

Resolvent Estimates for the Stokes Operator in Bounded and Exterior C^1 Domains

Jun Geng ^{*} Zhongwei Shen [†]

Abstract

We establish resolvent estimates in L^q spaces for the Stokes operator in a bounded C^1 domain Ω in \mathbb{R}^d . As a corollary, it follows that the Stokes operator generates a bounded analytic semigroup in $L^q(\Omega; \mathbb{C}^d)$ for any $1 < q < \infty$ and $d \geq 2$. The case of an exterior C^1 domain is also studied.

Keywords: Resolvent Estimate; Stokes Operator; C^1 Domain.

MR (2010) Subject Classification: 35Q30.

1 Introduction

In this paper we study the resolvent problem for the Stokes operator with the Dirichlet condition,

$$\begin{cases} -\Delta u + \nabla p + \lambda u = F & \text{in } \Omega, \\ \operatorname{div}(u) = 0 & \text{in } \Omega, \\ u = 0 & \text{on } \partial\Omega, \end{cases} \quad (1.1)$$

where $\lambda \in \Sigma_\theta$ is a parameter and

$$\Sigma_\theta = \{z \in \mathbb{C} \setminus \{0\} : |\arg(z)| < \pi - \theta\} \quad (1.2)$$

for $\theta \in (0, \pi/2)$. The following two theorems are the main results of the paper. The first one covers the case of bounded domains with C^1 boundaries, while the second treats the case of exterior C^1 domains.

Theorem 1.1. *Let Ω be a bounded C^1 domain in \mathbb{R}^d , $d \geq 2$. Let $1 < q < \infty$ and $\lambda \in \Sigma_\theta$. Then for any $F \in L^q(\Omega; \mathbb{C}^d)$, the Dirichlet problem (1.1) has a unique solution (u, p) in $W_0^{1,q}(\Omega; \mathbb{C}^d) \times L^q(\Omega; \mathbb{C})$ with $\int_\Omega p = 0$. Moreover, the solution satisfies the estimate,*

$$(|\lambda| + 1)^{1/2} \|\nabla u\|_{L^q(\Omega)} + (|\lambda| + 1) \|u\|_{L^q(\Omega)} \leq C \|F\|_{L^q(\Omega)}, \quad (1.3)$$

where C depends only on d , q , θ and Ω .

^{*}Supported in part by NNSF grant 12371096.

[†]Supported in part by NSF grant DMS-2153585.

Theorem 1.2. *Let Ω be an exterior domain with C^1 boundary in \mathbb{R}^d , $d \geq 2$. Let $1 < q < \infty$ and $\lambda \in \Sigma_\theta$ with $|\lambda| \geq \delta > 0$. Then for any $F \in L^q(\Omega; \mathbb{C}^d)$, the Dirichlet problem (1.1) has a unique solution (u, p) in $W_0^{1,q}(\Omega; \mathbb{C}^d) \times L_{\text{loc}}^q(\bar{\Omega}; \mathbb{C})$. Moreover, the solution satisfies the estimate,*

$$|\lambda|^{1/2} \|\nabla u\|_{L^q(\Omega)} + |\lambda| \|u\|_{L^q(\Omega)} \leq C \|F\|_{L^q(\Omega)}, \quad (1.4)$$

where C depends only on d , q , θ , δ and Ω . Furthermore, if $d \geq 3$, the estimate,

$$|\lambda| \|u\|_{L^q(\Omega)} \leq C \|F\|_{L^q(\Omega)}, \quad (1.5)$$

holds with C independent of δ .

Resolvent estimates for the Stokes operator play an essential role in the functional analytic approach of Fujita and Kato [11] to the nonlinear Navier-Stokes equations. The resolvent estimate (1.5) in domains with smooth boundaries has been studied extensively since 1980's. Under the assumption that Ω is a bounded or exterior domain with $C^{1,1}$ boundary, the estimate (1.5) holds for any $1 < q < \infty$ [21, 16, 2, 10]. We refer the reader to [10] for a review as well as a comprehensive list of references in the case of smooth domains. The recent work in this area focuses on domains with nonsmooth boundaries. If Ω is merely a bounded Lipschitz domain, it was proved by one of the present authors [20] that the resolvent estimate (1.5) holds if $d \geq 3$ and

$$\left| \frac{1}{q} - \frac{1}{2} \right| < \frac{1}{2d} + \varepsilon, \quad (1.6)$$

where $\varepsilon > 0$ depends on Ω . In particular, in the case $d = 3$, this shows that the estimate (1.5) holds for $(3/2) - \varepsilon < q < 3 + \varepsilon$ and gives an affirmative answer to a conjecture of M. Taylor [23]. For a two-dimensional bounded Lipschitz domain, F. Gabel and P. Tolksdorf [12] were able to establish the resolvent estimate (1.5) for $(4/3) - \varepsilon < q < 4 + \varepsilon$. It is not known whether the range in (1.6) is sharp for Lipschitz domains. In [6] P. Deuring constructed an interesting example of an unbounded Lipschitz domain for which the resolvent estimate fails for large q . For related work on the Stokes and Navier-Stokes equations in Lipschitz or C^1 domains, we refer to the reader to [8, 5, 7, 17, 18, 19, 14, 24, 25].

The main contribution of this paper lies in the smoothness assumption for the domain Ω . We are able to establish the resolvent estimates for the full range $1 < q < \infty$ under the assumption that $\partial\Omega$ is C^1 . In view of the example by P. Deuring [6], this assumption is more or less optimal. As we mentioned earlier, the full range is known previously for $C^{1,1}$ domains [10]. A recent result of D. Breit [4] implies the resolvent estimates for a three-dimensional Lipschitz domain satisfying certain Besov-type conditions, which are weaker than $C^{1,1}$ and somewhat close to $C^{1,\alpha}$ for certain $\alpha > 0$. Note that in the case of smooth domains, in addition to the L^q estimates for u and ∇u in (1.3) and (1.4), one also obtains an estimate for $\nabla^2 u$,

$$\|\nabla^2 u\|_{L^q(\Omega)} \leq C \|F\|_{L^q(\Omega)}, \quad (1.7)$$

for $1 < q < \infty$, if Ω is bounded (some restrictions on q are needed if Ω is an exterior domain; see [10]). However, such $W^{2,q}$ estimates fail in C^1 domains, even for the Laplace operator.

Let $C_{0,\sigma}^\infty(\Omega) = \{u \in C_0^\infty(\Omega; \mathbb{C}^d) : \text{div}(u) = 0\}$ and

$$L_\sigma^q(\Omega) = \text{the closure of } C_{0,\sigma}^\infty(\Omega) \text{ in } L^q(\Omega; \mathbb{C}^d). \quad (1.8)$$

For $1 < q < \infty$, we define the Stokes operator A_q in $L_\sigma^q(\Omega)$ by

$$A_q(u) = -\Delta u + \nabla p, \quad (1.9)$$

with the domain

$$\begin{aligned} \mathcal{D}(A_q) = \Big\{ u \in W_0^{1,q}(\Omega; \mathbb{C}^d) : \operatorname{div}(u) = 0 \text{ in } \Omega \text{ and} \\ -\Delta u + \nabla p \in L_\sigma^q(\Omega) \text{ for some } p \in L_{\text{loc}}^q(\bar{\Omega}; \mathbb{C}) \Big\}. \end{aligned} \quad (1.10)$$

It follows from Theorems 1.1 and 1.2 that for $\lambda \in \Sigma_\theta$ and $1 < q < \infty$, the inverse operator $(\lambda + A_q)^{-1}$ exists as a bounded operator on $L_\sigma^q(\Omega)$. Moreover, the estimate,

$$\|(\lambda + A_q)^{-1} F\|_{L^q(\Omega)} \leq C|\lambda|^{-1} \|F\|_{L^q(\Omega)}, \quad (1.11)$$

holds, where C depends only on d , q , θ and Ω , if Ω is a bounded C^1 domain in \mathbb{R}^d , $d \geq 2$ or an exterior C^1 domain in \mathbb{R}^d , $d \geq 3$. As a corollary, we obtain the following.

Corollary 1.3. *Let Ω be a bounded C^1 domain in \mathbb{R}^d , $d \geq 2$ or an exterior C^1 domain in \mathbb{R}^d , $d \geq 3$. Then the Stokes operator $-A_q$ generates a uniformly bounded analytic semigroup $\{e^{-tA_q}\}_{t \geq 0}$ in $L_\sigma^q(\Omega)$ for $1 < q < \infty$.*

The uniform boundedness of the semigroup in the case of two-dimensional exterior C^1 domains is left open by Corollary 1.3. We note that the uniform boundedness for the two-dimensional exterior C^2 domains was established in [3] by using the method of layer potentials for λ near 0.

We now describe our approach to Theorems 1.1 and 1.2, which is based on a perturbation argument of R. Farwig and H. Sohr [10]. The basic idea is to work out first the cases of the whole space \mathbb{R}^d and the half-space \mathbb{R}_+^d . One then uses a perturbation argument to treat the case of a region above a graph,

$$\mathbb{H}_\psi = \{(x', x_d) \in \mathbb{R}^d : x' \in \mathbb{R}^{d-1} \text{ and } x_d > \psi(x')\},$$

where $\psi : \mathbb{R}^{d-1} \rightarrow \mathbb{R}$. Finally, a localization procedure, together with some compactness argument, is performed to handle the cases of bounded or exterior domains. To establish the resolvent estimates for C^1 domains, the key step is to carry out the perturbation argument under the assumption that $\psi : \mathbb{R}^{d-1} \rightarrow \mathbb{R}$ is Lipschitz continuous and to show that the error terms are bounded by the Lipschitz norm $\|\nabla' \psi\|_\infty$, where ∇' denotes the gradient with respect to $x' = (x_1, \dots, x_{d-1})$.

To this end, we consider a more general Stokes resolvent problem,

$$\begin{cases} -\Delta u + \nabla p + \lambda u = F + \operatorname{div}(f), \\ \operatorname{div}(u) = g, \end{cases} \quad (1.12)$$

in \mathbb{H}_ψ with the boundary condition $u = 0$ on $\partial\mathbb{H}_\psi$, where $F \in L^q(\mathbb{H}_\psi; \mathbb{C}^d)$ and $f \in L^q(\mathbb{H}_\psi; \mathbb{C}^{d \times d})$. We introduce two Banach spaces,

$$X_\psi^q = W_0^{1,q}(\mathbb{H}_\psi; \mathbb{C}^d) \times A_\psi^q \quad \text{and} \quad Y_\psi^q = W^{-1,q}(\mathbb{H}_\psi; \mathbb{C}^d) \times B_\psi^q, \quad (1.13)$$

where A_ψ^q and B_ψ^q are two spaces defined by (4.2). In comparison with the spaces used in [10] for $C^{1,1}$ domains, we point out that since we work with C^1 domains, no $W^{2,q}$ spaces can be used. Note that the scaling-invariant property of the Lipschitz norm $\|\nabla' \psi\|_\infty$ allows us to fix $\lambda \in \Sigma_\theta$ with $|\lambda| = 1$. Consider the linear operator

$$S_\psi^\lambda(u, p) = (-\Delta u + \nabla p + \lambda u, \operatorname{div}(u)). \quad (1.14)$$

We are able to show that $S_\psi^\lambda : X_\psi^q \rightarrow Y_\psi^q$ is a bijection and that

$$\|(S_\psi^\lambda)^{-1}\|_{Y_\psi^q \rightarrow X_\psi^q} \leq C(d, q, \theta) \quad (1.15)$$

for $1 < q < \infty$, provided that $\|\nabla' \psi\|_\infty \leq c_0$ and $c_0 = c_0(d, q, \theta) > 0$ is sufficiently small. See Theorem 4.3. To prove (1.15), one first considers the special case $\psi = 0$; i.e., $\mathbb{H}_\psi = \mathbb{R}_+^d$. The general case follows from the facts that

$$S_\psi^\lambda(u, p) = S_0^\lambda(\tilde{u}, \tilde{p}) \circ \Psi + R(\tilde{u}, \tilde{p}) \circ \Psi, \quad (1.16)$$

and that the operator norm of the second term in the right-hand side of (1.16) is bounded by $C\|\nabla' \psi\|_\infty$ if $\|\nabla' \psi\|_\infty \leq 1$. As a by-product, we also obtain the resolvent estimate (1.4) in the case $\Omega = \mathbb{H}_\psi$ if $\|\nabla' \psi\|_\infty \leq c_0(d, q, \theta)$. See Theorem 4.1.

The paper is organized as follows. We start with the case of the whole space \mathbb{R}^d in Section 2. The case $\Omega = \mathbb{R}_+^d$ is studied in Section 3. In Section 4 we carry out the perturbation argument described above for the region above a Lipschitz graph. In Section 5 we consider the case of bounded C^1 domains and give the proof of Theorem 1.1. The case of exterior C^1 domains is studied in Section 6, where Theorem 1.2 is proved. Finally, we prove some useful uniqueness and regularity results for exterior C^1 domains in the Appendix.

We end this section with a few notations that will be used throughout the paper. Let Ω be a (bounded or unbounded) domain in \mathbb{R}^d . By $u \in L_{\text{loc}}^q(\overline{\Omega}; \mathbb{C}^m)$ we mean $u \in L^q(B \cap \Omega; \mathbb{C}^m)$ for any ball B in \mathbb{R}^d . For $1 < q < \infty$, let

$$W^{1,q}(\Omega; \mathbb{C}^m) = \{u \in L^q(\Omega; \mathbb{C}^m) : \nabla u \in L^q(\Omega; \mathbb{C}^{d \times m})\} \quad (1.17)$$

be the usual Sobolev space in Ω for functions with values in \mathbb{C}^m . By $W_0^{1,q}(\Omega; \mathbb{C}^m)$ we denote the closure of $C_0^\infty(\Omega; \mathbb{C}^m)$ in $W^{1,q}(\Omega; \mathbb{C}^m)$. We use $W^{-1,q}(\Omega; \mathbb{C}^m)$ to denote the dual of $W_0^{1,q'}(\Omega; \mathbb{C}^m)$ and $W_0^{-1,q}(\Omega; \mathbb{C}^m)$ the dual of $W^{1,q'}(\Omega; \mathbb{C}^m)$, where $q' = \frac{q}{q-1}$. For $1 < q < \infty$, we let

$$\mathring{W}^{1,q}(\Omega; \mathbb{C}^m) = \{u \in L_{\text{loc}}^q(\overline{\Omega}; \mathbb{C}^m) : \nabla u \in L^q(\Omega; \mathbb{C}^{d \times m})\} \quad (1.18)$$

denote the homogeneous $W^{1,q}$ space with the norm $\|\nabla u\|_{L^q(\Omega)}$. As usual, we identify two functions in $\mathring{W}^{1,q}(\Omega; \mathbb{C}^m)$ if they differ by a constant. Let $\mathring{W}^{-1,q}(\Omega; \mathbb{C}^m)$ be the dual of $\mathring{W}^{1,q}(\Omega; \mathbb{C}^m)$. Elements Λ in $\mathring{W}^{-1,q}(\Omega; \mathbb{C}^m)$ may be represented by $\operatorname{div}(f)$, where $f = (f_{jk}) \in L^q(\Omega; \mathbb{C}^{d \times m})$, in the sense that

$$\Lambda(u) = - \int_{\Omega} \partial_j u_k \cdot f_{jk}$$

for any $u = (u_1, \dots, u_m) \in \mathring{W}^{1,q'}(\Omega; \mathbb{C}^m)$, where $\partial_j = \partial/\partial x_j$, the index j is summed from 1 to d and k from 1 to m .

Acknowledgement. The authors thank the anonymous referees for their helpful comments that improved the quality of the manuscript.

2 The whole space

In this section we study the resolvent problem for the Stokes equations in \mathbb{R}^d , $d \geq 2$. The results in Theorem 2.1 are more or less standard. Since the Stokes equations are considered with a more general data set, we provide a proof for the reader's convenience.

Theorem 2.1. *Let $1 < q < \infty$ and $\lambda \in \Sigma_\theta$. For any $F \in L^q(\mathbb{R}^d; \mathbb{C}^d)$, $f \in L^q(\mathbb{R}^d; \mathbb{C}^{d \times d})$, and $g \in L^q(\mathbb{R}^d; \mathbb{C}) \cap \mathring{W}^{-1,q}(\mathbb{R}^d; \mathbb{C})$, there exists a unique $u \in W^{1,q}(\mathbb{R}^d; \mathbb{C}^d)$ such that*

$$\begin{cases} -\Delta u + \nabla p + \lambda u = F + \operatorname{div}(f), \\ \operatorname{div}(u) = g \end{cases} \quad (2.1)$$

hold in \mathbb{R}^d for some $p \in L^1_{\text{loc}}(\mathbb{R}^d; \mathbb{C})$ in the sense of distributions. Moreover, the solution satisfies the estimate,

$$\begin{cases} |\lambda|^{1/2} \|\nabla u\|_{L^q(\mathbb{R}^d)} \leq C \left\{ \|F\|_{L^q(\mathbb{R}^d)} + |\lambda|^{1/2} \|f\|_{L^q(\mathbb{R}^d)} + |\lambda|^{1/2} \|g\|_{L^q(\mathbb{R}^d)} \right\}, \\ |\lambda| \|u\|_{L^q(\mathbb{R}^d)} \leq C \left\{ \|F\|_{L^q(\mathbb{R}^d)} + |\lambda|^{1/2} \|f\|_{L^q(\mathbb{R}^d)} + |\lambda| \|g\|_{\mathring{W}^{-1,q}(\mathbb{R}^d)} \right\}, \end{cases} \quad (2.2)$$

and $p \in L^q(\mathbb{R}^d; \mathbb{C}) + \mathring{W}^{1,q}(\mathbb{R}^d; \mathbb{C})$, where C depends on d , q and θ .

Proof. Step 1. We establish the existence of the solution and the estimates in (2.2).

By rescaling we may assume $|\lambda| = 1$. By linearity, it suffices to consider two cases: (I) $g = 0$; (II) $f = 0$ and $F = 0$.

