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Abstract

We present a direct perturbation method to study the dynamics of dark-bright solitons of the Man-
akov system under the influence of perturbations. Our methodology combines a multiscale expan-
sion method, perturbed conservation laws, and a boundary layer approach, which breaks the prob-
lem into an inner region, pertinent to the soliton core, and an outer region, which evolves indepen-
dently of the dark-bright soliton. We find that a shelf emerges around the dark soliton component,
which propagates with a speed depending on the background intensity. Conserved quantities of the
Manakov system are employed to determine the properties of the perturbed solutions. We focus on
dissipative perturbations, such as diffusion, as well as linear and nonlinear loss, and show that the
effect of the bright (“filling”) soliton component is to partially stabilize “bare” dark solitons of the
scalar case against perturbation-induced dissipation. Our analytical predictions are corroborated by
results of direct numerical simulations.

1 Introduction

The mathematical modeling of physical phenomena often leads to a certain class of nonlinear partial
differential equations (PDEs) known as integrable systems. One of the distinguished features of inte-
grable systems is that they admit exact soliton solutions, i.e., stable, exponentially localized traveling
waves which interact with one another non-destructively, preserving their shape and velocity in the in-
teraction [1]. Moreover, integrable systems possess an infinite number of conserved quantities, as well
as a Lax pair that allows one to linearize them using the Inverse Scattering Transform (IST), a nonlin-
ear analog of the Fourier transform [2]. One of the prototypical integrable equations is the nonlinear
Schrodinger (NLS) equation:

iqi+ qxx—2vIq1° g =0, ey

with v = ¥1 corresponding to the “focusing” and “defocusing” regimes, where bright or dark solitons can
be supported, respectively. The NLS equation is a universal model for weakly dispersive nonlinear wave
trains, and it has been derived in such diverse fields as deep water waves, plasmas, nonlinear fiber optics,
Bose-Einstein condensates (BECs), spin waves, etc [3-10].



Vector generalizations of the scalar NLS equations (VNLS equations for short) arise as relevant phys-
ical models, under conditions similar to those described by NLS, whenever there are suitable multiple
wavetrains moving with nearly the same group velocity. This may happen, e.g., in nonlinear optics, when
two waves of different polarizations or two waves of different frequencies feature a nonlinear interac-
tion [11]. In such situations, of particular relevance is the so-called Manakov system [12], which is a
coupled NLS system:

iq; +qxx —2vlql*q=0, 2)

where q(x, 7) is a two-component, complex vector function. Notably, the Manakov system is completely
integrable, and, like its scalar counterpart, it admits a Lax pair, soliton solutions, infinite number of
conserved quantities, etc.

Menyuk showed in [13] that in optical fibers with constant birefringence, assuming certain nonlin-
ear (four-wave mixing) terms are neglected, the two polarization components of the complex electro-
magnetic field envelope orthogonal to direction of propagation along a fiber satisfy asymptotically the
following nondimensional equations:

iU +6uy) +dug, +(uP +alv/®) =0,  i(vi+6vy) +dve, + (@lul>+ v =0, 3)

where § represents the group velocity “mismatch” between the components, 2d is the group velocity dis-
persion (whose sign accounts for focusing vs defocusing regimes), and « is a constant depending on the
polarization properties of the fiber. The physical phenomenon of birefringence implies that the phase
and group velocities of the electromagnetic wave are different for each polarization component. When
a # 1 the above system is not integrable. However, averaging over the fast birefringence fluctuations that
are normally observed in a communications environment [14] yields 6 =0 and a = 1 — that is, the system
reduces to the VNLS (2).

Notice that, besides its relevance to nonlinear fiber optics, more recently, the Manakov system has
attracted much attention in studies related to homogeneous multicomponent BECs, composed by, e.g.,
different spin states of the same atom species [15-18]; in this context, a physically relevant situation
refers to the case where the repulsive inter- and intra-species interactions are of (approximately) equal
strength, a fact rendering Eq. (2) the appropriate model. Vector solitons of the VNLS model have also
attracted much attention, especially in the defocusing setting (v = +1). Of particular interest in this
setting are the dark-bright (DB) soliton solutions; in these states, the bright soliton —which is not sup-
ported by the scalar defocusing NLS— only emerges because of an effective potential well created by the
dark soliton through the inter-component interaction; as such, DB solitons are commonly referred to
as “symbiotic” solitons. Predicted in the seminal work by Busch and Anglin [19], DB solitons were first
experimentally realized by phase impriting method [20], followed by experimental observation of trains
of DB solitons generated by counterflow of two superfluids [21].

While the above discussion refers to integrable systems, in most physically relevant settings the per-
tinent model PDEs are usually non-integrable. Nevertheless, the theoretical predictions for the soliton
solutions in the corresponding integrable cases have proved to be an extremely valuable tool for the in-
vestigation of the non-integrable solitary waves in regimes that are reasonably close to the integrable
ones. As such, in many works, perturbation-based techniques of nearly integrable systems have been
employed for the investigation of the evolution of solitons in the presence of small perturbations, such
as linear or nonlinear loss or gain, diffusion, higher-order dispersion or nonlinearity effects, etc. The
goal of this work is to present a rigorous direct perturbation theory for the study of DB solitons of the
defocusing Manakov system over a constant background under small perturbations, namely:

iq;+qx—2(1q1* — g2)q = eRIq], 4)



where q(x, 1) = (q1, g2) T Rlq] = (R1[ql, R2[q]) T'o<exlisa perturbation parameter, and

T

q(x, 1) ~ q* (1) = (goe™%*,0) X — +00, (5)

are boundary conditions (BCs) that correspond to solutions which are “dark” in the first component
and “bright” in the second one. The linear term proportional to the background amplitude g, in (4)
has been introduced to make the boundary conditions independent of ¢. This can be achieved by a
gauge transformation replacing q by exp(2ig3t)q, or, more generally, by exp[2i fot go(s)dslq when the
background amplitude g, depends on t.

We will consider arbitrary perturbations satisfying R[0] = 0, which are asymptotically phase-invariant,
namely, such thatlimy_.. R; [qei‘!’] = el (Rj [qJ—']) for j = 1,2, forany phase ¢(x, t), with ¢+ :=limy_ 1o (X, 1)
(of course, ¢, = ¢ in the case of a constant phase). Note that these are fairly general assumptions, as
a wide class of physically relevant perturbations satisfy these conditions; these include, e.g., diffusion:
Rjlq]l =iy jaiqj, linearloss: R;[q] = iy;q;, nonlinear loss (pertinent to two-photon absorption in optics):
Rjlql = iyjqjlq jlz, etc. Note that the gauge transformation used above to remove the fast evolution of
the background phase is also phase-invariant, justifying the use of Eq. (4) instead of perturbing (2).

As mentioned above, the unperturbed defocusing Manakov system, namely Eq. (4) with € = 0, admits
exact DB soliton solutions of the form:

q(x, 1) = [sgn(V), [q2— A% —iAgtanh(\/ A2 - A2 (x— Vi - xo))] eivo, (6a)
qo(x, 1) = Apexp i ($x— (Y = (42 = 42)) £+ g, | sech(y/ 42 - A2 (x = Vi-x,)), (6b)

where Aj, A; determine the amplitudes of the bright/dark component, respectively, g, is the back-
ground, V the soliton velocity, x, the soliton center, and o,, ¢, are arbitrary phases [22-28]. Note that
the velocity V is related to the amplitudes by

VAL = 4(q5— AD)(AL - A)), 7

and for a stationary DB soliton V =0, Az = g, and Ap < g, is arbitrary. The scalar dark soliton can be
obtained by setting A, =0, i.e., g =0.

