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SYNCHRONIZING DYNAMICAL SYSTEMS: THEIR
GROUPOIDS AND C*-ALGEBRAS

ROBIN J. DEELEY AND ANDREW M. STOCKER

ABSTRACT. Building on work of Ruelle and Putnam in the Smale space case,
Thomsen defined the homoclinic and heteroclinic C*-algebras for an expan-
sive dynamical system. In this paper we define a class of expansive dynamical
systems, called synchronizing dynamical systems, that exhibit hyperbolic be-
havior almost everywhere. Synchronizing dynamical systems generalize Smale
spaces (and even finitely presented systems). Yet they still have desirable dy-
namical properties such as having a dense set of periodic points. We study var-
ious C*-algebras associated with a synchronizing dynamical system. Among
other results, we show that the homoclinic algebra of a synchronizing system
contains an ideal which behaves like the homoclinic algebra of a Smale space.

INTRODUCTION

The theories of C*-algebras and dynamical systems are connected at a deep and
fundamental level. C*-algebras can be constructed from dynamical systems by
associating a groupoid to the dynamical system and then forming the associated
C*-algebra(s). This allows for the construction of many interesting C*-algebras. In
addition, the K-theory of the associated C*-algebra is an invariant of the original
dynamical system and hence can be used to distinguish different dynamical systems.

One important example of this process is the use of C*-algebras in the study of
Smale spaces, an important class of dynamical systems. In the present paper, a
dynamical system is a pair (X, ¢) where X is a compact metric space and ¢ : X —
X is a homeomorphism. A Smale space is a dynamical system that is hyperbolic in
a uniform way; this is made precise using a map called the bracket. Ruelle [24] and
Putnam [19] introduced C*-algebras associated to a (mixing) Smale space and based
on the efforts of many people these C*-algebras are at this point well-understood
at least from the perspective of Elliott’s classification program, see [21, 3, 4].

Based on the success in the Smale space case, it is natural to consider general-
izations to larger classes of dynamical systems. There are (at least) two natural
choices. Firstly, one can consider finitely presented systems [8], which are quite
close to Smale spaces in terms of their dynamical properties. Secondly, one could
consider expansive dynamical systems. A dynamical system, (X, ¢), is expansive if
there is a constant ex > 0, such that for any z,y € X,

d(e™(x),¢"(y)) <ex for alln € Z
implies x = y.
This definition is deceptively simple. On the one hand, the class of expansive
dynamical systems is incredibly large and they are in particular a vast generalization
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of Smale spaces. On the other hand, expansive dynamical systems retain some form
of hyperbolic structure. A precise example of this last informal statement is the
existence of the adapted metric on an expansive dynamical system, see [8]. To
summarize the relationship, we have that

(X, ) is a Smale space = (X, ) is finitely presented = (X, ) is expansive

In [31], Thomsen generalizes the constructions of Ruelle and Putnam to any
expansive dynamical system. However at present the C*-algebras associated with
an expansive dynamical system are not well-understood. Based on examples it is
clear that many techniques used to study Smale spaces and their C*-algebras do
not generalize to the collection of all expansive dynamical systems. For example
Toeplitz flows are minimal shift spaces — hence they are expansive systems which,
in the non-trivial case, do not contain periodic points [5]. This makes Thomsen’s
construction of the heteroclinic algebras not applicable, see [31, Chapter 4].

The goal of this paper is two-fold. Firstly, we isolate a class of expansive dynam-
ical systems that is more general than Smale spaces (and even more general than
finitely presented systems), but for which many Smale space techniques can still
be applied. These systems will be called synchronizing dynamical systems. Our
second goal is to study the structure of Thomsen’s C*-algebras for this class and
contrast these results with the Smale space case.

A point in an expansive dynamical system is called synchronizing if it has a local
product neighborhood, see Section 3 for the precise definition. The importance
of local product structure is well established in the study of dynamical systems.
However, the formulation given here (which very much builds on work of Fried [8])
seems to be new; the term synchronizing is rooted in the theory of subshifts and
the precise connection is discussed in [29].

A synchronizing dynamical system (which we refer to as a synchronizing system)
is an irreducible expansive dynamical system that has at least one synchronizing
point. It follows from the definitions of irreducible and synchronizing point that
the set of synchronizing points in a synchronizing system is open and dense. Fur-
thermore, Smale spaces are exactly systems in which each point is synchronizing.
Also, every irreducible finitely presented system is synchronizing. However, even
when one restricts to the study of subshifts, there are many interesting examples of
synchronizing systems that are not finitely presented. In summary, synchronizing
systems are a significant generalization of Smale spaces, but the existence of a local
product neighborhood for “most” of the points allows one to apply Smale space
type techniques.

With the relevant class of dynamical systems now determined, our results take
three general forms: purely dynamical, groupoid related, and C*-algebraic. The
most important dynamical result is that the set of periodic points is dense in a
synchronizing system. This is also the most involved proof in the paper. This result
is related to a result of Artigue, Brum, and Potrie in [2]. There are two differences
between them. Firstly, the result in [2] only applies to manifolds. Secondly, the
result in [2] assumes that there is a dense set of hyperbolic periodic points and
proves that there is an open and dense set of points with local product structure.
Our result is in the other direction and does not make any assumption about the
underlying space (beyond it being a compact metric space).

The groupoid and C*-algebraic results are very much intertwined. A prototypical
result is that the set of synchronizing points is invariant under the local conjugacy
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relation; the C*-algebraic implication is that there is an ideal corresponding to the
restriction of the local conjugacy relation to the synchronizing points. This ideal
behaves in many ways like the homoclinic algebra of a Smale space.

As mentioned above, (irreducible) finitely presented systems are synchronizing.
For such systems, our results take their most definitive form (the reader will find
all relevant definitions in the main body of the paper):

Theorem 0.1. Suppose (X, p) is a mizing finitely presented system and P C X
a finite set of synchronizing periodic points. Then, the groupoids Gi‘;nc(X, ®),
G'(X,p, P), and G'**(X, ¢, P) are each amenable and

0— IsynC(Xv o) — A(X,p) — A(X, @)/IsynC(Xv ) —0

is an exact sequence of C*-algebras, where

(1) Zoyne(X, @) is Morita equivalent to S(X, ¢, P) @ U(X, ¢, P) and
(11) Loyne(X, @), S(X,p, P), and U(X, p, P) are all simple.

In contrast, for a mixing Smale space, the homoclinic algebra is simple and is
Morita equivalent to the tensor of product of the stable and unstable algebras (that
is, A(X, ¢) is Morita equivalent to S(X, ¢, p) @ U(X, ¢, p) in the Smale space case).
Thus, it is the ideal Zsyno (X, ¢) that has similar properties to the homoclinic algebra
of a Smale space. On the other hand, there are examples where Zgyno(X, ¢) is not
Morita equivalent to the homoclinic algebra of a Smale space. This means that we
are dealing with a strictly larger class of C*-algebras. This particular result along
with many more about synchronizing shift spaces can be found in [30] (also see
20]).

There are many open questions concerning synchronizing systems (and more
generally expansive systems) and the associated groupoids/C*-algebras. For exam-
ple, an important open problem is whether the homoclinic groupoid of a general
expansive system is amenable. This question is even open in the finitely presented
case; although we do prove that the groupoid associated to the synchronizing points
is amenable in the finitely presented case and prove that the homoclinic groupoid
is amenable when there are finitely many non-synchronizing points and the system
is finitely presented.

The structure of the paper is as follows. We begin with the required preliminaries.
This includes a discussion of expansive dynamical systems and the subclasses of
Smale spaces and finitely presented systems. The precise formulation of a local
product structure is developed in Section 2. Much of this is based on work of Fried
[8]. The definition of synchronizing dynamical system and a proof that periodic
points are dense in such a system is given in Section 3. Various groupoids and their
C*-algebras are introduced and studied in Sections 4 and 5. This builds on work
of a number of people, most notably Putnam, Ruelle, and Thomsen. Finally, the
structure of the homoclinic algebra of a mixing finitely presented system is studied
in Section 6.
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1. PRELIMINARIES

1.1. Expansive dynamical systems. In our context, a dynamical system is a pair
(X, ¢) where X is a compact metric space and ¢ : X — X is a homeomorphism.
We will typically assume that X is infinite. If x € X, then the orbit of = is the set

{¢"(2) n e Z}.

Definition 1.1. A factor map between the dynamical systems (Y, ) and (X, p)
is a surjective continuous map 7 : Y — X such that m oty = pom. In this situation
we say that (X, ) is a factor of (Y, ). If 7 is in addition a homeomorphism then
we say that (X, ) and (Y, ) are (topologically) conjugate.

Definition 1.2. A dynamical system (X, ¢) is called expansive if there is a constant
ex > 0, called the ezpansiveness constant of (X, ¢), such that for any z,y € X,

d(e™(z), 0" (y)) <ex foralln € Z
implies x = y.

Example 1.3. If (X, o) is a shift space, then it is expansive. In fact, every zero
dimensional expansive system is topologically conjugate to a shift space, see [20,
Theorem 2.2.8] and [15].

We will see many other examples of expansive dynamical systems. For an exam-
ple of a non-expansive system, we have the following.

Example 1.4. Suppose that (X, ¢) is a dynamical system with ¢ an isometry,
meaning that

d(e(z1), p(x2)) = d(z1,x2) for each x1,22 € X.
Then (X, ¢) is not expansive.

Definition 1.5. Let (X, ) be a dynamical system. We say that € X is non-
wandering if for every neighborhood U of z there exists an n > 0 such that
e"(U)NU # 0. We let the non-wandering set be the set QX,¢) = {z € X |
x is non-wandering}. If every x € X is non-wandering we say that (X, ¢) itself is
non-wandering.

If X is a compact metric space and ¢ is a homeomorphism then Q(X ¢) is in fact
a non-empty closed subset of X which is invariant under , making (Q(X ), elag X#,))
a non-wandering dynamical system [32].

Definition 1.6. Let (X, ) be a dynamical system. A periodic point is a point
p € X such that ¢"(p) = p for some n > 1. If n = 1 then p is called a fized point.
We define the sets

Per, (X, ) ={p € X [ ¢"(p) = p}
for each n > 1. We also define the union of these,

Per(X, QD) = U Pern(X; 90) P

n>1

which is the collection of all periodic points in (X, ¢).
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Note that a periodic point is clearly non-wandering, so we have that Per(X, ¢) C
Q(X, ). We will find that many expansive dynamical systems have a dense set of
periodic points. An interesting fact about expansive systems is that Per, (X, ¢)
must be finite for any n. We will also use the fact that if (X,¢) and (Y,¢) are
dynamical systems and 7 : Y — X is a factor map, then « (Per(Y,)) C Per(X, ¢).
This follows because for ¢ € Per,, (Y, 1) we have ¢"(n(q)) = 7(¢"(¢q)) = 7(q).

In addition to the above properties, we can also impose some global conditions
on the recurrent behavior of a dynamical system.

Definition 1.7. A dynamical system (X, ) is called irreducible if for any ordered
pair of non-empty open sets U,V C X there is an n > 0 such that o™ (U) NV # 0.

If X is a compact metric space and ¢ is a homeomorphism, then irreducibility for
a non-wandering dynamical system is equivalent to the existence of a dense orbit
in X, that is there is some x € X such that {¢"(z) | n € Z} = X [32]. Lastly, we
have the following definition.

Definition 1.8. A dynamical system (X, ¢) is called mizing if for any ordered pair
of non-empty open sets U,V C X there is an N > 0 such that ¢"(U) NV #  for
all n > N.

Note that, of the above three global recurrence properties, we have the following
implications
(X, ) is mixing = (X, ¢) is irreducible = (X, ¢) is non-wandering
but the converse of each implication above is not necessarily true.

There are several equivalence relations that we will use to understand the as-
ymptotic behavior of dynamical systems.

Definition 1.9. Let (X, ) be a dynamical system, then we have the following
equivalence relations on X.
(i) @ ~gy if and only if lim d(¢"(x),¢"(y)) =0,
n—oo
(ii) & ~y y if and only if ILm d(e™™(x), 9 "(y)) =0, and

(iil) z ~y, y if and only if 2 ~5 y and x ~y y.

If x ~g y we say that x and y are stably equivalent, likewise if x ~, y we say that
x and y are unstably equivalent. If x ~y y we say that x and y are homoclinic.
We denote the stable, unstable, and homoclinic equivalence classes of z as X®(z),
X"(z), and X"(z), respectively. If P C X is a finite set of periodic points, then we
will also denote X®(P) as the set

X3(P) = || X*(p)
peEP
and likewise for X"(P). Note that by Lemma 1.10, X*(p) and X*%(q) are disjoint
as sets if p # q.