Case I. Assume $g = 0$. Let \mathcal{F} denote the Fourier transform defined by

$$\mathcal{F}(h)(\xi) = \int_{\mathbb{R}^d} e^{-ix \cdot \xi} h(x) dx,$$

where $i = \sqrt{-1}$ and $\xi \in \mathbb{R}^d$. Let $u = (u_1, u_2, \dots, u_d)$, $F = (F_1, F_2, \dots, F_d)$ and $f = (f_{jk})$. By applying \mathcal{F} to (2.1) with $g = 0$, we obtain

$$\begin{cases} (|\xi|^2 + \lambda) \mathcal{F}(u_j) + i\xi_j \mathcal{F}(p) = \mathcal{F}(F_j) + i\xi_\ell \mathcal{F}(f_{\ell j}) & \text{in } \mathbb{R}^d, \\ \xi_\ell \mathcal{F}(u_\ell) = 0 & \text{in } \mathbb{R}^d, \end{cases} \quad (2.3)$$

where the repeated index ℓ is summed from 1 to d . A solution of (2.3) is given by

$$\begin{cases} \mathcal{F}(u_j) = (\lambda + |\xi|^2)^{-1} \left(\delta_{jk} - \frac{\xi_j \xi_k}{|\xi|^2} \right) (\mathcal{F}(F_k) + i\xi_\ell \mathcal{F}(f_{\ell k})), \\ \mathcal{F}(p) = \frac{-i\xi_k}{|\xi|^2} (\mathcal{F}(F_k) + i\xi_\ell \mathcal{F}(f_{\ell k})), \end{cases} \quad (2.4)$$

where the repeated indices k, ℓ are summed from 1 to d . Since $\lambda \in \Sigma_\theta$ and $|\lambda| = 1$, we have $|\lambda + |\xi|^2| \approx 1 + |\xi|^2$. Thus, by the Mikhlin multiplier theorem, there exist $u \in W^{1,q}(\mathbb{R}^d; \mathbb{C}^d)$ and $p \in L^q(\mathbb{R}^d; \mathbb{C}) + \mathring{W}^{1,q}(\mathbb{R}^d; \mathbb{C})$, satisfying (2.1) and

$$\|\nabla u\|_{L^q(\mathbb{R}^d)} + \|u\|_{L^q(\mathbb{R}^d)} \leq C \left\{ \|f\|_{L^q(\mathbb{R}^d)} + \|F\|_{L^q(\mathbb{R}^d)} \right\}, \quad (2.5)$$

for $1 < q < \infty$, where C depends on d , q and θ .

Case II. Assume that $F = 0$ and $f = 0$. Since $g \in L^q(\mathbb{R}^d; \mathbb{C}) \cap \mathring{W}^{-1,q}(\mathbb{R}^d; \mathbb{C})$, there exists $G \in \mathring{W}^{1,q}(\mathbb{R}^d; \mathbb{C})$ such that $\nabla G \in W^{1,q}(\mathbb{R}^d; \mathbb{C}^d)$, $\Delta G = g$ in \mathbb{R}^d ,

$$\|\nabla G\|_{L^q(\mathbb{R}^d)} \leq C\|g\|_{\mathring{W}^{-1,q}(\mathbb{R}^d)} \quad \text{and} \quad \|\nabla^2 G\|_{L^q(\mathbb{R}^d)} \leq C\|g\|_{L^q(\mathbb{R}^d)}.$$

Let $u = \nabla G$ and $p = g - \lambda G$. Then $u \in W^{1,q}(\mathbb{R}^d; \mathbb{C}^d)$, $p \in L^q(\mathbb{R}^d; \mathbb{C}) + \mathring{W}^{1,q}(\mathbb{R}^d; \mathbb{C})$, and (u, p) satisfies (2.1) with $F = 0$ and $f = 0$. Moreover,

$$\|\nabla u\|_{L^q(\mathbb{R}^d)} \leq C\|g\|_{L^q(\mathbb{R}^d)} \quad \text{and} \quad \|u\|_{L^q(\mathbb{R}^d)} \leq C\|g\|_{\mathring{W}^{-1,q}(\mathbb{R}^d)}.$$

Step 2. We establish the uniqueness of the solution.

Let $u \in W^{1,q}(\mathbb{R}^d; \mathbb{C}^d)$ be a solution of (2.1) in \mathbb{R}^d with $F = 0$, $f = 0$ and $g = 0$. It follows that for any $w \in C_{0,\sigma}^\infty(\mathbb{R}^d)$,

$$\int_{\mathbb{R}^d} \nabla u \cdot \nabla w + \lambda \int_{\mathbb{R}^d} u \cdot w = 0, \quad (2.6)$$

where $C_{0,\sigma}^\infty(\mathbb{R}^d) = \{w \in C_0^\infty(\mathbb{R}^d; \mathbb{C}^d) : \operatorname{div}(w) = 0 \text{ in } \mathbb{R}^d\}$. Since $u \in W^{1,q}(\mathbb{R}^d; \mathbb{C}^d)$, by a density argument, we deduce that (2.6) holds for any $w \in W^{1,q'}(\mathbb{R}^d; \mathbb{C}^d)$ with $\operatorname{div}(w) = 0$ in \mathbb{R}^d . Let w be a solution in $W^{1,q'}(\mathbb{R}^d; \mathbb{C}^d)$ of the Stokes equations,

$$\begin{cases} -\Delta w + \nabla \phi + \lambda w = |u|^{q-2} \bar{u}, \\ \operatorname{div}(w) = 0 \end{cases} \quad (2.7)$$

in \mathbb{R}^d , where \bar{u} denotes the complex conjugate of u . Since $|u|^{q-2} \bar{u} \in L^{q'}(\mathbb{R}^d; \mathbb{C}^d)$, such solution exists in $W^{1,q'}(\mathbb{R}^d; \mathbb{C}^d)$ by Step 1. Again by a density argument, we may deduce from (2.7) that

$$\int_{\mathbb{R}^d} \nabla w \cdot \nabla u + \lambda \int_{\mathbb{R}^d} w \cdot u = \int_{\mathbb{R}^d} |u|^q. \quad (2.8)$$

In view of (2.6) and (2.8), we obtain $\int_{\mathbb{R}^d} |u|^q = 0$ and thus $u = 0$ in \mathbb{R}^d . \square

Remark 2.2. Let F , f , g , (u, p) be the same as in Theorem 2.1. Let $F = (F_1, F_2, \dots, F_d)$ and $f = (f_{jk})$. The k component of $\operatorname{div}(f)$ is given by $\sum_j \partial_j f_{jk}$, where ∂_j denotes $\partial/\partial x_j$. Let $x = (x', x_d)$, where $x' \in \mathbb{R}^{d-1}$. Suppose that

$$\begin{cases} F_j \text{ is even in } x_d \text{ for } 1 \leq j \leq d-1 \text{ and } F_d \text{ is odd,} \\ g \text{ is even in } x_d, \\ f_{jk} \text{ is even in } x_d \text{ for } 1 \leq j, k \leq d-1, \\ f_{dd} \text{ is even in } x_d, \\ f_{jd} \text{ and } f_{dj} \text{ are odd in } x_d \text{ for } 1 \leq j \leq d-1. \end{cases} \quad (2.9)$$

Define

$$\begin{cases} v(x', x_d) = (u_1(x', -x_d), \dots, u_{d-1}(x', -x_d), -u_d(x', -x_d)), \\ \phi(x', x_d) = p(x', -x_d). \end{cases}$$

Then (v, ϕ) is a solution of (2.1) with the same data F , f and g . By the uniqueness in Theorem 2.1, it follows that $u = v$ in \mathbb{R}^d . In particular, this implies that $u_d(x', 0) = 0$ for $x' \in \mathbb{R}^{d-1}$.

Remark 2.3. Assume $\lambda \in \Sigma_\theta$ and $|\lambda| = 1$. Let (u, p) be the solution of (2.1), given by Theorem 2.1. An inspection of the proof of Theorem 2.1 shows that $p = p_1 + p_2$, where $p_1 \in L^q(\mathbb{R}^d; \mathbb{C})$, $p_2 \in \mathring{W}^{1,q}(\mathbb{R}^d; \mathbb{C})$, and

$$\|p_1\|_{L^q(\mathbb{R}^d)} + \|\nabla p_2\|_{L^q(\mathbb{R}^d)} \leq C \left\{ \|F\|_{L^q(\mathbb{R}^d)} + \|f\|_{L^q(\mathbb{R}^d)} + \|g\|_{L^q(\mathbb{R}^d)} + \|g\|_{\mathring{W}^{-1,q}(\mathbb{R}^d)} \right\}.$$

The constant C depends only on d , q and θ .

Remark 2.4. Let $1 < q_1 < q_2 < \infty$ and $\lambda \in \Sigma_\theta$. Suppose that $F \in L^{q_j}(\mathbb{R}^d; \mathbb{C}^d)$, $f \in L^{q_j}(\mathbb{R}^d; \mathbb{C}^{d \times d})$ and $g \in L^{q_j}(\mathbb{R}^d; \mathbb{C}) \cap \mathring{W}^{-1,q_j}(\mathbb{R}^d; \mathbb{C})$ for $j = 1, 2$. Let (u^j, p^j) be the unique solution of (2.1) in $W^{1,q_j}(\mathbb{R}^d; \mathbb{C}^d) \times (L^{q_j}(\mathbb{R}^d; \mathbb{C}) + \mathring{W}^{1,q_j}(\mathbb{R}^d; \mathbb{C}))$, given by Theorem 2.1. Then $(u^1, p^1) = (u^2, p^2)$. This follows from the observation that the solutions constructed in the proof do not depend on q .

3 A half-space

In this section we consider the resolvent problem for the Stokes equations in the half-space \mathbb{R}_+^d . Recall that $\mathring{W}^{1,q}(\mathbb{R}_+^d; \mathbb{C})$ is the homogeneous $W^{1,q}$ space in \mathbb{R}_+^d defined by (1.18), and $\mathring{W}^{-1,q}(\mathbb{R}_+^d; \mathbb{C})$ denotes the dual of $\mathring{W}^{1,q'}(\mathbb{R}_+^d; \mathbb{C})$.

Theorem 3.1. *Let $1 < q < \infty$ and $\lambda \in \Sigma_\theta$. Let $F \in L^q(\mathbb{R}_+^d; \mathbb{C}^d)$, $f \in L^q(\mathbb{R}_+^d; \mathbb{C}^{d \times d})$, and $g \in L^q(\mathbb{R}_+^d; \mathbb{C}) \cap \mathring{W}^{-1,q}(\mathbb{R}_+^d; \mathbb{C})$. Then there exists a unique $u \in W_0^{1,q}(\mathbb{R}_+^d; \mathbb{C}^d)$ such that*

$$\begin{cases} -\Delta u + \nabla p + \lambda u = F + \operatorname{div}(f), \\ \operatorname{div}(u) = g \end{cases} \quad (3.1)$$

hold in \mathbb{R}_+^d for some $p \in L^1_{\text{loc}}(\mathbb{R}_+^d; \mathbb{C})$ in the sense of distributions. Moreover, the solution u satisfies the estimate,

$$\begin{aligned} & |\lambda|^{1/2} \|\nabla u\|_{L^q(\mathbb{R}_+^d)} + |\lambda| \|u\|_{L^q(\mathbb{R}_+^d)} \\ & \leq C \left\{ \|F\|_{L^q(\mathbb{R}_+^d)} + |\lambda|^{1/2} \|f\|_{L^q(\mathbb{R}_+^d)} + |\lambda|^{1/2} \|g\|_{L^q(\mathbb{R}_+^d)} + |\lambda| \|g\|_{\mathring{W}^{-1,q}(\mathbb{R}_+^d)} \right\}, \end{aligned} \quad (3.2)$$

and $p \in L^q(\mathbb{R}_+^d; \mathbb{C}) + \mathring{W}^{1,q}(\mathbb{R}_+^d; \mathbb{C})$, where C depends on d , q and θ .

Our proof of Theorem 3.1 follows closely a line of argument in [10].

For a function h in \mathbb{R}^{d-1} , we use \widehat{h} to denote the Fourier transform of h ,

$$\widehat{h}(\xi') = \int_{\mathbb{R}^{d-1}} e^{-i\xi' \cdot x'} h(x') dx', \quad (3.3)$$

for $\xi' \in \mathbb{R}^{d-1}$.

Lemma 3.2. *Let T be a bounded linear operator on $L^2(\mathbb{R}^{d-1}; \mathbb{C}^m)$. Suppose that $\widehat{Tf}(\xi') = m(\xi') \widehat{f}(\xi')$ and that the multiplier $m(\xi')$ satisfies the estimate,*

$$|\xi'|^{|\alpha|} |D^\alpha m(\xi')| \leq M, \quad (3.4)$$

for $|\alpha| \leq \left[\frac{d-1}{2}\right] + 1$, where $\alpha = (\alpha_1, \dots, \alpha_{d-1})$ and $D^\alpha = \partial_1^{\alpha_1} \cdots \partial_{d-1}^{\alpha_{d-1}}$. Then

$$\|Tf\|_{L^q(\mathbb{R}^{d-1})} \leq CM\|f\|_{L^q(\mathbb{R}^{d-1})}$$

for $1 < q < \infty$, where C depends on d and q .

Proof. This is the well known Mikhlin multiplier theorem in \mathbb{R}^{d-1} . \square

We use $W^{1-\frac{1}{q},q}(\mathbb{R}^{d-1}; \mathbb{C}^m)$ to denote the trace space of $W^{1,q}(\mathbb{R}_+^d; \mathbb{C}^m)$ on \mathbb{R}^{d-1} .

Lemma 3.3. *Let T be a bounded linear operator from $L^2(\mathbb{R}^{d-1})$ to $L^2(\mathbb{R}_+^d)$. Suppose that*

$$\widehat{Tf}(\xi', x_d) = m(\xi', x_d)\widehat{f}(\xi')$$

and that $m(\xi', x_d)$ satisfies the condition

$$|\xi'|^{|\alpha|}|D^\alpha m(\xi', x_d)| + |\xi'|^{|\alpha|-1}|D^\alpha \partial_d m(\xi', x_d)| \leq \frac{M_0 e^{-\delta|\xi'|x_d}}{1+x_d} \quad (3.5)$$

for $x_d > 0$, $\xi' \in \mathbb{R}^{d-1}$ and $|\alpha| \leq \left[\frac{d-1}{2}\right] + 1$, where $\delta > 0$. Then

$$\begin{cases} \|Tf\|_{L^q(\mathbb{R}_+^d)} \leq C\|f\|_{L^q(\mathbb{R}^{d-1})}, \\ \|\nabla T(f)\|_{L^q(\mathbb{R}_+^d)} \leq C\|f\|_{W^{1-\frac{1}{q},q}(\mathbb{R}^{d-1})}, \end{cases} \quad (3.6)$$

for $1 < q < \infty$, where C depends on d , q , δ and M_0 .

Proof. Note that for each $x_d > 0$, $m(\xi', x_d)$ satisfies (3.4) with $M = M_0(1+x_d)^{-1}$. It follows from Lemma 3.2 that

$$\begin{aligned} \int_{\mathbb{R}_+^d} |Tf(x', x_d)|^q dx' dx_d &\leq CM_0^q \int_0^\infty \int_{\mathbb{R}^{d-1}} \frac{|f(x')|^q}{(1+x_d)^q} dx' dx_d \\ &\leq CM_0^q \int_{\mathbb{R}^{d-1}} |f|^q dx'. \end{aligned}$$

To prove the second inequality in (3.6), we write

$$\widehat{\partial_j T f}(\xi', x_d) = e^{\delta_0 x_d |\xi'|} m(\xi', x_d) \cdot i \xi_j e^{-\delta_0 x_d |\xi'|} \widehat{f}(\xi')$$

for $1 \leq j \leq d-1$, and

$$\widehat{\partial_d T f}(\xi', x_d) = |\xi'|^{-1} e^{\delta_0 x_d |\xi'|} \partial_d m(\xi', x_d) \cdot |\xi'| e^{-\delta_0 x_d |\xi'|} \widehat{f}(\xi'),$$

where $\delta_0 = \delta/2$. Using (3.5), it is not hard to show that for each $x_d > 0$, both

$$e^{\delta_0 x_d |\xi'|} m(\xi', x_d) \quad \text{and} \quad |\xi'|^{-1} e^{\delta_0 x_d |\xi'|} \partial_d m(\xi', x_d)$$

satisfy the condition (3.4) with M independent of x_d . This implies that

$$\int_{\mathbb{R}_+^d} |\nabla T f(x', x_d)|^q dx \leq C \int_{\mathbb{R}_+^d} |\nabla v(x', x_d)|^q dx,$$

where v is defined by

$$\widehat{v}(\xi', x_d) = e^{-\delta_0 x_d |\xi'|} \widehat{f}(\xi').$$

Finally, we note that if $\delta_0 = 1$, v is a solution of the Dirichlet problem,

$$\begin{cases} (\partial_1^2 + \cdots + \partial_{d-1}^2 + \partial_d^2) v = 0 & \text{in } \mathbb{R}_+^d, \\ v = f & \text{on } \mathbb{R}^{d-1} \times \{0\}, \end{cases} \quad (3.7)$$

given by the Poisson integral of f . It is well known that v satisfies the estimate,

$$\|\nabla v\|_{L^q(\mathbb{R}_+^d)} \leq C \|f\|_{W^{1-\frac{1}{q},q}(\mathbb{R}^{d-1})},$$

where C depends on d and q [22, Chapter V]. The general case follows from the case $\delta_0 = 1$ by a rescaling in x_d . As a result, we obtain the second inequality in (3.6). \square

Proof of Theorem 3.1. By rescaling we may assume $|\lambda| = 1$.

Step 1. We establish the existence and the estimate (3.2).

