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Abstract

We establish resolvent estimates in Lq spaces for the Stokes operator in a bounded
C1 domain Ω in Rd. As a corollary, it follows that the Stokes operator generates a
bounded analytic semigroup in Lq(Ω;Cd) for any 1 < q < ∞ and d ≥ 2. The case of
an exterior C1 domain is also studied.
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1 Introduction

In this paper we study the resolvent problem for the Stokes operator with the Dirichlet
condition, 




−∆u+∇p+ λu = F in Ω,

div(u) = 0 in Ω,

u = 0 on ∂Ω,

(1.1)

where λ ∈ Σθ is a parameter and

Σθ = {z ∈ C \ {0} : |arg(z)| < π − θ} (1.2)

for θ ∈ (0, π/2). The following two theorems are the main results of the paper. The first one
covers the case of bounded domains with C1 boundaries, while the second treats the case of
exterior C1 domains.

Theorem 1.1. Let Ω be a bounded C1 domain in Rd, d ≥ 2. Let 1 < q < ∞ and λ ∈ Σθ.

Then for any F ∈ Lq(Ω;Cd), the Dirichlet problem (1.1) has a unique solution (u, p) in

W 1,q
0 (Ω;Cd)× Lq(Ω;C) with

´

Ω
p = 0. Moreover, the solution satisfies the estimate,

(|λ|+ 1)1/2‖∇u‖Lq(Ω) + (|λ|+ 1)‖u‖Lq(Ω) ≤ C‖F‖Lq(Ω), (1.3)

where C depends only on d, q, θ and Ω.
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Theorem 1.2. Let Ω be an exterior domain with C1 boundary in Rd, d ≥ 2. Let 1 < q <∞
and λ ∈ Σθ with |λ| ≥ δ > 0. Then for any F ∈ Lq(Ω;Cd), the Dirichlet problem (1.1)
has a unique solution (u, p) in W 1,q

0 (Ω;Cd)×Lqloc(Ω;C). Moreover, the solution satisfies the

estimate,

|λ|1/2‖∇u‖Lq(Ω) + |λ|‖u‖Lq(Ω) ≤ C‖F‖Lq(Ω), (1.4)

where C depends only on d, q, θ, δ and Ω. Furthermore, if d ≥ 3, the estimate,

|λ|‖u‖Lq(Ω) ≤ C‖F‖Lq(Ω), (1.5)

holds with C independent of δ.

Resolvent estimates for the Stokes operator play an essential role in the functional analytic
approach of Fujita and Kato [11] to the nonlinear Navier-Stokes equations. The resolvent
estimate (1.5) in domains with smooth boundaries has been studied extensively since 1980’s.
Under the assumption that Ω is a bounded or exterior domain with C1,1 boundary, the
estimate (1.5) holds for any 1 < q < ∞ [21, 16, 2, 10]. We refer the reader to [10] for a
review as well as a comprehensive list of references in the case of smooth domains. The
recent work in this area focuses on domains with nonsmooth boundaries. If Ω is merely a
bounded Lipschitz domain, it was proved by one of the present authors [20] that the resolvent
estimate (1.5) holds if d ≥ 3 and

∣∣∣∣
1

q
− 1

2

∣∣∣∣ <
1

2d
+ ε, (1.6)

where ε > 0 depends on Ω. In particular, in the case d = 3, this shows that the estimate (1.5)
holds for (3/2)− ε < q < 3 + ε and gives an affirmative answer to a conjecture of M. Taylor
[23]. For a two-dimensional bounded Lipschitz domain, F. Gabel and P. Tolksdorf [12] were
able to establish the resolvent estimate (1.5) for (4/3) − ε < q < 4 + ε. It is not known
whether the range in (1.6) is sharp for Lipschitz domains. In [6] P. Deuring constructed an
interesting example of an unbounded Lipschitz domain for which the resolvent estimate fails
for large q. For related work on the Stokes and Navier-Stokes equations in Lipschitz or C1

domains, we refer to the reader to [8, 5, 7, 17, 18, 19, 14, 24, 25]
The main contribution of this paper lies in the smoothness assumption for the domain

Ω. We are able to establish the resolvent estimates for the full range 1 < q < ∞ under the
assumption that ∂Ω is C1. In view of the example by P. Deuring [6], this assumption is more
or less optimal. As we mentioned earlier, the full range is known previously for C1,1 domains
[10]. A recent result of D. Breit [4] implies the resolvent estimates for a three-dimensional
Lipschitz domain satisfying certain Besov-type conditions, which are weaker than C1,1 and
somewhat close to C1,α for certain α > 0. Note that in the case of smooth domains, in
addition to the Lq estimates for u and ∇u in (1.3) and (1.4), one also obtains an estimate
for ∇2u,

‖∇2u‖Lq(Ω) ≤ C‖F‖Lq(Ω), (1.7)

for 1 < q <∞, if Ω is bounded (some restrictions on q are needed if Ω is an exterior domain;
see [10]). However, such W 2,q estimates fail in C1 domains, even for the Laplace operator.

Let C∞
0,σ(Ω) =

{
u ∈ C∞

0 (Ω;Cd) : div(u) = 0
}
and

Lqσ(Ω) = the closure of C∞
0,σ(Ω) in L

q(Ω;Cd). (1.8)
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For 1 < q <∞, we define the Stokes operator Aq in L
q
σ(Ω) by

Aq(u) = −∆u+∇p, (1.9)

with the domain

D(Aq) =
{
u ∈ W 1,q

0 (Ω;Cd) : div(u) = 0 in Ω and

−∆u+∇p ∈ Lqσ(Ω) for some p ∈ Lqloc(Ω;C)
}
.

(1.10)

It follows from Theorems 1.1 and 1.2 that for λ ∈ Σθ and 1 < q < ∞, the inverse operator
(λ+ Aq)

−1 exists as a bounded operator on Lqσ(Ω). Moreover, the estimate,

‖(λ+ Aq)
−1F‖Lq(Ω) ≤ C|λ|−1‖F‖Lq(Ω), (1.11)

holds, where C depends only on d, q, θ and Ω, if Ω is a bounded C1 domain in Rd, d ≥ 2 or
an exterior C1 domain in Rd, d ≥ 3. As a corollary, we obtain the following.

Corollary 1.3. Let Ω be a bounded C1 domain in Rd, d ≥ 2 or an exterior C1 domain in

Rd, d ≥ 3. Then the Stokes operator −Aq generates a uniformly bounded analytic semigroup

{e−tAq}t≥0 in Lqσ(Ω) for 1 < q <∞.

The uniform boundedness of the semigroup in the case of two-dimensional exterior C1

domains is left open by Corollary 1.3. We note that the uniform boundedness for the two-
dimensional exterior C2 domains was established in [3] by using the method of layer potentials
for λ near 0.

We now describe our approach to Theorems 1.1 and 1.2, which is based on a perturbation
argument of R. Farwig and H. Sohr [10]. The basic idea is to work out first the cases of the
whole space Rd and the half-space Rd

+. One then uses a perturbation argument to treat the
case of a region above a graph,

Hψ =
{
(x′, xd) ∈ Rd : x′ ∈ Rd−1 and xd > ψ(x′)

}
,

where ψ : Rd−1 → R. Finally, a localization procedure, together with some compactness
argument, is performed to handle the cases of bounded or exterior domains. To establish the
resolvent estimates for C1 domains, the key step is to carry out the perturbation argument
under the assumption that ψ : Rd−1 → R is Lipschitz continuous and to show that the
error terms are bounded by the Lipschitz norm ‖∇′ψ‖∞, where ∇′ denotes the gradient with
respect to x′ = (x1, . . . , xd−1).

To this end, we consider a more general Stokes resolvent problem,
{
−∆u+∇p+ λu = F + div(f),

div(u) = g,
(1.12)

in Hψ with the boundary condition u = 0 on ∂Hψ, where F ∈ Lq(Hψ;C
d) and f ∈

Lq(Hψ;C
d×d). We introduce two Banach spaces,

Xq
ψ = W 1,q

0 (Hψ;C
d)× Aqψ and Y q

ψ = W−1,q(Hψ;C
d)× Bq

ψ, (1.13)
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where Aqψ and Bq
ψ are two spaces defined by (4.2). In comparison with the spaces used in

[10] for C1,1 domains, we point out that since we work with C1 domains, no W 2,q spaces can
be used. Note that the scaling-invariant property of the Lipschitz norm ‖∇′ψ‖∞ allows us
to fix λ ∈ Σθ with |λ| = 1. Consider the linear operator

Sλψ(u, p) = (−∆u+∇p+ λu, div(u)). (1.14)

We are able to show that Sλψ : Xq
ψ → Y q

ψ is a bijection and that

‖(Sλψ)−1‖Y q
ψ
→Xq

ψ
≤ C(d, q, θ) (1.15)

for 1 < q <∞, provided that ‖∇′ψ‖∞ ≤ c0 and c0 = c0(d, q, θ) > 0 is sufficiently small. See
Theorem 4.3. To prove (1.15), one first considers the special case ψ = 0; i.e., Hψ = Rd

+. The
general case follows from the facts that

Sλψ(u, p) = Sλ0 (ũ, p̃) ◦Ψ+R(ũ, p̃) ◦Ψ, (1.16)

and that the operator norm of the second term in the right-hand side of (1.16) is bounded
by C‖∇′ψ‖∞ if ‖∇′ψ‖∞ ≤ 1. As a by-product, we also obtain the resolvent estimate (1.4)
in the case Ω = Hψ if ‖∇′ψ‖∞ ≤ c0(d, q, θ). See Theorem 4.1.

The paper is organized as follows. We start with the case of the whole space Rd in Section
2. The case Ω = Rd

+ is studied in Section 3. In Section 4 we carry out the perturbation
argument described above for the region above a Lipschitz graph. In Section 5 we consider
the case of bounded C1 domains and give the proof of Theorem 1.1. The case of exterior C1

domains is studied in Section 6, where Theorem 1.2 is proved. Finally, we prove some useful
uniqueness and regularity results for exterior C1 domains in the Appendix.

We end this section with a few notations that will be used throughout the paper. Let Ω
be a (bounded or unbounded) domain in Rd. By u ∈ Lqloc(Ω;C

m) we mean u ∈ Lq(B∩Ω;Cm)
for any ball B in Rd. For 1 < q <∞, let

W 1,q(Ω;Cm) =
{
u ∈ Lq(Ω;Cm) : ∇u ∈ Lq(Ω;Cd×m)

}
(1.17)

be the usual Sobolev space in Ω for functions with values in Cm. By W 1,q
0 (Ω;Cm) we denote

the closure of C∞
0 (Ω;Cm) in W 1,q(Ω;Cm). We use W−1,q(Ω;Cm) to denote the dual of

W 1,q′

0 (Ω;Cm) and W−1,q
0 (Ω;Cm) the dual of W 1,q′(Ω;Cm), where q′ = q

q−1
. For 1 < q < ∞,

we let
◦

W 1,q(Ω;Cm) =
{
u ∈ Lqloc(Ω;C

m) : ∇u ∈ Lq(Ω;Cd×m)
}

(1.18)

denote the homogeneous W 1,q space with the norm ‖∇u‖Lq(Ω). As usual, we identify two

functions in
◦

W 1,q(Ω;Cm) if they differ by a constant. Let
◦

W−1,q(Ω;Cm) be the dual of
◦

W 1,q′(Ω;Cm). Elements Λ in
◦

W−1,q(Ω;Cm) may be represented by div(f), where f = (fjk) ∈
Lq(Ω;Cd×m), in the sense that

Λ(u) = −
ˆ

Ω

∂juk · fjk

for any u = (u1, . . . , um) ∈
◦

W 1,q′(Ω;Cm), where ∂j = ∂/∂xj, the index j is summed from 1
to d and k from 1 to m.

Acknowledgement. The authors thank the anonymous referees for their helpful comments
that improved the quality of the manuscript.
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2 The whole space

In this section we study the resolvent problem for the Stokes equations in Rd, d ≥ 2. The
results in Theorem 2.1 are more or less standard. Since the Stokes equations are considered
with a more general data set, we provide a proof for the reader’s convenience.