While perturbation theory for solitons that decay rapidly at infinity has been widely studied since the
late seventies —with a variety of methods ranging from multi-scale perturbation analysis, IST-based per-
turbation techniques, perturbation of conserved quantities, and direct numerical simulations [29-33]—
the nonvanishing background of dark solitons introduces severe complications when applying the per-
turbative methods developed in the rapidly decaying case. For the scalar defocusing NLS equation, dark
solitons are completely determined by the four parameters q,, A4, X0, 04, and in this case Eq. (7) reduces
to V2 =q2- Afi. In some early works, the perturbation of “black” (i.e., stationary dark) solitons in lossy
fibers was studied numerically [34] and analytically [35, 36]. The method developed in [36] was subse-
quently extended to “grey” (i.e., non-stationary or moving dark) solitons and to generic perturbations,
but only two of the four main soliton parameters, g, and Ag4, were determined. In [37], it was shown
that under a perturbation the background evolves independently of the soliton, and after separating the
background amplitude from the soliton “core”, it is possible to determine the dark soliton’s amplitude
and width upon using the Hamiltonian approach of the adiabatic perturbation theory (which is based
on perturbed conservation laws). A similar approach was also used for DB solitons in BECs [18].

It should be noted, however, that for dark solitons the adiabatic evolution of the soliton parameters
alone is not sufficient to fully characterize the perturbed solution. The reason is that, in many cases, the



perturbation generates a moving “shelf”, namely a linear wave emerging on either side of the soliton;
the existence of this shelf, which was confirmed both numerically and analytically, was in fact used to
explain observed discrepancies in the perturbed conservation laws [38], though without determining
analytically the core soliton parameters.

An alternative approach to soliton perturbation theory in the rapidly decaying case was pioneered
in [29], as a way to determine the effects of small perturbations on the evolution of the soliton spectral
(and hence physical) parameters. The method, which might be referred to as “integrable perturbation
theory”, relies on the IST and on completeness of squared eigenfunctions, namely quadratic combina-
tions of Jost eigenfunctions and their adjoints which satisfy the linearized version of the integrable PDE.
There have been many attempts at generalizing the IST-based perturbation theory to the case of dark
solitons since the early nineties. For instance, in Ref. [39], orthogonality conditions were derived from
a set of squared Jost functions for the scalar defocusing NLS equation over a constant background, and
from these conditions one can in principle obtain all of the soliton parameters. This early work, how-
ever, did not account at all for the evolution of the background induced by the perturbation. Subse-
quent works presented proofs of the completeness of the squared eigenfunctions using different ap-
proaches [40-45], but the results were not consistent with each other. As an example, the proof in [40]
was claimed to be incorrect in [44,45], based on the observation that the complete set should have two,
not just one, continuous spectrum basis vectors, which resulted in different predictions for the soliton
velocity and the first-order correction. In [46], the results of [40, 42] and [44, 45] were then declared to
be “equivalent” under some kind of “transformation between two integral variables”. On the other hand,
in [43] squared eigenfunctions were used (though without explicitly referring to them, or to their com-
pleteness) to develop an IST-based perturbation theory for the defocusing NLS on a background. The
main drawbacks of all these works is that none of them accounted for perturbative contributions from
the shelf that develops around the dark soliton, or presented comparisons of the theoretical predictions
with numerical simulations.

To date, the most comprehensive analysis of dark-soliton perturbation for the scalar defocusing NLS
is found in [47], where a multiscale expansion method and perturbed conservation laws were used to
find both the growth in magnitude and phase of the shelf, and the adiabatic evolution of all soliton pa-
rameters. This work also highlighted the emergence of a moving boundary layer connecting the inner
soliton core to the outer background.

There are many papers available in the literature on bright soliton perturbation theory, but, as we
mentioned above, less so for dark soliton, and only a handful that addressed vector/multicomponent
problems on a nontrivial background. In light of the difficulties that scalar problems for dark solitons
have presented, it is not surprising that few attempts have been made so far to develop perturbative
approaches for multicomponent integrable systems on a background. In particular, to the best of our
knowledge the only works on soliton perturbation theory for the defocusing Manakov system on a non-
trivial background are Refs. [18,48,49]. The approach in these papers relies on the adiabatic approxima-
tion, and evolution equations for the soliton parameters of a DB soliton are derived by expanding the
solution into a set of complete eigenfunctions of the linearized operator. We should mention, however,
that the completeness result for the eigenfunctions appears to be an unsettled issue even in the scalar
case, and in the Manakov system the defect of analyticity of the scattering eigenfunctions further com-
plicates the problem. Furthermore, it is not clear how or even if the soliton shelf can be incorporated into
the description, how the results in these papers compare with the scalar reduction on this account, and
no comparisons with direct numerical simulations are offered to corroborate the results. Arguably, the
perturbation theory for DB Manakov solitons is to a large extent still an open problem, and the present



work aims at filling this gap. We want to stress the great practical importance of this problem: besides the
obvious relevance of being able to include, at least perturbatively, physical effects such as dissipation or
loss, in optical fibers described by Eq. (3) one would also be able to account for more general polarization
properties of the fiber (e.g., for values of a # 1 but reasonably close to it), and/or include four-wave mix-
ing effects as perturbations of the integrable case. Also, in the recent applications to BECs, the harmonic
trap necessary to achieve confinement of the atoms in multicomponent repulsive condensates is typi-
cally devised in such way that the ratio of longitudinal vs transverse trapping frequencies is very small
(Q ~ 1072). In these cigar-shaped geometry for the condensates, the BEC dynamics for the longitudinal
part of the wave function is indeed described as a perturbation of the integrable defocusing Manakov
system. Moreover, in [50,51] the coupling coefficients for “symmetric” spin-independent and “antisym-
metric” spin-dependent interaction terms are also such that their ratio is a small parameter up to which
the model equation can be considered a small perturbation of a 3- component Manakov system. These
are just some examples of the practical applicative relevance of this work. Specifically, the goal of this
paper is a highly non-trivial generalization of the methods developed in [47] to describe perturbations
of DB solitons.

The plan of the paper is the following. In Sec. 2 we discuss the evolution of the background, and in
Sec. 3 we use multiple scales in time to formulate the perturbation problem for a stationary DB soliton.
It is shown that, similarly to the scalar case, a shelf emerges, propagating with a speed determined by
the background intensity. The problem is then broken into an inner region, where the core of the soliton
resides, and an outer region which evolves independently of the soliton. Here it is noted that, even for
stationary DB solitons the amplitude of the bright soliton, Ay, is an additional physical parameter one
needs to determine. Therefore, the perturbed conservation laws (for Hamiltonian, energy and momen-
tum) used in the scalar case are not sufficient to determine all the soliton parameters. We are able to
suitably augment the set of conserved quantities of the unperturbed Manakov system, and use them to
determine the properties of the moving shelf, as well as the adiabatic evolution of the soliton parameters.
Our results for a stationary DB soliton coincide with the ones in [47] in the reduction to the scalar case,
and show good agreement with direct numerical simulations. In Sec. 4, we generalize the multiscale
perturbation theory to a moving DB soliton. Although in this case we are not able to obtain a complete
solution for the amplitudes and phases of the DB soliton at O(¢), we use the augmented perturbed con-
servation laws to obtain a nonlinear system of adiabatic evolution equations for the soliton and shelf
parameters (8 coupled ODEs in the slow time T = €t for the DB soliton parameters q,, A4, Ap, 0o, and
for the asymptotic amplitudes and phases of the shelf as x — +c0). In Sec. 5, we discuss the boundary
layer region. In Sec. 6, we present the solution of the system of equations for the adiabatic evolution of
the soliton parameters for specific perturbations (diffusion, linear and nonlinear loss in both compo-
nents). This is a highly nontrivial result, since, a priori, one would have no guarantee that the system of
equations for the above mentioned DB soliton parameters could be solved in closed form. Furthermore,
we show that our results are consistent with [47] in the scalar reduction, and we also compare them in
the general vector case with some direct numerical simulations, with excellent agreement. Finally, Sec. 7
is devoted to some concluding remarks and a discussion for future work.