Let $F \in L^q(\mathbb{R}_+^d; \mathbb{C}^d)$, $f \in L^q(\mathbb{R}_+^d; \mathbb{C}^{d \times d})$ and $g \in L^q(\mathbb{R}_+^d; \mathbb{C}) \cap \mathring{W}^{-1,q}(\mathbb{R}_+^d; \mathbb{C})$. We extend F, f, g to \mathbb{R}^d by either the even or odd reflection in such a way that the extensions satisfy the condition (2.9). Let $\tilde{F}, \tilde{f}, \tilde{g}$ denote the extensions of F, f, g , respectively. Note that $\tilde{g} \in \mathring{W}^{-1,q}(\mathbb{R}^d)$ and

$$\|\tilde{g}\|_{\mathring{W}^{-1,q}(\mathbb{R}^d)} \leq 2\|g\|_{\mathring{W}^{-1,q}(\mathbb{R}_+^d)}.$$

Let (\tilde{u}, \tilde{p}) denote the solution of (2.1) in \mathbb{R}^d , given by Theorem 2.1, with data $\tilde{F}, \tilde{f}, \tilde{g}$. By Remark 2.2, we have $\tilde{u}_d(x', 0) = 0$ for any $x' \in \mathbb{R}^{d-1}$. By subtracting (\tilde{u}, \tilde{p}) from solutions of (3.1), we reduce the problem to the Dirichlet problem,

$$\begin{cases} -\Delta u + \nabla p + \lambda u = 0 & \text{in } \mathbb{R}_+^d, \\ \operatorname{div}(u) = 0 & \text{in } \mathbb{R}_+^d, \\ u_j = h_j & \text{on } \mathbb{R}^{d-1} \times \{0\} \text{ for } 1 \leq j \leq d-1, \\ u_d = 0 & \text{on } \mathbb{R}^{d-1} \times \{0\}, \end{cases} \quad (3.8)$$

where $h_j = -\tilde{u}_j$ for $1 \leq j \leq d-1$. We will show that there exist $u \in W^{1,q}(\mathbb{R}_+^d; \mathbb{C}^d)$ and $p \in L^q(\mathbb{R}_+^d; \mathbb{C})$ such that (u, p) satisfies (3.8) and the estimate,

$$\|\nabla u\|_{L^q(\mathbb{R}_+^d)} + \|u\|_{L^q(\mathbb{R}_+^d)} + \|p\|_{L^q(\mathbb{R}_+^d)} \leq C \|h\|_{W^{1-\frac{1}{q},q}(\mathbb{R}^{d-1})}. \quad (3.9)$$

Since $h_j = -\tilde{u}_j$ on $\mathbb{R}^{d-1} \times \{0\}$ and

$$\begin{aligned} \|\tilde{u}\|_{W^{1-\frac{1}{q},q}(\mathbb{R}^{d-1})} &\leq C \left\{ \|\nabla \tilde{u}\|_{L^q(\mathbb{R}^d)} + \|\tilde{u}\|_{L^q(\mathbb{R}^d)} \right\} \\ &\leq C \left\{ \|\tilde{F}\|_{L^q(\mathbb{R}^d)} + \|\tilde{f}\|_{L^q(\mathbb{R}^d)} + \|\tilde{g}\|_{L^q(\mathbb{R}^d)} + \|\tilde{g}\|_{\mathring{W}^{-1,q}(\mathbb{R}^d)} \right\} \\ &\leq C \left\{ \|F\|_{L^q(\mathbb{R}_+^d)} + \|f\|_{L^q(\mathbb{R}_+^d)} + \|g\|_{L^q(\mathbb{R}_+^d)} + \|g\|_{\mathring{W}^{-1,q}(\mathbb{R}_+^d)} \right\}, \end{aligned}$$

the desired estimate (3.2) follows from (3.9).

To solve (3.8), we use the partial Fourier transform in $x' = (x_1, \dots, x_{d-1})$, defined by (3.3). Let

$$m_0(s, x_d) = \frac{e^{-\sqrt{\lambda+s^2}x_d} - e^{-sx_d}}{\sqrt{\lambda+s^2} - s},$$

where $s = |\xi'|$. It follows from [10] that a solution of (3.8) in the partial Fourier transform is given by

$$\begin{cases} \widehat{u}_j(\xi', x_d) = -\partial_d m_0(s, x_d) \frac{\xi_j \xi_k}{s^2} \widehat{h}_k(\xi') + \left(\delta_{jk} - \frac{\xi_j \xi_k}{s^2} \right) e^{-\sqrt{\lambda+s^2}x_d} \widehat{h}_k(\xi') \\ \widehat{u}_d(\xi', x_d) = i m_0(s, x_d) \xi_k \widehat{h}_k(\xi') \end{cases} \quad (3.10)$$

for $1 \leq j \leq d-1$, and

$$\widehat{p}(\xi', x_d) = -s^{-2}(\lambda + s^2 - \partial_d^2) \partial_d \widehat{u}_d, \quad (3.11)$$

where the repeated index k is summed from 1 to $d-1$. Write

$$\widehat{u}_j(\xi', x_d) = m_{jk}(\xi', x_d) \widehat{h}_k(\xi)$$

for $1 \leq j \leq d$. Note that m_{jk} satisfies the condition (3.5) (see [10, Lemma 2.5]). By Lemma 3.3, we obtain

$$\|u\|_{L^q(\mathbb{R}_+^d)} + \|\nabla u\|_{L^q(\mathbb{R}_+^d)} \leq C \|h\|_{W^{1-\frac{1}{p}, p}(\mathbb{R}^{d-1})}$$

for $1 < q < \infty$. Using the fact that

$$s^{-2}(\lambda + s^2 - \partial_d^2) \partial_d m_0(s, x_d) = s^{-1}(\sqrt{\lambda+s^2} + s) e^{-sx_d},$$

and that $s^{-1}(\sqrt{\lambda+s^2} + s) e^{-sx_d}$ satisfies the condition (3.5), it follows again by Lemma 3.3 that

$$\int_{\mathbb{R}_+^d} |p|^q dx \leq C \|h\|_{W^{1-\frac{1}{q}, q}(\mathbb{R}^{d-1})}^q.$$

As a result, we have proved (3.9).

Step 2. With the existence established in Step 1 at our disposal, the uniqueness may be proved by using the same argument as in the proof of Theorem 2.1. We omit the details. \square

Remark 3.4. Let $\lambda \in \Sigma_\theta$ and $|\lambda| = 1$. Let (u, p) be the solution of (3.1), given by Theorem 3.1. It follows from the proof of Theorem 3.1 that $p = p_1 + p_2$, where $p_1 \in L^q(\mathbb{R}_+^d; \mathbb{C})$, $p_2 \in \mathring{W}^{1,q}(\mathbb{R}_+^d; \mathbb{C})$, and

$$\|p_1\|_{L^q(\mathbb{R}_+^d)} + \|\nabla p_2\|_{L^q(\mathbb{R}_+^d)} \leq C \left\{ \|F\|_{L^q(\mathbb{R}_+^d)} + \|f\|_{L^q(\mathbb{R}_+^d)} + \|g\|_{L^q(\mathbb{R}_+^d)} + \|g\|_{\mathring{W}^{-1,q}(\mathbb{R}_+^d)} \right\},$$

where C depends only on d , q and θ .

Remark 3.5. Let $1 < q_1 < q_2 < \infty$. Suppose that $F \in L^{q_j}(\mathbb{R}_+^d; \mathbb{C}^d)$, $f \in L^{q_j}(\mathbb{R}_+^d; \mathbb{C}^{d \times d})$, and $g \in L^{q_j}(\mathbb{R}_+^d; \mathbb{C}) \cap \mathring{W}^{-1,q_j}(\mathbb{R}_+^d; \mathbb{C})$ for $j = 1, 2$. Let $u^j \in W_0^{1,q_j}(\mathbb{R}_+^d; \mathbb{C}^d)$ be the solution of (3.1), given by Theorem 3.1, with the same data F, f, g , for $j = 1, 2$. Since the solutions constructed in $W_0^{1,q}(\mathbb{R}_+^d; \mathbb{C}^d)$ for the existence part of the proof do not depend on q , it follows that $u^1 = u^2$ in \mathbb{R}_+^d . As a result, we obtain $u^1 = u^2 \in W_0^{1,q_1}(\mathbb{R}_+^d; \mathbb{C}^d) \cap W_0^{1,q_2}(\mathbb{R}_+^d; \mathbb{C}^d)$.

4 The region above a Lipschitz graph

Let

$$\mathbb{H}_\psi = \{(x', x_d) \in \mathbb{R}^d : x' \in \mathbb{R}^{d-1} \text{ and } x_d > \psi(x')\},$$

where $\psi : \mathbb{R}^{d-1} \rightarrow \mathbb{R}$ is a Lipschitz function. Note that if $\psi = 0$, we have $\mathbb{H}_0 = \mathbb{R}_+^d$. In this section we study the resolvent problem for the Stokes equations,

$$\begin{cases} -\Delta u + \nabla p + \lambda u = F + \operatorname{div}(f) & \text{in } \mathbb{H}_\psi, \\ \operatorname{div}(u) = g & \text{in } \mathbb{H}_\psi, \\ u = 0 & \text{on } \partial \mathbb{H}_\psi, \end{cases} \quad (4.1)$$

where $\lambda \in \Sigma_\theta$. For $1 < q < \infty$, define

$$A_\psi^q = L^q(\mathbb{H}_\psi; \mathbb{C}) + \mathring{W}^{1,q}(\mathbb{H}_\psi; \mathbb{C}) \quad \text{and} \quad B_\psi^q = L^q(\mathbb{H}_\psi; \mathbb{C}) \cap \mathring{W}^{-1,q}(\mathbb{H}_\psi; \mathbb{C}), \quad (4.2)$$

where, as in the case \mathbb{R}^d and \mathbb{R}_+^d ,

$$\mathring{W}^{1,q}(\mathbb{H}_\psi; \mathbb{C}) = \{u \in L^q_{\text{loc}}(\mathbb{H}_\psi; \mathbb{C}) : \nabla u \in L^q(\mathbb{H}_\psi; \mathbb{C}^d)\},$$

with the norm $\|\nabla u\|_{L^q(\mathbb{H}_\psi)}$, and $\mathring{W}^{-1,q}(\mathbb{H}_\psi; \mathbb{C})$ denotes the dual of $\mathring{W}^{1,q'}(\mathbb{H}_\psi; \mathbb{C})$. Note that A_ψ^q and B_ψ^q are Banach spaces with the usual norms,

$$\|p\|_{A_\psi^q} = \inf \{\|p_1\|_{L^q(\mathbb{H}_\psi)} + \|\nabla p_2\|_{L^q(\mathbb{H}_\psi)} : p = p_1 + p_2 \text{ in } \mathbb{H}_\psi\}$$

and

$$\|g\|_{B_\psi^q} = \|g\|_{L^q(\mathbb{H}_\psi)} + \|g\|_{\mathring{W}^{-1,q}(\mathbb{H}_\psi)}.$$

The goal of this section is to prove the following.

Theorem 4.1. *Let $\lambda \in \Sigma_\theta$ and $1 < q < \infty$. There exists $c_0 \in (0, 1)$, depending only on d , q and θ , such that if $\|\nabla' \psi\|_\infty \leq c_0$, then for any $F \in L^q(\mathbb{H}_\psi; \mathbb{C}^d)$, $f \in L^q(\mathbb{H}_\psi; \mathbb{C}^{d \times d})$ and $g \in B_\psi^q$, there exists a unique (u, p) such that $u \in W_0^{1,q}(\mathbb{H}_\psi; \mathbb{C}^d)$, $p \in A_\psi^q$, and (4.1) holds. Moreover, the solution satisfies*

$$\begin{aligned} & |\lambda|^{1/2} \|\nabla u\|_{L^q(\mathbb{H}_\psi)} + |\lambda| \|u\|_{L^q(\mathbb{H}_\psi)} \\ & \leq C \left\{ \|F\|_{L^q(\mathbb{H}_\psi)} + |\lambda|^{1/2} \|f\|_{L^q(\mathbb{H}_\psi)} + |\lambda|^{1/2} \|g\|_{L^q(\mathbb{H}_\psi)} + |\lambda| \|g\|_{\mathring{W}^{-1,q}(\mathbb{H}_\psi)} \right\}, \end{aligned} \quad (4.3)$$

where C depends only on d , q and θ .

To prove Theorem 4.1, we introduce two Banach spaces,

$$X_\psi^q = W_0^{1,q}(\mathbb{H}_\psi; \mathbb{C}^d) \times A_\psi^q \quad \text{and} \quad Y_\psi^q = W^{-1,q}(\mathbb{H}_\psi; \mathbb{C}^d) \times B_\psi^q, \quad (4.4)$$

with the usual product norms. For $\lambda \in \Sigma_\theta$ with $|\lambda| = 1$, consider the operator

$$S_\psi^\lambda(u, p) = (-\Delta u + \nabla p + \lambda u, \operatorname{div}(u)). \quad (4.5)$$

It is not hard to see that S_ψ^λ is a bounded linear operator from X_ψ^q to Y_ψ^q for any $1 < q < \infty$ and that

$$\|S_\psi^\lambda(u, p)\|_{Y_\psi^q} \leq C \|(u, p)\|_{X_\psi^q}, \quad (4.6)$$

where C depends only on d and q . Using Theorem 3.1 and a perturbation argument, we will show that S_ψ^λ is invertible if $\|\nabla' \psi\|_\infty$ is sufficiently small.

Lemma 4.2. *Let $\lambda \in \Sigma_\theta$ with $|\lambda| = 1$ and $1 < q < \infty$. Assume that $\psi = 0$. Then $S_0^\lambda : X_0^q \rightarrow Y_0^q$ is a bijection and*

$$\|(S_0^\lambda)^{-1}\|_{Y_0^q \rightarrow X_0^q} \leq C, \quad (4.7)$$

where C depends only on d , q and θ .

Proof. In the case $\psi = 0$, we have $\mathbb{H}_\psi = \mathbb{R}_+^d$. The lemma follows readily from Theorem 3.1 and the estimate for p in Remark 3.4. Indeed, note that for any $\Lambda \in W^{-1,q}(\Omega; \mathbb{C}^d)$, there exist $F \in L^q(\Omega; \mathbb{C}^d)$ and $f \in L^q(\Omega; \mathbb{C}^{d \times d})$ such that $\Lambda = F + \operatorname{div}(f)$ and $\|\Lambda\|_{W^{-1,q}(\Omega)} \approx \|F\|_{L^q(\Omega)} + \|f\|_{L^q(\Omega)}$. \square

Theorem 4.3. *Let $\lambda \in \Sigma_\theta$ with $|\lambda| = 1$. Let $1 < q < \infty$. There exists $c_0 \in (0, 1)$, depending only on d , q and θ , such that if $\|\nabla' \psi\|_\infty \leq c_0$, then $S_\psi^\lambda : X_\psi^q \rightarrow Y_\psi^q$ is a bijection and*

$$\|(S_\psi^\lambda)^{-1}\|_{Y_\psi^q \rightarrow X_\psi^q} \leq C, \quad (4.8)$$

where C depends only on d , q and θ .

Proof. Suppose $\|\nabla' \psi\|_\infty \leq 1$. Define a bi-Lipschitz map $\Psi : \mathbb{H}_\psi \rightarrow \mathbb{R}_+^d$ by

$$\Psi(x', x_d) = (x', x_d - \psi(x')).$$

Note that $\Psi^{-1}(x', x_d) = (x', x_d + \psi(x'))$. For a function u in \mathbb{H}_ψ , let $\tilde{u} = u \circ \Psi^{-1}$, defined in \mathbb{R}_+^d . Thus, $u = \tilde{u} \circ \Psi$ and

$$\begin{cases} \partial_j u = \partial_j \tilde{u} \circ \Psi - \partial_d(\tilde{u} \partial_j \psi) \circ \Psi & \text{for } 1 \leq j \leq d-1, \\ \partial_d u = \partial_d \tilde{u} \circ \Psi. \end{cases}$$

A computation shows that

$$\Delta u = \Delta \tilde{u} \circ \Psi - \partial_d(\partial_k \tilde{u} \partial_k \psi) \circ \Psi - \partial_k(\partial_d \tilde{u} \partial_k \psi) \circ \Psi + \partial_d(\partial_d \tilde{u} |\nabla' \psi|^2) \circ \Psi,$$

where $|\nabla' \psi|^2 = |\partial_1 \psi|^2 + \cdots + |\partial_{d-1} \psi|^2$ and the repeated index k is summed from 1 to $d-1$. For $(u, p) \in X_\psi^q$, let $\tilde{u} = u \circ \Psi^{-1}$ and $\tilde{p} = p \circ \Psi^{-1}$. Then

$$\begin{aligned} -\Delta u_j + \partial_j p + \lambda u_j &= -\Delta \tilde{u}_j \circ \Psi + \partial_j \tilde{p} \circ \Psi + \lambda \tilde{u}_j \circ \Psi \\ &\quad + \partial_d(\partial_k \tilde{u}_j \partial_k \psi) \circ \Psi + \partial_k(\partial_d \tilde{u}_j \partial_k \psi) \circ \Psi \\ &\quad - \partial_d(\partial_d \tilde{u}_j |\nabla' \psi|^2) \circ \Psi - \partial_d(\tilde{p} \partial_j \psi) \circ \Psi \end{aligned} \quad (4.9)$$

for $1 \leq j \leq d-1$, and

$$\begin{aligned} -\Delta u_d + \partial_d p + \lambda u_d &= -\Delta \tilde{u}_d \circ \Psi + \partial_d \tilde{p} \circ \Psi + \lambda \tilde{u}_d \circ \Psi \\ &\quad + \partial_d(\partial_k \tilde{u}_d \partial_k \psi) \circ \Psi + \partial_k(\partial_d \tilde{u}_d \partial_k \psi) \circ \Psi \\ &\quad - \partial_d(\partial_d \tilde{u}_d |\nabla' \psi|^2) \circ \Psi, \end{aligned} \quad (4.10)$$

where the repeated index k is summed from 1 to $d-1$. Also, note that

$$\operatorname{div}(u) = \operatorname{div}(\tilde{u}) \circ \Psi - \partial_d(\tilde{u}_d \partial_d \psi) \circ \Psi. \quad (4.11)$$