Theorem 2.1. Let 1 < q <∞ and λ ∈ Σθ. For any F ∈ Lq(Rd;Cd), f ∈ Lq(Rd;Cd×d), and

g ∈ Lq(Rd;C) ∩
◦

W−1,q(Rd;C), there exists a unique u ∈ W 1,q(Rd;Cd) such that

{
−∆u+∇p+ λu = F + div(f),

div(u) = g
(2.1)

hold in Rd for some p ∈ L1
loc(R

d;C) in the sense of distributions. Moreover, the solution

satisfies the estimate,




|λ|1/2‖∇u‖Lq(Rd) ≤ C

{
‖F‖Lq(Rd) + |λ|1/2‖f‖Lq(Rd) + |λ|1/2‖g‖Lq(Rd)

}
,

|λ|‖u‖Lq(Rd) ≤ C
{
‖F‖Lq(Rd) + |λ|1/2‖f‖Lq(Rd) + |λ|‖g‖ ◦

W−1,q(Rd)

}
,

(2.2)

and p ∈ Lq(Rd;C) +
◦

W 1,q(Rd;C), where C depends on d, q and θ.

Proof. Step 1. We establish the existence of the solution and the estimates in (2.2).
By rescaling we may assume |λ| = 1. By linearity, it suffices to consider two cases: (I)

g = 0; (II) f = 0 and F = 0.
Case I. Assume g = 0. Let F denote the Fourier transform defined by

F(h)(ξ) =

ˆ

Rd
e−ix·ξh(x) dx,

where i =
√
−1 and ξ ∈ Rd. Let u = (u1, u2, . . . , ud), F = (F1, F2, . . . , Fd) and f = (fjk).

By applying F to (2.1) with g = 0, we obtain

{
(|ξ|2 + λ)F(uj) + iξjF(p) = F(Fj) + iξ`F(f`j) in Rd,

ξ`F(u`) = 0 in Rd,
(2.3)

where the repeated index ` is summed from 1 to d. A solution of (2.3) is given by





F(uj) = (λ+ |ξ|2)−1

(
δjk −

ξjξk
|ξ|2

)
(F(Fk) + iξ`F(f`k)) ,

F(p) =
−iξk
|ξ|2 (F(Fk) + iξ`F(f`k)) ,

(2.4)

where the repeated indices k, ` are summed from 1 to d. Since λ ∈ Σθ and |λ| = 1, we have
|λ+ |ξ|2| ≈ 1 + |ξ|2. Thus, by the Mikhlin multiplier theorem, there exist u ∈ W 1,q(Rd;Cd)

and p ∈ Lq(Rd;C) +
◦

W 1,q(Rd;C), satisfying (2.1) and

‖∇u‖Lq(Rd) + ‖u‖Lq(Rd) ≤ C
{
‖f‖Lq(Rd) + ‖F‖Lq(Rd)

}
, (2.5)
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for 1 < q <∞, where C depends on d, q and θ.

Case II. Assume that F = 0 and f = 0. Since g ∈ Lq(Rd;C)∩
◦

W−1,q(Rd;C), there exists

G ∈
◦

W 1,q(Rd;C) such that ∇G ∈ W 1,q(Rd;Cd), ∆G = g in Rd,

‖∇G‖Lq(Rd) ≤ C‖g‖ ◦

W−1,q(Rd)
and ‖∇2G‖Lq(Rd) ≤ C‖g‖Lq(Rd).

Let u = ∇G and p = g − λG. Then u ∈ W 1,q(Rd;Cd), p ∈ Lq(Rd;C) +
◦

W 1,q(Rd;C), and
(u, p) satisfies (2.1) with F = 0 and f = 0. Moreover,

‖∇u‖Lq(Rd) ≤ C‖g‖Lq(Rd) and ‖u‖Lq(Rd) ≤ C‖g‖ ◦

W−1,q(Rd)
.

Step 2. We establish the uniqueness of the solution.
Let u ∈ W 1,q(Rd;Cd) be a solution of (2.1) in Rd with F = 0, f = 0 and g = 0. It follows

that for any w ∈ C∞
0,σ(R

d),
ˆ

Rd
∇u · ∇w + λ

ˆ

Rd
u · w = 0, (2.6)

where C∞
0,σ(R

d) = {w ∈ C∞
0 (Rd;Cd) : div(w) = 0 in Rd}. Since u ∈ W 1,q(Rd;Cd), by a

density argument, we deduce that (2.6) holds for any w ∈ W 1,q′(Rd;Cd) with div(w) = 0 in
Rd. Let w be a solution in W 1,q′(Rd;Cd) of the Stokes equations,

{
−∆w +∇φ+ λw = |u|q−2u,

div(w) = 0
(2.7)

in Rd, where u denotes the complex conjugate of u. Since |u|q−2u ∈ Lq
′

(Rd;Cd), such solution
exists in W 1,q′(Rd;Cd) by Step 1. Again by a density argument, we may deduce from (2.7)
that

ˆ

Rd
∇w · ∇u+ λ

ˆ

Rd
w · u =

ˆ

Rd
|u|q. (2.8)

In view of (2.6) and (2.8), we obtain
´

Rd
|u|q = 0 and thus u = 0 in Rd.

Remark 2.2. Let F , f , g, (u, p) be the same as in Theorem 2.1. Let F = (F1, F2, . . . , Fd)
and f = (fjk). The k component of div(f) is given by

∑
j ∂jfjk, where ∂j denotes ∂/∂xj.

Let x = (x′, xd), where x
′ ∈ Rd−1. Suppose that





Fj is even in xd for 1 ≤ j ≤ d− 1 and Fd is odd,

g is even in xd,

fjk is even in xd for 1 ≤ j, k ≤ d− 1,

fdd is even in xd,

fjd and fdj are odd in xd for 1 ≤ j ≤ d− 1.

(2.9)

Define {
v(x′, xd) = (u1(x

′,−xd), . . . , ud−1(x
′,−xd),−ud(x′,−xd)),

φ(x′, xd) = p(x′,−xd).
Then (v, φ) is a solution of (2.1) with the same data F, f and g. By the uniqueness in
Theorem 2.1, it follows that u = v in Rd. In particular, this implies that ud(x

′, 0) = 0 for
x′ ∈ Rd−1.
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Remark 2.3. Assume λ ∈ Σθ and |λ| = 1. Let (u, p) be the solution of (2.1), given by
Theorem 2.1. An inspection of the proof of Theorem 2.1 shows that p = p1 + p2, where

p1 ∈ Lq(Rd;C), p2 ∈
◦

W 1,q(Rd;C), and

‖p1‖Lq(Rd) + ‖∇p2‖Lq(Rd) ≤ C
{
‖F‖Lq(Rd) + ‖f‖Lq(Rd) + ‖g‖Lq(Rd) + ‖g‖ ◦

W−1,q(Rd)

}
.

The constant C depends only on d, q and θ.

Remark 2.4. Let 1 < q1 < q2 < ∞ and λ ∈ Σθ. Suppose that F ∈ Lqj(Rd;Cd), f ∈
Lqj(Rd;Cd×d) and g ∈ Lqj(Rd;C) ∩

◦

W−1,qj(Rd;C) for j = 1, 2. Let (uj, pj) be the unique

solution of (2.1) in W 1,qj(Rd;Cd)× (Lqj(Rd;C)+
◦

W 1,qj(Rd;C)), given by Theorem 2.1. Then
(u1, p1) = (u2, p2). This follows from the observation that the solutions constructed in the
proof do not depend on q.

3 A half-space

In this section we consider the resolvent problem for the Stokes equations in the half-space

Rd
+. Recall that

◦

W 1,q(Rd
+;C) is the homogeneous W 1,q space in Rd

+ defined by (1.18), and
◦

W−1,q(Rd
+;C) denotes the dual of

◦

W 1,q′(Rd
+;C).

Theorem 3.1. Let 1 < q < ∞ and λ ∈ Σθ. Let F ∈ Lq(Rd
+;C

d), f ∈ Lq(Rd
+;C

d×d), and

g ∈ Lq(Rd
+;C) ∩

◦

W−1,q(Rd
+;C). Then there exists a unique u ∈ W 1,q

0 (Rd
+;C

d) such that

{
−∆u+∇p+ λu = F + div(f),

div(u) = g
(3.1)

hold in Rd
+ for some p ∈ L1

loc(R
d
+;C) in the sense of distributions. Moreover, the solution u

satisfies the estimate,

|λ|1/2‖∇u‖Lq(Rd
+
) + |λ|‖u‖Lq(Rd

+
)

≤ C
{
‖F‖Lq(Rd

+
) + |λ|1/2‖f‖Lq(Rd

+
) + |λ|1/2‖g‖Lq(Rd

+
) + |λ|‖g‖ ◦

W−1,q(Rd
+
)

}
,

(3.2)

and p ∈ Lq(Rd
+;C) +

◦

W 1,q(Rd
+;C), where C depends on d, q and θ.

Our proof of Theorem 3.1 follows closely a line of argument in [10].

For a function h in Rd−1, we use ĥ to denote the Fourier transform of h,

ĥ(ξ′) =

ˆ

Rd−1

e−iξ
′·x′h(x′) dx′, (3.3)

for ξ′ ∈ Rd−1.

Lemma 3.2. Let T be a bounded linear operator on L2(Rd−1;Cm). Suppose that T̂ f(ξ′) =

m(ξ′)f̂(ξ′) and that the multiplier m(ξ′) satisfies the estimate,

|ξ′||α||Dαm(ξ′)| ≤M, (3.4)
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for |α| ≤
[
d−1
2

]
+ 1, where α = (α1, . . . , αd−1) and D

α = ∂α1

1 · · · ∂αd−1

d−1 . Then

‖Tf‖Lq(Rd−1) ≤ CM‖f‖Lq(Rd−1)

for 1 < q <∞, where C depends on d and q.

Proof. This is the well known Mikhlin multiplier theorem in Rd−1.

We use W 1− 1

q
,q(Rd−1;Cm) to denote the trace space of W 1,q(Rd

+;C
m) on Rd−1.

Lemma 3.3. Let T be a bounded linear operator from L2(Rd−1) to L2(Rd
+). Suppose that

T̂ f(ξ′, xd) = m(ξ′, xd)f̂(ξ
′)

and that m(ξ′, xd) satisfies the condition

|ξ′||α||Dαm(ξ′, xd)|+ |ξ′||α|−1|Dα∂dm(ξ′, xd)| ≤
M0e

−δ|ξ′|xd

1 + xd
(3.5)

for xd > 0, ξ′ ∈ Rd−1 and |α| ≤
[
d−1
2

]
+ 1, where δ > 0. Then

{ ‖Tf‖Lq(Rd
+
) ≤ C‖f‖Lq(Rd−1),

‖∇T (f)‖Lq(Rd
+
) ≤ C‖f‖

W
1− 1

q ,q(Rd−1)
,

(3.6)

for 1 < q <∞, where C depends on d, q, δ and M0.

Proof. Note that for each xd > 0, m(ξ′, xd) satisfies (3.4) with M =M0(1+xd)
−1. It follows

from Lemma 3.2 that
ˆ

Rd
+

|Tf(x′, xd)|q dx′dxd ≤ CM q
0

ˆ ∞

0

ˆ

Rd−1

|f(x′)|q
(1 + xd)q

dx′dxd

≤ CM q
0

ˆ

Rd−1

|f |q dx′.

To prove the second inequality in (3.6), we write

∂̂jTf(ξ
′, xd) = eδ0xd|ξ

′|m(ξ′, xd) · iξje−δ0xd|ξ
′|f̂(ξ′)

for 1 ≤ j ≤ d− 1, and

∂̂dTf(ξ
′, xd) = |ξ′|−1eδ0xd|ξ

′|∂dm(ξ′, xd) · |ξ′|e−δ0xd|ξ
′|f̂(ξ′),

where δ0 = δ/2. Using (3.5), it is not hard to show that for each xd > 0, both

eδ0xd|ξ
′|m(ξ′, xd) and |ξ′|−1eδ0xd|ξ

′|∂dm(ξ′, xd)

satisfy the condition (3.4) with M independent of xd. This implies that
ˆ

Rd
+

|∇Tf(x′, xd)|q dx ≤ C

ˆ

Rd
+

|∇v(x′, xd)|q dx,
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where v is defined by
v̂(ξ′, xd) = e−δ0xd|ξ

′|f̂(ξ′).

