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Abstract

The Maxwell-Bloch system of equations with inhomogeneous broadening is studied, and the local
and global well-posedness of the corresponding initial-boundary value problem is established by
taking advantage of the integrability of the system and making use of the corresponding inverse
scattering transform. A key ingredient in the analysis is the L2-Sobolev bijectivity of the direct and
inverse scattering transform established by Xin Zhou for the focusing Zakharov-Shabat problem.

1 Introduction and main results

The Maxwell-Bloch equations (MBEs) describe resonant interaction between light and optical me-
dia which underlies several types of practical devices such as lasers and optical amplifiers. For many
experimental setups, the theoretical description of the interaction between light and an active optical
medium is semi-classical, with the light described classically and the medium quantum-mechanically.
Under suitable physical assumptions (e.g., monochromatic light, one single resonant transition, uni-
directional propagation, etc), averaging over the fast oscillations of the optical pulse yields a descrip-
tion only in terms of the slowly varying envelopes corresponding to the evolution of the light intensity
and phase. Remarkably, even this simple case produces a host of important physical effects such as
electromagnetically induced and self-induced transparency [5, 10, 33,44,51,52,59, 61], superradiance
and superfluorescence [12,23,31,56], photon echo [43,54,66], and even the slowing down of light to a
tiny fraction of its speed in vacuum [24, 35,37, 53,57, 58].

In this work, we consider the Cauchy problem for the MBEs, which, in dimensionless form in a
comoving reference frame, can be written as

azq(t,z)+fP(r,z,k)g(k)dk=o, (1.1a)

R

0:P(t,z,k) - 2ik P(t,z,k) = —2D(t, 2, k) 4 (1, 2), (1.1b)
8,D(t,z,k) = 2Re[q" (t,2) P(t, 2, k)], (1.1¢)

where the asterisk denotes complex conjugation, with the following initial-boundary conditions

Q(t,o) :CIO(t), tERy (12a)

tlil}l q(t,z)=0, z=0, (1.2b)

D_(z, k)= tliI}l D(t,z, k), z=0, (1.2¢)
P_(z,k):= lim e®¥P(1,2,k), z20. (1.2d)

The MBEs (1.1) describe the propagation of an electromagnetic pulse g(t,z) in a two-level medium
characterized by a (real) population density function D(t, z, k) and a (complex) polarization fluctua-
tion P(t, z, k) for the atoms [45]. Here, z = zjp, is the propagation distance, ¢ = fia, — 21ap/ ¢ is a retarded
time (c being the speed of light in vacuum), the parameter k is the deviation of the transition frequency
of the atoms from its mean value. Note that, owing to (1.1b), P(t, z, k) does not have finite limits as



t — *oo for any k # 0 if D_(z, k) # 0, which explains the peculiar form of the boundary condition in
Eq. (1.2d). The precise functional classes to which the initial-boundary data should belong will be
clarified below.

The quantity g (k) appearingin (1.1a) is the so-called inhomogeneous broadening function, which
accounts for the detuning from the exact quantum transition frequency due to the Doppler shift
caused by the thermal motion of the atoms in the medium. As such, the function g(k) serves as a
density function of a continuous variable k, and satisfies the following properties:

gk) =0, fg(k)dkzl. (1.3)
R

A natural choice for the inhomogeneous broadening corresponds to a Lorentzian detuning:
€

T e+ k2’ (1.4)

where the parameter € > 0 is the detuning width. The case g(k) = 6 (k — k,) [with 6(-) denoting the
Dirac delta] describes the so-called “sharp-line” — or infinitely narrow line — limit at an arbitrary
ko € R which can be taken to be zero without loss of generality.

It is convenient to introduce a density matrix p(t, z, k) that without loss of generality can be as-
sumed to be traceless, i.e., such that

D(t,z,k) P(t,z k)

p(t,Z,k): P*(t,Z;k) —D(t;Z;k) '

(1.5)

Moreover, from the MBEs (1.1b) and (1.1¢) if follows that 0, (D?(t, z, k) + |P(t, 2, k)|*) = 0 for all k € R
and all z = 0, so one can assume, again without loss of generality, that

D?(t,z,k) +|P(t,z,k)> =1. (1.6)

As Egs. (1.2) indicate, the medium is assumed to be semi-infinite, i.e., z = 0, and “prepared” in the
distant past (i.e., as t — —oo) in a (known) state characterized by assigned values for the distribution
of atoms in the ground and excited states and for the polarization via the asymptotics of D(t, z, k) and
P(t,z,k) as t — —oo for every z = 0 and k € R. Macroscopically, the medium can be in either: (i) a pure
ground state, with all atoms in the lowest energylevel (i.e., D_ = —1 and P_ = 0); (ii) a pure excited state
(a medium with a complete “population inversion”, with all the atoms in the excited state (i.e., D_ =1
and P_ = 0); (iii) a mixed state with an assigned fraction of atoms in each state (-1 < D_(z,k) < 1),
in which case the medium exhibits nontrivial polarization fluctuations, encoded by P_(z, k) # 0. An
electromagnetic pulse g(¢,0) is then injected into the medium at the origin and it propagates into it
(z>0).

The MBEs (1.1) can then be written in matrix form as

Qz(t,Z)+%f[Ug,p(t,Z,k)]g(k)dk:(), (1.7a)
R
pi(t,z,k) = likas + Q(t,2), p(t, 2, k)], (1.7b)

where [A, B] = AB — BA is the matrix commutator, ¢1,02,03 are the standard Pauli matrices, with
o3 =diag(1,-1), and
0 q(t,z)

D o (1.8)

Q(t,2) = (



The MBEs (1.1) are integrable, and their integrability makes it possible to linearize the initial-boundary
value problem (IBVP) (1.1-1.2) via the inverse scattering transform (IST) [2,26-28, 46,49, 50, 60, 65, 66].
Specifically, a Lax pair for the MBEs (1.1) is given by [2]

ve=Xv, (1.9a)
v,=Tv, (1.9b)
with
X(t,z,k)=ikos +Q, T(t,z,k) = %Jfk[p(t,z,f)g(()], (1.10a)
where #4[ f({)] is the Hilbert transform,
1
Hp (] = —J[ &ds, (1.10b)
nJr s—k

and the symbol { denotes the principal value integral. (Specifically, Egs. (1.7) are equivalent to the
compatibility condition vy; = v¢y of (1.9), i.e., the zero curvature condition X; — T + [X, T] =0.)

Asusual, the first half of the Lax pair (1.9) is referred to as the scattering problem, k as the scattering
(or spectral) parameter, and g(t, z) as the scattering potential. Importantly, the scattering problem for
the two-level MBEs [namely, (1.9a)], is the celebrated Zakharov-Shabat (ZS) or Ablowitz-Kaup-Newell-
Segur (AKNS) system, which is exactly the same as for the focusing NLS equation [3,67] (apart from the
common switch in the role of the spatial and temporal variables encountered in all signalling prob-
lems). Therefore one can rely on a vast literature for the direct and inverse problems, both with decay-
ing and non-decaying optical pulses. On the other hand, the propagation along the medium, as well
as the coupling with the density matrix p(t, z, k), are novel and aspects in the IST for the MBEs (1.1).

The IST to solve the initial value problem for the above MBEs with a localized optical pulse [i.e.,
with g(t,z) — 0 as t — +oo] was first developed in [2] in the case of an initially stable medium (i.e., in
the case lim;_._, D(t, z, k) = —1) and subsequently generalized to the case of an arbitrary initial state
of the medium [26-28,65]. The IST with a symmetric nonzero background (NZBG) [i.e., g(t,z) — g+(2)
with |g+(2)] = 1g-(2)| = q, as t — +oo] was carried out in [8]. More recently, the IST for the MBEs
with inhomogeneous broadening and one-sided nonzero background [i.e., lim;_._, g(f,z) = 0 and
lim;— 100 q(t, 2) = g+ (2) with |g4 (z)| = A for all z = 0] was developed in [1].

Despite the large number of works on the MBEs (1.1) and its multi-component generalizations, no
well-posedness results are available to the best of our knowledge, which partly motivated the present
work. Recently, Li and Miller studied the MBEs in the sharp-line limit [47]. Their work raised interest-
ing questions, which also partly motivated the present study. It is worth mentioning that, even though
the MBEs simplify considerably in the sharp-line limit, this limiting case also restricts the types of
physical problems one can describe. For instance, in the case of decaying optical pulses which we are
interested in, the MBEs in the sharp-line limit are only compatible if the medium is initially prepared
in a pure (stable or unstable) state. On the other hand, the presence of inhomogeneous broadening
also allows considering a medium initially in a mixed state, without necessarily requiring a compatible
non-vanishing optical pulse in the distant past. As we discuss below, besides its obvious physical rele-
vance, we believe that including inhomogeneous broadening is also crucial to circumvent some of the
problems highlighted in [47]. Moreover, since the sharp-line case can be recovered as an appropriate
(though singular) limit of a generic inhomogeneous broadening function (e.g., lim¢._g g(k) in (1.4)),
our results should also shed additional light on the case of a narrow line and the limiting sharp-line
regime.



