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Abstract

We present a direct perturbation method to study the dynamics of dark-bright solitons of the Man-

akov system under the influence of perturbations. Our methodology combines a multiscale expan-

sion method, perturbed conservation laws, and a boundary layer approach, which breaks the prob-

lem into an inner region, pertinent to the soliton core, and an outer region, which evolves indepen-

dently of the dark-bright soliton. We find that a shelf emerges around the dark soliton component,

which propagates with a speed depending on the background intensity. Conserved quantities of the

Manakov system are employed to determine the properties of the perturbed solutions. We focus on

dissipative perturbations, such as diffusion, as well as linear and nonlinear loss, and show that the

effect of the bright (“filling”) soliton component is to partially stabilize “bare” dark solitons of the

scalar case against perturbation-induced dissipation. Our analytical predictions are corroborated by

results of direct numerical simulations.

1 Introduction

The mathematical modeling of physical phenomena often leads to a certain class of nonlinear partial

differential equations (PDEs) known as integrable systems. One of the distinguished features of inte-

grable systems is that they admit exact soliton solutions, i.e., stable, exponentially localized traveling

waves which interact with one another non-destructively, preserving their shape and velocity in the in-

teraction [1]. Moreover, integrable systems possess an infinite number of conserved quantities, as well

as a Lax pair that allows one to linearize them using the Inverse Scattering Transform (IST), a nonlin-

ear analog of the Fourier transform [2]. One of the prototypical integrable equations is the nonlinear

Schrödinger (NLS) equation:

i qt +qxx −2ν|q|2q = 0, (1)

with ν=∓1 corresponding to the “focusing” and “defocusing” regimes, where bright or dark solitons can

be supported, respectively. The NLS equation is a universal model for weakly dispersive nonlinear wave

trains, and it has been derived in such diverse fields as deep water waves, plasmas, nonlinear fiber optics,

Bose-Einstein condensates (BECs), spin waves, etc [3–10].
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Vector generalizations of the scalar NLS equations (VNLS equations for short) arise as relevant phys-

ical models, under conditions similar to those described by NLS, whenever there are suitable multiple

wavetrains moving with nearly the same group velocity. This may happen, e.g., in nonlinear optics, when

two waves of different polarizations or two waves of different frequencies feature a nonlinear interac-

tion [11]. In such situations, of particular relevance is the so-called Manakov system [12], which is a

coupled NLS system:

i qt +qxx −2ν‖q‖2q = 0, (2)

where q(x, t ) is a two-component, complex vector function. Notably, the Manakov system is completely

integrable, and, like its scalar counterpart, it admits a Lax pair, soliton solutions, infinite number of

conserved quantities, etc.

Menyuk showed in [13] that in optical fibers with constant birefringence, assuming certain nonlin-

ear (four-wave mixing) terms are neglected, the two polarization components of the complex electro-

magnetic field envelope orthogonal to direction of propagation along a fiber satisfy asymptotically the

following nondimensional equations:

i (ut +δux )+duxx + (|u|2 +α|v |2) = 0, i (vt +δvx )+d vxx + (α|u|2 +|v |2) = 0, (3)

where δ represents the group velocity “mismatch” between the components, 2d is the group velocity dis-

persion (whose sign accounts for focusing vs defocusing regimes), and α is a constant depending on the

polarization properties of the fiber. The physical phenomenon of birefringence implies that the phase

and group velocities of the electromagnetic wave are different for each polarization component. When

α 6= 1 the above system is not integrable. However, averaging over the fast birefringence fluctuations that

are normally observed in a communications environment [14] yields δ= 0 and α= 1 – that is, the system

reduces to the VNLS (2).

Notice that, besides its relevance to nonlinear fiber optics, more recently, the Manakov system has

attracted much attention in studies related to homogeneous multicomponent BECs, composed by, e.g.,

different spin states of the same atom species [15–18]; in this context, a physically relevant situation

refers to the case where the repulsive inter- and intra-species interactions are of (approximately) equal

strength, a fact rendering Eq. (2) the appropriate model. Vector solitons of the VNLS model have also

attracted much attention, especially in the defocusing setting (ν = +1). Of particular interest in this

setting are the dark-bright (DB) soliton solutions; in these states, the bright soliton —which is not sup-

ported by the scalar defocusing NLS— only emerges because of an effective potential well created by the

dark soliton through the inter-component interaction; as such, DB solitons are commonly referred to

as “symbiotic” solitons. Predicted in the seminal work by Busch and Anglin [19], DB solitons were first

experimentally realized by phase impriting method [20], followed by experimental observation of trains

of DB solitons generated by counterflow of two superfluids [21].

While the above discussion refers to integrable systems, in most physically relevant settings the per-

tinent model PDEs are usually non-integrable. Nevertheless, the theoretical predictions for the soliton

solutions in the corresponding integrable cases have proved to be an extremely valuable tool for the in-

vestigation of the non-integrable solitary waves in regimes that are reasonably close to the integrable

ones. As such, in many works, perturbation-based techniques of nearly integrable systems have been

employed for the investigation of the evolution of solitons in the presence of small perturbations, such

as linear or nonlinear loss or gain, diffusion, higher-order dispersion or nonlinearity effects, etc. The

goal of this work is to present a rigorous direct perturbation theory for the study of DB solitons of the

defocusing Manakov system over a constant background under small perturbations, namely:

i qt +qxx −2(‖q‖2 −q2
o)q = εR[q], (4)
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where q(x, t ) = (q1, q2)T , R[q] = (R1[q],R2[q])T , 0 < ε¿ 1 is a perturbation parameter, and

q(x, t ) ∼ q±(t ) = (qoe iθ± ,0)T x →±∞ , (5)

are boundary conditions (BCs) that correspond to solutions which are “dark” in the first component

and “bright” in the second one. The linear term proportional to the background amplitude qo in (4)

has been introduced to make the boundary conditions independent of t . This can be achieved by a

gauge transformation replacing q by exp(2i q2
o t )q, or, more generally, by exp[2i

∫t
0 qo(s)d s]q when the

background amplitude qo depends on t .

We will consider arbitrary perturbations satisfying R[0] = 0, which are asymptotically phase-invariant,

namely, such that limx→±∞ R j [qe iφ] = e iφ±
(

R j [q±]
)

for j = 1,2, for any phaseφ(x, t ), withφ± := limx→±∞φ(x, t )

(of course, φ± ≡ φ in the case of a constant phase). Note that these are fairly general assumptions, as

a wide class of physically relevant perturbations satisfy these conditions; these include, e.g., diffusion:

R j [q] = iγ j∂
2
x q j , linear loss: R j [q] = iγ j q j , nonlinear loss (pertinent to two-photon absorption in optics):

R j [q] = iγ j q j |q j |2, etc. Note that the gauge transformation used above to remove the fast evolution of

the background phase is also phase-invariant, justifying the use of Eq. (4) instead of perturbing (2).

As mentioned above, the unperturbed defocusing Manakov system, namely Eq. (4) with ε= 0, admits

exact DB soliton solutions of the form:

q1(x, t ) =
[

sgn(V )
√

q2
o − A2

d
− i Ad tanh(

√

A2
d
− A2

b
(x −V t −xo))

]

e iσo , (6a)

q2(x, t ) = Abexp
[

i
(

V
2

x −
(

V 2

4
− (A2

d
− A2

b
)
)

t +ϕo

)]

sech(
√

A2
d
− A2

b
(x −V t −xo)), (6b)

where Ab , Ad determine the amplitudes of the bright/dark component, respectively, qo is the back-

ground, V the soliton velocity, xo the soliton center, and σo ,ϕo are arbitrary phases [22–28]. Note that

the velocity V is related to the amplitudes by

V 2 A2
d = 4(q2

o − A2
d )(A2

d − A2
b), (7)

and for a stationary DB soliton V = 0, Ad = qo and Ab < qo is arbitrary. The scalar dark soliton can be

obtained by setting Ab = 0, i.e., q2 ≡ 0.