Finally, we note that if δ0 = 1, v is a solution of the Dirichlet problem,

{(
∂21 + · · ·+ ∂2d−1 + ∂2d

)
v = 0 in Rd

+,

v = f on Rd−1 × {0},
(3.7)

given by the Poisson integral of f . It is well known that v satisfies the estimate,

‖∇v‖Lq(Rd
+
) ≤ C‖f‖

W
1− 1

q ,q(Rd−1)
,

where C depends on d and q [22, Chapter V]. The general case follows from the case δ0 = 1
by a rescaling in xd. As a result, we obtain the second inequality in (3.6).

Proof of Theorem 3.1. By rescaling we may assume |λ| = 1.
Step 1. We establish the existence and the estimate (3.2).

Let F ∈ Lq(Rd
+;C

d), f ∈ Lq(Rd
+;C

d×d) and g ∈ Lq(Rd
+;C) ∩

◦

W−1,q(Rd
+;C). We extend

F, f, g to Rd by either the even or odd reflection in such a way that the extensions satisfy
the condition (2.9). Let F̃ , f̃ , g̃ denote the extensions of F , f , g, respectively. Note that

g̃ ∈
◦

W−1,q(Rd) and
‖g̃‖ ◦

W−1,q(Rd)
≤ 2‖g‖ ◦

W−1,q(Rd
+
)
.

Let (ũ, p̃) denote the solution of (2.1) in Rd, given by Theorem 2.1, with data F̃ , f̃ , g̃. By
Remark 2.2, we have ũd(x

′, 0) = 0 for any x′ ∈ Rd−1. By subtracting (ũ, p̃) from solutions of
(3.1), we reduce the problem to the Dirichlet problem,





−∆u+∇p+ λu = 0 in Rd
+,

div(u) = 0 in Rd
+,

uj = hj on Rd−1 × {0} for 1 ≤ j ≤ d− 1,

ud = 0 on Rd−1 × {0},

(3.8)

where hj = −ũj for 1 ≤ j ≤ d − 1. We will show that there exist u ∈ W 1,q(Rd
+;C

d) and
p ∈ Lq(Rd

+;C) such that (u, p) satisfies (3.8) and the estimate,

‖∇u‖Lq(Rd
+
) + ‖u‖Lq(Rd

+
) + ‖p‖Lq(Rd

+
) ≤ C‖h‖

W
1− 1

q ,q(Rd−1)
. (3.9)

Since hj = −ũj on Rd−1 × {0} and

‖ũ‖
W

1− 1
q ,q(Rd−1)

≤ C
{
‖∇ũ‖Lq(Rd) + ‖ũ‖Lq(Rd)

}

≤ C
{
‖F̃‖Lq(Rd) + ‖f̃‖Lq(Rd) + ‖g̃‖Lq(Rd) + ‖g̃‖ ◦

W−1,q(Rd)

}

≤ C
{
‖F‖Lq(Rd

+
) + ‖f‖Lq(Rd

+
) + ‖g‖Lq(Rd

+
) + ‖g‖ ◦

W−1,q(Rd
+
)

}
,

the desired estimate (3.2) follows from (3.9).
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To solve (3.8), we use the partial Fourier transform in x′ = (x1, . . . , xd−1), defined by
(3.3). Let

m0(s, xd) =
e−

√
λ+s2xd − e−sxd√
λ+ s2 − s

,

where s = |ξ′|. It follows from [10] that a solution of (3.8) in the partial Fourier transform
is given by




ûj(ξ

′, xd) = −∂dm0(s, xd)
ξjξk
s2

ĥk(ξ
′) +

(
δjk −

ξjξk
s2

)
e−

√
λ+s2xdĥk(ξ

′)

ûd(ξ
′, xd) = im0(s, xd)ξkĥk(ξ

′)

(3.10)

for 1 ≤ j ≤ d− 1, and
p̂(ξ′, xd) = −s−2(λ+ s2 − ∂2d)∂dûd, (3.11)

where the repeated index k is summed from 1 to d− 1. Write

ûj(ξ
′, xd) = mjk(ξ

′, xd)ĥk(ξ)

for 1 ≤ j ≤ d. Note that mjk satisfies the condition (3.5) (see [10, Lemma 2.5]). By Lemma
3.3, we obtain

‖u‖Lq(Rd
+
) + ‖∇u‖Lq(Rd

+
) ≤ C‖h‖

W
1− 1

p ,p(Rd−1)

for 1 < q <∞. Using the fact that

s−2(λ+ s2 − ∂2d)∂dm0(s, xd) = s−1(
√
λ+ s2 + s)e−sxd ,

and that s−1(
√
λ+ s2 + s)e−sxd satisfies the condition (3.5), it follows again by Lemma 3.3

that
ˆ

Rd
+

|p|q dx ≤ C‖h‖q
W

1− 1
q ,q(Rd−1)

.

As a result, we have proved (3.9).

Step 2. With the existence established in Step 1 at our disposal, the uniqueness may be
proved by using the same argument as in the proof of Theorem 2.1. We omit the details.

Remark 3.4. Let λ ∈ Σθ and |λ| = 1. Let (u, p) be the solution of (3.1), given by Theorem
3.1. It follows from the proof of Theorem 3.1 that p = p1 + p2, where p1 ∈ Lq(Rd

+;C),

p2 ∈
◦

W 1,q(Rd
+;C), and

‖p1‖Lq(Rd
+
) + ‖∇p2‖Lq(Rd

+
) ≤ C

{
‖F‖Lq(Rd

+
) + ‖f‖Lq(Rd

+
) + ‖g‖Lq(Rd

+
) + ‖g‖ ◦

W−1,q(Rd
+
)

}
,

where C depends only on d, q and θ.

Remark 3.5. Let 1 < q1 < q2 < ∞. Suppose that F ∈ Lqj(Rd
+;C

d), f ∈ Lqj(Rd
+;C

d×d),

and g ∈ Lqj(Rd
+;C) ∩

◦

W−1,qj(Rd
+;C) for j = 1, 2. Let uj ∈ W

1,qj
0 (Rd

+;C
d) be the solution

of (3.1), given by Theorem 3.1, with the same data F, f, g, for j = 1, 2. Since the solutions
constructed inW 1,q

0 (Rd
+;C

d) for the existence part of the proof do not depend on q, it follows

that u1 = u2 in Rd
+. As a result, we obtain u1 = u2 ∈ W 1,q1

0 (Rd
+;C

d) ∩W 1,q2
0 (Rd

+;C
d).
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4 The region above a Lipschitz graph

Let
Hψ =

{
(x′, xd) ∈ Rd : x′ ∈ Rd−1 and xd > ψ(x′)

}
,

where ψ : Rd−1 → R is a Lipschitz function. Note that if ψ = 0, we have H0 = Rd
+. In this

section we study the resolvent problem for the Stokes equations,




−∆u+∇p+ λu = F + div(f) in Hψ,

div(u) = g in Hψ,

u = 0 on ∂Hψ,

(4.1)

where λ ∈ Σθ. For 1 < q <∞, define

Aqψ = Lq(Hψ;C) +
◦

W 1,q(Hψ;C) and Bq
ψ = Lq(Hψ;C) ∩

◦

W−1,q(Hψ;C), (4.2)

where, as in the case Rd and Rd
+,

◦

W 1,q(Hψ;C) =
{
u ∈ Lqloc(Hψ;C) : ∇u ∈ Lq(Hψ;C

d)
}
,

with the norm ‖∇u‖Lq(Hψ), and
◦

W−1,q(Hψ;C) denotes the dual of
◦

W 1,q′(Hψ;C). Note that
Aqψ and Bq

ψ are Banach spaces with the usual norms,

‖p‖Aq
ψ
= inf

{
‖p1‖Lq(Hψ) + ‖∇p2‖Lq(Hψ) : p = p1 + p2 in Hψ

}

and
‖g‖Bq

ψ
= ‖g‖Lq(Hψ) + ‖g‖ ◦

W−1,q(Hψ)
.

The goal of this section is to prove the following.

Theorem 4.1. Let λ ∈ Σθ and 1 < q < ∞. There exists c0 ∈ (0, 1), depending only on d,
q and θ, such that if ‖∇′ψ‖∞ ≤ c0, then for any F ∈ Lq(Hψ;C

d), f ∈ Lq(Hψ;C
d×d) and

g ∈ Bq
ψ, there exists a unique (u, p) such that u ∈ W 1,q

0 (Hψ;C
d), p ∈ Aqψ, and (4.1) holds.

Moreover, the solution satisfies

|λ|1/2‖∇u‖Lq(Hψ) + |λ|‖u‖Lq(Hψ)
≤ C

{
‖F‖Lq(Hψ) + |λ|1/2‖f‖Lq(Hψ) + |λ|1/2‖g‖Lq(Hψ) + |λ|‖g‖ ◦

W−1,q(Hψ)

}
,

(4.3)

where C depends only on d, q and θ.

To prove Theorem 4.1, we introduce two Banach spaces,

Xq
ψ = W 1,q

0 (Hψ;C
d)× Aqψ and Y q

ψ = W−1,q(Hψ;C
d)× Bq

ψ, (4.4)

with the usual product norms. For λ ∈ Σθ with |λ| = 1, consider the operator

Sλψ(u, p) =
(
−∆u+∇p+ λu, div(u)

)
. (4.5)

It is not hard to see that Sλψ is a bounded linear operator from Xq
ψ to Y q

ψ for any 1 < q <∞
and that

‖Sλψ(u, p)‖Y qψ ≤ C‖(u, p)‖Xq

ψ
, (4.6)

where C depends only on d and q. Using Theorem 3.1 and a perturbation argument, we will
show that Sλψ is invertible if ‖∇′ψ‖∞ is sufficiently small.
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Lemma 4.2. Let λ ∈ Σθ with |λ| = 1 and 1 < q < ∞. Assume that ψ = 0. Then

Sλ0 : Xq
0 → Y q

0 is a bijection and

‖(Sλ0 )−1‖Y q
0
→Xq

0
≤ C, (4.7)

where C depends only on d, q and θ.

Proof. In the case ψ = 0, we have Hψ = Rd
+. The lemma follows readily from Theorem 3.1

and the estimate for p in Remark 3.4. Indeed, note that for any Λ ∈ W−1,q(Ω;Cd), there
exist F ∈ Lq(Ω;Cd) and f ∈ Lq(Ω;Cd×d) such that Λ = F + div(f) and ‖Λ‖W−1,q(Ω) ≈
‖F‖Lq(Ω) + ‖f‖Lq(Ω).

Theorem 4.3. Let λ ∈ Σθ with |λ| = 1. Let 1 < q <∞. There exists c0 ∈ (0, 1), depending
only on d, q and θ, such that if ‖∇′ψ‖∞ ≤ c0, then S

λ
ψ : Xq

ψ → Y q
ψ is a bijection and

‖(Sλψ)−1‖Y q
ψ
→Xq

ψ
≤ C, (4.8)

where C depends only on d, q and θ.

Proof. Suppose ‖∇′ψ‖∞ ≤ 1. Define a bi-Lipschitz map Ψ : Hψ → Rd
+ by

Ψ(x′, xd) = (x′, xd − ψ(x′)).

Note that Ψ−1(x′, xd) = (x′, xd + ψ(x′)). For a function u in Hψ, let ũ = u ◦Ψ−1, defined in
Rd

+. Thus, u = ũ ◦Ψ and

{
∂ju = ∂jũ ◦Ψ− ∂d(ũ∂jψ) ◦Ψ for 1 ≤ j ≤ d− 1,

∂du = ∂dũ ◦Ψ.

