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ABSTRACT

Do tropical cyclones (TC) possess chaotic dynamics at any stage of their development?
This is an open yet important question in current TC research, as it sets a limit on how
much one can further improve intensity forecast in the future. This study presents a
novel use of machine learning (ML) to quantify TC intensity chaos. By treating TC scales
as input features for different ML models, we show that TC dynamics displays a limited
predictability range of ~3 hours at the maximum intensity (PI) state under a fixed
environment, which confirms the existence of a chaotic regime in TC development.
Using the minimum central pressure as a metric for TC intensity could extend the
predictability range up to 9 hours, yet the low-dimensional chaos of TC intensity is still
captured in all ML models. Additional sensitivity experiments with different ML model
configurations, the number of input features, or sampling frequency all confirm the
robustness of such limited predictability for TC intensity, thus supporting the existence
of low-dimensional chaos at the PI limit. The existence of such intensity chaos has a
profound implication that TCs must possess an intrinsic intensity variability even under
an idealized condition. This internal variability dictates a lower bound for the absolute
intensity error in TC models regardless of how perfect the TC models or initial condition
will be.
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1. INTRODUCTION

Searching for the limit in tropical cyclone (TC) intensity
forecast accuracy is a challenging problem in TC research
and operation. One key difficulty in studying such TC
intensity predictability (TIP) is rooted in an open question
of whether TC dynamics possesses chaos at any stage
of TC development (Kieu and Rotunno, 2022; Kieu et al.,
2022). For practical purposes, a TC intensity forecast must
be issued from an early formation to the final dissipation
stage, yet all current predictability frameworks require
a stationary attractor or fully-developed turbulent state
such that statistical properties can be well-defined
(e.g,, Lorenz, 1963; Lorenz, 1969; Leith, 1971; Métais
and Lesieur, 1986; Vallis, 2017). This fundamental
requirement of stationary statistics for chaotic dynamics
explains confusingly different estimations for TIP, which
varies from 3 hours to 7 days in previous studies (Hakim,
2011; Hakim 2013; Emanuel and Zhang, 2016; Kieu and
Moon, 2016; Judt et al., 2016; Zhong et al., 2018).

Of all TC development stages, the only one that
appears to meet the requirement for chaos analyses is
the maximum intensity state, known as the TC potential
intensity (PI) (Emanuel, 1986; Emanuel, 2003). According
to the PI theory, TCs will reach a steady state with a
maximum intensity determined by environmental
conditions. The existence of this PI state and its related
stability have been extensively studied in previous
observational, theoretical, and modeling studies (e.g.,
Bryan and Rotunno, 2009; Hakim, 2011; Kieu and Wang
2017; Kieu, 2015; Rotunno and Emanuel, 1987). However,
whether a PI limit truly exists is still inconclusive, as
several modeling studies, e.g., by Smith et al. (2014;
2021) or Persing et al. (2019) showed that a TC vortex
cannot maintain a steady state due to the transport
of low angular momentum from upper levels to the
surface. This process cuts off the supply of high angular
momentum from the outer-core region and eventually
weakens TCintensity, even under idealized environments.

Despite the controversial existence of the PI state, the
fact that the maximum TC intensity can be captured and
well maintained in very long integrations (e.g., Brown and
Hakim, 2013; Hakim, 2011; Kieu et al,, 2022) suggests
that TC dynamics can settle down in a quasi-stationary
equilibrium if proper experiments are designed. Such an
equilibrium, hereinafter referred to as the PI equilibrium,
offers a unique opportunity to quantify TIP in accordance
with the current chaos theory. Specifically, the PI
equilibrium helps define a reference climatology for TC
intensity, on which one can measure error growth over
time. The range of predictability is then the maximum
time interval at which a forecast distribution of TC
intensity becomes indistinguishable from its climatology.
Given a measure for such an intensity difference
between the forecast and climatology distributions, a
predictability range can be then obtained by using, e.g.,
the decorrelation time, integrated time, or signal-noise

ratios as studied in, e.g., DelSole and Tippett (2007;
2009), Lorenz (1969); Shukla (1981).