In view of (4.9), (4.10) and (4.11), we obtain

$$S_\psi^\lambda(u, p) = S_0^\lambda(\tilde{u}, \tilde{p}) \circ \Psi + R(\tilde{u}, \tilde{p}) \circ \Psi, \quad (4.12)$$

where $R(\tilde{u}, \tilde{p}) = (R_1(\tilde{u}, \tilde{p}), \dots, R_d(\tilde{u}, \tilde{p}), R_{d+1}(\tilde{u}, \tilde{p}))$ with

$$R_j(\tilde{u}, \tilde{p}) = \partial_d(\partial_k \tilde{u}_j \partial_k \psi) + \partial_k(\partial_d \tilde{u}_j \partial_k \psi) - \partial_d(\partial_d \tilde{u}_j |\nabla' \psi|^2) - \partial_d(\tilde{p} \partial_j \psi) \quad (4.13)$$

for $1 \leq j \leq d-1$, and

$$\begin{cases} R_d(\tilde{u}, \tilde{p}) = \partial_d(\partial_k \tilde{u}_d \partial_k \psi) + \partial_k(\partial_d \tilde{u}_d \partial_k \psi) - \partial_d(\partial_d \tilde{u}_d |\nabla' \psi|^2), \\ R_{d+1}(\tilde{u}, \tilde{p}) = -\partial_d(\tilde{u}_k \partial_k \psi). \end{cases} \quad (4.14)$$

We claim that for any $(\tilde{u}, \tilde{p}) \in X_0^q$,

$$\|R(\tilde{u}, \tilde{p})\|_{Y_0^q} \leq C \|\nabla' \psi\|_\infty \|(\tilde{u}, \tilde{p})\|_{X_0^q}, \quad (4.15)$$

where C depends only on d and q . To show (4.15), we note that

$$\|R_j(\tilde{u}, \tilde{p})\|_{W^{-1,q}(\mathbb{R}_+^d)} \leq C \|\nabla' \psi\|_\infty \|\nabla \tilde{u}\|_{L^q(\mathbb{R}_+^d)} + \|\partial_d(\tilde{p} \partial_j \psi)\|_{W^{-1,q}(\mathbb{R}_+^d)} \quad (4.16)$$

for $1 \leq j \leq d-1$, and

$$\|R_d(\tilde{u}, \tilde{p})\|_{W^{-1,q}(\mathbb{R}_+^d)} \leq C \|\nabla' \psi\|_\infty \|\nabla \tilde{u}\|_{L^q(\mathbb{R}_+^d)}, \quad (4.17)$$

where we have used the assumption $\|\nabla' \psi\|_\infty \leq 1$. To bound the second term in the right-hand side of (4.16), we let

$$\tilde{p} = \tilde{p}_1 + \tilde{p}_2 \in L^q(\mathbb{R}_+^d; \mathbb{C}) + \mathring{W}^{1,q}(\mathbb{R}_+^d; \mathbb{C}) = A_0^q.$$

Then

$$\begin{aligned} \|\partial_d(\tilde{p} \partial_j \psi)\|_{W^{-1,q}(\mathbb{R}_+^d)} &\leq \|\partial_d(\tilde{p}_1 \partial_j \psi)\|_{W^{-1,q}(\mathbb{R}_+^d)} + \|\partial_d(\tilde{p}_2 \partial_j \psi)\|_{W^{-1,q}(\mathbb{R}_+^d)} \\ &\leq C \|\nabla' \psi\|_\infty \|\tilde{p}_1\|_{L^q(\mathbb{R}_+^d)} + C \|\nabla' \psi\|_\infty \|\partial_d \tilde{p}_2\|_{L^q(\mathbb{R}_+^d)}. \end{aligned}$$

This shows that

$$\|\partial_d(\tilde{p} \partial_j \psi)\|_{W^{-1,q}(\mathbb{R}_+^d)} \leq C \|\nabla' \psi\|_\infty \|\tilde{p}\|_{A_0^q}.$$

As a result, we have proved that

$$\|R_j(\tilde{u}, \tilde{p})\|_{W^{-1,q}(\mathbb{R}_+^d)} \leq C \|\nabla' \psi\|_\infty \|(\tilde{u}, \tilde{p})\|_{X_0^q} \quad (4.18)$$

for $1 \leq j \leq d$. This, together with the estimates,

$$\|R_{d+1}(\tilde{u}, \tilde{p})\|_{L^q(\mathbb{R}_+^d)} + \|R_{d+1}(\tilde{u}, \tilde{p})\|_{\mathring{W}^{-1,q}(\mathbb{R}_+^d)} \leq C \|\nabla' \psi\|_\infty \left(\|\nabla \tilde{u}\|_{L^q(\mathbb{R}_+^d)} + \|\tilde{u}\|_{L^q(\mathbb{R}_+^d)} \right),$$

gives (4.15).

By Lemma 4.2, $S_0^\lambda : X_0^q \rightarrow Y_0^q$ is bounded and invertible for $1 < q < \infty$. It follows by a standard perturbation argument that $S_0^\lambda + R : X_0^q \rightarrow Y_0^q$ is bounded and invertible if

$$\|R(S_0^\lambda)^{-1}\|_{Y_0^q \rightarrow Y_0^q} < 1.$$

Moreover, we have

$$\|(S_0^\lambda + R)^{-1}\|_{Y_0^q \rightarrow X_0^q} \leq \frac{\|(S_0^\lambda)^{-1}\|_{Y_0^q \rightarrow X_0^q}}{1 - \|R(S_0^\lambda)^{-1}\|_{Y_0^q \rightarrow Y_0^q}}.$$

By (4.7) and (4.15),

$$\begin{aligned} \|R(S_0^\lambda)^{-1}\|_{Y_0^q \rightarrow Y_0^q} &\leq \|R\|_{X_0^q \rightarrow Y_0^q} \|(S_0^\lambda)^{-1}\|_{Y_0^q \rightarrow X_0^q} \\ &\leq C_0 \|\nabla' \psi\|_\infty, \end{aligned}$$

where C_0 depends only on d, q and θ . As a result, we have proved that if $\|\nabla' \psi\|_\infty \leq (2C_0)^{-1}$, then $S_0^\lambda + R : X_0^q \rightarrow Y_0^q$ is invertible and

$$\|(S_0^\lambda + R)^{-1}\|_{Y_0^q \rightarrow X_0^q} \leq C$$

for some C depending on d, q and θ . Finally, we note that

$$\|(u \circ \Psi^{-1}, p \circ \Psi^{-1})\|_{X_0^q} \approx \|(u, p)\|_{X_\psi^q}$$

for any $(u, p) \in X_\psi^q$, and

$$\|(\Lambda \circ \Psi^{-1}, g \circ \Psi^{-1})\|_{Y_0^q} \approx \|(\Lambda, g)\|_{Y_\psi^q}$$

for any $(\Lambda, g) \in Y_\psi^q$. By (4.12), we deduce that if $\|\nabla' \psi\|_\infty \leq c_0(d, q, \theta)$, then $S_\psi^\lambda : X_\psi^q \rightarrow Y_\psi^q$ is invertible and (4.8) holds. This completes the proof. \square

Proof of Theorem 4.1. The case $|\lambda| = 1$ follows readily from Theorem 4.3. The general case can be reduced to the case $|\lambda| = 1$ by rescaling. Indeed, let (u, p) be a solution of (4.1) in \mathbb{H}_ψ . Let $v(x) = u(|\lambda|^{-1/2}x)$ and $\phi(x) = |\lambda|^{-1/2}p(|\lambda|^{-1/2}x)$. Then (v, ϕ) is a solution of the resolvent problem for the Stokes equations in the graph domain $\mathbb{H}_{\psi_\lambda}$ with the parameter $\lambda|\lambda|^{-1} \in \Sigma_\theta$, where $\psi_\lambda(x') = |\lambda|^{1/2}\psi(|\lambda|^{-1/2}x')$. Moreover, we have $\|\nabla' \psi_\lambda\|_\infty = \|\nabla' \psi\|_\infty$. As a result, the general case follows from the case $|\lambda| = 1$. \square

Remark 4.4. Let $1 < q_1 < q_2 < \infty$. Let $\lambda \in \Sigma_\theta$ and $|\lambda| = 1$. It follows from Lemma 4.2 and Remark 3.5 that $S_0^\lambda : X_0^{q_1} \cap X_0^{q_2} \rightarrow Y_0^{q_1} \cap Y_0^{q_2}$ is a bijection and

$$\|(S_0^\lambda)^{-1}\|_{Y_0^{q_1} \cap Y_0^{q_2} \rightarrow X_0^{q_1} \cap X_0^{q_2}} \leq C,$$

where C depends only on d, q_1, q_2 and θ . By the same perturbation argument as in the proof of Theorem 4.3, we deduce that $S_\psi^\lambda : X_\psi^{q_1} \cap X_\psi^{q_2} \rightarrow Y_\psi^{q_1} \cap Y_\psi^{q_2}$ is a bijection and

$$\|(S_\psi^\lambda)^{-1}\|_{Y_\psi^{q_1} \cap Y_\psi^{q_2} \rightarrow X_\psi^{q_1} \cap X_\psi^{q_2}} \leq C,$$

if $\|\nabla' \psi\|_\infty \leq c_0(d, q_1, q_2, \theta)$, where C depends only on d, q_1, q_2 and θ . Consequently, if $F \in L^{q_1}(\mathbb{H}_\psi; \mathbb{C}^d) \cap L^{q_2}(\mathbb{H}_\psi; \mathbb{C}^d)$, $f \in L^{q_1}(\mathbb{H}_\psi; \mathbb{C}^{d \times d}) \cap L^{q_2}(\mathbb{H}_\psi; \mathbb{C}^{d \times d})$ and $g \in B_\psi^{q_1} \cap B_\psi^{q_2}$, then the solution u of (4.1), given by Theorem 4.1, belongs to $W_0^{1, q_1}(\mathbb{H}_\psi; \mathbb{C}^d) \cap W_0^{1, q_2}(\mathbb{H}_\psi; \mathbb{C}^d)$, provided that $\|\nabla' \psi\|_\infty$ is sufficiently small.

Remark 4.5. Let (u, p) be a solution of the resolvent problem for the Stokes equations in \mathbb{H}_ψ . Let $v(x) = O^T u(Ox)$ and $\phi(x) = p(Ox)$, where O is a $d \times d$ orthogonal matrix. Then

$$\begin{cases} (-\Delta v + \nabla \phi + \lambda v)(x) = O^T(-\Delta u + \nabla p + \lambda u)(Ox), \\ \operatorname{div}(v)(x) = \operatorname{div}(u)(Ox). \end{cases}$$

Consequently, Theorem 4.1 continues to hold if the domain \mathbb{H}_ψ is replaced by

$$O\mathbb{H}_\psi = \{y \in \mathbb{R}^d : y = Ox \text{ for some } x \in \mathbb{H}_\psi\}$$

for any $d \times d$ orthogonal matrix.

5 A bounded C^1 domain and the proof of Theorem 1.1

Throughout this section we assume that Ω is a bounded C^1 domain in \mathbb{R}^d . This implies that for any $c_0 > 0$, there exists some $r_0 > 0$ such that for each $z = (z', z_d) \in \partial\Omega$,

$$\Omega \cap B(z, 2r_0) = D \cap B(z, 2r_0) \quad \text{and} \quad \partial\Omega \cap B(z, 2r_0) = \partial D \cap B(z, 2r_0), \quad (5.1)$$

where D is given by

$$D = O\mathbb{H}_\psi \quad \text{for some orthogonal matrix } O \text{ and some } C^1 \text{ function } \psi \text{ in } \mathbb{R}^{d-1} \quad (5.2)$$

with $\nabla' \psi(z') = 0$ and $\|\nabla' \psi\|_\infty \leq c_0$. Recall that ∇' denotes the gradient with respect to $x' = (x_1, \dots, x_{d-1})$. We will use $L_0^q(\Omega; \mathbb{C})$ to denote the subspace of $L^q(\Omega; \mathbb{C})$ of functions p with $\int_\Omega p = 0$.

The goal of this section is to prove the following theorem, which contains Theorem 1.1 as a special case with $f = 0$ and $g = 0$.

Theorem 5.1. *Let Ω be a bounded C^1 domain in \mathbb{R}^d , $d \geq 2$. Let $1 < q < \infty$ and $\lambda \in \Sigma_\theta$. For any $F \in L^q(\Omega; \mathbb{C}^d)$, $f \in L^q(\Omega; \mathbb{C}^{d \times d})$ and $g \in L_0^q(\Omega; \mathbb{C})$, there exists a unique $u \in W_0^{1,q}(\Omega; \mathbb{C}^d)$ such that*

$$\begin{cases} -\Delta u + \nabla p + \lambda u = F + \operatorname{div}(f), \\ \operatorname{div}(u) = g \end{cases} \quad (5.3)$$

hold in Ω for some $p \in L_{\text{loc}}^1(\Omega; \mathbb{C})$ in the sense of distributions. Moreover, the solution u satisfies the estimate,

$$\begin{aligned} &(|\lambda| + 1)^{1/2} \|\nabla u\|_{L^q(\Omega)} + (|\lambda| + 1) \|u\|_{L^q(\Omega)} \\ &\leq C \left\{ \|F\|_{L^q(\Omega)} + (|\lambda| + 1)^{1/2} \|f\|_{L^q(\Omega)} + (|\lambda| + 1) \|g\|_{L^q(\Omega)} \right\}, \end{aligned} \quad (5.4)$$

and $p \in L^q(\Omega; \mathbb{C})$, where C depends only on d , q , θ and Ω .

Theorem 5.1 follows from Theorems 2.1 and 4.1 by a localization argument.

Lemma 5.2. *Let $u \in W_0^{1,q}(\Omega; \mathbb{C}^d)$ for some $1 < q < \infty$. Suppose $\operatorname{div}(u) = 0$ in Ω . Then*

$$\|\operatorname{div}(u\varphi)\|_{\mathring{W}^{-1,q}(\mathbb{R}^d)} \leq C(\|\nabla \varphi\|_\infty + \|\nabla^2 \varphi\|_\infty) \|u\|_{W^{-1,q}(\Omega)}, \quad (5.5)$$

where $\varphi \in C_0^\infty(\Omega; \mathbb{R})$ and C depends on d , q , $\operatorname{diam}(\Omega)$ and the Lipschitz character of Ω .

Proof. Let $h \in \mathring{W}^{1,q'}(\mathbb{R}^d; \mathbb{C})$. Note that

$$\int_{\mathbb{R}^d} \operatorname{div}(u\varphi) \cdot h = \int_{\Omega} (u \cdot \nabla \varphi) \left(h - \int_{\Omega} h \right),$$

where we have used the assumption $\operatorname{div}(u) = 0$ in Ω . It follows that

$$\begin{aligned} \left| \int_{\mathbb{R}^d} \operatorname{div}(u\varphi) \cdot h \right| &\leq \|u\|_{W^{-1,q}(\Omega)} \|\nabla \varphi (h - \int_{\Omega} h)\|_{W_0^{1,q'}(\Omega)} \\ &\leq C(\|\nabla \varphi\|_{\infty} + \|\nabla^2 \varphi\|_{\infty}) \|u\|_{W^{-1,q}(\Omega)} \|\nabla h\|_{L^{q'}(\mathbb{R}^d)}, \end{aligned}$$

where we have used a Poincaré inequality in Ω . This gives (5.5). \square

Remark 5.3. Let u be the same as in Lemma 5.2. Suppose $\varphi \in C_0^\infty(B(z, 2r_0); \mathbb{R})$, where $z \in \partial\Omega$ and $\Omega \cap B(z, 2r_0)$ satisfies (5.1)-(5.2). Let $W_0^{-1,q}(\Omega; \mathbb{C}^d)$ denote the dual of $W^{1,q'}(\Omega; \mathbb{C}^d)$. Then

$$\|\operatorname{div}(u\varphi)\|_{\mathring{W}^{-1,q}(D)} \leq C(\|\nabla \varphi\|_{\infty} + \|\nabla^2 \varphi\|_{\infty}) \|u\|_{W_0^{-1,q}(\Omega)}, \quad (5.6)$$

where D is given by (5.1)-(5.2). To see this, we note that for any $h \in \mathring{W}^{1,q'}(D; \mathbb{C})$,

$$\int_D \operatorname{div}(u\varphi) \cdot h = \int_{\Omega} (u \cdot \nabla \varphi) \left(h - \int_{\Omega} h \right),$$

where we have used the assumptions that $\operatorname{div}(u) = 0$ in Ω and $u = 0$ on $\partial\Omega$.

Lemma 5.4. Let $1 < q < \infty$. Then for any $p \in L_0^q(\Omega; \mathbb{C})$,

$$\|p\|_{L^q(\Omega)} \leq C \|\nabla p\|_{W^{-1,q}(\Omega)}, \quad (5.7)$$

where C depends on d , q , $\operatorname{diam}(\Omega)$ and the Lipschitz character of Ω .

Proof. Since Ω is a bounded Lipschitz domain and $\bar{p}|p|^{q-2} \in L^{q'}(\Omega; \mathbb{C})$, there exists $v \in W_0^{1,q'}(\Omega; \mathbb{C}^d)$ such that

$$\operatorname{div}(v) = \bar{p}|p|^{q-2} - \int_{\Omega} \bar{p}|p|^{q-2} \quad \text{in } \Omega$$

(see [13, Theorem III.3.1]). Moreover, the function v satisfies

$$\|v\|_{W^{1,q'}(\Omega)} \leq C \|\bar{p}|p|^{q-2}\|_{L^{q'}(\Omega)} = C \|p\|_{L^q(\Omega)}^{q-1}. \quad (5.8)$$

Using

$$\int_{\Omega} |p|^q = \int_{\Omega} p \cdot \operatorname{div}(v),$$

we obtain

$$\begin{aligned} \|p\|_{L^q(\Omega)}^q &\leq \|\nabla p\|_{W^{-1,q}(\Omega)} \|v\|_{W_0^{1,q'}(\Omega)} \\ &\leq C \|\nabla p\|_{W^{-1,q}(\Omega)} \|p\|_{L^q(\Omega)}^{q-1}, \end{aligned}$$

where we have used (5.8) for the last inequality. This yields (5.7). \square

The following lemma contains a key a priori estimate. Recall that $W_0^{-1,q}(\Omega; \mathbb{C}^d)$ denotes the dual of $W^{1,q}(\Omega; \mathbb{C}^d)$.