The goal of the present work is to establish the local and global well-posedness of the IBVP for
the MBEs (1.1) with initial-boundary conditions (1.2) and inhomogeneous broadening in the case of
rapidly decaying initial conditions, as specified by (1.2c). Besides its intrinsic significance because
of the physical relevance of the MBEs, the importance of the well-posedness result lies in the fact
that, in [47], it was shown that, in the sharp-line limit, a causality requirement (i.e., g(t, z) = 0 for all
t <0, z> 0) must be imposed on both the initial conditions and the solution, otherwise the IBVP for
the MBEs in the initially unstable case is ill-posed. (Specifically, for the same initial datum ¢g,(t) and
D_ = +1, the IBVP admits multiple noncausal solutions which decay to both stable and unstable pure
states as t — +o00, see Corollary 4 in [47].) Conversely, given a causal incident pulse, there exists at
most one causal solution to the IBVP for the MBEs in the sharp line limit (Theorem 1 in [47]). A dif-
ferent requirement of causality was imposed in [65] to ensure uniqueness of solutions of the Gelfand-
Levitan-Marchenko (GLM) equations of the inverse problem (which is related to the uniqueness of
solutions of the Riemann-Hilbert problem), but the MBEs considered in [65] were also restricted to
the sharp-line case. On the other hand, it was unclear whether the ill-posedness of the IBVP (or non-
uniqueness of solutions of the GLM equations) extends to the MBEs with inhomogeneous broadening.
In this respect, note that the proof of uniqueness of a causal solution provided in [47] does not rely on
integrability, but rather on a symmetry that is only valid in the sharp-line limit, and does not extend
to the case inhomogeneous broadening. Regardless, the results of [47] do not necessarily imply that,
if causality is not imposed, the IBVP for the MBEs with inhomogeneous broadening is also ill-posed.
In fact, in [65] Zakharov suggested that the non-uniqueness is related to the so-called “spontaneous”
solutions (namely, solutions induced by the initial polarization fluctuations of the medium P_(z, k)),
and it is due to the behavior of the reflection coefficient of the IST in a small neighborhood of k = 0;
the causality requirement forces the analytic extension of the reflection coefficient at the origin, and
allows to recover uniqueness of solution. This conjecture relates the non-uniqueness of solution to
the essential singularity of the reflection coefficient at the origin, which is introduced by the sharp-
line limit, and we show in this work that when inhomogeneous broadening is included the IBVP for
the MBEs is indeed well-posed, under suitable assumptions on the functions D_, P_ that describe the
initial preparation of the medium, and the value of the optical pulse g(¢,0) injected in the medium.

Specifically, letting D_ (k, z) = cosd(k, z) and P_(k, z) = e'P%:3) gin d(k, z) (which can be done with-
out loss of generality owing to (1.6)), in this work we study the IBVP for the system (1.1) with initial con-
ditions ¢(t,0) € L2Y(R) n HY(R), and boundary conditions d(k, z) and p(k, z) admitting weak deriva-
tives d’, p’ with respect to k, and such that d’(k, z), p’(k, z) € L (R x [0, Z]) for some Z > 0. As a special
case, the above class includes the physically relevant situation in which D_ and P_ are independent
of z, i.e., the case of a spatially uniform medium preparation. For this class of initial and boundary
conditions, we extend Zhou’s L?-Sobolev bijectivity result about the IST for the focusing NLS equa-
tion to the MBEs (1.1) with inhomogenous broadening. In turn, this allows us to prove the local and
global well-posedness of the problem. The main results of this work are Theorems 3.6 and 3.7 in Sec-
tion 3, which establish the local and global well-posedness of the system (1.1) with the given class of
initial-boundary conditions. For concreteness, we will formulate all results in the explicit case of the
Lorentzian inhomogeneous broadening function (1.4), but we expect that the results can be general-
ized to a broad class of detuning functions without major modifications.

The outline of paper is as follows. In Section 2 we briefly review the IST for the MBEs with inhomo-
geneous broadening, in order to set the notation and introduce relevant quantities that will be used
in the rest of the work. In Section 3 we establish the main result of the paper, namely, the L2-Sobolev
bijectivity result for the MBEs with inhomogeneous broadening, which in turn yields the local and
global well-posedness of the system. In Section 4 we discuss the asymptotic states of the medium



and of the optical pulse for large z, which establishes appropriate control of the scattering data that is
needed to obtain the desired results. Finally, Section 5 is devoted to some concluding remarks.

2 Overview of the IST

In this section we concisely review existing results on the direct and inverse scattering problem for the
MBEs (1.1), and on the propagation in z of eigenfunctions and scattering data. Since the scattering
problem (1.9a) coincides with the Zakharov-Shabat problem for the focusing NLS equation, the results
of section 2.1 and section 2.3 are well known, and we therefore omit all proofs. For further details, we
refer the reader to the many standard references on the subject, such as [3, 6,67-69].

2.1 Direct scattering problem

The direct problem in the IST consists in constructing a map from the solution of the MBEs ¢(t, z) at
a fixed z = 0 into a suitable set of scattering data. As usual, this is done by introducing two sets of Jost
eigenfunctions, which are solutions of the scattering problem with prescribed exponential asymptotic
behavior as t — +oo, respectively, as well as scattering data that relates the two sets of Jost eigenfunc-
tions. The analyticity properties of eigenfunctions and scattering data as functions of the spectral
parameter k € C, and their asymptotic behavior as k — oo are crucial to set up the inverse problem.

Jost solutions, analyticity and scattering matrix. In light of the asymptotic behaviors of the scatter-
ing problem, namely, Eq. (1.9a), as || — oo, we define the Jost eigenfunctions as

$s(t,z:k) = X193 (1+0(1)), 1 — oo, 2.1a)

and introduce modified eigenfunctions by removing the asymptotic exponential oscillations from the
Jost solutions, i.e., (s (¢, 2; k) = P+ (¢, z; k)e K193, so that po (t,2;k) = I + o(1) as t — +oo. The modified
eigenfunctions are uniquely defined by the following integral equations:

Foo | .
W+ (t,z; k) = I?f e”“’"“‘”Q(r,z)pir (t, z; k)e kos(t=D 4. (2.2)
t

One can then show that the vector eigenfunctions can be analytically extended in the complex k-plane
into the following regions: p_; and 4, are analytic in the lower half plane (LHP, Im k < 0), whereas
p+1 and p_p are analytic in the upper half plane (UHP, Im k > 0), where . ; is the jth column of the
matrix u.. The analyticity properties of the columns of ¢ follow trivially from those of p.:

¢_1,042: LHP,  ¢y1,¢_o: UHP. (2.3a)

As usual, by Abel’s theorem we know that d;(det v) = 0 for any matrix solution v of Egs. (1.9). In addi-
tion, for all z € R, lim;_. 400 ¢+ (£, z; k) = €73, Hence, YVt € R we have det¢. (¢, z, k) = 1. Thus, for all
k € R, both ¢_ and ¢, are two fundamental matrix solutions of the scattering problem, and one can
express one set of eigenfunctions in terms of the other one:

¢+(tvz;k):¢—(tyz;k)s(krz)v ke[Ry (2-4)

where S(k, z) is the scattering matrix, whose entries are referred to as the scattering coefficients. The
scattering matrix is unimodular, since (2.4) implies detS = det¢. = 1. As usual, if we write S(k, z) =
(sij)2x2, the scattering coefficients s;; can be expressed as Wronskians of the Jost solutions:
s11(k, 2) =Wr(p41(t, z; k), p-2(1, 2, k), s12(k, 2) = Wr(¢p42(t, 2, k), p_2(t, z; k), (2.5a)
s21(k, 2) =Wr(p-1(t, z; k), p+1(F, 2, k), $22(k,2) = Wr(¢p-1(t, 2, k), p12(t, z; k). (2.5b)