A computation shows that

∆u = ∆ũ ◦Ψ− ∂d(∂kũ∂kψ) ◦Ψ− ∂k(∂dũ∂kψ) ◦Ψ+ ∂d(∂dũ|∇′ψ|2) ◦Ψ,

where |∇′ψ|2 = |∂1ψ|2 + · · ·+ |∂d−1ψ|2 and the repeated index k is summed from 1 to d− 1.
For (u, p) ∈ Xq

ψ, let ũ = u ◦Ψ−1 and p̃ = p ◦Ψ−1. Then

−∆uj + ∂jp+ λuj = −∆ũj ◦Ψ+ ∂j p̃ ◦Ψ+ λũj ◦Ψ
+ ∂d(∂kũj∂kψ) ◦Ψ+ ∂k(∂dũj∂kψ) ◦Ψ
− ∂d(∂dũj|∇′ψ|2) ◦Ψ− ∂d(p̃∂jψ) ◦Ψ

(4.9)

for 1 ≤ j ≤ d− 1, and

−∆ud + ∂dp+ λud =−∆ũd ◦Ψ+ ∂dp̃ ◦Ψ+ λũd ◦Ψ
+ ∂d(∂kũd∂kψ) ◦Ψ+ ∂k(∂dũd∂kψ) ◦Ψ
− ∂d(∂dũd|∇′ψ|2) ◦Ψ,

(4.10)

where the repeated index k is summed from 1 to d− 1. Also, note that

div(u) = div(ũ) ◦Ψ− ∂d(ũk∂kψ) ◦Ψ. (4.11)
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In view of (4.9), (4.10) and (4.11), we obtain

Sλψ(u, p) = Sλ0 (ũ, p̃) ◦Ψ+R(ũ, p̃) ◦Ψ, (4.12)

where R(ũ, p̃) = (R1(ũ, p̃), . . . , Rd(ũ, p̃), Rd+1(ũ, p̃)) with

Rj(ũ, p̃) = ∂d(∂kũj∂kψ) + ∂k(∂dũj∂kψ)− ∂d(∂dũj|∇′ψ|2)− ∂d(p̃∂jψ) (4.13)

for 1 ≤ j ≤ d− 1, and
{

Rd(ũ, p̃) = ∂d(∂kũd∂kψ) + ∂k(∂dũd∂kψ)− ∂d(∂dũd|∇′ψ|2),
Rd+1(ũ, p̃) = −∂d(ũk∂kψ).

(4.14)

We claim that for any (ũ, p̃) ∈ Xq
0 ,

‖R(ũ, p̃)‖Y q
0
≤ C‖∇′ψ‖∞‖(ũ, p̃)‖Xq

0
, (4.15)

where C depends only on d and q. To show (4.15), we note that

‖Rj(ũ, p̃)‖W−1,q(Rd
+
) ≤ C‖∇′ψ‖∞‖∇ũ‖Lq(Rd

+
) + ‖∂d(p̃∂jψ)‖W−1,q(Rd

+
) (4.16)

for 1 ≤ j ≤ d− 1, and

‖Rd(ũ, p̃)‖W−1,q(Rd
+
) ≤ C‖∇′ψ‖∞‖∇ũ‖Lq(Rd

+
), (4.17)

where we have used the assumption ‖∇′ψ‖∞ ≤ 1. To bound the second term in the right-
hand side of (4.16), we let

p̃ = p̃1 + p̃2 ∈ Lq(Rd
+;C) +

◦

W 1,q(Rd
+;C) = Aq0.

Then
‖∂d(p̃∂jψ)‖W−1,q(Rd

+
) ≤ ‖∂d(p̃1∂jψ)‖W−1,q(Rd

+
) + ‖∂d(p̃2∂jψ)‖W−1,q(Rd

+
)

≤ C‖∇′ψ‖∞‖p̃1‖Lq(Rd
+
) + C‖∇′ψ‖∞‖∂dp̃2‖Lq(Rd

+
).

This shows that
‖∂d(p̃∂jψ)‖W−1,q(Rd

+
) ≤ C‖∇′ψ‖∞‖p̃‖Aq

0
.

As a result, we have proved that

‖Rj(ũ, p̃)‖W−1,q(Rd
+
) ≤ C‖∇′ψ‖∞‖(ũ, p̃)‖Xq

0
(4.18)

for 1 ≤ j ≤ d. This, together with the estimates,

‖Rd+1(ũ, p̃)‖Lq(Rd
+
) + ‖Rd+1(ũ, p̃)‖ ◦

W−1,q(Rd
+
)
≤ C‖∇′ψ‖∞

(
‖∇ũ‖Lq(Rd

+
) + ‖ũ‖Lq(Rd

+
)

)
,

gives (4.15).
By Lemma 4.2, Sλ0 : Xq

0 → Y q
0 is bounded and invertible for 1 < q < ∞. It follows by a

standard perturbation argument that Sλ0 +R : Xq
0 → Y q

0 is bounded and invertible if

‖R(Sλ0 )−1‖Y q
0
→Y q

0
< 1.
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Moreover, we have

‖(Sλ0 +R)−1‖Y q
0
→Xq

0
≤

‖(Sλ0 )−1‖Y q
0
→Xq

0

1− ‖R(Sλ0 )−1‖Y q
0
→Y q

0

.

By (4.7) and (4.15),

‖R(Sλ0 )−1‖Y q
0
→Y q

0
≤ ‖R‖Xq

0
→Y q

0
‖(Sλ0 )−1‖Y q

0
→Xq

0

≤ C0‖∇′ψ‖∞,

where C0 depends only on d, q and θ. As a result, we have proved that if ‖∇′ψ‖∞ ≤ (2C0)
−1,

then Sλ0 +R : Xq
0 → Y q

0 is invertible and

‖(Sλ0 +R)−1‖Y q
0
→Xq

0
≤ C

for some C depending on d, q and θ. Finally, we note that

‖(u ◦Ψ−1, p ◦Ψ−1)‖Xq
0
≈ ‖(u, p)‖Xq

ψ

for any (u, p) ∈ Xq
ψ, and

‖(Λ ◦Ψ−1, g ◦Ψ−1)‖Y q
0
≈ ‖(Λ, g)‖Y q

ψ

for any (Λ, g) ∈ Y q
ψ . By (4.12), we deduce that if ‖∇′ψ‖∞ ≤ c0(d, q, θ), then S

λ
ψ : Xq

ψ → Y q
ψ

is invertible and (4.8) holds. This completes the proof.

Proof of Theorem 4.1. The case |λ| = 1 follows readily from Theorem 4.3. The general
case can be reduced to the case |λ| = 1 by rescaling. Indeed, let (u, p) be a solution of (4.1)
in Hψ. Let v(x) = u(|λ|−1/2x) and φ(x) = |λ|−1/2p(|λ|−1/2x). Then (v, φ) is a solution of
the resolvent problem for the Stokes equations in the graph domain Hψλ with the parameter
λ|λ|−1 ∈ Σθ, where ψλ(x

′) = |λ|1/2ψ(|λ|−1/2x′). Moreover, we have ‖∇′ψλ‖∞ = ‖∇′ψ‖∞. As
a result, the general case follows from the case |λ| = 1.

Remark 4.4. Let 1 < q1 < q2 < ∞. Let λ ∈ Σθ and |λ| = 1. It follows from Lemma 4.2
and Remark 3.5 that Sλ0 : Xq1

0 ∩Xq2
0 → Y q1

0 ∩ Y q2
0 is a bijection and

‖(Sλ0 )−1‖Y q1
0

∩Y q2
0

→X
q1
0

∩Xq2
0

≤ C,

where C depends only on d, q1, q2 and θ. By the same perturbation argument as in the proof
of Theorem 4.3, we deduce that Sλψ : Xq1

ψ ∩Xq2
ψ → Y q1

ψ ∩ Y q2
ψ is a bijection and

‖(Sλψ)−1‖Y q1
ψ

∩Y q2
ψ

→X
q1
ψ

∩Xq2
ψ

≤ C,

if ‖∇′ψ‖∞ ≤ c0(d, q1, q2, θ), where C depends only on d, q1, q2 and θ. Consequently, if
F ∈ Lq1(Hψ;C

d) ∩ Lq2(Hψ;C
d), f ∈ Lq1(Hψ;C

d×d) ∩ Lq2(Hψ;C
d×d) and g ∈ Bq1

ψ ∩ Bq2
ψ , then

the solution u of (4.1), given by Theorem 4.1, belongs to W 1,q1
0 (Hψ;C

d) ∩ W 1,q2
0 (Hψ;C

d),
provided that ‖∇′ψ‖∞ is sufficiently small.
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Remark 4.5. Let (u, p) be a solution of the resolvent problem for the Stokes equations in
Hψ. Let v(x) = OTu(Ox) and φ(x) = p(Ox), where O is a d× d orthogonal matrix. Then

{
(−∆v +∇φ+ λv)(x) = OT (−∆u+∇p+ λu)(Ox),

div(v)(x) = div(u)(Ox).

Consequently, Theorem 4.1 continues to hold if the domain Hψ is replaced by

OHψ = {y ∈ Rd : y = Ox for some x ∈ Hψ}

for any d× d orthogonal matrix.

5 A bounded C1 domain and the proof of Theorem 1.1

Throughout this section we assume that Ω is a bounded C1 domain in Rd. This implies that
for any c0 > 0, there exists some r0 > 0 such that for each z = (z′, zd) ∈ ∂Ω,

Ω ∩ B(z, 2r0) = D ∩ B(z, 2r0) and ∂Ω ∩ B(z, 2r0) = ∂D ∩ B(z, 2r0), (5.1)

where D is given by

D = OHψ for some orthogonal matrix O and some C1 function ψ in Rd−1 (5.2)

with ∇′ψ(z′) = 0 and ‖∇′ψ‖∞ ≤ c0. Recall that ∇′ denotes the gradient with respect to
x′ = (x1, . . . , xd−1). We will use Lq0(Ω;C) to denote the subspace of Lq(Ω;C) of functions p
with

´

Ω
p = 0.

The goal of this section is to prove the following theorem, which contains Theorem 1.1
as a special case with f = 0 and g = 0.

Theorem 5.1. Let Ω be a bounded C1 domain in Rd, d ≥ 2. Let 1 < q <∞ and λ ∈ Σθ. For

any F ∈ Lq(Ω;Cd), f ∈ Lq(Ω;Cd×d) and g ∈ Lq0(Ω;C), there exists a unique u ∈ W 1,q
0 (Ω;Cd)

such that {
−∆u+∇p+ λu = F + div(f),

div(u) = g
(5.3)

hold in Ω for some p ∈ L1
loc(Ω;C) in the sense of distributions. Moreover, the solution u

satisfies the estimate,

(|λ|+ 1)1/2‖∇u‖Lq(Ω) + (|λ|+ 1)‖u‖Lq(Ω)

≤ C
{
‖F‖Lq(Ω) + (|λ|+ 1)1/2‖f‖Lq(Ω) + (|λ|+ 1)‖g‖Lq(Ω)

}
,

(5.4)

and p ∈ Lq(Ω;C), where C depends only on d, q, θ and Ω.

Theorem 5.1 follows from Theorems 2.1 and 4.1 by a localization argument.

Lemma 5.2. Let u ∈ W 1,q
0 (Ω;Cd) for some 1 < q <∞. Suppose div(u) = 0 in Ω. Then

‖div(uϕ)‖ ◦

W−1,q(Rd)
≤ C(‖∇ϕ‖∞ + ‖∇2ϕ‖∞)‖u‖W−1,q(Ω), (5.5)

where ϕ ∈ C∞
0 (Ω;R) and C depends on d, q, diam(Ω) and the Lipschitz character of Ω.
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Proof. Let h ∈
◦

W 1,q′(Rd;C). Note that

ˆ

Rd
div(uϕ) · h =

ˆ

Ω

(u · ∇ϕ)
(
h−

 

Ω

h

)
,

where we have used the assumption div(u) = 0 in Ω. It follows that

∣∣∣∣
ˆ

Rd
div(uϕ) · h

∣∣∣∣ ≤ ‖u‖W−1,q(Ω)‖∇ϕ(h−
 

Ω

h)‖
W 1,q′

0
(Ω)

≤ C(‖∇ϕ‖∞ + ‖∇2ϕ‖∞)‖u‖W−1,q(Ω)‖∇h‖Lq′ (Rd),

where we have used a Poincaré inequality in Ω. This gives (5.5).

Remark 5.3. Let u be the same as in Lemma 5.2. Suppose ϕ ∈ C∞
0 (B(z, 2r0);R), where z ∈

∂Ω and Ω∩B(z, 2r0) satisfies (5.1)-(5.2). Let W
−1,q
0 (Ω;Cd) denote the dual of W 1,q′(Ω;Cd).

Then
‖div(uϕ)‖ ◦

W−1,q(D)
≤ C(‖∇ϕ‖∞ + ‖∇2ϕ‖∞)‖u‖W−1,q

0
(Ω), (5.6)

where D is given by (5.1)-(5.2). To see this, we note that for any h ∈
◦

W 1,q′(D;C),

ˆ

D

div(uϕ) · h =

ˆ

Ω

(u · ∇ϕ)
(
h−

 

Ω

h

)
,

where we have used the assumptions that div(u) = 0 in Ω and u = 0 on ∂Ω.