Lemma 5.5. *Let $1 < q < \infty$ and $\lambda \in \Sigma_\theta$. Let $(u, p) \in W_0^{1,q}(\Omega; \mathbb{C}^d) \times L_0^q(\Omega; \mathbb{C})$ be a solution of (5.3) with $F \in L^q(\Omega; \mathbb{C}^d)$, $f \in L^q(\Omega; \mathbb{C}^{d \times d})$ and $g = 0$. There exist $\lambda_0 > 1$ and $C > 0$, depending only on d , q , θ , $\text{diam}(\Omega)$ and the C^1 character of Ω , such that if $|\lambda| \geq \lambda_0$, then*

$$|\lambda|^{1/2} \|\nabla u\|_{L^q(\Omega)} + |\lambda| \|u\|_{L^q(\Omega)} \leq C \left\{ \|F\|_{L^q(\Omega)} + |\lambda|^{1/2} \|f\|_{L^q(\Omega)} + |\lambda| \|u\|_{W_0^{-1,q}(\Omega)} \right\}. \quad (5.9)$$

Proof. Let $z \in \bar{\Omega}$ and $r_0 > 0$ be small. Let $\varphi \in C_0^\infty(B(z, 2r_0); \mathbb{R})$ such that $\varphi = 1$ in $B(z, r_0)$ and $|\nabla \varphi| \leq Cr_0^{-1}$, $|\nabla^2 \varphi| \leq Cr_0^{-2}$. A computation shows that

$$\begin{cases} -\Delta(u\varphi) + \nabla(p\varphi) + \lambda u\varphi = F\varphi + \text{div}(f\varphi) - f(\nabla\varphi) + p\nabla\varphi - 2\text{div}(u \otimes \nabla\varphi) + u\Delta\varphi, \\ \text{div}(u\varphi) = u \cdot \nabla\varphi. \end{cases} \quad (5.10)$$

We consider two cases: (1) $B(z, 2r_0) \subset \Omega$ and (2) $z \in \partial\Omega$.

Case (1). Suppose $B(z, 2r_0) \subset \Omega$. Then the Stokes equations in (5.10) hold in \mathbb{R}^d . Since $u\varphi \in W^{1,q}(\mathbb{R}^d; \mathbb{C}^d)$ and $p\varphi \in L^q(\mathbb{R}^d; \mathbb{C})$, it follows by Theorem 2.1 that

$$\begin{aligned} & |\lambda|^{1/2} \|\nabla(u\varphi)\|_{L^q(\mathbb{R}^d)} + |\lambda| \|u\varphi\|_{L^q(\mathbb{R}^d)} \\ & \leq C \left\{ \|F\varphi\|_{L^q(\mathbb{R}^d)} + |\lambda|^{1/2} \|f\varphi\|_{L^q(\mathbb{R}^d)} + \|f\nabla\varphi\|_{L^q(\mathbb{R}^d)} + \|p\nabla\varphi\|_{L^q(\mathbb{R}^d)} \right. \\ & \quad \left. + \|u\Delta\varphi\|_{L^q(\mathbb{R}^d)} + |\lambda|^{1/2} \|u\nabla\varphi\|_{L^q(\mathbb{R}^d)} + |\lambda| \|\text{div}(u\varphi)\|_{\dot{W}^{-1,q}(\mathbb{R}^d)} \right\}. \end{aligned}$$

This leads to

$$\begin{aligned} & |\lambda|^{1/2} \|\nabla u\|_{L^q(B(z, r_0))} + |\lambda| \|u\|_{L^q(B(z, r_0))} \\ & \leq Cr_0^{-2} \left\{ \|F\|_{L^q(\Omega)} + (1 + |\lambda|^{1/2}) \|f\|_{L^q(\Omega)} \right. \\ & \quad \left. + \|p\|_{L^q(\Omega)} + (1 + |\lambda|^{1/2}) \|u\|_{L^q(\Omega)} + |\lambda| \|u\|_{W^{-1,q}(\Omega)} \right\}, \end{aligned} \quad (5.11)$$

where we have used Lemma 5.2 and the fact $\varphi = 1$ in $B(z, r_0)$.

Case (2). Suppose $z \in \partial\Omega$. Let D be given by (5.1)-(5.2). We assume r_0 is sufficiently small so that $\|\nabla' \psi\|_\infty < c_0$, where $c_0 = c_0(d, q, \theta) > 0$ is given by Theorem 4.1. Note that $u\varphi \in W_0^{1,q}(D; \mathbb{C}^d)$, $p\varphi \in L^q(D; \mathbb{C})$, and (5.10) holds in D . It follows by Theorem 4.1 and Remark 4.5 that

$$\begin{aligned} & |\lambda|^{1/2} \|\nabla(u\varphi)\|_{L^q(D)} + |\lambda| \|u\varphi\|_{L^q(D)} \\ & \leq C \left\{ \|F\varphi\|_{L^q(D)} + |\lambda|^{1/2} \|f\varphi\|_{L^q(D)} + \|f\nabla\varphi\|_{L^q(D)} + \|p\nabla\varphi\|_{L^q(D)} + \|u\Delta\varphi\|_{L^q(D)} \right. \\ & \quad \left. + |\lambda|^{1/2} \|u\nabla\varphi\|_{L^q(D)} + |\lambda| \|\text{div}(u\varphi)\|_{\dot{W}^{-1,q}(D)} \right\}, \end{aligned}$$

which yields

$$\begin{aligned} & |\lambda|^{1/2} \|\nabla u\|_{L^q(\Omega \cap B(z, r_0))} + |\lambda| \|u\|_{L^q(\Omega \cap B(z, r_0))} \\ & \leq Cr_0^{-2} \left\{ \|F\|_{L^q(\Omega)} + (1 + |\lambda|^{1/2}) \|f\|_{L^q(\Omega)} + \|p\|_{L^q(\Omega)} \right. \\ & \quad \left. + (1 + |\lambda|^{1/2}) \|u\|_{L^q(\Omega)} + |\lambda| \|u\|_{W_0^{-1,q}(\Omega)} \right\}, \end{aligned} \quad (5.12)$$

where we have used the estimate in Remark 5.3 and the fact $\varphi = 1$ in $B(z, r_0)$.

We now cover Ω by a finite number of balls $\{B(z_k, r_0)\}$ with the properties that either $B(z_k, 2r_0) \subset \Omega$ or $z_k \in \partial\Omega$. In view of (5.11) and (5.12), by summation, we deduce that

$$\begin{aligned} & |\lambda|^{1/2} \|\nabla u\|_{L^q(\Omega)} + |\lambda| \|u\|_{L^q(\Omega)} \\ & \leq C \left\{ \|F\|_{L^q(\Omega)} + (1 + |\lambda|^{1/2}) \|f\|_{L^q(\Omega)} + \|p\|_{L^q(\Omega)} + (1 + |\lambda|^{1/2}) \|u\|_{L^q(\Omega)} + |\lambda| \|u\|_{W_0^{-1,q}(\Omega)} \right\} \\ & \leq C \left\{ \|F\|_{L^q(\Omega)} + (1 + |\lambda|^{1/2}) \|f\|_{L^q(\Omega)} + \|\nabla u\|_{L^q(\Omega)} + (1 + |\lambda|^{1/2}) \|u\|_{L^q(\Omega)} + |\lambda| \|u\|_{W_0^{-1,q}(\Omega)} \right\}, \end{aligned} \quad (5.13)$$

where we have used Lemma 5.4 and the equation $\nabla p = \Delta u - \lambda u + F + \operatorname{div}(f)$ for the last inequality. The constant C in (5.13) depends only on d , q , θ and Ω . We obtain (5.9) by choosing $\lambda_0 > 1$ so large that $|\lambda| \geq 4C|\lambda|^{1/2}$ for $|\lambda| \geq \lambda_0$. \square

Lemma 5.6. *Let $2 \leq q < \infty$ and $\lambda \in \Sigma_\theta$. Let $(u, p) \in W_0^{1,q}(\Omega; \mathbb{C}^d) \times L_0^q(\Omega; \mathbb{C})$ be a solution of (5.3) with $F \in L^q(\Omega; \mathbb{C}^d)$, $f \in L^q(\Omega; \mathbb{C}^{d \times d})$ and $g = 0$. Then,*

$$(|\lambda| + 1)^{1/2} \|\nabla u\|_{L^q(\Omega)} + (|\lambda| + 1) \|u\|_{L^q(\Omega)} \leq C \left\{ \|F\|_{L^q(\Omega)} + (|\lambda| + 1)^{1/2} \|f\|_{L^q(\Omega)} \right\}, \quad (5.14)$$

where $C > 0$ depends on d , q , θ , $\operatorname{diam}(\Omega)$ and the C^1 character of Ω .

Proof. The case $q = 2$ is well known and follows from the energy estimates. For $q > 2$, we first consider the case $|\lambda| \geq \lambda_0$, where $\lambda_0 > 1$ is given by Lemma 5.5. Since Ω is bounded, by Lemma 5.5, the estimate

$$|\lambda|^{1/2} \|\nabla u\|_{L^s(\Omega)} + |\lambda| \|u\|_{L^s(\Omega)} \leq C \left\{ \|F\|_{L^s(\Omega)} + |\lambda|^{1/2} \|f\|_{L^s(\Omega)} + |\lambda| \|u\|_{W_0^{-1,s}(\Omega)} \right\} \quad (5.15)$$

holds for any $s \in [2, q]$. By Sobolev imbedding, $L^t(\Omega; \mathbb{C}^d) \subset W_0^{-1,s}(\Omega; \mathbb{C}^d)$, where $1 < t < d$ and $\frac{1}{t} = \frac{1}{s} + \frac{1}{d}$. In particular, if $2 < s \leq \frac{2d}{d-2}$, then $L^2(\Omega; \mathbb{C}^d) \subset W_0^{-1,s}(\Omega; \mathbb{C}^d)$ and

$$\begin{aligned} |\lambda| \|u\|_{W_0^{-1,s}(\Omega)} & \leq C |\lambda| \|u\|_{L^2(\Omega)} \\ & \leq C \left\{ \|F\|_{L^2(\Omega)} + |\lambda|^{1/2} \|f\|_{L^2(\Omega)} \right\} \\ & \leq C \left\{ \|F\|_{L^s(\Omega)} + |\lambda|^{1/2} \|f\|_{L^s(\Omega)} \right\}. \end{aligned}$$

This, together with (5.15), gives (5.14) for $2 < q \leq \frac{2d}{d-2}$. By a bootstrapping argument, one may show that the estimate (5.14) holds for any $2 < q < \infty$ in a finite number of steps.

We now consider the case $|\lambda| < \lambda_0$. We rewrite the Stokes equations as

$$\begin{cases} -\Delta u + \nabla p + (\lambda + 2\lambda_0)u = F + \operatorname{div}(f) + 2\lambda_0 u, \\ \operatorname{div}(u) = 0. \end{cases} \quad (5.16)$$

Since $\lambda + 2\lambda_0 \in \Sigma_\theta$ and $|\lambda + 2\lambda_0| > \lambda_0$, it follows from the previous case that

$$\|\nabla u\|_{L^q(\Omega)} \leq C \left\{ \|F\|_{L^q(\Omega)} + \|f\|_{L^q(\Omega)} + \|u\|_{L^q(\Omega)} \right\}. \quad (5.17)$$

Since $W_0^{1,2}(\Omega; \mathbb{C}^d) \subset L^s(\Omega; \mathbb{C}^d)$ for $s = \frac{2d}{d-2}$, we obtain

$$\begin{aligned} \|\nabla u\|_{L^q(\Omega)} & \leq C \left\{ \|F\|_{L^q(\Omega)} + \|f\|_{L^q(\Omega)} + \|\nabla u\|_{L^2(\Omega)} \right\} \\ & \leq C \left\{ \|F\|_{L^q(\Omega)} + \|f\|_{L^q(\Omega)} \right\} \end{aligned}$$

for $2 < q \leq \frac{2d}{d-2}$, where we have used the estimate (5.14) for $q = 2$ for the last inequality. As before, a bootstrapping argument, using (5.17), gives

$$\|\nabla u\|_{L^q(\Omega)} \leq C \{ \|F\|_{L^q(\Omega)} + \|f\|_{L^q(\Omega)} \}$$

for $2 < q < \infty$ in a finite number of steps. This, together with a Poincaré inequality, yields (5.14) for the case $|\lambda| < \lambda_0$. \square

We are now in a position to give the proof of Theorem 5.1.

Proof of Theorem 5.1. Step 1. Consider the case $2 < q < \infty$ and $g = 0$.

The uniqueness follows from the case $q = 2$. To show the existence and the estimate (5.4), let $F \in L^q(\Omega; \mathbb{C}^d)$ and $f \in L^q(\Omega; \mathbb{C}^{d \times d})$. Note that the constant C in (5.14) depends only on d, q, θ , the diameter of Ω as well as the C^1 character of $\partial\Omega$. As a result, we may construct a sequence of smooth domains $\{\Omega_k\}$ such that $\Omega_k \subset \Omega$ and the estimate (5.14) holds in Ω_k with a constant C independent of k . Let (u^k, p^k) be the unique solution in $W_0^{1,2}(\Omega_k; \mathbb{C}^d) \times L_0^2(\Omega_k; \mathbb{C})$ of the Stokes system (5.3) in Ω_k with $g = 0$, F^k in the place of F and f^k in the place of f , where $F^k \in C_0^\infty(\Omega_k; \mathbb{C}^d)$, $f^k \in C_0^\infty(\Omega_k; \mathbb{C}^{d \times d})$ and $\|F^k - F\|_{L^q(\Omega_k)} + \|f^k - f\|_{L^q(\Omega_k)} \rightarrow 0$. Since Ω_k and F^k, f^k are smooth, it is well known that $(u^k, p^k) \in W_0^{1,q}(\Omega_k; \mathbb{C}^d) \times L_0^q(\Omega_k; \mathbb{C})$ [13]. We extend (u^k, p^k) to Ω by zero and still denote the extension by (u^k, p^k) . It follows by Lemma 5.6 that

$$(|\lambda|+1)^{1/2} \|\nabla u^k\|_{L^q(\Omega)} + (|\lambda|+1) \|u^k\|_{L^q(\Omega)} \leq C \{ \|F^k\|_{L^q(\Omega_k)} + (|\lambda|+1)^{1/2} \|f^k\|_{L^q(\Omega_k)} \}, \quad (5.18)$$

where C depends only on d, q, θ and Ω . Note that by Lemma 5.4, $\{p^k\}$ is bounded in $L^q(\Omega; \mathbb{C})$. By passing to a subsequence, we may assume that $u^k \rightarrow u$ weakly in $W_0^{1,q}(\Omega; \mathbb{C}^d)$ and $p^k \rightarrow p$ weakly in $L^q(\Omega; \mathbb{C})$. It is not hard to see that (u, p) is a solution of (5.3) in Ω with data (F, f) and $g = 0$. By letting $k \rightarrow \infty$ in (5.18), it follows that u satisfies the estimate (5.4).

Step 2. We establish the existence and estimate (5.4) for $1 < q < 2$ and $g = 0$.

For $F, G \in C_0^\infty(\Omega; \mathbb{C}^d)$ and $f, h \in C_0^\infty(\Omega; \mathbb{C}^{d \times d})$, let $(u, p), (v, \phi) \in W_0^{1,2}(\Omega; \mathbb{C}^d) \times L_0^2(\Omega; \mathbb{C})$ be weak solutions of (5.3) in Ω with data $(F, f), (G, h)$, respectively; i.e.,

$$\begin{cases} -\Delta u + \nabla p + \lambda u = F + \operatorname{div}(f) & \text{in } \Omega, \\ \operatorname{div}(u) = 0 & \text{in } \Omega, \\ -\Delta v + \nabla \phi + \lambda v = G + \operatorname{div}(h) & \text{in } \Omega, \\ \operatorname{div}(v) = 0 & \text{in } \Omega. \end{cases}$$

Note that

$$\int_\Omega F \cdot v - \int_\Omega f \cdot \nabla v = \int_\Omega \nabla u \cdot \nabla v + \lambda \int_\Omega u \cdot v = \int_\Omega G \cdot u - \int_\Omega h \cdot \nabla u.$$

It follows that

$$\begin{aligned} \left| \int_\Omega G \cdot u - \int_\Omega h \cdot \nabla u \right| &\leq \|F\|_{L^q(\Omega)} \|v\|_{L^{q'}(\Omega)} + \|f\|_{L^q(\Omega)} \|\nabla v\|_{L^{q'}(\Omega)} \\ &\leq C(|\lambda|+1)^{-1} \{ \|F\|_{L^q(\Omega)} + (|\lambda|+1)^{1/2} \|f\|_{L^q(\Omega)} \} \{ \|G\|_{L^{q'}(\Omega)} + (|\lambda|+1)^{1/2} \|h\|_{L^{q'}(\Omega)} \}, \end{aligned}$$

where we have used the estimate,

$$(|\lambda| + 1)^{1/2} \|\nabla v\|_{L^{q'}(\Omega)} + (|\lambda| + 1) \|v\|_{L^{q'}(\Omega)} \leq C \left\{ \|G\|_{L^{q'}(\Omega)} + (|\lambda| + 1)^{1/2} \|h\|_{L^{q'}(\Omega)} \right\},$$

obtained in Step 1 for $q' > 2$. By duality this gives

$$(|\lambda| + 1)^{1/2} \|\nabla u\|_{L^q(\Omega)} + (|\lambda| + 1) \|u\|_{L^q(\Omega)} \leq C \left\{ \|F\|_{L^q(\Omega)} + (|\lambda| + 1)^{1/2} \|f\|_{L^q(\Omega)} \right\}.$$

As a result, we have proved the existence and the estimate (5.4) for $F \in C_0^\infty(\Omega; \mathbb{C}^d)$ and $f \in C_0^\infty(\Omega; \mathbb{C}^{d \times d})$. The general case, where $F \in L^q(\Omega; \mathbb{C}^d)$, $f \in L^q(\Omega; \mathbb{C}^{d \times d})$ and $g = 0$, for $1 < q < 2$, follows readily by a density argument.