Combining the Wronskians (2.5) with the analyticity of the eigenfunctions (2.3), we have the analytic-
ity of the diagonal components of the scattering matrix:

s11(k,z) : UHP, s (k,z) : LHP, (2.6)

while in general the off-diagonal entries s;» and sp; are only defined for k € R and do not admit analytic
continuation in the complex k-plane. Finally, the reflection coefficients are defined as:
so1(k,2) s12(k, 2)
r(k,z) = , Flk,z) = )
s11(k, 2) s22(k, 2)

keR. 2.7)

Symmetries of eigenfunctions and scattering coefficients. We begin by discussing the symmetries
of the eigenfunctions. Note that Q(¢,z) = —Q(t,z), where T denotes conjugate transpose. Letting
w(t, z; k) = ((/)T(t, z; k)7L itis easy to show that if ¢(¢, z; k) is a solution of the scattering problem, so is
w(t, z; k). Now let us restrict our attention to the real k axis. Taking ¢ = ¢+ we see that the asymptotic
behavior of w as t — oo coincides with that of ¢.. Because the solution of the scattering problem
with given BC is unique, we have R
¢ =¢., keR, (2.8)

which is equivalent to

¢tz k) =020 (t,2;k)02, keR, 022(? ;)1). (2.9)

Now we discuss the resulting symmetries of the scattering matrix and scattering coefficients. From
(2.8) and the scattering relation (2.4), it follows that the scattering matrix S(k, z) satisfies S~!(k, z) =
ST(k,z) for keR, i.e.

sn(k,z) = s5,(k*,z), Imk=0, (2.10a)
s12(k,2) = =s5,(k,2), keR. (2.10b)

Moreover, recalling det S(k, z) = 1 and the symmetries (2.10), we obtain the following identity:
sk, 21 +1s21(k, 2 =1, keR. (2.11)

Combining (2.10a) and (2.10b) we obtain the the symmetry between reflection coefficients:
Flk,z2)=-1r*(k,z), keR. (2.12)

Again, because the reflection coefficients contain the off-diagonal entries of the scattering matrix, in
general, r and 7 cannot be extended off the real k-axis.

Asymptotic behavior as k — co. The asymptotic properties of the eigenfunctions and the scattering
matrix are instrumental in properly normalizing the inverse problem. Moreover, the next-to-leading-
order behavior of the eigenfunctions will allow us to reconstruct the potential g(z, z) from eigenfunc-
tions. Here we summarize the results, which can be obtained by integration by parts on the integral
equations (2.2):

1 t
pe(t,20) = T+ =—03Q(t,2) 2[ g, 2)Pdr+0(k™?),  k—oco, (2.13)
2ik 2ik +oo
with the expansion valid for k € R as well as in the region of analyticity of each column. In turn, this
gives
Stk,z)=1+0(k™), k—oo, (2.14)
again with the expansion valid for k € R as well as in the region of analyticity of each entry. In partic-

ular, the latter equation shows that for any fixed z = 0 the analytic scattering coefficients sy (k, z) and
s22(k, z) cannot vanish as k — oo in the appropriate half-plane.



Discrete eigenvalues and residue conditions. The zeros of s1;(k, z) and s»2(k, z) comprise the dis-
crete eigenvalues of the scattering problem in (1.9). Since for any fixed z = 0 s1; (k, 2) is analytic in the
UHP of k, it has at most a countable number of zeros there. Moreover, owing to the symmetry (2.10a),
s11(k,z) = 0 if and only if sy2(k*,z) = 0. That is, discrete eigenvalues appear in complex conjugate
pairs.

For the ZS spectral problem, discrete eigenvalues can be located anywhere in the complex k-plane,
they are not necessarily simple, and one cannot a priori exclude the existence of zeros of sy, (k, z) and
s22(k, z) for k € R. Any discrete eigenvalue that lies on the real axis is called a spectral singularity, as is
any accumulation point of discrete eigenvalues [68]. These singularities correspond to resonant states
or bound states in the system. The analysis of spectral singularities is a key aspect of understanding the
scattering behavior and the spectrum of the scattering problem. For rapidly decaying potentials, there
exists a characterization of the location of (real) spectral singularities, as well as sufficient conditions
on q(t,z) that guarantee their absence (for instance, spectral singularities are absent in the case of
single lobe potentials, and certain double and multiple lobe potentials [40-42]). On the other hand,
there are potentials in the Schwartz class for which discrete eigenvalues can accumulate to spectral
singularities, and spectral singularities themselves can accumulate on the continuous spectrum [68].
However, the IST can still be effectively formulated even in such cases [68] (e.g., see Remark 2.3 in
section 2.3).

For simplicity and concreteness, in the following paragraphs we discuss explicitly the case in which
there is a finite number N of discrete eigenvalues (i.e., zeros of s;; (k, z)), and all such zeros are simple.
That is, s11(k,,2) = 0 and sil(kn,z) # 0 with Imk, > 0 for n = 1,2,..., N, where hereafter the prime
will denote differentiation with respect to k. The possible presence of higher-order zeros introduces
some minor technical complications, but no conceptual differences. Moreover, the possible presence
of spectral singularities and that of an infinite number of zeros can be dealt with using Zhou'’s ap-
proach [68]. Therefore, as we discuss in section 2.3, the results of this work also apply in the presence
of an arbitrary (possibly infinite) number of zeros of arbitrary multiplicity as well as in the presence of
arbitrary spectral singularities.

For all n = 1,...,N, at k = k,, we have Wr(¢,1(t, z; k), p—2(t, z; k) = 0 from (2.5). Thus, there
exists a scalar function ¢, (z) # 0 so that ¢, (t, z; k) = cp(2)p-2(2, z; k). Similarly, at k = k;, we have
Wr(p-1(t, z; k}), p+2(t, z; k) = 0, which implies that ¢,2(t, z; k};) = Ch(2)p-1(¢, z; k). Thus we have
the following residue conditions:

p+1(2, 25 k) Coik ¢
B0 58 1 _ ¢ otz k), 2.15
RS | o (k.2) n(z)e H-2(t,z kn) (2.15a)
pe2(t,zk) |« 2ik* ¢ .
————|=C ntu_q(t,z k), 2.15b
k—k:;[ 5220k, 2) n(z)e po1(t, z; k) ( )
where - 5 (2)
cn(z - Cnlz
Chz)=——, Chlz)=—. (2.16)
" sil(kny Z) " Séz(k;;,Z)
We also have symmetries for the norming constants: ¢,(z) = —c,(z) for n = 1,..., N, which can be

easily derived from the symmetry (2.9) for the eigenfunctions evaluated at k = k;, and which imply:
Cn(2)=-C}(2), n=1,...,N. (2.17)

Furthermore, at the spectral singularities, since C,(z) = C,(z) and C,,(2) = —C’,’;(z), it is apparent that
C,(z) is purely imaginary.



Trace formula. One can also obtain “trace formulae” to recover the analytic scattering coefficients in
terms of scattering data. In particular, in the case of a finite number of simple discrete eigenvalues,
the coefficient sp; is given by

N

Sll(k, z)= Z (¢
rgl k- kn

2
1 flog(1+|r(s,2)| )ds
R

- , Imk>0, 2.18
27mi s—k ( )

and sy (k, z) = s7; (K", 2).

Boundary conditions for the density matrix. Generally, the density matrix p(t, z; k) does not have a
finite limit as ¢t — +oco. Nonetheless, we next show that one can define proper asymptotic data. By
direct substitution, if ¢ (¢, z; k) is any fundamental matrix solution of the scattering problem, one has

0
m (o718, z;0)p(t, 2 k) p(t, 2; k) = 0. (2.19)
Therefore, we can define p. (k, z) as
p=(k,2) = ¢ (1,2 K)p(t, 2 K)o (2, 23 k). (2.20)

Considering the asymptotic behaviors (2.1) of ¢, we can obtain from (2.20) the following asymptotics:

o(t,z;k) =¥ p, (k,2)eF3 + 0(1), t— *oo. 2.21)
Letting
_(Dy P.
p+(k,z) = (P; —Di)’ (2.22)
where D € Rand D% +|P.|* =1, Eq. (2.20) implies
p(t,z k) = b (t, 2 k) p+(k, 2) P11 (8, 2 K) . (2.23)
Consequently, we have
. . 2ikt0’3
p(t,zk) = e p, (k,2) e ¥ + 0(1) = ( _2153;,3 L © Pi) +o(l), t— +oo. (2.24)
e P -Dy

Next, we show that p,. are not independent of each other, so only one of them can be given in order to
retain compatibility. It is trivial to see by direct calculation that Sp,. = p_S = ¢_! p¢p,, where S is the
scattering matrix. Hence,

p+(k,2) =S\ (k,2)p_(k,2)S(k,z), keR. (2.25)

Expanding both sides of (2.25), we have
Dy = (Is111* = 1521 12)D_ + 51,55, P* + 53,521 P_, (2.26a)
Pi = (511812 — Sy, 522) D + $5, 812 P + 511 822 P_. (2.26b)

Using (2.10) and (2.11), we can get the explicit expressions of D, and P, in terms of scattering data,
namely:

e—2iargsn
S 1+r? 1+]rf2

Eq. (2.27) indicates that even if the medium is initially prepared in a pure state, i.e., with P_ = 0 and
D_ = +1, in general one has P, # 0, unless r(k, z) =0 for all k € R (i.e., a reflectionless/purely solitonic

optical pulse). Note that arg s;; (k), which contributes to the phase of P., can also be written in terms
of discrete eigenvalues and reflection coefficient using the trace formula (2.18).