2 The boundary at infinity

Let us consider the perturbed Manakov system (4) with BCs (5), consistent with a DB soliton. We seek
the solution in the form of the following asymptotic expansions in €:

g1 = qro+eq11 +O(E?), g2 = goo +£q2 + O(?), 8



and introduce two time-scales, T, = t and T} = €t, so that % — 6iT + gain +0(&2). The O(1) equations are

of course the unperturbed Manakov system (4) with € = 0 for g9 and g»9. Collecting O(¢) terms yields
the first order correction system of equations:

ial/]u 0q10 | 0%q11

2 2 2
T, HTTI + 92 —2(Iq0l° +1g201° — g5) q11 —4q10Re(q1047; + G20451) = Rilqio], (9a)
0q21 | .0qa0  0%q 2 2_ 2
’aT,, HTTl +7ax2 —2(Iqu10l° +1g201° — g5) o1 —4g20Re(q1047; + G20451) = Rz [qg20], (9b)

where * denotes complex conjugate, and where we have assumed that Rj[q] = R;[g;], namely that the
perturbation of each component only depends on the corresponding component. Note that this as-
sumption has only the purpose of simplifying the description and the notation, but it is not essential in
any of the following. We also assume qun,di g»1 — 0 as |x| — oo (continuous wave background), and
the perturbative corrections ¢, g21 to be functions of T; only. Under these assumptions, taking the limit
as x — oo in (9) yields

; qio .aqzio
’a_Tll =Rilq5)], 5T, = Ra[q)], (10)

where the superscripts * denote limits as x — +oo, and we note that since ¢q;, g» have to satisfy the
boundary conditions to all orders, g5, ¢, are both zero, together with all higher order terms.

Let us express the asymptotic behavior of the dark component as g5, = qoei‘/’i, and take into account
that in the DB soliton case g5, = 0. Then, separating real and imaginary parts in the first of Egs. (10)
yields
99, op*

— :Im(R1[qoe"‘/’i]e_"‘/’i), 9o 3T
1

o, =Re(R,[g,e'? 1e7'%"), (11)

i.e., using the asymptotic phase invariance of the perturbation:

OAP™

0q,
— = =0. 12
T (12)

T, Im(Ry [g0)),

Here, Ap™ = ¢p* — ¢~ is the asymptotic phase difference of the background. Since the second component
is assumed to be rapidly decaying, not surprisingly, Egs. (12) for the boundary at infinity are the same as
in the scalar case, and are independent of the perturbation in the bright component.

3 The first order correction for a stationary DB soliton

For a stationary DB soliton of the unperturbed Manakov system, in (6) we set A = g, and V =0:

qa=—iqotanh(y/q3— A%(x - x,))e'’°, qp= Ape =4t sech(y/ g2 - A2(x=xop))e'%.  (13)

Note that, unlike black solitons in the scalar NLS, here the amplitude of the bright soliton, Aj < g,, is an
additional free parameter.

Let us use Madelung coordinates for both components, namely write g; = ue'? for the dark compo-
nent, and g, = ve'V for the bright one, with u, v,¢, 9 € R. Thus the system (4) becomes

—Upr+ Uxx — (,biu - 2(u2 +v° - q(z,) u =€eRe(R; [uei¢]e_i¢), (14a)

Up + UDyx + 2Urpy = eEIM(R) [ue'?1e™ %), (14b)



— VY Ve~ =2+ VP - gA)v = eRe(Ry[ve'¥]e™ ), (1l4c)

Ui+ VW g + 205y = eIm(Ro[ve'¥]e” V). (14d)
As before, we introduce multiple scales in time: T, = ¢, T} = €t, and expand u, v, ¢,y as:
U=Uy+EU + O(ez), V=UVo+EV] + O(ez), G=do+ep + 0%, Y=yYo+ey+ 0(&%). (15)

At O(1), the system (14) is satisfied by the stationary DB soliton (13), with:
Uo = qotanh(y/ g5 — A2 (x— x,)), o =0, (16a)

vo = Apsech(y/ g3 — A2 (x—Xo)), Wo =0+ (q5— A7) T. (16b)

At O(¢), the system (14) yields:

—UoPoT, — U1PoT, — UoP1T, + Ulxx — 2PoxP1xUo — (P?)x ux (17a)

_4u¢2)u1 =AUy VoV — Z(U(Z) + U% - qf,) u; =Re(R; [uoeid’O]e_i(Po)’

ULT, + UoT, + UoPLax + U1 Poxx +2U1xPox + 2Uoxir = IM(Ra[uge' e ), (17b)
~VoWoT, — 1WoT, = W1T, Vo + Vixx — 2WoxWix Vo — Wiy U1

—4V20) — 4uyvouy — 2(Ud + V2 — g2)v1 = Re(Ry [vpe'¥ole Vo), (17¢)

V1T, + VoTy + UoW1xx + ViWoxx + 2V1xWox + 2VoxW1x = Re(Ra[vpe Vo]e™ V7). (17d)

Here and in the following subscripts T, and T; denote derivatives with respect to the corresponding
time-scales. Note that (16) imply

(POT,, =0, Yor, = A%, - qg’ (pox = (Poxx =YPox =Woxx = 0. (18)
Furthermore, seeking a stationary solution, we assume

uit, =11, =, =11, =0.

In addition, we assume that q, and A are independent of T,, but both in general have O(¢) terms de-
pending on T;. Then we can write the system (17) in matrix form as:

0% —6us —2v5+24; —4uy U, u uo‘%;’ +Re(R) [uge'?o]e %) (192)
—4uyv, ('3§C—61)§—2LL(2,+6]5+A§j 141 UOZ—(’;;’ +Re(R2[U0eiwg]e—iwg) ,
uoai +2Uox0y 0 ¢1 | [ —tor, +Im(Ry [upei®olei%o) (19b)
0 v06§+2voxax v | —Vor, +Im(Ry[v,e'Vo]e Vo) |°

The expressions for u,71,, Vo1, Which contribute to the forcing in the equations (19b) for the phases can
be easily computed from (16):

daq, dA
o =g | X0 _Goan —Avar ) e dd, (202)
ohi “\an a5~ A7 U] dodTy’

daq, dA
b dx, Yoar, ~ bd_Tf(x_x) +&% (20b)
oTy ox am Chzy_Ai ¢ ApdTy’



In turn, the T} -dependence of g, is given by (11), while d A,/d T is related to dq,/d T via
dAp dqo
Ap2q: - A2 —2 —g,(4q% -3A%) 2 =
»(2q, ) AT, qo(4q, ) AT,

[2_a2(p @0 2 _ 42 °° Vo, iy
=1\/do— A3 | Eo +(gq;— A;)Im Ro[vp,e'Velv e Vedx]|,
AT .