These relations tend to only be interesting if there is some chaotic behavior in
(X, ¢). For example if ¢ is an isometry (so that (X, ¢) is not expansive) then x ~ y
if and only if x = y. We will use these relations to study the asymptotic behavior
in expansive dynamical systems. Below is a simple application of expansiveness
which will become useful later.
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Lemma 1.10. If (X, ) is an expansive dynamical system and p,q € Per(X, @) are
periodic points such that either p ~s q or p ~,, q, then p = q. In particular p ~p q
implies p = q.

We refer the reader to [29] for a proof.
1.2. Smale spaces.

Definition 1.11. A Smale space is a metric space (X,d) along with a homeo-
morphism ¢ : X — X with the following additional structure: there exists global
constants ex > 0 and 0 < A < 1 and a continuous map, called the bracket map,

[« ] {(my) e X x X id(z,y) <ex}— X
such that the following axioms hold
Bl [z,2] = x;
B2 [z,[y, z]] = [z, z] when both sides are defined;
B3 [[z,y], 2] = [z, z] when both sides are defined;
B4 ¢lx,y] = [p(z), ¢(y)] when both sides are defined;

C1 For x,y € X such that [x,y] =y, d(e(x), o(y)) < Ad(z,y);
C2 For x,y € X such that [z,y] =z, (¢~ (z), o (y)) < Nd(z,y).

We denote a Smale space simply by (X, ).

Examples of Smale spaces and an introduction to their basic properties can be
found in [18]. In particular, every Smale space is expansive. However, there are
expansive systems that are not Smale spaces. For example, a shift space is a Smale
space if and only if it is a shift of finite type, see [20, Theorem 2.2.8]. For more of
shift of finite type, see [14]. We discuss one explicit example for completeness.

Example 1.12. Consider the shift space X C {a,e, £} given by the following
graph G:

e

14010

£

That is to say that the elements are bi-infinite sequences of paths of edges from the
graph G; the self-homeomorphism is the shift map, see [14, Section 2.3] for more
details.

This is a shift space called the golden mean shift. It is conjugate to the shift of
finite type Xr C {0,1}% with the set of forbidden words F = {11}. To see this
observe that if we construct the edge shift for Xz with N = 2, we obtain the above
graph with the labeling a = 00, e = 01, and £ = 10 — see [14, Section 2.3] for
more details.

1.3. Finitely Presented Systems. The definition of finitely presented systems is
due to Fried [8]. There are several equivalent characterizations of finitely presented
systems in [8], but we will use the following characterization. An expansive dynam-
ical system (X, ) is called finitely presented if it is a factor of a shift of finite type.
As a class of dynamical systems, finitely presented systems include Smale spaces.
The shift spaces which are finitely presented systems are exactly the sofic shifts,
see [8] for details.
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In the next example, we discuss a particular sofic shift. Our discussion sum-
marizes a more detailed discussion of this shift in [14], see in particular Examples
1.2.4,1.5.6, and 2.1.5 in [14].

Example 1.13. One explicit example of a sofic shift is the even shift. It is a
nice example to have in mind when considering the definitions and theorems of the
paper. The even shift is the sofic shift space in the alphabet {0, 1} whose elements
do not contain any of the finite words in the set F' = {10%**11 | k£ > 0}. That is to
say that the elements of the even shift are bi-infinite binary sequences which have
an even number of consecutive zeros between any two ones. We will denote the
even shift as Xeven. We can see that the even shift is not a shift finite type since
there is no upper bound on the size of the words that we must forbid, that is to
say the countable set F' is a minimal set of forbidden words for Xeve,. However,
the even shift is indeed sofic since it admits the following graph presentation.

0

(P

0

In this case, the edge shift X coming from the unlabeled graph above is exactly
the golden mean shift discussed in Example 1.12. In other words, the even shift is
a factor of the golden mean shift.

It is important to note that the factor map 7 : X¢ — X may not be injective.
For example in the even shift there are two elements of X that get mapped to
the point 0 = ...00.000.... However in this case this is the only such point since
as soon there is a 1 in a sequence x € X, we know exactly which element in Xg
must correspond to it. This follows from the fact that there is only one vertex with
an arrow labeled 1 pointing to it. Hence 7 is injective on almost all points in Xg
except the two points that get mapped to 0.

We have the following theorem which says that all expansive homeomorphisms
of orientable surfaces are finitely presented, see [10, 9, 12, 2]. We have adapted the
language of this theorem.

Theorem 1.14. [10, 9, 12, 13, 2] Let ¢ : M — M be an expansive homeomorphism
of a compact, connected, oriented, boundaryless surface M. Then

(i) M cannot be S?,
(i) if M is the 2-torus then (M, @) is conjugate to a hyperbolic toral automorphism
(i.e. it is a Smale space), and
(i) if the genius of M is larger than 1, then (M, ) is finitely presented but not a
Smale space.

There are many more examples of finitely presented systems that are not Smale
spaces, see [8] for details.
2. LocAL PRODUCT STRUCTURE

In this section we will discuss the construction of the local stable and unstable
sets of an element of an expansive dynamical system. We will also discuss a result of
Fried about the existence of a particular metric on expansive systems, see [8, Lemma
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2]. This metric shows the hyperbolic behavior of expansive systems similar to
Axioms C1 and C2 for Smale spaces. Lastly we will show that the stable (unstable)
equivalence class of an element in an expansive dynamical system can be written
as a union of local stable (unstable) sets.

Let (X, @) be an expansive dynamical system with expansiveness constant x >
0. In the rest of this section we follow [§].

Definition 2.1. For each z € X and € > 0 we define the following subsets called,
respectively, the local stable and local unstable sets of x.

X3z, e) ={y € X | d(¢"(z),¢"(y)) < e for all n > 0}
X" (z,e)={ye X |d(¢ ™(x),¢ "(y)) <eforaln>0}
Furthermore, one can easily show from this definition that
e V(X% (eN(2),8)) ={y € X | d(¢"(2),¢"(y)) <€ for all m > N} , and
eV (X" (N (2),e)) ={y e X |d(p "(z),p "(y)) <cforalln> N}
for any N € Z.

The next lemma is a well-known application of expansiveness; the proof is omit-
ted.

5
Lemma 2.2. For 0 <e < 7X, the intersection X*(x,e) N X“(y,e) consists of at

most one point in X.
2.1. The Bracket Map.
Definition 2.3. For 0 < e < STX we define the set
D, ={(z,y) € X X X | X5(z,e) N X" (y,e) # 0}

and a map [—,—] : D. — X, called the bracket map, such that [x,y] € X*(x,e) N
X"(y,e). By Lemma 2.2 this map is well-defined.

Remark 2.4. Tt is well-known that if (X, ¢) is a Smale space, then the definition
of the bracket map in the previous definition agrees with the one in the definition
of a Smale space.

The following lemma is due to Fried [8]. One can find a detailed proof in [29)].

Lemma 2.5. [8] The map [—,—] is continuous and D, is closed in X x X. Addi-
tionally, the set Ax = {(x,z) | © € X} is contained in D., and [z,z] = x for all
ze X.

2.2. Adapted Metric. For any expansive dynamical system there exists a metric
d, which we will call an adapted metric [8, Lemma 2], and constantsn > 0,0 < A < 1
such that d is compatible with the topology on X and

d(e(z), o(y)) < Md(z,y) for all y € X®(x,n) , and
(™ (2), 7 () < Ad(,y) for all y € X" (2,7).

Furthermore, this metric can additionally be chosen so that both ¢ and ¢~
are Lipschitz for some Lipschitz constant K > 1, see [8, Lemma 2]. Although this
choice of metric is not necessarily unique, for the rest of the paper we will assume
that if (X, ) is an expansive dynamical system then the metric on X is always an

1



SYNCHRONIZING DYNAMICAL SYSTEMS 9

adapted metric as described above. Hence we will often make reference to “the”
adapted metric.
Using the adapted metric, we can prove the following useful lemma.

Lemma 2.6. Fiz 0 < &9 <n and assume there is (z,z) € int(De,). Then for any
e > 0 there exists a 6 > 0 such that if d(z,y) < ¢ and d(z,z) < 6, then [y, 2] is
defined and satisfies [y, z] € X*(y,e) N X¥(z,¢€).

Proof. Assume that € < 7. Since (z,z) € int(D,, ), and by the continuity of [—, —],
there is § > 0 such that d(z,y) < ¢ and d(z,2z) < § imply [y, z] is defined and
additionally that d(y, [y, 2]) < € and d(z, [y, z]) < e. Since d is the adapted metric
and [y, z] € X®(y,e0), we have

A" (), " ([y, 2])) < A"d(y, [y, 2]) < A"e <e
for all n > 0. Similarly we have d(p™"(2),¢0 "(ly,2])) < € for all n > 0. Hence
ly,2] € X3(y,6) N XV (z,¢). a

2.3. Global Stable/Unstable Sets. For the sake of Lemma 2.7, we introduce
the following sets
X:(z,e)={ye X |d(¢"(z),¢"(y)) < e forall n >0}
Xi(ze)={ye X |d(e "(x),¢ "(y) <eforalln=>0}

Lemma 2.7. Let (X, ) be an expansive dynamical system and let x € X. Then
for any € > 0 the stable and unstable equivalence classes satisfy

(i) X°( U e N (XE (:E),E)), and

N>0
(i) X"(x)= ] ¢~ (@), €)),
N>0

respectively. Hence we will often refer to the equivalence classes X*(x) and X*(x)
as the global stable set and global unstable set of x, respectively.

Proof. In the stable case, this can easily be seen from definition of stable equivalence
and the fact discussed above that

NM(XE (¢N(2),2)) = {y € X | d(¢"(2),¢"(y)) < e for all n > N}
for all N > 0. [l
When p is a periodic point, we topologize X*(p) and X"(p) with the inductive

limit topology coming from Lemma 2.7, see [31, Section 4.1]. Note that with this
topology X®(p) and X"(p) are both locally compact and Hausdorff.

3. SYNCHRONIZING DYNAMICAL SYSTEMS

3.1. Synchronizing Elements of an Expansive Dynamical System. Suppose
(X, ) is an expansive dynamical system. Recall from Section 2 we will be using
the adapted metric and that for 0 < e < 5¢ we define the set

D, — {(e) € X x X | Xo(02) 1 X"(3.5) 2 0).

Additionally we defined the bracket map [—,—] : D — X by [z,y] € X5(z,e) N
X"(y,e). As was mentioned in the previous section, these definitions are due to
Fried [8].
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Lemma 3.1. Suppose (X, @) is an expansive dynamical system. There exists g > 0
such that for 0 < e,&' < eq, (x,x) is in the interior of D. if and only if it is in the
interior of Der.

Proof. Let g = min {77, 57)(} where 7) is as in Section 2.2. Without loss of generality

assume (z,x) is in the interior of D., then by continuity we may find § > 0 such
that § < ¢’/2 and small enough that d(z,y) < § and d(z,z) < § implies [y, z] is
defined and d(z, [y, z]) < €’/2, see Lemma 2.6. Hence

d(y, [y, 2]) < d(y,z) +d(z, [y, 2]) <€’
and since d is the adapted metric and [y, z] € X*(y, ¢), for n > 0, we have

(™ (y), ©" (v, 2])) < A%d(y, [y, 2]) < A"’ <&,
meaning [y, z] € X®3(y,e’). Similarly [y,z] € X"(z,¢’), so we can conclude that
(y,2) € Do and (z, ) is in the interior of D,. O

Definition 3.2. Suppose (X, ) is an expansive dynamical system. A point z € X
is called synchronizing if (x,x) is in the interior of D, for some 0 < € < &g, where
€o is as in Lemma 3.1. We will denote the subset of synchronizing points Xgync.

By Lemma 3.1, this definition of synchronizing does not depend on the choice
of . 'We now show the crucial property of synchronizing points, which is that
they are exactly the points in an expansive dynamical system having local product
structure.

Proposition 3.3. Let ey be as in Lemma 3.1. Then an element x € X is synchro-
nizing if and only if for each 0 < & < g¢ there is a d, > 0 such that for 0 < § < 6,
we have
(i) X"(x,9) x X*(z,d) C D, and
(i) [—,—] restricted to X"(z,d) x X*(x,0) is a homeomorphism onto its image,
which is a neighborhood of x.

Proof. First we assume z € X is synchronizing. Fix 0 < ¢ < gg. Since for any
0 <& < go we know (z, ) is also on the interior of D, /5, there is an &’ such that if
d(z,y) <&’ and d(x,z) <&’ then (y, 2),(2,y) € D.j2. Let 0 < J, < &’ be such that
d(z,y) < 0 and d(z,z) < J, implies d(z, [y, z]) < €. As a consequence of this,
we have that [y, 2], [z, 2], [2,y], [x, [y, 2]], and [[y, 2], ] are all defined for D, ;. In
particular it is true that X" (z,d) x X%(x,0) C D, for any choice of 0 < ¢ < 4.