Taking advantage of such a PI equilibrium in model
simulations, Kieu and Moon (2016) presented a method
to quantify TC intensity chaos based on a fidelity-reduced
model proposed by Kieu (2015). Using TC scales obtained
from a long integration of Rotunno and Emanuel (1987)’s
axisymmetric model as dynamical variables, Kieu and
Moon (2016) demonstrated that TC intensity appears to
approach a chaotic region in the phase space constructed
from a few basic TC scales. In this phase space, PI is
no longer a single point but a bounded region with all
the properties of a typical chaotic attractor. A direct
implication of this chaotic PI attractor is that TC intensity
must possess some intrinsic variability, even for a perfect
TC model under ideal conditions.

Of further importance about the existence of such a
chaotic attractor is that TC intensity, once settling down
in the PI equilibrium, should have limited predictability.
The current estimation for TIP varies widely due not only
to the dependence of PI on specific model dynamics,
ocean basin, or environmental conditions, but also to how
one defines a reference climatology for TC intensity. This
uncertainty in estimating TIP is especially challenging
for real TCs, because real TCs constantly move from one
environment to the next that they may have no time to
reach their PI (e.g., Keshavamurthy and Kieu, 2021; Kieu
and Moon, 2016), thus preventing one from quantifying
TIP reliably.

Despite such an inconclusive range for TIP, the
potential existence of low-dimensional intensity chaos
is itself important from several angles. First, this low-
dimensional attractor helps justify why forecasters can
use only a few bulk numbers such as the maximum
surface wind (V_.J), the minimum central pressure (P ),
cloud top temperature, or storm size to characterize a
TC, instead of all possible details about TCs. This is also
consistent with the fact that TC intensity models with
only a few degrees of freedom could capture some broad
properties of TC intensity as shown in previous studies
(e.g., Emanuel, 2003; DeMaria, 2009; Schonemann and
Frisius, 2012; Kieu, 2015; Wang et al., 2021).

Second, the existence of low-dimensional chaos
indicates that PI should not be represented by a single
V.. value as in the current PI framework. Instead, the
maximum intensity that a TC can get must vary within
a range around the PI equilibrium, regardless of how
perfect an environmental condition or a TC model is. As
a result, this intrinsic variability of TC intensity will act as
a “noise” level in any TC intensity statistics that one has
to take into account when projecting any change of PI
under different climate conditions.

Third, the PI equilibrium is no longer just about V-
Instead, PI has to be characterized by other features
as well such as the warm core anomaly, the maximum
radial wind (U__) in the boundary layer, the radius of
maximum wind (RMW), or the maximum eyewall vertical
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motion (W__). Therefore, any factor that can influence
other dimensions of PI would cause strong fluctuation in
TC intensity, regardless of whether V__is equal to PI or
not as discussed in Kieu (2015).

While both idealized simulations and real-time
forecast verification strongly hint at a possible existence
of TC intensity chaos, examining this intensity chaos and
the related TIP turns out to be difficult due to the various
ways that one can define a reference climatology for TC
intensity in practice. Note again that predictability is not
a universal measure, as it must be associated with one
specific variable over a specific period during which a
reference climatology is constructed. Thus, predictability
can be different for different intensity metrics. Because
of this metric dependence, any estimation of TIP must
be tied to a specific intensity metric and its climatology.

Given such important implications of intensity
chaos and the uncertainty in estimating TIP, a better
understanding of TC intensity chaos is needed so that
a more accurate range for TIP can be obtained. In the
next, we will present our examination of TC intensity
chaos within a framework of deterministic chaos, which
is suitable for point-like intensity metrics such as V_
or P__. Details of our machine learning (ML) approach
for chaotic systems are provided in Section 2. Section 3
presents the details of ML models, followed by the main
results in Section 4 and concluding remarks in Section 5.

2. METHODOLOGY

2.1. MAXIMUM INTENSITY EQUILIBRIUM

If the PI equilibrium is the only possible state of TC
development whose statistical properties are stationary
for intensity climatology, how can we use this equilibrium
to examine TC intensity chaos? In this study, we will
follow the same approach as in Kieu et al. (2022) and
assume that the PI equilibrium can be characterized by
a low-dimensional phase space where chaos manifests.
Note that Kieu et al’s approach based on the phase-
space reconstruction method to directly search for the
dimension of a chaotic attractor contains significant
subjectivity and is sensitive to data noise (e.g., Kantz and
Schreiber 2003). Here, we propose to use ML to quantify
the TIP range, which can also confirm the existence of TC
intensity chaos, albeit less directly as compared to the
phase-space reconstruction method.