While perturbation theory for solitons that decay rapidly at infinity has been widely studied since the

late seventies —with a variety of methods ranging from multi-scale perturbation analysis, IST-based per-

turbation techniques, perturbation of conserved quantities, and direct numerical simulations [29–33]—

the nonvanishing background of dark solitons introduces severe complications when applying the per-

turbative methods developed in the rapidly decaying case. For the scalar defocusing NLS equation, dark

solitons are completely determined by the four parameters qo , Ad , xo , σo , and in this case Eq. (7) reduces

to V 2 = q2
o − A2

d
. In some early works, the perturbation of “black” (i.e., stationary dark) solitons in lossy

fibers was studied numerically [34] and analytically [35, 36]. The method developed in [36] was subse-

quently extended to “grey” (i.e., non-stationary or moving dark) solitons and to generic perturbations,

but only two of the four main soliton parameters, qo and Ad , were determined. In [37], it was shown

that under a perturbation the background evolves independently of the soliton, and after separating the

background amplitude from the soliton “core”, it is possible to determine the dark soliton’s amplitude

and width upon using the Hamiltonian approach of the adiabatic perturbation theory (which is based

on perturbed conservation laws). A similar approach was also used for DB solitons in BECs [18].

It should be noted, however, that for dark solitons the adiabatic evolution of the soliton parameters

alone is not sufficient to fully characterize the perturbed solution. The reason is that, in many cases, the
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perturbation generates a moving “shelf”, namely a linear wave emerging on either side of the soliton;

the existence of this shelf, which was confirmed both numerically and analytically, was in fact used to

explain observed discrepancies in the perturbed conservation laws [38], though without determining

analytically the core soliton parameters.

An alternative approach to soliton perturbation theory in the rapidly decaying case was pioneered

in [29], as a way to determine the effects of small perturbations on the evolution of the soliton spectral

(and hence physical) parameters. The method, which might be referred to as “integrable perturbation

theory”, relies on the IST and on completeness of squared eigenfunctions, namely quadratic combina-

tions of Jost eigenfunctions and their adjoints which satisfy the linearized version of the integrable PDE.

There have been many attempts at generalizing the IST-based perturbation theory to the case of dark

solitons since the early nineties. For instance, in Ref. [39], orthogonality conditions were derived from

a set of squared Jost functions for the scalar defocusing NLS equation over a constant background, and

from these conditions one can in principle obtain all of the soliton parameters. This early work, how-

ever, did not account at all for the evolution of the background induced by the perturbation. Subse-

quent works presented proofs of the completeness of the squared eigenfunctions using different ap-

proaches [40–45], but the results were not consistent with each other. As an example, the proof in [40]

was claimed to be incorrect in [44, 45], based on the observation that the complete set should have two,

not just one, continuous spectrum basis vectors, which resulted in different predictions for the soliton

velocity and the first-order correction. In [46], the results of [40, 42] and [44, 45] were then declared to

be “equivalent” under some kind of “transformation between two integral variables”. On the other hand,

in [43] squared eigenfunctions were used (though without explicitly referring to them, or to their com-

pleteness) to develop an IST-based perturbation theory for the defocusing NLS on a background. The

main drawbacks of all these works is that none of them accounted for perturbative contributions from

the shelf that develops around the dark soliton, or presented comparisons of the theoretical predictions

with numerical simulations.

To date, the most comprehensive analysis of dark-soliton perturbation for the scalar defocusing NLS

is found in [47], where a multiscale expansion method and perturbed conservation laws were used to

find both the growth in magnitude and phase of the shelf, and the adiabatic evolution of all soliton pa-

rameters. This work also highlighted the emergence of a moving boundary layer connecting the inner

soliton core to the outer background.

There are many papers available in the literature on bright soliton perturbation theory, but, as we

mentioned above, less so for dark soliton, and only a handful that addressed vector/multicomponent

problems on a nontrivial background. In light of the difficulties that scalar problems for dark solitons

have presented, it is not surprising that few attempts have been made so far to develop perturbative

approaches for multicomponent integrable systems on a background. In particular, to the best of our

knowledge the only works on soliton perturbation theory for the defocusing Manakov system on a non-

trivial background are Refs. [18, 48, 49]. The approach in these papers relies on the adiabatic approxima-

tion, and evolution equations for the soliton parameters of a DB soliton are derived by expanding the

solution into a set of complete eigenfunctions of the linearized operator. We should mention, however,

that the completeness result for the eigenfunctions appears to be an unsettled issue even in the scalar

case, and in the Manakov system the defect of analyticity of the scattering eigenfunctions further com-

plicates the problem. Furthermore, it is not clear how or even if the soliton shelf can be incorporated into

the description, how the results in these papers compare with the scalar reduction on this account, and

no comparisons with direct numerical simulations are offered to corroborate the results. Arguably, the

perturbation theory for DB Manakov solitons is to a large extent still an open problem, and the present
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work aims at filling this gap. We want to stress the great practical importance of this problem: besides the

obvious relevance of being able to include, at least perturbatively, physical effects such as dissipation or

loss, in optical fibers described by Eq. (3) one would also be able to account for more general polarization

properties of the fiber (e.g., for values of α 6= 1 but reasonably close to it), and/or include four-wave mix-

ing effects as perturbations of the integrable case. Also, in the recent applications to BECs, the harmonic

trap necessary to achieve confinement of the atoms in multicomponent repulsive condensates is typi-

cally devised in such way that the ratio of longitudinal vs transverse trapping frequencies is very small

(Ω∼ 10−2). In these cigar-shaped geometry for the condensates, the BEC dynamics for the longitudinal

part of the wave function is indeed described as a perturbation of the integrable defocusing Manakov

system. Moreover, in [50, 51] the coupling coefficients for “symmetric” spin-independent and “antisym-

metric” spin-dependent interaction terms are also such that their ratio is a small parameter up to which

the model equation can be considered a small perturbation of a 3- component Manakov system. These

are just some examples of the practical applicative relevance of this work. Specifically, the goal of this

paper is a highly non-trivial generalization of the methods developed in [47] to describe perturbations

of DB solitons.

The plan of the paper is the following. In Sec. 2 we discuss the evolution of the background, and in

Sec. 3 we use multiple scales in time to formulate the perturbation problem for a stationary DB soliton.

It is shown that, similarly to the scalar case, a shelf emerges, propagating with a speed determined by

the background intensity. The problem is then broken into an inner region, where the core of the soliton

resides, and an outer region which evolves independently of the soliton. Here it is noted that, even for

stationary DB solitons the amplitude of the bright soliton, Ab , is an additional physical parameter one

needs to determine. Therefore, the perturbed conservation laws (for Hamiltonian, energy and momen-

tum) used in the scalar case are not sufficient to determine all the soliton parameters. We are able to

suitably augment the set of conserved quantities of the unperturbed Manakov system, and use them to

determine the properties of the moving shelf, as well as the adiabatic evolution of the soliton parameters.

Our results for a stationary DB soliton coincide with the ones in [47] in the reduction to the scalar case,

and show good agreement with direct numerical simulations. In Sec. 4, we generalize the multiscale

perturbation theory to a moving DB soliton. Although in this case we are not able to obtain a complete

solution for the amplitudes and phases of the DB soliton at O(ε), we use the augmented perturbed con-

servation laws to obtain a nonlinear system of adiabatic evolution equations for the soliton and shelf

parameters (8 coupled ODEs in the slow time T1 = εt for the DB soliton parameters qo , Ad , Ab ,σo , and

for the asymptotic amplitudes and phases of the shelf as x →±∞). In Sec. 5, we discuss the boundary

layer region. In Sec. 6, we present the solution of the system of equations for the adiabatic evolution of

the soliton parameters for specific perturbations (diffusion, linear and nonlinear loss in both compo-

nents). This is a highly nontrivial result, since, a priori, one would have no guarantee that the system of

equations for the above mentioned DB soliton parameters could be solved in closed form. Furthermore,

we show that our results are consistent with [47] in the scalar reduction, and we also compare them in

the general vector case with some direct numerical simulations, with excellent agreement. Finally, Sec. 7

is devoted to some concluding remarks and a discussion for future work.

