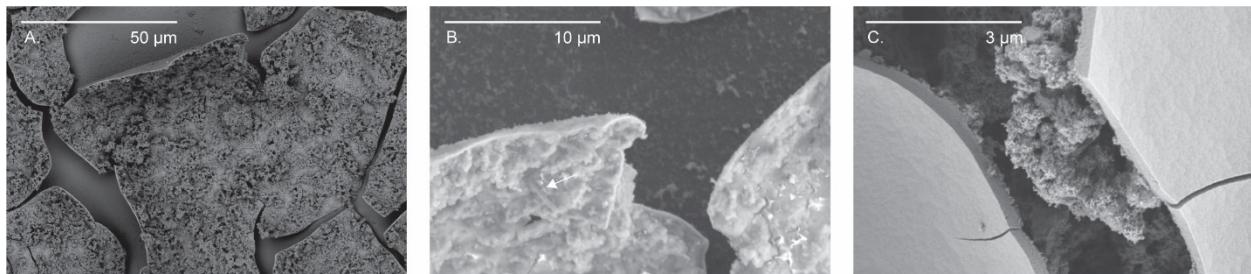
548 Increased abundance of *Geobacteraceae*, and *Rhodobacteraceae* in mineralized samples
 549 compared to non-mineralized supports the potential for FeRB growth following the development
 550 of hypoxic conditions in Clear Creek (Kappler et al., 2021). These organisms reduce mineralized

551 Fe(III) coupled to organic matter mineralization, which provides energy to support
552 bioremediation of contaminants (Tobler et al., 2007; Wu et al., 2010). Studies have noted
553 ferrihydrite or schwertmannite can drive microbial Fe(III) reduction (Sánchez-España et al.,
554 2023). Such poorly crystalline Fe(III)(oxyhydr)oxides formed from biotic iron oxidation are
555 good substrates for FeRB coupled to organic matter oxidation. However, despite efforts to
556 quantify poorly crystalline Fe(III)(oxyhydr)oxides in sediment iron extractions, we consistently
557 obtained results below detection limits. The presence of FeOB and FeRB within these
558 mineralized pools could indicate rapid microbial iron oxidation and reduction at the interface of
559 the iron precipitates, flocculent mats, and under iron films. The increased abundance of
560 *Geobacteraceae* with *Gallionellaceae* and *Comamonadaceae* indicates the potential for this
561 dynamic. The sites with the most damming effects contained higher abundances of iron cycling
562 bacteria (LJ and BD) (Supplemental Figure 9), indicating the potential importance of stagnation,
563 lowered DO, and in-creek organic debris to fuel this process. Moreover, phosphorus adsorbed
564 onto Fe(III) (oxyhydr)oxides can be released during Fe(III) reduction, which could additionally
565 promote microbial growth within the pools (Neidhardt et al., 2018).

566 Although the microbial community associated with iridescent films was not directly
567 sequenced, the results from I and PIF sample types can be informative of taxa that may be
568 associated with iron film mineralization. Previous work has detected the families
569 *Geobacteraceae*, *Rhodocyclaceae*, *Gallionellaceae*, and *Methylomonaceae* (Dong et al., 2024).
570 The presence of similar clades within our pools with films may support the idea that both FeOB
571 and FeRB are involved in film formation. The enhanced presence of *Rhodobacteraceae* in
572 iridescent films in our study indicates this organism may also be important to consider for a role
573 in this process in follow-up studies.
574

575 **Iridescent Iron Film Characterization by SEM and TEM**

576 While many other studies describe flocculent iron mineralization, mineralogy, and
577 microbial processes, fewer studies describe the iridescent iron films' occurrence, characteristics,
578 and possible formation pathways (Almaraz et al., 2017; Dong et al., 2024; Grathoff et al., 2007;
579 Sánchez-España et al., 2023). Based on our collective anecdotal experience, we suspect
580 iridescent films may be a common mineralization type in Clear Creek that is typically not
581 recognized as such because of its similar appearance to organic/oil contamination. Therefore, we
582 followed up with additional analysis to demonstrate that the iridescent film was 1) composed of
583 iron, 2) determine the iron oxidation state, and 3) ascertain the mineralogy
584

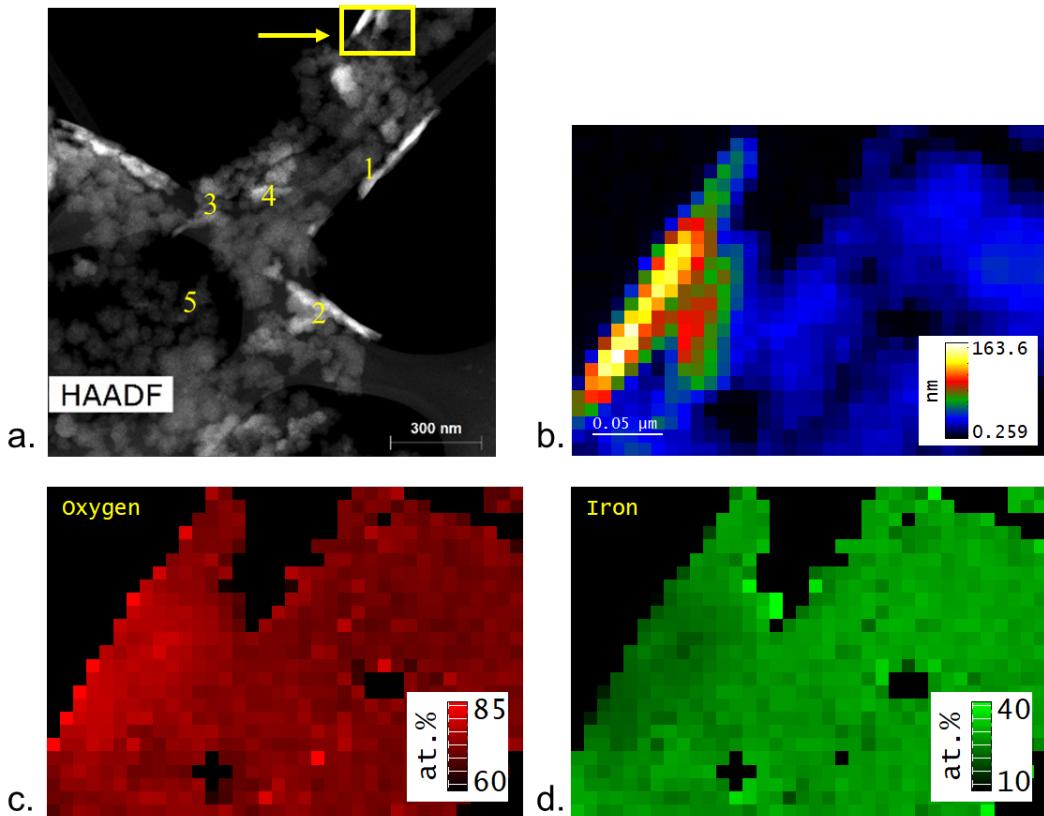

585 All films displayed similar characteristics when observed under both SEM and TEM.
586 Natural film samples display cracking under SEM (Figure 7a-c), likely due to disturbance and
587 drying during collection. Furthermore, visible rods on the films in SEM images are consistent
588 with colonization by bacteria (Figure 7b). At 20,000X magnification, the films appear smooth on
589 one side and have a rough surface on the other (Figure 7c), though it was not determined which
590 side was in contact with air vs. water in the creek. The films had a maximum thickness of 150
591 nm, determined in TEM (Figure 8a-b). The iridescent films were similar in chemical
592 composition to previous work (Dong et al., 2024), containing ~70 – 85 atom % oxygen and ~15
593 – 30 atom % Fe as analyzed by EELS (Figure 8c-d). Most films comprised these two elements;
594 additional elements were carbon and calcium. Carbon was also present as a coating on the copper
595 grid, making quantitative analysis of carbon exclusively from the sample impossible. A
596 composition of 70 atom % oxygen and 30 atom % iron is consistent with Fe in 6-fold
coordination with oxygen.

597 The oxidation state of iron in the iridescent films was assessed with EELS using the
598 reference minerals ferrihydrite for Fe(III) and hercynite for Fe(II). The main energy loss peak
599 based on five different analyses of the iridescent film samples is at 710 eV (Figure 9a-b &
600 Supplemental Figure 10), the same energy as our ferrihydrite standard. Multiple analyses of our
601 hercynite standard indicate it contains both Fe(II) and Fe(III)(Figure 9a). Prior studies of films
602 found mixed valent iron or Fe(III). In the studies of Dong et al., (2024) & Grathoff et al., (2007),
603 TEM grids were allowed to air dry, which could oxidize Fe(II). Our grids were carefully
604 protected from oxygen until analysis, and indicate that Fe(III) can indeed be an *in situ*
605 component of these films.