A key part in searching for chaos at the equilibrium
is therefore to obtain first a statistically stable PI state
so that one can analyze it. Given such a state, one can
then extract the time series of key TC scales suchasU,__,
V. o W__ orP . which can serve as input features for
ML training. Details of a long simulation of TC intensity
that ensures such a stable PI state and how to extract
the required data for the ML approach will be given in
Section 3, which are identical to those used in Kieu et
al. (2022).

2.2. MACHINE LEARNING APPROACH

Broadly speaking, machine learning (ML) can be
considered as a framework that can search for rules from
data. Givenan ML architecture,ameasure of accuracy, and
input data, the rules can be obtained within a prescribed
level of accuracy. The key advantage of ML in practical
applications lies in its ability to learn rules from input data
without a priori knowledge, provided that the input data
is sufficiently good (i.e., the input data can ensure several
criteria including i) comprehensiveness, ii) relevancy, ii)
consistency, and iv) uniformity.) With an inherently large
volume of data, climate and weather prediction provide
a great domain for ML applications, which justifies the
surge of ML applications in atmospheric science recently.

Specifically for TC intensity, ML offers a unique way
to study low-dimensional chaos. To set up a context for
applying ML to our TC intensity chaos problem, we will
focus hereafter on supervised ML, which requires a set of
input data and corresponding targets (labels) for training
an ML model. At a basic level, supervised ML models need
a surjective mapping between an input training dataset
(7) and a target dataset (£) (i.e., one y € £ will have at
least one x € T') so that the training can be carried out.
For a typical time-prediction problem (i.e., given a state
of a system at one time t = 0, one needs to predict the
state of the system at a later time t =), this mapping
can be considered as a propagator from a given initial
condition to the later time 7. Mathematically, such a
propagator can be expressed as x(r)=M(7)x(0), where
M(r) is the propagator from t = 0 to 7 and x(t) is the model
state at time t.

For a full-physics model, M(r) is nothing but a
numerical model with governing equations integrated
fromt =0 to t=7. For ML, M(7) is a however nonlinear
operator that is learned from a training dataset. In
principle, the more data we have, the better an ML model
can search for underlying rules and build M(r) without
any physical equations. Thus, we can feed an ML model
with a large amount of data, and let it figure out the
best possible relationship between t = 0 and t=r. For
deep learning that is based on neural networks, an ML
model with sufficient layers and depth should capture a
nonlinear mapping between two time slices, making it
suitable for TC intensity prediction.

From this perspective, it is immediate that chaotic
systems will pose a challenge to any ML model, because
one input may give totally different outcomes after
reaching predictability limit T (ie., one xe€7 would
give two different y,, y, €L, Vr>T, where two input
X,, X, are practically considered to be the same as x if
their difference is within some measurement errors,
| x; —x| <¢i=1,2 for a sufficiently small uncertainty e).
So, there exists no longer a good mapping between the
training and the label datasets, and ML models cannot
learn any rule from data.

The deterioration of ML models after entering the
chaotic regime as described above suggests, however,
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a unique way to study chaotic systems. Specifically, we
will search for a lead time T beyond which an ML model
can no longer be trained from any input dataset, which
gives us a direct estimation of the predictability range for
a chaotic system. This approach is natural in the sense
that an ML model should generally be able to predict the
next state of a system from a given input, if the system
remains predictable and sufficient training data is
provided. As soon as the system enters a chaotic regime,
ML models are no longer trainable. From this perspective,
ML models are naturally a great tool for studying chaos.

Ouraforementioneduse of MLtoexaminepredictability
is well suited for TC intensity, as this approach serves two
purposes: i) it verifies if a low-dimensional representation
is sufficient for TC intensity, and ii) it helps estimate the
TIP range in that low-dimensional phase space. Our
underlying hypothesis is that an ML model can predict
TC intensity in a low-dimensional phase space, whose
dimensions correspond to several basic TC scales, up to
a certain lead time T. Beyond this lead time T, ML models
can no longer be trained to predict TC intensity, thus
revealing TC low-dimensional chaos and providing us an
estimation for TIP.