Step 3. We establish the uniqueness.

The uniqueness for $q > 2$ follows from the uniqueness for $q = 2$. To handle the case $1 < q < 2$, let $u \in W_0^{1,q}(\Omega; \mathbb{C}^d)$ be a solution of (5.3) in Ω with $F = 0$, $f = 0$ and $g = 0$. Since $\bar{u}|u|^{q-2} \in L^{q'}(\Omega; \mathbb{C}^d)$, by Step 1, there exists $(v, \phi) \in W_0^{1,q'}(\Omega; \mathbb{C}^d) \times L_0^{q'}(\Omega; \mathbb{C})$ such that

$$\begin{cases} -\Delta v + \nabla \phi + \lambda v = |u|^{q-2} \bar{u} & \text{in } \Omega, \\ \operatorname{div}(v) = 0 & \text{in } \Omega. \end{cases}$$

As in the case $\Omega = \mathbb{R}^d$, this leads to $\int_\Omega |u|^q = 0$. Hence, $u = 0$ in Ω .

Step 4. The case $g \neq 0$.

Let $g \in L_0^q(\Omega; \mathbb{C})$. Since Ω is a bounded Lipschitz domain, there exists $w \in W_0^{1,q}(\Omega; \mathbb{C}^d)$ such that

$$\operatorname{div}(w) = g \quad \text{in } \Omega \quad \text{and} \quad \|w\|_{L^q(\Omega)} + \|\nabla w\|_{L^q(\Omega)} \leq C \|g\|_{L^q(\Omega)}. \quad (5.19)$$

By considering $\tilde{u} = u - w$, we reduce the problem to the case $g = 0$. Indeed, let \tilde{u} be a solution of

$$\begin{cases} -\Delta \tilde{u} + \nabla p + \lambda \tilde{u} = F + \operatorname{div}(f + \nabla w) - \lambda w, \\ \operatorname{div}(\tilde{u}) = 0 \end{cases}$$

in Ω . Then $u = \tilde{u} + w$ is a solution of (5.3). \square

Remark 5.7. Let $1 < q < \infty$ and Ω be a bounded C^1 domain in \mathbb{R}^d . By letting $\lambda \in \mathbb{R}_+$ and $\lambda \rightarrow 0$ in Theorem 5.1, one may show that for any $F \in L^q(\Omega; \mathbb{C}^d)$, $f \in L^q(\Omega; \mathbb{C}^{d \times d})$ and $g \in L_0^q(\Omega; \mathbb{C})$, there exists a unique $(u, p) \in W_0^{1,q}(\Omega; \mathbb{C}^d) \times L_0^q(\Omega; \mathbb{C})$ such that

$$\begin{cases} -\Delta u + \nabla p = F + \operatorname{div}(f), \\ \operatorname{div}(u) = g \end{cases} \quad (5.20)$$

in Ω . Moreover, the solution (u, p) satisfies the estimate

$$\|\nabla u\|_{L^q(\Omega)} + \|p\|_{L^q(\Omega)} \leq C \left\{ \|F\|_{L^q(\Omega)} + \|f\|_{L^q(\Omega)} + \|g\|_{L^q(\Omega)} \right\}, \quad (5.21)$$

where C depends on d , q and Ω . The $W^{1,q}$ estimate (5.21) is known for C^1 domains [7]. If Ω is a bounded Lipschitz domain, the estimate (5.21) holds for $(3/2) - \varepsilon < q < 3 + \varepsilon$ if $d = 3$, and for $(4/3) - \varepsilon < q < 4 + \varepsilon$ if $d = 2$, where ε depends on Ω [5]. If $d \geq 4$, some partial results are known [14]. We point out that the results in [5, 7, 14] rely on the estimates for a non-homogeneous Dirichlet problem, which is solved by using the methods of layer potentials. The approach used in this paper, which is based on a perturbation argument, seems to be more accessible. However, it does not work for a general Lipschitz domain.

We end this section with a localized $W^{1,q}$ estimate that will be used in the next section.

Theorem 5.8. *Let Ω be a bounded C^1 domain and $2 < q < \infty$. Let $B = B(x_0, r_0)$, where $x_0 \in \partial\Omega$ and $r_0 > 0$ is small. Suppose that $u \in W^{1,2}(2B \cap \Omega; \mathbb{C}^d)$, $p \in L^2(2B \cap \Omega; \mathbb{C})$, and*

$$\begin{cases} -\Delta u + \nabla p = F + \operatorname{div}(f) & \text{in } 2B \cap \Omega, \\ \operatorname{div}(u) = g & \text{in } 2B \cap \Omega, \\ u = 0 & \text{on } 2B \cap \partial\Omega, \end{cases} \quad (5.22)$$

where $F \in L^q(2B \cap \Omega; \mathbb{C}^d)$, $f \in L^q(2B \cap \Omega; \mathbb{C}^{d \times d})$ and $g \in L^q(2B \cap \Omega; \mathbb{C})$. Then $u \in W^{1,q}(B \cap \Omega; \mathbb{C}^d)$, $p \in L^q(B \cap \Omega; \mathbb{C})$, and

$$\begin{aligned} & \|\nabla u\|_{L^q(B \cap \Omega)} + \|p - \int_{B \cap \Omega} p\|_{L^q(B \cap \Omega)} \\ & \leq C \{ \|F\|_{L^q(2B \cap \Omega)} + \|f\|_{L^q(2B \cap \Omega)} + \|g\|_{L^q(2B \cap \Omega)} + \|u\|_{L^2(2B \cap \Omega)} \}, \end{aligned} \quad (5.23)$$

where C depends on d , q , r_0 and Ω .

Proof. Theorem 5.8 follows from the estimate (5.21) by a localization argument. However, some cares are needed to handle the error term $p(\nabla\varphi)$, introduced by the pressure p , where φ is a cut-off function.

Consider the Stokes equations (5.20) with $F = 0$ and $g = 0$; i.e.,

$$-\Delta u + \nabla p = \operatorname{div}(f) \quad \text{and} \quad \operatorname{div}(u) = 0$$

in Ω . It follows from (5.21) that $\|\nabla u\|_{L^q(\Omega)} \leq C\|f\|_{L^q(\Omega)}$. By Sobolev imbedding, we obtain

$$\|u\|_{L^s(\Omega)} \leq C\|f\|_{L^q(\Omega)},$$

where $\frac{1}{s} = \frac{1}{q} - \frac{1}{d}$ and $1 < q < d$. By a duality argument, as in Step 2 in the proof of Theorem 5.1, this implies that the solution of

$$-\Delta u + \nabla p = F \quad \text{and} \quad \operatorname{div}(u) = 0$$

in Ω satisfies the estimate,

$$\|\nabla u\|_{L^q(\Omega)} + \|p\|_{L^q(\Omega)} \leq C\|F\|_{L^s(\Omega)},$$

where $\frac{1}{s} = \frac{1}{q} + \frac{1}{d}$ and $1 < s < d$. This observation allows us to improve the estimate (5.21) to

$$\|\nabla u\|_{L^q(\Omega)} + \|p\|_{L^q(\Omega)} \leq C \{ \|F\|_{L^{s_*}(\Omega)} + \|f\|_{L^q(\Omega)} + \|g\|_{L^q(\Omega)} \}, \quad (5.24)$$

where $s_* = \max\{2, s\} < q$ and $\frac{1}{s} = \frac{1}{q} + \frac{1}{d}$. Using (5.24), a standard localization procedure, together with a bootstrapping argument, yields (5.23). We omit the details. \square

6 An exterior C^1 domain and the proof of Theorem 1.2

In this section we consider the case of an exterior C^1 domain Ω ; i.e., Ω is a connected open subset of \mathbb{R}^d with compact complement and C^1 boundary. Let $F \in L^2(\Omega; \mathbb{C}^d)$, $f \in L^2(\Omega; \mathbb{C}^{d \times d})$ and $\lambda \in \Sigma_\theta$. By the Lax-Milgram Theorem, there exists a unique $u \in W_0^{1,2}(\Omega; \mathbb{C}^d)$ such that

$$\begin{cases} -\Delta u + \nabla p + \lambda u = F + \operatorname{div}(f), \\ \operatorname{div}(u) = 0 \end{cases} \quad (6.1)$$

holds in Ω for some $p \in L^2_{\text{loc}}(\bar{\Omega}; \mathbb{C})$ in the sense of distributions. Moreover, the solution satisfies

$$|\lambda|^{1/2} \|\nabla u\|_{L^2(\Omega)} + |\lambda| \|u\|_{L^2(\Omega)} \leq C \{ \|F\|_{L^2(\Omega)} + |\lambda|^{1/2} \|f\|_{L^2(\Omega)} \}, \quad (6.2)$$

where C depends only on d and θ . We will call u the energy solution of (6.1). Note that, if $F \in L^q(\Omega; \mathbb{C}^d) \cap L^2(\Omega; \mathbb{C}^d)$ and $f \in L^2(\Omega; \mathbb{C}^{d \times d}) \cap L^q(\Omega; \mathbb{C}^{d \times d})$ for some $q > 2$, then $(u, p) \in W^{1,q}(\Omega \cap B; \mathbb{C}^d) \times L^q(\Omega \cap B; \mathbb{C})$ for any ball B in \mathbb{R}^d . This follows from the regularity theory for the Stokes equations (5.20) in bounded C^1 domains. See Theorem 5.8.

Let

$$\Sigma_{\theta,\delta} = \{z \in \mathbb{C} : |z| > \delta \text{ and } |\arg(z)| < \pi - \theta\}, \quad (6.3)$$

where $\theta \in (0, \pi/2)$ and $\delta \in (0, 1)$. The goal of this section is to prove the following.

Theorem 6.1. *Let Ω be an exterior C^1 domain in \mathbb{R}^d , $d \geq 2$. Let $1 < q < \infty$ and $\lambda \in \Sigma_{\theta,\delta}$. For any $F \in L^q(\Omega; \mathbb{C}^d)$ and $f \in L^q(\Omega; \mathbb{C}^{d \times d})$, there exists a unique $u \in W_0^{1,q}(\Omega; \mathbb{C}^d)$ such that (6.1) holds in Ω for some $p \in L^1_{\text{loc}}(\Omega; \mathbb{C})$. Moreover, the solution satisfies the estimate,*

$$|\lambda|^{1/2} \|\nabla u\|_{L^q(\Omega)} + |\lambda| \|u\|_{L^q(\Omega)} \leq C \{ \|F\|_{L^q(\Omega)} + |\lambda|^{1/2} \|f\|_{L^q(\Omega)} \}, \quad (6.4)$$

where C depends on d , q , θ , δ and Ω .

Fix a large ball $B_0 = B(0, 2R_0)$ such that $\Omega \setminus B(0, R_0) = \mathbb{R}^d \setminus B(0, R_0)$ and $B_0 \cap \Omega$ is a bounded C^1 domain.

Lemma 6.2. *Let $1 < q < \infty$ and $\lambda \in \Sigma_\theta$. Let $u \in W_0^{1,2}(\Omega; \mathbb{C}^d)$ be an energy solution of (6.1) with $F \in L^q(\Omega; \mathbb{C}^d) \cap L^2(\Omega; \mathbb{C}^d)$ and $f \in L^2(\Omega; \mathbb{C}^{d \times d}) \cap L^q(\Omega; \mathbb{C}^{d \times d})$. Then $u \in W_0^{1,q}(\Omega; \mathbb{C}^d)$. Moreover, if $|\lambda| \geq \lambda_0$,*

$$|\lambda|^{1/2} \|\nabla u\|_{L^q(\Omega)} + |\lambda| \|u\|_{L^q(\Omega)} \leq C \left\{ \|F\|_{L^q(\Omega)} + |\lambda|^{1/2} \|f\|_{L^q(\Omega)} + |\lambda| \|u\|_{W_0^{-1,q}(\Omega \cap 2B_0)} \right\}, \quad (6.5)$$

where $\lambda_0 > 1$ and C depend on d , q , θ and Ω .

Proof. The proof, which uses a localization argument, is similar to that of Lemma 5.5 for the bounded domain. However, we need to add another case to handle the neighborhood of ∞ . Choose $\varphi \in C^\infty(\mathbb{R}^d; \mathbb{R})$ such that $\varphi = 1$ in $\mathbb{R}^d \setminus B(0, 2R_0)$ and $\varphi = 0$ in $B(0, R_0)$. Then the Stokes equations in (5.10) hold in \mathbb{R}^d . Since $p \in L^q(\Omega \cap 2B_0)$, where $B_0 = B(0, 2R_0)$, it follows by Theorem 2.1 and Remark 2.4 that $u\varphi \in W_0^{1,q}(\mathbb{R}^d; \mathbb{C}^d)$ and

$$\begin{aligned} & |\lambda|^{1/2} \|\nabla(u\varphi)\|_{L^q(\mathbb{R}^d)} + |\lambda| \|u\varphi\|_{L^q(\mathbb{R}^d)} \\ & \leq C \left\{ \|F\varphi\|_{L^q(\mathbb{R}^d)} + |\lambda|^{1/2} \|f\varphi\|_{L^q(\mathbb{R}^d)} + \|f\nabla\varphi\|_{L^q(\mathbb{R}^d)} + \|p\nabla\varphi\|_{L^q(\mathbb{R}^d)} \right. \\ & \quad \left. + \|u\Delta\varphi\|_{L^q(\mathbb{R}^d)} + |\lambda|^{1/2} \|u\nabla\varphi\|_{L^q(\mathbb{R}^d)} + |\lambda| \|\operatorname{div}(u\varphi)\|_{\dot{W}^{-1,q}(\mathbb{R}^d)} \right\}. \end{aligned}$$

Note that the same argument as in the proof of Lemma 5.2 also yields

$$\|\operatorname{div}(u\varphi)\|_{\overset{\circ}{W}^{-1,q}(\mathbb{R}^d)} \leq C\|u\|_{W_0^{-1,q}(\Omega \cap B_0)}.$$

Hence,

$$\begin{aligned} & |\lambda|^{1/2}\|\nabla u\|_{L^q(\Omega \setminus B_0)} + |\lambda|\|u\|_{L^q(\Omega \setminus B_0)} \\ & \leq C\left\{ \|F\|_{L^q(\Omega)} + |\lambda|^{1/2}\|f\|_{L^q(\Omega)} + \|f\|_{L^q(\Omega \cap B_0)} + \|p\|_{L^q(\Omega \cap B_0)} \right. \\ & \quad \left. + (1 + |\lambda|^{1/2})\|u\|_{L^q(\Omega \cap B_0)} + |\lambda|\|u\|_{W_0^{-1,q}(\Omega \cap B_0)} \right\}. \end{aligned} \quad (6.6)$$

Since $\Omega \cap B_0$ is a bounded C^1 domain, it follows from the proof of Lemma 5.5 that

$$\begin{aligned} & |\lambda|^{1/2}\|\nabla u\|_{L^q(\Omega \cap B_0)} + |\lambda|\|u\|_{L^q(\Omega \cap B_0)} \\ & \leq C\left\{ \|F\|_{L^q(\Omega)} + |\lambda|^{1/2}\|f\|_{L^q(\Omega)} + \|f\|_{L^q(\Omega \cap 2B_0)} + \|p\|_{L^q(\Omega \cap 2B_0)} \right. \\ & \quad \left. + (1 + |\lambda|^{1/2})\|u\|_{L^q(\Omega \cap 2B_0)} + |\lambda|\|u\|_{W_0^{-1,q}(\Omega \cap 2B_0)} \right\}. \end{aligned}$$

This, together with (6.6), gives

$$\begin{aligned} & |\lambda|^{1/2}\|\nabla u\|_{L^q(\Omega)} + |\lambda|\|u\|_{L^q(\Omega)} \\ & \leq C\left\{ \|F\|_{L^q(\Omega)} + (|\lambda|^{1/2} + 1)\|f\|_{L^q(\Omega)} + \|p\|_{L^q(\Omega \cap 2B_0)} \right. \\ & \quad \left. + (|\lambda|^{1/2} + 1)\|u\|_{L^q(\Omega \cap 2B_0)} + |\lambda|\|u\|_{W_0^{-1,q}(\Omega \cap 2B_0)} \right\} \\ & \leq C\left\{ \|F\|_{L^q(\Omega)} + (|\lambda|^{1/2} + 1)\|f\|_{L^q(\Omega)} + \|\nabla u\|_{L^q(\Omega \cap 2B_0)} \right. \\ & \quad \left. + (|\lambda|^{1/2} + 1)\|u\|_{L^q(\Omega \cap 2B_0)} + |\lambda|\|u\|_{W_0^{-1,q}(\Omega \cap 2B_0)} \right\}, \end{aligned} \quad (6.7)$$

where we have assumed $\int_{\Omega \cap 2B_0} p = 0$ and used Lemma 5.4 for the last inequality. As a result, we have proved that $u \in W_0^{1,q}(\Omega; \mathbb{C}^d)$. Moreover, we obtain (6.5) if $|\lambda| \geq \lambda_0$ and $\lambda_0 > 1$ is sufficiently large. \square

Remark 6.3. Suppose that $\lambda \in \Sigma_\theta$ and $|\lambda| \leq \lambda_0$. Let $2 < q < \infty$. It follows from (6.7) and Theorem 5.8 as well as the interior estimates for the Stokes equations with $\lambda = 0$ that

$$|\lambda|^{1/2}\|\nabla u\|_{L^q(\Omega)} + |\lambda|\|u\|_{L^q(\Omega)} \leq C \left\{ \|F\|_{L^q(\Omega)} + \|f\|_{L^q(\Omega)} + \|u\|_{L^q(\Omega \cap 3B_0)} \right\}, \quad (6.8)$$

where C depends on d, q, θ and Ω .