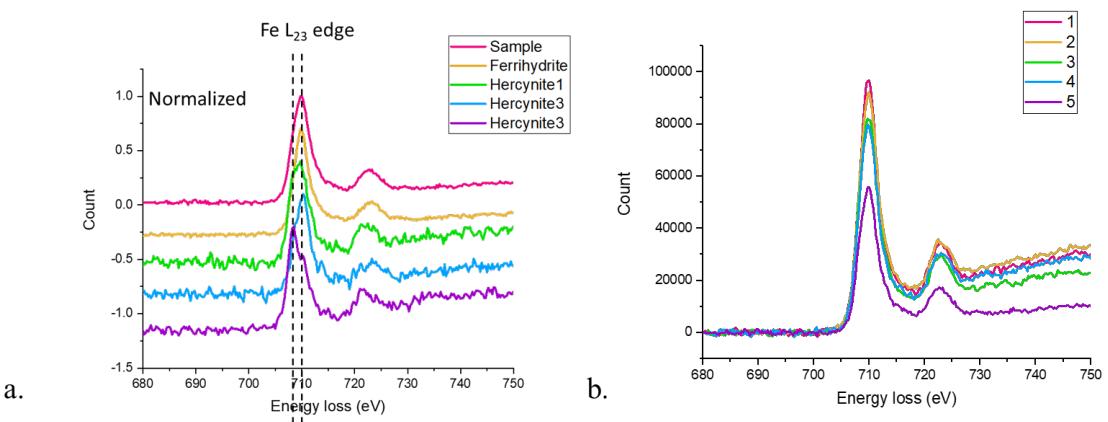
606

607

608


609

610


611 Figure 7 a-c: SEM images of iridescent surface films (“Schwimmeisen”) from Table 1. a-c) Magnification increases
612 through the sequence. –b-c) Minerals and/or biomass are attached to the film. White arrow indicates a microbial rod
613 attached to the film.

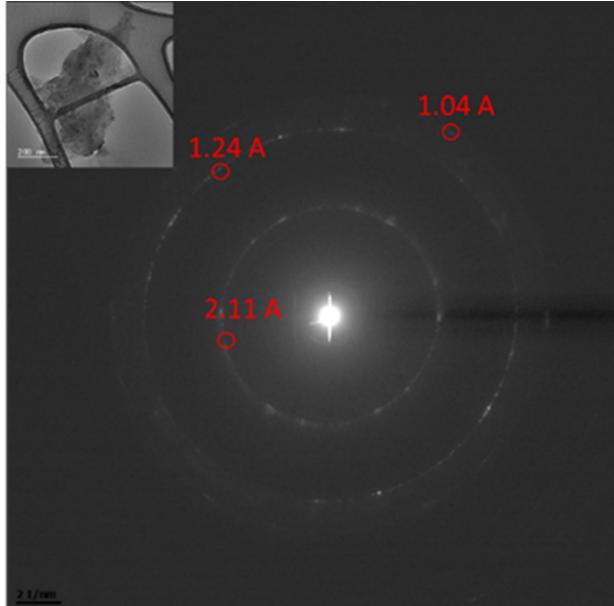
614

615

616
617
618
619
620

621
622
623
624
625
626

627 Selected Area Diffraction Pattern (SADP) gave more mineralogical insights into the films. Two
628 samples analyzed had similar diffraction patterns with interplanar spacings at 2.11, 1.24, and
629 1.04 Å (Figure 10). Neither of these interplanar spacings corresponds to expected spacings for
630 standard ferrihydrite and fouggerite, a carbonate-bearing, mixed-valent green rust (Figure 10). An


631 interplanar distance of 1.226 ± 0.031 nm has previously been reported for a carbonate green rust
632 (Zegeye et al., 2012). Green rust is unstable in oxygen and forms in more reducing conditions
633 (Feder et al., 2018), where a hypoxic zone under the film could create an ideal environment for
634 green rust formation. However, the availability of anions and parent materials such as
635 phyllosilicates can impact the formation and crystallinity structure (Betts et al., 2023; Trolard &
636 Bourrié, 2006). The spacings in the film are offset from 2-line ferrihydrite interplanar spacings at
637 2.56 and 1.48 Å, although a broad ring was visible at 1.06 to 1.14 Å (Janney et al., 2000). In
638 contrast, Grathoff et al., (2007) XRD of films showed broad peaks at 4.5, 2.6, and 1.5 Å,
639 indicative of 2-line ferrihydrite, and was further studied by Perkins et al., (2016), finding
640 interplanar spacings at 2.6, 3.3-3.5, and 4.4 Å that corresponded to more crystalline forms. These
641 findings are similar to previous TEM analyses done on iridescent films from cascade pools in
642 Northwestern Oregon, U.S.A., and the Kongjiang reservoir, where EELS was used to
643 characterize films composed of ferrihydrite or green rust phases with Fe(II) supplied from
644 groundwater or during microbial iron reduction (Dong et al., 2024; Perkins et al., 2016).
645

646 The finding that our film samples interplanar spacings are consistent with one or more
647 rings from 2-line ferrihydrite and carbonate-bearing green rust, and lack larger spacings could be
648 consistent with short-range order and mineral growth truncation, and could be due to differences
649 in the degree of edge-sharing within the lattice (Kleja et al., 2012; Schwertmann & Cornell,
650 2000; Toner et al., 2009). Disruption of crystal growth could potentially be due to the presence
651 of dissolved ions. Environmental factors such as pH and ionic strength can influence the
652 crystallinity of iron oxides. Specifically, silicate, carbonate, and phosphate ions and organic
653 matter can disrupt the growth of ferrihydrite crystals, leading to variations in observed ring
654 spacings (Rutherford, 2005; Schwertmann & Cornell, 2000). Elevated OP and TP concentrations
655 within Clear Creek compared to groundwater could disrupt mineral growth (Table 3). The
656 distinct lattice spacings we observed could also represent the transformation of ferrihydrite to
657 green rust or vice versa or the disruption of crystal growth by (bi)carbonate ions. Previous work
658 found that ferric minerals can interact with dissolved Fe(II) in anoxic environments and generate
659 green rust (Usman et al., 2012). However, these minerals are less stable, which indicates why
660 some samples appear closer to magnetite with higher stability (Cornell & Schwertmann, 1996).
661 Moreover, in deep-sea hydrothermal vents, it has been hypothesized that biofilms associated with
662 Fe lack the standard crystallinity structure seen in ferrihydrite and goethite due to the presence of
663 Fe-complexing ligands produced biologically (Toner et al., 2009).
664

665 In previous studies, organic material was observed to be attached to the films and make
666 up a portion of the overall film composition (Kleja et al., 2012; Perkins et al., 2016; Dong et al.,
667 2024). An intriguing characteristic of iron films is that they float despite being mineralized of
668 typically Fe(III) (oxyhydr)oxides that have specific gravity of (3.3 – 4.3 g cm⁻³). The rough
669 surface seen in (Figure 7d) could indicate the presence of co-precipitated organic matter. Perkins
670 et al. (2016), indicated that humic acids were crucial for natural nanocrystalline film formation,
671 which could create a hydrophobic lipoprotein structure. Sánchez-España et al. (2023) noted that
672 iron films float due to neustonic microorganisms releasing these organic compounds and
673 exudates and acting as nucleation sites for Fe(III) mineralization. One study found the
674 coprecipitation of organic matter affects the mineralogy during iron cycling (Shimizu et al.,
675 2013). Our results of short-range ordering and lack of a defined mineral structure further
676 emphasized the need to investigate the mechanism of film formation and the co-occurring
microbial and organic geochemistry. A likely scenario is that Fe(II) introduced into pools can be

677 (re-)oxidized at the pool surface by biotic and abiotic processes (Colombo et al., 2014), possibly
678 with ligand-based stabilization of Fe(II). The film could form a barrier from the oxygenated
679 surface, creating a mini-anoxic environment underneath a diverse microbial consortium of FeOB
680 and FeRB to co-inhabit, such as those observed from pools with films by 16S rRNA sequencing
681 (Figure 6). Moreover, the film can form a barrier to protect the neustonic bacteria from UV or
682 high oxygen to help promote iron and nutrient cycling as discussed by Sanchez-España et al.,
683 (2023).

684
685
686

687
688 Figure 10: Representative SADP crystallography with interplanar spacings of iridescent sample.
689
690

691 Conclusion

692 In this study, we report on several types of iron mineralization in an intermittent
693 agricultural stream in Ames, IA, USA. Sediment iron extractions and in-pool iron quantification
694 indicate that the source of iron is not from creek water or creek sediments. Observations that
695 mineralization occurred in pools with elevated specific conductance relative to upstream waters
696 and that mineralization formed in the days following precipitation led us to hypothesize that
697 Fe(II) was added to the creek bed by shallow groundwater discharge. Piezometers placed
698 adjacent to the creek documented that the floodplain sediment contained mobilizable iron,
699 groundwater had low oxygen conditions necessary for Fe mobilization, and a hydraulic gradient
700 existed to drive groundwater discharge into the creek. We further postulate that in-creek organic
701 debris that created small dams and pools, which enhanced hydraulic residence times of creek
702 water recharged through surrounding soils and sediments, which could pick up Fe(II) from
703 floodplain sediments.

704 The microbial community of pools contained putative FeOB *Gallionellaceae* and
705 *Comomonadaceae* and putative FeRB *Geobacteraceae* and *Rhodobacteraceae*. The abundance
706 of *Gallionellaceae* was elevated in winter, suggesting low temperatures and associated slower
707 kinetics favor biotic over abiotic Fe(II) oxidation. The composition of FeOB and FeRB in pools

708 with iron films was similar to what has been detected in other studies and indicates taxa to
709 investigate their role in film formation through Fe redox cycling.