We will also need the following fact. Since [y, z] € X®(y,e/2) and [[y, z],z] €
X5y, z],¢/2), we have

d(e"([ly, 2], z]), " () < dle"([ly, 2], 2]), " ([y, 2])) + d(@" [y, 2]), " () <€
for all n > 0. This means [[y, z],z] € X3(y,e) N X*(x,¢) and so [[y, 2], z] = [y, z]

by Lemma 2.2. By similar reasoning we also have [z, [y, z]] = [z, 2].
Fix 0 < § < 6,. Let [—,—], denote the bracket map [—,—] restricted to
X"(z,0) x X5(z,0), and let R denote the image of [—,—],. First we remark

that if y € X"(x,0) then y € X5(y,e) N X"(z,¢e) and so y = [y,z], and simi-
larly z € X®(z, d) implies z = [z, z]. Define a function hy : R — X"(x, ) x X5(x,0)
by hi(y) = ([y,z], [z,y]). To see that h, is well-defined on R and indeed a right
inverse of [—, —|,, we compute

hx([yaz]) = ([[yaz]vx]a [IE, [yvz]]) = ([yax]v [I,Z]) = (y,Z) :
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Note also that the continuity of h, follows from the continuity of [—, —]. Lastly we
must check that h, is also a left inverse of [—, —], by computing

([= =Toha)(y) = [ly, 2], [z, 9]l = .
The last equality follows from the fact that y € X5([y, z],e) N X*([z,y], ). We
conclude that [—, =], : X"(x,0) x X®(z,d) — R is indeed a homeormorphism.

Furthermore it is clear that R is a neighborhood of z since for y close enough to
x we have that [y, ] and [z, y] are defined and in X"(z, ) and X®(z, §) respectively,
implying y is in R.

Conversely, if for any 0 < € < gy there is a ¢, such that [—,—] : X"(z,) x
X5(x,0) — R is a homeomorphism for any 0 < § < ¢, it is clear that X"(z,d) x
X5(z,d) C D, is a neighborhood of (z,z) in D,, hence z is synchronizing. O

We will often call the neighborhood R in the proof of Proposition 3.3 a product
neighborhood (or rectangular neighborhood) of x. Alternatively we will say that x
has local product structure.

3.2. The Definition of Synchronizing Dynamical Systems.

Definition 3.4. An expansive dynamical system (X, ¢) is called synchronizing
if it is irreducible and it has at least one synchronizing point. Let the set of
synchronizing points in X be denoted Xgyn.. Hence an irreducible expansive system
(X, ¢) is called synchronizing if Xgyne # 0.

Lemma 3.5. Let (X, ) be an expansive system and v € X. Then x is synchro-
nizing if and only if p(x) is synchronizing.

Proof. Assume z is synchronizing with €, d,, and R as in Proposition 3.3, and
furthermore that d, is also small enough that (X" (z,d;)) C X" (p(2),¢) forall z €
R. Let y = ¢(x), and let 6, > 0 be small enough that (z,z") € X"(y,d,) x X*(y, dy)
implies (¢~ 1(2), ¢~ 1(2")) € X%(z,8,) x X*(x,0,). Then

o ([p7(2), 07 2]) € 0 (X3(071(2),8:) N X (071 (2"), 62))

=@ (X371 (2),02)) Np (X (971 (2'), 0a))
C X5(z,e) N XY(2,¢)

meaning [z,2'] = ¢ ([p71(2), ¢~ (2)]), so y is synchronizing. Note that ¢! (z) €
R since [z, 1(2")] = ¢ 1(2'), so the final step above is justified. That p(z) is
synchronizing implies z is synchronizing is proved in a similar way, we omit the
details. (]

Proposition 3.6. If (X, @) is synchronizing then Xsync is a dense open set in X.

Proof. The set of synchronizing points, Xgync, is open by Proposition 3.3, and non-
empty by definition. Since X is irreducible it has a point with a dense orbit, see
the discussion after Definition 1.7. Since Xy contains this orbit by Lemma 3.5,
Xsync 1s also dense. [l

3.3. Periodic Points in Synchronizing Systems. Our goal in this section is
to prove that the set of periodic points is dense for a synchronizing system. The
proof of Theorem 3.8 is new, as for Smale spaces one uses the shadowing property
which no longer holds in the generality of synchronizing systems, see [26, Theorem
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1]. We instead show that the existence of periodic points is a direct consequence of
the existence of rectangular neighborhoods.

First we must prove the following lemma adapted from an argument by Sakai
in [26, Theorem 1]. One can find a detailed proof in [29]. In Lemma 3.7 note that
the constant C only depends on the constants A and K associated to the adapted
metric.

Lemma 3.7. [26] Let (X, ) be an expansive dynamical system. Then there is
a constant C > 0 such that for any synchronizing point x € X there exists a
neighborhood U of x where d(y, [y, z]) < Cd(y, z) and d(z, [y, z]) < Cd(y, z) for all
y,z€U.

Theorem 3.8. Let (X, ) be an non-wandering expansive dynamical system and
x € X a synchronizing point. Then for any neighborhood U of x there is a periodic
point in U.

Proof. By Lemma 3.7, there is a constant C' and neighborhood U of z such that
d(y, [y, 2]) < Cd(y, z) and d(z, [y, 2]) < Cd(y, z) for all y,z € U.

Fix 0 < C < CEWTsh Let R be a product neighborhood of z and let § > 0

~ ~ 8
such that Bs(z) C RNUNU. Let § = C§ and V = By (z), noting that §’ < 3
so V C Bs(x). Since x is non-wandering, there is an n such that (V) NV # 0.
Furthermore we assume that n is such that

1
AT <
<10

1
and we set f = 2C\" < 3

Hence there is a y € V such that ¢"(y) € V. Set zo = [y,¢"(y)], which is
well-defined since y, ¢"(y) € V C R. Then from Lemma 3.7 we have

(%) 20 € X3(y,2C6") N X" (9" (y),2C8") .
Using this we get an estimate on d(z, 20),
d(z, 20) < d(z,y) + d(y, 20)
<"+ Cd(y, ¢"(y))
< ¢ + Cdiam(V)
=(1+42C)¢

~ N

by our choice of C. Hence z € Bs(z) C U. Tt follows from () and the adapted

metric that
" (20) € X*(¢"(y), BY")
" (20) € X"(y, Bo").
We then have
d(x,¢" (20)) < d(@,¢" (1)) +d(@" (), " (20)) < (1 + B)d" .
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A similar computation shows we also have d(z, ¢ " (z0)) < (1 + 8)§". Since (1 +
B)d0" < 6 we may define z1 = [~ "(20), ©"(20)]. Then, because d(p~"(z0), " (20)) <
2(1+ B)d’, we can apply Lemma 3.7 again to obtain

21 € X3 ™(20),20(1 + B)6") N X" (™ (20),2C(1 + B)4") .
Lastly, we obtain the following estimate on d(zx, 21),
d(x,z1) < d(z, 9" (20)) + d(¢" (20), 21)
< (L+p8)0" +2C(1 + p)d
= (1+8)(1+20)¢

< (1+ﬁ)g
30

< —
4

1 )
using 8 < 3 and (1 +20)d < 2
Our goal with this proof is to define a sequence {2z, }m>0 from which we will

obtain a subsequence converging to a periodic point in U. This sequence will be
defined recursively by

Zmi1 = 7" (Zm), " (2m)]

for all m > 0, with zg and z; already constructed above. The proof will proceed by
induction as follows, with the base case already having been shown.
Fix m > 1. Suppose

(A) z, € X° (go_"(zm_l), 20(p™ ! + ﬁm)é’) nx" (go"(zm_l), 20(f™ ! + B’”)(S’)
and

1
(B) d(z,z) < (Z 2—k> 4]

k=1

for all 0 <4 < m. In particular, z,,, = [ " (zm—1), ©"(2m-1)] is well-defined. We
will show that both (A) and (B) hold for m + 1.
From (A) and the adapted metric we have

©"(2m) € X*(2m—1, (8™ + ™))
¢~ (zm) € X" (2m—1, (8™ + ™)) .
It then follows that
d(x, 0" (zm)) < d(z, 2m-1) + d(Zm-1, 9" (2m))
< d(szm_l) + (ﬁm +Bm+1)6/

1 1 )
<d($azm—1)+ (2_m+W> 5
m—+2 1
< (Z ﬁ) 5
k=1
<4.
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1 1)
Above we are using the facts that 8 < 3 and &' < 3 Similarly one can show

d(z, " (2m)) < 6. Hence zmi1 = [ " (2m), ¢"(2m)] is defined. Since
A~ (zm), 9" (2m)) < d(@™"(2m); Zm—1) + d(zm—1,¢" (zm)) < 2(8™ + ™)’

we obtain from Lemma 3.7 that
Zma1 € XS((P_H(ZW), 2C(ﬁm 4 ﬁm+1)§/) N Xu((pn(zm), 2C(ﬁm 4 ﬁm+l)§l) )
This shows (A) is true for m + 1. Furthermore,

d((E, Zm-l—l) S d(l’, Zm—l) + d(Zm_l, (pn(zm)) + d(spn(zm)a Zm—i—l)
<d(@, 2m41) + (B + BN +20(6™ 7+ f™)0
= d(x, 2my1) + (B™ + BT (1 +2C)0

1 1 ]
< d(z,zm41) + (2—m + 2m+1> 3

k=1

Hence (B) is true for m + 1, and this completes the induction proof.
The sequence {zp, }m>o is defined for all m and also contained in Bs(x). By com-
pactness, there is a convergent subsequence {z, }r>0 converging to some element

1
p. Furthermore since Bs(z) C U we have p € U. Since 0 < § < =,

2
de™(p), ¢" (p)) = lim d(p™" (2my)s 9" (2my)) < lim 2(5™* + fm )5 = 0.
k—o0 k—o0
This shows that p is a periodic point with period 2n. ([

Corollary 3.9. If (X, ) is synchronizing then Per(X,¢) is dense in X.
Proof. This follows from Theorem 3.8 and Proposition 3.6. O

We can now remark that there are expansive dynamical systems which are not
synchronizing. For example, Toeplitz flows are minimal, expansive subshifts. Hence
a Toeplitz flows (with infinitely many points) being minimal cannot have any peri-
odic points and so it cannot be synchronizing, see [5] for more on Toeplitz flows.

3.4. Covers of Expansive Systems by Rectangles. Here we show that finitely
presented systems are in fact synchronizing. In fact we will show something more
general.

Fried defines a property for expansive systems, equivalent to being finitely pre-
sented, called finitely rectangled [8]. This is defined as follows: fix & > 0, then
R C X is called a rectangle if R x R C D.. We can assume that a rectangle is
closed since D, is closed. Then, as in the proof of Proposition 3.3, if x € R one
can show that R is homeomorphic to (X"(x,¢) N R) x (X®(x,e) N R) via the map
ha(y) = ([y, 2], [x,y]). Then an expansive system is called finitely rectangled if X
is a finite union of rectangles.

Proposition 3.10. Suppose (X, ) is an irreducible expansive dynamical system
that is the union of countably many rectangles. Then (X, ) is synchronizing.
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Proof. Let R be a countable collection of closed rectangles whose union is X. By
the Baire Category Theorem, there exists R € R with non-empty interior. Let
x € int(R), then since R x R C D. we must have (z,z) € int(D.). Hence x is
synchronizing and so (X, ¢) is synchronizing. O

It is natural to ask if there is a converse to the previous theorem; this is an open
problem.

Corollary 3.11. If (X, @) is an drreducible finitely presented system then it is
synchronizing.

Proof. If (X, ) is finitely presented then it is finitely rectangled. The result now
follows from Proposition 3.10. O

3.5. Examples. There are many synchronizing systems that are not finitely pre-
sented. In particular, there are many shifts space that are synchronizing, but not
sofic. A number of these are considered in detail in [29]. An explicit example of a
synchronizing shift that is not sofic is the context-free shift, see [14, Example 3.1.7].
We discuss a few more examples below.

Example 3.12. Let X C {a,b,c}? be the closure of the set of bi-infinite paths on
the following graph.

This is a mixing synchronizing shift. To see it is synchronizing, observe that that
a word w € L£(X) is a sychronizing word [30] if and only if a C w. Note however X
is not sofic since the words {ab™ | n > 0} each have distinct follower sets, see [14,
Theorem 3.2.10]. Hence X is not finitely presented.

Proposition 3.13. Suppose that (X1, ¢1) is not finitely generated, but is synchro-
nizing and (Xa, @2) is synchronizing and mizing. Then (X1 X Xa, @1 X 2) is not
finitely generated, but is synchronizing.

Proof. We must check that

(1) (X1 x Xa9,¢1 X 2) is expansive and irreducible;
(2) (X1 x X2,¢1 X ¢2) has a synchronizing point;
(3) (X1 x Xa2,1 X p2) is not finitely generated.

