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Abstract

We establish resolvent estimates in L? spaces for the Stokes operator in a bounded
C' domain Q in R% As a corollary, it follows that the Stokes operator generates a
bounded analytic semigroup in L4(£2; C?) for any 1 < ¢ < oo and d > 2. The case of
an exterior C' domain is also studied.
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1 Introduction

In this paper we study the resolvent problem for the Stokes operator with the Dirichlet

condition,
—Au+Vp+Iu=F in €,

div(u) =0 in €, (1.1)
u=20 on 0f),

where A\ € Yy is a parameter and
Yg={2€C\{0}: |arg(z)| < m— 6} (1.2)

for 6 € (0,7/2). The following two theorems are the main results of the paper. The first one
covers the case of bounded domains with C' boundaries, while the second treats the case of
exterior C'!' domains.

Theorem 1.1. Let Q be a bounded C* domain in R%, d > 2. Let 1 < ¢ < oo and A € Xy.
Then for any F € L(Q;CY), the Dirichlet problem (1.1) has a unique solution (u,p) in
Wy (€ C4) x LU C) with Jop = 0. Moreover, the solution satisfies the estimate,

(1Al + 1)Vl ooy + (AL + Dlull oy < CIF |z, (1.3)

where C' depends only on d, q, 0 and §2.
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Theorem 1.2. Let Q be an exterior domain with C* boundary in R, d > 2. Let1 < g < oo
and \ € Xy with |\ > 6 > 0. Then for any F € L4(Q;C?), the Dirichlet problem (1.1)
has a unique solution (u,p) in Wol’q(Q; C%) x L (;C). Moreover, the solution satisfies the
estimate,

A2Vl gy + A [ulz) < CUP e, (14)

where C' depends only on d, q, 0, 0 and 2. Furthermore, if d > 3, the estimate,
(Ml o) < ClIF Lo, (1.5)
holds with C' independent of §.

Resolvent estimates for the Stokes operator play an essential role in the functional analytic
approach of Fujita and Kato [11] to the nonlinear Navier-Stokes equations. The resolvent
estimate (1.5) in domains with smooth boundaries has been studied extensively since 1980’s.
Under the assumption that 2 is a bounded or exterior domain with C*! boundary, the
estimate (1.5) holds for any 1 < ¢ < oo [21, 16, 2, 10]. We refer the reader to [10] for a
review as well as a comprehensive list of references in the case of smooth domains. The
recent work in this area focuses on domains with nonsmooth boundaries. If €2 is merely a
bounded Lipschitz domain, it was proved by one of the present authors [20] that the resolvent
estimate (1.5) holds if d > 3 and

< —+e¢, (1.6)

where € > 0 depends on 2. In particular, in the case d = 3, this shows that the estimate (1.5)
holds for (3/2) — e < ¢ < 3+ ¢ and gives an affirmative answer to a conjecture of M. Taylor
[23]. For a two-dimensional bounded Lipschitz domain, F. Gabel and P. Tolksdorf [12] were
able to establish the resolvent estimate (1.5) for (4/3) — ¢ < ¢ < 4 + <. It is not known
whether the range in (1.6) is sharp for Lipschitz domains. In [6] P. Deuring constructed an
interesting example of an unbounded Lipschitz domain for which the resolvent estimate fails
for large ¢. For related work on the Stokes and Navier-Stokes equations in Lipschitz or C!
domains, we refer to the reader to [8, 5, 7, 17, 18, 19, 14, 24, 25]
The main contribution of this paper lies in the smoothness assumption for the domain
Q). We are able to establish the resolvent estimates for the full range 1 < ¢ < oo under the
assumption that 92 is C'. In view of the example by P. Deuring [6], this assumption is more
or less optimal. As we mentioned earlier, the full range is known previously for C''* domains
[10]. A recent result of D. Breit [4] implies the resolvent estimates for a three-dimensional
Lipschitz domain satisfying certain Besov-type conditions, which are weaker than C'! and
somewhat close to C1® for certain o > 0. Note that in the case of smooth domains, in
addition to the L9 estimates for v and Vu in (1.3) and (1.4), one also obtains an estimate
for V2u,
IV*ull o) < ClIF Lo, (1.7)

for 1 < g < oo, if Q is bounded (some restrictions on ¢ are needed if €2 is an exterior domain;
see [10]). However, such W24 estimates fail in C'! domains, even for the Laplace operator.
Let C§2.(Q2) = {u € C5°(Q; C%) : div(u) = 0} and

L2(2) = the closure of Cg2 () in LI(Q; CY). (1.8)
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For 1 < ¢ < oo, we define the Stokes operator A, in LZ(Q2) by
A,(u) = —Au+ Vp, (1.9)
with the domain

D(A,) = {u € WH(Q;CY) : div(u) = 0 in Q and

B (1.10)

— Au+ Vp € LL(Q) for some p € L (£ (C)}

It follows from Theorems 1.1 and 1.2 that for A € ¥y and 1 < ¢ < oo, the inverse operator
(A+ A,)! exists as a bounded operator on LZ(€2). Moreover, the estimate,

[+ A) ™ Fllaey < CIATIF rco, (1.11)

holds, where C' depends only on d, ¢, # and €, if 2 is a bounded C' domain in R%, d > 2 or
an exterior C' domain in R%, d > 3. As a corollary, we obtain the following.

Corollary 1.3. Let Q be a bounded C' domain in R, d > 2 or an esterior C' domain in
RY, d > 3. Then the Stokes operator —A, generates a uniformly bounded analytic semigroup
{e7ta},50 in LL(Q) for 1 < q < .

The uniform boundedness of the semigroup in the case of two-dimensional exterior C*
domains is left open by Corollary 1.3. We note that the uniform boundedness for the two-
dimensional exterior C? domains was established in [3] by using the method of layer potentials
for \ near 0.

We now describe our approach to Theorems 1.1 and 1.2, which is based on a perturbation
argument of R. Farwig and H. Sohr [10]. The basic idea is to work out first the cases of the
whole space R? and the half-space Ri. One then uses a perturbation argument to treat the
case of a region above a graph,

Hy = {(2/,z4) €R?: 2’ € R " and 24 > ¢(2')},

where 7 : R~ — R. Finally, a localization procedure, together with some compactness
argument, is performed to handle the cases of bounded or exterior domains. To establish the
resolvent estimates for C'!' domains, the key step is to carry out the perturbation argument
under the assumption that ¢ : R — R is Lipschitz continuous and to show that the
error terms are bounded by the Lipschitz norm ||V'1||«, where V' denotes the gradient with
respect to ' = (x1,...,T4_1).

To this end, we consider a more general Stokes resolvent problem,

{_Au+Vp+)\u:F+diV(f)a (1.12)

div(u) = g,

in H, with the boundary condition u = 0 on OHy, where F € LI(H,;C?% and f €
L9(H,; C¥*4). We introduce two Banach spaces,

X$=Wyi(Hy; CY) x AL and Y] = W (Hy; CY) x B, (1.13)
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where A? and ng are two spaces defined by (4.2). In comparison with the spaces used in
[10] for C*! domains, we point out that since we work with C' domains, no W% spaces can
be used. Note that the scaling-invariant property of the Lipschitz norm ||V'4||« allows us
to fix A € 3y with |A| = 1. Consider the linear operator

Sp(u,p) = (—Au + Vp + Au, div(u)). (1.14)
We are able to show that S$ 1 X}, — Y] is a bijection and that
1)) yaaxs < Cldsa,6) (1.15)

for 1 < ¢ < oo, provided that [|[V'1)]|s < ¢o and ¢y = ¢o(d, ¢,0) > 0 is sufficiently small. See
Theorem 4.3. To prove (1.15), one first considers the special case ¢ = 0; i.e., Hy = Ri. The
general case follows from the facts that

S(u.p) = S2(@. ) 0 ¥+ R(ii,p) o T, (1.16)

and that the operator norm of the second term in the right-hand side of (1.16) is bounded
by Cl|V'9]| if [|[V'?¥]l < 1. As a by-product, we also obtain the resolvent estimate (1.4)
in the case Q = H,, if || V']l < co(d, g, 0). See Theorem 4.1.

The paper is organized as follows. We start with the case of the whole space R? in Section
2. The case Q2 = ]Ri is studied in Section 3. In Section 4 we carry out the perturbation
argument described above for the region above a Lipschitz graph. In Section 5 we consider
the case of bounded C'! domains and give the proof of Theorem 1.1. The case of exterior C'!
domains is studied in Section 6, where Theorem 1.2 is proved. Finally, we prove some useful
uniqueness and regularity results for exterior C* domains in the Appendix.