710 Clear Creek had iridescent films floating on the surface of pools that were characterized
711 as short-ranged ordered minerals composed of Fe and O. Their poor crystallinity could be due to
712 the presence of phosphate or (bi)carbonate ions that disrupted mineral growth. These floating
713 films could represent microcosms for iron-cycling microorganisms to thrive by providing
714 essential nutrients (i.e., phosphate, Fe, C, N) or a stable environment with consistent pH or DO.

715 We believe iron cycling is relevant to agricultural streams due to the reactivity of iron
716 with other microbial processes and the interconnection with phosphorous cycling. Our study
717 provides insight into a potential iron flux to a creek and highlights the importance of coupled
718 physical and biogeochemical processes that result in the observed mineralization. This insight
719 into iron fluxes could be significant for other agricultural streams with intermittent iron and
720 phosphorous inputs from groundwater or runoff, offering a broader understanding of nutrient
721 dynamics in such ecosystems.

722 723 **Acknowledgments**

724
725 Thank you to Bienvenido Cortez and Faith Rahem-Seggerman for help with the R analysis.
726 Thank you to Dr. Katy Rico, Michelle Chamberlain, and Dr. Pete Moore for helping review the
727 manuscript before submission. Thank you to Michelle Chamberlain, Dr. Pete Moore, Luis Sosa,
728 John Herring, and Mariela Alfaro-Garcia for helping with piezometer installations. Thank you to
729 Dr. Chris Harding for help utilizing ArcGIS for Clear Creek mapping. Dr. Lisa Mayhew
730 provided the hercynite reference. Thank you to Drs. Jinsu Oh, Lin Zhou, and Matthew Lynn for
731 help on the electron microscopy and related work performed using instruments in the Sensitive
732 Instrument Facility in Ames National Lab. The Ames National Laboratory is operated for the
733 U.S. Department of Energy by Iowa State University under Contract No. DE-AC02-07CH11358.
734 Also, thank you to Oskar Niesen for helping collect the geochemical data.

735 736 **Funding**

737 This work was funded by the NSF CAREER Award: Quantifying the Extent and
738 Biogeochemical Impact of Modern Ferruginous Lakes (Award 1944946).

739 740 741 **References**

742 Ahn, J. S., Ji, S. W., Cho, Y. C., Youm, S. J., & Yim, G. J. (2015). Assessment of the potential
743 occurrence of acid rock drainage through a geochemical stream sediment survey. *Environmental*
744 *Earth Sciences*, 73(7), 3375–3386. <https://doi.org/10.1007/s12665-014-3625-7>

745 Almaraz, N., Whitaker, A. H., Andrews, M. Y., & Duckworth, O. W. (2017). Assessing Biomineral
746 Formation by Iron-oxidizing Bacteria in a Circumneutral Creek. *Journal of Contemporary Water*
747 *Research & Education*, 160(1), 60–71. <https://doi.org/10.1111/j.1936-704x.2017.03240.x>

748 Baken, S., Salaets, P., Desmet, N., Seuntjens, P., Vanlierde, E., & Smolders, E. (2015). Oxidation of
749 iron causes removal of phosphorus and arsenic from streamwater in groundwater-fed lowland
750 catchments. *Environmental Science and Technology*, 49(5), 2886–2894.
751 <https://doi.org/10.1021/es505834y>

752 Betts, A. R., Siebecker, M. G., Elzinga, E. J., Luxton, T. P., Scheckel, K. G., & Sparks, D. L. (2023).
753 Influence of clay mineral weathering on green rust formation at iron-reducing conditions.

754 *Geochimica et Cosmochimica Acta*, 350(May 2022), 46–56.
755 <https://doi.org/10.1016/j.gca.2023.04.001>

756 Blöthe, M., & Roden, E. E. (2009). Microbial iron redox cycling in a circumneutral-pH groundwater
757 seep. *Applied and Environmental Microbiology*, 75(2), 468–473.
758 <https://doi.org/10.1128/AEM.01817-08>

759 Boano, F., Harvey, J. W., Marion, A., Packman, A. I., Revelli, R., Ridolfi, L., & Worman, A. (2014).
760 Hyporheic flow and transport processes: Mechanisms, models, and biogeochemical implications.
761 *Eos, Transactions American Geophysical Union*, 69(37), 603–679.
762 <https://doi.org/10.1029/88EO01108>

763 Boulton, A. J., Findlay, S., Marmonier, P., Stanley, E. H., & Maurice Valett, H. (1998). The
764 functional significance of the hyporheic zone in streams and rivers. *Annual Review of Ecology*
765 and Systematics, 29, 59–81. <https://doi.org/10.1146/annurev.ecolsys.29.1.59>

766 Briggs, M. A., Wang, C., Day-Lewis, F. D., Williams, K. H., Dong, W., & Lane, J. W. (2019). Return
767 flows from beaver ponds enhance floodplain-to-river metals exchange in b mountain catchments.
768 *Science of the Total Environment*, 685, 357–369. <https://doi.org/10.1016/j.scitotenv.2019.05.371>

769 Brooks, C. N., & Field, E. K. (2020). Iron flocs and the three domains: Microbial interactions in
770 freshwater iron mats. *MBio*, 11(6), 1–16. <https://doi.org/10.1128/mBio.02720-20>

771 Bruun, A. M., Finster, K., Gunnlaugsson, H. P., Nørnberg, P., & Friedrich, M. W. (2010). A
772 comprehensive investigation on iron cycling in a freshwater seep including microscopy,
773 cultivation and molecular community analysis. *Geomicrobiology Journal*, 27(1), 15–34.
774 <https://doi.org/10.1080/01490450903232165>

775 Cabrol, L., Thalasso, F., Gandois, L., Sepulveda-Jauregui, A., Martinez-Cruz, K., Teisserenc, R., ...
776 Barret, M. (2020). Anaerobic oxidation of methane and associated microbiome in anoxic water
777 of Northwestern Siberian lakes. *Science of the Total Environment*, 736, 139588.
778 <https://doi.org/10.1016/j.scitotenv.2020.139588>

779 Callahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J. A., & Holmes, S. P. (2016).
780 DADA2: High-resolution sample inference from Illumina amplicon data. *Nature Methods*, 13(7),
781 581–583. <https://doi.org/10.1038/nmeth.3869>

782 Chan, C. S., Emerson, D., & Luther, G. W. (2016). The role of microaerophilic Fe-oxidizing micro-
783 organisms in producing banded iron formations. *Geobiology*, 14(5), 509–528.
784 <https://doi.org/10.1111/gbi.12192>

785 Colombo, C., Palumbo, G., He, J. Z., Pinton, R., & Cesco, S. (2014). Review on iron availability in
786 soil: Interaction of Fe minerals, plants, and microbes. In *Journal of Soils and Sediments* (Vol. 14,
787 Issue 3, pp. 538–548). <https://doi.org/10.1007/s11368-013-0814-z>

788 Cornell, R. M., Schwertmann, U., Bodenkunde, L., Universität, T., & Introduction, I. (1996). *The Iron
789 Oxides : Structure , Properties , Reactions , Occurrence and Uses Contents : 533–559.*

790 Davis, N. M., Proctor, Di. M., Holmes, S. P., Relman, D. A., & Callahan, B. J. (2018). Simple
791 statistical identification and removal of contaminant sequences in marker-gene and
792 metagenomics data. *Microbiome*, 6(1), 1–14. <https://doi.org/10.1186/s40168-018-0605-2>

793 de Vet, W. W. J. M., Dinkla, I. J. T., Rietveld, L. C., & van Loosdrecht, M. C. M. (2011). Biological
794 iron oxidation by *Gallionella* spp. in drinking water production under fully aerated conditions.
795 *Water Research*, 45(17), 5389–5398. <https://doi.org/10.1016/j.watres.2011.07.028>

796 Dold, B., Gonzalez-Toril, E., Aguilera, A., Lopez-Pamo, E., Cisternas, M. E., Bucchi, F., & Amils, R.
797 (2013). Acid Rock Drainage and Rock Weathering in Antarctica: Important Sources for Iron
798 Cycling in the Southern Ocean. *Environmental Science & Technology*, 47(12), 6129–6136.
799 <https://doi.org/10.1021/es305141b>

80 Dong, L., Chen, M., Liu, C., Lv, Y., Wang, X., Lei, Q., Tong, H. (2024). Microbe interactions drive
801 the formation of floating iron films in circumneutral wetlands. *Science of the Total Environment*,
802 906(October 2023), 167711. <https://doi.org/10.1016/j.scitotenv.2023.167711>

80 Dubinsky, E. A., Silver, W. L., & Firestone, M. K. (2010). Tropical forest soil microbial communities
804 couple iron and carbon biogeochemistry. *Ecology*, 91(9), 2604–2612. <https://doi.org/10.1890/09->
805 1365.1