The first item is standard so we omit the details. For the second, it is not difficult
to see that if 1 is synchronizing for (X7, 1) and x5 is synchronizing for (Xs, ¢2),
then (x1,x2) is synchronizing for (X7 x Xa, @1 X p2).

For the third item, suppose that (X7 x Xo, @1 X @2) is finitely generated. Then,
by [8, Theorem 2], there is a shift of finite type (3, o) and a factor map 7 : (X,0) —
(X1 xX2,01Xp2). Let m : X1 x X2 — X7 be the projection map. It is a factor map
and the composition 71 o 7 is a factor map from a shift of finite type to (X1, ¢1).
Using [8, Theorem 2], this contradicts the assumption that (X1, 1) is not finitely
presented. (Il
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Example 3.14. Let (X,0) be a synchronizing shift that is not sofic (e.g., the
context-free shift or the shift discussed in Example 3.12) and (R"/Z", v2) be a mix-
ing hyperbolic toral automorphism on the n-dimensional torus. Then, by Propo-
sition 3.13, (¥ x R"/Z",0 X ¢3) is not finitely presented, but is synchronizing.
Moreover, the underlying space of this dynamical system has dimension n.

The previous example shows that there are higher dimensional systems that
are synchronizing, but not finitely presented. There are in fact many of these
systems. One way to construct them is through skew product solenoids. This class
of examples will be studied in detail in future work. For now, we include one explicit
example.

Example 3.15. Let (3, 0) be the shift space from Example 3.12 and (XT,07) be
the associated one-sided shift space. Also let K be the Klein bottle, hy : K — K
be the nine fold self covering map given in Figure 1, and hs : K — K be the six
fold self covering map defined in a similar way.

FIGURE 1. A nine fold self-cover of the Klein bottle
Given (dy)ney =d € 7T, we let
o hl do = a
ga = hQ do 7§ a
Based on these inputs, we define

X = {((do, %), (d1,91), (da,y2),..) € [[ ST XK | (07 (dit1), gars (Wir1)) = (diy i)}

and

<P((d0, yO)a (dla yl)v (d27y2)a . ) = ((G+(d0)7gd0(y0))v (d07y0)a (dlvyl)a . )

One can show that the dynamical system (X, ) is synchronizing, but not finitely
presented. We will not discuss the details of the proof as this example fits within a
general framework that will be studied in future work.

4. GROUPOIDS

We introduce several equivalence relations which capture notions of asymptotic
equivalence of elements in an expansive dynamical system (X, ¢). The definition of
local conjugacy is due to Thomsen [31], including the stable and unstable versions
— although we reformulate Thomsen’s original definition. We will show that in
the case of a synchronizing system much more can be said about these equivalence
relations.
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4.1. The Local Conjugacy Relation. Let (X, ) be an expansive dynamical
system with X a compact metric space and ¢ : X — X a homeomorphism.

Definition 4.1. We say that two points z,y € X are locally conjugate, denoted
T ~c Y, if there exist two open neighborhoods U and V of x and y respectively,
and a homeomorphism ~ : U — V such that y(x) = y and

lim_sup (" (), " (+(2)) = 0.
n— OozeU

We will denote the equivalence class of x under the local conjugacy relation as
X'(z), and we will also call the triple (U, V,) a local conjugacy from x to y.

One can show that local conjugacy is an equivalence relation. A crucial fact
about local conjugacy is that, given two points that are locally conjugate, then a
local conjugacy between the two points is essentially unique. This is stated precisely
in the following result of Thomsen [31, Lemma 1.4].

Lemma 4.2. Let (U,V,7) and (U, V',7") be two local conjugacies from x to y.
Then there exists a local conjugacy (Ugy, Vo, o) from x toy such that x € Uy C UNU’
and ’7|U0 = 71|U0 ="0-

It is clear that & ~)c y implies  ~}, y in any dynamical system. The converse is
not always true, see [31, Remark 1.13] (or [29, Example 4.4.1]) where the situation
for the even shift is discussed.

The situation is different for Smale spaces. In fact for Smale spaces it is the
case that two points are locally conjugate if and only if they are homoclinic. In
the following lemma we construct an explicit local conjugacy between homoclinic
points using a construction involving the bracket map from Ruelle [24]. This result
is well-known, but its proof provides a nice example of the construction of a local
conjugacy, so we have included it.

Lemma 4.3. [24] If (X, ) is a Smale space and x ~p y, then x ~c y.

Proof. We give a sketch of the proof given in [19]. Fix N > 0so that d(¢"(x), ¢"(y)) <
ex for all |n| > N, which we know we can do because = and y are homoclinic points.
Next choose £ > 0 small enough that (Ax)~ e < ex, which would mean that

" (X%(x,€)) € X7 (9"(7),ex)
" (XM (x,6)) € XU (9"(2),ex)

for all n € {—=N,...N}. Finally let 6 > 0 be small enough that d(z,z) < § implies
[z,2] € X3(x,¢) and [z,2] € X"(x,¢). We can now define a map ~ for z € Bs(x)
where 7(z) is defined as

v(2) = [N [eV[zal, oM )] 0N [N (), 0V [z 2]]] -
Note that by our specification § and ¢ this map is well-defined, and furthermore
it is a homeomorphism onto its image. The triple (Bj(z),v (Bs(x)),v) is a local
conjugacy from z to y. O

It is worth commenting that the definition of local conjugacy is essentially in-
formed by this construction of Ruelle [24], and the fact that the local conjugacy
and homoclinic relations agree for Smale spaces is what makes local conjugacy a
suitable relation for generalizing Ruelle’s and Putnam’s C*-algebraic constructions
for Smale spaces to the class of all expansive dynamical systems.

Next we show that local conjugacy is invariant under ¢ for any expansive system.
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Lemma 4.4. Let (X, ) be an expansive system and x,y € X. Then x ~.y if and
only if () ~ie p(y)-

Proof. Let (U,V,v) be a local conjugacy from x to y, then we will show that
(o(U),o(V),povyop~1)is alocal conjugacy from op(x) to p(y). We compute

lim supU) d (go”(z’), " (poryo 9071(2/)))

= lim sup d(<p"+1(z),<ﬂ"+l(’7(z)))

A similar computation shows that @ ~c y if p(x) ~1c ©(y). O

Next, we will need the useful fact that a local conjugacy preserves the local stable
and unstable directions of points in a uniform sense. Recall we are always assuming
the metric on an expansive system is the adapted metric.

Lemma 4.5. Let (X, ) be an expansive dynamical system. If (U, V,v) is a local
conjugacy and W C U is compact, then for all e > 0 there is a § > 0 such that

7(X*(2,0)) € X°(7(2),€)
7 (X*(2,6)) € X*(v(2),¢)
forall ze W.

Proof. Since (U, V,~) is a local conjugacy, we can find 0 < ; < £ such that for all
z € W we have X®3(z,01) C U and X"(z,01) C U, and if 2’ € X®(z,0;) then there
exists IV such that

(@™ (7(2)), " (7(z)) < d(9™(7(2)), " (2)+d(#" (2), " (2)) +dl(e" ("), " (7(2))) < &

foralln > N. In other words there exists 61 such that v(2') € o™ (X*= (¢" (y(2)),¢))
forall z € W and 2’ € X5(z,41). Additionally, by the uniform continuity of ¢ and ~
restricted to W, we may find d2 > 0 such that for all z, 2/ € W we have d(z,2) < 2
implies d(¢™(v(2)), ¢"(v(2))) < e for all 0 <n < N.

Letting 6 = min{dy, 2}, for all z € W we then have that 2’ € X*(z,d) implies
(") € X3((2),¢), or in other words there is a § > 0 such that for every z € W

7 (X3(2,0)) € X*(7(2),€) -
The proof for the local unstable set of z € W follows similarly. O

We now prove the important fact that the property of being synchronizing is
invariant under the local conjugacy relation. In particular this will show that if
x is synchronizing then then entire equivalence class of x under local conjugacy
is also synchronizing. Hence the synchronizing points determine a sub-equivalence
relation. Note that the following is not true for the homoclinic relation, that is if
x is synchronizing and x ~y, y then it does not follow that y is synchronizing. An
example can be constructed for the even shift, the details are similar to [31, Remark
1.13].

Proposition 4.6. Let (X, ) be an expansive system and x,y € X. If x is syn-
chronizing and x ~. y, then y is synchronizing.
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Proof. Let (U,V,~) be a local conjugacy from z to y. Since x is synchronizing we
know that there exists 6, > 0 such that X"(x,0,) x X®(z,d;) C D, and [—, —]
is a homeomorphism from this set onto its image R — which we can assume is
contained in U. Since R is a compact subset of U, there is a § > 0 such that
Lemma 4.5 holds for z € R. Let 6, = min{d,,d}, so we have that, with R’ C R
being the homeomorphic image of X"(x,d.) x X*(x,d!) under [—, —],

7 (X(2,0)) € X*(v(2),¢)
7 (X"(2,0,)) € X" (y(2),¢)

for all z € R'.

Next we will show that y is indeed synchronizing in the sense that we can define
[z, 2] for z, 2’ close enough to y. Let d, > 0 be such that X"(y,d,) x X5(y,d,) C
V x V and if (z,2") € X%(y,d,) x X5(y, ) then (y71(2),y71(2")) € X%(z,8,) x
X5(x,6"). Hence [y~1(2),7~1(2")] is well-defined. Since [y~1(z),7y (/)] € R' C U,
we can define v ([y7(2),77*(2')]) € V. We will show that [z,2] is defined and
that

(2,21 =~ (v (2), v (2N)]) -

From above we have that

(TR ATHED]) € v (XP(THR), 6) N XM (v, 87))
=7 (X*(y7(2),6,) Ny (XM (7). 6))
C X5(z,e) N X"(7,¢)

meaning [z, 2'] is defined as just mentioned. Note that y~!(z) and y~!(z’) are both
in R’, so the last step is justified. Hence X"(y, d,) x X*(y, ,) C D, and this shows
y is synchronizing. O

4.2. The Stable/Unstable Local Conjugacy Relations. We also have the no-
tions of local conjugacy which only hold in the limit in one direction. We remark
that, similar to local conjugacy, these respectively imply stable and unstable equiv-
alence. However, the converse is not true; again, an example can be constructed
for the even shift and the details are similar to [31, Remark 1.13].

Definition 4.7. Let (X, ) be an expansive dynamical system with z,y € X.
Suppose 4, > 0 and v : X" (z,d§) = X"(y,¢’) is a homeomorphism onto its image
such that y(z) = y and

lim_sup d(¢"(2), 9" (7(2))) = 0.

=0 eU
Then ~ is a called a stable local conjugacy and we say that  ~ics y. We will denote
the stable local conjugacy equivalence class of x as X'°(x).

Definition 4.8. Let (X, ) be an expansive dynamical system with z,y € X.
Suppose 4,8 > 0 and v : X3(z,d) = X5(y,d’) is a homeomorphism onto its image
such that y(z) = y and

lim supd(p" (). ¢ " (+(2)) = 0.

=0 z2eU
Then « is a called an unstable local conjugacy and we say that x ~jcy y. We will
denote the ustable local conjugacy equivalence class of z as X'“%(z).
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Note that these are indeed equivalence relations in the same way that local
conjugacy is an equivalence relation. Also note that if x ~. y via a local conjugacy
v, we get both a stable and unstable local conjugacy from z to y by making the
restrictions 7| xu(s,5) and | xs(y,s) respectively. In short, & ~c y implies 2~ ¥
and x ~cy y. Lastly note that both stable and unstable local conjugacy is unique
in the same sense as Lemma 4.2, see [31, Lemma 1.4].

We have the following lemma, the proof of which is the same as the proof of
Lemma 4.4.

Lemma 4.9. Let (X, ) be an expansive system and x,y € X. Then

(Z) T ~ies Y /Lf and Only lf (p(i[]) ~lcs (P(y), and

(i1) © ~ieq y if and only if (x) ~iew ©(y)-

The following proposition gives conditions under which x ~i.y ¥y and x ~ies ¥
implies # ~j. y, namely that = and y must both be synchronizing. This is a
generalization of the fact that x ~, y and = ~g y implies x ~} ¥ in a Smale space,
and is more evidence that synchronizing points are points that behave like points
in a Smale space.

Proposition 4.10. Let (X, ) be a synchronizing system with x,y € Xsync. If
T ~es Y and x ~lcu Y, then ~ic Y-

Proof. Assume that ¢ is fixed as in Lemma 3.1. Let A be the constant associated
to the adapted metric, see Section 2.2. Since x and y are both synchronizing, we
have the rectangular neighborhoods

R, = X"(z,6,) x X°(x,d;) , and

Ry = Xu(yv 5,7;) X Xs(ya 5y>
by Proposition 3.3. Since x ~|s ¥ and x ~), y we have stable and unstable local
conjugacies which we can assume are of the form

v XY (x,0) = X% (y,dy) , and

% X5z, 6) = X°(y, 0y)
for some 0 < & < 0, small enough that 7" and +° are both homeomorphisms
onto their respective images. Let U denote the image of X" (z,d) x X5(z,d) under

[—, —], noting that h, (as defined in the proof of Proposition 3.3) restricted to U
is a homeomorphism since ¢ < §,. We define v as

v(z) = " ([z,2]) , 7 ([, 2])]
for z € U, which is a homeomorphism since it is the composition of homeomor-

phisms [—,—] o (Y* x 7®) o (hy)|u. Let V be the image of this map in R,, then
v :U — V is the homeomorphism that we wish to show is a local conjugacy from
T to y.