We end this section with a few notations that will be used throughout the paper. Let €2
be a (bounded or unbounded) domain in R%. By u € L{ (€; C™) we mean u € LI(BNQ;C™)
for any ball B in R?. For 1 < ¢ < oo, let

Wh(Q;C™) = {u € LI(QC™) : Vu € LY(Q;C™™)} (1.17)

be the usual Sobolev space in 2 for functions with values in C™. By W,?(Q; C™) we denote
the closure of C5°(2;C™) in W4(Q;C™). We use W~14(Q;C™) to denote the dual of
W (Q: C™) and W, 9(Q; C™) the dual of W' (€; C™), where ¢ = 5. For 1 < ¢ < oo,
we let

Wh(Q;C™) = {u e LL (O;C™) : Vu e LU(Q;C>™)} (1.18)
denote the homogeneous W' space with the norm ||[Vul|[faq). As usual, we identify two
functions in Vi/l’q(Q; C™) if they differ by a constant. Let ﬁ/*l’q(Q;Cm) be the dual of
V?/l’q/(Q; C™). Elements A in Vi/_lvq(Q; C™) may be represented by div(f), where f = (fjx) €
L9(Q; C™)_in the sense that

Au) = _/Qajuk - fin

for any u = (uy,...,uy) € ﬁ/l’q/(Q;Cm), where 0; = 0/0z;, the index j is summed from 1
to d and k from 1 to m.
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that improved the quality of the manuscript.



2 The whole space

In this section we study the resolvent problem for the Stokes equations in R?, d > 2. The
results in Theorem 2.1 are more or less standard. Since the Stokes equations are considered
with a more general data set, we provide a proof for the reader’s convenience.

Theorem 2.1. Let 1 < ¢ < oo and A € ¥y. For any F € LY(R%;CY), f € LY(RY;C9), and
g € LY(R% C) N W—14(R%, C), there exists a unique u € WH4(R% C?) such that

{_Au+vp+)\u:F—|—diV(f>a (2.1)

div(u) =g

hold in R® for some p € L (R% C) in the sense of distributions. Moreover, the solution
satisfies the estimate,

A2Vl oty < C {IF Nzasy + M2 Fllzaa + 2Nl agee }

(2.2)
(Al Loqray < C {IIFHLq(Rd) + 21 f Il ey + Mg

v°vfl’q<Rd>} ’
and p € LY(R%; C) + ﬁ/l’q(Rd; C), where C' depends on d, q and 6.

Proof. Step 1. We establish the existence of the solution and the estimates in (2.2).

By rescaling we may assume |A| = 1. By linearity, it suffices to consider two cases: (I)
g=20;(Il) f=0and F =0.

Case 1. Assume g = 0. Let F denote the Fourier transform defined by

F©) = [ e hla) do.

where i = /=1 and £ € R% Let u = (ug,ug,...,uq), F = (F,Fy,...,F;) and f = (fix).
By applying F to (2.1) with g = 0, we obtain

(1€]° + NF(uy) + & F (p) = F(F)) +i&F(fr;)  inR% 2.3)
&F(ug) =0 in RY, '
where the repeated index ¢ is summed from 1 to d. A solution of (2.3) is given by
Flu) = o+ 67 (65— 5) (F(R) +i6F ),
g 0

_-ig,
€2

where the repeated indices k, ¢ are summed from 1 to d. Since A € ¥y and |A| = 1, we have
A+ 1€ ~ 1+ |¢>. Thus, by the Mikhlin multiplier theorem, there exist u € W14(R¢; C?)

and p € LI(R% C) + WLe(R% C), satistying (2.1) and

F(p) (F(Fr) +1i&F (for))

IVl paay + [lull oy < C {1l paay + [1F | aeay } (2.5)
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for 1 < ¢ < oo, where C' depends on d, ¢ and 6.
Case II. Assume that F' =0 and f = 0. Since g € LY(R%; C) N W ~14(R<; C), there exists
G € WH(R%; C) such that VG € WH(R4; CY), AG = g in RY,

I9GHlzawey < Cllgllgrogey 204 [V°Gllzages) < Cllgllzaces

Let u = VG and p = g — AG. Then u € WH(R%,C?), p € LI(R% C) + ﬁ/l’q(Rd;C), and
(u,p) satisfies (2.1) with =0 and f = 0. Moreover,

IVullpaway < Cligllpawsy  and  lul| porey < CHgHIX/—l,q(Rd)'

Step 2. We establish the uniqueness of the solution.
Let u € WH(R?; C?) be a solution of (2.1) in R? with F'= 0, f =0 and g = 0. It follows
that for any w € Cg%,(RY),

Vu~Vw+)\/ u-w =0, (2.6)
Rd R4

where C5%,(R?) = {w € C°(R%CY) : div(w) = 0in R}, Since u € WH(R% C?), by a
density argument, we deduce that (2.6) holds for any w € W' (R?% C%) with div(w) = 0 in
R?. Let w be a solution in W4 (R4 C?) of the Stokes equations,

{—Aw + Vo + I = |ul? 7,

div(w) =0 (2.7)

in R?, where 7 denotes the complex conjugate of u. Since |u|?~2% € L7 (R?; C?), such solution
exists in W' (R% C%) by Step 1. Again by a density argument, we may deduce from (2.7)

that
/Vw-Vu+)\/w-u:/ |ul?. (2.8)
Rd R R

In view of (2.6) and (2.8), we obtain [g, [u|? =0 and thus v = 0 in R%. O
Remark 2.2. Let F, f, g, (u,p) be the same as in Theorem 2.1. Let F' = (Fy, Fy, ..., Fy)
and f = (fjx). The k component of div(f) is given by Zj 0; fjk, where 0; denotes 0/0z;.
Let x = (2/,24), where 2’ € R4"1. Suppose that

( Fjis even in zq for 1 < j <d—1 and Fy is odd,

g is even in x4,

fik is even in x4 for 1 < j, k <d —1, (2.9)
faq 1s even in xg4,

fja and fg; are odd in z4 for 1 < j <d—1.

\
Define
v(@, x4) = (wi (2, —2a), . . ug 1 (2, —24), —ug(2, —24)),
¢($/7 Zl’fd) = p(a’:la —l'd).
Then (v, @) is a solution of (2.1) with the same data F,f and g. By the uniqueness in

Theorem 2.1, it follows that u = v in R%. In particular, this implies that uy(z’,0) = 0 for
€ Ri-1L,



Remark 2.3. Assume A € ¥y and |A\| = 1. Let (u,p) be the solution of (2.1), given by
Theorem 2.1. An inspection of the proof of Theorem 2.1 shows that p = p; + po, where

p1 € LI(R? C), py € WH(R% C), and

Ipulloce + 192l < © {IP lonqasy + 1 lencasy + Nollasy + s -
The constant C' depends only on d, ¢ and 6.

Remark 2.4. Let 1 < ¢; < ¢ < oo and A € ¥y. Suppose that F' € L% (R% CY), f €
L% (R C%*4) and g € L% (R%C) N W14 (R%C) for j = 1,2, Let (u/,p?) be the unique
solution of (2.1) in W14 (R4; C9) x (L% (RY; C) F Wt (R¢; C)), given by Theorem 2.1. Then
(u',p') = (u?,p?). This follows from the observation that the solutions constructed in the
proof do not depend on gq.

3 A half-space

In this section we consider the resolvent problem for the Stokes equations in the half-space
R?%. Recall that W4(R%; C) is the homogeneous W7 space in R? defined by (1.18), and

ﬁ/*lvq(Ri; C) denotes the dual of e (Ri§ C).

Theorem 3.1. Let 1 < ¢ < 00 and X € %y. Let F € LY(RL;CY), f € LYRL;C™9), and
g€ LYRL;C)N VT/*L‘](Ri; C). Then there exists a unique u € Wy '(R%; C?) such that

(3.1)

—Au+ Vp+ I = F+div(f),
div(u) =g

hold in RL for some p € L} (R%;C) in the sense of distributions. Moreover, the solution u
satisfies the estimate,

AVl aguaty + Al e

(3.2)
< C{1F oty + N2 sacesy + N2 lglgey + M1l g}
and p € LY(R%;C) + W17q(Ri; C), where C depends on d, q and 6.
Our proof of Theorem 3.1 follows closely a line of argument in [10].
For a function h in R4!, we use h to denote the Fourier transform of h,
h(€) :/ e~ h(a!) da, (3.3)
Rd-1

for ¢ € R4-1L,

Lemma 3.2. Let T be a bounded linear operator on L*(R?~1;C™). Suppose that ﬂ({’) =
m(&) f(&) and that the multiplier m(&') satisfies the estimate,

€' Dm(&)] < M, (3.4)
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for|a| < [%] + 1, where a = (o, ..., aq-1) and D* = 07" ---93°1*. Then
1T f|l pagra-1y) < CM||fl| pagra-1)
for 1 < q < oo, where C' depends on d and q.
Proof. This is the well known Mikhlin multiplier theorem in R, O
We use W'~ a9(R4-1;C™) to denote the trace space of Whe(RL; C™) on R

Lemma 3.3. Let T be a bounded linear operator from L*(R%™') to L*(R%). Suppose that

~

TF(E 2q) =m(&,2a)J(€)

and that m(&', x4) satisfies the condition

I|lel| pe / Nlal—1| o / Moe—5|§'|$d
[ DY m(E za)| + €N DDgm (€', za)| < B P (3.5)
forzg >0, & € R and |o] < [52] + 1, where § > 0. Then
||Tf||Lq(Rd < C(||f||Lq Rd-1), (3 6)
IVT () zae)y < ClUl -t 0oy '

for 1 < q < oo, where C' depends on d, q, 6 and M.