The next lemma gives the uniqueness for $q > 2$.

Lemma 6.4. Let $2 \leq q < \infty$ and $\lambda \in \Sigma_\theta$. Let $u \in W_0^{1,q}(\Omega; \mathbb{C}^d)$ be a solution of (6.1) in Ω with $F = 0$ and $f = 0$. Then $u = 0$ in Ω .

Proof. The case $q = 2$ is well known. To handle the case $q > 2$, we choose $\varphi \in C^\infty(\mathbb{R}^d; \mathbb{R})$ such that $\varphi = 1$ in $\Omega \setminus B(0, 2R_0)$ and $\varphi = 0$ in $B(0, R_0)$, as in the proof of Lemma 6.2. Then the Stokes equations in (5.10) hold in \mathbb{R}^d with $F = 0$ and $f = 0$. Since the right-hand sides of (5.10) have compact support and thus are in $L^2(\mathbb{R}^d; \mathbb{C}^d)$, it follows from Remark 2.4 that $u\varphi \in W^{1,2}(\mathbb{R}^d; \mathbb{C}^d)$. As a result, $u \in W_0^{1,2}(\Omega; \mathbb{C}^d)$. By the uniqueness for $q = 2$, we conclude that $u = 0$ in Ω . \square

Lemma 6.5. *Let $2 \leq q < \infty$ and $\lambda \in \Sigma_{\theta, \delta}$. Let $u \in W_0^{1,2}(\Omega; \mathbb{C}^d)$ be an energy solution of (6.1) with $F \in L^q(\Omega; \mathbb{C}^d) \cap L^2(\Omega; \mathbb{C}^d)$ and $f \in L^q(\Omega; \mathbb{C}^{d \times d}) \cap L^2(\Omega; \mathbb{C}^{d \times d})$. Then*

$$|\lambda|^{1/2} \|\nabla u\|_{L^q(\Omega)} + |\lambda| \|u\|_{L^q(\Omega)} \leq C \{ \|F\|_{L^q(\Omega)} + |\lambda|^{1/2} \|f\|_{L^q(\Omega)} \}, \quad (6.9)$$

where C depends on d, q, θ, δ and Ω .

Proof. The case $q = 2$ is the well known energy estimate. To handle the case $q > 2$, we argue by contradiction. Note that by Lemma 6.2, $u \in W_0^{1,q}(\Omega; \mathbb{C}^d)$. Suppose the estimate (6.9) is not true. Then there exist sequences $\{u^\ell\} \subset W_0^{1,q}(\Omega; \mathbb{C}^d)$, $\{F^\ell\} \subset L^q(\Omega; \mathbb{C}^d) \cap L^2(\Omega; \mathbb{C}^d)$, $\{f^\ell\} \subset L^q(\Omega; \mathbb{C}^{d \times d}) \cap L^2(\Omega; \mathbb{C}^{d \times d})$ and $\{\lambda^\ell\} \subset \Sigma_{\theta, \delta}$ such that

$$\begin{cases} -\Delta u^\ell + \nabla p^\ell + \lambda^\ell u^\ell = F^\ell + \operatorname{div}(f^\ell) & \text{in } \Omega, \\ \operatorname{div}(u^\ell) = 0 & \text{in } \Omega, \end{cases} \quad (6.10)$$

for some $p^\ell \in L^2_{\text{loc}}(\bar{\Omega}; \mathbb{C})$,

$$|\lambda^\ell|^{1/2} \|\nabla u^\ell\|_{L^q(\Omega)} + |\lambda^\ell| \|u^\ell\|_{L^q(\Omega)} = 1, \quad (6.11)$$

and

$$\|F^\ell\|_{L^q(\Omega)} + |\lambda^\ell|^{1/2} \|f^\ell\|_{L^q(\Omega)} \rightarrow 0 \quad \text{as } \ell \rightarrow \infty. \quad (6.12)$$

Since $|\lambda^\ell| \geq \delta$, it follows from (6.11) that $\|u^\ell\|_{W_0^{1,q}(\Omega)} \leq C$. By passing to a subsequence, we may assume that $u^\ell \rightarrow u$ weakly in $W_0^{1,q}(\Omega; \mathbb{C}^d)$. We may also assume that either $|\lambda^\ell| \rightarrow \infty$ or $\lambda^\ell \rightarrow \lambda \in \mathbb{C}$.

We consider three cases: (1) $\lambda^\ell \rightarrow \lambda \in \mathbb{C}$ and $|\lambda| > 2\lambda_0$, where $\lambda_0 > 1$ is given by Lemma 6.2; (2) $\lambda^\ell \rightarrow \lambda$ and $|\lambda| \leq 2\lambda_0$; and (3) $|\lambda^\ell| \rightarrow \infty$.

Case (1). Suppose $\lambda^\ell \rightarrow \lambda \in \mathbb{C}$ and $|\lambda| > 2\lambda_0$. It follows that $u \in W_0^{1,q}(\Omega; \mathbb{C}^d)$ is a solution of (6.1) in Ω with $F = 0$ and $f = 0$. By Lemma 6.4, we obtain $u = 0$ in Ω . Thus, $u^\ell \rightarrow 0$ weakly in $W_0^{1,q}(\Omega; \mathbb{C}^d)$. This implies that $u^\ell \rightarrow 0$ strongly in $W_0^{-1,q}(\Omega \cap 2B_0; \mathbb{C}^d)$. However, by (6.5) and (6.11)-(6.12), we have

$$\begin{aligned} 1 &= |\lambda^\ell|^{1/2} \|\nabla u^\ell\|_{L^q(\Omega)} + |\lambda^\ell| \|u^\ell\|_{L^q(\Omega)} \\ &\leq C \{ \|F^\ell\|_{L^q(\Omega)} + |\lambda^\ell|^{1/2} \|f^\ell\|_{L^q(\Omega)} + |\lambda^\ell| \|u^\ell\|_{W_0^{-1,q}(\Omega \cap 2B_0)} \} \rightarrow 0, \end{aligned} \quad (6.13)$$

which yields a contradiction.

Case (2). Suppose $\lambda^\ell \rightarrow \lambda$ and $|\lambda| \leq 2\lambda_0$. As in case (1), $u^\ell \rightarrow 0$ weakly in $W_0^{1,q}(\Omega; \mathbb{C}^d)$. It follows from (6.8) that

$$\begin{aligned} 1 &= |\lambda^\ell|^{1/2} \|\nabla u^\ell\|_{L^q(\Omega)} + |\lambda^\ell| \|u^\ell\|_{L^q(\Omega)} \\ &\leq C \{ \|F^\ell\|_{L^q(\Omega)} + \|f^\ell\|_{L^q(\Omega)} + \|u^\ell\|_{L^q(\Omega \cap 3B_0)} \}. \end{aligned}$$

This gives us a contradiction, as $u^\ell \rightarrow 0$ strongly in $L^q(\Omega \cap 3B_0; \mathbb{C}^d)$.

Case (3). Suppose that $|\lambda^\ell| \rightarrow \infty$. In view of (6.11), we have $u^\ell \rightarrow 0$ strongly in $L^q(\Omega; \mathbb{C}^d)$. By passing to a subsequence, we assume that $\lambda^\ell u^\ell \rightarrow v$ weakly in $L^q(\Omega; \mathbb{C}^d)$. Note that if $w \in C_0^\infty(\Omega; \mathbb{C}^d)$ and $\operatorname{div}(w) = 0$ in Ω , then

$$-\int_{\Omega} u^\ell \cdot \Delta w + \int_{\Omega} \lambda^\ell u^\ell \cdot w = \int_{\Omega} F^\ell \cdot w - \int_{\Omega} f^\ell \cdot \nabla w.$$

By letting $\ell \rightarrow \infty$, we obtain $\int_{\Omega} v \cdot w = 0$. This implies that $v = \nabla \phi$ for some $\phi \in \mathring{W}^{1,q}(\Omega; \mathbb{C})$. Since $\lambda^\ell u^\ell \in W_0^{1,q}(\Omega; \mathbb{C}^d)$ and $\operatorname{div}(\lambda^\ell u^\ell) = 0$ in Ω , we also have $\int_{\Omega} v \cdot \nabla \varphi = 0$ for any $\varphi \in C_0^\infty(\mathbb{R}^d; \mathbb{C})$. It follows that $\phi \in \mathring{W}^{1,q}(\Omega; \mathbb{C})$ is a solution of the Neumann problem: $\Delta \phi = 0$ in Ω and $\frac{\partial \phi}{\partial n} = 0$ on $\partial\Omega$. Since $\nabla \phi \in L^q(\Omega; \mathbb{C}^d)$, we conclude that $v = \nabla \phi = 0$ in Ω . See Lemma 7.1 in Appendix. Thus, $\lambda^\ell u^\ell \rightarrow 0$ weakly in $L^q(\Omega; \mathbb{C}^d)$ and thus strongly in $W^{-1,q}(\Omega \cap 2B_0; \mathbb{C}^d)$. Consequently, (6.13) holds and gives us a contradiction. This completes the proof. \square

Proof of Theorem 6.1. Step 1. Assume $2 \leq q < \infty$. The uniqueness is given by Lemma 6.4. Since $L^2(\Omega; \mathbb{C}^d) \cap L^q(\Omega; \mathbb{C}^d)$ is dense in $L^q(\Omega; \mathbb{C}^d)$, the existence as well as the estimate (6.4) follows from Lemma 6.5 by a standard density argument.

Step 2. Assume $1 < q < 2$. As in the cases of \mathbb{R}^d and \mathbb{R}_+^d , the uniqueness follows from the existence for $q' > 2$, proved in Step 1. By a duality argument, similar to that in the proof of Theorem 5.1, one may show that if $F \in C_0^\infty(\Omega; \mathbb{C}^d)$ and $f \in C_0^\infty(\Omega; \mathbb{C}^{d \times d})$, the energy solutions of (6.1) satisfy the estimate (6.4). As before, the existence and the estimate (6.4) for $F \in L^q(\Omega; \mathbb{C}^d)$ and $f \in L^q(\Omega; \mathbb{C}^{d \times d})$ follow by a density argument. \square

Proof of Theorem 1.2. The estimate (1.4) with C depending on δ is contained in Theorem 6.1. To establish the estimate (1.5) with C independent of δ for $d \geq 3$, we first consider the case $q < (d/2)$ and argue by contradiction. Suppose (1.5) is not true. Then there exist sequences $\{F^\ell\} \subset L^q(\Omega; \mathbb{C}^d)$, $\{u^\ell\} \subset W_0^{1,q}(\Omega; \mathbb{C}^d)$, $\{\lambda^\ell\} \subset \Sigma_\theta$ such that $\lambda^\ell \rightarrow 0$,

$$\begin{cases} -\Delta u^\ell + \nabla p^\ell + \lambda^\ell u^\ell = F^\ell, \\ \operatorname{div}(u^\ell) = 0, \end{cases} \quad (6.14)$$

in Ω ,

$$|\lambda^\ell| \|u^\ell\|_{L^q(\Omega)} = 1, \quad (6.15)$$

and $\|F^\ell\|_{L^q(\Omega)} \rightarrow 0$ as $\ell \rightarrow \infty$. By Theorem 7.3 in the Appendix,

$$\|\nabla u^\ell\|_{L^s(\Omega)} \leq C \{ \|F^\ell\|_{L^q(\Omega)} + \|\lambda^\ell u^\ell\|_{L^q(\Omega)} \},$$

where $\frac{1}{s} = \frac{1}{q} - \frac{1}{d}$. As a result, $\{\nabla u^\ell\}$ is bounded in $L^s(\Omega; \mathbb{C}^{d \times d})$ and by Sobolev imbedding, $\{u^\ell\}$ is bounded in $L^{s^*}(\Omega; \mathbb{C}^d)$, where $\frac{1}{s^*} = \frac{1}{s} - \frac{1}{d} = \frac{1}{q} - \frac{2}{d}$ and we have used the fact $u^\ell \in L^q(\Omega; \mathbb{C}^d)$. By passing to a subsequence, we may assume that $\lambda^\ell u^\ell \rightarrow v$ weakly in $L^q(\Omega; \mathbb{C}^d)$, $u^\ell \rightarrow u$ weakly in $L^{s^*}(\Omega; \mathbb{C}^d)$, and $\nabla u^\ell \rightarrow \nabla u$ weakly in $L^s(\Omega; \mathbb{C}^{d \times d})$. Since $\lambda^\ell \rightarrow 0$, we obtain $v = 0$. It then follows from (6.14) that $-\Delta u + \nabla p = 0$, $\operatorname{div}(u) = 0$ in Ω and $u = 0$ on $\partial\Omega$. Since $u \in L^{s^*}(\Omega; \mathbb{C}^d)$, $\nabla u \in L^s(\Omega; \mathbb{C}^{d \times d})$ and $s < d$, we deduce from Lemma 7.2 that $u = 0$ in Ω . This implies that $u^\ell \rightarrow 0$ strongly in $L^q(\Omega \cap B; \mathbb{C}^d)$ for any ball B . However, by (6.8) and (6.15), we have

$$1 = |\lambda^\ell| \|u^\ell\|_{L^q(\Omega)} \leq C \{ \|F^\ell\|_{L^q(\Omega)} + \|u^\ell\|_{L^q(\Omega \cap 3B_0)} \},$$

which yields a contradiction.

Finally, we note that by duality, the estimate (1.5) holds for $\frac{d}{d-2} < q < \infty$. This gives the estimate for $1 < q < \infty$ in the case $d \geq 4$. If $d = 3$, the range $(3/2) \leq q \leq 3$ follows by using the Riesz-Thorin Interpolation Theorem. \square

7 Appendix

In this Appendix we prove several uniqueness and regularity results in exterior C^1 domains, which are used in the previous sections. In the case of exterior domains with C^2 boundaries, the proofs may be found in [13].

Lemma 7.1. *Let Ω be an exterior C^1 domain in \mathbb{R}^d , $d \geq 2$ and $1 < q < \infty$. Suppose that $\phi \in \dot{W}^{1,q}(\Omega; \mathbb{C})$, $\Delta\phi = 0$ in Ω and $n \cdot \nabla\phi = 0$ on $\partial\Omega$. Then ϕ is constant in Ω .*

Proof. By using the mean value property for harmonic functions and $|\nabla\phi| \in L^q(\Omega)$, we obtain $\nabla\phi(x) = o(1)$ as $|x| \rightarrow \infty$. By the expansion theorem at ∞ for harmonic functions [1], we deduce that $\nabla\phi(x) = O(|x|^{-1})$ for $d = 2$. In the case $d \geq 3$, we obtain $\nabla\phi(x) = O(|x|^{2-d})$. It follows that $\phi(x) = O(\log|x|)$ for $d = 3$ and $\phi(x) = O(1)$ for $d \geq 4$. Since ϕ is harmonic, by the expansion theorem, this implies that $\phi(x) = L + O(|x|^{2-d})$ for some $L \in \mathbb{C}$ and that $\nabla\phi(x) = O(|x|^{1-d})$ as $|x| \rightarrow \infty$ for $d \geq 3$. As a result, we have proved that $\nabla\phi(x) = O(|x|^{1-d})$ as $|x| \rightarrow \infty$ for $d \geq 2$.

Next, note that since $\partial\Omega$ is C^1 and $n \cdot \nabla\phi = 0$ on $\partial\Omega$, we have $\nabla\phi \in L^2(\Omega \cap B(0, R); \mathbb{C}^d)$ for any $R > 1$. Moreover, for R sufficiently large,

$$\begin{aligned} \int_{\Omega \cap B(0, R)} |\nabla\phi|^2 &= \int_{\partial B(0, R)} \frac{\partial\phi}{\partial n} (\phi - \beta) \\ &\leq \|\nabla\phi\|_{L^2(\partial B(0, R))} \|\phi - \beta\|_{L^2(\partial B(0, R))} \leq CR \|\nabla\phi\|_{L^2(\partial B(0, R))}^2, \end{aligned}$$

where $\beta = \int_{\partial B(0, R)} \phi$ and we have used a Poincaré inequality on $\partial B(0, R)$. By letting $R \rightarrow \infty$ and using $\nabla\phi(x) = O(|x|^{1-d})$ as $|x| \rightarrow \infty$ for $d \geq 2$, we see that $\|\nabla\phi\|_{L^2(\Omega)} = 0$ if $d \geq 3$ and $\|\nabla\phi\|_{L^2(\Omega)} < \infty$ if $d = 2$. As a result, $\nabla\phi = 0$ and ϕ is constant in Ω for $d \geq 3$. Finally, to handle the case $d = 2$, we use the Caccioppoli inequality,

$$\begin{aligned} \int_{\Omega \cap B(0, R)} |\nabla\phi|^2 &\leq \frac{C}{R^2} \int_{B(0, 2R) \setminus B(0, R)} |\phi - \alpha|^2 \\ &\leq C_0 \int_{B(0, 2R) \setminus B(0, R)} |\nabla\phi|^2, \end{aligned} \tag{7.1}$$

for R large, where $\alpha = \int_{B(0, 2R) \setminus B(0, R)} \phi$ and we have used a Poincaré inequality. It follows that

$$\int_{\Omega \cap B(0, R)} |\nabla\phi|^2 \leq \frac{C_0}{C_0 + 1} \int_{\Omega \cap B(0, 2R)} |\nabla\phi|^2.$$

By letting $R \rightarrow \infty$, we obtain $\|\nabla\phi\|_{L^2(\Omega)} \leq c_0 \|\nabla\phi\|_{L^2(\Omega)}$ for some $c_0 < 1$. This implies that $\|\nabla\phi\|_{L^2(\Omega)} = 0$ if $\|\nabla\phi\|_{L^2(\Omega)} < \infty$. Consequently, we conclude that $\nabla\phi = 0$ and ϕ is constant in Ω for $d \geq 2$. \square

Lemma 7.2. *Let Ω be an exterior C^1 domain in \mathbb{R}^d , $d \geq 2$. Let $1 < q < d$ and $\frac{1}{q_*} = \frac{1}{q} - \frac{1}{d}$. Suppose that $u \in L^{q_*}(\Omega; \mathbb{C}^d)$, $\nabla u \in L^q(\Omega; \mathbb{C}^{d \times d})$, $u = 0$ on $\partial\Omega$, and*

$$-\Delta u + \nabla p = 0 \quad \text{and} \quad \operatorname{div}(u) = 0 \tag{7.2}$$

hold in Ω in the sense of distributions. Then $u = 0$ in Ω .