The results in Kieu et al. (2022) provide a pathway
to verify this hypothesis with ML. Specifically, we will
assume that TC intensity can be described by four
dimensions corresponding to four TC scales including
Viox Umao Wingo GNd P While it is not known in advance
the exact dimension of the PI attractor, Kieu et al. (2022)
suggested that a minimum dimension of 4 should
be sufficient to capture TC intensity chaos within the
deterministic framework. As such, we will treat these
four dimensions as input features for several ML models
to be presented in Section 3b. With these ML models, we
can examine how they forecast intensity at different lead
times and estimate the TIP range as expected.

3. EXPERIMENTAL DESIGNS

3.1. CM1 MODEL CONFIGURATION

In this study, the same axisymmetric configuration of
the Cloud Model (CM1) (Bryan and Fritsch (2002) was
used as in Kieu et al.’s study (2022), which produces a
quasi-stationary PI state during a long integration of 100
days. This model configuration has 360 grid points on a
stretching grid in the radial direction, with the highest
resolution of 2 km in the vortex’s inner core region
and stretched to 6 km in the outer core region. Unlike
the radial direction, the model was configured with 61
levels in the vertical direction, with a fixed resolution of
0.5 km. This fixed vertical resolution was found to be
more numerically stable and also less restrictive when
choosing the number of vertical levels. In addition, we
applied the open-radiative lateral boundary conditions
option to the radial direction, and free (no) slip boundary
to the top (bottom) boundary in our simulation. The

model was initialized from the tropical Jordan sounding
on an f-plane, with fixed sea surface temperature
(SST)=302.15K.

Similar to the results in Hakim (2011) and Kieu and
Moon (2016), a long simulation of a quasi-stationary
TC intensity with the CM1 model would require a proper
choice of model physics to avoid the gradual change in
TC environment inside a box domain, which can cause
decaying due to the transport of low angular momentum
in the outer core region. A simple treatment for this
environment change is to apply a fixed Newtonian
cooling relaxation of 2 K day-1, as in Kieu et al. (2022),
which can result in a quasi-stationary maximum
intensity equilibrium in the CM1 simulation for 100 days.
Along with this radiative forcing, a suite of other physical
parameterizations were also used, which include the
YSU boundary layer scheme, the TKE subgrid turbulence
scheme, and the explicit moisture Kessler scheme with
no cumulus parameterization.

With the PI equilibrium in our 100-day simulation
established, the model was then output at every time
step of 36 seconds, producing a dataset of length
~ O(10°). All time series of four major TC scales including
vV .U W_  andP_ were extracted from the model
output and further split into three subsets for ML
training—the training, validation, and test sets with a
ratio of 90%, 5%, and 5%, respectively. To ensure that all
data are selected at the PI equilibrium, the first 10 days
of simulations were discarded. Other details of this CM1
100-day simulation can be found in Kieu et al. (2022),
and so we do not repeat them here.

3.2. DEEP-LEARNING MODELS

Given the low dimensionality of feature vectors used for
our ML training, we present in this study several deep-
learning models for TC intensity prediction. Specifically,
three popular ML architectures including a deep neural
network (DNN) model, a gated recurrent unit (GRU)
model, and a long-short term memory (LSTM) were
implemented. The applications of these deep learning
models in the weather domain have been rapidly
growing due to their capability as well as the availability
of computational resources, which help accelerate
their execution for practical problems. With four TC
scales as input features and one real-value output V,_
representing TC intensity, predicting TC intensity with the
above ML models thus becomes a familiar supervised
regression problem for which these ML models fit very
well.

For our TC intensity prediction with DNN, a simple
design of 3 hidden layers with layer sizes of 32, 64,
and 64 was used, followed by an output layer of size 1
that corresponds to V__ . Each neural layer was applied
a standard RelLU activation, which helps ML models
capture nonlinear effects and increase the interaction
among layers. One could certainly design a deeper
neural network for a more complex relationship between
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input and output layers. However, our experiments with
different DNN designs showed very little improvement for
more than 3 hidden layers when predicting TC intensity in
a low-dimensional input space. As such, a fixed design of
32, 64, and 64 nodes was used.