80 Duckworth, O. W., Holmström, S. J. M., Peña, J., & Sposito, G. (2009). Biogeochemistry of iron
807 oxidation in a circumneutral freshwater habitat. *Chemical Geology*, 260(3–4), 149–158.
808 <https://doi.org/10.1016/j.chemgeo.2008.08.027>

80 Emerson, D. (2012). Biogeochemistry and microbiology of microaerobic Fe(II) oxidation.
810 *Biochemical Society Transactions*, 40(6), 1211–1216. <https://doi.org/10.1042/BST20120154>

81 Emerson, D., Fleming, E. J., & McBeth, J. M. (2010). Iron-Oxidizing Bacteria: An Environmental
812 and Genomic Perspective. *Annual Review of Microbiology*, 64(1), 561–583.
813 <https://doi.org/10.1146/annurev.micro.112408.134208>

81 Emerson, D., & Revsbech, N. P. (1994). Investigation of an iron-oxidizing microbial mat community
815 located near Aarhus, Denmark: Field studies. *Applied and Environmental Microbiology*, 60(11),
816 4022–4031. <https://doi.org/10.1128/aem.60.11.4022-4031.1994>

81 Fabisch, M., Beulig, F., Akob, D. M., & Küsel, K. (2013). Surprising abundance of Gallionella-
818 related iron oxidizers in creek sediments at pH 4.4 or at high heavy metal concentrations.
819 *Frontiers in Microbiology*, 4(DEC), 1–12. <https://doi.org/10.3389/fmicb.2013.00390>

82 Fan, Y. Y., Li, B. B., Yang, Z. C., Cheng, Y. Y., Liu, D. F., & Yu, H. Q. (2018). Abundance and
821 diversity of iron reducing bacteria communities in the sediments of a heavily polluted freshwater
822 lake. *Applied Microbiology and Biotechnology*, 102(24), 10791–10801.
823 <https://doi.org/10.1007/s00253-018-9443-1>

82 Feder, F., Trolard, F., Bourrié, G., & Klingelhöfer, G. (2018). Quantitative estimation of fougerite
825 green rust in soils and sediments by citrate–bicarbonate kinetic extractions. *Soil Systems*, 2(4),
826 1–13. <https://doi.org/10.3390/soilsystems2040054>

82 Folks, H. C., & Riecken, F. F. (1956). Physical and Chemical Properties of Some Iowa Soil Profiles
828 with Clay-Iron Bands. *Soil Science Society of America Journal*, Vol. 20, pp. 575–580.
829 <https://doi.org/10.2136/sssaj1956.03615995002000040030x>

83 Fox, G. A., Purvis, R. A., & Penn, C. J. (2016). Streambanks: A net source of sediment and
831 phosphorus to streams and rivers. *Journal of Environmental Management*, 181, 602–614.
832 <https://doi.org/10.1016/j.jenvman.2016.06.071>

83 Gentry, L. E., David, M. B., Royer, T. V., Mitchell, C. A., & Starks, K. M. (2007). Phosphorus
834 Transport Pathways to Streams in Tile-Drained Agricultural Watersheds. *Journal of*
835 *Environmental Quality*, 36(2), 408–415. <https://doi.org/10.2134/jeq2006.0098>

83 Grathoff, G. H., Baham, J. E., Easterly, H. R., Gassman, P., & Hugo, R. C. (2007). Mixed-valent Fe
837 films ('schwimmeisen') on the surface of reduced ephemeral pools. *Clays and Clay Minerals*,
838 55(6), 635–643. <https://doi.org/10.1346/CCMN.2007.0550610>

83 Hoagland, B., Navarre-Sitchler, A., Cowie, R., & Singha, K. (2020). Groundwater–Stream
840 Connectivity Mediates Metal(lod) Geochemistry in the Hyporheic Zone of Streams Impacted by
841 Historic Mining and Acid Rock Drainage. *Frontiers in Water*, 2(December), 1–25.
842 <https://doi.org/10.3389/frwa.2020.600409>

84 Hoagland, B., Rasmussen, K. L., Singha, K., Spear, J. R., & Navarre-Sitchler, A. (2024). Metal-oxide
844 precipitation influences microbiome structure in hyporheic zones receiving acid rock drainage.
845 *Applied and Environmental Microbiology*, 90(3). <https://doi.org/10.1128/aem.01987-23>

845 Fanney, D. E., Cowley, J. M., & Buseck, P. R. (2000). Transmission electron microscopy of synthetic
847 2- and 6-line ferrihydrite. *Clays and Clay Minerals*, 48(1), 111–119.
848 <https://doi.org/10.1346/CCMN.2000.0480114>

849 Kappler, A., Bryce, C., Mansor, M., Lueder, U., Byrne, J. M., & Swanner, E. D. (2021). An evolving
850 view on biogeochemical cycling of iron. *Nature Reviews Microbiology*, 19(6), 360–374.
851 <https://doi.org/10.1038/s41579-020-00502-7>

852 Kleja, D. B., van Schaik, J. W. J., Persson, I., & Gustafsson, J. P. (2012). Characterization of iron in
853 floating surface films of some natural waters using EXAFS. *Chemical Geology*, 326–327, 19–26.
854 <https://doi.org/10.1016/j.chemgeo.2012.06.012>

855 Kozich, J. J., Westcott, S. L., Baxter, N. T., Highlander, S. K., & Schloss, P. D. (2013). Development
856 of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data
857 on the miseq illumina sequencing platform. *Applied and Environmental Microbiology*, 79(17),
858 5112–5120. <https://doi.org/10.1128/AEM.01043-13>

859 Kozubal, M., Macur, R. E., Korf, S., Taylor, W. P., Ackerman, G. G., Nagy, A., & Inskeep, W. P.
860 (2008). Isolation and distribution of a novel iron-oxidizing crenarchaeon from acidic geothermal
861 springs in Yellowstone National Park. *Applied and Environmental Microbiology*, 74(4), 942–
862 949. <https://doi.org/10.1128/AEM.01200-07>

863 Kreiling, R. M., Bartsch, L. A., Perner, P. M., Hlavacek, E. J., & Christensen, V. G. (2021). Riparian
864 Forest Cover Modulates Phosphorus Storage and Nitrogen Cycling in Agricultural Stream
865 Sediments. *Environmental Management*, 68(2), 279–293. <https://doi.org/10.1007/s00267-021-01484-9>

866 Lambrecht, N., Katsev, S., Wittkop, C., Hall, S. J., Sheik, C. S., Picard, A., Swanner, E. D. (2020).
867 Biogeochemical and physical controls on methane fluxes from two ferruginous meromictic lakes.
868 *Geobiology*, 18(1), 54–69. <https://doi.org/10.1111/gbi.12365>

869 Lautz, L. K., & Fanelli, R. M. (2008). Seasonal biogeochemical hotspots in the streambed around
870 restoration structures. *Biogeochemistry*, 91(1), 85–104. <https://doi.org/10.1007/s10533-008-9235-2>

871 Lautz, L. K., Siegel, D. I., & Bauer, R. L. (2006). Impact of debris dams on hyporheic interaction
872 along a semi-arid stream. *Hydrological Processes*, 20(1), 183–196.
873 <https://doi.org/10.1002/hyp.5910>

874 Lawrence, J. E., Skold, M. E., Hussain, F. A., Silverman, D. R., Resh, V. H., Sedlak, D. L., ...
875 McCray, J. E. (2013). Hyporheic zone in urban streams: A review and opportunities for
876 enhancing water quality and improving aquatic habitat by active management. *Environmental
877 Engineering Science*, 30(8), 480–501. <https://doi.org/10.1089/ees.2012.0235>

878 Leffler, F. W., Berthold, D. E., & Laughinghouse, H. D. (2023). Cyanoseq: A database of
879 cyanobacterial 16S rRNA gene sequences with curated taxonomy. *Journal of Phycology*, 59(3),
880 470–480. <https://doi.org/10.1111/jpy.13335>

881 Leopold, R. (2010). *The Iowa State-Wide Trace Element Soil Sampling Project : Design and
882 Implementation.* (June), 1–78.