2 The boundary at infinity

Let us consider the perturbed Manakov system (4) with BCs (5), consistent with a DB soliton. We seek

the solution in the form of the following asymptotic expansions in ε:

q1 = q10 +εq11 +O(ε2), q2 = q20 +εq21 +O(ε2), (8)
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and introduce two time-scales, To = t and T1 = εt , so that ∂
∂t

→ ∂
∂To

+ε ∂
∂T1

+O(ε2). The O(1) equations are

of course the unperturbed Manakov system (4) with ε = 0 for q10 and q20. Collecting O(ε) terms yields
the first order correction system of equations:

i
∂q11

∂To
+ i

∂q10

∂T1
+

∂2q11

∂x2
−2(|q10|2 +|q20|2 −q2

o )q11 −4q10Re(q10q∗
11 +q20q∗

21) = R1[q10], (9a)

i
∂q21

∂To
+ i

∂q20

∂T1
+

∂2q21

∂x2
−2(|q10|2 +|q20|2 −q2

o )q21 −4q20Re(q10q∗
11 +q20q∗

21) = R2[q20], (9b)

where ∗ denotes complex conjugate, and where we have assumed that R j [q] = R j [q j ], namely that the

perturbation of each component only depends on the corresponding component. Note that this as-

sumption has only the purpose of simplifying the description and the notation, but it is not essential in

any of the following. We also assume ∂2
x q11,∂2

x q21 → 0 as |x| →∞ (continuous wave background), and

the perturbative corrections q11, q21 to be functions of T1 only. Under these assumptions, taking the limit

as x →±∞ in (9) yields

i
∂q±

10

∂T1
= R1[q±

10], i
∂q±

20

∂T1
= R2[q±

20], (10)

where the superscripts ± denote limits as x → ±∞, and we note that since q1, q2 have to satisfy the

boundary conditions to all orders, q±
11, q±

21 are both zero, together with all higher order terms.

Let us express the asymptotic behavior of the dark component as q±
10 = qoe iφ±

, and take into account

that in the DB soliton case q±
20 = 0. Then, separating real and imaginary parts in the first of Eqs. (10)

yields

∂qo

∂T1
= Im(R1[qoe iφ±

]e−iφ±
), qo

∂φ±

∂T1
= Re(R1[qoe iφ±

]e−iφ±
), (11)

i.e., using the asymptotic phase invariance of the perturbation:

∂qo

∂T1
= Im(R1[qo]),

∂∆φ∞

∂T1
= 0. (12)

Here, ∆φ∞ =φ+−φ− is the asymptotic phase difference of the background. Since the second component

is assumed to be rapidly decaying, not surprisingly, Eqs. (12) for the boundary at infinity are the same as

in the scalar case, and are independent of the perturbation in the bright component.

3 The first order correction for a stationary DB soliton

For a stationary DB soliton of the unperturbed Manakov system, in (6) we set Ad = qo and V = 0:

qd =−i qo tanh(
√

q2
o − A2

b
(x −xo))e iσo , qb = Abe i (q2

o−A2
b

)t sech(
√

q2
o − A2

b
(x −xo))e iϕo . (13)

Note that, unlike black solitons in the scalar NLS, here the amplitude of the bright soliton, Ab < qo , is an

additional free parameter.

Let us use Madelung coordinates for both components, namely write q1 = ue iφ for the dark compo-

nent, and q2 = ve iψ for the bright one, with u, v,φ,ψ ∈R. Thus the system (4) becomes

−uφt +uxx −φ2
x u −2(u2 + v2 −q2

o)u = εRe(R1[ue iφ]e−iφ), (14a)

ut +uφxx +2uxφx = εIm(R1[ue iφ]e−iφ), (14b)
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−vψt + vxx −ψ2
x v −2(u2 + v2 −q2

o)v = εRe(R2[ve iψ]e−iψ), (14c)

vt + vψxx +2vxψx = εIm(R2[ve iψ]e−iψ). (14d)

As before, we introduce multiple scales in time: To = t , T1 = εt , and expand u, v,φ,ψ as:

u = uo +εu1 +O(ε2), v = vo +εv1 +O(ε2), φ=φo +εφ1 +O(ε2), ψ=ψo +εψ1 +O(ε2). (15)

At O(1), the system (14) is satisfied by the stationary DB soliton (13), with:

uo = qo tanh(
√

q2
o − A2

b
(x −xo)), φo =σo , (16a)

vo = Ab sech(
√

q2
o − A2

b
(x −xo)), ψo =ϕo + (q2

o − A2
b)To . (16b)

At O(ε), the system (14) yields:

−uoφoT1
−u1φoTo

−uoφ1To
+u1xx −2φoxφ1x uo −φ2

ox u1 (17a)

−4u2
ou1 −4uo vo v1 −2(u2

o + v2
o −q2

o)u1 = Re(R1[uoe iφo ]e−iφo ),

u1To
+uoT1

+uoφ1xx +u1φoxx +2u1xφox +2uoxφ1x = Im(R2[uoe iφo ]e−iφo ), (17b)

−voψoT1
− v1ψoTo

−ψ1To
vo + v1xx −2ψoxψ1x vo −ψ2

ox v1

−4v2
o v1 −4uo vou1 −2(u2

o + v2
o −q2

o)v1 = Re(R1[voe iψo ]e−iψo ), (17c)

v1To
+ voT1

+ voψ1xx + v1ψoxx +2v1xψ0x +2voxψ1x = Re(R2[voe iψo ]e−iψo ). (17d)

Here and in the following subscripts To and T1 denote derivatives with respect to the corresponding

time-scales. Note that (16) imply

φoTo
= 0, ψoTo

= A2
b −q2

o , φox =φoxx =ψox =ψoxx = 0. (18)

Furthermore, seeking a stationary solution, we assume

u1To
=φ1To

= v1To
=ψ1To

= 0.

In addition, we assume that qo and Ab are independent of To , but both in general have O(ε) terms de-
pending on T1. Then we can write the system (17) in matrix form as:

[

∂2
x −6u2

o −2v2
o +2q2

o −4uo vo

−4uo vo ∂2
x −6v2

o −2u2
o +q2

o + A2
b

][

u1

v1

]

=
[

uo
dσo

dT1
+Re(R1[uoe iφo ]e−iφo )

vo
dϕo

dT1
+Re(R2[voe iψo ]e−iψo )

]

, (19a)

[

uo∂
2
x +2uox∂x 0

0 vo∂
2
x +2vox∂x

][

φ1

ψ1

]

=
[

−uoT1 + Im(R1[uoe iφo ]e−iφo )

−voT1 + Im(R2[voe iψo ]e−iψo )

]

. (19b)

The expressions for uoT1
, voT1

which contribute to the forcing in the equations (19b) for the phases can

be easily computed from (16):

uoT1
=−uox





d xo

dT1
−

qo
d qo

dT1
− Ab

d Ab

dT1

q2
o − A2

b

(x −xo)



+
uo

qo

d qo

dT1
, (20a)

voT1
=−vox





d xo

dT1
−

qo
d qo

dT1
− Ab

d Ab

dT1

q2
o − A2

b

(x −xo)



+
vo

Ab

d Ab

dT1
. (20b)
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In turn, the T1-dependence of qo is given by (11), while d Ab/dT1 is related to d qo/dT1 via

Ab(2q2
o − A2

b)
d Ab

dT1
−qo(4q2

o −3A2
b)

d qo

dT1
=

=
√

q2
o − A2

b

(

Eo
d qo

dT1
+ (q2

o − A2
b)Im

∫∞

−∞
R2[voe iψo ]voe−iψo d x

)

, (21)

which is obtained from the perturbed conservation laws, and specifically Eq. (66c) in Sec. 6. In Table 1

below, expressions for d qo/dT1 and d Ab/dT1 are given for various types of perturbations, which are

then used to compute particular solutions to Eqs. (19b) for the phases in each case.

Diffusion Linear loss Nonlinear loss

R1[q1] iγ1∂
2
x q1 iγ1q1 iγ1|q1|2q1

R2[q2] iγ2∂
2
x q2 iγ2q2 iγ2|q2|2q2

d qo

dT1
0 γ1qo γ1q3

o

d Ab

dT1
−2

3
γ2

Ab(A2
b
−q2

o)2

(2q2
o − A2

b
)

Ab(γ1q2
o +2γ2(q2

o − A2
b

))

2q2
o − A2

b

Ab(3γ1q4
o +4γ2(q2

o − A2
b

))

3(2q2
o − A2

b
)

Table 1: d qo/dT1 and d Ab/dT1 for perturbations corresponding to diffusion, linear loss, and nonlinear

loss.

Ideally, one should determine the general solution of the linear, non-homogeneous system (19) for

the first order corrections to amplitudes and phases of the stationary DB soliton. The situation in the

Manakov system, however, is significantly more complicated than in the scalar case. Indeed, while the

equations (19b) for the phases are fully decoupled, and one can obtain the general homogeneous so-

lution, as well as a particular solution, the system (19a) for the amplitudes remains fully coupled, and

we are only able to obtain explicit expression for the particular solutions, as well as certain asymptotic

information on the general homogeneous solution.