We will only show the limit in the stable direction as the argument for the
unstable direction is very similar. Fix € > 0, then observe that

A sup d(¢"(2), 9" (1(2))) = lim_sup d(¢" (z), " ([v" ({2, 21), " ([, 2])]))
= lim sup d(¢" ([21, 22]), ™ (V" (21) ,7° (22)])) -
(z1,22)€X " (2,8)x X3(z,0)

Since " is a stable local conjugacy, we can find N large enough that d(p™(z1), " (v"(21))) <
S forallm > N and 2z; € X"(,0). Since we are assuming d is the adapted metric,
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we will also increase N if necessary to ensure that A" diam(X) < £ for all n > N.
Then

d(@" ([21, 22]), " ([v" (21) ,7° (22)])) < d(9™ ([21, 22]), 0" (21)) + d(@" (21), " (7" (21)))
+d(" (v (21))), " (7" (21) ,7° (22)]))
< AN'd([21, 22], 21) + d(@" (21), 9" (7" (21)))
+ Ay (21), [V (21) ,7° (22)])
< d(¢™(21), " (v (21))) + 2A™ diam(X)
<e

for all n > N. Hence

lim sup d(¢"(2), ¢"(7(2))) = 0.

n—r oo zeU
The proof that the limit in the unstable direction vanishes is similar, and thus
~v:U — V is a local conjugacy from x to y, that is, x ~c y. O

Lemma 4.11. Let (X,¢) be a synchronizing system with x € X synchronizing.
Then if R is a product neighborhood of x and y € int(R), we have

(Z) Y ~licu [%y] ~ies Ly and
(5) Y ~ics [Ys T] ~icu T

Proof. We show the proof of (i) and the proof of (ii) is similar. Assume R 2
X"(x,05) X X3(x,05). Assume 6 > 0 is small enough that X*(y,d) C R. Then we
define v : X®(y,d) — X®(x,0,) by

V(2) = [z, 2]

for z € X5(y,d). Note that this is a homeomorphism onto its image and that
v(y) = [z,y]. Next we compute
lim  sup  d(p7"(2), ¢ (v(2) = lim  sup  d(e" (=), 0" [z, 2])
N0 ze X5 (y,0) N0 2e X5 (y,6)
< lim  sup A"d(z, [z, 2])
nﬁoozGXs(y,J)

< lim A" diam(R)

T n—oo

=0.

Hence « is an unstable local conjugacy, so y ~icy [2,y]. A very similar argument
shows that v/(z) = [z,2] for z € X"([z,y],0"), and for ¢’ > 0 small enough, is a
stable local conjugacy from [z, y] to x. O

4.3. Local Conjugacy and Synchronizing Periodic Points. We will be inter-
ested in local conjugacy with respect to periodic points that are also synchronizing.
By Proposition 3.6, we know that there are a lot of these. In fact, since Per(X, ¢)
is dense in X and Xgync is an open dense subset of X, we can conclude that syn-
chronizing periodic points are also dense in X. The synchronizing periodic points
will behave similar to periodic points in a Smale space, and this is what will make
them suitable for proving results about synchronizing spaces that extend results of
Putnam [19] and Putnam-Spielberg [21] about Smale spaces.
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Lemma 4.12. Let (X, ) be an expansive system, x € X, and p € X a synchro-
nizing periodic point. If x ~g p, T ~y p, T ~p p, O T ~y. P, then x is also
synchronizing.

Proof. Let r denote the period of p. We will prove this for the case when x ~¢ p
as the proofs for the other cases either follow directly or are similar. By Definition
3.2, we know that (p,p) € int(D.) for some € > 0. Since = ~ p, we also know that
for some N large enough (o™ (z),¢""(x)) € int(D,) for all n > N. This means in
particular that "V (z) is synchronizing, and by Lemma 3.5 we conclude 2 must be
synchronizing as well. O

We will now show that the stable and stable local conjugacy relations agree
for a synchronizing periodic point p. This is not necessarily true for an arbitrary
synchronizing point. An example of such a point can be found in the even shift.
We leave the details to the reader.

Lemma 4.13. Let (X, ) be an expansive system and p € X a synchronizing
periodic point. Then X'%(p) = X%(p) and X'*(p) = X*(p). In other words,
p ~sx if and only if p ~ics x and p ~, x if and only if p ~jcy x for any x € X.

Proof. We will show the proof that p ~s x implies p ~ics =, and the result that
p ~yu x implies p ~jey @ is very similar. By definition we have X'°5(p) C X3(p),
so we need to show X5(p) C X'*(p). Let R = X%(p,d,) x X%(p,6,) be a product
neighborhood of p, and let € X®(p). Then, there is an N such that ¢""(x) € R
for all n > N where r is the period of p. In particular, ¢""(z) € X3(p,d,) for all
n > N. Furthermore note that ngN ~1cs p by Lemma 4.11, and so by Lemma 4.9
we have z ~1cs 0"V (p) = p. O

Corollary 4.14. Let (X, ) be an expansive system, © € X, and p € X a synchro-
nizing point which is also periodic with period n. Then X"(p) = X' (p).

Proof. This follows from Lemma 4.13 and Proposition 4.10. O

For the next several results, note that it is necessary to assume that a given syn-
chronizing system is mixing in order to achieve the density of X"(p) and X®(p). In
the first of these, we extend a property of Smale spaces to the case of synchronizing
dynamical systems in the specific case of a synchronizing periodic point, see [25].
We will start with two more general results. We learned of the proof technique used
in these lemmas from Putnam [18, Theorem 3.1.4].

Lemma 4.15. Let (X, ) be a mizing synchronizing system. Suppose that x € X
and there exists xo in the closure of the forward orbit of x that is synchronizing.
Then X*(x) is dense in X.

Proof. Let y € X and 6 > 0. We will show that X®(z) N Bs(y) is non-empty. Let
U = B;(y) and ¢’ = min{3,n} where 7 is the constant associated to the adapted

metric. Using the fact that xy synchronizing and Lemma 2.6, there exists ¢’ such
that

(1) Bs/(z0) € R where R is a rectangular neighborhood of zy and
(2) [2',y] € X3(2, ") N X"(y',€’) whenever d(xo,2') < ¢ and d(xo,y’) < .
Let V = Bg:/(x0) and apply the definition of mixing to U to get N € N such that

" (U)NV £ for each n > N.
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Since x( is in the closure of the forward orbit of z, there exists n > N such
that ¢™(x) € Bs/(xz0). Using the fact that ¢™(U) NV is non-empty, there exists
wel= B%(y) such that ™ (w) € V = Bg:(z0).

In particular, the bracket [p"(x), ™ (w)] is well defined so we can form

z=¢ "([¢p" (@), ¢" (w)])

By the second property of ¢’ above, we have that ¢"(z) € X“(¢"(w),€’). Using
properties of the adapted metric, we have that

d(w, z) < A" < €.
Hence
5
d(y,z) < d(y,w) + d(w, z) < 7 T € <é

and we have that z € B;s(y). Notice also that z € X*(z) since " (z) € X*(¢"(z),€),
so X®(z) N Bs(y) is non-empty as required. O

Lemma 4.16. Let (X, ) be a mizing synchronizing system. Suppose that x € X
and there exists xo in the closure of the backward orbit of x that is synchronizing.
Then X*(x) is dense in X.

Proof. This follows from the previous result by replacing ¢ with ¢! O

Lemma 4.17. Let (X, p) be a mizing synchronizing system. If p € X is a synchro-
nizing periodic point, then X*(p) and X“(p) are dense as subsets of X. If g € X
is another synchronizing periodic point, then X*(p) N X*(q) is also dense in X.

Proof. The first part follows from the previous two lemmas because p is by assump-
tion synchronizing and is in the closure of the forward orbit and also the closure of
the backward orbit because it is periodic.

For the second part, that is to show that X®(p) N X"(¢) is also dense in X,
first let z be any synchronizing point with rectangular neighborhood R. Note that
we can make diam(R) arbitrarily small by the continuity of [—, —]. Then by the
density of X®(p) and X"(q), let z,y € R be such that z € X*(p) and y € X"(q).
Then let w = [z,y], which is in X*(p) N X" (q). Since synchronizing points are
dense in X and R is an arbitrarily small rectangular neighborhood, it follows that
X5(p) N X" (q) is dense in X. O

It is important to point out that Lemma 4.17 says X" (p) and X*(p) are dense
as subsets of X, despite the fact that we have topologized them as described in
Section 2.3. In fact the density of X"(p) and X*(p) is precisely why we do not use
the subspace topology. The next result will used later in the proof of Theorem 5.9.

Lemma 4.18. Let (X, ) be a mizing synchronizing system with p,q € X both
synchronizing periodic points. If z is a synchronizing point, then there exists x €
X"(p) and y € X°(q) satisfying

L ~Nies & Yleuw Y -

Proof. By Lemma 4.17, X"(p) and X*(q) are both dense in X. Let R = X"(z,4,) X
X5(z,0,) denote a rectangular neighborhood of z. Then there are z/,y" € int(R)
such that 2’ € X"(p) and 3y’ € X3(q). Let x = [z,2/] and y = [y, 2], then x € X"(p)
and y € X*(q). The result now follows from Lemma 4.11. O
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For the next result we must assume some conditions on the density of the stable
and unstable local conjugacy equivalence classes of elements of X"(p) and X5(p).
Note that these do not hold for all mixing synchronizing systems. However, they
do hold for mixing finitely presented systems as we will show in Lemma 6.7. It is
important to note that in Lemma 4.19 that we are considering X" (p) and X3(p)
with their respective locally compact Hausdorff topologies as described in Section
2.3. Hence, for example, X'*5(z) N X'(p) being dense in X!(p) is stronger than
being dense in X.

Lemma 4.19. Let (X, ) be a mizing synchronizing system with p,q € X both
synchronizing periodic points. Furthermore assume that, for all x € X*(p) and
y e X(a),

(i) X's(z) N X%(p) is dense in X*(p), and

(ii) X'%(y) N X*(q) is dense in X*(q).
Then if ¢ € X"%(p) and y € X°(q), then there exists a synchronizing point z € Xsyne
satisfying

T ~Nles 2 Yieu Y -

Proof. Let x € X"(p) and y € X®(q). Since y is synchronizing, let R be a product
neighborhood of y. Then since X"(p) is dense in X (Lemma 4.17) and X'*5(z) is
dense X"(p) by assumption, there is an 2’ € R such that & ~is 2'. Let z = [2/,y].
By Lemma 4.11 we have

’
T ~les T ~les £ Yleu Y -

Hence x ~)cs 2 and the result is proved. [l

5. C*-ALGEBRAS FROM EXPANSIVE DYNAMICAL SYSTEMS

In this section we construct C*-algebras from the local conjugacy equivalence
relations in the previous chapter. This is following the work of Thomsen [31] and
Putnam [19, 21]. Thomsen constructs the homoclinic algebra for any expansive
dynamical system, and the heteroclinic algebras for expansive systems with dense
periodic points [31]. These generalize constructions in the Smale space case [19).
We will introduce these algebras and certain variants of them (see Remark 5.6) and
then study their structure in the particular case of synchronizing systems.

5.1. The Homoclinic Algebra. We now want to construct a C*-algebra from
the local conjugacy relation for an expansive dynamical system. We first define the
groupoid

(X, p) = {(z.y) € X x X |z ~ic y}

with groupoid composition given by (z,y)(y’, z) = (z, z) whenever y = y’. However,
instead of topologizing G'°(X, ¢) as a subspace of X x X, we generate a topology
from the sets {(z,7(z)) | z € U} where (U, V,7) is a local conjugacy. The fact that
these sets are a base for a topology on G'°(X, ) follows from Lemma 4.2, also see
[31]. With this topology, G'°(X,¢) is indeed an étale groupoid, see [31, Theorem
1.7].

Definition 5.1. The homoclinic algebra A(X, ) of an expansive dynamical system
(X, ) is the reduced C*-algebra C*(G'(X, ¢)) in the sense of Renault [22].
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If (X,¢) is a Smale space, then by 4.3,the C*-algebra A(X, ) is exactly the
asymptotic algebra defined by Putnam in [19]. It also is worth mentioning that the
topology on G'°(X, ¢) is distinct from subspace topology obtained from G'¢(X, ¢) C
X x X with the product topology.