883 Lovley, D. R. (1987). Organic matter mineralization with the reduction of ferric iron: A review.
884 *Geomicrobiology Journal*, 5(3–4), 375–399. <https://doi.org/10.1080/01490458709385975>

885 Melton, E. D., Swanner, E. D., Behrens, S., Schmidt, C., & Kappler, A. (2014). The interplay of
886 microbially mediated and abiotic reactions in the biogeochemical Fe cycle. *Nature Reviews
887 Microbiology*, 12(12), 797–808. <https://doi.org/10.1038/nrmicro3347>

89 Méndez-García, C., Peláez, A. I., Mesa, V., Sánchez, J., Golyshina, O. V., & Ferrer, M. (2015).
891 Microbial diversity and metabolic networks in acid mine drainage habitats. *Frontiers in*
892 *Microbiology*, 6(MAY), 1–17. <https://doi.org/10.3389/fmicb.2015.00475>

893 Mori, J. F., Neu, T. R., Lu, S., Händel, M., Totsche, K. U., & Küsel, K. (2015). Iron encrustations on
894 filamentous algae colonized by Gallionella-related bacteria in a metal-polluted freshwater
895 stream. *Biogeosciences*, 12(18), 5277–5289. <https://doi.org/10.5194/bg-12-5277-2015>

896 Murphy, J., & Riley, J. P. (1962). A modified single solution method for the determination of
897 phosphate in natural waters. *Analytica Chimica Acta*, 27(C), 31–36.
898 [https://doi.org/10.1016/S0003-2670\(00\)88444-5](https://doi.org/10.1016/S0003-2670(00)88444-5)

899 Neidhardt, H., Schoeckle, D., Schleinitz, A., Eiche, E., Berner, Z., Tram, P. T. K., ... Berg, M.
900 (2018). Biogeochemical phosphorus cycling in groundwater ecosystems – Insights from South
901 and Southeast Asian floodplain and delta aquifers. *Science of the Total Environment*, 644, 1357–
902 1370. <https://doi.org/10.1016/j.scitotenv.2018.07.056>

903 Perkins, R. B., Gray, Z. N., Grathoff, G., & Hugo, R. (2016). Characterization of natural and synthetic
904 floating iron surface films and their associated waters. *Chemical Geology*, 444, 16–26.
905 <https://doi.org/10.1016/j.chemgeo.2016.09.027>

906 Pierson, B. K., & Parenteau, M. N. (2000). Phototrophs in high iron microbial mats: Microstructure of
907 mats in iron-depositing hot springs. *FEMS Microbiology Ecology*, 32(3), 181–196.
908 [https://doi.org/10.1016/S0168-6496\(00\)00018-0](https://doi.org/10.1016/S0168-6496(00)00018-0)

909 Rentz, J. A., Kraiya, C., Luther, G. W., & Emerson, D. (2007). Control of ferrous iron oxidation
910 within circumneutral microbial iron mats by cellular activity and autocatalysis. *Environmental*
911 *Science and Technology*, 41(17), 6084–6089. <https://doi.org/10.1021/es062203e>

912 Rentz, J. A., Turner, I. P., & Ullman, J. L. (2009). Removal of phosphorus from solution using
913 biogenic iron oxides. *Water Research*, 43(7), 2029–2035.
914 <https://doi.org/10.1016/j.watres.2009.02.021>

915 Rivett, M. O., Ellis, P. A., & Mackay, R. (2011). Urban groundwater baseflow influence upon
916 inorganic river-water quality: The River Tame headwaters catchment in the City of Birmingham,
917 UK. *Journal of Hydrology*, 400(1–2), 206–222. <https://doi.org/10.1016/j.jhydrol.2011.01.036>

918 Roden, E. E., McBeth, J. M., Blöthe, M., Percak-Dennett, E. M., Fleming, E. J., Holyoke, R. R.,
919 Luther, G. W., Emerson, D., & Schieber, J. (2012). The microbial ferrous wheel in a neutral pH
920 groundwater seep. *Frontiers in Microbiology*, 3(MAY), 1–18.
921 <https://doi.org/10.3389/fmicb.2012.00172>

922 Rosenberg, B. D., & Schroth, A. W. (2017). Coupling of reactive riverine phosphorus and iron
923 species during hot transport moments: impacts of land cover and seasonality. *Biogeochemistry*,
924 132(1–2), 103–122. <https://doi.org/10.1007/s10533-016-0290-9>

925 Rutherford, J. S. (2005). Crystal Structure. *Encyclopedia of Condensed Matter Physics*, 289–294.
926 <https://doi.org/10.1016/B0-12-369401-9/00686-0>

927 Sánchez-España, J., Ilin, A. M., Yusta, I., van der Graaf, C. M., & Sánchez-Andrea, I. (2023). Fe(III)
928 Biomineralization in the Surface Microlayer of Acid Mine Waters Catalyzed by Neustonic
929 Fe(II)-Oxidizing Microorganisms. *Minerals*, 13(4). <https://doi.org/10.3390/min13040508>

930 Sarkkola, S., Nieminen, M., Koivusalo, H., Laurén, A., Kortelainen, P., Mattsson, T., ... Finér, L.
931 (2013). Iron concentrations are increasing in surface waters from forested headwater catchments
932 in eastern Finland. *Science of The Total Environment*, 463–464, 683–689.
933 <https://doi.org/https://doi.org/10.1016/j.scitotenv.2013.06.072>

93 Schilling, K. E., Kim, S., Jones, C. S., & Wolter, C. F. (2017). Orthophosphorus Contributions to
935 Total Phosphorus Concentrations and Loads in Iowa Agricultural Watersheds. *Journal of*
936 *Environmental Quality*, 46(4), 828–835. <https://doi.org/10.2134/jeq2017.01.0015>

93 Schwertmann, U.; Cornell, R.M.: Iron oxides in the Laboratory; Wiley VCH 2000

938 himizu, M., Zhou, J., Schröder, C., Obst, M., Kappler, A., & Borch, T. (2013). Dissimilatory
939 reduction and transformation of ferrihydrite-humic acid coprecipitates. *Environmental Science*
940 *and Technology*, 47(23), 13375–13384. <https://doi.org/10.1021/es402812j>

94 Sobolev, D., & Roden, E. E. (2002). Evidence for rapid microscale bacterial redox cycling of iron in
942 circumneutral environments. *Antonie van Leeuwenhoek, International Journal of General and*
943 *Molecular Microbiology*, 81(1–4), 587–597. <https://doi.org/10.1023/A:1020569908536>

945 Soto-Varela, F., Rodríguez-Blanco, M. L., Taboada-Castro, M. M., & Taboada-Castro, M. T. (2015).
946 Metals discharged during different flow conditions from a mixed agricultural-forest catchment
947 (NW Spain). *Hydrological Processes*, 29(6), 1644–1655. <https://doi.org/10.1002/hyp.10282>

948 St Clair, B., Pottenger, J., Debes, R., Hanselmann, K., & Shock, E. (2019). Distinguishing Biotic and
949 Abiotic Iron Oxidation at Low Temperatures. *ACS Earth and Space Chemistry*, 3(6), 905–921.
<https://doi.org/10.1021/acsearthspacechem.9b00016>

950 Stookey, L. L. (1970). Ferrozine-A New Spectrophotometric Reagent for Iron. *Analytical Chemistry*,
951 42(7), 779–781. <https://doi.org/10.1021/ac60289a016>

952 Tobler, N. B., Hofstetter, T. B., Straub, K. L., Fontana, D., & Schwarzenbach, R. P. (2007). Iron-
953 mediated microbial oxidation and abiotic reduction of organic contaminants under anoxic
954 conditions. *Environmental Science and Technology*, 41(22), 7765–7772.
<https://doi.org/10.1021/es071128k>

955 Toner, B. M., Santelli, C. M., Marcus, M. A., Wirth, R., Chan, C. S., McCollom, T., ... Edwards, K.
956 J. (2009). Biogenic iron oxyhydroxide formation at mid-ocean ridge hydrothermal vents: Juan de
957 Fuca Ridge. *Geochimica et Cosmochimica Acta*, 73(2), 388–403.
<https://doi.org/10.1016/j.gca.2008.09.035>

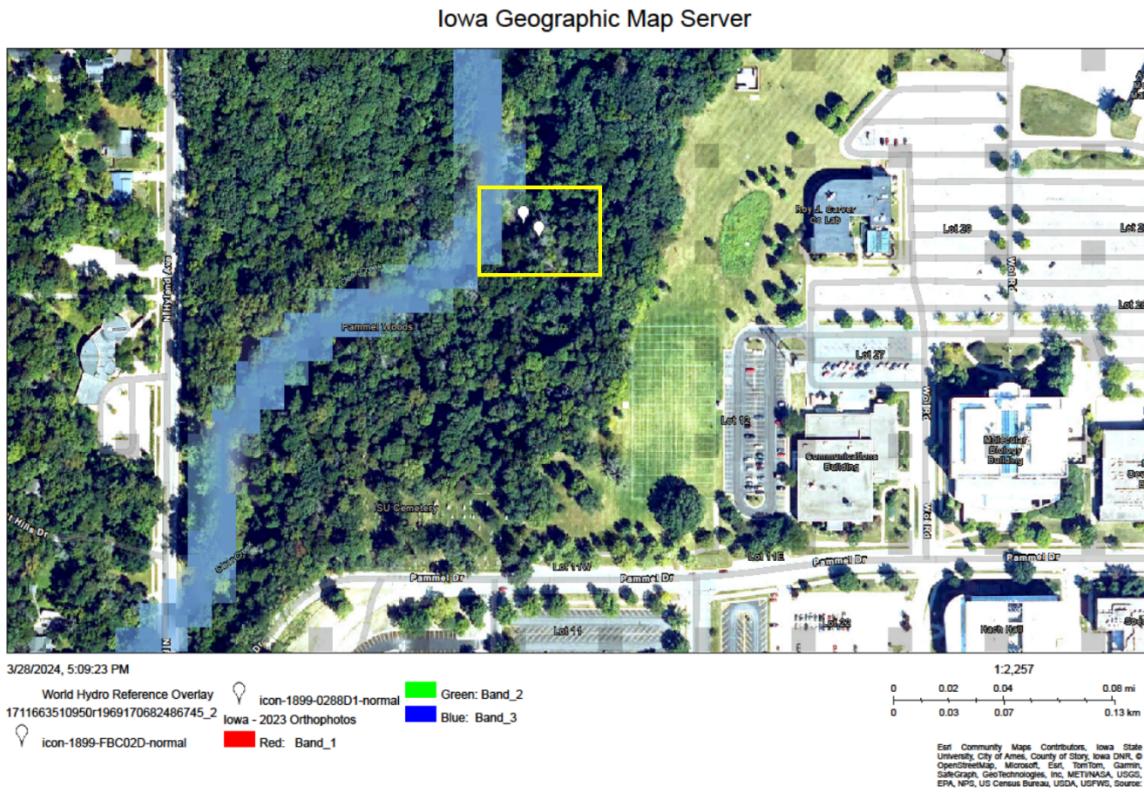
958 Trolard, F., & Bourrié, G. (2006). Structure of fougereite and green rusts and a thermodynamic model
959 for their stabilities. *Journal of Geochemical Exploration*, 88(1-3 SPEC. ISS.), 249–251.
<https://doi.org/10.1016/j.gexplo.2005.08.048>