For LSTM and GRU, these are recurrent neural models
that further require a data interval in the past to capture
the memory in the training data. Our model architectures
for these LSTM and GRU models thus need some additional
setup. Specifically for these recurrent network models, we
used a range of time slices, i.e, t;, i €[-M, 0], as input for
LSTM/GRU models when predicting TCintensity at any given
lead time. Here, M determines the number of time slices
in the past that are needed for recurrent networks, which
varies from 5-20 in this study. To avoid overfitting during
the training process, we also used three layers of size 16,
32, and 64, with a dropout rate of 0.5. Technically, dropout
is a type of reqularization that can help reduce overfitting
in ML models. There is no particular formula to choose the
value for this hyperparameter, other than empirical trials.
For our intensity chaos problem, this dropout turns out to
be important to ensure good model performance.

All of these ML models employed the mean absolute
error (MAE) metrics for the accuracy and the root mean
squared errors for the loss function, with a fixed number
of training epochs set to be 200. The standard optimizer
for the gradient search based on the stochastic mini-
batch learning method, the so-called Root Mean Squared
Propagation (RMSprop), was applied to all training. Because
of the different scales of the wind and pressure variables,
all input data was normalized by the standard deviation
around their mean value, which corresponds to the PI state
of the model vortex at the quasi-stationary equilibrium.

4. RESULTS

4.1. PREDICTABILITY LIMIT ON ATTRACTOR
Given the current definition of TC intensity in terms of the
maximum 10-meter wind, we examine first TC intensity
chaos using V_as a metric for TC intensity in our ML
models. Recall here that, if TC dynamics possesses chaos
at the PI equilibrium, then TC intensity should have a
limited predictability range that dictates the value of
TIP. Thus, a finite TIP range can serve as a proxy for the
existence of TC intensity chaos that we are searching for.
In this regard, Figure 1 shows the training absolute
mean error as a function of epochs (iterations) for three
models at three forecast lead times including 3 minutes,
1 hour, and 3 hours. One notices indeed that the training
errors rapidly decrease for =3 minutes in all three ML
models (black curves in Figure 1), reaching a relative
minimum error of = 0.05, 0.12, and 0.22 for LSTM, GRU,
and DNN models, respectively. Looking at the correlation
between the ML forecast and the true TC intensity for the
test data in Figure 2 (red points), it confirms that all ML
models could predict very well TC intensity variability for
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Figure 1 ML accuracy metric based on the mean absolute
error (dotted lines) during the training process as a function
of iterations (epochs) for three different ML models a) LSTM,
b) GRU, and ¢) DNN at forecast lead times of 7 = 3 minutes
(black), 1 hour (red), and 3 hours (blue). All absolute errors
are normalized by the errors at the first iteration (epoch 1)
for better comparison among different lead times. Solid

lines denote the mean absolute errors for the corresponding
validation dataset in each training process, and the recurrent
timesteps M = 5.

the short lead time 7=3 minutes in the 4-dimensional
phase space. This result is noteworthy, because these ML
models require a minimum number of input features, yet
they could produce a good forecast of TC intensity based
solely on training data. From this perspective, Figures 1
and 2a help confirm that a low-dimensional phase space
suffices to predict TC intensity variability at least for
a short lead time, without any physical or governing
equations.
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Figure 2: Scatter plots of the ML-predicted TC intensity
anomaly (x-axis) and the CM1 true intensity anomaly (y-axis)
for a test dataset taken between t = 90-100 days of the

CM1 simulation at three lead times: 7 = 3 minutes (red), 1

hour (black), and 3 hours (blue) for a) LSTM, b) GRU, and ¢)
DNN model. Note that TC intensity anomaly is relative to the
average PI value of 84 ms™ and normalized by its standard
deviation o, =7.5ms™ L. The R values for each lead time best fit
are also provided in each panel.

At the 1-hour lead time, Figure 1 (red curves) shows,
however, that all three ML models start losing their
ability to be trained quickly. By 3 hours (blue curves), all
ML models can no longer be trained, with their errors

roughly the same =75-85% relative to the initial error
value during the entire training period no matter how
many epochs are used. Their predictions for the test set
at the 3-hour lead time display almost completely no
correlation to the true intensity (Figure 2, blue dots). This
result reveals that 7 =3 hrs is the longest lead time that
these ML models can predict TC intensity at the PI limit.
It is of interest is that this estimation is also consistent
with the estimation from attractor invariants based on
a leading Lyapunov exponent and the Sugihara-May
correlation in Kieu et al. (2022), which showed that TC
intensity loses predictability in just #3-6 hours as soon
as TCs reach their PI equilibrium.