Proof. Note that for each x4 > 0, m(&’, z4) satisfies (3.4) with M = My(1+z4)~*. Tt follows
from Lemma 3.2 that

q < q /
/ T f(2',24)|7 da’dxg < C Mg / /Rd 1 1+fEd) dx'dzy
§CM6’/ |f]9 da’.

To prove the second inequality in (3.6), we write

—

OTF(E wa) = € lm(€ zq) - ige ¥ ()
for 1 <j<d-1, and
OuTF (€ ) = €7 10,m (€ 2q) - €'l ™1 F(E),
where dg = /2. Using (3.5), it is not hard to show that for each x4 > 0, both
e0md (¢ zg)  and €| 19m (¢ z4)

satisfy the condition (3.4) with M independent of x4. This implies that

/ VT f(x', 24)|? dx < C’/ |Vou(x', x4)|? dx,
RY

d
R+
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where v is defined by R
O(E wq) = e ().

Finally, we note that if 6o = 1, v is a solution of the Dirichlet problem,

{(8$+---+8§_1+a§)v:0 in RY, 57)

v=f on R x {0},
given by the Poisson integral of f. It is well known that v satisfies the estimate,

IVl Loy < CISIL,

1= §9(Rd-1)’

where C' depends on d and ¢ [22, Chapter V]. The general case follows from the case 6y = 1
by a rescaling in x4. As a result, we obtain the second inequality in (3.6). O]

Proof of Theorem 3.1. By rescaling we may assume |[\| = 1.

Step 1. We establish the existence and the estimate (3.2).

Let F € LY(R%;CY), f e LYRE; C™?) and g € LYR%; C) N W4(R?; C). We extend
F, f, g to R? by either the even or odd reflection in such a way that the extensions satisfy
the condition (2.9). Let F f g denote the extensions of F, f, g, respectively. Note that

G € WL(R?) and
Hﬁguvcf/fl,q(Rd) S 2”9”1}/71@(1@1)'
Let (@,p) denote the solution of (2.1) in RY, given by Theorem 2.1, with data F, f,§. By

Remark 2.2, we have u4(z’,0) = 0 for any 2’ € R¢"L. By subtracting (u, p) from solutions of
(3.1), we reduce the problem to the Dirichlet problem,

—Au+Vp+Aiu=0 inR‘i,
div(u) =0 in RY,
uj = h; on R™ x {0} for 1 <j<d—1,
ug =0 on R x {0},

(3.8)

where h; = —u; for 1 < j < d—1. We will show that there exist u € Wl’q(R‘i;Cd) and
p € LY(R%; C) such that (u,p) satisfies (3.8) and the estimate,

||VU||Lq(Rd+) + lull po(ra ay+ 1P1] £a¢ RY) < CHhH (3.9)

@ (RI1)
Since h; = —u; on R¥! x {0} and

(]|

9(Rd-1) <C {Hva“Lq(Rd) + ”aHLq(Rd)}
<C {||F||Lq<Rd) + 1 flza@ay + 19| o (may + ||?f||v°v—1,q(m}
< O {I1Plgaquty + 1oy + Ilaesy + Nl aqea |

the desired estimate (3.2) follows from (3.9).



To solve (3.8), we use the partial Fourier transform in 2z’ = (x1,...,24-1), defined by

(3.3). Let
e—\//\+52xd — e—5Td
VA+s2—s

where s = |£’|. It follows from [10] that a solution of (3.8) in the partial Fourier transform
is given by

m0<87 xd) =

(€' 2q) = —Oamo(s, xd)%ﬁk@) " (5j - %) ) (3.10)

Ta(€', wa) = imo(s, 2a)Exha(€))
for1<j<d-—1, and
]/?\(fl, LCd) = —872<)\ =+ 82 — 83)861%, (311)

where the repeated index k is summed from 1 to d — 1. Write
(¢, za) = my(€, wa)hi(€)

for 1 < j < d. Note that m; satisfies the condition (3.5) (see [10, Lemma 2.5]). By Lemma
3.3, we obtain
Julungety + 9l agey < CIRIL 1o

for 1 < g < co. Using the fact that
sTEN+ 87— 03)0gmo(s, 14) = s (VA + 52 + s)e "4,
and that s™'(v/ A + s2 4 s)e™ " satisfies the condition (3.5), it follows again by Lemma 3.3

that
p|?dx < C||h|? .
/R‘i| [ da | HWlfé’q(Rd‘l)

As a result, we have proved (3.9).
Step 2. With the existence established in Step 1 at our disposal, the uniqueness may be

proved by using the same argument as in the proof of Theorem 2.1. We omit the details. [

Remark 3.4. Let A € ¥y and |\| = 1. Let (u, p) be the solution of (3.1), given by Theorem
3.1. It follows from the proof of Theorem 3.1 that p = p; + po, where p; € Lq(Ri;(C),

po € ﬁ/l’q(Ri;C), and

1P1llzagey + [IVP2llLa@ay < C {“FHLQ(Ri) 1l za@ay + |9l oqray + ||9||I§,_1,q(Ri)} ;
where C' depends only on d, ¢ and 6.

Remark 3.5. Let 1 < ¢; < ¢o < co. Suppose that F € L% (R%;CY), f € Lu(R%;C¥),
and g € LY (R%;C) N W14 (R%;C) for j = 1,2. Let w/ € Wy %(R%;C%) be the solution
of (3.1), given by Theorem 3.1, with the same data F f, g, for j = 1,2. Since the solutions
constructed in VVO1 “I(R%; C?) for the existence part of the proof do not depend on g, it follows
that u' = u? in RZ. As a result, we obtain u!' = u® € W, (R%; C%) N W, (R%; CY).
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4 The region above a Lipschitz graph

Let
Hy = {(2/,24) €R?: 2’ € R and 24 > ¢(2')},
where ¢ : R™! — R is a Lipschitz function. Note that if ¢ = 0, we have Hy = Ri. In this
section we study the resolvent problem for the Stokes equations,
—Au+ Vp+ = F + div(f) in Hy,
div(u) =g in Hy, (4.1)
u=20 on OHl,

where \ € Yy. For 1 < g < oo, define

A% = LI(H,;C) + WY(H,;C)  and  BY = LY(Hy; C) N W™1(H,; C), (4.2)

where, as in the case R? and Ri,

W(Hy; C) = {u € L{, (Hy;C) : Vu € LI(H,;C"},

loc

with the norm ||Vu| ze(m,), and Vi/’l’q(Hw; C) denotes the dual of Wi (H,; C). Note that
A‘fp and be are Banach spaces with the usual norms,

Ipllag = inf {{p1]| o) + | Vo2lloqa,) : p=p1+ po in Hy}
and
gl = llgllzear) + gl 10, -
The goal of this section is to prove the following.

Theorem 4.1. Let A\ € ¥y and 1 < q < oo. There exists ¢y € (0,1), depending only on d,
q and 0, such that if |V'¢)|lw < co, then for any F € Li(Hy; CY), f € Li(Hy; C™?) and

g € BY, there exists a unique (u,p) such that u € Wy '(Hy; C?), p € A%, and (4.1) holds.
Moreover, the solution satisfies

Y2V ul| ager,) + I full o,

4.3)
1/2 1/2 (
< C{||F||Lq(Hw) + M2 f o) + M2 gl Lo, + |A|||gllvov_1,q(Hw)},
where C' depends only on d, q and 6.
To prove Theorem 4.1, we introduce two Banach spaces,
X$ =Wy (Hy; CY) x A and Y] = W (H,; C) x B, (4.4)

with the usual product norms. For A € ¥y with |A\| = 1, consider the operator
Si(u,p) = (= Au+ Vp+ M, div(w)). (4.5)

It is not hard to see that Sqi is a bounded linear operator from X7 to Y,{ for any 1 < ¢ < oo
and that

1), p)lys < Cll(u,p)llxs, (4.6)

where C' depends only on d and ¢. Using Theorem 3.1 and a perturbation argument, we will
show that S is invertible if ||V'9)[| is sufficiently small.
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Lemma 4.2. Let A € ¥y with |A\] = 1 and 1 < q < oo. Assume that 1»p = 0. Then
Sy Xd — Yy is a bijection and

1050)  llyaxs < C, (4.7)
where C' depends only on d, q and 6.

Proof. In the case ¢ = 0, we have H, = R‘i. The lemma follows readily from Theorem 3.1
and the estimate for p in Remark 3.4. Indeed, note that for any A € W~14(Q; C?), there
exist F € L(Q;CY) and f € L9(Q;C™?) such that A = F + div(f) and [[Allw-14) =
[F[[ Loy + 1| fll zoc- O

Theorem 4.3. Let A € ¥y with |A\| = 1. Let 1 < g < oo. There exists ¢y € (0,1), depending
only on d, q and 0, such that if |[V'||« < co, then Sg : Xj, — Y] is a bijection and

1) M lyaaxs < C, @s)
where C' depends only on d, q and 6.
Proof. Suppose || V1|l < 1. Define a bi-Lipschitz map ¥ : H, — R% by
U(x' xg) = (2, 2q — ().