960 USGS. (2022). *StreamStats Report*. 1–13.

961 Usman, M., Hanna, K., Abdelmoula, M., Zegeye, A., Faure, P., & Ruby, C. (2012). Formation of
962 green rust via mineralogical transformation of ferric oxides (ferrihydrite, goethite and hematite).
963 *Applied Clay Science*, 64, 38–43. <https://doi.org/10.1016/j.clay.2011.10.008>

964 Viollier, E., Inglett, P. W., Hunter, K., Roychoudhury, A. N., and Van Cappellen, P. (2000). The
965 ferrozine method revisited: Fe(II)/Fe(III) determination in natural waters. *Appl. Geochemistry*
966 15, 785–790. doi: 10.1016/S0883-2927(99)00097-9

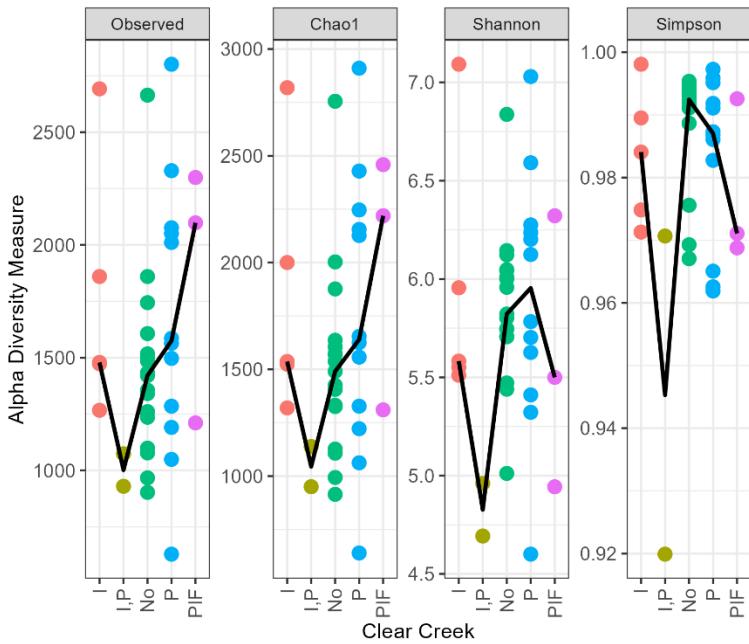
967 Williams, M. R., Wessel, B. M., & Filoso, S. (2016). Sources of iron (Fe) and factors regulating the
968 development of flocculate from Fe-oxidizing bacteria in regenerative streamwater conveyance
969 structures. *Ecological Engineering*, 95, 723–737. <https://doi.org/10.1016/j.ecoleng.2016.06.120>


970 Wu, C. Y., Zhuang, L., Zhou, S. G., Li, F. B., & Li, X. M. (2010). Fe(III)-enhanced anaerobic
971 transformation of 2,4-dichlorophenoxyacetic acid by an iron-reducing bacterium Comamonas
972 koreensis CY01. *FEMS Microbiology Ecology*, 71(1), 106–113. <https://doi.org/10.1111/j.1574-6941.2009.00796.x>

973 Yang, C., Zhang, Y. K., Liu, Y., Yang, X., & Liu, C. (2018). Model-Based Analysis of the Effects of
974 Dam-Induced River Water and Groundwater Interactions on Hydro-Biogeochemical

979 Transformation of Redox Sensitive Contaminants in a Hyporheic Zone. *Water Resources*
980 *Research*, 54(9), 5973–5985. <https://doi.org/10.1029/2018WR023286>
981 Zegeye, A., Bonneville, S., Benning, L. G., Sturm, A., Fowle, D. A., Jones, C. A., ... Poulton, S. W.
982 (2012). Green rust formation controls nutrient availability in a ferruginous water column.
983 *Geology*, 40(7), 599–602. <https://doi.org/10.1130/G32959.1>
984 Zhang, X., Müller, M., Jiang, S., Wu, Y., Zhu, X., Mujahid, A., Zhu, Z., Fakharuddin Muhamad, M.,
985 Sien Aun Sia, E., Holt Ajon Jang, F., & Zhang, J. (2020). Distribution and flux of dissolved iron
986 in the peatland-draining rivers and estuaries of Sarawak, Malaysian Borneo. *Biogeosciences*,
987 17(7), 1805–1819. <https://doi.org/10.5194/bg-17-1805-2020>

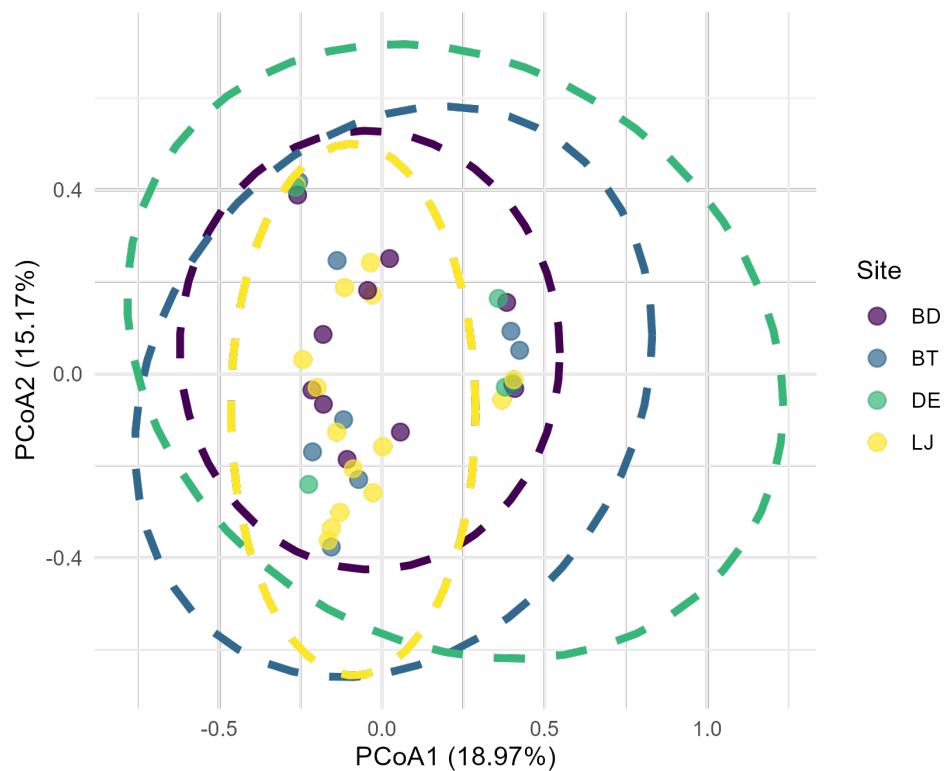
988
989


990 **Supplemental Information:**
991 **Piezometer Locations**

992 Supplemental Figure 1: Location of piezometers indicated by the white markers. These are located around the
993 midpoint of the sampling sites. Shaded in blue is Clear Creek.
994

995

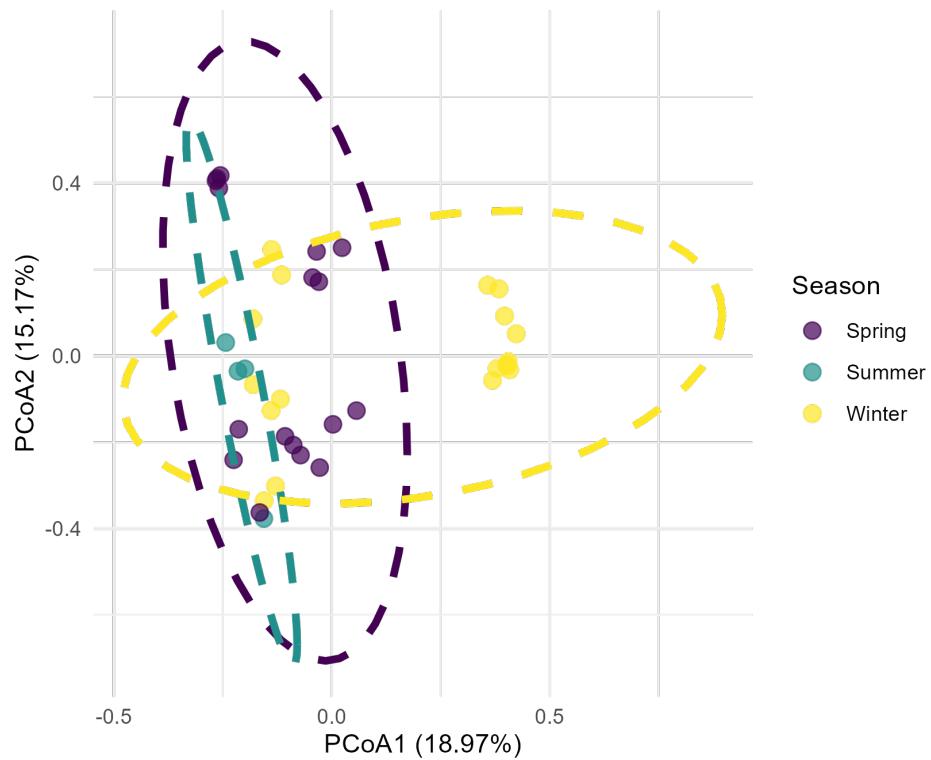
996 **Alpha diversity measurements:**
997