5.2. Asymptotic Commutativity. We prove a result that extends Putnam’s re-
sult on the asymptotic commutativity of the homoclinic algebra for a Smale space
[19]. Note that this holds for any expansive dynamical system. Some remarks are
in order as to why this proof holds in wider generality. Essentially this boils down
to the fact that the local conjugacy relation incorporates local product structure,
and is stronger than the homoclinic relation. Note also that we do no require any
recurrence properties, and they are indeed also not required in Putnam’s proof of
Theorem 3.2 in [19]. However, a similar result involving the synchronizing hetero-
clinic algebras (see Section 5.3), one would likely need to require mixing as in the
Smale space case.
There is a natural *-automorphism « of A(X, ¢) defined by

(a((z,y) = fle™ (), 97 (1)
for f € C.(G™(X, p)), see [31]. We wish to show that (A(X, ¢), a) is asymptotically
abelian in the following sense.

Theorem 5.2. Suppose (X, p) is an expansive dynamical system, and let o be the
x-automorphism induced by ¢. Then for all a,b € A(X, p),

lim ||a™(a)b—ba"(a)|| =0.
n—oo
In other words, (A(x, ), a) is asymptotically abelian.

Proof. Tt suffices to prove this for a,b € C.(G°(X,¢)), and furthermore we also
assume

supp(a) = {(2,7a(2)) | z € Ko} € {(2,74(2)) | 2 € Ua} and
supp(b) = {(z,m(2)) | z € Kp} € {(z,m(2)) | z € Up}

where K, C U, and K}, C Uy are compact and (Uy, V,,v,) and (U, Vs, 7p) are both
local conjugacies.

Let £g > 0 be small enough that all z € X within ¢y of K, are in U,, and likewise
for all z € X within ¢ of K. Then, since 7, and 7, are both local conjugacies, we
can choose Ny > 0 such that d(¢™(2), 9" (74(2))) < €0 and d(¢™(2'), " (Ww(2'))) <
go for all z € U,, 2/ € Uy, and |n| > Ny. Lastly define K, = {z € X | 32’ €
K, s.t. d(z,2") <eo} and K| similarly. Thus we have K, C K/ C U,, K, C K; C
Uy and both K/ and K| are compact.

Now by our assumptions of the support of a and b, we must have, for any n,

(@ (@b)zy)= Y ale(@),¢ () b(zy)
(2,2)€G(X.9)

=a(e " (@),7e (@) b(¢"Ya " (%), WP Ya " (z))

(ba"(a))(z,y) = > blaz)ale "(z),0 " ()

(x,2)EG(X,p)

=b(z, () a(e " w(@), v "w(x)) .
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Note that (a"(a)b)(z, y) will be zero unless € ¢" (K, ) and v, (¢~ "(x)) € @ " (K}p).
Now assume n > Ny, then we have

d(@,¢" (alp ™" (2)))) = dl@" (™" (2)), ¢" (valep ™" (2)))) < €0

By our assumptions this implies z € K; C Us,. Hence 7, () is defined, and we also
have

d(p™"(x), " (w(2))) < €0
showing also v (z) € " (K, ) Co
is non-zero, then x € <p "(K!) and
out loss of generality, if (o™ (a)b
above is true for n > Nj.
For simplicity, let us define the following quantities, which are all well-defined
by the above.

"(U,). Likewise one may show that if (ba"(a))(z, y)
Yol (2)) € ¢~ (K]}) for n > Ny. Hence, with-
—ba™(a))(z,y) is non-zero then we can assume the

2’ ="y (2)
"= (@)
Yy =" vap " (@) = w(2)
Y =" " (2) = ¢ v " (")
Then in total we can rewrite (a™(a)b — ba™(a))(x,y) as
(" (a)b=ba"(a))(z,y) = a(p™"(z), ¢~ " (") b(a’, y)=b(z, ") a(p™" ("), " (¥)) -

We then obtain the following inequality by adding and subtracting a cross-term to
the right-hand side above

(" (@b=ba"(@))(w,9)]| < [v(a’,y (a(w‘"(w),w‘"(x’))—a(w‘" "W)))|
+ ‘ x”),gf"(y’)) (b(:z: ") = b2’y )‘

When restricted to K, the map -y, is uniformly continuous. Coupled with the fact
that z is stably equivalent to 2’ this means for any § we can find an N > Ny
such that d(z”,y) = d(w(z),w(z")) < ¢ for all n > N and z,2’ € K;. By
the same argument, since z and z’/ are unstably equivalent, we can also make
d(p~"(@"), () = dvap (@), 7ap (")) < & for a,a" € (K2 small
enough and all n large enough. Together with the fact that a and b are continuous
functions, we can then, for some fixed € > 0, find an N such that

(6" @), 07" () = ale (@), 07" (1)] < 2|\b|\ and
|b(z, 2") — (', y)| < M

for all n > N. Moreover, these inequalities hold for all z € ¢"(K}) N K, because
by assumption of local conjugacy we can make both d(z,z") = d(x, " v, " (x))
and d(x,2") = d(z, vp(z)) uniformly small for all n large enough. This gives us

la™(@)b — ba™(@)|| < |16l 5 + llal 57—

2||b|| 2|| I~

and so we can conclude ILm |a™(a)b — ba™(a)|| = 0.
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5.3. The Synchronizing Heteroclinic Algebras. We construct two C* algebras
called the synchronizing heteroclinic algebras. However, since we are specializing
to the case of synchronizing systems, we make some modifications to Thomsen’s
construction in [31]. In particular Thomsen utilizes the set of all post-periodic
points, which is defined as the set

x'= (J X'O.
pEPer(X, o)
This involves using all the periodic points in the dynamical system, and additionally
requires the assumption that periodic points are dense.

However in synchronizing systems we have a preponderance of periodic points
which are synchronizing and thus behave like the periodic points in a Smale space.
Our strategy is to restrict Thomsen’s construction to just these synchronizing pe-
riodic points. In fact, the analogy that synchronizing periodic points behave like
the periodic points in a Smale space holds to the extent that the synchronizing het-
eroclinic algebras that we construct for different choices of synchronizing periodic

points are all Morita equivalent, which parallels the result of Putnam and Spielberg
[21].

Definition 5.3. Let (X, ) be a synchronizing system and let P C X be a finite
set of synchronizing periodic points. Then we define the étale groupoids

(i) G'°(X, ¢, P) = {(z,y) € X"(P) x X*(P) | & ~1cs y}, and

(11) GICH(X7<P5P) = {(Iay) € XS(P) X XS(P) | T ~lcu y}

Some remarks are in order:

(1) We are using the inductive limit topology on X" (P) and X®(P) as discussed
in Section 2.3. These groupoids are topologized from the stable and unsta-
ble local conjugacies respectively in the same way as with the homoclinic
algebra.

(2) The unit space of G'**(X, o, P) is X"(P) and the unit space of G*"(X, ¢, P)
is X3(P).

(3) Finally, it is often useful to assume that the set P is @-invariant; this is in
fact needed if one wants to consider the C*-automorphisms associated to .
However, ¢-invariance is not need for the construction of the groupoids and
their C*-algebras. This flexibility will be useful when we want to consider P
equal to the set containing a single periodic point, see for example Theorem
5.9 and Lemma 6.7.

Definition 5.4. Let (X, ) be a synchronizing system and let P C X be a finite
set of synchronizing periodic points. Then we define
(i) the stable synchronizing heteroclinic algebra, S(X, p, P) = C*(G'*(X, ¢, P)),
and
(ii) the unstable synchronizing heteroclinic algebra, U(X, ¢, P) = C(G'Y(X, ¢, P))
which are both reduced groupoid C*-algebras in the sense of Renault [22].
In the case of (X, ¢) being a Smale space, the stable and unstable synchronizing

heteroclinic algebras are exactly the stable and unstable algebras defined by Putnam
[21].

Theorem 5.5. Let (X, ) be a synchronizing system and let P,P' € X be two
finite sets of synchronizing periodic points. Then
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(i) S(X, ¢, P) is Morita equivalent to S(X, ¢, P'), and
(i) U(X, e, P) is Morita equivalent to U(X, , P).

Proof. We will only show the proof in the stable case. We will prove that the
groupoids G'**(X, ¢, P) and G'*(X, p, P LI P') are Morita equivalent in the sense
of [6]. By [6, Proposition 3.10] and [28], this Morita equivalence holds for reduced
groupoid C*-algebras. In our situation, we have a functor

L: G (X, 0, P) = G'(X,p, PUP)

which is a continuous, open, inclusion of étale groupoids. By [6, Definition 3.4], the
functor ¢ is a weak equivalence if

(i) the map {y € G'(X, o, PUP') | r(y) € X*(P)} — X*(P U P') defined by
v = s(7)

is an étale surjection (i.e. a surjective local homeomorphism, see [16]), and
(ii) G'*(X, ¢, P) is isomorphic to

{y € G"(X,0,PUP) | r(7),s(7) € X"(P)}.

Note that condition (ii) is true since the given set is simply the restriction of
G'(X,p, P U P'") to G'(X,p, P). In order to show (i), we must show that for
every y € X"(P U P’), there is an € X"(P) such that x ~s y. If y € X" (P) C
X"(P U P’), then we can just take = y. Otherwise, assume y € X"(P’) and
since y is synchronizing we let R be a product neighborhood of y. Since X"(P)
is dense in X (by Lemma 4.17), there exists z € R such that z € X"(P). Let
x = [y, z] so that € X"(P). Then, by Lemma 4.11, we have = ~ics y. Hence for
all y € XU"(P U P') there is a v € G(X, ¢, P LI P') satisfying s(7) = y.

Furthermore, if & ~cs y then for some 0,6" > 0 there is a stable local conjugacy
A X%(x,8) = X"(y,d’) which a homeomorphism onto its image. Then {(z,5(z)) |
z € X%(z,6)} is a neighborhood of 7y in G'**(X, p, PUP'). The map {(2,4(z)) | z €
X"(z,0)} — s(z,9(z)) = z is a homeomorphism since its inverse, z — (z,4(2)), is
continuous (see [31, Theorem 1.7]).

Hence we have shown, without loss of generality, that S(X, ¢, P) is Morita equiv-
alent to S(X, ¢, P U P’) and S(X, ¢, P’) is Morita equivalent to S(X,p, P U P’).
Hence by transitivity we obtain a Morita equivalence between S(X,p, P) and
S(X, ¢, P'). O

Remark 5.6. One could also define C*-algebras using the set of all the synchroniz-
ing periodic points. These algebras would also be Morita equivalent to S(X, ¢, P)
and U(X, ¢, P), respectively. The details are very similar to [31, Lemma 4.16]. On
the other hand, Thomsen’s construction of the heteroclinic algebras uses all the
periodic points of the system; these algebras are not in general Morita equivalent
to S(X, ¢, P) and U(X, ¢, P).

Our choice to use synchronizing periodic points is based on the Morita equiva-
lence between S(X, ¢, P) ® U(X, ¢, P) and Zsync(X, ¢) that will be proved in the
next section. Also, the choice to use only finitely many periodic orbits is based on
the proofs in the finitely presented case, see Section 6.1.

5.4. The Synchronizing Ideal.

Definition 5.7. Suppose G is a locally compact Hausdorff étale groupoid. Then
X C GY is called G-invariant if for any v € G, r(y) € X if and only if s(v) € X,
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Proposition 5.8. Let (X, ) be a synchronizing system with A(X, ) its homoclinic
algebra, then there is an ideal Zoyne (X, @) C A(X, @) determined by the synchroniz-
ing points in X.

Proof. By Lemma 3.5 and Proposition 3.6, Xsyne € X = (GIC(X, cp))o is an open
G'(X, p)-invariant set. Define GI,.(X,¢) = r~!(Xgync), then by [18, Theorem
3.4.8),

Topne(X, ) = O (Gyne (X, )
is an ideal of A(X, ). O

Recall the assumptions of Lemma 4.19 are that, for a mixing synchronizing
system (X, ) and synchronizing periodic points p,q € X,
e X!5(z) N X"(p) is dense in X(p), and
o X!u(y) N X3(q) is dense in X5(q)
for all z € X"(p) and y € X°(¢). In Lemma 6.7 we will show that the above
assumptions hold for finitely presented systems, in which case Theorem 5.9 holds.

Theorem 5.9. Let (X, ) be a mizing synchronizing system and p a synchroniz-
ing periodic point. In addition, assume that X'*(x) N X%(p) is dense in X“(p)
and X'(y) N X*(p) is dense in X*(p) for all x € X“(p) and y € X*(p). Then
Zoyne(X, @) is Morita equivalent to S(X, ¢,p) @ U(X, ¢,p).

Proof. For convenience we abbreviate the relevant groupoids as G'°, G'°*, and G'°".
Furthermore we let Gi‘;nc be as in the proof of Proposition 5.8.