The dependence of these ML-based intensity
predictions on forecast lead times is best seen when we
compare these predictions to a reference (or climatology)
forecast, which is taken to be a simple average of V_
at the PI equilibrium. Figure 3a shows the forecast skill
of three ML models relative to this reference forecast as
a function of lead times. It is apparent from Figure 3a
that ML models perform best for 7 <3 hours. Beyond
this, the ML-based prediction skill is no better than a
simple forecast using just the averaged V__ at the PI
equilibrium. This short predictability is further supported
by the error growth curve (Figure 3b), which displays a
typical behavior of chaotic systems with rapid error
growth during the initial period and reaching a saturation
level after = 3 hours.

We emphasize that the decaying of the ML-based
forecast skill with 7 does not hold true for any system. In
fact, a simple experiment using purely random data as an
input for ML training would result in zero forecast skill at all
lead times (not shown). This is because the information
from one time step does not have any influence on the
next, and so ML models cannot learn anything. On the
other hand, for completely periodic systems, the forecast
skill will always take a constant value of 1 for all lead
time 7 as discussed in, e.g., Sugihara and May (1990).
As such, the decaying curve of the forecast skill or the
error growth curve shown in Figure 3a-3b is an inherent
characteristic of chaotic systems, which is captured by
our ML models.

Given the average V = 84 ms? with a standard
derivation is 7.5 ms™? at the PI equilibrium, the TIP
range obtained from Figure 3a implies further that TC
intensity must vary indistinguishably within an interval
of 84 + 7.5 ms™ after just 3 hours, even for a perfect
TC model. This TIP range may even be shortened if
stochastic forcings, asymmetric processes, or model
internal errors are taken into account as discussed in
Nguyen et al. (2020) or Kieu et al. (2022), which are,
however, beyond the scope of our study here. Despite
these issues, the results obtained from our ML models
herein can at least advocate the existence of intrinsic
variability of TC intensity due to chaotic dynamics, which
prevents the absolute intensity errors in any TC models
from being reduced to zero.
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Figure 3 a) Forecast skill of three ML models LSTM (blue), GRU (red) and DNN (black) as a function of lead time relative to the
reference forecast that uses the average V,_ value at the PI equilibrium, and (b) similar to (a) but using P_._for TC intensity. Here,
the forecast skill is defined as 1-MAE, /MAE ), where MAE,, and MAE, are the mean absolute errors from the ML predictions and
reference prediction of TC intensity over the test dataset, respectively.

Among the three ML models, it should be mentioned of the P forecast skill in Figure 3c well accords with
that LSTM and GRU appear to perform best in terms of slower error growth and a longer time to reach the error
either the training/validation mean errors due to their saturation as shown in Figure 3d, similar to what was
use of extra past information (Figure 1-2) or forecast skill obtained from the phase-space reconstruction method
(Figure 3a). This past information contains some temporal in Kieu et al. (2022).
relationships that help improve future prediction. Thus, The fact that these ML models capture such a
LST/GRU presents a very different way of forecasting as different predictability range between V__ and P__is
compared to the traditional approach based on physical intriguing. Recall that vV and P, are highly correlated in
principles. To some extent, recurrent networks improve terms of temporal variability due to their pressure-wind
their prediction in the same way that four-dimensional relationship. However, P represents the total mass at
data assimilation optimizes an initial condition over an the storm center while V__fluctuates more vigorously
interval instead of just a single time slice. Despite this due to fine-scale processes at each model grid point. As
extra information from the past, the predictability of V_ such, P . tends to better display a slow component of TC
could not be lengthened beyond 3 hours in both LSTM dynamics, which ML models could somehow detect even
and GRU models as shown in Figures 2-3. when training data contains strong fluctuations from the