1

21)

which is obtained from the perturbed conservation laws, and specifically Eq. (66¢) in Sec. 6. In Table 1
below, expressions for dq,/dT) and dA,/dT, are given for various types of perturbations, which are
then used to compute particular solutions to Egs. (19b) for the phases in each case.

Diffusion Linear loss Nonlinear loss
Rilq1] Y1024 iY1q1 ivilqi1* g
Ry [qo] iY20%q> iy2q> iv21G21 g2
dqo 0 3
dT1 Y140 Y149,
dA, |, AAS—q5)? | Ap(y1g5+2y2(q5— AD) | ApBy1q,+4ya(q5— AD)
ar, | T eg- A 2q2 - A2 3(2¢2 - A2)

Table 1: dq,/dT, and d A/ d T for perturbations corresponding to diffusion, linear loss, and nonlinear
loss.

Ideally, one should determine the general solution of the linear, non-homogeneous system (19) for
the first order corrections to amplitudes and phases of the stationary DB soliton. The situation in the
Manakov system, however, is significantly more complicated than in the scalar case. Indeed, while the
equations (19b) for the phases are fully decoupled, and one can obtain the general homogeneous so-
lution, as well as a particular solution, the system (19a) for the amplitudes remains fully coupled, and
we are only able to obtain explicit expression for the particular solutions, as well as certain asymptotic
information on the general homogeneous solution.

3.1 First order corrections for the phases

The system (19b) for the phases ¢, is decoupled, and has homogeneous solutions:

coth(\/ﬂ(x—xo))
sinh (zmu—xo)))
Nz

where ¢, ¢, dy,d; are arbitrary constants. It is clear that in order to avoid exponential growth in the
phase one needs to choose d, = 0. Also, the coth term in the expression of ¢, becomes singular at
X = X,, and at first glance one might assume that this requires ¢, = 0 as well. However, the phase term

Prp=c1+c (x - (22a)

(22b)

w1h=d1+d2(x+

in the dark component is multiplied by tanh(,/g3 — Ai(x — Xo)) [see Eq. (16)], which vanishes for x = x,;
this indicates that more general solutions could exist with ¢, # 0. On the other hand, particular solutions
are determined by the forcing, and the right-hand sides (RHSs) of Egs. (19b) for the phases for various
choices of perturbations are given in the table below.



Perturbation RHS of (19b) for ¢, v

] . dx, 242 (q5-AD)
Diffusion Uox (—dTI ~Y2 30 m) (X = Xo) | +Y1Uoxx
2A2(q2—A2) z(qz_Az)z
_ b0 Th (g 2o Tpl
Vox (xOTl V23— (x xo)) V23— Vot V2Voxx

. dx, _20nd;—12Ap) )
Linear loss Uox (dT1 oA X%
(@_wu_x ))+wy
oxX\dT, 24q,2,—A§ . o 2q5-A2 70
. dx, 20B719,—2y24) 2 3
Nonlinear loss uox((]lT1 - W(x—xo)) —Y195Uo +Y1Uy,

dx, 2B719.-2724}) 3y1qa+4y2 A2 (g2-A)
—s (X —Xp) | —

Vox ((;m R 32q2-A2)

3
Vo +7Y2V,

Table 2: RHSs of Egs. (19b) for perturbations of the form of diffusion, linear loss, and nonlinear loss (cf

Table 1).

From the explicit expressions of the forcing terms in Table 2, one can compute particular solutions
for the Egs. (19b). Itis important to point out that for all three perturbations considered here as examples
(diffusion, linear loss, and nonlinear loss), phase invariance can be used to simplify the RHSs of (19b).
Indeed, linear and nonlinear loss are phase-invariant for all x, not just asymptotically; in the case of the
diffusion perturbation, in general first and second order derivatives of the phase of the bright component

would appear, but these are zero in the case of a stationary DB soliton according to (18).
Specifically, for a perturbation of the form of diffusion in both components, we find:

2 [2_ 1
1 dx A/ o= 4
b1p= —0—yg(x—xo)—coth(\/qg—A%(x—xo))

2ham 3(2q2 — A2)

_gyl Incosh (\ [q5— A (x— xo)) )

1 dx,  X(x=2x0) A7 (g5~ A7) 2 Y
V= oan T T eegz-a 3¥elncosh /5~ A} (x-x0).

for linear loss we obtain:

1 dx, Y1d, — Y247, PR
P1p = s x—— — (X = Xp) coth(\/qO—Ab(x—xo)),
2 dTl 2 2_A2) 2_A2
o~ Ap\/ do — A
_1 dx, Xx-2x)(n 45— y2Ap)
S 27dn 2(2q5 - A7)

Wlp

’

and, finally, in the case of nonlinear loss we find:

1 d 37198 + 2y, A% (g% - A?)
b1y = ﬁ+(x—xo) Y1do t2Y2Alqs — Ay coth( /qg—Ai(x—xO)),

X
2 dh 3244 —3A2 g2+ A), [q2 - A

1 dx, X*(Xx—2%0)By1q5—2y243) 2
= —x —
2 dh 6(2q5— A%)

1/llp
b

1 A 2_ A2
+ g’}/z oy lncosh(\/qo - Ab(x—xo)) .

(23a)

(23b)

(24a)

(24b)

(25a)

(25b)



One can then write the full O(¢) contributions to the phases by adding the homogeneous solutions in (22)
and the perturbation-dependent particular solutions in (23), (24) or (25). Note that in all cases the phase
of the bright component, ¥, exhibits a chirp-like quadratic growth as x — +co. However, we should point
out that the limit | x| — oo is generically outside the range of validity of the asymptotic expansion in small
time scales, since for large x the O(e) terms are no longer necessarily smaller than the O(1) terms. Also,
the asymptotic behavior of the x-derivative of the O(¢) contributions to the phase of the dark soliton,
$1x, as x — *oo is given by Table 3 below. Furthermore, a 7 jump as x — *oo in the O(1) term phase of

the dark component has to be included, on account of the limit of tanh(\ / q[2, - Ai(x - xo)) in (16).

Perturbation (P13
A2 \/qz—AZ
e s 1 dx, = bV 9™ a2 [ o a2
Diffusion 2ar, TC2F 2 3eR-A) F3Y1\/q0— 4,
- 2_ AZ
Linear loss % ZJ}” +oF o
! 2q5-A3)\/ a5 -4,
2 2 2 4
) A A AR,
Nonlinear loss %3? +o 7 " . = 722 -
1 (Zqo—Ab)\/%—Ab

Table 3: Asymptotic behavior of the x-derivative of the O(¢) solutions for the phases of dark component
as x — oo for the various perturbations considered above.

3.2 First order corrections for the amplitudes

We now proceed to obtaining information on the O(e) perturbative terms for the amplitudes of dark and
bright components. As mentioned above, the system (19a) for the amplitudes is fully coupled, and the
complete set of homogeneous solutions is not available. Note, however, that as |x| — co the homoge-
neous system reduces to:

O urp ~Aqoun,  05vip ~ (g5 — AD)vin, 26)

and since both RHSs are positive (recall that 0 = Aj < ¢q,), the homogeneous solutions for the amplitudes
decay exponentially (exponentially growing terms would be unphysical), and their contributions can
therefore be neglected compared to the particular solutions.