(Q=1r)D_ +2Re(rP.)), P,= (P—— (r’P_)* +2r*D.). 2.27)

+



2.2 Propagation

The evolution of the scattering data is the part of the IST for which the MBEs (1.1) differs most signifi-
cantly from that for the NLS equation. On the other hand, even this part of the IST for the MBEs (1.1) is
standard, and has been discussed in several works. For further details on the results of this subsection,
see [2,15,18,49,65,66].

Simultaneous solutions of the Lax pair and auxiliary matrices. Since the asymptotic behavior of the
Jost solutions ¢+ as t — oo is fixed by Eq. (2.1), in general they will not be solutions of the second half
of the Lax pair, namely (1.9b). We next introduce auxiliary matrices R, that relate the solutions ¢.
to a simultaneous fundamental matrix solution of both parts of the Lax pair. Then, we will use these
matrices R, to compute the propagation of scattering data. Because both ¢ and ¢_ are fundamental
matrix solutions of the scattering problem, any other solution ®(t, z; k) can be written as

D(t,z; k) =i (1,50 ALk, 2) =p_(t,z; k) A_(k,2), keR, (2.28)
where A, (k, z) are 2 x 2 matrices independent of ¢ and satisfy the following differential equation:
0,As = %RJ_,AJ_,, keR, (2.29)
where .
%Ri = ¢;1(V¢i —0z04). (2.30)

Consequently, we can express the auxiliary matrices R. in terms of known quantities for all k € R:

Riq=nHlp+a(z kg, keR, (2.31a)
Ry, =+ing(k)ospso(k,2), keR, (2.31b)

where subscripts ”d” and "0” denote the diagonal and off-diagonal parts of a matrix, respectively.
Entry-wise, R, is given by

Ry =n7g(k)Dy, Rizo=—-Rin, (2.32a)
Ry1p=+ing(k)Py, Rip =7Fing(k)Py. (2.32b)

One can express the scattering matrix, defined in (2.4), using (2.29) as
S(k,z) = A_(k,2) A7 (k, 2). (2.33)
With some algebra, one can obtain the ODE satisfied by S(k, z):
0,S= %(R_S—SR+), (2.34)

from which it follow that for all k£ in the UHP:

07811 = %(R—,nsn —Ry11511)) (2.35)
where we used that
Ry2(k,z2)=R_51(k,2)=0 Imk > 0. (2.36)
The solution of (2.35) is given by
i K2 z
s11(k, 2) =exp { Emfo (D_(k,{) =Dy (k,())d(} s11(k,0), (2.37)
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proving, in particular, that the discrete eigenvalues, as zeros of s;; (k, z), are independent of z.

It is also worth noticing that for any fixed z = 0, the first of Egs. (2.27) shows that D, (k, z) has the
same behavior as D_(k, z) as | k| — oo since the reflection coefficient r(k, z) = sp1(k,2)/s11(k,z) — 0 as
|k| — oo, consistently with (2.14) and (2.37).

Propagation equations for the reflection coefficient and norming constants. Using the auxiliary
matrices R., we can obtain the propagation equation for the reflection coefficient:

or(k, z)
0z

=nD_(k,z)[g(k) —i#[gk)] r(k,z) — mg (k)P (k, 2). (2.38)

Recalling the Hilbert transform of g(k), namely,

JO1g(k)] = m, (2.39)
(2.38) becomes Sk
rc(iz 2 +w(k)D_(k,z)r(k,z) = —ng(k)P*(k, z), (2.40)
where ik
i
w(k) = (?—l)ng(k) = (2.41)
The ODE (2.38) is easily solved to give
r(k,z) = e WR2k2) (r(k,O)—ng(k) fo e?WZRO px (k) d¢ |, (2.42)
where .
D(k,z) = f D_(k,O)d(. (2.43)
0

The second reflection coefficient 7(k, z) can be be obtained via the symmetry (2.12). The solution (2.42)
is particularly simple in the case of a medium in a pure state, i.e., P_ =0 and D_ = +1. More generally,
if the medium is not in a pure state but P_ and D_ are independent of z, (2.42) yields

e D21 (k,0), D-=+1,
r(k,z) ={ e wkD-(k)z r(k,O)—nLk)Pf(k)(ew(k)D*(k)z— |, -1<D_(k)<0v 0<D_(k)<1,
w(k)D_ (k)
r(k,0) - ng(k)P*z, D_=0,
(2.44)

with w(k) still given by (2.41).

Finally, recall the norming constant C,, is given by (2.16). Thanks to the auxiliary matrices R., one
can derive the propagation equation for Cy;:

0z

=—-iR_11(3,ky)Cy, n=1,...,N, (2.45)

where kj, is the corresponding discrete eigenvalue, and R_ ;;(k, 2) is the (1,1)-entry of the auxiliary
matrix R_(k, z).
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2.3 Inverse problem

In this section we briefly discuss the inverse problem in the IST, namely the reconstruction of the so-
lution of the Maxwell-Bloch system (1.1) from the knowledge of the scattering data. We formulate
the inverse problem in terms of a matrix Riemann-Hilbert problem (RHP) for a suitable sectionally
meromorphic function in C\R, with assigned jumps across R, and then reconstruct the solution of the
MBEs (1.1) from the large-k behavior of the solution of the RHP. (Note that, while this formulation of
the inverse problem is essentially the same as that for the focusing NLS equation [3], in the original
works the inverse problem for the MBEs was formulated through Gelfand-Levitan-Marchenko equa-
tions [2,26-28, 46,49, 50, 60, 65, 66]).

The Riemann-Hilbert problem. We begin by introducing the following meromorphic matrix-valued
function M(t, z; k) based on the analyticity properties of the Jost eigenfunctions and scattering coeffi-
cients discussed in section 2.1:

(E,H—Z); k€C+r
S11

M(t,z; k) = (2.46)
(,u_l,&), keC™.
$22
It is easy to show that M(t, z; k) satisfies the following RHP:
1. M(t, z; k) is meromorphic for k € C\R.
2. M*(t, z; k) satisfy the following asymptotic behaviors as k — oo:
M*(t,zk)=1+0(k™), k—oo. (2.47)
3. M(t, z; k) satisfies the jump condition
M (t,z;k) =M (t,z;k)G(t,z; k), keR, (2.48)
where the jump matrix is
G(t,z;k) = i__zjkrt(rk(,f )S _emkt:* k) (2.49)
4. M(t,z; k) has simple poles at k = k, and k = k;},, with the following residue conditions:
Res M (t,z; k) = Cpe 25 M (1, 2; ki), (2.50a)
Res My (1,2 k) = Cpe®*nl M7 (1, z; k1), (2.50b)

where C, and C,, are defined in (2.16), and C,, = C,, = —C,, if k;, € R (spectral singularity).

Remark 2.1. In light of (2.13), once the solution of the RHP is known, the solution q(t, z) of the Cauchy
problem is recovered as
q(t,z) = —2iklim kM, (t,z; k). (2.51)
— 00
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Remark 2.2. For a pure state (for which P_ =0),

1— ean(k)D,z“,(k’ 0)[2 _e2i(kt+ Z—’Eng(k)D_z)mg(k)D_zr* (k,0)

G(t,z; k) = (2.52)

e—2i(kt+ %ﬂg(k)D_z)+ng(k)D_zr(k’ 0) 1

withD_ = +1.

Remark 2.3. If spectral singularities are present, there are also poles on the jump contour. However,
they can be dealt with as in [7, 9, 69]. Specifically, since s11 and s»» tend to 1 as k — oo in the UHP/LHR
they cannot have zeros in a neighborhood of k = co. Therefore, we can introduce a circle C, (oriented
counterclockwise) centered at k = oo such that M(t, z; k) has no singularities outside C. This circle,
together with the portion of the real axis R outside C,, separates the complex plane into three disjoint
regions. Inside Co,, one then replaces M with a different matrix that has no singularities, thereby obtain-
ing a modified RHP without poles or singularities on the jump contour. See [7, 9, 69] for further details.
The same approach can also be used to deal with higher-order poles, as well as an infinite number of
discrete eigenvalues. Therefore, the results of this work also apply in the presence of an arbitrary (pos-
sibly infinite) number of zeros of arbitrary multiplicity, as well as in the presence of arbitrary spectral
singularities.