wind field. From this standpoint, using P_. for TCintensity
4.2. METRIC DEPENDENCE could lengthen the range of intensity predictability for
Because predictability is metric-dependent, an apparent operational forecasts as previously noticed (e.g. Kieu et
question is how the estimation of TIP changes when al.,, 2022; Klotzbach et al. 2020; Magnusson et al., 2019).
using P, for TC intensity instead of V_ . In this regard, Regardless of intensity metrics V__ or P . the above
Figure 3c-d shows the ML-based forecast skill and error results reiterate the finite range of TIP as obtained from
growth curve for P_.as a function of lead time for three different ML models. Such a finite range is in fact held
ML models, similar to Figure 3a-b. It is of significance for all TC scales that we have examined, not just P_
to observe that all models could again capture similar or V__. Hence, the existence of low-dimensional chaos
decaying of the P___forecast skill, but with a significantly of TC dynamics as captured in our ML models is well
slower rate and thus a longer TIP range of ~8-9 hours supported, even though we do not currently know any

as compared to 2-3 hours for V__. Such slower decay mathematical model that can describe this chaotic
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dynamics of TC intensity in a low-dimension phase space.
In particular, the existence of TC intensity chaos derived
from this TIP information confirms that a part of intensity
variability in TC models must be inherent to TC dynamics,
which cannot be removed from model outputs simply by
improving the model physics or initial conditions.

4.3. SENSITIVITY EXPERIMENTS

To further address the robustness of our results, this
section presents some additional experiments in which
more input features, different recurrent windows M,
and a coarser sampling frequency (30 minutes) for
input training data are used. Note that these sensitivity
experiments cover just a small part of possible
sensitivities that one can examine. For example, one can
design deep neural networks with an arbitrary number
of layers, nodes, dropout rates, or data augmentation.
Within the scope of this study, we will however limit
our sensitivity experiments to several key experiments,
which suffice to highlight the important points that we
want to present herein.

Figure 4a-4b show the forecast skill and the
error growth of V__ for the first group of sensitivity
experiments for which the recurrent timesteps M =5, 10,
20 at a sampling frequency of 30 minutes. Recall from
Section 3.2 that M determines how many time slices in
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the past up to a present time t will be used to predict
the future state at t+ 7. Thus, a larger M (i.e., a longer
window of past information) would allow for more input
information, and should increase the forecast skill of ML
models.

As seen in Figure 4a-4b, forecast skill in these
sensitivity experiments all decays quickly during the
first 3 hours across the models and recurrent window
M, similar to the control settings in Figure 3a-3b. For
each model, note however that the longest window
M = 20 (dotted line in Figure 4a) appears to be slightly
more skillful as compared to the shorter ones, which can
be seen in all models. This indicates that longer input
windows for recurrent models appear to help improve a
forecast skill for chaotic systems, albeit marginally.

The most significant change in these sensitivity
experiments is, however, a small but persistent skill of
all ML models relative to the reference forecast, even at
long forecast lead times 7> 3 hours (Figure 4a). Such a
marginal skill is due to the coarser sampling frequency
of input data, which eliminates fast fluctuation in the
training data and results in some skill relative to the
constant reference forecast. From the error growth
perspective, it is seen however that there is no significant
change in the time needed for the model forecast error to
reach its saturation (Figure 4b). All ML models display the
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Figure 4 Similar to Figure 3a-3b, but for sensitivity experiments using (a)-(b) different past windows M =5 (solid), 10 (dashed), and
20 (dotted); and (c)—(d) adding new input features including the radius of maximum wind (R) and the warm core anomaly (7).
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same error growth saturation after =3 hours, which is an
intrinsic property of a chaotic system and independent of
how reference forecasts are defined.

Our sensitivity experiments with more input
features capture a similar behavior of the error growth
and forecast skill as in the recurrent time window
experiments (Figure 4c-4d). Specifically, adding more
features such as RMW, warm core anomaly (T’), or
both does not improve the TIP range. That is, both
forecast skill and error growth show rapid decay/
increase during the first 3 hours and then approach
a saturation limit afterward. This result supports the
existence of low-dimensional chaos for TC intensity in
the sense that more dimensions in the phase space will
not help improve any estimation of attractor invariants
as discussed in Kantz and Schreiber (2003) or Kieu et
al. (2022). The consistent TIP estimation among ML
models and sensitivity experiments as shown above,
therefore, confirms the robustness of our finding about
the existence of low-dimensional chaos for TC intensity.