The particular solutions at O(¢) for the system (19a) for u;, v; can be obtained as follows. Assume that
in the RHS of (19a) one has Re(R) [uye'?e]e"i%°) = Re(R,[v,e!¥°]e~i¥°) = 0. This condition is satisfied
by all the perturbations considered here, namely, diffusion as well as linear and nonlinear loss, in the
case of a stationary DB soliton. Now recall the O(1) equations for u,, v,, and write the corresponding
homogeneous system in the matrix form:

[ 02 —2u? + 24> —2UyV, u, | [0 @7
—2UyV, 0% —2v5+q5 + A2 Vo 0
Taking derivatives of this system with respect to g, and A, we obtain two systems
0% —6u—2v2+2q> —4u,v, Uog, | _ [ —4q,U, 28)
—4u,v, 0% —6v5—2us+q5+ A2 || vog, —2qovo |’
[ 0% —6u’—2v2+2q> —4u,v, H Uoa, :[ 0 29)
—4u,v, 6%—603—2u§+q§+Ai VoA, —2Apv,
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Notice that both systems have exactly the same matrix as in (19a), and since ¢,, Ap are space-independent,
we can seek solutions u,, v; to (19a) in the following form:

Uy = Arllog, + A2Uoa,, V1= A1Voq, + A2Vo4,, (30
where Aj, As, As, A4 are varying coefficients. Taking linear combinations of the two aforementioned sys-

tems, we can match the RHS of (19a) and obtain the u;, v; solution in terms of derivatives of unperturbed
solutions with respect to their parameters, namely:

ul:_(UoTl)aug+(00T1*2¢P0T1)6u0 1:_(00T1)%+(00T1*2%T1)avo -

440 ) 040 44 04, 440 ) 04, 44y 04y

We should note that in order to completely determine the O(g) contributions to the amplitudes u;, v;
one needs to obtain the dependence on the slow time T; of the phase parameters of the dark and bright
components of the soliton, namely do,/dT; and d¢,/dT;. The former will be obtained from the O(e)
perturbed conservation laws in Sec. 6, but d¢,/dT; is not determined at this order. On the other hand,
the terms involving d¢,/d T do not contribute to u;, v; in the limit as x — +oo, and one can obtain from
the above equations the asymptotic behavior:

OoT1

Uy — ¥ , v1—0asx— too. (32)
44,

Notice that the particular solutions above are obtained under the assumption that the real parts of the
perturbations in both components are zero. If one has Re(R;[u,l) = aju,, Re(R2[vo]) = azv,, where
a1, a are x-independent, then a particular solution can be built in a similar way.

4 The first order correction for a moving DB soliton

For a moving DB soliton, we have 0 < A; < g0, 0 < Ap < Az and V # 0, with all parameters being, in
general, functions of the slow time 7. In a co-moving reference frame: X = x— fj V(es)ds—x,, T = 1, the
DB soliton solution is written as:

Ga = (sgn(V) \/ 43— A% —iAgtanh(X \/ A% - A%})) eivo, (33)
Qb — Abel((po-'—% (X+for V(Ss)ds-'—xa)_(VTZ_(AZ_AE))T)SeCh(X /A?i _ A%), (34)

and the perturbed Manakov system (4) takes the form:
iq: — i(V + Xor)qx +qxx —2(Iq1° - g5)q = eRIq]. (35)

To avoid dealing with singularities in the derivatives with respect to the soliton parameters, in the fol-
lowing we will assume that V' (0) > 0, and that V remains sign definite as a function of T;.

After applying Madelung ansatz for each component, g, = ue'?, g, = ve'¥, and separating real and
imaginary parts, Eq. (35) yields:

—u; + Vupx + uxx — i u—2u* + v’ — g2)u = eRe(R; [ue'?1e™'?), (36a)
U, — Vux + upxx +2uxpx = elm(R; [ue'?1e™'%), (36b)
—vy, +Vowy +vxx —w%v —2(u? + v - g®)v = eRe(Rz[ve'V]e™ V), (36¢)
Ve — Vux+ vWxx +20xyx = elm(Ro [ve'V]e V). (36d)

11



Expanding u, v, ¢,y in powers of € as in (15), and letting as before 0; =01, + €01, + 0(&?), we find for the

O(1) terms in the co-moving coordinates:

uo:\/qg—AZsechz(X,/AZ—Ai], <J>o—ao+arctan(— fd ztanh(X\/Aé—Ai)),

qO_Ad

1% To V2
vo = Apsech(Xy/ A% — A2), 1[/0:(p0+E(X+f0 Vds+x0)—(7—(A§—A%))To.

Then, stationary solutions at O(¢) are governed by the following, fully coupled system of ODEs:

—UoPor, + VU1Pox + VUoPr1x + U1 xx —2PoxP1x Uo — (/’(ZJXUI
— 412wy — dupvovy — 23 + V2 — gPuy = Re(R) [upe'P]e ),
Uor, — Vi x + UoP1xX + U1 Poxx + 2U1 xPox + 2UsxP1x = IM(R; [Uge'Po]e™ P0),
—VoWor, + VNYox + VUoWix + V1xx —2WoxW1x Vo _U’§XV1
—4V201 — duyvouy — 2(u + V2 — g2 v) = Re(Ra[vpe'¥ele™ V),

Vor, = VUIxX + VoW1xX + V1Woxx +2V1xWox +2VoxW1x = Im(Ra[vee' Vo] V?).

In the scalar case, for which v, =y, = 0, the above system reduces to:

0% + Vepox — g —Bug +245  Uo(V —2¢ox)0x
(=V+2¢ox)0x + doxx Uo0% +2UoxOx

231

h1

_ J1luo, Pol
J2luo, Pol

)

T1[Uo, Pol = Re(Ry [Upe']e™ %) + topor,,  Joltto, Pol = IM(Ry [upe' T %) — uyr, .

Now, from Eq. (37) we easily find:
‘72 ) )
P 0T, (pOXL) 1//0[0———+A _A’

v A4sech®(X,/q5- A%)

¢ %4
oX = y Yox =1,
2 42 2 2 2 2 2
AZsech™(Xy/q5— Ay — 45
as well as
AgAar, — ApApTy Adry G5-u3  Godomy
oty = ox | X—— 55— ~¥on |~ n T U
d~ % d 0 0
AdAar, — ApApTy Apmy
VoT; = VoX XW_ oy |+ —— Vo
d~ b
Por, =001, +
" 2 _ a2
o XAdAdTl_AbAle oy o Smh(2X\/Ad_Ab) GoAdt; —Aqdot;
oX 2 2 ~—JXoTy 2 2
Aa= % 2Aa a2 A2 q5— Ay

4 1 To 14
YoT, =QPoT; + Eanl + EVTI (X+j(; Vds+x0J - (E VT1 _Z(AdAdTl —AbAth)) To.