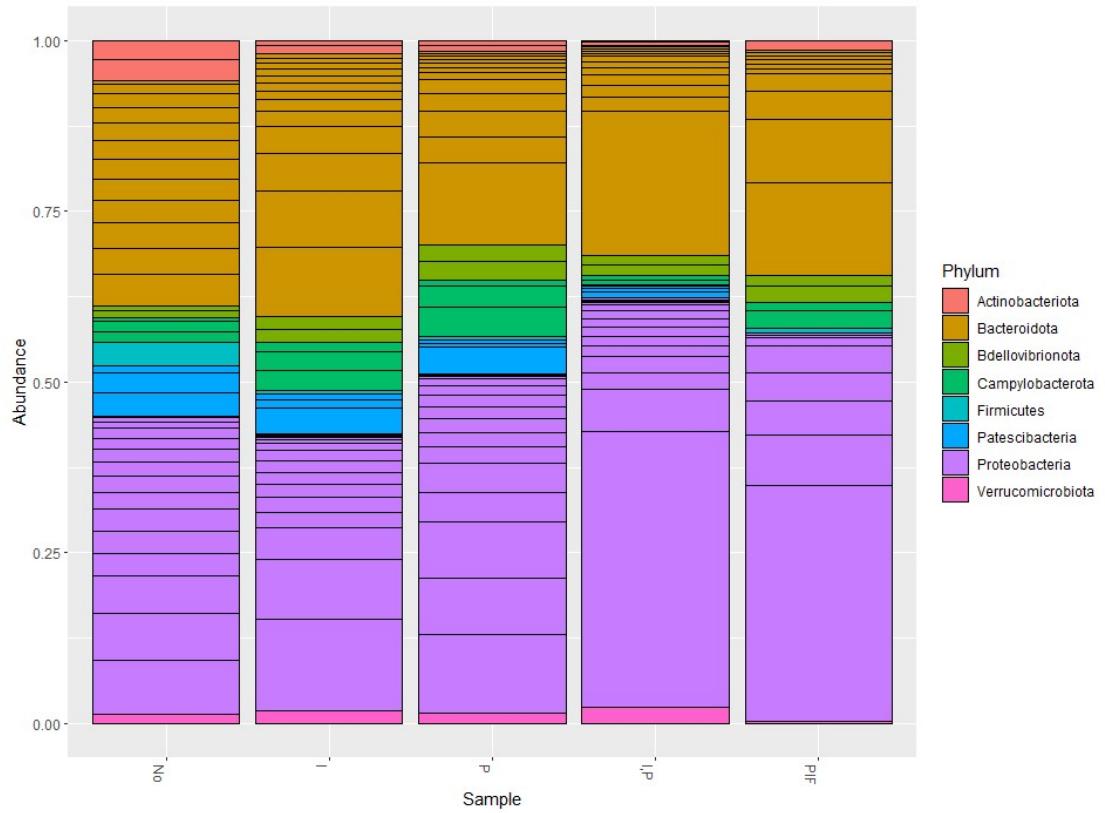
998
999
1000
1001
1002
1003
1004
1005

Supplemental Figure 2: Alpha diversity measured by Shannon, Simpson, and Chao1 indices estimated between different iron types of Clear Creek for 16S rRNA. X-axis labels: No: no iron present, I: iridescent, P: iron precipitates, I,P: both iridescence and precipitates, and PIF: all three iron types. Black line indicates median values through iron types.

Microbial Analysis:

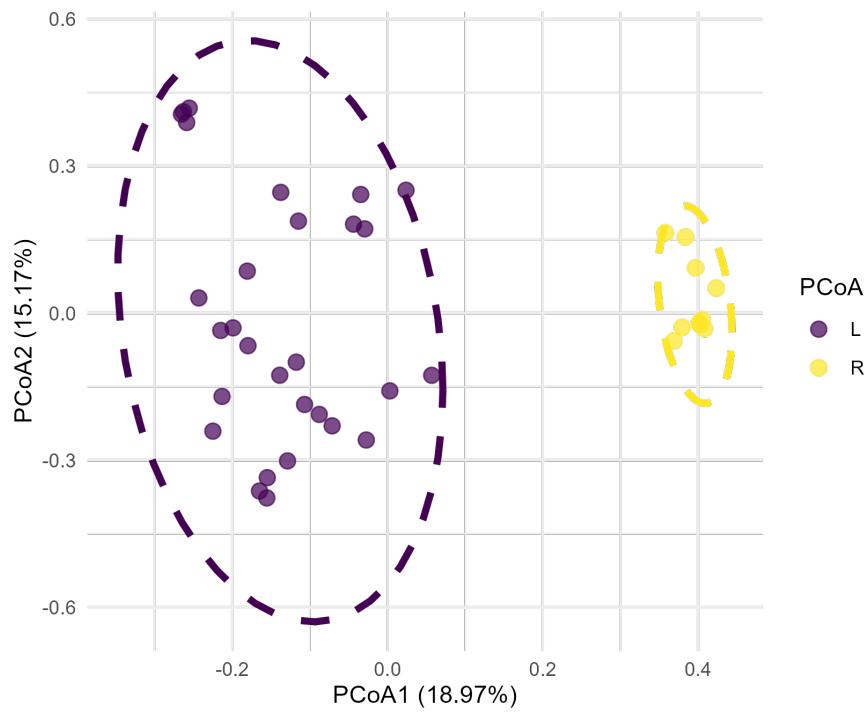

1006

1007

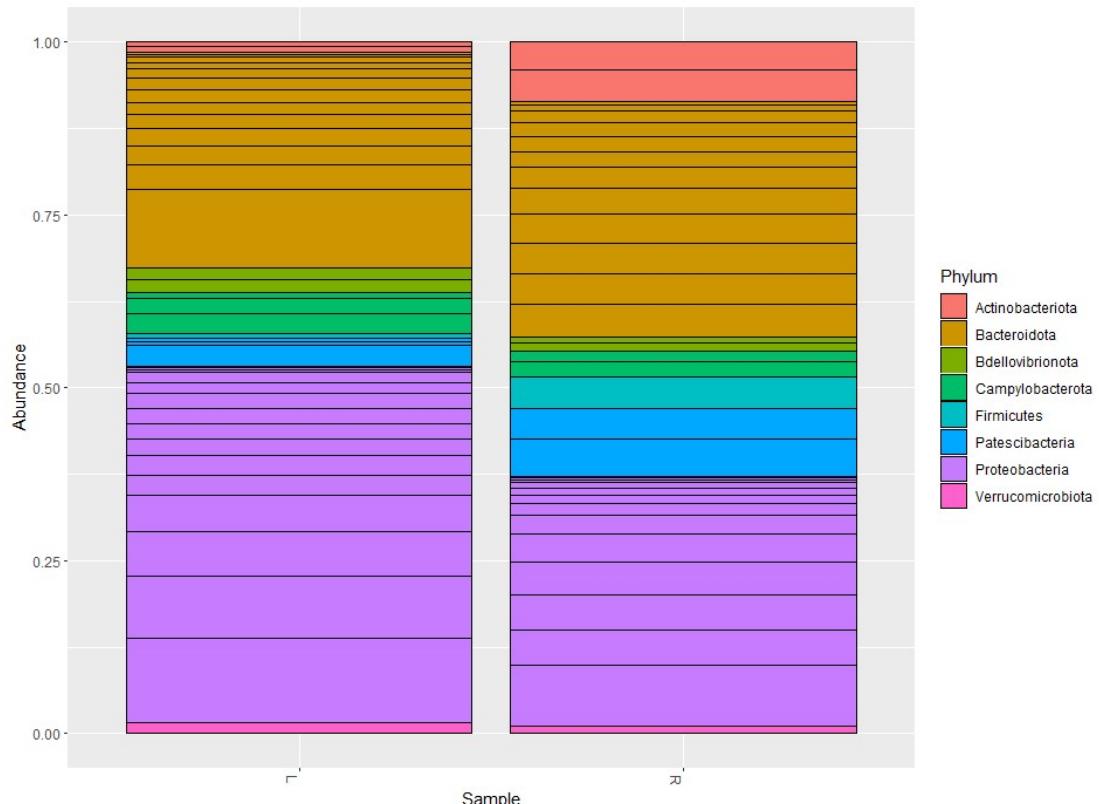

1008 Supplemental Figure 3: Principal Coordinates Analyses conducted by contrast based on Bray-Curtis distance
 1009 highlighted by site. Ellipses are plotted with a 95% confidence interval and plotted with the percentage of variability
 1010 on the axis. No statistical difference was determined from a Permanova.
 1011