3.1 First order corrections for the phases

The system (19b) for the phases φ1,ψ1 is decoupled, and has homogeneous solutions:

φ1h = c1 + c2



x −
coth

(√

q2
o − A2

b
(x −xo )

)

√

q2
o − A2

b



 , (22a)

ψ1h = d1 +d2



x +
sinh

(

2
√

q2
o − A2

b
(x −xo )

)

2
√

q2
o − A2

b



 , (22b)

where c1,c2,d1,d2 are arbitrary constants. It is clear that in order to avoid exponential growth in the

phase one needs to choose d2 = 0. Also, the coth term in the expression of φ1h becomes singular at

x = xo , and at first glance one might assume that this requires c2 = 0 as well. However, the phase term

in the dark component is multiplied by tanh
(

√

q2
o − A2

b
(x − xo)

)

[see Eq. (16)], which vanishes for x = xo ;

this indicates that more general solutions could exist with c2 6= 0. On the other hand, particular solutions

are determined by the forcing, and the right-hand sides (RHSs) of Eqs. (19b) for the phases for various

choices of perturbations are given in the table below.
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Perturbation RHS of (19b) for φ1,ψ1

Diffusion uox

(

d xo

dT1
−γ2

2A2
b

(q2
o−A2

b
)

3(2q2
o−A2

b
)

(x −xo)
)

+γ1uoxx

vox

(

xoT1
−γ2

2A2
b

(q2
o−A2

b
)

3(2q2
o−A2

b
)

(x −xo)
)

+γ2
2(q2

o−A2
b

)2

3(2q2
o−A2

b
)
vo +γ2voxx

Linear loss uox

(

d xo

dT1
− 2(γ1q2

o−γ2 A2
b

)

2q2
o−A2

b

(x −xo)
)

vox

(

d xo

dT1
− 2(γ1q2

o−γ2 A2
b

)

2q2
o−A2

b

(x −xo)
)

+ γ2 A2
b
−γ1q2

o

2q2
o−A2

b

vo

Nonlinear loss uox

(

d xo

dT1
− 2(3γ1q4

o−2γ2 A4
b

)

3(2q2
o−A2

b
)

(x −xo)
)

−γ1q2
ouo +γ1u3

o

vox

(

d xo

dT1
− 2(3γ1q4

o−2γ2 A4
b

)

3(2q2
o−A2

b
)

(x −xo)
)

− 3γ1q4
o+4γ2 A2

b
(q2

o−A2
b

)

3(2q2
o−A2

b
)

vo +γ2v3
o

Table 2: RHSs of Eqs. (19b) for perturbations of the form of diffusion, linear loss, and nonlinear loss (cf

Table 1).

From the explicit expressions of the forcing terms in Table 2, one can compute particular solutions

for the Eqs. (19b). It is important to point out that for all three perturbations considered here as examples

(diffusion, linear loss, and nonlinear loss), phase invariance can be used to simplify the RHSs of (19b).

Indeed, linear and nonlinear loss are phase-invariant for all x, not just asymptotically; in the case of the

diffusion perturbation, in general first and second order derivatives of the phase of the bright component

would appear, but these are zero in the case of a stationary DB soliton according to (18).

Specifically, for a perturbation of the form of diffusion in both components, we find:

φ1p =
1

2
x

d xo

dT1
−γ2(x −xo)

A2
b

√

q2
o − A2

b

3(2q2
o − A2

b
)

coth
(
√

q2
o − A2

b
(x −xo)

)

(23a)

−
2

3
γ1 lncosh

(
√

q2
o − A2

b
(x −xo)

)

,

ψ1p =
1

2
x

d xo

dT1
−γ2

x(x −2xo)A2
b

(q2
o − A2

b
)

6(2q2
o − A2

b
)

−
2

3
γ2 lncosh

(
√

q2
o − A2

b
(x −xo)

)

, (23b)

for linear loss we obtain:

φ1p =
1

2
x

d xo

dT1
− (x −xo)

γ1q2
o −γ2 A2

b

(2q2
o − A2

b
)
√

q2
o − A2

b

coth
(
√

q2
o − A2

b
(x −xo)

)

, (24a)

ψ1p =
1

2
x

d xo

dT1
−

x(x −2xo)(γ1q2
o −γ2 A2

b
)

2(2q2
o − A2

b
)

, (24b)

and, finally, in the case of nonlinear loss we find:

φ1p =
1

2
x

d xo

dT1
+ (x −xo)

3γ1q6
o +2γ2 A4

b
(q2

o − A2
b

)

3(2q4
o −3A2

b
q2

o + A4
b

)
√

q2
o − A2

b

coth
(
√

q2
o − A2

b
(x −xo)

)

, (25a)

ψ1p =
1

2
x

d xo

dT1
−

x(x −2xo)(3γ1q4
o −2γ2 A4

b
)

6(2q2
o − A2

b
)

+
1

3
γ2

A2
b

q2
o − A2

b

lncosh
(
√

q2
o − A2

b
(x −xo)

)

. (25b)
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One can then write the full O(ε) contributions to the phases by adding the homogeneous solutions in (22)

and the perturbation-dependent particular solutions in (23), (24) or (25). Note that in all cases the phase

of the bright component, ψ, exhibits a chirp-like quadratic growth as x →±∞. However, we should point

out that the limit |x|→∞ is generically outside the range of validity of the asymptotic expansion in small

time scales, since for large x the O(ε) terms are no longer necessarily smaller than the O(1) terms. Also,

the asymptotic behavior of the x-derivative of the O(ε) contributions to the phase of the dark soliton,

φ1x , as x →±∞ is given by Table 3 below. Furthermore, a π jump as x →±∞ in the O(1) term phase of

the dark component has to be included, on account of the limit of tanh
(

√

q2
o − A2

b
(x −xo)

)

in (16).

Perturbation (φ1)±x

Diffusion 1
2

d xo

dT1
+ c2 ∓γ2

A2
b

√

q2
o−A2

b

3(2q2
o−A2

b
)
∓ 2

3
γ1

√

q2
o − A2

b

Linear loss 1
2

d xo

dT1
+ c2 ∓

γ1q2
o−γ2 A2

b

(2q2
o−A2

b
)
√

q2
o−A2

b

Nonlinear loss 1
2

d xo

dT1
+ c2 ∓

γ1q2
o (5q2

o−A2
b

)−2γ2 A4
b

(2q2
o−A2

b
)
√

q2
o−A2

b

Table 3: Asymptotic behavior of the x-derivative of the O(ε) solutions for the phases of dark component

as x →±∞ for the various perturbations considered above.

3.2 First order corrections for the amplitudes

We now proceed to obtaining information on the O(ε) perturbative terms for the amplitudes of dark and

bright components. As mentioned above, the system (19a) for the amplitudes is fully coupled, and the

complete set of homogeneous solutions is not available. Note, however, that as |x| → ∞ the homoge-

neous system reduces to:

∂2
x u1h ∼ 4q2

ou1h , ∂2
x v1h ∼ (q2

o − A2
b)v1h , (26)

and since both RHSs are positive (recall that 0 ≤ Ab < qo), the homogeneous solutions for the amplitudes

decay exponentially (exponentially growing terms would be unphysical), and their contributions can

therefore be neglected compared to the particular solutions.