Note that U~1(a/, z4) = (2,24 + ¥(2’)). For a function u in Hy, let & = uwo U1, defined in
Ri. Thus, u = u o ¥ and

dju=0;uo W — 9y(ud;p) oW forl<j<d-1,
8du = 803{5 o,
A computation shows that

Au = Aﬂ oW — ad(8k68k1/1) oW — ak(ﬁdﬁ(?kw) oW -+ 8d(8dﬂ\V’w|2) e} \I/,

where |[V'¥|? = |0190|> + - - - + |04-1%|* and the repeated index k is summed from 1 to d — 1.
For (u,p) € Xi, let w=uoW¥tand p=po ¥t Then

—Au]+0]p+)\u] == —Aﬂ]o\ll+0]ﬁo\11+)\ﬂ]o\11
+ 8d(8k27]8k¢) oV + 8k(8dﬂ]6k@/}) oW (49)
— 0a(0au;|V'Y[?) 0 W — 04(pOj1)) 0 W

for1<j<d-—1,and

—Aug+ Ogp+ Mg =— Augo VWV + Ogpo ¥V + \ugo ¥
+ 8d(8kﬂd8k1/z) oW + 8k(8dﬂd8kw) oV (410)
— 04(04tia|V'Y[?) 0 W,

where the repeated index k is summed from 1 to d — 1. Also, note that

div(u) = div(@) o ¥ — dy(Udit)) o V. (4.11)
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In view of (4.9), (4.10) and (4.11), we obtain
S)(u,p) = Sp(@,p) oV + R(u,p) o ¥, (4.12)
where R(@,5) = (Ri(@.P), .. Ra(T, B), Russ (7, ) with
R;(U, p) = 0a(On;00)) + On(0atisOt)) — Da(Duty|V'|*) — Ba(pOs1)) (4.13)

for1<j<d-—1, and

Ry(, p) = 0a(OktiaOth) + Ok (OatigOrtp) — Da(Datia| V'), (4.14)
Ray1(u, p) = —0a(ur0Ort)). '
We claim that for any (u,p) € X{,

1R(@, P)llyg < CIV' Yool (@, D)l g, (4.15)

where C' depends only on d and ¢g. To show (4.15), we note that
IR @ Dllw-razty < CIV Dol Vil ey + 100 e, (416)

for1<j<d-1, and

[ Ra(@, D)l w-1.0mey < CIVUlool VU Loy, (4.17)

where we have used the assumption ||V'¢||,, < 1. To bound the second term in the right-
hand side of (4.16), we let

=P +p € LYRL;C) + WH(RE; C) = Al

Then
10a(PO ) lw 1.0y < 10a(Pr1050)|lw-1.a@ay + [[0a(P20;0) [l w-1.a(me)

< ClIVYlloollprll zarey + CIV P lloo | Oap2l| pagre -

This shows that
102(PO;¥) w10y < ClIVY|oc [Pl ag-

As a result, we have proved that

125 (2, D) ly-1.0mety < ClIVWllooll (@, D) xg (4.18)
for 1 < 7 < d. This, together with the estimates,
I Ra G ) ety + 1 Ban P, < OI8 e (19 ety + 1)
gives (4.15).
By Lemma 4.2, 53 : X¢ — Y is bounded and invertible for 1 < ¢ < oo. It follows by a

standard perturbation argument that S5 + R : X! — Y/ is bounded and invertible if

IR(S5) lyvgrg < 1.
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Moreover, we have
1055) Iy xe

— IR(S) Hllvgove

1S+ B) vy < 1
By (4.7) and (4.15),
IR(SD) M vy < IRl xayall(S3) ™ Iy x
< Col VYoo

where Cy depends only on d, ¢ and . As a result, we have proved that if [|[V'2)]|. < (2Cy) 71,
then S} + R : X{ — Y{! is invertible and

(S5 + B)"Hlyasxg < C
for some C depending on d, ¢ and 6. Finally, we note that
I(wo U™, po¥™)|xs ~ || (u, p)llx2
for any (u,p) € Xj, and

1A o™ go T H)llya = [I(A, g)lly

for any (A, g) € Y. By (4.12), we deduce that if |[V'9|o < co(d, q,0), then S} : X — V!
is invertible and (4.8) holds. This completes the proof. O

Proof of Theorem 4.1. The case |A| = 1 follows readily from Theorem 4.3. The general
case can be reduced to the case |A\| = 1 by rescaling. Indeed, let (u,p) be a solution of (4.1)
in H,. Let v(z) = u(|]A\|7Y2x) and ¢(x) = |A~?p(J]A|"¥2x). Then (v, ¢) is a solution of
the resolvent problem for the Stokes equations in the graph domain H,, with the parameter
MA|7! € 2y, where by (2) = |A|V2p(|A|7Y22"). Moreover, we have || V¢ |lso = [|V%)]|oo. As
a result, the general case follows from the case || = 1. O

Remark 4.4. Let 1 < ¢; < g2 < 00. Let A € ¥y and |A| = 1. It follows from Lemma 4.2
and Remark 3.5 that S5 : XI' N X — Y NYy? is a bijection and

H(Sé\)_lHYO‘ZImYO"2—>XglngQ <C,

where C' depends only on d, g1, ¢2 and 6. By the same perturbation argument as in the proof
of Theorem 4.3, we deduce that S}, : X' 0 X7* — Y, NV is a bijection and

H (S{z\;)fl Hyjlmyg?axj} qu‘j}2 < C>

if [Vl < co(d,q1,q2,0), where C' depends only on d, ¢i, ¢ and 6. Consequently, if
F e L9 (H,; C*) N L= (H,; CY), f € L% (Hy; C*?) N L%(Hy; C*?) and g € BY N By, then
the solution u of (4.1), given by Theorem 4.1, belongs to Wy (Hy; C?) N Wy % (H,; CY),
provided that |V'9|| is sufficiently small.
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Remark 4.5. Let (u,p) be a solution of the resolvent problem for the Stokes equations in
Hy. Let v(xz) = OTu(Ozx) and ¢(z) = p(Ozx), where O is a d x d orthogonal matrix. Then

(—Av + Vo + \v)(x) = OT(—Au + Vp + M) (Ox),
div(v)(x) = div(u)(Ox).
Consequently, Theorem 4.1 continues to hold if the domain Hy, is replaced by
OH, = {y € R?: y = Ox for some z € H,}

for any d x d orthogonal matrix.

5 A bounded C' domain and the proof of Theorem 1.1

Throughout this section we assume that € is a bounded C* domain in R?¢. This implies that
for any ¢y > 0, there exists some ry > 0 such that for each z = (2, z4) € 012,

QN B(z,2ry) =DNB(z,2rg) and 002N B(z,2rg) =0D N B(z,2r), (5.1)
where D is given by
D = OH, for some orthogonal matrix O and some C"* function 1 in R*™! (5.2)

with V'¢(2') = 0 and ||[V'¥|le < ¢o. Recall that V' denotes the gradient with respect to
' = (x1,...,24-1). We will use L{(£2; C) to denote the subspace of L(£2;C) of functions p
with fQ p=0.

The goal of this section is to prove the following theorem, which contains Theorem 1.1
as a special case with f =0 and g = 0.

Theorem 5.1. Let Q be a bounded C* domain in R?, d > 2. Let1 < g < oo and X\ € ¥y. For
any F € LY(Q;CY), f € LU(Q; C™9) and g € LYY C), there exists a unique u € Wy (Q; C?)
such that

{_Au+Vp+)\u—F+diV(f)a (5.3)

div(u) =g

hold in Q for some p € Li (Q;C) in the sense of distributions. Moreover, the solution u
satisfies the estimate,

(AL + D21Vl oy + (AL + Dfull oo
< C{IIF||aey + (1A + D2 fll o + (A + D9l } 5
and p € L1(Q; C), where C' depends only on d, q, 6 and SQ.

(5.4)

Theorem 5.1 follows from Theorems 2.1 and 4.1 by a localization argument.

Lemma 5.2. Let u € W,%(Q; C?%) for some 1 < ¢ < oo. Suppose div(u) = 0 in Q. Then
div(we)llg, 1 4 zay < CUVEloo + 1Vells0) [ullw=r0(0), (5.5)

where ¢ € CP(;R) and C' depends on d, q, diam(S2) and the Lipschitz character of Q.
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Proof. Let h € W' (R?;C). Note that

/Rddiv(ugp)-h:/g(u-Vgo) (h—]ih),

where we have used the assumption div(u) = 0 in Q. It follows that

[ aivtug) 1] <l = f 1)
Rd 0 0
< C(IVelloo + IV2elloo) llullw-1a@) I VA Lo ay:
where we have used a Poincaré inequality in 2. This gives (5.5). H

Remark 5.3. Let u be the same as in Lemma 5.2. Suppose ¢ € C3°(B(z,2r); R), where z €
dQ and QN B(z, 2ry) satisfies (5.1)-(5.2). Let Wy "9(Q; C?) denote the dual of W7 (Q; C%).
Then

ldiv(we)llg s o) < CUVElloe + 1VElloo) [elly-19(0); (5.6)

where D is given by (5.1)-(5.2). To see this, we note that for any h € VT/L‘I/(D; C),

/Ddiv(ugo)-h:/ﬂ(u-Vgo) (h—ﬁh),

where we have used the assumptions that div(z) = 0 in Q and u = 0 on 0f2.