Let Z be the topological space
Z = {(xayuz) € Xu(p) X XS(P) X Xsync | T ~les £ ~lcu y}

with the topology described as follows. Suppose (z,y, 2) € Z and consider a product
neighborhood R = X"(z,6,) X X%(2,6,) of z. Furthermore, suppose & > 0 is
small enough that v : X"(x,0) — X"(2,6,) and v" : X5(y,d) — X3(z,4,) are,
respectively, a stable and unstable local conjugacy giving the equivalences & ~jcg
z ~en y. Hence [v3(2'),v*(y')] is well-defined for any 2’ € X"(z,d) and ¢y’ €
X5(y, ). For any (z,y, 2), R, and § as above, we let the set
{@ ', [ (@), " W) | 2" € X¥(2,0), 9" € X*(y,0)}

be an open neighborhood of (z,y,z) in Z. These sets form a basis for a topology
on Z.

We will show that Z is a (G x G, GL‘;,HC)-equivalence in the sense of Definition
2.1 of [17]. By Theorem 2.8 of [17], C.(Z) can be completed into a (S(X, ¢, p) ®
U(X,¢,p)) — Zsync(X, ¢) imprimitivity bimodule, and in particular this shows the
desired Morita equivalence. Note that this Morita equivalence still holds for reduced
groupoid C*-algebras [28].

Following [17], we must show the following conditions in order for Z to be a
(G x G, G;Cync)-equivalence:

(i) Z is a left principal (G'** x G'*")-space,
(i) Z is a right principal GY,.-space,
(ili) the G'* x G'" and G, actions commute,
(iv) the map p induces a bijection of Z/GL, . onto (G5 x G*)% = X (p) x X5(p),
and
(v) the map o induces a bijection of (G x G'*")\ Z of (G, .)° = Xyne.

sync
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We refer the reader to Section 2 of [17] for the relevant definitions. In the literature
the maps p and o are called the moment maps. Note that condition (iii), that the
actions of G'* x G'*" and G;‘;,nc commute, will be clear from the definition of Z.

First we will show that Z is a left principal (G'°® x G'°%)-space. Define the set
(Glcs X Glcu)*Z = {((!’E?u :El)a (y27y1)7 ($, Y, 2)) | r=1T1,Y= yl} c GICS X Glcu X 7.
Then the action T : (G x G'*") x Z — Z x Z is defined as

Fl((x%xl)v (yQa yl)v (xlvyla Z)) = ((IQ, Y2, Z)a (Ila Y1, Z)) :

That this action is free is clear from the fact that G'° x G'°% is principal. To show
it is proper we show that whenever {t,},>0 is a sequence in (G x G!") x Z such
that {T';(¢,)}n>0 converges, then {¢,},>0 has a convergent subsequence. In fact
we will show that {t, },>0 also converges whenever {I';(¢,,)}n>0 converges. Assume
that ((z%,a7), (v, y?), (27,7, 2™)) is a sequence in (G'* x G'") x Z such that
(=5, y5,2"), (@7, Y}, 2")) converges to an element ((z2,y2, 2), (z1,y1,2)) € Z X Z.
Observe that 1 ~ics 2 and y1 ~)cq Yy2. By our definition of the topology on Z, we
have the convergence of (z%,27) to (w2, 21) in G' and (y%,y?) to (y2,y1) in G
Hence ((z2,71), (y2,y1), (x1,y1,2)) is in (G x G*") x Z and it is the limit of the
sequence ((z3,27), (5, y7). (¢1,y1, 2"))-

Next we must show that Z is a right principal G
to the above proof of (i); we define

lc

sync-Space. Our method is similar

Z*Glc :{((xuyaz)a(zla'z?)) |Z:ZI}QZ><G1C

sync sync

and an action I', : Zx Gl — Z x Z defined as

sync

L, ((Ia Y, Zl)a (Zla 22)) = ((.I, Y, Zl)v ({E, Y, 22))
which is also free by the fact that GIS,,. is principal. Assume that ((z",y", 21'), (21, 25))
is a sequence in Z * Gif;,nc such that

((xn’yn’zil), (xn,yn’zg)) converges to ((:Euyazl)u (:Euya'z?)) €Zx 7.

Observe that z1 ~ies T ~ies 22 and 21 ~ijey Y ~leu 22, SO 21 ~ies 22 and 21 ~ey
zo. Since z; and 29 are also both synchronizing points in X we can conclude
from Proposition 4.10 that 21 ~ic zo. Thus ((z",y", 2}, (27,25)) converges to
((z,y,21), (21,22)) in Z x Gls‘;nc. This shows I', is proper and that Z is a right
principal Gi;nc—space.

To show (iv), we must show that Z/GL,,., which are the orbits of Z under the
action of G;Cync, is in bijection with elements of X*(p) x X" (p) via the map induced
by p defined by [(z,y,2)] — (x,y). Injectivity of this map is clear from action of
Gls‘;nc. To show it is also surjective we need to, given (z,y) € X"(p) x X3(p), find
2 € Xgynce such that x ~ies 2 ~icy y. This follows from Lemma 4.19.

Lastly, to show (v), we note the injectivity of the map induced by o, defined by
[(z,y,2)] = z, is clear. To show surjectivity we must similarly show that for every
z € Xgync there is x € X"(p) and y € X3(p) such that & ~ics 2 ~icy y. This follows

from Lemma 4.18. O
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6. THE HOMOCLINIC ALGEBRA OF A FINITELY PRESENTED SYSTEM

In this section we summarize the main results in the case of finitely presented
systems. First we must show that mixing finitely systems satisfy the hypothesis of
Theorem 5.9. Then, we discuss amenability of the stable and unstable synchronizing
heteroclinic groupoids.

6.1. Density of Stable/Unstable Local Conjugacy Equivalence Classes.
We will show that mixing finitely presented systems satisfy the assumptions of
Lemma 4.19. This result builds on work by Fisher on resolving extensions of finitely
presented systems [7]. First we must define some new terminology.

Definition 6.1. Let (X, ) and (Y,%) be expansive dynamical systems and 7 :
Y — X a factor map. Then 7 is called

(i) finite-to-one if there is a constant M > 0 such that |[7=1(z)| < M for all
re X,
(ii) w-resolving (respectively s-resolving) is 7 restricted to X" (z) (respectively
X®(z)) is injective for all x € X, and
(iil) one-to-one almost everywhere if there is a residual set of points in X with
unique pre-image under 7.

We have the following result from [7].

Theorem 6.2. [7, Theorem 1.1, Lemma 3.2] Suppose (X,p) is an irreducible
finitely presented system. Then there is an irreducible Smale space (Y,v) and a
u-resolving factor map m 1Y — X such that m is one-to-one almost everywhere.
Moreover, there exists a dense open set W C X such that each periodic point in W
has a unique pre-image under m.

Likewise, there is a parallel to Theorem 6.2 for the existence of an s-resolving
factor map with identical properties. One can also show that the Smale space (Y, ¢)
in Theorem 6.2 can additionally be shown to be mixing whenever (X, ¢) is mixing,
see Lemma 6.6.

We now show that if 7 : ¥ — X is a u-resolving factor map as in Theorem
6.2, it must be finite-to-one. The technique of the proof is essentially the same as
[20, Theorem 2.5.3]. Note that 7 being a finite-to-one factor map is a necessary
assumption in [7, Lemma 3.2].

Lemma 6.3. Let (X, ) be a finitely presented system, (Y,1) a Smale space, and
m:Y — X s a factor map which is u-resolving or s-resolving. Then there exists
M € N such that the following hold:

(1) For any x € X, there exists y1,...,yx Y with K < M such that
TN (X (@) = U, Y ()

(2) For any x € X, there exists y1,...,yr inY with L < M such that
T (X3 (2)) = UL, Yo ()

(3) For any x € X, |m~Y(z)| < M, so that in particular, 7 is finite-to-one.

Proof. We will prove the first and last statements when 7 is u-resolving. The other
cases are similar; the interested reader can see the proof of [20, Theorem 2.5.3] for
more details.
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Suppose y ~y ¢y’ for y,y’ € Y and denote z = 7(y) and ' = w(y’). Then since
m is a factor map

lim d(o™"(z), ™" () = lim d(m(y""(y)), (" (y))) =0

n—oo n—oo

by the uniform continuity of . Hence Y'(y) C 7~ 1(X%(x)) for any x € X and
y € m(z).

We will now show item (1) above, by finding the required M. By [7, Lemma
3.3], there is a constant d, > 0 such that if y1,y2 € Y and d(y1,y2) < 0, then

m([y1,y2]) = [7(y1),7(y2)]. Cover Y with balls of radius 7”, then take a finite

subcover {Bm}%zl. Suppose Y1, Y2, ..., ym+1 € Y are such that m(y;) ~y 7(y;) for
all1 <4, < M+1. Fix0<e< %X, then choose n > 0 such that =" (7 (y;)) €

X" ™ (n(y;)),e) for all 1 < 4,57 < M + 1. By the pigeonhole principle, there
exists ¢ # j such that ¥ ~"(y;),¢¥ "(y;) € By, for some 1 < m < M. Hence
d(l/}in(yl)aq/}in(yj)) < 571'5 S0

(7" (W), " (w)]) = [ (@~ (i), 7 (7" (y5))]
= [ (m (), ™" (m(y;))] -

Then by our assumption that ¢ " (w(y;)) € X" (¢ "(n(y;)),¢€), it follows from
expansiveness that

™" (m (i), " (m(y;))] = o~ "(m(y;)) = 7(»™"(y;)) -

Since 7 is u-resolving, we have [)™"(y;), ¥ "(y;)] = ¥~ "(y;). It follows that
" (y;) ~u ¥ "(y;) and consequently y; ~y y;.

Suppose * € X and 7 '(z) = {y1,%2,...,ym+1}. Then we have shown there
exists ¢ # j such that y; ~y y;. However since 7 is u-resolving and w(y;) = m(y;),
we have y; = y;. Hence |77 1(z)] < M for all z € X. O

Lemma 6.4. Suppose (X, ) is an irreducible finitely presented system and w :
Y — X is a factor map as in Theorem 6.2. Then there exists a synchronizing
periodic point p such that p has a unique pre-image under m.

Proof. Note that synchronizing periodic points are dense in X. This is because
Per(X, o) is dense in X by Corollary 3.9, and Xgync is an open dense set by Propo-
sition 3.6. Then it follows from Theorem 6.2 that there is a synchronizing periodic
point p € W in other words p is a synchronizing periodic point with unique pre-
image under 7. ([l

Lemma 6.5. Suppose (X, ¢) and (Y,v) are expansive dynamical systems and 7 :
Y — X is a factor map. If p € X is a periodic point with a unique pre-image
qeyY, then

(i) 71 (X*(p)) = Y*(q),
(ii) 71 (X" (p)) = Y"(q),
(iii) if 7 is s-resolving, then m restricted to Y*(q) is a homeomorphism from Y*(q)
onto X*(p), and
(iv) if T is u-resolving, then w restricted to Y*(q) is a homeomorphism from Y "(q)
onto X*(p).
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Proof. We will first show (ii), then the proof of (i) is similar. Let r denote the
period of p. Suppose y € Y is contained in 7= (z). By compactness, the sequence
{7 (y)}n>0 has a subsequence {¢~""(y)}r>0 converging to a point ¢’ € Y.
Then for x € X" (p) we have

m(g') = lim m (=" (y))
= lim o™ (7 (y))

= lim ¢ " (z)
k— o0

Since the pre-image of p is unique we must have ¢ = ¢. Furthermore, since

{Y™""(y)}n>0 has a convergent subsequence and since every subsequence must
converge to ¢, we have lim ¥~ ""(y) = ¢. Fix ¢ > 0 and let § > 0 be such that
n—00

d(q,w) < & implies d(v»*(q),%~*(w)) < € for 0 <4 < r. Then there is an N such
that d(q,v~""(y)) < § for all n > N. It follows that d(¢)=7(q),% 7 (y)) < ¢ for all
j > rN. Hence y € Y"(g), and since 7(Y"(q)) C X"(p), this proves (ii).

Next we will show (iv), and proof of (iii) is similar. If m is u-resolving, then
in particular we have shown 7|yu(q) is a bijection. Next we show that m[yu(g) is
continuous. Let {y,}n>0 be a sequence converging to y € Y"(¢). Fix ¢ > 0 and
let § > 0 be such that d(w,w’) < § implies d(m(w), 7(w’)) < ¢ for all w,w’ € Y.
Then, there exists N such that y, € Y"(y,0d) for all n > N. In other words,

A" (yn), v *(y)) <d for all k > 0 and n > N. Let z,, = n(y,) for all n > 0 and
also z = 7(y). Consequently,

d(p™" (wn), ¢ 7" () = d(0™" (m(yn)), 9~ " (n(y)))
= d(r( ™" (yn)), 7" (1))

<é€

for all k > 0 and n > N. Hence x,, € X"(x,¢) for all n > N and this shows 7[yu(q
is indeed continuous.