The particular solutions at O(ε) for the system (19a) for u1, v1 can be obtained as follows. Assume that

in the RHS of (19a) one has Re(R1[uoe iφo ]e−iφo ) = Re(R2[voe iψo ]e−iψo ) = 0. This condition is satisfied

by all the perturbations considered here, namely, diffusion as well as linear and nonlinear loss, in the

case of a stationary DB soliton. Now recall the O(1) equations for uo , vo , and write the corresponding

homogeneous system in the matrix form:

[

∂2
x −2u2

o +2q2
o −2uo vo

−2uo vo ∂2
x −2v2

o +q2
o + A2

b

][

uo

vo

]

=
[

0

0

]

. (27)

Taking derivatives of this system with respect to qo and Ab , we obtain two systems

[

∂2
x −6u2

o −2v2
o +2q2

o −4uo vo

−4uo vo ∂2
x −6v2

o −2u2
o +q2

o + A2
b

][

uoqo

voqo

]

=
[

−4qouo

−2qo vo

]

, (28)

[

∂2
x −6u2

o −2v2
o +2q2

o −4uo vo

−4uo vo ∂2
x −6v2

o −2u2
o +q2

o + A2
b

][

uo Ab

vo Ab

]

=
[

0

−2Ab vo

]

. (29)
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Notice that both systems have exactly the same matrix as in (19a), and since qo , Ab are space-independent,

we can seek solutions u1, v1 to (19a) in the following form:

u1 = A1uoqo
+ A2uo Ab

, v1 = A1voqo
+ A2vo Ab

, (30)

where A1, A2, A3, A4 are varying coefficients. Taking linear combinations of the two aforementioned sys-
tems, we can match the RHS of (19a) and obtain the u1, v1 solution in terms of derivatives of unperturbed
solutions with respect to their parameters, namely:

u1 =−
(

σoT1

4qo

)

∂uo

∂qo
+

(

σoT1
−2ϕoT1

4Ab

)

∂uo

∂Ab
, v1 =−

(

σoT1

4qo

)

∂vo

∂qo
+

(

σoT1
−2ϕoT1

4Ab

)

∂vo

∂Ab
. (31)

We should note that in order to completely determine the O(ε) contributions to the amplitudes u1, v1

one needs to obtain the dependence on the slow time T1 of the phase parameters of the dark and bright

components of the soliton, namely dσo/dT1 and dϕo/dT1. The former will be obtained from the O(ε)

perturbed conservation laws in Sec. 6, but dϕo/dT1 is not determined at this order. On the other hand,

the terms involving dϕo/dT1 do not contribute to u1, v1 in the limit as x →±∞, and one can obtain from

the above equations the asymptotic behavior:

u1 →∓
σoT 1

4qo
, v1 → 0 as x →±∞. (32)

Notice that the particular solutions above are obtained under the assumption that the real parts of the

perturbations in both components are zero. If one has Re(R1[uo]) = α1uo , Re(R2[vo]) = α2vo , where

α1,α2 are x-independent, then a particular solution can be built in a similar way.

4 The first order correction for a moving DB soliton

For a moving DB soliton, we have 0 < Ad < qo , 0 < Ab < Ad and V 6= 0, with all parameters being, in

general, functions of the slow time T1. In a co-moving reference frame: X = x−
∫τ

0 V (εs)d s−xo , τ= t , the

DB soliton solution is written as:

qd =
(

sgn(V )
√

q2
o − A2

d
− i Ad tanh(X

√

A2
d
− A2

b
)
)

e iσo , (33)

qb = Abe i (ϕo+ V
2 (X+

∫τ
0 V (εs)d s+xo)−( V 2

4
−(A2

d
−A2

b
))τ)sech(X

√

A2
d
− A2

b
), (34)

and the perturbed Manakov system (4) takes the form:

i qτ− i (V +xoτ)qX +qX X −2(‖q‖2 −q2
o)q = εR[q]. (35)

To avoid dealing with singularities in the derivatives with respect to the soliton parameters, in the fol-

lowing we will assume that V (0) > 0, and that V remains sign definite as a function of T1.

After applying Madelung ansatz for each component, q1 = ue iφ, q2 = ve iψ, and separating real and

imaginary parts, Eq. (35) yields:

−uφτ+V uφX +uX X −φ2
X u −2(u2 + v2 −q2

o)u = εRe(R1[ue iφ]e−iφ), (36a)

uτ−V uX +uφX X +2uX φX = εIm(R1[ue iφ]e−iφ), (36b)

−vψτ+V vψX + vX X −ψ2
X v −2(u2 + v2 −q2

o)v = εRe(R2[ve iψ]e−iψ), (36c)

vτ−V vX + vψX X +2vX ψX = εIm(R2[ve iψ]e−iψ). (36d)
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Expanding u, v,φ,ψ in powers of ε as in (15), and letting as before ∂τ = ∂To
+ε∂T1

+O(ε2), we find for the
O(1) terms in the co-moving coordinates:

uo =
√

q2
o − A2

d
sech2

(

X
√

A2
d
− A2

b

)

, φo =σo +arctan



−
Ad

√

q2
o − A2

d

tanh
(

X
√

A2
d
− A2

b

)



 , (37a)

vo = Ab sech(X
√

A2
d
− A2

b
), ψo =ϕo +

V

2

(

X +
∫To

0
V d s +xo

)

−
(

V 2

4
− (A2

d
− A2

b
)

)

To . (37b)

Then, stationary solutions at O(ε) are governed by the following, fully coupled system of ODEs:

−uoφoT1
+V u1φoX +V uoφ1X +u1X X −2φoX φ1X uo −φ2

oX u1 (38a)

−4u2
ou1 −4uo vo v1 −2(u2

o + v2
o −q2

o)u1 = Re(R1[uoe iφo ]e−iφo ),

uoT1
−V u1X +uoφ1X X +u1φoX X +2u1X φoX +2uoX φ1X = Im(R1[uoe iφo ]e−iφo ), (38b)

−voψoT1
+V v1ψoX +V voψ1X + v1X X −2ψoX ψ1X vo −ψ2

oX v1 (38c)

−4v2
o v1 −4uo vou1 −2(u2

o + v2
o −q2

o)v1 = Re(R2[voe iψo ]e−iψo ),

voT1
−V v1X + voψ1X X + v1ψoX X +2v1X ψ0X +2voX ψ1X = Im(R2[voe iψo ]e−iψo ). (38d)

In the scalar case, for which vo =ψo = 0, the above system reduces to:
[

∂2
X +V φoX −φ2

oX −6u2
o +2q2

o uo(V −2φoX )∂X

(−V +2φoX )∂X +φoX X uo∂
2
X +2uoX ∂X

][

u1

φ1

]

=
[

J1[uo ,φo]

J2[uo ,φo]

]

, (39)

J1[uo ,φo] = Re(R1[uoe iφo ]e−iφo )+uoφoT1
, J2[uo ,φo] = Im(R1[uoe iφo ]e−iφo )−uoT1

.

Now, from Eq. (37) we easily find:

φoTo
=−φoX V , ψoTo

=−
V 2

4
+ A2

d − A2
b , (40)

φoX =
V

2

A2
d

sech2(X
√

q2
o − A2

b
)

A2
d

sech2(X
√

q2
o − A2

b
)−q2

o

, ψoX =
V

2
, (41)

as well as

uoT1
= uoX

(

X
Ad AdT1

− Ab AbT1

A2
d
− A2

b

−xoT1

)

−
AdT1

Ad

q2
o −u2

o

uo
+

qo qoT1

uo
, (42a)

voT1
= voX

(

X
Ad AdT1

− Ab AbT1

A2
d
− A2

b

−xoT1

)

+
AbT1

Ab
vo , (42b)

φoT1
=σoT1

+ (42c)

+φoX



X
Ad AdT1

− Ab AbT1

A2
d
− A2

b

−xoT1
+

qo

2Ad

sinh
(

2X
√

A2
d
− A2

b

)

√

A2
d
− A2

b

qo AdT1
− Ad qoT1

q2
o − A2

d



 ,

ψoT1
=ϕoT1

+
V

2
xoT1

+
1

2
VT1

(

X +
∫To

0
V d s +xo

)

−
(

V

2
VT1

−2(Ad AdT1
− Ab AbT1

)

)

To . (42d)

To this end, in the limit X →±∞, Eqs. (38) yield:

−qo






σoT1

∓
1

qo

qo AdT1
− Ad qoT1

√

q2
o − A2

d






+V qoφ

±
1X −4q2

ou±
1 = Re(R1[uoe iφo ]e−φo )±, (43a)
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−V u±
1X +qoφ

±
1X X +qoT1

= Im(R1[uoe iφo ]e−φo )±, (43b)

V 2

4
v±

1 = Re(R2[voe iψo ]e−iψo )±, (43c)

0 = Im(R2[voe iψ±
o ]e−iψo )± , (43d)

where we have used u±
1X X

= v±
1X X

= 0 for a continuous wave background. Using (12), the second equation

simplifies down to V u±
1X

= qoφ
±
1X X

. Assuming that u1X → 0 as X →±∞, then both u1 and φ1X tend to

constants as X →±∞, which corresponds to the shelf developing around the soliton. In this case, the

second equation in the system is automatically satisfied, and does not yield any additional information.

5 Boundary layer

Since u1,φ1 do not vanish as x →±∞, the solution to order ε does not match the boundary conditions

at infinity. Thus, our problem is now broken into two regions: the region that matches imposed non-

decaying boundary conditions at infinity, which is unaffected by the soliton, and the region in which the

O(ε) correction term is valid and the solution is quasi-stationary. To resolve this mismatch, we introduce

a boundary layer in which there is a transition from the non-zero value in the perturbation term to the

boundary conditions at infinity.