Lemma 5.4. Let 1 < ¢ < oo. Then for any p € L(Q;C),

Ipllza@) < CIVPlw-10(0), (5.7)

where C' depends on d, q, diam(Q2) and the Lipschitz character of €.

Proof. Since  is a bounded Lipschitz domain and p|p|?~2 € L9 (Q;C), there exists v €
W7 (Q: C4) such that

div(e) =gl = f plpl > in @
Q

(see [13, Theorem II1.3.1]). Moreover, the function v satisfies

—1 g -1
HUHWL‘Z’(Q) < Cl|plp|* 2HL4’(9) = Cp| qu(Q)' (5.8)
Using
/ Ip|? = /p-div(v),
Q Q
we obtain
Py < 190w saellvya
-1
< ClIVpllw-ra@ Pl )
where we have used (5.8) for the last inequality. This yields (5.7). O
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The following lemma contains a key a priori estimate. Recall that Wo_l’q(Q; C%) denotes

the dual of W' (Q; C9).

Lemma 5.5. Let 1 < g < 0o and A € Xy. Let (u,p) € Wy(Q; C%) x LE(Q; C) be a solution
of (5.3) with F € LY(Q;CY), f € LI(;C>) and g = 0. There exist \g > 1 and C > 0,
depending only on d, q, 0, diam(Q) and the C' character of Q, such that if |\| > X, then

A0l zaoy + Ml zo@) < C {IFllzaay + 21 Do + N ellyg o b (5.9)

Proof. Let z € Q and ry > 0 be small. Let p € C3°(B(z,2rg); R) such that ¢ = 1 in B(z,7)
and |Vo| < Cryt, |V2p| < Cry?. A computation shows that

—A(up) + V(pp) + Aup = Fo + div(fe) — f(Ve) + pVe — 2div(u @ Vo) + ulyp,
div(up) = u - V.
(5.10)
We consider two cases: (1) B(z,2r9) C 2 and (2) z € 0.
Case (1). Suppose B(z,2r0) C €. Then the Stokes equations in (5.10) hold in R?. Since
up € WH(R?E C?) and pp € L4(RY; C), it follows by Theorem 2.1 that
MYV (up)l| oy + (A upl] o (ray
< O{HFSOHLq(Rd) + |)\|1/2||fS0HLq(Rd) + 1 F Vel aray + [PVl Lara)

+ A gy + N0l oy + IV g -

This leads to
A2 VU Lo By + Ml za(B o))
< Crg®{ 1P lzacey + 1L+ N2 fll oo (5.11)

+pllzaw + 1+ M) [l o) + |>‘|||U||W*1*q(ﬂ)}a

where we have used Lemma 5.2 and the fact ¢ =1 in B(z, ).

Case (2). Suppose z € 09Q. Let D be given by (5.1)-(5.2). We assume ry is sufficiently
small so that |V'¢||e < ¢y, where ¢y = ¢o(d, q,0) > 0 is given by Theorem 4.1. Note that
wp € Wy (D;C%), pp € LYD;C), and (5.10) holds in D. It follows by Theorem 4.1 and
Remark 4.5 that

’)\|1/2HV<U§0)HLQ(D) + [Alllupl| La(p)
- C{HFSOHLQ(D) + N2 follLamy + 11 FV@l Lapy + 1PV el ey + l[udell Lo
+ Y2l )+ N v (0) g p
which yields
A2Vl a@nsiero) + M ull La@nse o)

< CTEQ{HFHL%Q) + (L4 A f o) + l1pllzae) (5.12)

(L )l 2oy + Pllllyragey |
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where we have used the estimate in Remark 5.3 and the fact ¢ =1 in B(z, 7).
We now cover 2 by a finite number of balls {B(zx, o)} with the properties that either
B(zg,2r9) C Q or 2z, € 0. In view of (5.11) and (5.12), by summation, we deduce that

N2V ull oy + Ml o ey
< C{IIFIILqm) + (L) fllza@) + pllzagey + (14 MYl zagey + MIHUIIWJM(Q)}

< C{IF @y + U+ N llzniy + 9 ulsacay + (L NPl + Ml tagey

(5.13)
where we have used Lemma 5.4 and the equation Vp = Au — Au + F + div(f) for the last
inequality. The constant C' in (5.13) depends only on d, ¢, # and Q. We obtain (5.9) by
choosing Ao > 1 so large that [A| > 4C|\|/2 for |A| > Ao. O

Lemma 5.6. Let 2 < g < 0o and A € By. Let (u,p) € Wy (Q; C%) x LI(Q; C) be a solution
of (5.3) with F € L4(Q;C?), f € L1(Q;C¥™>) and g = 0. Then,

(1A + D21Vl pagy + (A + Dlfullay < C{IFNzoo) + (A + DY fllrae }, - (5:14)
where C' > 0 depends on d, q, 0, diam(Q) and the C' character of Q.

Proof. The case ¢ = 2 is well known and follows from the energy estimates. For ¢ > 2, we
first consider the case |A| > Ao, where A\ > 1 is given by Lemma 5.5. Since 2 is bounded,
by Lemma 5.5, the estimate

AV vy < C{IIF sy + N2 £

v+ Wiy e} (5.15)

holds for any s € [2,¢]. By Sobolev imbedding, L!(€; C%) c W, "*(€; C%), where 1 <t < d
and 1 = 1 + 1. In particular, if 2 < s < 24 then L2(Q;C?) C Wy "*(2;C?) and
(Allfullyy; @) < ClIAull 20
< C{IF ) + M2l 2o }
< C{IIF o) + N2l fllzeo }
This, together with (5.15), gives (5.14) for 2 < ¢ < d2_—d2‘ By a bootstrapping argument, one

may show that the estimate (5.14) holds for any 2 < ¢ < oo in a finite number of steps.
We now consider the case |\| < Ag. We rewrite the Stokes equations as

—Au+ Vp+ (A4 2\)u = F + div(f) + 2\,
. (5.16)
div(u) = 0.
Since A + 2\g € Xy and |A 4 2X\g| > A, it follows from the previous case that
IVull o) < C{IF N pay + 1 fllzag) + [ullzaey } - (5.17)
Since W, ?(Q; C%) c L*(Q;C?) for s = 24 we obtain

IVullzag < C {IF @) + 1 lae) + IVullzzo }
< C{IIF || o) + | fllLae) }
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for 2 < ¢ < dszQ’ where we have used the estimate (5.14) for ¢ = 2 for the last inequality. As

before, a bootstrapping argument, using (5.17), gives

IVullza@ < C {1l zs) + 1 fll o }

for 2 < ¢ < o0 in a finite number of steps. This, together with a Poincaré inequality, yields
(5.14) for the case |A| < Ao. O

We are now in a position to give the proof of Theorem 5.1.

Proof of Theorem 5.1. Step 1. Consider the case 2 < ¢ < co and g = 0.

The uniqueness follows from the case ¢ = 2. To show the existence and the estimate (5.4),
let I € L9(Q;C?) and f € L9(Q; C™*%). Note that the constant C in (5.14) depends only on
d, q, 0, the diameter of  as well as the C! character of 9§). As a result, we may construct a
sequence of smooth domains {2} such that €, C © and the estimate (5.14) holds in Q with
a constant C' independent of k. Let (u*, p*) be the unique solution in W, *(Q; C%) x L2(Q; C)
of the Stokes system (5.3) in Q with g = 0, F* in the place of F' and f* in the place of f,
where F* € C5°(Q; CY), f* € C5°(Q; C4) and || F* — F|| o) + | f* — fllra@) — 0. Since
QO and F*| f¥ are smooth, it is well known that (u*, p*) € Wy (Q; C%) x LE(Q; C) [13]. We
extend (u”, p*) to Q by zero and still denote the extension by (u*, p*). It follows by Lemma
5.6 that

(IA+1) Y2V | oy + A+ D e o) < C{IF oy + (A + D2 o } o (5.18)

where C' depends only on d, ¢, § and Q. Note that by Lemma 5.4, {p*} is bounded in
L9(Q; C). By passing to a subsequence, we may assume that u* — u weakly in Wy ?(€; C%)
and p¥ — p weakly in L(Q;C). It is not hard to see that (u,p) is a solution of (5.3) in
Q2 with data (F, f) and g = 0. By letting & — oo in (5.18), it follows that w satisfies the
estimate (5.4).