Lemma 5.4. Let 1 < q <∞. Then for any p ∈ Lq0(Ω;C),

‖p‖Lq(Ω) ≤ C‖∇p‖W−1,q(Ω), (5.7)

where C depends on d, q, diam(Ω) and the Lipschitz character of Ω.

Proof. Since Ω is a bounded Lipschitz domain and p|p|q−2 ∈ Lq
′

(Ω;C), there exists v ∈
W 1,q′

0 (Ω;Cd) such that

div(v) = p|p|q−2 −
 

Ω

p|p|q−2 in Ω

(see [13, Theorem III.3.1]). Moreover, the function v satisfies

‖v‖W 1,q′ (Ω) ≤ C‖p|p|q−2‖Lq′ (Ω) = C‖p‖q−1
Lq(Ω). (5.8)

Using
ˆ

Ω

|p|q =
ˆ

Ω

p · div(v),

we obtain
‖p‖qLq(Ω) ≤ ‖∇p‖W−1,q(Ω)‖v‖W 1,q′

0
(Ω)

≤ C‖∇p‖W−1,q(Ω)‖p‖q−1
Lq(Ω),

where we have used (5.8) for the last inequality. This yields (5.7).
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The following lemma contains a key a priori estimate. Recall that W−1,q
0 (Ω;Cd) denotes

the dual of W 1,q′(Ω;Cd).

Lemma 5.5. Let 1 < q <∞ and λ ∈ Σθ. Let (u, p) ∈ W 1,q
0 (Ω;Cd)× Lq0(Ω;C) be a solution

of (5.3) with F ∈ Lq(Ω;Cd), f ∈ Lq(Ω;Cd×d) and g = 0. There exist λ0 > 1 and C > 0,
depending only on d, q, θ, diam(Ω) and the C1 character of Ω, such that if |λ| ≥ λ0, then

|λ|1/2‖∇u‖Lq(Ω) + |λ|‖u‖Lq(Ω) ≤ C
{
‖F‖Lq(Ω) + |λ|1/2‖f‖Lq(Ω) + |λ|‖u‖W−1,q

0
(Ω)

}
. (5.9)

Proof. Let z ∈ Ω and r0 > 0 be small. Let ϕ ∈ C∞
0 (B(z, 2r0);R) such that ϕ = 1 in B(z, r0)

and |∇ϕ| ≤ Cr−1
0 , |∇2ϕ| ≤ Cr−2

0 . A computation shows that
{
−∆(uϕ) +∇(pϕ) + λuϕ = Fϕ+ div(fϕ)− f(∇ϕ) + p∇ϕ− 2 div(u⊗∇ϕ) + u∆ϕ,

div(uϕ) = u · ∇ϕ.
(5.10)

We consider two cases: (1) B(z, 2r0) ⊂ Ω and (2) z ∈ ∂Ω.
Case (1). Suppose B(z, 2r0) ⊂ Ω. Then the Stokes equations in (5.10) hold in Rd. Since

uϕ ∈ W 1,q(Rd;Cd) and pϕ ∈ Lq(Rd;C), it follows by Theorem 2.1 that

|λ|1/2‖∇(uϕ)‖Lq(Rd) + |λ|‖uϕ‖Lq(Rd)
≤ C

{
‖Fϕ‖Lq(Rd) + |λ|1/2‖fϕ‖Lq(Rd) + ‖f∇ϕ‖Lq(Rd) + ‖p∇ϕ‖Lq(Rd)

+ ‖u∆ϕ‖Lq(Rd) + |λ|1/2‖u∇ϕ‖Lq(Rd) + |λ|‖div(uϕ)‖ ◦

W−1,q(Rd)

}
.

This leads to

|λ|1/2‖∇u‖Lq(B(z,r0)) + |λ|‖u‖Lq(B(z,r0))

≤ Cr−2
0

{
‖F‖Lq(Ω) + (1 + |λ|1/2)‖f‖Lq(Ω)

+ ‖p‖Lq(Ω) + (1 + |λ|1/2)‖u‖Lq(Ω) + |λ|‖u‖W−1,q(Ω)

}
,

(5.11)

where we have used Lemma 5.2 and the fact ϕ = 1 in B(z, r0).
Case (2). Suppose z ∈ ∂Ω. Let D be given by (5.1)-(5.2). We assume r0 is sufficiently

small so that ‖∇′ψ‖∞ < c0, where c0 = c0(d, q, θ) > 0 is given by Theorem 4.1. Note that
uϕ ∈ W 1,q

0 (D;Cd), pϕ ∈ Lq(D;C), and (5.10) holds in D. It follows by Theorem 4.1 and
Remark 4.5 that

|λ|1/2‖∇(uϕ)‖Lq(D) + |λ|‖uϕ‖Lq(D)

≤ C
{
‖Fϕ‖Lq(D) + |λ|1/2‖fϕ‖Lq(D) + ‖f∇ϕ‖Lq(D) + ‖p∇ϕ‖Lq(D) + ‖u∆ϕ‖Lq(D)

+ |λ|1/2‖u∇ϕ‖Lq(D) + |λ|‖div(uϕ)‖ ◦

W−1,q(D)

}
,

which yields
|λ|1/2‖∇u‖Lq(Ω∩B(z,r0)) + |λ|‖u‖Lq(Ω∩B(z,r0))

≤ Cr−2
0

{
‖F‖Lq(Ω) + (1 + |λ|1/2)‖f‖Lq(Ω) + ‖p‖Lq(Ω)

+ (1 + |λ|1/2)‖u‖Lq(Ω) + |λ|‖u‖W−1,q
0

(Ω)

}
,

(5.12)
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where we have used the estimate in Remark 5.3 and the fact ϕ = 1 in B(z, r0).
We now cover Ω by a finite number of balls {B(zk, r0)} with the properties that either

B(zk, 2r0) ⊂ Ω or zk ∈ ∂Ω. In view of (5.11) and (5.12), by summation, we deduce that

|λ|1/2‖∇u‖Lq(Ω) + |λ|‖u‖Lq(Ω)

≤ C
{
‖F‖Lq(Ω) + (1 + |λ|1/2)‖f‖Lq(Ω) + ‖p‖Lq(Ω) + (1 + |λ|1/2)‖u‖Lq(Ω) + |λ|‖u‖W−1,q

0
(Ω)

}

≤ C
{
‖F‖Lq(Ω) + (1 + |λ|1/2)‖f‖Lq(Ω) + ‖∇u‖Lq(Ω) + (1 + |λ|1/2)‖u‖Lq(Ω) + |λ|‖u‖W−1,q

0
(Ω)

}
,

(5.13)
where we have used Lemma 5.4 and the equation ∇p = ∆u − λu + F + div(f) for the last
inequality. The constant C in (5.13) depends only on d, q, θ and Ω. We obtain (5.9) by
choosing λ0 > 1 so large that |λ| ≥ 4C|λ|1/2 for |λ| ≥ λ0.

Lemma 5.6. Let 2 ≤ q <∞ and λ ∈ Σθ. Let (u, p) ∈ W 1,q
0 (Ω;Cd)× Lq0(Ω;C) be a solution

of (5.3) with F ∈ Lq(Ω;Cd), f ∈ Lq(Ω;Cd×d) and g = 0. Then,

(|λ|+ 1)1/2‖∇u‖Lq(Ω) + (|λ|+ 1)‖u‖Lq(Ω) ≤ C
{
‖F‖Lq(Ω) + (|λ|+ 1)1/2‖f‖Lq(Ω)

}
, (5.14)

where C > 0 depends on d, q, θ, diam(Ω) and the C1 character of Ω.

Proof. The case q = 2 is well known and follows from the energy estimates. For q > 2, we
first consider the case |λ| ≥ λ0, where λ0 > 1 is given by Lemma 5.5. Since Ω is bounded,
by Lemma 5.5, the estimate

|λ|1/2‖∇u‖Ls(Ω) + |λ|‖u‖Ls(Ω) ≤ C
{
‖F‖Ls(Ω) + |λ|1/2‖f‖Ls(Ω) + |λ|‖u‖W−1,s

0
(Ω)

}
(5.15)

holds for any s ∈ [2, q]. By Sobolev imbedding, Lt(Ω;Cd) ⊂ W−1,s
0 (Ω;Cd), where 1 < t < d

and 1
t
= 1

s
+ 1

d
. In particular, if 2 < s ≤ 2d

d−2
, then L2(Ω;Cd) ⊂ W−1,s

0 (Ω;Cd) and

|λ|‖u‖W−1,s
0

(Ω) ≤ C|λ|‖u‖L2(Ω)

≤ C
{
‖F‖L2(Ω) + |λ|1/2‖f‖L2(Ω)

}

≤ C
{
‖F‖Ls(Ω) + |λ|1/2‖f‖Ls(Ω)

}
.

This, together with (5.15), gives (5.14) for 2 < q ≤ 2d
d−2

. By a bootstrapping argument, one
may show that the estimate (5.14) holds for any 2 < q <∞ in a finite number of steps.

We now consider the case |λ| < λ0. We rewrite the Stokes equations as
{
−∆u+∇p+ (λ+ 2λ0)u = F + div(f) + 2λ0u,

div(u) = 0.
(5.16)

Since λ+ 2λ0 ∈ Σθ and |λ+ 2λ0| > λ0, it follows from the previous case that

‖∇u‖Lq(Ω) ≤ C
{
‖F‖Lq(Ω) + ‖f‖Lq(Ω) + ‖u‖Lq(Ω)

}
. (5.17)

Since W 1,2
0 (Ω;Cd) ⊂ Ls(Ω;Cd) for s = 2d

d−2
, we obtain

‖∇u‖Lq(Ω) ≤ C
{
‖F‖Lq(Ω) + ‖f‖Lq(Ω) + ‖∇u‖L2(Ω)

}

≤ C
{
‖F‖Lq(Ω) + ‖f‖Lq(Ω)

}
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for 2 < q ≤ 2d
d−2

, where we have used the estimate (5.14) for q = 2 for the last inequality. As
before, a bootstrapping argument, using (5.17), gives

‖∇u‖Lq(Ω) ≤ C
{
‖F‖Lq(Ω) + ‖f‖Lq(Ω)

}

for 2 < q < ∞ in a finite number of steps. This, together with a Poincaré inequality, yields
(5.14) for the case |λ| < λ0.

We are now in a position to give the proof of Theorem 5.1.

Proof of Theorem 5.1. Step 1. Consider the case 2 < q <∞ and g = 0.
The uniqueness follows from the case q = 2. To show the existence and the estimate (5.4),

let F ∈ Lq(Ω;Cd) and f ∈ Lq(Ω;Cd×d). Note that the constant C in (5.14) depends only on
d, q, θ, the diameter of Ω as well as the C1 character of ∂Ω. As a result, we may construct a
sequence of smooth domains {Ωk} such that Ωk ⊂ Ω and the estimate (5.14) holds in Ωk with
a constant C independent of k. Let (uk, pk) be the unique solution inW 1,2

0 (Ωk;C
d)×L2

0(Ωk;C)
of the Stokes system (5.3) in Ωk with g = 0, F k in the place of F and fk in the place of f ,
where F k ∈ C∞

0 (Ωk;C
d), fk ∈ C∞

0 (Ωk;C
d×d) and ‖F k − F‖Lq(Ω) + ‖fk − f‖Lq(Ω) → 0. Since

Ωk and F
k, fk are smooth, it is well known that (uk, pk) ∈ W 1,q

0 (Ωk;C
d)×Lq0(Ωk;C) [13]. We

extend (uk, pk) to Ω by zero and still denote the extension by (uk, pk). It follows by Lemma
5.6 that

(|λ|+1)1/2‖∇uk‖Lq(Ω)+(|λ|+1)‖uk‖Lq(Ω) ≤ C
{
‖F k‖Lq(Ωk) + (|λ|+ 1)1/2‖fk‖Lq(Ωk)

}
, (5.18)

where C depends only on d, q, θ and Ω. Note that by Lemma 5.4, {pk} is bounded in
Lq(Ω;C). By passing to a subsequence, we may assume that uk → u weakly in W 1,q

0 (Ω;Cd)
and pk → p weakly in Lq(Ω;C). It is not hard to see that (u, p) is a solution of (5.3) in
Ω with data (F, f) and g = 0. By letting k → ∞ in (5.18), it follows that u satisfies the
estimate (5.4).