In the boundary layer region, we can write:

u = qo +εw +O(ε2), v = εp +O(ε2), φ=φ±+εθ+O(ε2), ψ=ψ±+εµ+O(ε2), (44)

where w, p,θ,µ are real-valued functions of x and t . As before, utilizing two time scales, with ∂t → ∂To
+

ε∂T1
+O(ε2), we can write

d qo

dTo
= 0,

dφ±

dTo
= 0,

d qo

dT1
= Im(R1[qo]), −qo

dψ±

dT1
=−Re(R2[qo]) . (45)

At O(1), the system (14) is satisfied exactly, and at O(ε) we have

−qo
∂φ±

∂T1
−w

∂φ±

∂To
−

∂θ

∂To
qo +

∂2w

∂x2
−2

∂φ±

∂x

∂θ

∂x
qo −

(

∂φ±

∂x

)2

w −4q2
o w = ReR1[qo +εw], (46a)

∂w

∂To
+

d qo

dT1
+qo

∂2θ

∂x2
+w

∂2φ±

∂x2
+2

∂w

∂x

∂φ±

∂x
+2

∂qo

∂x

∂θ

∂x
= ImR1[qo +εw], (46b)

−p
dψ±

dTo
+
∂2p

∂x2
−

(

∂ψ±

∂x

)2

p = ReR2[εp], (46c)

∂p

∂To
+p

∂2ψ±

∂x2
+2

∂p

∂x

∂ψ±

∂x
= ImR2[εp] . (46d)

Using (45), we obtain

ReR1[qo +εw]+qo
∂φ±

∂T1
= ReR1[qo +εw]−ReR[qo] =O(ε), (47a)

ImR1[qo +εw]−
d qo

dT1
= ImR1[qo +εw]− ImR1[qo] =O(ε), (47b)
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therefore these terms go to higher order. In addition, using the fact that φ±,ψ± only depend on the slow

time T1, we obtain the system of equations:

−
∂θ

∂To
qo +

∂2w

∂x2
−4q2

o w = 0,
∂w

∂To
+qo

∂2θ

∂x2
= 0, −2pq2

o +
∂2p

∂x2
= 0,

∂p

∂To
= 0 (48)

from which it follows that p =C1e
p

2qo x +C2e−
p

2qo x , with C1,C2 independent of To . In turn, w,θ satisfy:

∂θ

∂To
=−4q2

o w +
∂2w

∂x2
,

∂w

∂To
=−qo

∂2θ

∂x2
. (49)

The above system can be decoupled by taking two derivatives in x, which yields two identical equations

for w and θ:
∂2w

∂T 2
o

= 4q2
o

∂2w

∂x2
−
∂4w

∂x4
,

∂2θ

∂T 2
o

= 4q2
o

∂2θ

∂x2
−
∂4θ

∂x4
. (50)

Note that the O(ε) perturbation µ of ψ± (cf (44)) is not determined in this order. Assuming a long-wave

approximation, the above equations become

∂2w

∂T 2
o

= 4q2
o

∂2w

∂x2
,

∂2θ

∂T 2
o

= 4q2
o

∂2θ

∂x2
, (51)

namely, the O(ε) perturbative terms of amplitude and phase of the dark soliton satisfy the wave equation.

This allows us to conclude that, similarly to the scalar case, the edges of the shelf move with the velocities

W =±2qo .

6 Perturbed conservation laws

6.1 Stationary DB soliton

In order to find the slow time evolution of a stationary DB soliton parameters, Ab , σo and xo , we employ

the first three conservation laws for the unperturbed Manakov system, involving:

E =
∫∞

−∞

[

‖q‖2 −q2
o

]

d x, (Energy), (52a)

I = 2Im

∫∞

−∞

[

q ·qx

]

d x −q2
o∆φo , (Renormalized Momentum), (52b)

H =−
∫∞

−∞

[

‖qx‖2 + (‖q‖2 −q2
o)2

]

d x, (Hamiltonian), (52c)

where · denotes the usual complex vector dot product: (a,b)T · (c,d)T = ac∗+bd∗, and ∆φo is the phase

difference across the soliton. The evolution equations for these integrals of motion take the form:

dE

d t
= 2ε

(

−qo
d qo

dT1
+ Im

[∫∞

−∞
R[q] ·qd x

])

, (53a)

d I

d t
=−4εRe

∫∞

−∞
R[q] ·qx d x −ε∆φo

d q2
o

dT1
−εq2

o

d∆φo

dT1
, (53b)

d H

d t
= 2ε

(

E
d

dT1
q2

o +Re

∫∞

−∞
R[q] ·qt d x

)

. (53c)
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Matching O(ε) terms in dE/d t and (53a), we obtain

d

d t

∫∞

−∞
2[uou1 +2vo v1]d x =−2qo

d qo

dT1
+2Im

[∫∞

−∞
R[q] ·qd x

]

. (54)

Since the edges of the shelf are moving with velocity ±2qo (see end of the previous section), we change

the interval of integration in the LHS to (−2qo t ,2qo t ), and the Fundamental Theorem of Calculus yields

4qo

[

uo(2qo t )u1(2qo t )+uo(−2qo t )u1(−2qo t )
]

=−2qo
d qo

dT1
+2Im

[∫∞

−∞
R[q] ·qd x

]

. (55)

In the limit x →±∞, using uo →±qo , u1 → u±
1 , the above equation reduces to:

4q2
o(u+

1 −u−
1 ) =−2qo

d qo

dT1
+2Im

[∫∞

−∞
R[q] ·qd x

]

. (56)

Recalling the definitions of u±
1 in (32), we finally get

dσo

dT1
=

d qo

dT1
−

1

qo
Im

[∫∞

−∞
R[q] ·qd x

]

. (57)

Matching O(ε) terms in d I /d t and (53b), and proceeding in a similar way we obtain:

φ+
1x +φ−

1x = 0, (58)

which in turn, in light of the asymptotic behavior of φ1x in Table 3, implies

d xo

dT1
+2c2 = 0. (59)

The last equation relates the arbitrary phase constant c2 for a stationary DB soliton to the slow-time evo-

lution of the soliton center. Although in this work we do not determine xo(T1), our numerical simulations

indicate that for all three types of perturbations considered in Table 1 the soliton center does not move,

which indicates that c2 = 0. We note that the phase constant can be independently determined by an-

alyzing the radiation field associated with the soliton, as in [52–54] in the context of instability-induced

dynamics of dark solitons.

Finally, matching O(ε) terms in d H/d t and (53c), yields:

−
2

3

d

dT1

(
√

q2
o − A2

b
(4q2

o − A2
b)

)

=−8qo

√

q2
o − A2

b

d qo

dT1
+2Im

∫∞

−∞
R2[voe iψo ]voe−iψo d x, (60)

from where, knowing d qo/dT1 (see Eq. (12)), and the form of the perturbation R[q], we can find d Ab/dT1

(cf Table 1 for some specific perturbations).

Next, we proceed to compare the above findings with direct numerical simulations. We present here

the case of nonlinear loss as an example, but we note that for the other considered perturbations the

results —and the agreement between the analytical predictions and simulations— are similar. For this

example, we evolve Eqs. (4) using Eqs. (6a) as initial conditions for the case of a stationary DB soliton,

with Ad = qo , using a fourth order Runge-Kutta method in time. In the left panel of Fig. 1 we depict

the complete evolution of the black soliton, so as to demonstrate the evolution of the shelf, under the

nonlinear loss. The evolution of the DB soliton parameters Ad and qo are depicted in Fig. 2. It is ob-

served that the analytical predictions are in very good agreement with the results of the direct numerical

simulations.

Below we will consider the perturbed conservation laws for the general case of a moving DB soliton,

and obtain from them explicit equations for the adiabatic evolution of the soliton parameters for the

various perturbations. The reductions to stationary DB solitons and to the scalar case will also be given.
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Figure 1: Left: Contour plot of the modulus of the dark component of a stationary DB soliton under

nonlinear loss. Here, qo(0) = 1, Ab(0) = 1/
p

2, Ad = qo , x0 = 0 and εγ1 = εγ2 =−0.01. Right: Contour plot

of the modulus of the dark component of a moving DB soliton under linear loss. Here, parameter values

are: qo(0) = 1, Ab(0) = 1/
p

2, Ad = 0.8, x0 = 0 and εγ1 = εγ2 = −0.01. In both plots the dashed red lines

correspond to the analytical prediction for the evolution of the shelf’s edge.
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Figure 2: The evolution of the stationary DB soliton parameters Ad and qo under nonlinear loss. The

solid blue lines correspond to the numerical simulations results, whereas the dashed red lines to the

analytical predictions. Here, qo(0) = 1, Ab(0) = 1/
p

2, Ad = qo , x0 = 0 and εγ1 = εγ2 =−0.01.