Step 2. We establish the existence and estimate (5.4) for 1 < ¢ < 2 and g = 0.
For F,G € C(Q;C%) and f, h € C5°(Q; C9), let (u, p), (v, ) € Wy*(Q; C?) x L3(Q; C)
be weak solutions of (5.3) in Q with data (F, f), (G, h), respectively; i.e.,

—Au+ Vp+ = F +div(f) in €,
div(u) =0 in €,

—Av+ Vo + \v =G +div(h) in €,
div(v) =0 in Q.
Note that

/F'v—/f-Vv:/Vu-VzH—)\/u-v:/G-u—/h~Vu.
) ) Q Q ) Q

It follows that

/G~u—/h-Vu
Q 0

< CUA+ D)7 {1 gy + (AT + D[ fllacen } {HGIILq'm) + (1A + 1)1/2HhHLq’(Q)} :

< HFHLQ(Q)HUHLq’(Q) + HfHLq(Q)HVUHLQ’(Q)
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where we have used the estimate,
(A + DYVl o gy + (A + Dl ey < C {HG“LQ’(Q) + ([Al + 1)1/2“hHLq/(Q>} ;
obtained in Step 1 for ¢’ > 2. By duality this gives
(Al + D1 Vull o) + (1A + Dllullze@) < C {IF s + (A + D7 fll o } -

As a result, we have proved the existence and the estimate (5.4) for F' € Cg°(;C%) and
f € C5°(;C¥4). The general case, where F' € L(Q;C%), f € LY(Q;C™9) and g = 0, for
1 < q < 2, follows readily by a density argument.

Step 3. We establish the uniqueness.

The uniqueness for ¢ > 2 follows from the uniqueness for ¢ = 2. To handle the case
1 <q <2 let ue W, 9Q;C% be a solution of (5.3) in Q with F =0, f = 0 and g = 0.
Since @|u|?2 € L7 (Q; C%), by Step 1, there exists (v, ¢) € W (Q; C4) x LI (; C) such that

—Av+ Vo + v = |ul'*u in
div(v) =0 in Q.
As in the case Q = R, this leads to [, |u|? = 0. Hence, u =0 in Q.

Step 4. The case g # 0.
Let g € LI(€;C). Since Q is a bounded Lipschitz domain, there exists w € W;"?(€2; C%)
such that
diviw) =g inQ and ||w|eq) + |V L) < Cllgllze@)- (5.19)

By considering © = u — w, we reduce the problem to the case g = 0. Indeed, let u be a
solution of

div(u) =0
in Q. Then v = u + w is a solution of (5.3). O

Remark 5.7. Let 1 < ¢ < oo and Q be a bounded C' domain in R?. By letting A\ € R,
and A — 0 in Theorem 5.1, one may show that for any F' € L4(Q;C?), f € LI(Q; C™*?) and
g € LY C), there exists a unique (u,p) € Wy (Q; C?) x LI(€; C) such that
—Au+ Vp = F +div(f),
div(u) =g

{—M+ Vp+ A = F + div(f + Vw) — w,

(5.20)

in Q2. Moreover, the solution (u, p) satisfies the estimate

IVullLa@) + 1Pl za) < C{IIF| Loy + I f1l e + l9lla) } - (5.21)

where C' depends on d, g and 2. The W4 estimate (5.21) is known for C' domains [7]. If Q
is a bounded Lipschitz domain, the estimate (5.21) holds for (3/2) —e < ¢<3+¢eif d =3,
and for (4/3) —e < ¢ < 4+ ¢ if d = 2, where € depends on Q [5]. If d > 4, some partial
results are known [14]. We point out that the results in [5, 7, 14] rely on the estimates
for a non-homogeneous Dirichlet problem, which is solved by using the methods of layer
potentials. The approach used in this paper, which is based on a perturbation argument,
seems to be more accessible. However, it does not work for a general Lipschitz domain.
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We end this section with a localized W4 estimate that will be used in the next section.

Theorem 5.8. Let Q be a bounded C' domain and 2 < q < co. Let B = B(xg,10), where
xo € 0N and ro > 0 is small. Suppose that u € WH2(2BNQ;CY), p € L2(2BNQ;C), and

—Au+ Vp = F +div(f) in 2B N,
div(u) =g in 2B N, (5.22)
u=20 on 2B N 0S,

where F € LY(2B N Q;CY), f € LI2B N Q;C™) and g € LY(2B N Q;C). Then u €
Wh(BNQ;CY, pe LY(BNQ;C), and

Vu + —][
IVellzoany +lip = Pllzsnn) (5.23)

< CH{IIF | LBy + || fllza@sre) + lglla@sroy + lull2@sno) }
where C' depends on d, q, ro and Q.

Proof. Theorem 5.8 follows from the estimate (5.21) by a localization argument. However,
some cares are needed to handle the error term p(Vy), introduced by the pressure p, where
© is a cut-off function.

Consider the Stokes equations (5.20) with F' =0 and g = 0; i.e.,

—Au+ Vp=div(f) and div(u)=0

in Q. It follows from (5.21) that ||Vul|re@) < C| f|lLa). By Sobolev imbedding, we obtain

lullzo@) < CllfllLae),

where % = é—é and 1 < ¢ < d. By a duality argument, as in Step 2 in the proof of Theorem
5.1, this implies that the solution of

—Au+Vp=F and div(u)=0

in () satisfies the estimate,

IVullpa) + Ipllze) < ClIF |z @),
where % = % + Cll and 1 < s < d. This observation allows us to improve the estimate (5.21)
to
IVull o) + IPllLa) < C {I1F e @) + 1 fllzag) + l9llLae } » (5.24)
where s, = max{2, s} < ¢ and % = é + %l. Using (5.24), a standard localization procedure,
together with a bootstrapping argument, yields (5.23). We omit the details. ]
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6 An exterior C'! domain and the proof of Theorem 1.2

In this section we consider the case of an exterior C! domain €; i.e., Q is a connected
open subset of R? with compact complement and C* boundary. Let F € L2(Q;C?),
f € L3(Q;C™) and A € ¥y. By the Lax-Milgram Theorem, there exists a unique u €
W% (Q; C%) such that

(6.1)

—Au+ Vp+ = F + div(f),
div(u) =0

holds in  for some p € L2 _(Q;C) in the sense of distributions. Moreover, the solution
satisfies
N2Vl zge) + [Mllull z2@) < C LI F Iz + N2 fllza@ ) (6.2)
where C' depends only on d and 6. We will call u the energy solution of (6.1). Note
that, if F € LI(Q;CY) N L?(Q;CY) and f € L*(Q; C™>4) N LI(Q; C?) for some ¢ > 2, then
(u,p) € WH(QN B; C%) x L4(QN B; C) for any ball B in R?. This follows from the regularity
theory for the Stokes equations (5.20) in bounded C' domains. See Theorem 5.8.
Let
Yo5 ={2€C:|z] >0 and |arg(z)| <7 — 0}, (6.3)
where 6 € (0,7/2) and § € (0,1). The goal of this section is to prove the following.

Theorem 6.1. Let Q be an exterior C' domain in R, d > 2. Let 1 < g < 0o and \ € Y.
For any F € LY CY) and f € LY(Q; C™9), there exists a unique u € W,(Q; C?) such that
(6.1) holds in Q for some p € L (€;C). Moreover, the solution satisfies the estimate,

loc
A2Vl oy + Ml zag) < C {11 Fllzawy + MY Flloe) } (6.4)
where C depends on d, q, 0, § and €.

Fix a large ball By = B(0,2R,) such that Q\ B(0, Rg) = R\ B(0, Ry) and ByNQ is a
bounded C* domain.

Lemma 6.2. Let1 < g < oo and A € ¥y. Let u € Wy *(Q; C?) be an energy solution of (6.1)
with F € LY(; CY) N L2(Q; CY) and f € L*(Q;C™4) N LI(Q; C™). Then u € W, (Q; CY).
Moreover, if |A| > Ao,

N2V ullzsiey + sty < O {1 oy + N2 oy + Wl a6
where A\g > 1 and C' depend on d, q, 0 and ().