Lastly we will show 7|y (q) is proper. Assume {y,},>0 is a sequence in Y™"(q)
such that the sequence {z,, }n>0, with 2, = 7(y,), converges to z € X"(p). Let y
be the unique pre-image of x under 7. Then by the compactness of Y, {yn }n>0 has
a subsequence {yn, }x>0 converging to some 3’ € Y. By continuity 7(y’) = =, but
since y is the unique pre-image of x we must have ¢y’ = y. Hence it is actually the
case that g, converges to y, and this shows the properness of 7|yu(g). Since Y"(q)
and X" (p) are locally compact Hausdorff spaces, properness then implies 7|y-u(q) is
a homeomorphism.

We now show that the Smale space (Y, ) in Theorem 6.2 can additionally be
chosen to be mixing if (X, ¢) is mixing. The technique of the proof is essentially
the same as [1, Proposition 4.8].

Lemma 6.6. Suppose (X, ) is a mizing finitely presented system, (Y,v) an ir-
reducible Smale space, and w :' Y — X a factor map which is one-to-one almost
everywhere. Then (Y, ) is mizing also.

Proof. The set Per(Y, ) is dense in Y by Proposition 3.6. Hence 7 (Per(Y,)) C
Per(X, ¢) is dense in X because 7 is continuous and onto. Let W be as in Theorem
6.2, then since W N Xgyne is an open dense set, there exists p € 7 (Per(Y,v)) N
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(Xsync "W). Hence, p is periodic, synchronizing, and has unique pre-image ¢ €
Y such that ¢ is also periodic. Furthermore, observe that ¢(p) is also periodic,
synchronizing, and has the unique pre-image ¥ (q).

By Lemma 6.5, since p and ¢(p) are both periodic with unique pre-image we
have

7 H{(X3(p)) = Y*(p),

X (p) =Y (p),
1 (X3(p(p))) = Y*(¢(q)) , and
T X (e(p) = Y"(¥(9))

Since (X, ¢) is mixing and p and ¢(p) are synchronizing periodic points, we know
from Lemma 4.17 that both X*(p) N X"(¢(p)) and X*(p(p)) N X" (p) are dense in
X and in particular non-empty. Consequently,

V() N Y ((q)) = (X3 (p)) N (X (0(p)) = 7~ H(X*(p) N X" (2(p))) # 0 , and
Y (¥(q) NY"(g) =7 (X (@) N (X (p)) = 7 (X ((p) N X"(p)) # 0.

Since (Y, ) is an irreducible Smale space, we have from [1, Lemma 4.7] that the
above is equivalent to (Y, ) being mixing. (I

Finally, we will show the desired density of stable and unstable local conjugacy
equivalence classes for the case of a mixing finitely presented system.

Lemma 6.7. Let (X, ) be a mizing finitely presented system. There exists p € X
a synchronizing periodic point such that for all x € X"(p) and y € X*(p),

(i) X'(x) N X"(p) is dense in X“(p), and
(ii) X'%(y) N X*(p) is dense in X*(p).

Proof. Let m: Y — X be a factor map as in Theorem 6.2 where (Y, 1) is a mixing
Smale space by Lemma 6.6. By Lemma 6.4 we can find a synchronizing periodic
point p € X such that p has a unique pre-image ¢ under 7. Moreover, by Lemma
6.5, we have that the restriction 7|yu(g) : Y"(¢q) — X"(p) is a homeomorphism. To
simplify notation we will denote the restriction 7[yu(q) as m,. Crucially, we will use
the fact that Y*(y) N Y"(g) is dense in Y"(q) since (Y, ) is a mixing Smale space
[25].

We will show the proof of (i). Consider y1,y2 € Y"(q) such that y; ~g y2, and
denote z1 = w(y1) and 23 = 7(y2). We will construct a stable local conjugacy from
r1 to xy. First note that since y1 ~5 y2 and y1 ~y ¢ ~y Y2, we have y; ~p ¥yo.
Because (Y, 1) is a Smale space we can apply Lemma 4.3, and the fact that y1 ~1c yo
implies y1 ~ics Y2, to obtain a stable local conjugacy v : Y*(y1,01) = Y*(y2, d2).

Next we will show that v descends to a stable local conjugacy from z; to xs.
Let 6 > 0 be such that 7= (X"(x1,6)) C Y (y1,81), then define ¥(z) be defined as

H(z) = (moyomyt)(z)
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for z € X"(x1,d). Let V denote the image of 5 in X"(p), then 7 : X" (x1,0) = V
is a homeomorphism such that ¥(z1) = x2. Then we compute

lim  sup  d(¢"(2),¢"(3(2))) = lim  sup d(¢"(2),¢"((moyom;')(2)))

N0 e Xu(z,0) N0 e Xu(x,0)

= lim sup d(p"(m(w)), " (w(v(w))))

N0 wer—1(X 1 (21,0))
= lim sup d(m (™ (w)), (" (y(w))))
n—00 wer—1(Xv(x1,6))

=0

Where the last line is by the uniform continuity of 7. Note that the metric d is the
metric on X. Hence x1 ~ics 2.

Let z € X"(p) and let y € Y"(¢q) denote the unique pre-image of x under .
Then since Y*(y) N Y"(q) is dense in Y"(g¢), and because 7, is a homeomorphism,
we have

T (Y3(y) NY"(q)) € X'(x) N X"(p)
is dense in X" (p). This proves (i). O

6.2. Amenability. It is an open question whether the homoclinic groupoid of
an expansive dynamical system is amenable. In this section, we prove that the
groupoids G'*(X, ¢, P) and G'**(X, ¢, P) are amenable when (X, ¢) is mixing and
finitely presented.

Lemma 6.8. Suppose that (X, ) is a mizing finitely presented system, (Y,v) is a
mizing Smale space, 1Y — X is almost one-to-one u-resolving factor map, and
P is a finite set of synchronizing periodic points for which m is one-to-one. Then
the map 7 x ™ maps G*(Y, 1,71 (P)) to an open subgroupoid of G'**(X, ¢, P).

Proof. Tt follows from Lemma 6.5 that 7 x 7 maps the unit space of G*(Y, ¥, 7~ 1(P))
homeomorphically to the unit space of G'**(X, ¢, P). Furthermore, in the proof of
Lemma 6.7 it was shown that m X m maps a basic set used to defined the topology
on G*(Y,v,7~1(P)) to a basic set for the topology on G'*(X, ¢, P). Thus, 7 x 7
is an open map. ([

We can now prove the main result of this section. The reader less familiar with
amenability might find it useful to review [23] (see in particular Remark 2.5 of [23]).

Theorem 6.9. Suppose that (X, ) is a mizing finitely presented system and P is
a finite set of synchronizing periodic points. Then the groupoids G'*(X, ¢, P) and
G'"%(X, ¢, P) are amenable.

Proof. To begin, we recall that G1°(X, ¢, P) does not have the subspace topology as
subset of X*(P) x X*(P) with the product topology. However, as Borel groupoids,
we have that G'°S(X, ¢, P) with the usual topology is the same as G'*(X, ¢, P)
with the subspace topology. This follows from the fact that the basics sets used to
defined the topology on G'**(X, ¢, P) are Borel sets with respect to the subspace
topology.

We will only consider G'**(X, ¢, P) in detail. By Theorem 6.2, there exists (Y, )
a mixing Smale space and 7 : Y — X almost one-to-one u-resolving factor map.
Since different choices of synchronizing periodic points only affect the groupoids
up to Morita equivalence, we can use Lemma 6.4 to ensure that we take P that
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satisfies the conditions in the previous lemma (here we note that if 7 is one-to-one
for a point, then it is one-to-one for that point’s entire orbit).

By [21, Theorem 1.1], G*(Y, 9, 7~ (P)) is amenable and hence by the main result
of [23], G*(Y, 4,7~ 1(P)) is Borel amenable. The previous lemma and item (2) of
Lemma 6.3 are the hypotheses of Proposition 2.9 Part (vii) in [11]. It follows from
this proposition that G'°*(X, ¢, P) is Borel amenable and again using the main
result of [23] it follows that G'°*(X, ), P) is amenable. O

6.3. Summary of Results.

Theorem 6.10. Suppose (X, ) is a mizing finitely presented system and P C
X a finite set of synchronizing periodic points. Then, the groupoids Géﬁvmc(X, ®),
G'(X,p, P), and G'**(X, ¢, P) are each amenable and

0— IsynC(Xv ‘P) — A(Xa 80) — A(Xa @)/IsynC(Xv <P) —0
is an exact sequence of C*-algebras, where

(1) Zoyne(X, @) is Morita equivalent to S(X, ¢, P) @ U(X, ¢, P) and
(11) LZoyne(X, @), S(X, ¢, P), and U(X, p, P) are all simple.

Proof. Combining Theorem 5.9 and Lemma 6.7, we have that there exists p €
X a synchronizing periodic point such that Zgync(X, ) is Morita equivalent to
S(X,0,p) ® U(X,p,p). The Morita equivalence in (i) then follows from Theo-
rem 5.5. This also implies that Gig,nc(X, ) is amenable since G'**(X, ¢, P), and

G'*(X, ¢, P) are amenable by Theorem 6.9.
From Lemma 6.7 and [27, Proposition 4.3.7], it follows that S(X,p, P) and
U(X, ¢, P) are both simple. It then follows from (i) that Zsync (X, ¢) is also simple.
O

It is not presently known if G'¢(X, ¢) is amenable even when (X, ¢) is a finitely
presented system. However, there are no amenability issues when (X ) is mixing,
finitely presented, and the set X \ Xgyne is finite. We have the following in this
situation.

Theorem 6.11. Suppose (X, ) is a mizing finitely presented system where X \
Xsyne 15 finite and P C X a finite set of synchronizing periodic points. Then
the groupoids G'**(X,¢), G'¢ (X,¢), G'*(X,¢,P), and G*“(X,p, P) are each
amenable. Moreover,

0 — Zoyne(X, ) — A(X, ) — CX\Kemel 5

is an exact sequence of C*-algebras, where (as in the previous theorem,)
(1) Zoyne(X, @) is Morita equivalent to S(X, ¢, P) @ U(X, ¢, P) and
(i1) Zoyne(X, @), S(X,, P), and U(X, p, P) are all simple

Proof. Based on the previous theorem, we need to show that G'°(X, ¢) is amenable
and that A(X, ¢)/Zeync(X, @) = CIX\Xovnel |

For the first of these statements, using [27, Proposition 4.3.2], the full groupoid
C*-algebra of G'°(X, ¢) fits within a short exact sequence with the ideal Zsync (X, )
(where we have used the fact the groupoid restricted to the synchronizing points
is amenable). The quotient by this ideal is finite dimensional because there are
finitely many non-synchronizing points. In particular, both Zgn.(X, ¢) and this
quotient algebras are nuclear so the full groupoid C*-algebra of G'°(X, ) is also
nuclear. It follows that G'°(X, ) is amenable, see [27, Theorem 4.1.5].
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We now prove the second part. By [28, Propsition 4.3.2], A(X, ¢)/Zsync(X, ¥)
is the reduced C*-algebra of the local conjugacy groupoid restricted to X \ Xgyne.
Hence, A(X,¢)/Zsync(X, @) is a finite dimensional C*-algebra. Moreover, since
X \ Xsyne is finite, every ¢ € X \ Xgync must be a periodic point so Lemma 1.10
implies that if p ~ic ¢ with p, ¢ in X \ Xeyne, then p = ¢. It follows that

A(X’ S0)/-,Zsync()(, QO) =~ (ClX\XSync| .
(]

Example 6.12. Let (Xeven, o) denote the even shift. It is not hard to show that
in the even shift there is only one non-synchronizing element, namely the sequence
of all zeros, see [29, Example 3.1.1] for details. Furthermore the even shift is a sofic
shift, so in particular it is finitely presented. The previous theorem implies that
all the relevant groupoids are amenable (this also follows from the fact that the
relevant groupoids are AF). Hence, from Theorem 6.11 we have the exact sequence

0 — Zsync(Xeven; 0) — A(Xeven,0) — C — 0.

Example 6.13. Recall the classification of expansive homeomorphisms of ori-
entable surfaces discussed in Theorem 1.14. Let (M, ) be an expansive home-
omorphism of an orientable surface.

If M is the 2-torus, them (M, ) is a Smale space. Hence Msyne = M and
ISYHC(M7 (P) = A(M7 (,0)'

If the genus of M is larger than one, then by [2, Lemma 4.9] (also see [13]),
M \ Mgync is finite, say |M \ Mgync| = n. Then by Theorem 6.11, all the relevant
groupoids are amenable and we have the exact sequence

0 —>Isync(M7(P) — A(M,(P) —C" —0.
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