To this end, in the limit X — +oo, Egs. (38) yield:

_ 1 goAar, — Aaqory
—fdo|Oo1, + —

T B

+Vqoiy — 4qg3uf =Re(R, [upe'Po1e Po)*,

12

(37a)

(37b)

(38a)

(38b)
(38c)

(38d)

(39

(40)

(41)

(42a)

(42b)

(42¢)

(42d)

(43a)



~VUy + Gobixx + Gor, = Im(Ry [use'le %)%, (43b)
& . ,
e vy =Re(Ra[vpe'Vo]e”'Vo)*, (43c)

0=Im(Rs[v,e'Vo]e Vo)t (43d)

where we have used uI—'X x= vf—“X x=0 for a continuous wave background. Using (12), the second equation

simplifies down to Vuj'y = qo¢]yy- Assuming that u;x — 0 as X — +oo, then both u; and ¢, x tend to
constants as X — oo, which corresponds to the shelf developing around the soliton. In this case, the

second equation in the system is automatically satisfied, and does not yield any additional information.

5 Boundary layer

Since u;,¢; do not vanish as x — +o00, the solution to order £ does not match the boundary conditions
at infinity. Thus, our problem is now broken into two regions: the region that matches imposed non-
decaying boundary conditions at infinity, which is unaffected by the soliton, and the region in which the
O(¢) correction term is valid and the solution is quasi-stationary. To resolve this mismatch, we introduce
a boundary layer in which there is a transition from the non-zero value in the perturbation term to the
boundary conditions at infinity.

In the boundary layer region, we can write:

U=qgo+ew+0@E>), v=ep+0(€?), G=¢*+e0+0(?), w=y"+eu+0(e?), (44)

where w, p,0, u are real-valued functions of x and ¢. As before, utilizing two time scales, with 8; — 01, +
€0T, + O(&?), we can write

dqgo deo* dqo dy*
=0, =0, =Im(R , = =—Re(R . 45
art, at, aT, m(Ry[g,]) 9o AT, e(Ra2(qo]) (45)
At O(1), the system (14) is satisfied exactly, and at O(¢) we have
opt  apt 96 Pw _op* 00 (a¢+ 2 )
- - — —2———q, - ~4q%w =ReR : 46
Tt ~Yor, a1, %" ax2 " “ox ox 1 ax) W= Adow=Rek g0+ ew] (162)
ow dq, 0%0 0’¢p* _owadpt _dq, 00
- — 2——— =ImR , 4
T, T ar, T2 oz *¥ax ox TP ox ox aldotew) (46b)
dwi 62p awi 2 ~
-p ar, +@—( ox ) p =ReRy[ep], (46¢)
op  o*w* _odpoy*
2— =ImR . 46d
o1, TP a2 Tox ax - miklep] (46d)
Using (45), we obtain
op*
ReR;[qo+€ewl+q, 3T =ReR;[g,+ ew] —ReR[g,] = O(¢), (47a)
1
dqo
ImR; (g, +ew] — T =ImR;[q, +ew] —ImR;[q,] = O(¢g), (47b)
1
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therefore these terms go to higher order. In addition, using the fact that ¢*,y¢* only depend on the slow
time T3, we obtain the system of equations:

a0 0*w ow 00 p_ . Op _

ot = ~4G2Ww =0, —+Go=— =0, —2pgi+—> =0, =
o T Gz PAo™5x2 =" ar,

0 48
0T, 0x? 0T, 48

from which it follows that p = C; eV2d0% 4 C e“/é%x, with Cy, C; independent of T,. In turn, w, 8 satisfy:

0’w ow 026

ox2’  or, 1oxz

00
0T,

= —4q(2)w+ (49)

The above system can be decoupled by taking two derivatives in x, which yields two identical equations

for w and 6:
0*w 4 200w 0w 0%0 4 ,0°0 00 50)
o1z M2 T ox a1z M05x2 T axt

Note that the O(¢) perturbation u of w* (cf (44)) is not determined in this order. Assuming a long-wave
approximation, the above equations become
azw_ ,0%w 629_ ,0%0
otz “Tog gz T *ogy2

(61

namely, the O(¢) perturbative terms of amplitude and phase of the dark soliton satisfy the wave equation.
This allows us to conclude that, similarly to the scalar case, the edges of the shelf move with the velocities
W =22¢q,.

6 Perturbed conservation laws

6.1 Stationary DB soliton

In order to find the slow time evolution of a stationary DB soliton parameters, Ay, 0, and x,, we employ
the first three conservation laws for the unperturbed Manakov system, involving:

E= f [lql* - g3] dx, (Energy), (52a)
I=2Im f [q-qx]dx- G0, (Renormalized Momentum), (52b)
H=-— f [laxl?+ (lql* - g3)?] dx, (Hamiltonian), (52¢)

where - denotes the usual complex vector dot product: (a,b)” - (¢,d)” = ac* + bd*, and A¢, is the phase
difference across the soliton. The evolution equations for these integrals of motion take the form:

dE d 0

== 25(—q0d—‘;‘1’ +Im f_ooR[q] .qdx ) (53a)
dl oo dq? dA¢

T = —46Ref_ooR[q] -qxdx—eAgbng;’ —qu dTlo’ (53b)
aH =2¢ (E—d 24 Re f ” Riq] dx) (53c)
ar ~ S \an T ) )
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Matching O(¢) terms in dE/dt and (53a), we obtain

d [*® d
E[_@Z[uou1+2vov1]dx:—Zq(,d;’f;

f R[q]-qdx]|.

Since the edges of the shelf are moving with velocity +2¢, (see end of the previous section), we change
the interval of integration in the LHS to (—2g,t,2g,t), and the Fundamental Theorem of Calculus yields

(54)

d (o/¢]
4qo [Uo2qo)u1(2qot) + Uo(—2qo D ur (—2Go1) ] = —2q, dq +2Im f Riq]-qdx|. (55)
—00
In the limit x — +oo, using u, — +qo, U1 — uj, the above equation reduces to:
- d i
4G2 (Ut —u) = —2g, 290 f Riq]-qdx|. (56)
1 —00
Recalling the definitions of ui—“ in (32), we finally get
do, dqg, 1 [ f°°
— = ——Im Riq]-qdx| . (67
dTl dT1 qo -0 1
Matching O(e) terms in d1/dt and (53b), and proceeding in a similar way we obtain:
P+ 1 =0, (58)
which in turn, in light of the asymptotic behavior of ¢, in Table 3, implies
Do 4 9ey=0 (59)
arn,  “TT

The last equation relates the arbitrary phase constant ¢, for a stationary DB soliton to the slow-time evo-
lution of the soliton center. Although in this work we do not determine x,(T}), our numerical simulations
indicate that for all three types of perturbations considered in Table 1 the soliton center does not move,
which indicates that ¢c; = 0. We note that the phase constant can be independently determined by an-
alyzing the radiation field associated with the soliton, as in [52-54] in the context of instability-induced
dynamics of dark solitons.

Finally, matching O(¢) terms in d H/d t and (53c), yields:

2 d d
-5 77 V@~ A24as - 4) = -840\ g% - &2 d%”‘m f Ro[voe™lvoe Vodx,  (60)
1

from where, knowing dq,/d T; (see Eq. (12)), and the form of the perturbation R[q], we can find d A, /d T}
(cf Table 1 for some specific perturbations).

Next, we proceed to compare the above findings with direct numerical simulations. We present here
the case of nonlinear loss as an example, but we note that for the other considered perturbations the
results —and the agreement between the analytical predictions and simulations— are similar. For this
example, we evolve Egs. (4) using Egs. (6a) as initial conditions for the case of a stationary DB soliton,
with Az = g4, using a fourth order Runge-Kutta method in time. In the left panel of Fig. 1 we depict
the complete evolution of the black soliton, so as to demonstrate the evolution of the shelf, under the
nonlinear loss. The evolution of the DB soliton parameters A; and g, are depicted in Fig. 2. It is ob-
served that the analytical predictions are in very good agreement with the results of the direct numerical
simulations.