3 Bijectivity of the IST and well-posedness of the MBEs

In this section we extend Zhou'’s L2-Sobolev bijectivity result for the NLS equation [69] to the direct and
inverse scattering transform for the Lax system (1.9), and we use the corresponding results to prove
the local and global well-posedness of the MBEs (1.1). Let us first introduce some notations that will
be used in this section:

e Since D2 (k,z) + |P_(k,z)|> = 1 for all k € R and all z > 0, without loss of generality we can set
D_(k,z) =cosd(k,z), P_(k,z)=eP*sind(k,z), 3.1)

where d(z, k) and p(z, k) are real-valued functions. The results of this section require d (k, z) and
p(k, z) to be weakly differentiable with respect to k, and for such derivatives to be uniformly
bounded as functions of k and z.

e LP9(R) denotes the weighted L” (R) space with norm

1/p
I fllpa = ([R(x>2‘7|f(x)|pdx) , 3.2)

with (x) = (1 + x%)1/2,

e Similarly to [22] and other works, our results will be formulated in the weighted Sobolev space
H"(R), where
HY'®) ={f:R—C: fe > (®R) n H' [R)}.

(To avoid confusion, however, we note that other works in the literature use H"!(R) to denote

the space of functions f such that both f and its derivative belong in L>' (R).)

e Finally, for functions of several variables (e.g., t and k, or k and z, etc.), we will use a dot to
specify the variable with respect to which the space is being considered. For instance, for a
function f = f(t, z), we will use f (-, z) € LP(R) to signify that f(¢,z) € LP(R) as a function of ¢ for
any fixed value of z in a specified range.
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In [69], Zhou established the L?-Sobolev bijectivity result for the IST of the focusing NLS equa-
tion. As mentioned above, the focusing NLS and the MBEs share the same scattering problem, i.e.,
Eq. (1.9a). Zhou used g(x, t) to denote the potential, and its role in the MBEs is played by q(t, z).
Importantly, Zhou’s approach does not require avoiding spectral singularities or limiting the number
of discrete eigenvalues of the scattering problem. The key question is under which conditions the
L2-Sobolev bijectivity extends to the z-propagation in the MBEs, and how this depends on the asymp-
totics of the density matrix as t — —oo, namely on the functions P_(z, k) and D_(z, k).

First, we express Zhou'’s bijectivity results insofar as they can be directly applied to the MBEs, with
the above mentioned adaptation in the notations for the independent variables (i.e., replacing x with
t, and t with z). We also mention that in Zhou'’s paper the spectral parameter is k/2, but this re-scaling
bears no consequences on the extension of the results.

Lemma 3.1. Fora fixed z=0, if q(-,z) € H LY(R), then the associated reflection coefficient defined in
section 2.1r(-,z) € HY1(R).

Corollary 3.2. For a fixed z = 0, let q(-,z), G(-,2) € H"}(R), such that ||q(-, )l gy, 1G¢, 2l g <
U (z) with U(z) > 0. Denote the corresponding reflection coefficients by r (k, z) and i (k, z), respectively.
Then, there is a positive C(U, z) such that:

Ir(,2)=F(, 2l g < CWU,2) 190, 2) — GC, 2) | gy, 3.3)
which means that for any fixed z = 0 the mapping:
q(,2) e H''(R) — r(-,2) € H''(R) (3.4)
is Lipschitz continuous.
Lemma 3.3. Forafixedz=0, letr(-,z) € H"'(R). Then q(-, z) € H"'(R) satisfies
lgC, 2Dl mam = C@ITE 2D gy, (3.5)

where q(t, z) is the optical pulse obtained from r (k, z) via the reconstruction formula in section 2.3, and
C(z) >0 depends on (-, 2) | g1 (g)-

Corollary 3.4. For fixedz=0, letr(-,2), F(-,2) € HY (R) satisfy || (-, 2l gy, 17¢, 2 | gy < V(2) for
some V(z) > 0. Denote the corresponding potentials by q(t,z) and {(t, z), respectively. Then, there is a
C(V,z) >0 such that:

lgC,2) = GG, 2l g < C(V,2)IIr(,2) = F(, 2) | g gy (3.6)
which means that the mapping:
r(,2) e H''(R) — q(-,2) € H''(R) (3.7)
is Lipschitz continuous.

Next we prove that, if the above results hold at z = 0, they hold for any z € [0, Z], for a suitable Z > 0
specified below.

Lemma 3.5. Let the boundary data d(k, z) and p(k,z) admit weak derivatives with respect to k, de-
noted respectively by d' (k, z) and p'(k,z), and d' (k, z), p'(k, z) € L° (R x [0, Z]) for some Z > 0. If q,(t) =
q(t,0) € HY'(R), thenr(-,z) € HY'(R) forall z€ [0, Z].
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Proof. Recall (2.42), namely
Z
r(k, z) = e"WO2k2) (ro(k) —ng(k) f e 20 p* (k. 1) dc), (3.8)
0
with ro(k) = r(k,0), from which it follows that
Iy = [ P12k
_ f (k2 ’e—w(k)g(k,z)
R

- f (kY222 (k)]
R

SeZZ/ef<k>2
R

where we used the fact that |2 (k, 2)| < z, |w(k)z| = z/Ve? + k? < zle for any z = 0, and |e¥| = e" RV <
elRe¥l < eVl for any y € C. Moreover, we have

9 2
dk

ro(k) — g (k) f eWR2E p* (., 0y d¢
0

2
dk

ro(k) =g (h) [ e OO P2k, ¢y g
0

2
dk, (3.9)

ro(k) —mg(k) f eW B2k p* (k. 1) d¢
0

lw(k)lz _ 1

sf WOl p_(k,0)|d{ = ————— <€ - 1), (3.10)
0 lw(k)]

fzew(k)g(k’()Pj(k» Q) d¢
0

where we have used that |P_(k,z)| =1 Vk € R and z € [0, Z]. The last inequality in (3.10) follows by
noticing that (e“* — 1)/x is an increasing function of x € R, and in our case 0 < x = |w(k)| < 1/e.

Using the boundsin (3.9) and (3.10), as well as r (k) = r(k,0) € L>' (R) (which follows from Lemma 4.1
at z=0), and g(k) € L>' (R) (cf. (1.4)), we obtain

7, 2) 21 @) < C@) (Iroll p2a gy + 1€l 121 m)) < 00, (3.11)

for some C(z) > 0, proving that r(-,z) € L>!(R) for any z € [0, Z]. Next, we are going to prove that
r(-,z) € H (R) for any z € [0, Z]. From (2.42), we have
or(k,z)

r'(k,z) = F r1(k,z) + ry(k, 2), (3.12)

where
r{(k, zZ)=— (w'(k)@(k, z)+ w(k)@'(k, z)) r(k, z), (3.13a)
ry(k,z) = e” W7k [r(',(k) —ng' (k) fo eV ®2®0 p* (k0 d¢
—ng(k) f eV®R2&0 (' (k) D (k, ) + w(k)D' (k,{)) P* (k,{) d¢
0

+7g(k) f eW W2k (p! (k. (n*dC|, (3.13b)
0

and
o i _2k(ik—6) I 2¢ck
w(k) = e2+k? (e2+k%?’ g k)= (€ + k2?2’ (3.142)
2'(k,2) = — f d'(k,0)sind(k,{)d¢, (3.14b)
0
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(P (k,2))* = d'(k,z) cosd(k,z)e"P®D _ip'(k, z) sind (k)e P*A). (3.14¢)

[Recall that prime denotes derivative with respect to the spectral parameter k throughout.] From
(2.41), it is obvious that w(k) € H?(R) and that w(k), w' (k) € L (R). Also, since d'(k, z) € L® (R x [0, Z]),
we have

2 (k, 2)] < fo Isind(k, O)lld'(k,)1d¢ < fo ' (k,Q)1d¢ < e(2)z (3.152)
c(Z)y= sup |d'(k 2. (3.15b)
keR,z€[0,7]