Proof. The proof, which uses a localization argument, is similar to that of Lemma 5.5 for
the bounded domain. However, we need to add another case to handle the neighborhood of
o0. Choose ¢ € C*°(R% R) such that p = 1 in R?\ B(0,2R;) and ¢ = 0 in B(0, Ry). Then
the Stokes equations in (5.10) hold in R¢. Since p € LY(2 N 2By), where By = B(0,2R,), it
follows by Theorem 2.1 and Remark 2.4 that up € VVO1 1(RY; C?) and

A2V (u) | Laray + [ A 1wp]| poeay
< C{HFSPHLq(Rd) + P\’UQHJC%DHM(W) + Vel Lamay + [PV Laray

+ el zagen + N2Vl agey + M@)o -
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Note that the same argument as in the proof of Lemma 5.2 also yields

i (o)l ey < Cllellraiansy)-

Hence,
A2V ul| Laen o) + M2l Lagey o)

< CLUF o + 21 sty + 1 sty + [lzsgonsy (6.6)

(U )l ooy + Ao b
Since Q N By is a bounded C! domain, it follows from the proof of Lemma 5.5 that
N2V zagano) + N lull o)
< C{HFHLq(m + N2 £l 2oy + 1 f | agenzse) + 1Pl oenzo)
(1 A2l cagenase) + Nl o nasg |-
This, together with (6.6), gives
Y21Vl zagey + N [l ooy
< C{UFllzaey + (A2 + D)L fllzoce) + 2l ooz
(A2 4 1) fulaaramn) + Al ooz § (6.7)
< C{I1F Lo + (A2 + Df o) + IVl oo,
+ (A2 + D)lfullzagrene + A elly; 1aanzs b

where we have assumed fm2 B P =0 and used Lemma 5.4 for the last inequality. As a result,

we have proved that u € W, 9(Q; C?). Moreover, we obtain (6.5) if |A| > X\ and Ay > 1 is
sufficiently large. O

Remark 6.3. Suppose that A\ € ¥y and |A| < A\g. Let 2 < ¢ < oo. It follows from (6.7) and
Theorem 5.8 as well as the interior estimates for the Stokes equations with A = 0 that

N2 Fullzsie) + Mleliey < € {I1F ey + I fllzsio) + lullnarsmn } . (68)
where C' depends on d, ¢, 6 and (2.

The next lemma gives the uniqueness for ¢ > 2.

Lemma 6.4. Let 2 < g < 0o and X\ € By. Let u € Wy 9(Q; C%) be a solution of (6.1) in Q
with =0 and f =0. Then u=0 wn Q.

Proof. The case ¢ = 2 is well known. To handle the case ¢ > 2, we choose p € C*(R% R)
such that ¢ = 1in Q\ B(0,2Ry) and ¢ = 0 in B(0, Ry), as in the proof of Lemma 6.2. Then
the Stokes equations in (5.10) hold in R? with F' = 0 and f = 0. Since the right-hand sides
of (5.10) have compact support and thus are in L?(R%; C%), it follows from Remark 2.4 that
up € WH2(R% C9). As a result, u € WOM(Q; C%). By the uniqueness for ¢ = 2, we conclude
that v = 0 in €. O
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Lemma 6.5. Let 2 < g < oo and A € ¥y5. Let u € W&’Q(Q;Cd) be an energy solution of
(6.1) with F € LI(;CYH N LAQ; CY) and f € LI(Q; C>4) N L2(Q; C4). Then

Y21Vl Loy + M [l za@) < C{I1F I za@) + A1 f o } (6.9)
where C' depends on d, q, 6, 6 and ).

Proof. The case ¢ = 2 is the well known energy estimate. To handle the case ¢ > 2, we argue
by contradiction. Note that by Lemma 6.2, u € W,(Q;C?%). Suppose the estimate (6.9)
is not true. Then there exist sequences {u’} C Wy4(Q;C?), {F*} C L9(Q;C?) N L*(Q; CY),
{f5 € L9(; C™>4) N L2(0; C) and {\} C By such that

—Auf + Vpt 4+ Nt = Ff 4 div(f9) in Q, (6.10)
div(u®) = 0 in €, '
for some p* € L% (Q;C),
N2V | oy + Nl o) = 1, (6.11)
and
1E ooy + N2 o) = 0 as € — oo (6.12)

Since |\f| > 4, it follows from (6.11) that HUZHW(}’Q(Q) < C. By passing to a subsequence, we

may assume that u’ — u weakly in Wy%(€; C%). We may also assume that either |\!| — oo
or \¥ - ) e C.

We consider three cases: (1) \* — A € C and || > 2\g, where \q > 1 is given by Lemma
6.2; (2) A* — X and |\| < 2)g; and (3) |\ — oo.

Case (1). Suppose X' — X € C and |\ > 2X\o. It follows that u € W, 9(Q;C%) is a
solution of (6.1) in ©Q with F' =0 and f = 0. By Lemma 6.4, we obtain u = 0 in 2. Thus,
u’ — 0 weakly in Wy ?(Q; C%). This implies that u’ — 0 strongly in W, "9(Q N 2B,; CY).
However, by (6.5) and (6.11)-(6.12), we have

L= X2V oy + X[l ooy

(6.13)
<C {HFéHLq(Q) + N2 o) + ’)\q”UZHWJW(QmBO)} — 0,

which yields a contradiction.
Case (2). Suppose A* = X and |A| < 2)g. As in case (1), u’ — 0 weakly in W, 9(Q; C%).
It follows from (6.8) that
L= NY2Vu | oy + XNl ooy
< C{IF oy + 11 Moy + 1w La@nsso -

This gives us a contradiction, as u* — 0 strongly in L4(2 N 3By; C?).

Case (3). Suppose that |\| — oo. In view of (6.11), we have u* — 0 strongly in
L1(Q; C%). By passing to a subsequence, we assume that Mu‘ — v weakly in L9(£2; C%).
Note that if w € C§°(£2; C%) and div(w) = 0 in €2, then

—/uf-Aw+/)\Zu£-w:/Fg-w—/fE-Vw.
Q Q Q Q
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By letting £ — oo, we obtain [, v-w = 0. This implies that v = V¢ for some ¢ € Wha(Q C).
Since Mu! € Wy 9(Q;C% and div(\u’) = 0 in Q, we also have Jov - Ve = 0 for any
0 € C(R%GC). Tt follows that ¢ € ﬁ/l’q(Q;C) is a solution of the Neumann problem:
A¢ = 0 in  and % = 0 on 99Q. Since V¢ € L4(2;C?), we conclude that v = V¢ = 0 in
Q. See Lemma 7.1 in Appendix. Thus, Mu’ — 0 weakly in L9(2; C?) and thus strongly in
W=14(QN2By; C?). Consequently, (6.13) holds and gives us a contradiction. This completes
the proof. n

Proof of Theorem 6.1. Step 1. Assume 2 < ¢ < co. The uniqueness is given by Lemma
6.4. Since L?(Q; C?) N L1(Q; C?) is dense in LI(2; C?), the existence as well as the estimate
(6.4) follows from Lemma 6.5 by a standard density argument.

Step 2. Assume 1 < ¢ < 2. As in the cases of R? and R‘i, the uniqueness follows from the
existence for ¢’ > 2, proved in Step 1. By a duality argument, similar to that in the proof
of Theorem 5.1, one may show that if F € C§°(Q;C?) and f € C§°(Q;C™?), the energy
solutions of (6.1) satisfy the estimate (6.4). As before, the existence and the estimate (6.4)
for F € L4(Q;C?) and f € LI(Q; C™%) follow by a density argument. O

Proof of Theorem 1.2. The estimate (1.4) with C' depending on ¢ is contained in Theorem
6.1. To establish the estimate (1.5) with C' independent of ¢ for d > 3, we first consider
the case ¢ < (d/2) and argue by contradiction. Suppose (1.5) is not true. Then there exist
sequences {F*} € LI(Q; C%), {u’} € Wy(Q; C%), {\‘} C S such that X — 0,

—Au’ 4+ Vp' + X! = FY,
o (6.14)
div(u®) =0,
in €2,
N[ Loy = 1, (6.15)

and || F*||fa) — 0 as £ — co. By Theorem 7.3 in the Appendix,

HVue

@ < C{IF o + N lzoe }

where | = ¢ — 3. As a result, {Vu‘} is bounded in L*(Q; C**¢) and by Sobolev imbedding,
{u'} is bounded in L*(Q;C%), where - = 1 -1 % — 2 and we have used the fact
ut € LY(Q;C%. By passing to a subsequence, we may assume that \‘u® — v weakly in
LY(Q;CY), u* — u weakly in L (Q;C?), and Vu! — Vu weakly in L*(Q;C¥™?). Since
N — 0, we obtain v = 0. It then follows from (6.14) that —Au + Vp = 0, div(u) = 0 in
Q and v = 0 on 9Q. Since u € L**(Q;C?), Vu € L*(;C¥>9) and s < d, we deduce from
Lemma 7.2 that u = 0 in . This implies that u* — 0 strongly in L4(Q2N B; CY) for any ball

B. However, by (6.8) and (6.15), we have

1= [Nt ooy < C{IF | pag) + [t zogarsne) } »

which yields a contradiction.

Finally, we note that by duality, the estimate (1.5) holds for ﬁ < q < oo. This gives
the estimate for 1 < ¢ < oo in the case d > 4. If d = 3, the range (3/2) < g < 3 follows by
using the Riesz-Thorin Interpolation Theorem. O
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7 Appendix

In this Appendix we prove several uniqueness and regularity results in exterior C'! domains,
which are used in the previous sections. In the case of exterior domains with C? boundaries,
the proofs may be found in [13].

Lemma 7.1. Let Q be an exterior C* domain in R?, d > 2 and 1 < g < oo. Suppose that
¢ e WhH(Q;C), Ap =01 Q andn-Vé =0 on . Then ¢ is constant in €.