Below we will consider the perturbed conservation laws for the general case of a moving DB soliton,
and obtain from them explicit equations for the adiabatic evolution of the soliton parameters for the
various perturbations. The reductions to stationary DB solitons and to the scalar case will also be given.
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Figure 1: Left: Contour plot of the modulus of the dark component of a stationary DB soliton under
nonlinear loss. Here, q,(0) = 1, A,(0) = 1/v2, Ag = g, Xo = 0 and €y, = €y = —0.01. Right: Contour plot
of the modulus of the dark component of a moving DB soliton under linear loss. Here, parameter values
are: ¢,(0) =1, Ap(0) = 1/v?2, Az =0.8, xp = 0and €y; =€y, = —0.01. In both plots the dashed red lines
correspond to the analytical prediction for the evolution of the shelf’s edge.
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Figure 2: The evolution of the stationary DB soliton parameters A; and g, under nonlinear loss. The
solid blue lines correspond to the numerical simulations results, whereas the dashed red lines to the
analytical predictions. Here, g,(0) = 1, Ap(0) = 1/v/2, Aj = g, Xo =0 and ey1 = €y = —0.01.

6.2 Moving DB soliton

For a moving DB soliton, we have eight independent parameters: uj, (,b;—'X, and slow evolution of vari-
ables Ay, A4, go, and o,. Other parameters of the first order correction of the solution, namely wi—’X are
not determined at this order of perturbation. Determining the slow time evolution of x, requires the ex-
plicit expression of the first order corrections for amplitudes and phases, and will be the subject of future
investigation.

As in the case of stationary DB soliton discussed in Sec. 5, the edge of the shelf still propagates with
velocity W(Ty) = 2q,(T1), and the velocity V of the soliton now may also depend on the slow time T;. In
the moving frame of reference X = x — fot V(es)ds — x,, the boundaries of the shelf are given by:

t t
Sc(n) = —f [2g,(€s) + V(es)lds, Sgr(t) =/ [2g,(€s) = V(es)lds, (61)
0 0
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where Sy and Sg give the position in X of the left and right boundaries of the shelf, respectively.
In addition to E, I and H we used above, here we will also employ the conserved quantity:

o0
F:Imf
—00

which was found through symbolical software [55, 56]; the time evolution of F is given by

dx, (62)

1
lqlli*(q-qx) + 39XX - Ax

dF oo ) 1
—=—2€Ref Riq]- | (lqll +qx-q)qx—§qxxx aX. (63)

dt
Note that each term in the integrand of the conserved quantity (62) involves spatial derivatives of the
field q, which decay at infinity, thus ensuring the convergence of the integral. Furthermore, unlike what
happens for the momentum (52b) (see, e.g. [53]), since there is no straightforward physical quantity
associated with this higher moment F, there is no underlying physical motivation that requires a renor-
malization of the integral.
Furthermore, we will use the so-called center of energy:

[0}
R = f X(llqll* - g3)dX, (Center of Energy), (64)
—00
whose time evolution is related to the momentum I:
77 o
YT I+ 2£Imf X[RIql-q—goRIgo))dX. (65)
—00

Repeating the same steps as in the previous subsection while restricting the interval of integration to
X € [Sg, S] for the d/d T, terms, we obtain four evolution equations:

dE, dq

=-2q0(2qo+V)uy +2q,-V) Uf) - 2670d_TO + ZImf Riq,]-qodX, (66a)
1

at
dl B d(g>A)

2 :2q§((2q0+V)¢>1X+(2qo—V)¢>fX)——q" d —4Re/ R[qo] dX (66b)
dTl dTl —
dH, aqe f‘x’ 0q,

=4E 2R Rlq,]- X,

dT, OQOd +zhe . [QO] 0Tod (66¢)
dFo 4, .+ B
aT —_%(¢1X(2qo_V)+¢1X(2%+V))

1

® 0q, 09, 163(10)
2Ref_oo (qol - ((”qo” *5x 9o ) X " 33x5 dXx, (66d)

where E,, I, H,, F, are the values of the corresponding conservation laws integrals computed for € = 0:

Ep=—-2\/ A% - A, (67a)
— 4 2 2 2 2

= G- A ai - 4, (67b)

2 2

_2,/Ad—Ab

2 2 2 2 42
H,= A2 (4A%(AZ - AD) +3q5 A7), (67¢)
d
2(A% - A%)\/q5— A% (A% (q5—2A%) =3, A% +2A%)
Fy= 3 : (67d)
3A3
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In addition, we obtain one non-evolution equation coming from leading order of d%2/d t:
2qo—-V)Rui +¢y) — 2qo+ V) 2uy —piy) =0. (68)

Putting everything together, Egs. (66), along with (68), (43a), (12) give us a linear system of equations for
eight unknowns: uj, ¢, and slow time derivatives of ,, A, A4 and q,. In what follows, we provide
solutions of these equations for each of the three perturbations considered in the paper.

6.3 DB soliton parameters

Diffusion perturbations: Rj = iy;qjxx, j = 1,2. Inthiscase, the adiabatic evolution of dA,/d Ty, dAg/d T,
do,/dT is described by the following equations:

dy  2rady (A A2) (A2 (7q2A% ~4A5) + A% (20243 ~348) ~ 6q2A5 + 4481)

= ) (69a)
an 3A% (-4 AL AL + g3 AT +4A0)
dAq _ 27245 (A — A7) (A7 — d0) (43 (445 —345) - 447) (69b)
dT 3(q5A} Ag—4A% A5 +4A7)
do -1
dTi:2\/A§—f%[3m4—4A§A§+q§A§+4AgH x (69c)
x [ A} (8y2 Ay +2(y1—6Y2) 45 AL +3Y245) —2A7 (4(y1+72) A — 5y2g5A%) +8y1 A5 .
Notice that in the scalar limit (Ap = 0), the full system of equations reduces to:
do, ‘MA da, d dv 1d 1
O'o: Y1 d’ d _ qoz -0, i_;.:__ (o — (p'l—"X:iZuli, (70)
dT] 3q0 dTl dT1 dTl ZdTl 2q0+V
consistently with the results of Ref. [47], whereas in the stationary limit (V =0, A4 = g,) we find:
do, 290\ qg—A%Mqug—(Zyl —Yz)A%) dA, 272 Ap(g5— AD)? 1a)
= ) = - ) a
dT 3(2q5 - A%) dT 32q5 - AY)
av  dqg, dAy " ldo, 1 N .
= = :O, = —— -, T :iz 7 . 7].b
AT, dT,  dT, =TS AT 2, PixTEAA (71b)

Linear loss perturbations: R; = iy;q;, j =1,2. The adiabatic evolutionofdA,/dT\,dAy/dT,do,/dTy
now reads:

dAy _ 2(v1+2y2) ApAG — A3 (67245 +114543) + 2724545

, (72a)
dT, —4A7 AL + g3 A} +4A8
dAq _ —21AGAG (A +a3) + AY (11 +272) 4540 — 272 49) + 411 4] (72b)
aT, —4A3 AL + g3 A} + 445,
2 2 2Y( A2 (A2 2
do, _ 2Ad (YlAd_YZAb) (Ab (qo_ZAd) +2A§l) (72¢)
an— 4 /Afz — A2 (—4A2 AL+ R AL +445)
In the scalar limit, this gives:
do A dA av
o_MN d d:YlAd» ==y, (73a)

an qo an dT -
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Figure 3: The evolution of the moving DB soliton parameters under linear loss. The solid blue lines cor-
respond to the numerical simulations results, whereas the dashed red lines, to the analytical predictions.
Here, g,(0) = 1, Ap(0) =1/v/2, A; =0.8, xo =0 and ey; = €y> = —0.01.

dq, . ldo, 1
= , U, =—— a—
ar, Y9 T TS U 2gy v

Piy = +2uf, (73b)

again consistently with [47], and in the stationary limit, we get:

do,  260nd5-71247)  dA, Av(1q5+272(q5 - AD)

- ' : (74a)
dh g2 - Reqg-42) 9N 2q5 - A;
av dAq _dq, . ldo, 1 . .