Step 2. We establish the existence and estimate (5.4) for 1 < q < 2 and g = 0.
For F,G ∈ C∞

0 (Ω;Cd) and f, h ∈ C∞
0 (Ω;Cd×d), let (u, p), (v, φ) ∈ W 1,2

0 (Ω;Cd)×L2
0(Ω;C)

be weak solutions of (5.3) in Ω with data (F, f), (G, h), respectively; i.e.,
{
−∆u+∇p+ λu = F + div(f) in Ω,

div(u) = 0 in Ω,

{
−∆v +∇φ+ λv = G+ div(h) in Ω,

div(v) = 0 in Ω.

Note that
ˆ

Ω

F · v −
ˆ

Ω

f · ∇v =

ˆ

Ω

∇u · ∇v + λ

ˆ

Ω

u · v =

ˆ

Ω

G · u−
ˆ

Ω

h · ∇u.

It follows that
∣∣∣∣
ˆ

Ω

G · u−
ˆ

Ω

h · ∇u
∣∣∣∣ ≤ ‖F‖Lq(Ω)‖v‖Lq′ (Ω) + ‖f‖Lq(Ω)‖∇v‖Lq′ (Ω)

≤ C(|λ|+ 1)−1
{
‖F‖Lq(Ω) + (|λ|+ 1)1/2‖f‖Lq(Ω)

}{
‖G‖Lq′ (Ω) + (|λ|+ 1)1/2‖h‖Lq′ (Ω)

}
,
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where we have used the estimate,

(|λ|+ 1)1/2‖∇v‖Lq′ (Ω) + (|λ|+ 1)‖v‖Lq′ (Ω) ≤ C
{
‖G‖Lq′ (Ω) + (|λ|+ 1)1/2‖h‖Lq′ (Ω)

}
,

obtained in Step 1 for q′ > 2. By duality this gives

(|λ|+ 1)1/2‖∇u‖Lq(Ω) + (|λ|+ 1)‖u‖Lq(Ω) ≤ C
{
‖F‖Lq(Ω) + (|λ|+ 1)1/2‖f‖Lq(Ω)

}
.

As a result, we have proved the existence and the estimate (5.4) for F ∈ C∞
0 (Ω;Cd) and

f ∈ C∞
0 (Ω;Cd×d). The general case, where F ∈ Lq(Ω;Cd), f ∈ Lq(Ω;Cd×d) and g = 0, for

1 < q < 2, follows readily by a density argument.

Step 3. We establish the uniqueness.
The uniqueness for q > 2 follows from the uniqueness for q = 2. To handle the case

1 < q < 2, let u ∈ W 1,q
0 (Ω;Cd) be a solution of (5.3) in Ω with F = 0, f = 0 and g = 0.

Since u|u|q−2 ∈ Lq
′

(Ω;Cd), by Step 1, there exists (v, φ) ∈ W 1,q′

0 (Ω;Cd)×Lq′0 (Ω;C) such that
{
−∆v +∇φ+ λv = |u|q−2u in Ω,

div(v) = 0 in Ω.

As in the case Ω = Rd, this leads to
´

Ω
|u|q = 0. Hence, u = 0 in Ω.

Step 4. The case g 6= 0.
Let g ∈ Lq0(Ω;C). Since Ω is a bounded Lipschitz domain, there exists w ∈ W 1,q

0 (Ω;Cd)
such that

div(w) = g in Ω and ‖w‖Lq(Ω) + ‖∇w‖Lq(Ω) ≤ C‖g‖Lq(Ω). (5.19)

By considering ũ = u − w, we reduce the problem to the case g = 0. Indeed, let ũ be a
solution of {

−∆ũ+∇p+ λũ = F + div(f +∇w)− λw,

div(ũ) = 0

in Ω. Then u = ũ+ w is a solution of (5.3).

Remark 5.7. Let 1 < q < ∞ and Ω be a bounded C1 domain in Rd. By letting λ ∈ R+

and λ→ 0 in Theorem 5.1, one may show that for any F ∈ Lq(Ω;Cd), f ∈ Lq(Ω;Cd×d) and
g ∈ Lq0(Ω;C), there exists a unique (u, p) ∈ W 1,q

0 (Ω;Cd)× Lq0(Ω;C) such that
{
−∆u+∇p = F + div(f),

div(u) = g
(5.20)

in Ω. Moreover, the solution (u, p) satisfies the estimate

‖∇u‖Lq(Ω) + ‖p‖Lq(Ω) ≤ C
{
‖F‖Lq(Ω) + ‖f‖Lq(Ω) + ‖g‖Lq(Ω)

}
, (5.21)

where C depends on d, q and Ω. The W 1,q estimate (5.21) is known for C1 domains [7]. If Ω
is a bounded Lipschitz domain, the estimate (5.21) holds for (3/2)− ε < q < 3 + ε if d = 3,
and for (4/3) − ε < q < 4 + ε if d = 2, where ε depends on Ω [5]. If d ≥ 4, some partial
results are known [14]. We point out that the results in [5, 7, 14] rely on the estimates
for a non-homogeneous Dirichlet problem, which is solved by using the methods of layer
potentials. The approach used in this paper, which is based on a perturbation argument,
seems to be more accessible. However, it does not work for a general Lipschitz domain.
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We end this section with a localized W 1,q estimate that will be used in the next section.

Theorem 5.8. Let Ω be a bounded C1 domain and 2 < q < ∞. Let B = B(x0, r0), where
x0 ∈ ∂Ω and r0 > 0 is small. Suppose that u ∈ W 1,2(2B ∩ Ω;Cd), p ∈ L2(2B ∩ Ω;C), and





−∆u+∇p = F + div(f) in 2B ∩ Ω,

div(u) = g in 2B ∩ Ω,

u = 0 on 2B ∩ ∂Ω,
(5.22)

where F ∈ Lq(2B ∩ Ω;Cd), f ∈ Lq(2B ∩ Ω;Cd×d) and g ∈ Lq(2B ∩ Ω;C). Then u ∈
W 1,q(B ∩ Ω;Cd), p ∈ Lq(B ∩ Ω;C), and

‖∇u‖Lq(B∩Ω) + ‖p−
 

B∩Ω
p‖Lq(B∩Ω)

≤ C
{
‖F‖Lq(2B∩Ω) + ‖f‖Lq(2B∩Ω) + ‖g‖Lq(2B∩Ω) + ‖u‖L2(2B∩Ω)

}
,

(5.23)

where C depends on d, q, r0 and Ω.

Proof. Theorem 5.8 follows from the estimate (5.21) by a localization argument. However,
some cares are needed to handle the error term p(∇ϕ), introduced by the pressure p, where
ϕ is a cut-off function.

Consider the Stokes equations (5.20) with F = 0 and g = 0; i.e.,

−∆u+∇p = div(f) and div(u) = 0

in Ω. It follows from (5.21) that ‖∇u‖Lq(Ω) ≤ C‖f‖Lq(Ω). By Sobolev imbedding, we obtain

‖u‖Ls(Ω) ≤ C‖f‖Lq(Ω),

where 1
s
= 1

q
− 1

d
and 1 < q < d. By a duality argument, as in Step 2 in the proof of Theorem

5.1, this implies that the solution of

−∆u+∇p = F and div(u) = 0

in Ω satisfies the estimate,

‖∇u‖Lq(Ω) + ‖p‖Lq(Ω) ≤ C‖F‖Ls(Ω),

where 1
s
= 1

q
+ 1

d
and 1 < s < d. This observation allows us to improve the estimate (5.21)

to
‖∇u‖Lq(Ω) + ‖p‖Lq(Ω) ≤ C

{
‖F‖Ls∗ (Ω) + ‖f‖Lq(Ω) + ‖g‖Lq(Ω)

}
, (5.24)

where s∗ = max{2, s} < q and 1
s
= 1

q
+ 1

d
. Using (5.24), a standard localization procedure,

together with a bootstrapping argument, yields (5.23). We omit the details.
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6 An exterior C1 domain and the proof of Theorem 1.2

In this section we consider the case of an exterior C1 domain Ω; i.e., Ω is a connected
open subset of Rd with compact complement and C1 boundary. Let F ∈ L2(Ω;Cd),
f ∈ L2(Ω;Cd×d) and λ ∈ Σθ. By the Lax-Milgram Theorem, there exists a unique u ∈
W 1,2

0 (Ω;Cd) such that {
−∆u+∇p+ λu = F + div(f),

div(u) = 0
(6.1)

holds in Ω for some p ∈ L2
loc(Ω;C) in the sense of distributions. Moreover, the solution

satisfies
|λ|1/2‖∇u‖L2(Ω) + |λ|‖u‖L2(Ω) ≤ C

{
‖F‖L2(Ω) + |λ|1/2‖f‖L2(Ω)

}
, (6.2)

where C depends only on d and θ. We will call u the energy solution of (6.1). Note
that, if F ∈ Lq(Ω;Cd) ∩ L2(Ω;Cd) and f ∈ L2(Ω;Cd×d) ∩ Lq(Ω;Cd×d) for some q > 2, then
(u, p) ∈ W 1,q(Ω∩B;Cd)×Lq(Ω∩B;C) for any ball B in Rd. This follows from the regularity
theory for the Stokes equations (5.20) in bounded C1 domains. See Theorem 5.8.

Let
Σθ,δ = {z ∈ C : |z| > δ and |arg(z)| < π − θ} , (6.3)

where θ ∈ (0, π/2) and δ ∈ (0, 1). The goal of this section is to prove the following.

Theorem 6.1. Let Ω be an exterior C1 domain in Rd, d ≥ 2. Let 1 < q <∞ and λ ∈ Σθ,δ.

For any F ∈ Lq(Ω;Cd) and f ∈ Lq(Ω;Cd×d), there exists a unique u ∈ W 1,q
0 (Ω;Cd) such that

(6.1) holds in Ω for some p ∈ L1
loc(Ω;C). Moreover, the solution satisfies the estimate,

|λ|1/2‖∇u‖Lq(Ω) + |λ|‖u‖Lq(Ω) ≤ C
{
‖F‖Lq(Ω) + |λ|1/2‖f‖Lq(Ω)

}
, (6.4)

where C depends on d, q, θ, δ and Ω.

Fix a large ball B0 = B(0, 2R0) such that Ω \ B(0, R0) = Rd \ B(0, R0) and B0 ∩ Ω is a
bounded C1 domain.

Lemma 6.2. Let 1 < q <∞ and λ ∈ Σθ. Let u ∈ W 1,2
0 (Ω;Cd) be an energy solution of (6.1)

with F ∈ Lq(Ω;Cd) ∩ L2(Ω;Cd) and f ∈ L2(Ω;Cd×d) ∩ Lq(Ω;Cd×d). Then u ∈ W 1,q
0 (Ω;Cd).

Moreover, if |λ| ≥ λ0,

|λ|1/2‖∇u‖Lq(Ω) + |λ|‖u‖Lq(Ω) ≤ C
{
‖F‖Lq(Ω) + |λ|1/2‖f‖Lq(Ω) + |λ|‖u‖W−1,q

0
(Ω∩2B0)

}
, (6.5)

where λ0 > 1 and C depend on d, q, θ and Ω.

Proof. The proof, which uses a localization argument, is similar to that of Lemma 5.5 for
the bounded domain. However, we need to add another case to handle the neighborhood of
∞. Choose ϕ ∈ C∞(Rd;R) such that ϕ = 1 in Rd \ B(0, 2R0) and ϕ = 0 in B(0, R0). Then
the Stokes equations in (5.10) hold in Rd. Since p ∈ Lq(Ω ∩ 2B0), where B0 = B(0, 2R0), it
follows by Theorem 2.1 and Remark 2.4 that uϕ ∈ W 1,q

0 (Rd;Cd) and

|λ|1/2‖∇(uϕ)‖Lq(Rd) + |λ|‖uϕ‖Lq(Rd)
≤ C

{
‖Fϕ‖Lq(Rd) + |λ|1/2‖fϕ‖Lq(Rd) + ‖f∇ϕ‖Lq(Rd) + ‖p∇ϕ‖Lq(Rd)

+ ‖u∆ϕ‖Lq(Rd) + |λ|1/2‖u∇ϕ‖Lq(Rd) + |λ|‖div(uϕ)‖ ◦

W−1,q(Rd)

}
.
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Note that the same argument as in the proof of Lemma 5.2 also yields

‖div(uϕ)‖ ◦

W−1,q(Rd)
≤ C‖u‖W−1,q

0
(Ω∩B0)

.