1012

1013

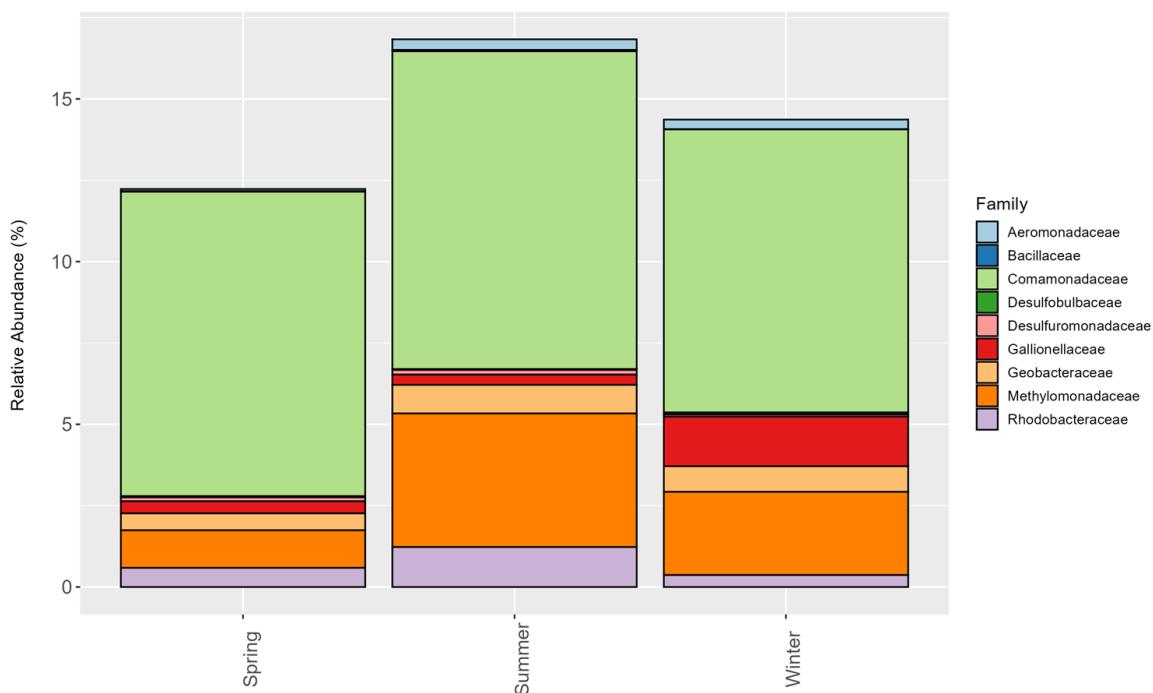

1014 Supplemental Figure 4: Principal Coordinates Analyses conducted by contrast based on Bray-Curtis distance
 1015 highlighted by season. Ellipses are plotted with a 95% confidence interval and plotted with the percentage of
 1016 variability on the axis. Permanova found a significant statistical difference between seasons (<0.001).
 1017
 1018

1020 Supplemental Figure 5: 16S abundance at the Phylum level based on iron mineralization types.


1021

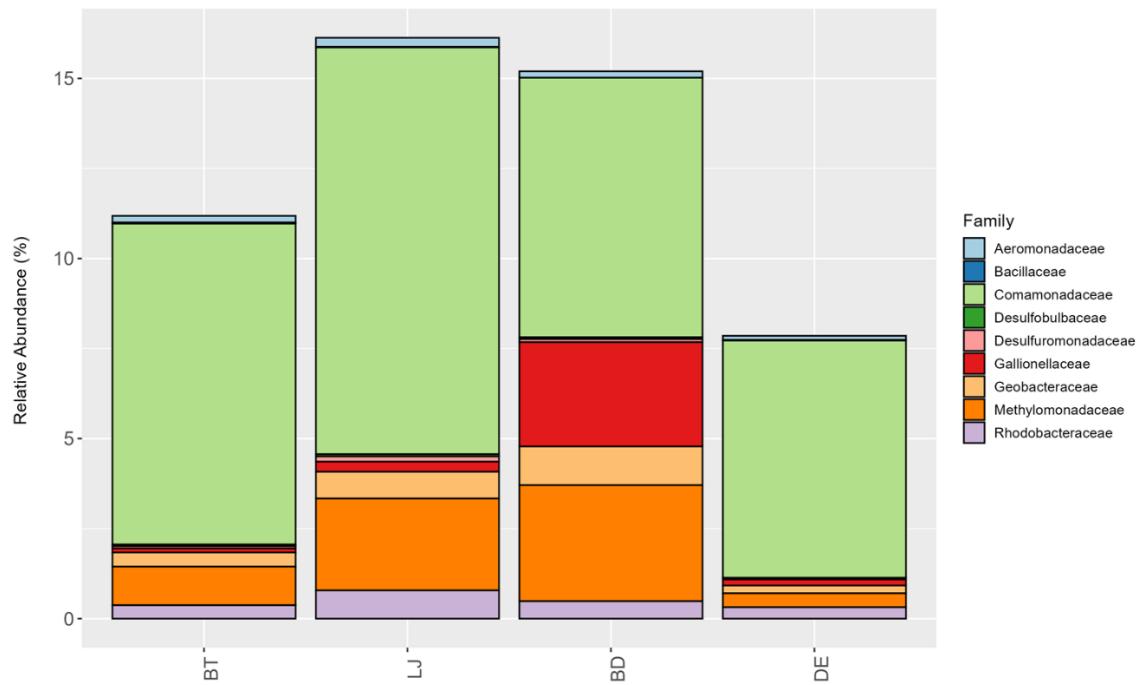
1022

1023


1024 Supplemental Figure 6: Principal Coordinates Analyses conducted by contrast based on Bray-Curtis distance
 1025 highlighted by samples with clustering on left and right. Ellipses are plotted with a 95% confidence interval and
 1026 plotted with the percentage of variability on the axis. Permanova found a significant statistical difference between
 1027 left and right samples (<0.001).
 1028
 1029

1030
1031
1032

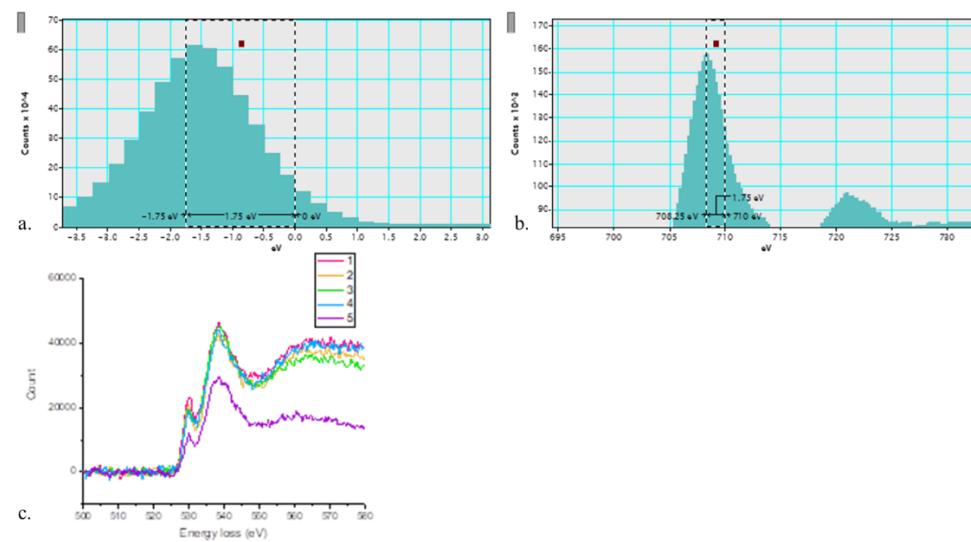
Supplemental Figure 7: Top 30 abundance based on Phylum level in Left and Right Clusters from PCoA plot.


1033

1034

1035 Supplemental Figure 8: Relative abundance at the Family level of putative iron cyclers + methane-oxidizing bacteria
1036 based on season.
1037

1038



1039

1040 Supplemental Figure 9: Relative abundance at the Family level of putative iron cyclers + methane-oxidizing bacteria
1041 at the different sample sites.

1042 Low and High Loss Calibration EELS:

1043

1044

1045 Supplemental Figure 10: a and b) Energy calibration of EELS. a) Prior to EELS analysis on sample, a zero loss peak
1046 was acquired, showing a -1.75 eV shift from 0 eV. b) The -1.75 eV shift was applied to the collected high-loss data.
1047 c) O-K edge for 5 sample areas of interest from Figures 8 & 9.