Thus, w'(k)2(-,z) + w(k)2'(-, z) € L°(R), so that for any z € [0, Z]:
z
¢ Dl 2@ < 2 (1wl + (D) I wlloo) 7 ¢, 2) 12 < = Ale+cNNr, 2D 2@, (3.16)

where we used the facts that ||w||;~ < 1/¢ and || w'||;~ < 1/€?. For ré(k, z), we have |e“’(k)@(k'Z)| <e?le,

ro(k) € H'R), IP'(k, 2)| < | pll ;e®x 10, 2)) + 1A' | Lo 0, 21y, and (3.10). We also have

f eV ®2®0 (1! (k)P (k, 2) + w(k)D' (k, 2) P* (k,{) d(‘
0
s_[ | 20| |0 ()@ (k, 2) + w(k) D' (k,0)| dC
0

z z

Sf e(’ellu/lloo(dﬁf () wleoe®’€Cde
0 0

= (I lloo + c(D N Wloo) (€26 — €%/ + €%)

V4
<(Q+ec(2)|Ze? +e?' +1|. 3.17)
€

Since g(k), g'(k) € L2(R), using (3.10) it follows that ry(,2) € L2(R) for all z € [0, Z], which therefore
implies that r (-, z) € H' (R). Consequently, (-, z) € H!(R) for every z € [0, Z]. O

Theorem 3.6. (Local well-posedness) Let the initial datum q(t,0) = qo(t) € H LRy, If the bound-
ary data d(k, z), p(k, z) admit weak derivatives d'(k, z), p' (k, z) with respect to k, and d'(k, z), p'(k,z) €
L*® (R x [0, Z]) for some Z > 0, then for each z € [0, Z] there exists a unique local solution q(-, z) € HY(R)
to the Cauchy problem (1.1). Moreover, the map

q(t,0)€ H''®) — q(-,z) € H''(R) (3.18)

is Lipschitz continuous.

Proof. Recall that the potential g(t, z) is recovered from the scattering data r(k, z) with the inverse
scattering transform as in [69]. Thus, g(-, z) is defined in H"!(R) for every z € [0, Z] and is a Lips-
chitz continuous function of r(k, z). Let ro(k) = r(k,0), and let the positive quantities c;, ¢z, ¢3 and
c4 depend, respectively, on [[7(-, 2) | i), (Z, 170l i), (Z, 18l 21wy, 1A' | 2010, 21), | Pl 2o @0, 21))
and (Z, llqoll 11 w))- For all z € [0, Z] we have

g, 2 i@ < allr 2 g < c2liroll gy + €3 < callgoll g + 3, (3.19)

where the second inequality follows from (3.11), (3.16) and (3.17), which exclude blow-up in a finite
time and enable application of Zhou’s result on the bijectivity between the solutions to the Maxwell-
Bloch system and the reflection coefficients in IST.

Finally, the Lipschitz continuity of the map (3.18) for any z € [0, Z] follows from Corollary 3.4. O
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The following theorem shows that there exists a global solution in H'!(R).

Theorem 3.7. (Global well-posedness) Let the initial datum q(t,0) = qo(t) € H"(R). If the bound-
ary data d(k, z), p(t, z) admit weak derivatives d'(k, z), p'(k, z) with respect to k, and d'(k, z),p'(k, z) €
L®(R x [0,00)), then there exists a unique global in z solution q(-, z) € H"!(R) to the Cauchy problem for
the MBEs (1.1) with initial-boundary conditions (1.2). Moreover, the map

q(t,0) € H"'(R) — q(-,2) € C(H"' (R) x [0,00)) (3.20)

is Lipschitz continuous.

Proof. Suppose there is a maximal value Z,,x > 0 for which the local solution exists. If Z,ax = 0o, then
the local solution is also the global solution and the result holds. If Z,,« < co and the local solution
exists in the closed interval [0, Znax], We can use q(-, Zmax) € H L1(R) as the new initial data. Following
the same inverse scattering transform as in [69], there exists a positive constant Z;, such that g(¢,z) €
C(H" (R) x [ Zmax, Zmax + Z11). This implies a contradiction with the maximal value assumption.

Finally, if the local solution exists in the half open interval [0, Zax), from (3.19) we have

g (21 i@y < Ca(Zmax) 1Goll 11 @y + €3(Zmax), 2 € [0, Zmax), 3.21)

where ¢4(z) and ¢3(z) may grow at most polynomially in z but they remain finite for every z > 0. Due
to the continuity of g(t, z) with respect to z, the limit of q(t, z) as z — Znax exists. Here we denote the
limit by gmax(#). Taking the limit of (3.21) as z — Zax, we have

I dmaxl 11 @) < Ca(Zmaxd 1 Goll g1 w) + €3(Zmax), (3.22)

which implies that the local solution q(t,z) € C(H"'(R) x [0, Zmax)) can be extended to q(t,z) €
C(H"(R) x [0, Zmax]), which contradicts the assumption that [0, Zyay) is the maximal open interval
of existence. This completes the proof that the local solution can be extended to a global one. O

4 Asymptotic states of propagation

In this section we discuss the long-distance asymptotics of the solutions of the MBEs (1.1). It should
already be clear from the previous section that the behavior will be heavily dependent on the value of
D_. Therefore one must study several cases separately.

Asymptotic value of the scattering coefficients. We begin by looking at the asymptotic value of the
reflection coefficient for large z. Recall that the evolution (i.e., propagation inside the medium) of the
reflection coefficient r(k, z) as a function of z is given by (2.42). Therefore, its behavior as a function
of z is determined by the sign of the real part of w(k, z), which is given by (2.41). Since D_(k, z) and
g(k) are real-valued, and g(k) is positive, the growth or decay of r(k, z) is completely determined by
the sign of D_(k, z).

Consider first the case in which P_(k, z) is identically zero (i.e., D_(k,z) = +1 Vk € R and Vz = 0).
Inspection of (2.44) shows that if the medium is initially in the stable pure state (i.e., it is prepared so
that P_ =0and D_ = —-1), r(k, z) is exponentially decaying as z — +oo for all k € R. Conversely, if the
medium is initially in the unstable pure state (i.e., it is prepared so that P_ =0and D_ = 1), then r(k, z)
is exponentially growing as z — +oo for all k € R. Similar considerations can be made when P_(k, z)
is not identically zero, but in this case the analysis identifies several different cases. Let us consider
the scenario in which D_ and P_ are independent of z for simplicity, in which case r(k, z) is given
by (2.44). Summarizing, inspection of (2.44) shows the following:
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Proposition 4.1. Assume that D_, P_ are independent of z and let r (k, z) be the reflection coefficient as
given by (2.44).

(i) IfD_(k) = -1, r(k, 2) = e“©O2r(k,0), with w(k) given by (2.41).

[Recall that according to (2.41), w(k)z = ;ézkjeez z]

(i) IfD_(k) =1, r(k,z) = e"“®2r(k,0), with w(k) given by (2.41).
(iii) If D_(k) =0, r(k, z) grows linearly in z. Explicitly, r (k,z) = r(k,0) — ng (k) P* z.

(iv) If-1< D_(k) <0,lim,_. o r(k, z) = €P*(k)/(ik —€).

(v) If0< D_(k) <1, r(k, z) exhibits the same kind of exponential growth as when D_ = 1. Namely,

lim e“®%r(k,z) = r(k,0). (4.1)

Z—+00

It should be clear that similar considerations can apply in more general cases when D_ and/or P_
depend on z.

Asymptotic state of the medium. Next, we look at the asymptotic state of the medium as ¢ — +oo0,
as given by D, and P, which are determined by the reflection coefficient r(k, z) in (2.27). Consider
first the case in which the medium is initially in the stable pure state (i.e., P- =0 and D_ = —-1). In
this case, since r(k, z) decays exponentially as z — +oo for all k € R, (2.27) implies that D, — —1 and
P, — 0 forlarge z. Therefore, the medium returns to the stable state for sufficiently large propagation
distances, justifying the use of the term “stable state”. Conversely, if the medium is initially prepared
in the unstable pure state (i.e., P =0 and D_ = 1), r(k, z) is exponentially growing as z — +oo for all
k € R, and (2.27) still gives D, — —1 and P, — 0 for large z. Therefore, the medium reverts to the stable
state for sufficiently large propagation distances. Similar considerations can be made when P_ is not
identically zero. Summarizing, inspection of (2.27) shows the following:

Proposition 4.2. Let D, (k,z) and P, (k, z) be given by (2.27).
(i) IfD_(k)=-1,D,(k,z) = -1 and P, (k,z) — 0 as z — +oo.
(ii) If D_(k) =1, D4+ (k,z) — -1 and P, (k,z) — 0 as z — +oo0.
(iii) IfD_(k) =0, D, (k,2z) — 0 and|P,(k,z)| — |P_(k,2)| as z — +oo.