- - = y U =—s——— o, iy =22u5. 4
an, = an Can Ve WS T3 ag, Pix T A2 (74b)

Nonlinear loss perturbations: R; = iy;|q; 1>q j» Inthis case, the adiabatic evolution of d Ap/d Ty, dAq/d Ty,
do,/dT is given by:

dA, Ap (—1272A‘;1,A§ +245 (4Y2Ai +571 q%] ~3Y1q5 A7 A% + 47245 A% ~ 4Y1Ag)

= (75a)
amn 3(-42 4L+ g3al +445) :
g Ad (4v248 (a3 - 42) + 271 42 42 (~5q3 42 + 24% ~ 3q8) + 3y1 g4 AL + 41 A6 (542 - 242 sh)
dn 3(-4A2 A% + g2 A% +445) ’
-1
Z‘;‘l’ =242 [Sqm [a2 - A2 (—4AiA‘}j +q2Al +4Ag)] [—2y2A‘}, (A%] (q§ —2A§) + 2Aj§) + (750)
+11 (—2q§Afi (7A%1Afi + Al —7A‘;) +3qaA2 (Ai +A§) +445 (Ai —Aé))] )
In the scalar limit, this yields:
= —Ve+5q5|, — =y1A4|=-V"+ , —=—-(V"+2q;), 76a
ATy~ 3g, \27 T) g TAdgV D) g = g (VT H240) (762)
do, , dA¢p
ddo . . @) i 2
Z0 _ 7 — , O, =+2uf F =714y, 76b
ar, Ve =TTy i 1T gndd (76b)
where
dA(pbo _ i qudTl - Adqu1 77)

dTy  qo /qi—Aé
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Figure 4: The evolution of the solitons’ parameters under linear loss. The solid lines correspond to the
numerical simulations results, whereas the dashed lines, to the analytical predictions. Here, g,(0) =1,
Ap(0)=1/v/2, A3 =0.8, xo =0and ey] = €y, = —0.01.

with A¢, being the phase difference across the soliton (which is different from asymptotic phase differ-
ence of the background, A¢). Finally, in the stationary limit, we have:

do, 2000145645 -A) =224} dA,  ApBYiq,+4y245(q5— A2))

’ ) (78a)
2_ A2
dTh 3(2q§—Ai)\/q§_Ai aT 3(2q5 - A3)
av dA; dq, 3 N ldo, 1 . .
=5 = = ’ 1= 75 ’ Ty =2U7.

As in the stationary case, it is relevant to compare the above findings with results of direct numerical
simulations. Here, as an example, we consider the case of linear loss (for the other considered pertur-
bations, the results are similar). For the present example, we again evolve Egs. (4), using Egs. (6a) as
initial conditions, employing a fourth order Runge-Kutta method in time. In the right panel of Fig. 1, we
depict the complete evolution of the gray component of the moving DB soliton, so as to demonstrate the
emergence and evolution of the shelf in the presence of linear loss. Furthermore, the evolution of the DB
solitons amplitudes A; and Ay, and of the background parameter ¢,, are depicted in Fig. 3. Once again,
the analytical results are found to be in very good agreement with the numerical simulations.

Finally, it is relevant to compare the evolution of the grey soliton component of a moving DB soliton
with that of a grey soliton in the scalar case. An important conclusion stemming from such a comparison
is that the coupling (or the “symbiosis”) between the grey and the bright soliton has a profound effect. In-
deed, it seems that the bright soliton tends to reduce the decaying effects of the dissipative perturbations
as compared to the scalar equation. While the dark soliton will eventually decay to the background, and
the background will vanish in both cases, in the Manakov system this is delayed significantly as shown
in Fig. 4. This result is in a qualitative agreement with the analysis of Ref. [57], where it was found that
the effect of the bright (“filling”) soliton component is to partially stabilize “bare” dark solitons against
temperature-induced dissipation in BECs, thus providing longer lifetimes.
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7 Conclusion

In conclusion, we have presented a direct perturbation theory to study the evolution of the dark-bright
solitons of the Manakov system under the action of perturbations. Our approach relies on the combina-
tion of a multiscale expansion method and a boundary layer theory, such that the problem is broken into
an inner region —pertinent to the soliton core— and a “shelf”, namely a linear wave emerging due to the
perturbation, which matches the boundary conditions at infinity. Our analysis was first performed for
stationary dark-bright solitons, and then was generalized for moving ones. Various typical perturbations
were considered, and in particular physically relevant dissipative ones, namely diffusion, as well as linear
and nonlinear loss (or gain, depending on the sign of the relevant coefficients).

Our methodology is similar to the one that was used for the study of perturbed dark solitons in the
scalar defocusing NLS equation [47]. Our results, however, extend beyond the ones presented in that
work. For example, in the simpler case of stationary DB solitons, we were able to completely determine
the asymptotic phases of the DB solitons (whereas in [47] the particular solution of the linear, nonhomo-
geneous equations for the O(g) terms in the phases had not been obtained). Furthermore, the additional
effect of the perturbation in the bright component on the asymptotic phases of both dark and bright
soliton components was studied.

For the typical dissipative perturbations we considered, the asymptotic approximations showed very
good agreement with results of direct numerical simulations. The relevant numerical computations con-
firmed the emergence of the analytically predicted shelf and, in all cases, were found to fully support our
analytical predictions. Our analysis and computations also revealed an important difference between
scalar grey solitons and the grey solitons of the Manakov system: it was found that the presence of the
bright (“filling”) component hinders the perturbation- induced dissipation associated with the grey soli-
ton, thus offering a partial stabilization —i.e. a longer lifetime— to the corresponding Manakov DB
soliton structure, in comparison to its “bare” scalar dark soliton counterpart.

Our analysis and results suggest further interesting studies. Indeed, first we note that it would be
relevant to further extend our analysis in order to determine the evolution of the center x, of the DB
soliton. To do this, one needs to employ the O(g) correction terms for amplitudes and phases explicitly.
In principle, one could follow a similar strategy as in [47], but in the Manakov system the ODEs for the
O(e) ODEs for the amplitudes and phases do not decouple, and the solution of this problem will require
finding homogeneous and particular solutions for a fourth-order linear, non-homogeneous ODE, with
coefficients given by the O(1) dark and bright soliton solutions and their derivatives, while the non-
homogeneous term depends on the perturbation. In any case, the determination of the evolution of
the soliton center would also be relevant for studies involving conservative perturbations, as, e.g., is
the case with external potentials which are particularly relevant to the physics of BECs. Solution of the
relevant problem for the soliton center could then bridge our analysis with other perturbative studies of
the Manakov system, relying on the adiabatic approximation [18].
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