5. CONCLUSION

Inthis study, we presented a different use of ML to search
for chaos in TC intensity. Our underlying assumption
was based on the premise that TC intensity at the PI
equilibrium can be characterized by a low-dimensional
phase space. By treating the dimensions of TC intensity
attractor as input features for ML training, the skill of
ML prediction can be estimated as a function of forecast
lead times. The maximum lead time that ML models
can no longer provide skillful TC intensity prediction
dictates the range of intensity predictability, which
is 2-3 hours as obtained from our axisymmetric CM1
simulation under a fixed environmental condition. The
predictability range could be lengthened up to 8-9 hours
if the minimum central pressure is used for TC intensity
instead of V__, yet the limited predictability for TC
intensity is still observed in all ML models and sensitivity
experiments. As a result of this finite predictability limit,
the existence of TC intensity chaos within an idealized
environment is established.

While a finite TIP range could reveal the existence
of TC intensity chaos, we emphasize that the practical
application of such aTIPrange for real TCintensity forecast
is very limited. This is because the practice of TC intensity
forecast requires the prediction of TC intensity from the
very early development of a TC to the final dissipation
stage. At no time do forecasters wait until a TC reaches its
maximum intensity to predict its intensity. Also, real TCs
constantly move from one environment to the next such
that it is not feasible to select just the mature phase to
analyze TC intensity predictability. From this regard, our
results do not imply that real-time TC intensity forecasts
have a short practical predictability range of 3-6 hours.
Instead, our results simply show that TC dynamics

possesses a chaotic behavior at the maximum intensity
stage, with a natural variation of about 7.5 ms* as
obtained from CM1 axisymmetric simulations. Although
this intrinsic variation of TC intensity is sensitive to model
dynamics, physical parameterizations, or boundary
conditions, the existence of such an intrinsic variability
is itself important, because it sets a limit on how much
one can reduce the absolute intensity error in real-time
intensity forecasts. For a chaotic system, no matter how
perfect a model or aninitial condition is, one cannot bring
the absolute intensity errors below this natural variability
threshold, which highlights the significance of our results
in this study.

It should be also mentioned that our ML-based
estimation of TIP and the resulting intensity chaos were
obtained from an assumption that TC intensity can be
characterized by a phase space consisting of U__, V.,
W. . P, RMW, or T'. How this TIP range changes in
higher dimensions or with a different set of phase space
variables remains elusive at present. Nonetheless, the
insofar consistency among different ML models and TIP
estimation methods highly indicates that adding more
dimensions or variables may not improve much the
predictability range obtained herein. In particular, the
finite range of TIP, which is a manifestation of TC intensity
chaos, is expected to remain valid regardless of its exact
value. The results in this study, thus, present a unique use
of ML for quantifying TIP, which is very generic and can
be applied to any chaotic system. So long as a dynamical
system contains low-dimensional chaos, one can always
use the data on those dimensions as input features for
ML training to search for the range of predictability as
expected.

As a final note, we stress that, beyond the point-
like intensity metrics such as V__or P one can also
examine TIP from a multi-scale error growth framework
as for turbulent systems. In this multi-scale framework,
a prerequisite is the existence of a fully-developed
homogeneous and isotropic state such that its energy
spectrum and related error growth can be measured
(Durran and Gingrich, 2014; Leith and Kraichnan, 1972;
Lorenz, 1969; Métais and Lesieur, 1986; Rotunno and
Snyder, 2007). As discussed in Kieu and Rotunno (2022),
TC dynamics is, however, generally nonhomogeneous,
even at the quasi-stationary PI equilibrium. Unlike a
homogenous turbulence for which all points are equally
important, TCs possess an eye whose dynamics and
thermodynamics are different from the rest. Using
spectral analyses, Kieu and Rotunno (2022) showed, in
fact, that the power spectrum of kinetic energy is different
between these radial and azimuthal directions. In both
directions, the error growth approaches a saturation
limit between 9-18 hours, again suggesting limited
predictability for TC intensity from the energy spectra
perspective. Quantifying the TIP range in this multi-scale
framework requires an error growth equation for each
direction that is beyond the scope of ML applications.
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Thus, we have not applied ML to studying TC intensity
predictability within the multi-scale framework in this
study.
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