6.2 Moving DB soliton

For a moving DB soliton, we have eight independent parameters: u±
1 , φ±

1X
, and slow evolution of vari-

ables Ab , Ad , qo , and σo . Other parameters of the first order correction of the solution, namely ψ±
1X

are

not determined at this order of perturbation. Determining the slow time evolution of xo requires the ex-

plicit expression of the first order corrections for amplitudes and phases, and will be the subject of future

investigation.

As in the case of stationary DB soliton discussed in Sec. 5, the edge of the shelf still propagates with

velocity W (T1) = 2qo(T1), and the velocity V of the soliton now may also depend on the slow time T1. In

the moving frame of reference X = x −
∫t

0 V (εs)d s −xo , the boundaries of the shelf are given by:

SL(t ) =−
∫t

0
[2qo(εs)+V (εs)]d s, SR (t ) =

∫t

0
[2qo(εs)−V (εs)]d s, (61)
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where SL and SR give the position in X of the left and right boundaries of the shelf, respectively.

In addition to E , I and H we used above, here we will also employ the conserved quantity:

F = Im

∫∞

−∞

[

‖q‖2(q ·qX )+
1

3
qX X ·qX

]

d x, (62)

which was found through symbolical software [55, 56]; the time evolution of F is given by

dF

d t
=−2εRe

∫∞

−∞
R[q] ·

(

(‖q‖2 +qX ·q)qX −
1

3
qX X X

)

d X . (63)

Note that each term in the integrand of the conserved quantity (62) involves spatial derivatives of the

field q, which decay at infinity, thus ensuring the convergence of the integral. Furthermore, unlike what

happens for the momentum (52b) (see, e.g. [53]), since there is no straightforward physical quantity

associated with this higher moment F , there is no underlying physical motivation that requires a renor-

malization of the integral.

Furthermore, we will use the so-called center of energy:

R =
∫∞

−∞
X (‖q‖2 −q2

o)d X , (Center of Energy), (64)

whose time evolution is related to the momentum I :

dR

d t
= I +2εIm

∫∞

−∞
X (R[q] ·q−qoR[qo])d X . (65)

Repeating the same steps as in the previous subsection while restricting the interval of integration to

X ∈ [SR ,SL] for the d/dTo terms, we obtain four evolution equations:

dEo

dT1
=−2qo((2qo +V )u−

1 + (2qo −V )u+
1 )−2qo

d qo

dT1
+2Im

∫∞

−∞
R[qo] ·qod X , (66a)

d Io

dT1
= 2q2

o((2qo +V )φ−
1X + (2qo −V )φ+

1X )−
d(q2

o∆φ)

dT1
−4Re

∫∞

−∞
R[qo] ·

∂qo

∂X
d X , (66b)

d Ho

dT1
= 4Eo qo

d qo

dT1
+2Re

∫∞

−∞
R[qo] ·

∂qo

∂To
d X , (66c)

dFo

dT1
=−q4

o

(

φ+
1X (2qo −V )+φ−

1X (2qo +V )
)

−2Re

∫∞

−∞
R[qo] ·

((

‖qo‖2 +
∂qo

∂X
·qo

)

∂qo

∂X
−

1

3

∂3qo

∂X 3

)

d X , (66d)

where Eo , Io , Ho ,Fo are the values of the corresponding conservation laws integrals computed for ε= 0:

Eo =−2
√

A2
d
− A2

b
, (67a)

Io =
4

Ad
(A2

d − A2
b)

√

q2
o − A2

d
, (67b)

Ho =−
2
√

A2
d
− A2

b

3A2
d

(

4A2
d (A2

d − A2
b)+3q2

o A2
b

)

, (67c)

Fo =
2
(

A2
d
− A2

b

)

√

q2
o − A2

d

(

A2
b

(

q2
o −2A2

d

)

−3q2
o A2

d
+2A4

d

)

3A3
d

. (67d)
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In addition, we obtain one non-evolution equation coming from leading order of dR/d t :

(2qo −V )(2u+
1 +φ+

1X )− (2qo +V )(2u−
1 −φ−

1X ) = 0. (68)

Putting everything together, Eqs. (66), along with (68), (43a), (12) give us a linear system of equations for

eight unknowns: u±
1 , φ±

1X
, and slow time derivatives of σo , Ab , Ad and qo . In what follows, we provide

solutions of these equations for each of the three perturbations considered in the paper.

6.3 DB soliton parameters

Diffusion perturbations: R j = iγ j q j xx , j = 1,2. In this case, the adiabatic evolution of d Ab/dT1, d Ad /dT1,

dσo/dT1 is described by the following equations:

d Ab

dT1
=−

2γ2 Ab

(

A2
b
− A2

d

)(

A2
b

(

7q2
o A4

d
−4A6

d

)

+ A4
b

(

2q2
o A2

d
−3q4

o

)

−6q2
o A6

d
+4A8

d

)

3A2
d

(

−4A2
b

A4
d
+q2

o A4
b
+4A6

d

) , (69a)

d Ad

dT1
=

2γ2 A2
b

(

A2
b
− A2

d

)(

A2
d
−q2

o

)(

A2
b

(

4A2
d
−3q2

o

)

−4A4
d

)

3
(

q2
o A4

b
Ad −4A2

b
A5

d
+4A7

d

) , (69b)

dσo

dT1
= 2

√

A2
d
− A2

b

[

3qo

(

−4A2
b A4

d +q2
o A4

b +4A6
d

)]−1× (69c)

×
[

A4
b

(

8γ2 A4
d +2

(

γ1 −6γ2

)

q2
o A2

d +3γ2q4
o

)

−2A2
b

(

4
(

γ1 +γ2

)

A6
d −5γ2q2

o A4
d

)

+8γ1 A8
d

]

.

Notice that in the scalar limit (Ab = 0), the full system of equations reduces to:

dσo

dT1
=

4γ1 A3
d

3qo
,

d Ad

dT1
=

d qo

dT1
=

dV

dT1
= 0, u±

1 =−
1

2

dσo

dT1

1

2qo ∓V
, φ±

1X =±2u±
1 , (70)

consistently with the results of Ref. [47], whereas in the stationary limit (V = 0, Ad = qo) we find:

dσo

dT1
=

2qo

√

q2
o − A2

b
(4γ1q2

o − (2γ1 −γ2)A2
b

)

3(2q2
o − A2

b
)

,
d Ab

dT1
=−

2γ2 Ab(q2
o − A2

b
)2

3(2q2
o − A2

b
)

, (71a)

dV

dT1
=

d qo

dT1
=

d Ad

dT1
= 0, u±

1 =−
1

2

dσo

dT1

1

2qo
, φ±

1X =±2u±
1 . (71b)

Linear loss perturbations: R j = iγ j q j , j = 1,2. The adiabatic evolution of d Ab/dT1, d Ad /dT1, dσo/dT1

now reads:

d Ab

dT1
=

2
(

γ1 +2γ2

)

Ab A6
d
− A3

b

(

6γ2 A4
d
+γ1q2

o A2
d

)

+2γ2q2
o A5

b

−4A2
b

A4
d
+q2

o A4
b
+4A6

d

, (72a)

d Ad

dT1
=

−2γ1 A2
b

A3
d

(

A2
d
+q2

o

)

+ A4
b

((

γ1 +2γ2

)

q2
o Ad −2γ2 A3

d

)

+4γ1 A7
d

−4A2
b

A4
d
+q2

o A4
b
+4A6

d

, (72b)

dσo

dT1
=

2A2
d

(

γ1 A2
d
−γ2 A2

b

)(

A2
b

(

q2
o −2A2

d

)

+2A4
d

)

qo

√

A2
d
− A2

b

(

−4A2
b

A4
d
+q2

o A4
b
+4A6

d

)

. (72c)

In the scalar limit, this gives:

dσo

dT1
=

γ1 Ad

qo
,

d Ad

dT1
= γ1 Ad ,

dV

dT1
= γ1V , (73a)
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Figure 3: The evolution of the moving DB soliton parameters under linear loss. The solid blue lines cor-

respond to the numerical simulations results, whereas the dashed red lines, to the analytical predictions.