Hence,
|λ|1/2‖∇u‖Lq(Ω\B0) + |λ|‖u‖Lq(Ω\B0)

≤ C
{
‖F‖Lq(Ω) + |λ|1/2‖f‖Lq(Ω) + ‖f‖Lq(Ω∩B0) + ‖p‖Lq(Ω∩B0)

+ (1 + |λ|1/2)‖u‖Lq(Ω∩B0) + |λ|‖u‖W−1,q
0

(Ω∩B0)

}
.

(6.6)

Since Ω ∩B0 is a bounded C1 domain, it follows from the proof of Lemma 5.5 that

|λ|1/2‖∇u‖Lq(Ω∩B0) + |λ|‖u‖Lq(Ω∩B0)

≤ C
{
‖F‖Lq(Ω) + |λ|1/2‖f‖Lq(Ω) + ‖f‖Lq(Ω∩2B0) + ‖p‖Lq(Ω∩2B0)

+ (1 + |λ|1/2)‖u‖Lq(Ω∩2B0) + |λ|‖u‖W−1,q
0

(Ω∩2B0)

}
.

This, together with (6.6), gives

|λ|1/2‖∇u‖Lq(Ω) + |λ|‖u‖Lq(Ω)

≤ C
{
‖F‖Lq(Ω) + (|λ|1/2 + 1)‖f‖Lq(Ω) + ‖p‖Lq(Ω∩2B0)

+ (|λ|1/2 + 1)‖u‖Lq(Ω∩2B0) + |λ|‖u‖W−1,q
0

(Ω∩2B0)

}

≤ C
{
‖F‖Lq(Ω) + (|λ|1/2 + 1)‖f‖Lq(Ω) + ‖∇u‖Lq(Ω∩2B0)

+ (|λ|1/2 + 1)‖u‖Lq(Ω∩2B0) + |λ|‖u‖W−1,q
0

(Ω∩2B0)

}
,

(6.7)

where we have assumed
´

Ω∩2B0
p = 0 and used Lemma 5.4 for the last inequality. As a result,

we have proved that u ∈ W 1,q
0 (Ω;Cd). Moreover, we obtain (6.5) if |λ| ≥ λ0 and λ0 > 1 is

sufficiently large.

Remark 6.3. Suppose that λ ∈ Σθ and |λ| ≤ λ0. Let 2 < q <∞. It follows from (6.7) and
Theorem 5.8 as well as the interior estimates for the Stokes equations with λ = 0 that

|λ|1/2‖∇u‖Lq(Ω) + |λ|‖u‖Lq(Ω) ≤ C
{
‖F‖Lq(Ω) + ‖f‖Lq(Ω) + ‖u‖Lq(Ω∩3B0)

}
, (6.8)

where C depends on d, q, θ and Ω.

The next lemma gives the uniqueness for q > 2.

Lemma 6.4. Let 2 ≤ q < ∞ and λ ∈ Σθ. Let u ∈ W 1,q
0 (Ω;Cd) be a solution of (6.1) in Ω

with F = 0 and f = 0. Then u = 0 in Ω.

Proof. The case q = 2 is well known. To handle the case q > 2, we choose ϕ ∈ C∞(Rd;R)
such that ϕ = 1 in Ω \B(0, 2R0) and ϕ = 0 in B(0, R0), as in the proof of Lemma 6.2. Then
the Stokes equations in (5.10) hold in Rd with F = 0 and f = 0. Since the right-hand sides
of (5.10) have compact support and thus are in L2(Rd;Cd), it follows from Remark 2.4 that
uϕ ∈ W 1,2(Rd;Cd). As a result, u ∈ W 1,2

0 (Ω;Cd). By the uniqueness for q = 2, we conclude
that u = 0 in Ω.
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Lemma 6.5. Let 2 ≤ q < ∞ and λ ∈ Σθ,δ. Let u ∈ W 1,2
0 (Ω;Cd) be an energy solution of

(6.1) with F ∈ Lq(Ω;Cd) ∩ L2(Ω;Cd) and f ∈ Lq(Ω;Cd×d) ∩ L2(Ω;Cd×d). Then

|λ|1/2‖∇u‖Lq(Ω) + |λ|‖u‖Lq(Ω) ≤ C
{
‖F‖Lq(Ω) + |λ|1/2‖f‖Lq(Ω)

}
, (6.9)

where C depends on d, q, θ, δ and Ω.

Proof. The case q = 2 is the well known energy estimate. To handle the case q > 2, we argue
by contradiction. Note that by Lemma 6.2, u ∈ W 1,q

0 (Ω;Cd). Suppose the estimate (6.9)
is not true. Then there exist sequences {u`} ⊂ W 1,q

0 (Ω;Cd), {F `} ⊂ Lq(Ω;Cd) ∩ L2(Ω;Cd),
{f `} ⊂ Lq(Ω;Cd×d) ∩ L2(Ω;Cd×d) and {λ`} ⊂ Σθ,δ such that

{
−∆u` +∇p` + λ`u` = F ` + div(f `) in Ω,

div(u`) = 0 in Ω,
(6.10)

for some p` ∈ L2
loc(Ω;C),

|λ`|1/2‖∇u`‖Lq(Ω) + |λ`|‖u`‖Lq(Ω) = 1, (6.11)

and
‖F `‖Lq(Ω) + |λ`|1/2‖f `‖Lq(Ω) → 0 as `→ ∞. (6.12)

Since |λ`| ≥ δ, it follows from (6.11) that ‖u`‖W 1,q
0

(Ω) ≤ C. By passing to a subsequence, we

may assume that u` → u weakly in W 1,q
0 (Ω;Cd). We may also assume that either |λ`| → ∞

or λ` → λ ∈ C.
We consider three cases: (1) λ` → λ ∈ C and |λ| > 2λ0, where λ0 > 1 is given by Lemma

6.2; (2) λ` → λ and |λ| ≤ 2λ0; and (3) |λ`| → ∞.
Case (1). Suppose λ` → λ ∈ C and |λ| > 2λ0. It follows that u ∈ W 1,q

0 (Ω;Cd) is a
solution of (6.1) in Ω with F = 0 and f = 0. By Lemma 6.4, we obtain u = 0 in Ω. Thus,
u` → 0 weakly in W 1,q

0 (Ω;Cd). This implies that u` → 0 strongly in W−1,q
0 (Ω ∩ 2B0;C

d).
However, by (6.5) and (6.11)-(6.12), we have

1 =|λ`|1/2‖∇u`‖Lq(Ω) + |λ`|‖u`‖Lq(Ω)

≤ C
{
‖F `‖Lq(Ω) + |λ`|1/2‖f `‖Lq(Ω) + |λ`|‖u`‖W−1,q

0
(Ω∩2B0)

}
→ 0,

(6.13)

which yields a contradiction.
Case (2). Suppose λ` → λ and |λ| ≤ 2λ0. As in case (1), u` → 0 weakly in W 1,q

0 (Ω;Cd).
It follows from (6.8) that

1 = |λ`|1/2‖∇u`‖Lq(Ω) + |λ`|‖u`‖Lq(Ω)

≤ C
{
‖F `‖Lq(Ω) + ‖f `‖Lq(Ω) + ‖u`‖Lq(Ω∩3B0)

}
.

This gives us a contradiction, as u` → 0 strongly in Lq(Ω ∩ 3B0;C
d).

Case (3). Suppose that |λ`| → ∞. In view of (6.11), we have u` → 0 strongly in
Lq(Ω;Cd). By passing to a subsequence, we assume that λ`u` → v weakly in Lq(Ω;Cd).
Note that if w ∈ C∞

0 (Ω;Cd) and div(w) = 0 in Ω, then

−
ˆ

Ω

u` ·∆w +

ˆ

Ω

λ`u` · w =

ˆ

Ω

F ` · w −
ˆ

Ω

f ` · ∇w.
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By letting `→ ∞, we obtain
´

Ω
v ·w = 0. This implies that v = ∇φ for some φ ∈

◦

W 1,q(Ω;C).

Since λ`u` ∈ W 1,q
0 (Ω;Cd) and div(λ`u`) = 0 in Ω, we also have

´

Ω
v · ∇ϕ = 0 for any

ϕ ∈ C∞
0 (Rd;C). It follows that φ ∈

◦

W 1,q(Ω;C) is a solution of the Neumann problem:
∆φ = 0 in Ω and ∂φ

∂n
= 0 on ∂Ω. Since ∇φ ∈ Lq(Ω;Cd), we conclude that v = ∇φ = 0 in

Ω. See Lemma 7.1 in Appendix. Thus, λ`u` → 0 weakly in Lq(Ω;Cd) and thus strongly in
W−1,q(Ω∩2B0;C

d). Consequently, (6.13) holds and gives us a contradiction. This completes
the proof.

Proof of Theorem 6.1. Step 1. Assume 2 ≤ q < ∞. The uniqueness is given by Lemma
6.4. Since L2(Ω;Cd) ∩ Lq(Ω;Cd) is dense in Lq(Ω;Cd), the existence as well as the estimate
(6.4) follows from Lemma 6.5 by a standard density argument.

Step 2. Assume 1 < q < 2. As in the cases of Rd and Rd
+, the uniqueness follows from the

existence for q′ > 2, proved in Step 1. By a duality argument, similar to that in the proof
of Theorem 5.1, one may show that if F ∈ C∞

0 (Ω;Cd) and f ∈ C∞
0 (Ω;Cd×d), the energy

solutions of (6.1) satisfy the estimate (6.4). As before, the existence and the estimate (6.4)
for F ∈ Lq(Ω;Cd) and f ∈ Lq(Ω;Cd×d) follow by a density argument.

Proof of Theorem 1.2. The estimate (1.4) with C depending on δ is contained in Theorem
6.1. To establish the estimate (1.5) with C independent of δ for d ≥ 3, we first consider
the case q < (d/2) and argue by contradiction. Suppose (1.5) is not true. Then there exist
sequences {F `} ⊂ Lq(Ω;Cd), {u`} ⊂ W 1,q

0 (Ω;Cd), {λ`} ⊂ Σθ such that λ` → 0,

{
−∆u` +∇p` + λ`u` = F `,

div(u`) = 0,
(6.14)

in Ω,
|λ`|‖u`‖Lq(Ω) = 1, (6.15)

and ‖F `‖Lq(Ω) → 0 as `→ ∞. By Theorem 7.3 in the Appendix,

‖∇u`‖Ls(Ω) ≤ C
{
‖F `‖Lq(Ω) + ‖λ`u`‖Lq(Ω)

}
,

where 1
s
= 1

q
− 1

d
. As a result, {∇u`} is bounded in Ls(Ω;Cd×d) and by Sobolev imbedding,

{u`} is bounded in Ls∗(Ω;Cd), where 1
s∗

= 1
s
− 1

d
= 1

q
− 2

d
and we have used the fact

u` ∈ Lq(Ω;Cd). By passing to a subsequence, we may assume that λ`u` → v weakly in
Lq(Ω;Cd), u` → u weakly in Ls∗(Ω;Cd), and ∇u` → ∇u weakly in Ls(Ω;Cd×d). Since
λ` → 0, we obtain v = 0. It then follows from (6.14) that −∆u + ∇p = 0, div(u) = 0 in
Ω and u = 0 on ∂Ω. Since u ∈ Ls∗(Ω;Cd), ∇u ∈ Ls(Ω;Cd×d) and s < d, we deduce from
Lemma 7.2 that u = 0 in Ω. This implies that u` → 0 strongly in Lq(Ω∩B;Cd) for any ball
B. However, by (6.8) and (6.15), we have

1 = |λ`|‖u`‖Lq(Ω) ≤ C
{
‖F `‖Lq(Ω) + ‖u`‖Lq(Ω∩3B0)

}
,

which yields a contradiction.
Finally, we note that by duality, the estimate (1.5) holds for d

d−2
< q < ∞. This gives

the estimate for 1 < q < ∞ in the case d ≥ 4. If d = 3, the range (3/2) ≤ q ≤ 3 follows by
using the Riesz-Thorin Interpolation Theorem.
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7 Appendix

In this Appendix we prove several uniqueness and regularity results in exterior C1 domains,
which are used in the previous sections. In the case of exterior domains with C2 boundaries,
the proofs may be found in [13].