Proof. By using the mean value property for harmonic functions and |V¢| € L(2), we obtain
Vo(x) = o(1) as |x| — oco. By the expansion theorem at oo for harmonic functions [1], we
deduce that Vo (z) = O(|z|™!) for d = 2. In the case d > 3, we obtain Vo(z) = O(|x[*>79).
It follows that ¢(x) = O(log |z|) for d = 3 and ¢(x) = O(1) for d > 4. Since ¢ is harmonic,
by the expansion theorem, this implies that ¢(x) = L + O(|z|*>~¢) for some L € C and that
Vé(x) = O(|z|' ™) as |z| — oo for d > 3. As aresult, we have proved that Vo (z) = O(|z|'9)
as || — oo for d > 2.

Next, note that since 9Q is C* and n- V¢ = 0 on 912, we have V¢ € L*(QN B(0, R); C?)
for any R > 1. Moreover, for R sufficiently large,

¢
[oowep= [ s
QNB(0,R) dB(0,R) T
< Vol 20B0,r) 16 — Bllz2os0,) < CRIVOIZ2050.8));

where § = fa BO.R) ¢ and we have used a Poincaré inequality on 0B(0, R). By letting R — oo
and using Vo (z) = O(|z|'™?) as |z| — oo for d > 2, we see that ||V r2@q) = 0if d > 3 and
V|2 < oo if d =2. As a result, V¢ = 0 and ¢ is constant in Q for d > 3. Finally, to
handle the case d = 2, we use the Caccioppoli inequality,

C
/ Vo[ < @/ ¢ — al?
QNB(0,R) B(0,2R)\B(0,R)

s%/ VP,
B(0,2R)\B(0,R)

)qb and we have used a Poincaré inequality. It follows

(7.1)

for R large, where a = fB(O 2R)
that

\B(O,R
C

[ wers s [ v

QNB(0,R) Co+ 1 Jonpo2r)

By letting R — oo, we obtain [|[V¢||12q) < || V9| r2(q) for some ¢y < 1. This implies that
V|2 = 0if ||Vl 12(q) < 0o. Consequently, we conclude that V¢ = 0 and ¢ is constant

in Q for d > 2. ]
Lemma 7.2. Let Q be an exterior C' domain in R4, d > 2. Let 1 < g < d and q% = % — é.
Suppose that u € L% (Q;CY), Vu € LI(Q; C>4), u =0 on 99Q, and

—Au+Vp=0 and div(u)=0 (7.2)

hold in § in the sense of distributions. Then u = 0 in Q.

26



Proof. The proof is similar to that of Lemma 7.1 for the case d > 3. By the interior estimates
for the Stokes equations,

2]|V2u(2)] + [Vu(z)| < C (][ |Vu|q) " (73)

(z,1R/4)
where R = |z| is sufficiently large. It follows from |Vu| € L%(Q) that Vu(z) = o(|z|™7)
as |r| — oo, where v = (d/q). Since v > 1, this implies that lim, . u(z) exists. Using
u € L% (;C%), we deduce that u(z) = o(1) as |z| — oco. Also note that by the interior
estimates, V2u(x) = o(|x|77!) as |z| — oo. Thus, Vp(z) = o(Jz|777!). It follows that
lim|; 00 p(7) exists. By subtracting a constant, we may assume that lim, . p(z) = 0. As
a result, we obtain p(z) = o(|z|™?) as |z| = oo.

Next, assume d > 3. We use the Green representation formula for the Stokes equations
in the domain Dy = {z : Ry < |z| < R} to write (u(x),p(z)) as a sum of layer potentials
on 0D = 0B(0,R) U 0B(0, Ry). Since |Vu(z)| + |p(z)] = o(|z]~7), where v > 1, and
lu(x)| = o(1) as |z| — oo, it is not hard to see that the layer potentials on 0B(0, R) converge
to 0 as R — oo. This allows to upgrade the decay of (u,p) at co to

2] u(@)] + [Vu(@)] + [p(2)] = O™ as [a] = o0 (7.4)

for d > 3.
Finally, we note that since 9§ is C! and u = 0 on 92, we have u € W12(Q N B(0, R); C?)
for any R > 1. Moreover, for R > 1 large,

0
/ Vul? = / <_u — np) - u.
QNB(0,R) dB(0,R) on

In view of (7.4) for d > 3 as well as the decay estimates, u(x) = o(1) and |Vu(z)| + |p(z)| =
o(|z|77) for d = 2, by letting R — oo, we obtain ||Vu| ;2 = 0. Since v = 0 on 09, it
follows that u = 0 in €. O

The following theorem is used in the proof of the estimate (1.7) for small |A|.

Theorem 7.3. Let Q be an exterior C' domain in RY, d > 3 and 1 < q < (d/2). Let
u e Wyl(Q; C%) be a solution of

—Au+Vp=F and div(u)=0 (7.5)
in Q, where F € LY(Q;CY). Then u € W, *(Q;C%) and
IVullzs@) < CllF Lo, (7.6)

where % = % — = and C depends on d, q and Q.

1
d

Proof. Since W, (€; C%) < L3(€;C%). Tt suffices to prove (7.6). We divide the proof into
two steps.
Step 1. We show that the solution u satisfies the estimate,

IVull sy < C{IIF|lLa) + ullLe@nso) } » (7.7)
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where By = B(0,2R;) and Ry > 1 is sufficiently large. To this end, we choose Ry > 1
such that Q\ B(0, Ry) = R%\ B(0, Ry) and QN B(0,2R,) is a bounded C! domain. Choose
1 € C(R4R) such that o1 = 1in Q\ B(0, (3/2)Ry) and ;1 = 0 in B(0, (5/4)Ry). Let
w2 =1— 1. Then

—A(upr) + V(ppr) = For — 2(Vu) (V) — ulpr + pVe,
div(upy) = u- Vi

in RY. Tt follows from the W29 estimates [13] for the Stokes equations (with A = 0) in R?
that

IV (upr)

vy < Ol + 1(70)(T1)lagaay )
+ [uldgill s + 1PV | oy + IV (w901) | paceey }-
Let Q9 = Q2N B(0,2Ry). Note that ups =0 on 092y = 02U 0B(0,2R,) and

—A(ups) + V(pp2) = Fipa — 2(Vu)(Vips) — ulps + pVipa,
div(ups) = u - Vg

in Q. It follows from the W9 estimates for the Stokes equations (with A = 0) in the C*
domain €y that

IV (ucp2)

o < C{1Ppallinag + (V) (Vollracon + ludalinin
+ IpVesllzo@n) + UV eallzan |
See Remark 5.7. The estimate (7.7) follows from (7.8) and (7.9) as well as the interior

estimates for the Stokes equations.

Step 2. We establish the estimate (7.6) by a compactness argument.
Suppose (7.6) is not true. Then there exist sequences {F‘} C L%(Q;C%), {u‘} C
Wy 4 (Q; C%) N W, *(Q; C%), such that

¢ ¢ _ e
{—Au dJirv(Vu% ;5 , (7.10)
hold in € for some p* € Ll _(Q;C),
VU || sy = 1, (7.11)
and [|F||ze@) — 0, as £ — oo. Since [[u’]|r=(q) = C, where - =1 — 1,

by passing to a subsequence, we may assume —> U Weakly in L*(Q;C?) and Vu’ — Vu
weakly in L*(Q; C?*?). Tt follows that u is a solution of (7.5) with F' = 0. Note that ¢ < (d/2)
implies s = ¢. < d. Thus, by Lemma 7.2, w = 0 in . This implies that u’ — 0 strongly in
L(Q2 N By; C?). However, by (7.7),

||Vu€

(@) < C{IF N Lo + Ul Laganso) }

which leads to a contradiction with (7.11) if we let £ — oc. O

28



Recall that C5%,(Q) = {u € Cg°(;C?) : div(u) = 0 in Q} . Let LZ(Q) denote the closure
of C§°(Q) in L(£; C%) and

G,(Q) = {u : u = Vp for some p € ﬁ/l’q(ﬂ; (C)} :

Theorem 7.4. Let ) be a bounded or exterior domain with C* boundary in R?, d > 2. Then
LI(Q;C% = L) & G,(Q) (7.12)

for1 < q < oo. Thatis, for any u € L1(2; CY), there exists a unique (v, w) € LL() x G4()
such that v = v+ w in Q) and

[0l zag) + lwllLae) < Cllull Lo, (7.13)
where C' depends on d, q and ().

The formula (7.12) is referred to as the Helmholtz decomposition, which is well known
in the case of bounded or exterior domains with smooth boundaries (see [10] for references).
In the case of bounded or exterior domains with C! boundaries, a sketch of the proof for
(7.12) may be found in [10]. Also see [9]. The decomposition also holds for 1 < ¢ < oo if
2 is a bounded convex domain [15]. If Q is a bounded or exterior domain with Lipschitz
boundaries, the Helmholtz decomposition (7.12) holds if

3/2) —e<qg<3 for d > 3,
{(/) e<qg<3+e¢ or d > 714

(4/3) —e<qg<4+¢ for d = 2,

where € > 0 depends on 2. The ranges in (7.14) are known to be sharp. See [9]. We remark
that Theorem 7.4 is not used in this paper.
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