Here, qo(0) = 1, Ab(0) = 1/
p

2, Ad = 0.8, x0 = 0 and εγ1 = εγ2 =−0.01.

d qo

dT1
= γ1qo , u±

1 =−
1

2

dσo

dT1

1

2qo ∓V
, φ±

1X =±2u±
1 , (73b)

again consistently with [47], and in the stationary limit, we get:

dσo

dT1
=

2qo(γ1q2
o −γ2 A2

b
)

√

q2
o − A2

b
(2q2

o − A2
b

)
,

d Ab

dT1
=

Ab(γ1q2
o +2γ2(q2

o − A2
b

))

2q2
o − A2

b

, (74a)

dV

dT1
= 0,

d Ad

dT1
=

d qo

dT1
= γ1qo , u±

1 =−
1

2

dσo

dT1

1

2qo
, φ±

1X =±2u±
1 . (74b)

Nonlinear loss perturbations: R j = iγ j |q j |2q j . In this case, the adiabatic evolution of d Ab/dT1, d Ad /dT1,
dσo/dT1 is given by:

d Ab

dT1
=

Ab

(

−12γ2 A4
b

A4
d
+2A6

d

(

4γ2 A2
b
+5γ1q2

o

)

−3γ1q4
o A2

b
A2

d
+4γ2q2

o A6
b
−4γ1 A8

d

)

3
(

−4A2
b

A4
d
+q2

o A4
b
+4A6

d

) , (75a)

d Ad

dT1
=

Ad

(

4γ2 A6
b

(

q2
o − A2

d

)

+2γ1 A2
b

A2
d

(

−5q2
o A2

d
+2A4

d
−3q4

o

)

+3γ1q4
o A4

b
+4γ1 A6

d

(

5q2
o −2A2

d

))

3
(

−4A2
b

A4
d
+q2

o A4
b
+4A6

d

) , (75b)

dσo

dT1
= 2A2

d

[

3qo

√

A2
d
− A2

b

(

−4A2
b

A4
d
+q2

o A4
b
+4A6

d

)]−1 [

−2γ2 A4
b

(

A2
b

(

q2
o −2A2

d

)

+2A4
d

)

+ (75c)

+γ1

(

−2q2
o A2

d

(

7A2
b

A2
d
+ A4

b
−7A4

d

)

+3q4
o A2

b

(

A2
b
+ A2

d

)

+4A6
d

(

A2
b
− A2

d

))]

.

In the scalar limit, this yields:

dσo

dT1
=

γ1 Ad

3qo

(

1

2
V 2 +5q2

o

)

,
d Ad

dT1
= γ1 Ad

(

1

6
V 2 +q2

o

)

,
dV

dT1
=

γ1V

6
(V 2 +2q2

o), (76a)

d qo

dT1
= γ1q3

o , u±
1 =−

1

2

(

dσo

dT1
± d∆φ

dT1

)

2qo ∓V
, φ±

1X =±2u±
1 ∓

2

3
γ1 Ad , (76b)

where
d∆φo

dT1
=

1

qo

qo AdT1
− Ad qoT1

√

q2
o − A2

d

(77)
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Figure 4: The evolution of the solitons’ parameters under linear loss. The solid lines correspond to the

numerical simulations results, whereas the dashed lines, to the analytical predictions. Here, qo(0) = 1,

Ab(0) = 1/
p

2, Ad = 0.8, x0 = 0 and εγ1 = εγ2 =−0.01.

with ∆φo being the phase difference across the soliton (which is different from asymptotic phase differ-

ence of the background, ∆φ∞). Finally, in the stationary limit, we have:

dσo

dT1
=

2qo(γ1q2
o(5q2

o − A2
b

)−2γ2 A4
b

)

3(2q2
o − A2

b
)
√

q2
o − A2

b

,
d Ab

dT1
=

Ab(3γ1q4
o +4γ2 A2

b
(q2

o − A2
b

))

3(2q2
o − A2

b
)

, (78a)

dV

dT1
= 0,

d Ad

dT1
=

d qo

dT1
= γ1q3

o , u±
1 =−

1

2

dσo

dT1

1

2qo
, φ±

1X =±2u±
1 . (78b)

As in the stationary case, it is relevant to compare the above findings with results of direct numerical

simulations. Here, as an example, we consider the case of linear loss (for the other considered pertur-

bations, the results are similar). For the present example, we again evolve Eqs. (4), using Eqs. (6a) as

initial conditions, employing a fourth order Runge-Kutta method in time. In the right panel of Fig. 1, we

depict the complete evolution of the gray component of the moving DB soliton, so as to demonstrate the

emergence and evolution of the shelf in the presence of linear loss. Furthermore, the evolution of the DB

solitons amplitudes Ad and Ab , and of the background parameter qo , are depicted in Fig. 3. Once again,

the analytical results are found to be in very good agreement with the numerical simulations.

Finally, it is relevant to compare the evolution of the grey soliton component of a moving DB soliton

with that of a grey soliton in the scalar case. An important conclusion stemming from such a comparison

is that the coupling (or the “symbiosis”) between the grey and the bright soliton has a profound effect. In-

deed, it seems that the bright soliton tends to reduce the decaying effects of the dissipative perturbations

as compared to the scalar equation. While the dark soliton will eventually decay to the background, and

the background will vanish in both cases, in the Manakov system this is delayed significantly as shown

in Fig. 4. This result is in a qualitative agreement with the analysis of Ref. [57], where it was found that

the effect of the bright (“filling”) soliton component is to partially stabilize “bare” dark solitons against

temperature-induced dissipation in BECs, thus providing longer lifetimes.
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7 Conclusion

In conclusion, we have presented a direct perturbation theory to study the evolution of the dark-bright

solitons of the Manakov system under the action of perturbations. Our approach relies on the combina-

tion of a multiscale expansion method and a boundary layer theory, such that the problem is broken into

an inner region —pertinent to the soliton core— and a “shelf”, namely a linear wave emerging due to the

perturbation, which matches the boundary conditions at infinity. Our analysis was first performed for

stationary dark-bright solitons, and then was generalized for moving ones. Various typical perturbations

were considered, and in particular physically relevant dissipative ones, namely diffusion, as well as linear

and nonlinear loss (or gain, depending on the sign of the relevant coefficients).

Our methodology is similar to the one that was used for the study of perturbed dark solitons in the

scalar defocusing NLS equation [47]. Our results, however, extend beyond the ones presented in that

work. For example, in the simpler case of stationary DB solitons, we were able to completely determine

the asymptotic phases of the DB solitons (whereas in [47] the particular solution of the linear, nonhomo-

geneous equations for the O(ε) terms in the phases had not been obtained). Furthermore, the additional

effect of the perturbation in the bright component on the asymptotic phases of both dark and bright

soliton components was studied.

For the typical dissipative perturbations we considered, the asymptotic approximations showed very

good agreement with results of direct numerical simulations. The relevant numerical computations con-

firmed the emergence of the analytically predicted shelf and, in all cases, were found to fully support our

analytical predictions. Our analysis and computations also revealed an important difference between

scalar grey solitons and the grey solitons of the Manakov system: it was found that the presence of the

bright (“filling”) component hinders the perturbation- induced dissipation associated with the grey soli-

ton, thus offering a partial stabilization —i.e. a longer lifetime— to the corresponding Manakov DB

soliton structure, in comparison to its “bare” scalar dark soliton counterpart.

Our analysis and results suggest further interesting studies. Indeed, first we note that it would be

relevant to further extend our analysis in order to determine the evolution of the center xo of the DB

soliton. To do this, one needs to employ the O(ε) correction terms for amplitudes and phases explicitly.

In principle, one could follow a similar strategy as in [47], but in the Manakov system the ODEs for the

O(ε) ODEs for the amplitudes and phases do not decouple, and the solution of this problem will require

finding homogeneous and particular solutions for a fourth-order linear, non-homogeneous ODE, with

coefficients given by the O(1) dark and bright soliton solutions and their derivatives, while the non-

homogeneous term depends on the perturbation. In any case, the determination of the evolution of

the soliton center would also be relevant for studies involving conservative perturbations, as, e.g., is

the case with external potentials which are particularly relevant to the physics of BECs. Solution of the

relevant problem for the soliton center could then bridge our analysis with other perturbative studies of

the Manakov system, relying on the adiabatic approximation [18].
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