(iv) If -1<D_(k) <0,

€2(D_(k)3 + k®D_ (k) — 2¢% + 2(D_(k))%€®

€2(2—(D_(k)?2) + k2 42)

lim D, (k,z)=
Z—+00

(v) If0<D_(k) <1, Dy (k) = —D_(k) and |P_(k)| — |P+ (k)| as z — +oo.

5 Concluding remarks

In summary, taking advantage of the L2-Sobolev bijectivity of the IST for the focusing NLS equation
proved by Zhou, we have established the local and global well-posedness of the MBEs (1.1) with in-
homogenous broadening. Importantly, the bounds in Lemma 4.5 become singular as ¢ — 0%, and
therefore the results cannot be extended to the sharp-line limit, consistently with the findings of [47].
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The results of this work clearly indicate that, when the physical effect of inhomogenous broadening is
taken into account, the corresponding MBEs are more well-behaved than in the singular case of the
sharp-line limit.

The results of this work also fit in the context of a long list of studies of well-posedness for nonlinear
wave equations. For example, sharp well-posedness of the NLS equation on the line with initial data in
Sobolev spaces H* for any s = 0 was proved by Bourgain [13] (see also [14]). Well-posedness of the NLS
equation on the half-line with data in Sobolev spaces was established by Holmer [36], Bona, Sun and
Zhang [11] and Fokas, Himonas and Mantzavinos [25]. Further functional-analytic results for the NLS
equation were obtained by Craig, Kappeler and Strauss [21], Cazenave [16], Cazenave and Weissler
[17], Ghidaglia and Saut [29], Ginibre and Velo [30], Kenig, Ponce and Vega [39], Kato [38], Linares
and Ponce [48], Tsutsumi [62]. (For the Korteweg-deVries and modified Korteweg-deVries equations,
see [20] and references therein.)

For the derivative NLS equation, global well-posedness results were obtained by Colliander, Keel,
Staffiilani, Takaoka and Tao in [19], Wu [63, 64] and Guo and Wu [32]. More recently, using the IST
without discrete eigenvalues or resonances, in [55] Pelinovsky et alii established the existence of
global solutions to the derivative NLS equation without any small norm assumption. One of the key
points in [55] is the introduction of a transformation of the scattering problem to a spectral problem
of ZS-type. Using an invertible Backliind transformation, the authors then studied the global well-
posedness of the derivative NLS equation in the case when the initial data includes a finite number
of solitons. In the context of the present work, since the scattering problem of the MBEs is already of
ZS-type, the methods utilized in [55] would not bring any improvement compared to Zhou’s results.

In [4], Bahouri and Perelman showed that the IVP for the derivative NLS equation is globally well-
posed for general Cauchy data in H'/?(R) and that, furthermore, the H'/? norm of the solutions re-
mains globally bounded in time. This result closes the discussion in the setting of the Sobolev spaces
H?. Most recently, Harrop-Griffiths, Killip, Ntekoume and Visan proved that the derivative NLS equa-
tion in one space dimension is globally well-posed on the line in L2(R), which is the scaling-critical
space for this equation [34]. The results of the present work raise the natural question of whether the
well-posedness of the MBEs (1.1) can also be established in more general spaces.

Finally, the rigorous calculation of the long-distance asymptotic behavior of the optical pulse with
various choices of medium preparation is also a very interesting, physically relevant open problem,
which is left for future study.
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Appendix
In the following, we consider the Cauchy problem for the NLS equation:
iq.+qi+21g1°q=0, q(t,0) = qo(0). (A1)

and show that the L2-bijectivity holds after time evolution, a detail not addressed in Zhou'’s paper [69].

Proposition A.1. Let the initial datum qo(t) € H"'(R). Then there exists a unique global in z solution
qt,z) e H LYR) to the Cauchy problem for the NLS equation with initial-boundary conditions (A.1).
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Moreover, the map

q(t,0) € H"'(R) — q(-,2) € C(H"* (R) x [0,00)) (A.2)

is Lipschitz continuous.

Proof. Here we just need to prove that the time-dependent reflection coefficient r (k, z) = 2K 2 (k,0) €
HY(R). According to [69], it is established that r(k,0) € HY (R). Subsequently, r(-,z) € I>Y(R). To
prove r'(-, z) = 4ike?*' r (k,0) + €21+ (k, z) € L2(R), we notice that r(k,0) € L1 (R) and r'(k,0) € L2(R).
Therefore, r'(-, z) € L>(R). Applying the same method used in the proofs of Theorems 3.6 and 3.7, we

complete the proof. O
References
1. A. Abeya, G. Biondini, and B. Prinari, “On Maxwell-Bloch systems with inhomogeneous broadening and

10.

11.

12.

13.

14.

15.

16.

one-sided nonzero background”, Comm. Math. Phys. , to appear (2004) [arXiv:2311.06867]

. M. J. Ablowitz, D. J. Kaup, and A. C. Newell, “Coherent pulse propagation, a dispersive irreversible phe-

nomenon”, J. Math Phys. 15, 1852-1858 (1974)

. M. ]. Ablowitz, B. Prinari, and A. D. Trubatch, “Discrete and Continuous Nonlinear Schrodinger Systems”

(Cambridge University Press, 2004)

. H. Bahouri, and G. Perelman, “Global well-posedness for the derivative nonlinear Schrédinger equation”,

Invent. Math. 229, 639-688 (2022)

. A.M. Basharov, S. O. Elyutin, A. I. Maimistov, and Y. M. Sklyarov, “Present state of self-induced transparency

theory,” Phys. Rep. 191, 1-108 (1990)

R Beals and R R Coifman, “Scattering and inverse scattering for first order systems”, Commun. Pure Appl.
Math. 37, 39-90 (1984)

. D. Bilman and PD. Miler, “A robust inverse scattering transform for the focusing nonlinear Schrodinger

equation”, Commun. Pure Appl. Math. 72, 1722-1805 (2019)

. G. Biondini, I. Gabitov, G. Kovacic, and S. Li, “Inverse scattering transform for two-level systems with

nonzero background”, J. Math. Phys. 60, 073510 (2019)

. G.Biondini, J. Lottes, D. Mantzavinos, “Inverse scattering transform for the focusing nonlinear Schrodinger

equation with counterpropagating flows”, Stud. Appl. Math. 146, 371-439 (2021)

K.-J. Boller, A. Imamolu, and S. E. Harris, “Observation of electromagnetically induced transparency”, Phys.
Rev. Lett. 66, 2593-2596 (1991)

J. L. Bona, S. M. Sun and B.-Y. Zhang, “Nonhomogeneous boundary value problems of one-dimensional
nonlinear Schrodinger equations”, J. Mathématiques Pures et Appliquées 109, 1-66 (2018)

R. Bonifacio and L. A. Lugiato, “Cooperative radiation processes in two-level systems: Superfluorescence’,
Phys. Rev. A11, 1507-1521 (1975)

J. Bourgain, “Fourier transform restriction phenomena for certain lattice subsets and applications to non-
linear evolution equations. I. Schrodinger equations”, Geom. Funct. Anal. 3, 107-156 (1993)

J. Bourgain, Global solutions of nonlinear Schridinger equations, AMS Colloquium Publications 46 (Ameri-
can Mathematical Society, 1999)

J. A. Byrne, . R. Gabitov, and G. Kovacic, “Polarization switching of light interacting with a degenerate two-
level optical medium”, Physica D 186, 69-92 (2003)

T. Cazenave, Semilinear Schrodinger equations, Courant Lecture Notes in Mathematics 10 (American Math-
ematical Society, 2003)

19



17

18.

19.

20.

21.

22.

23.
24.

25.

26.

27.

28.

29.
30.

31.

32.

33.
34.

35.

36.

37.

38.