Proof. The proof is similar to that of Lemma 7.1 for the case $d \geq 3$. By the interior estimates for the Stokes equations,

$$|x||\nabla^2 u(x)| + |\nabla u(x)| \leq C \left(\fint_{B(x, R/4)} |\nabla u|^q \right)^{1/q}, \quad (7.3)$$

where $R = |x|$ is sufficiently large. It follows from $|\nabla u| \in L^q(\Omega)$ that $\nabla u(x) = o(|x|^{-\gamma})$ as $|x| \rightarrow \infty$, where $\gamma = (d/q)$. Since $\gamma > 1$, this implies that $\lim_{|x| \rightarrow \infty} u(x)$ exists. Using $u \in L^{q_*}(\Omega; \mathbb{C}^d)$, we deduce that $u(x) = o(1)$ as $|x| \rightarrow \infty$. Also note that by the interior estimates, $\nabla^2 u(x) = o(|x|^{-\gamma-1})$ as $|x| \rightarrow \infty$. Thus, $\nabla p(x) = o(|x|^{-\gamma-1})$. It follows that $\lim_{|x| \rightarrow \infty} p(x)$ exists. By subtracting a constant, we may assume that $\lim_{|x| \rightarrow \infty} p(x) = 0$. As a result, we obtain $p(x) = o(|x|^{-\gamma})$ as $|x| \rightarrow \infty$.

Next, assume $d \geq 3$. We use the Green representation formula for the Stokes equations in the domain $D_R = \{x : R_0 < |x| < R\}$ to write $(u(x), p(x))$ as a sum of layer potentials on $\partial D_R = \partial B(0, R) \cup \partial B(0, R_0)$. Since $|\nabla u(x)| + |p(x)| = o(|x|^{-\gamma})$, where $\gamma > 1$, and $|u(x)| = o(1)$ as $|x| \rightarrow \infty$, it is not hard to see that the layer potentials on $\partial B(0, R)$ converge to 0 as $R \rightarrow \infty$. This allows to upgrade the decay of (u, p) at ∞ to

$$|x|^{-1}|u(x)| + |\nabla u(x)| + |p(x)| = O(|x|^{1-d}) \quad \text{as } |x| \rightarrow \infty \quad (7.4)$$

for $d \geq 3$.

Finally, we note that since $\partial\Omega$ is C^1 and $u = 0$ on $\partial\Omega$, we have $u \in W^{1,2}(\Omega \cap B(0, R); \mathbb{C}^d)$ for any $R > 1$. Moreover, for $R > 1$ large,

$$\int_{\Omega \cap B(0, R)} |\nabla u|^2 = \int_{\partial B(0, R)} \left(\frac{\partial u}{\partial n} - np \right) \cdot u.$$

In view of (7.4) for $d \geq 3$ as well as the decay estimates, $u(x) = o(1)$ and $|\nabla u(x)| + |p(x)| = o(|x|^{-\gamma})$ for $d = 2$, by letting $R \rightarrow \infty$, we obtain $\|\nabla u\|_{L^2(\Omega)} = 0$. Since $u = 0$ on $\partial\Omega$, it follows that $u = 0$ in Ω . \square

The following theorem is used in the proof of the estimate (1.7) for small $|\lambda|$.

Theorem 7.3. *Let Ω be an exterior C^1 domain in \mathbb{R}^d , $d \geq 3$ and $1 < q < (d/2)$. Let $u \in W_0^{1,q}(\Omega; \mathbb{C}^d)$ be a solution of*

$$-\Delta u + \nabla p = F \quad \text{and} \quad \operatorname{div}(u) = 0 \quad (7.5)$$

in Ω , where $F \in L^q(\Omega; \mathbb{C}^d)$. Then $u \in W_0^{1,s}(\Omega; \mathbb{C}^d)$ and

$$\|\nabla u\|_{L^s(\Omega)} \leq C \|F\|_{L^q(\Omega)}, \quad (7.6)$$

where $\frac{1}{s} = \frac{1}{q} - \frac{1}{d}$ and C depends on d , q and Ω .

Proof. Since $W_0^{1,q}(\Omega; \mathbb{C}^d) \subset L^s(\Omega; \mathbb{C}^d)$. It suffices to prove (7.6). We divide the proof into two steps.

Step 1. We show that the solution u satisfies the estimate,

$$\|\nabla u\|_{L^s(\Omega)} \leq C \left\{ \|F\|_{L^q(\Omega)} + \|u\|_{L^q(\Omega \cap B_0)} \right\}, \quad (7.7)$$

where $B_0 = B(0, 2R_0)$ and $R_0 > 1$ is sufficiently large. To this end, we choose $R_0 > 1$ such that $\Omega \setminus B(0, R_0) = \mathbb{R}^d \setminus B(0, R_0)$ and $\Omega \cap B(0, 2R_0)$ is a bounded C^1 domain. Choose $\varphi_1 \in C_0^\infty(\mathbb{R}^d; \mathbb{R})$ such that $\varphi_1 = 1$ in $\Omega \setminus B(0, (3/2)R_0)$ and $\varphi_1 = 0$ in $B(0, (5/4)R_0)$. Let $\varphi_2 = 1 - \varphi_1$. Then

$$\begin{cases} -\Delta(u\varphi_1) + \nabla(p\varphi_1) = F\varphi_1 - 2(\nabla u)(\nabla\varphi_1) - u\Delta\varphi_1 + p\nabla\varphi_1, \\ \operatorname{div}(u\varphi_1) = u \cdot \nabla\varphi_1 \end{cases}$$

in \mathbb{R}^d . It follows from the $W^{2,q}$ estimates [13] for the Stokes equations (with $\lambda = 0$) in \mathbb{R}^d that

$$\begin{aligned} \|\nabla(u\varphi_1)\|_{L^s(\mathbb{R}^d)} &\leq C \left\{ \|F\varphi_1\|_{L^q(\mathbb{R}^d)} + \|(\nabla u)(\nabla\varphi_1)\|_{L^q(\mathbb{R}^d)} \right. \\ &\quad \left. + \|u\Delta\varphi_1\|_{L^q(\mathbb{R}^d)} + \|p\nabla\varphi_1\|_{L^q(\mathbb{R}^d)} + \|\nabla(u\nabla\varphi_1)\|_{L^q(\mathbb{R}^d)} \right\}. \end{aligned} \quad (7.8)$$

Let $\Omega_0 = \Omega \cap B(0, 2R_0)$. Note that $u\varphi_2 = 0$ on $\partial\Omega_0 = \partial\Omega \cup \partial B(0, 2R_0)$ and

$$\begin{cases} -\Delta(u\varphi_2) + \nabla(p\varphi_2) = F\varphi_2 - 2(\nabla u)(\nabla\varphi_2) - u\Delta\varphi_2 + p\nabla\varphi_2, \\ \operatorname{div}(u\varphi_2) = u \cdot \nabla\varphi_2 \end{cases}$$

in Ω_0 . It follows from the $W^{1,q}$ estimates for the Stokes equations (with $\lambda = 0$) in the C^1 domain Ω_0 that

$$\begin{aligned} \|\nabla(u\varphi_2)\|_{L^s(\Omega_0)} &\leq C \left\{ \|F\varphi_2\|_{L^q(\Omega_0)} + \|(\nabla u)(\nabla\varphi_2)\|_{L^q(\Omega_0)} + \|u\Delta\varphi_2\|_{L^q(\Omega_0)} \right. \\ &\quad \left. + \|p\nabla\varphi_2\|_{L^q(\Omega_0)} + \|u\nabla\varphi_2\|_{L^q(\Omega_0)} \right\}. \end{aligned} \quad (7.9)$$

See Remark 5.7. The estimate (7.7) follows from (7.8) and (7.9) as well as the interior estimates for the Stokes equations.

Step 2. We establish the estimate (7.6) by a compactness argument.

Suppose (7.6) is not true. Then there exist sequences $\{F^\ell\} \subset L^q(\Omega; \mathbb{C}^d)$, $\{u^\ell\} \subset W_0^{1,q}(\Omega; \mathbb{C}^d) \cap W_0^{1,s}(\Omega; \mathbb{C}^d)$, such that

$$\begin{cases} -\Delta u^\ell + \nabla p^\ell = F^\ell, \\ \operatorname{div}(u^\ell) = 0 \end{cases} \quad (7.10)$$

hold in Ω for some $p^\ell \in L^1_{\text{loc}}(\Omega; \mathbb{C})$,

$$\|\nabla u^\ell\|_{L^s(\Omega)} = 1, \quad (7.11)$$

and $\|F^\ell\|_{L^q(\Omega)} \rightarrow 0$, as $\ell \rightarrow \infty$. Since $\|u^\ell\|_{L^{s_*}(\Omega)} \leq C\|\nabla u^\ell\|_{L^s(\Omega)} = C$, where $\frac{1}{s_*} = \frac{1}{s} - \frac{1}{d}$, by passing to a subsequence, we may assume $u^\ell \rightarrow u$ weakly in $L^{s_*}(\Omega; \mathbb{C}^d)$ and $\nabla u^\ell \rightarrow \nabla u$ weakly in $L^s(\Omega; \mathbb{C}^{d \times d})$. It follows that u is a solution of (7.5) with $F = 0$. Note that $q < (d/2)$ implies $s = q_* < d$. Thus, by Lemma 7.2, $u = 0$ in Ω . This implies that $u^\ell \rightarrow 0$ strongly in $L^q(\Omega \cap B_0; \mathbb{C}^d)$. However, by (7.7),

$$\|\nabla u^\ell\|_{L^s(\Omega)} \leq C \left\{ \|F^\ell\|_{L^q(\Omega)} + \|u^\ell\|_{L^q(\Omega \cap B_0)} \right\},$$

which leads to a contradiction with (7.11) if we let $\ell \rightarrow \infty$. \square

Recall that $C_{0,\sigma}^\infty(\Omega) = \{u \in C_0^\infty(\Omega; \mathbb{C}^d) : \operatorname{div}(u) = 0 \text{ in } \Omega\}$. Let $L_\sigma^q(\Omega)$ denote the closure of $C_{0,\sigma}^\infty(\Omega)$ in $L^q(\Omega; \mathbb{C}^d)$ and

$$G_q(\Omega) = \left\{ u : u = \nabla p \text{ for some } p \in \mathring{W}^{1,q}(\Omega; \mathbb{C}) \right\}.$$

Theorem 7.4. *Let Ω be a bounded or exterior domain with C^1 boundary in \mathbb{R}^d , $d \geq 2$. Then*

$$L^q(\Omega; \mathbb{C}^d) = L_\sigma^q(\Omega) \oplus G_q(\Omega) \quad (7.12)$$

for $1 < q < \infty$. That is, for any $u \in L^q(\Omega; \mathbb{C}^d)$, there exists a unique $(v, w) \in L_\sigma^q(\Omega) \times G_q(\Omega)$ such that $u = v + w$ in Ω and

$$\|v\|_{L^q(\Omega)} + \|w\|_{L^q(\Omega)} \leq C\|u\|_{L^q(\Omega)}, \quad (7.13)$$

where C depends on d , q and Ω .

The formula (7.12) is referred to as the Helmholtz decomposition, which is well known in the case of bounded or exterior domains with smooth boundaries (see [10] for references). In the case of bounded or exterior domains with C^1 boundaries, a sketch of the proof for (7.12) may be found in [10]. Also see [9]. The decomposition also holds for $1 < q < \infty$ if Ω is a bounded convex domain [15]. If Ω is a bounded or exterior domain with Lipschitz boundaries, the Helmholtz decomposition (7.12) holds if

$$\begin{cases} (3/2) - \varepsilon < q < 3 + \varepsilon & \text{for } d \geq 3, \\ (4/3) - \varepsilon < q < 4 + \varepsilon & \text{for } d = 2, \end{cases} \quad (7.14)$$

where $\varepsilon > 0$ depends on Ω . The ranges in (7.14) are known to be sharp. See [9]. We remark that Theorem 7.4 is not used in this paper.

Conflict of interest. The authors declare that there is no conflict of interest.

Data availability. Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

- [1] Sheldon Axler, Paul Bourdon, and Wade Ramey, *Harmonic function theory*, second ed., Graduate Texts in Mathematics, vol. 137, Springer-Verlag, New York, 2001.
- [2] Wolfgang Borchers and Hermann Sohr, *On the semigroup of the Stokes operator for exterior domains in L^q -spaces*, Math. Z. **196** (1987), no. 3, 415–425.
- [3] Wolfgang Borchers and Werner Varnhorn, *On the boundedness of the Stokes semigroup in two-dimensional exterior domains*, Math. Z. **213** (1993), no. 2, 275–299.
- [4] Dominic Breit, *Partial boundary regularity for the Navier-Stokes equations in irregular domains*, arXiv:2208.00415v2 (2022).

- [5] Russell M. Brown and Zhongwei Shen, *Estimates for the Stokes operator in Lipschitz domains*, Indiana Univ. Math. J. **44** (1995), no. 4, 1183–1206.
- [6] Paul Deuring, *The Stokes resolvent in 3D domains with conical boundary points: non-regularity in L^p -spaces*, Adv. Differential Equations **6** (2001), no. 2, 175–228.
- [7] Martin Dindoš and Marius Mitrea, *The stationary Navier-Stokes system in nonsmooth manifolds: the Poisson problem in Lipschitz and C^1 domains*, Arch. Ration. Mech. Anal. **174** (2004), no. 1, 1–47.
- [8] E. B. Fabes, C. E. Kenig, and G. C. Verchota, *The Dirichlet problem for the Stokes system on Lipschitz domains*, Duke Math. J. **57** (1988), no. 3, 769–793.
- [9] Eugene Fabes, Osvaldo Mendez, and Marius Mitrea, *Boundary layers on Sobolev-Besov spaces and Poisson's equation for the Laplacian in Lipschitz domains*, J. Funct. Anal. **159** (1998), no. 2, 323–368.
- [10] Reinhard Farwig and Hermann Sohr, *Generalized resolvent estimates for the Stokes system in bounded and unbounded domains*, J. Math. Soc. Japan **46** (1994), no. 4, 607–643.
- [11] Hiroshi Fujita and Tosio Kato, *On the Navier-Stokes initial value problem. I*, Arch. Rational Mech. Anal. **16** (1964), 269–315.
- [12] Fabian Gabel and Patrick Tolksdorf, *The Stokes operator in two-dimensional bounded Lipschitz domains*, J. Differential Equations **340** (2022), 227–272.
- [13] G. P. Galdi, *An introduction to the mathematical theory of the Navier-Stokes equations*, second ed., Springer Monographs in Mathematics, Springer, New York, 2011, Steady-state problems.
- [14] Jun Geng and Joel Kilty, *The L^p regularity problem for the Stokes system on Lipschitz domains*, J. Differential Equations **259** (2015), no. 4, 1275–1296.
- [15] Jun Geng and Zhongwei Shen, *The Neumann problem and Helmholtz decomposition in convex domains*, J. Funct. Anal. **259** (2010), no. 8, 2147–2164.
- [16] Yoshikazu Giga, *Analyticity of the semigroup generated by the Stokes operator in L_r spaces*, Math. Z. **178** (1981), no. 3, 297–329.
- [17] Marius Mitrea and Sylvie Monniaux, *The regularity of the Stokes operator and the Fujita-Kato approach to the Navier-Stokes initial value problem in Lipschitz domains*, J. Funct. Anal. **254** (2008), no. 6, 1522–1574.
- [18] _____, *On the analyticity of the semigroup generated by the Stokes operator with Neumann-type boundary conditions on Lipschitz subdomains of Riemannian manifolds*, Trans. Amer. Math. Soc. **361** (2009), no. 6, 3125–3157.
- [19] Marius Mitrea and Matthew Wright, *Boundary value problems for the Stokes system in arbitrary Lipschitz domains*, Astérisque (2012), no. 344, viii+241.

- [20] Zhongwei Shen, *Resolvent estimates in L^p for the Stokes operator in Lipschitz domains*, Arch. Ration. Mech. Anal. **205** (2012), no. 2, 395–424.
- [21] V.A. Solonnikov, *Estimate for solutions of nonstationary Navier-Stokes equations*, J. Sov. Math. **8** (1977), 467–529.
- [22] Elias M. Stein, *Singular integrals and differentiability properties of functions*, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, NJ, 1970.
- [23] Michael E. Taylor, *Incompressible fluid flows on rough domains*, Semigroups of operators: theory and applications (Newport Beach, CA, 1998), Progr. Nonlinear Differential Equations Appl., vol. 42, Birkhäuser, Basel, 2000, pp. 320–334.
- [24] Patrick Tolksdorf, *On the L^p -theory of the Navier-Stokes equations on three-dimensional bounded Lipschitz domains*, Math. Ann. **371** (2018), no. 1-2, 445–460.
- [25] ———, *The Stokes resolvent problem: optimal pressure estimates and remarks on resolvent estimates in convex domains*, Calc. Var. Partial Differential Equations **59** (2020), no. 5, Paper No. 154, 40.

Jun Geng, School of Mathematics and Statistics, Lanzhou University, Lanzhou, People's Republic of China.
 E-mail: gengjun@lzu.edu.cn

Zhongwei Shen, Department of Mathematics, University of Kentucky, Lexington, Kentucky 40506, USA.
 E-mail: zshen2@uky.edu