Lemma 7.1. Let Ω be an exterior C1 domain in Rd, d ≥ 2 and 1 < q < ∞. Suppose that

φ ∈
◦

W 1,q(Ω;C), ∆φ = 0 in Ω and n · ∇φ = 0 on ∂Ω. Then φ is constant in Ω.

Proof. By using the mean value property for harmonic functions and |∇φ| ∈ Lq(Ω), we obtain
∇φ(x) = o(1) as |x| → ∞. By the expansion theorem at ∞ for harmonic functions [1], we
deduce that ∇φ(x) = O(|x|−1) for d = 2. In the case d ≥ 3, we obtain ∇φ(x) = O(|x|2−d).
It follows that φ(x) = O(log |x|) for d = 3 and φ(x) = O(1) for d ≥ 4. Since φ is harmonic,
by the expansion theorem, this implies that φ(x) = L+ O(|x|2−d) for some L ∈ C and that
∇φ(x) = O(|x|1−d) as |x| → ∞ for d ≥ 3. As a result, we have proved that∇φ(x) = O(|x|1−d)
as |x| → ∞ for d ≥ 2.

Next, note that since ∂Ω is C1 and n · ∇φ = 0 on ∂Ω, we have ∇φ ∈ L2(Ω∩B(0, R);Cd)
for any R > 1. Moreover, for R sufficiently large,

ˆ

Ω∩B(0,R)

|∇φ|2 =
ˆ

∂B(0,R)

∂φ

∂n
(φ− β)

≤ ‖∇φ‖L2(∂B(0,R))‖φ− β‖L2(∂B(0,R)) ≤ CR‖∇φ‖2L2(∂B(0,R)),

where β =
ffl

∂B(0,R)
φ and we have used a Poincaré inequality on ∂B(0, R). By letting R → ∞

and using ∇φ(x) = O(|x|1−d) as |x| → ∞ for d ≥ 2, we see that ‖∇φ‖L2(Ω) = 0 if d ≥ 3 and
‖∇φ‖L2(Ω) < ∞ if d = 2. As a result, ∇φ = 0 and φ is constant in Ω for d ≥ 3. Finally, to
handle the case d = 2, we use the Caccioppoli inequality,

ˆ

Ω∩B(0,R)

|∇φ|2 ≤ C

R2

ˆ

B(0,2R)\B(0,R)

|φ− α|2

≤ C0

ˆ

B(0,2R)\B(0,R)

|∇φ|2,
(7.1)

for R large, where α =
ffl

B(0,2R)\B(0,R)
φ and we have used a Poincaré inequality. It follows

that
ˆ

Ω∩B(0,R)

|∇φ|2 ≤ C0

C0 + 1

ˆ

Ω∩B(0,2R)

|∇φ|2.

By letting R → ∞, we obtain ‖∇φ‖L2(Ω) ≤ c0‖∇φ‖L2(Ω) for some c0 < 1. This implies that
‖∇φ‖L2(Ω) = 0 if ‖∇φ‖L2(Ω) <∞. Consequently, we conclude that ∇φ = 0 and φ is constant
in Ω for d ≥ 2.

Lemma 7.2. Let Ω be an exterior C1 domain in Rd, d ≥ 2. Let 1 < q < d and 1
q∗

= 1
q
− 1

d
.

Suppose that u ∈ Lq∗(Ω;Cd), ∇u ∈ Lq(Ω;Cd×d), u = 0 on ∂Ω, and

−∆u+∇p = 0 and div(u) = 0 (7.2)

hold in Ω in the sense of distributions. Then u = 0 in Ω.
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Proof. The proof is similar to that of Lemma 7.1 for the case d ≥ 3. By the interior estimates
for the Stokes equations,

|x||∇2u(x)|+ |∇u(x)| ≤ C

(
 

B(x,R/4)

|∇u|q
)1/q

, (7.3)

where R = |x| is sufficiently large. It follows from |∇u| ∈ Lq(Ω) that ∇u(x) = o(|x|−γ)
as |x| → ∞, where γ = (d/q). Since γ > 1, this implies that lim|x|→∞ u(x) exists. Using
u ∈ Lq∗(Ω;Cd), we deduce that u(x) = o(1) as |x| → ∞. Also note that by the interior
estimates, ∇2u(x) = o(|x|−γ−1) as |x| → ∞. Thus, ∇p(x) = o(|x|−γ−1). It follows that
lim|x|→∞ p(x) exists. By subtracting a constant, we may assume that lim|x|→∞ p(x) = 0. As
a result, we obtain p(x) = o(|x|−γ) as |x| → ∞.

Next, assume d ≥ 3. We use the Green representation formula for the Stokes equations
in the domain DR = {x : R0 < |x| < R} to write (u(x), p(x)) as a sum of layer potentials
on ∂DR = ∂B(0, R) ∪ ∂B(0, R0). Since |∇u(x)| + |p(x)| = o(|x|−γ), where γ > 1, and
|u(x)| = o(1) as |x| → ∞, it is not hard to see that the layer potentials on ∂B(0, R) converge
to 0 as R → ∞. This allows to upgrade the decay of (u, p) at ∞ to

|x|−1|u(x)|+ |∇u(x)|+ |p(x)| = O(|x|1−d) as |x| → ∞ (7.4)

for d ≥ 3.
Finally, we note that since ∂Ω is C1 and u = 0 on ∂Ω, we have u ∈ W 1,2(Ω∩B(0, R);Cd)

for any R > 1. Moreover, for R > 1 large,
ˆ

Ω∩B(0,R)

|∇u|2 =
ˆ

∂B(0,R)

(
∂u

∂n
− np

)
· u.

In view of (7.4) for d ≥ 3 as well as the decay estimates, u(x) = o(1) and |∇u(x)|+ |p(x)| =
o(|x|−γ) for d = 2, by letting R → ∞, we obtain ‖∇u‖L2(Ω) = 0. Since u = 0 on ∂Ω, it
follows that u = 0 in Ω.

The following theorem is used in the proof of the estimate (1.7) for small |λ|.

Theorem 7.3. Let Ω be an exterior C1 domain in Rd, d ≥ 3 and 1 < q < (d/2). Let

u ∈ W 1,q
0 (Ω;Cd) be a solution of

−∆u+∇p = F and div(u) = 0 (7.5)

in Ω, where F ∈ Lq(Ω;Cd). Then u ∈ W 1,s
0 (Ω;Cd) and

‖∇u‖Ls(Ω) ≤ C‖F‖Lq(Ω), (7.6)

where 1
s
= 1

q
− 1

d
and C depends on d, q and Ω.

Proof. Since W 1,q
0 (Ω;Cd) ⊂ Ls(Ω;Cd). It suffices to prove (7.6). We divide the proof into

two steps.
Step 1. We show that the solution u satisfies the estimate,

‖∇u‖Ls(Ω) ≤ C
{
‖F‖Lq(Ω) + ‖u‖Lq(Ω∩B0)

}
, (7.7)
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where B0 = B(0, 2R0) and R0 > 1 is sufficiently large. To this end, we choose R0 > 1
such that Ω \B(0, R0) = Rd \B(0, R0) and Ω ∩B(0, 2R0) is a bounded C1 domain. Choose
ϕ1 ∈ C∞

0 (Rd;R) such that ϕ1 = 1 in Ω \ B(0, (3/2)R0) and ϕ1 = 0 in B(0, (5/4)R0). Let
ϕ2 = 1− ϕ1. Then

{
−∆(uϕ1) +∇(pϕ1) = Fϕ1 − 2(∇u)(∇ϕ1)− u∆ϕ1 + p∇ϕ1,

div(uϕ1) = u · ∇ϕ1

in Rd. It follows from the W 2,q estimates [13] for the Stokes equations (with λ = 0) in Rd

that

‖∇(uϕ1)‖Ls(Rd) ≤ C
{
‖Fϕ1‖Lq(Rd) + ‖(∇u)(∇ϕ1)‖Lq(Rd)

+ ‖u∆ϕ1‖Lq(Rd) + ‖p∇ϕ1‖Lq(Rd) + ‖∇(u∇ϕ1)‖Lq(Rd)
}
.

(7.8)

Let Ω0 = Ω ∩ B(0, 2R0). Note that uϕ2 = 0 on ∂Ω0 = ∂Ω ∪ ∂B(0, 2R0) and
{
−∆(uϕ2) +∇(pϕ2) = Fϕ2 − 2(∇u)(∇ϕ2)− u∆ϕ2 + p∇ϕ2,

div(uϕ2) = u · ∇ϕ2

in Ω0. It follows from the W 1,q estimates for the Stokes equations (with λ = 0) in the C1

domain Ω0 that

‖∇(uϕ2)‖Ls(Ω0) ≤ C
{
‖Fϕ2‖Lq(Ω0) + ‖(∇u)(∇ϕ2)‖Lq(Ω0) + ‖u∆ϕ2‖Lq(Ω0)

+ ‖p∇ϕ2‖Lq(Ω0) + ‖u∇ϕ2‖Lq(Ω0)

}
.

(7.9)

See Remark 5.7. The estimate (7.7) follows from (7.8) and (7.9) as well as the interior
estimates for the Stokes equations.

Step 2. We establish the estimate (7.6) by a compactness argument.
Suppose (7.6) is not true. Then there exist sequences {F `} ⊂ Lq(Ω;Cd), {u`} ⊂

W 1,q
0 (Ω;Cd) ∩W 1,s

0 (Ω;Cd), such that
{
−∆u` +∇p` = F `,

div(u`) = 0
(7.10)

hold in Ω for some p` ∈ L1
loc(Ω;C),

‖∇u`‖Ls(Ω) = 1, (7.11)

and ‖F `‖Lq(Ω) → 0, as ` → ∞. Since ‖u`‖Ls∗ (Ω) ≤ C‖∇u`‖Ls(Ω) = C, where 1
s∗

= 1
s
− 1

d
,

by passing to a subsequence, we may assume u` → u weakly in Ls∗(Ω;Cd) and ∇u` → ∇u
weakly in Ls(Ω;Cd×d). It follows that u is a solution of (7.5) with F = 0. Note that q < (d/2)
implies s = q∗ < d. Thus, by Lemma 7.2, u = 0 in Ω. This implies that u` → 0 strongly in
Lq(Ω ∩B0;C

d). However, by (7.7),

‖∇u`‖Ls(Ω) ≤ C
{
‖F `‖Lq(Ω) + ‖u`‖Lq(Ω∩B0)

}
,

which leads to a contradiction with (7.11) if we let `→ ∞.
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Recall that C∞
0,σ(Ω) =

{
u ∈ C∞

0 (Ω;Cd) : div(u) = 0 in Ω
}
. Let Lqσ(Ω) denote the closure

of C∞
0,σ(Ω) in L

q(Ω;Cd) and

Gq(Ω) =
{
u : u = ∇p for some p ∈

◦

W 1,q(Ω;C)
}
.

Theorem 7.4. Let Ω be a bounded or exterior domain with C1 boundary in Rd, d ≥ 2. Then

Lq(Ω;Cd) = Lqσ(Ω)⊕Gq(Ω) (7.12)

for 1 < q <∞. That is, for any u ∈ Lq(Ω;Cd), there exists a unique (v, w) ∈ Lqσ(Ω)×Gq(Ω)
such that u = v + w in Ω and

‖v‖Lq(Ω) + ‖w‖Lq(Ω) ≤ C‖u‖Lq(Ω), (7.13)

where C depends on d, q and Ω.

The formula (7.12) is referred to as the Helmholtz decomposition, which is well known
in the case of bounded or exterior domains with smooth boundaries (see [10] for references).
In the case of bounded or exterior domains with C1 boundaries, a sketch of the proof for
(7.12) may be found in [10]. Also see [9]. The decomposition also holds for 1 < q < ∞ if
Ω is a bounded convex domain [15]. If Ω is a bounded or exterior domain with Lipschitz
boundaries, the Helmholtz decomposition (7.12) holds if

{
(3/2)− ε <q < 3 + ε for d ≥ 3,

(4/3)− ε <q < 4 + ε for d = 2,
(7.14)

where ε > 0 depends on Ω. The ranges in (7.14) are known to be sharp. See [9]. We remark
that Theorem 7.4 is not used in this paper.
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