T. Cazenave and E Weissler, “The Cauchy problem for the critical nonlinear Schréodinger equation in H®”,
Nonlin. Anal. 14, 807-836 (1990)

S. Chakravarty, B. Prinari, and M. J. Ablowitz, “Inverse scattering transform for 3-level coupled Maxwell-
Bloch equations with inhomogeneous broadening”, Physica D 278-279, 58-78 (2014)

J. M. Colliander, M. Keel, G. Staffilani, H. Takaoka, and T. Tao, “A refined global well-posedness result for
Schrédinger equations with derivative”, SIAM Journal of Mathematical Analysis 34, 64—-86 (2002)

J. M. Colliander, M. Keel, G. Staffilani, H. Takaoka, and T. Tao, “Sharp global well-posedness for KdV and
modified KdVon R and T”, J. AMS 16, 705-749 (2003)

W. Craig, T. Kappeler and W. Strauss, “Microlocal dispersive smoothing for the Schrédinger equation”,
Comm. Pure Appl. Math. 48 769-860 (1995)

P A. Deift and X. Zhou, “Long-time asymptotics for solutions of the NLS equation with initial data in
weighted Sobolev spaces”, Comm. Pure App. Math. 56, 1029-77 (2003)

R. H. Dicke, “Coherence in spontaneous radiation processes”, Phys. Rev. 93, 99-110 (1954)

M. Fleischhauer and M. Lukin, “Dark-state polaritons in electromagnetically induced transparency”, Phys.
Rev. Lett. 84, 5094-5097 (2000)

A. S. Fokas, A. A. Himonas and D. Mantzavinos, “The nonlinear Schrodinger equation on the half-line”,
Trans. AMS 369, 681-709 (2017)

I. R. Gabitov, A. V. Mikhailov, and V. E. Zakharov, “Superfluorescence pulse shape”, JETP Lett. 37(5), 279-282
(1983)

I. R. Gabitov, A. V. Mikhailov, and V. E. Zakharov, “Nonlinear theory of superflourescence”, Sov. Phys. JETP 59,
703-709 (1984)

I. R. Gabitov, A. V. Mikhailov, and V. E. Zakharov, “Maxwell-Bloch equation and the inverse scattering
method”, Theor. Math. Phys. 63, 328-334 (1984)

J. Ghidaglia and J.-C. Saut, “Nonelliptic Schrédinger equations”, J. Nonlin. Sci. 3, 169-195 (1993)

J. Ginibre J. and G. Velo, “On a class of nonlinear Schrédinger equations. II. Scattering theory, general case”,
J. Funct. Anal. 32, 33-71 (1979)

M. Gross, C. Fabre, P. Pillet, and S. Haroche, “Observation of near-infrared Dicke superradiance on cascad-
ing transitions in atomic sodium”, Phys. Rev. Lett. 36, 1035-1038 (1976)

Z. Guo and Y. Wu, “Global well-posedness for the derivative nonlinear Schrédinger equation in H 12 (Ry”,
Discrete Contin. Dyn. Syst. 37, 257-264 (2017)

S. E. Harris, “Electromagnetically induced transparency”, Physics Today 50, 36-42 (1997)

B. Harrop-Griffiths, R. Killip, M. Ntekoume, and M. Visan, “Global well-posedness for the derivative nonlin-
ear Schrodinger equation in [2(R)”, arXiv:2204.12548

L. N. Hau, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold
atomic gas”, Nature 397, 594-598 (1999)

J. Holmer, “The initial-boundary-value problem for the 1D nonlinear Schrédinger equation on the half-
line”, Diff. Int. Eq. 18, 647-668 (2005)

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtseyv, E. S. Fry, and
M. O. Scully, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot
atomic gas”, Phys. Rev. Lett. 82, 5229-5232 (1999)

T. Kato, “On nonlinear Schrédinger equations. II. H*-solutions and unconditional well-posedness”, J. Anal.
Math. 67, 281-306 (1995)

20



39

40.
41.

42.

43.

44.

45.

46.
47.

48.
49.

50.

51.

52.
53.
54.
55.

56.

57.

58.

59.

60.

61.

62.

C. E. Kenig, G. Ponce and L. Vega, “Oscillatory integrals and regularity of dispersive equations”, Indiana
Univ. Math. J. 40 33-69 (1991)

M. Klaus, “On the Zakharov-Shabat eigenvalue problem”, Contemp. Math. 379, 21-45 (2005)

M. Klaus and B. Mityagin, “Coupling constant behavior of eigenvalues of Zakharov-Shabat systems”, J. Math.
Phys. 48, 123502 (2007)

M. Klaus and J.K. Shaw, “On the eigenvalues of the Zakharov-Shabat system”, SIAM J. Math. Anal. 34, 759-
773 (2003)

N. A. Kurnit, I. D. Abella, and S. R. Hartmann, “Observation of a photon echo”, Phys. Rev. Lett. 13, 567-568
(1964)

G. L. Lamb, “Optical pulse propagation in an inhomogeneously broadened medium”, Phys. Lett. A 28, 548
549 (1969)

G. L. Lamb, “Analytical descriptions of ultrashort optical pulse propagation in a resonant medium”, Rev.
Mod. Phys. 43, 99-124 (1971)

G. L. Lamb, “Coherent-optical-pulse propagation as an inverse problem”, Phys. Rev. A9, 422-30 (1974)

S. Li and P. Miller, “On the Maxwell-Bloch system in the sharpe-line limit without solitons”, Commun. Pure
Appl. Math. 77, 457-542 (2024)

E Linares and G. Ponce, Introduction to nonlinear dispersive equations (Springer, 2009)

S. V. Manakov, “Propagation of ultrashort optical pulse in two level laser amplifier”, Sov. Phys. JETP 56(1),
37-44 (1982)

S. V. Manakov and V. Y. Novokshonov, “Complete asymptotic representation of an electromagnetic pulse in
along two-level amplifier”, Theor. Math. Phys. 69(1), 987-997 (1986)

S. L. McCall and E. L. Hahn, “Self-induced transparency by pulsed coherent light,” Phys. Rev. Lett. 18, 908
911 (1967)

S. L. McCall and E. L. Hahn, “Self-induced transparency”, Phys. Rev. 183, 457-485 (1969)
P. W. Milonni, “Fast light, slow light, and left-handed light” (IOP Publishing Ltd., 2005)
C. K. N. Patel and R. E. Slusher, “Photon echoes in gases”, Phys. Rev. Lett. 20(20), 1087-1089 (1968)

D. E. Pelinovsky and Y. Shimabukuro, “Existence of global solutions to the derivative NLS equation with the
inverse scattering transform method”, Int. Math. Res. Not. IMRN 18, 5663-5728 (2018)

D. Polder, M. E H. Schuurmans, and Q. H. E Vrehen, “Superfluorescence: Quantum-mechanical derivation
of Maxwell-Bloch description with fluctuating field source”, Phys. Rev. A19(3), 1192-1203 (1979)

A. V. Rybin, I. P. Vadeiko, and A. R. Bishop, “Stopping a slow-light soliton: An exact solution”, J. Phys. A: Math.
Gen. 38, L177-1.182 (2005)

A. V. Rybin, 1. P. Vadeiko, and A. R. Bishop, “Driving slow-light solitons by a controlling laser field”, J. Phys. A:
Math. Gen. 38, L357 (2005)

R. E. Slusher and H. M. Gibbs, “Self-induced transparency in atomic rubidium”, Phys. Rev. A5, 1634-1659
(1972)

H. Steudel, “Inverse scattering theory of superfluorescence”, Quantum Optics: J. Eur. Opt. Soc. Part B 2,
387-408 (1990)

N. Tan-no, K.-I. Yokoto, and H. Inaba, “Two-photon self-induced transparency of different-frequency opti-
cal short pulses in potassium”, Phys. Rev. Lett. 29, 1211-1214 (1972)

Y. Tsutsumi, “L2-solutions for nonlinear Schrédinger equations and nonlinear groups”, Funkcial. Ekvac. 30,
115-125 (1987)

21



63

64.

65.
66.

67.

68.

69.

Y. Wu, “Global well-posedness for the nonlinear Schrédinger equation with derivative in energy space”,
Anal. PDE 6, 1989-2002 (2013)

Y. Wu, “Global well-posedness on the derivative nonlinear Schrédinger equation”, Anal. PDE 8, 1101-1112
(2015)

V. E. Zakharov, “Propagation of an amplifying pulse in a two-level medium”, PZh. ETF 32, 603—-607 (1980)

S. M. Zakharov and E. M. Manykin, “The inverse scattering formalism in the theory of photon (light) echo”,
Sov. Phys. JETP 55(2), 227-231 (1982)

V. E. Zakharov and A. B. Shabat, “Exact theory of two-dimensional self-focusing and one-dimensional self-
modulation of waves in nonlinear media”, Sov. Phys. JETP 34, 62-69 (1972)

X. Zhou, “Direct and inverse scattering transforms with arbitrary spectral singularities”, Commun. Pure
Appl. Math. 42, 895-938 (1989)

X. Zhou, “L?-Sobolev space bijectivity of the scattering and inverse scattering transforms”, Commun. Pure
Appl. Math. 51, 697-731 (1998)

22



	Introduction and main results
	Overview of the IST
	Bijectivity of the IST and well-posedness of the MBEs
	Asymptotic states of propagation
	Concluding remarks
	Appendix

