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Abstract

Disturbance response and recovery are an increasing focus in microbial ecology as
microbes may recovery from disturbance differently than macro communities. Past disturbances
can alter microbial community structure and disturbance response to subsequent disturbances
events, but it remains unclear if the same recovery patterns continue after long-term exposure to
stress. Here, we compare bacterial community composition in a community that experienced two
years of monthly salinity addition disturbances with a community that has not experience salinity
additions. We then track response and recovery to an additional salinity addition based on past
disturbance exposure. We tested the following hypotheses: 1) communities with a repeated
disturbance history will have different community composition than communities without a
disturbance history; 2) communities exposed to repeated disturbances will undergo a different
recovery trajectory than communities experiencing a novel disturbance. We find that repeated

disturbances alter community composition and affect community response and recovery to a
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subsequent disturbance after two years, primarily through increased resistance. This work
improves our understanding of microbial temporal dynamics and suggests that novel disturbances

may pose a threat to microbial community structure and function.

INTRODUCTION

The effects of disturbance history on community structure and stability have been well
studied in animal and plant systems, but only recently has been studied in microbes (Shade review,
Bardgett and Caruso 2020, Philippot et al 2021). The distinct physiologies and life histories of
microbes compared to macro-organisms may lead to microbes exhibiting unique response patterns
to environmental disturbance, making it necessary to re-examine these questions in microbial
systems. For example, the high diversity and functional redundancy of microbial communities
(Fierer 2017, Chen et al 2022), paired with short turnover times (Powel 1956, Gibson et al 2018)
and ability to use dormancy to survive inhospitable periods (Lenon and Jones 2011, Blazewicz et
al 2014) could lead to distinct community disturbance responses compared to animals and plants.

The disturbance regime of an ecosystem can impact microbial composition by repeatedly
selecting for microbial taxa that are tolerant of, or can recover from, disturbance stressors over
long time periods. Disturbance experiments have found that past disturbances alter microbial
composition (Berga et al 2012, Santos-Medellin et al 2017) and function (Berard et al 2012,
Bouskill 2013, Meisner et al 2015, Kaisermann et al 2017) following subsequent disturbances
compared to naive communities, but examples of the effects of long-term disturbance regimes on
community structure (Nielsen and Ball 2015) are less common. Theoretical work shows that a
history of environmental variation affects the functioning of microbial communities (Hawkes and
Keitt 2015), and the field and laboratory experiments that have tested long-term, repeated

disturbances have also shown that they alter diversity and composition (Osburn et al. 2019, Shen
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et al. 2016, Preece et al 2019, Steitz et al 2022), functional diversity (Steitz et al 2022), function
(Evans and Wallenstein 2012, Evans and Wallenstein 2014, Fuchsleuger et al 2016, Canarini et
al 2021), and network structure (Osburn et al 2019) in a diverse array of systems and stressors.

Historic disturbance regimes may not only affect community structure and function but
may also affect the community’s recovery to future disturbances. Repeated disturbance may
increase a community’s resistance and resilience as the community adapts to the recurring
environmental stress, where resistance describes the degree of compositional change following a
disturbance and resilience describes how quickly the community returns to its pre-disturbance
composition (Shade et al 2012). Considerable research effort has examined the effects of drought
stress on soil microbiomes and finds that past drought events, whether over short or long-term
periods, leads to increased resistance (Bouskill 2013, Canarini et al 2021) and/or resilience (Berard
2012, de Nijs et al 2019) to future drought stress. Drought-stressed communities have also been
found to adapt to drought by altering their recovery strategy (Evans and Wallenstein 2014).
However, microbial response to other types of disturbances, like salinity, fire, and heat shock, have
yielded less consistent results, including finding little or no community resilience (Berga 2012,
Berhard et al 2015, Shen et al 2016, Jurberg 2017b, Calderon et al 2018, Feckler et al 2018, Hu et
al 2018). A more thorough investigation of microbial responses to other disturbances, like has been
done with drought stress, would lead to more conclusive understanding of the effect of historic
disturbance regimes on microbial community recovery and adaptation.

We tested the effect of repeated disturbances on soil bacterial community structure and
recovery in a brackish marsh in SE Louisiana using salinity pulses as the disturbance. Coastal
wetlands are an understudied habitat (Carini et al 2016) prone to frequent and rapid changes in

salinity and predicted to experience increased mean salinity over time with sea level rise
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(Fagherazzi et al 2019). The frequent abiotic fluctuations and long-term salinity changes provide
a useful context to examine how soil communities respond to salinity stress follow a long-term
disturbance regime. The few studies that have tested salinity stress find communities to have
inconsistent recovery and that the frequency of the disturbance impacts community composition
(Berga et al 2012, Hu et al 2018, Mobilian et al 2020).

We work to expand our understanding of microbial response to salt stress in natural
environments by implementing a field-based disturbance experiment, using a two-year monthly
salinity addition regime as the historic disturbance. We assessed differences in community
composition between communities with no artificial disturbance vs. two years of repeated
disturbance history. We then compared the recovery trajectory of bacterial communities to an
additional salinity disturbance in the community with the repeated disturbance history vs. the
community for which the salinity addition was a novel disturbance. First, we hypothesize that the
community with the repeated disturbance history will have different community composition than
the community without a disturbance history, indicating the effect of long-term, repeated
disturbances on composition. Second, we hypothesize that the community exposed to repeated
disturbances will undergo a different recovery trajectory than the community experiencing a novel
disturbance. Specifically, we predict that repeated disturbances will lead to less rapid and less
extreme compositional change following the salinity addition (increased resistance), and a quicker
recovery to the initial community composition (increased resilience) compared to novel
disturbance community.

MATERIALS AND METHODS

Experimental Design
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In the fall of 2018, 24 permanent 1xIm plots were established in the Pearl River WMA,
LA (30°14°14.9”N 89°37°25.6”W). Plots were organized into three treatments: repeated
disturbance (two-year monthly disturbance), novel disturbance (single disturbance event), and
control (no disturbance), where each treatment had eight plots. Plots were organized in a block
design, where each block contained one plot from each treatment for a total of 8 blocks. Each plot
was 5-10m from neighboring plots, and all plots represent a native marsh plant community,
dominated by Spartina patens. Repeated disturbance plots received a monthly addition of 750g of
salt (Instant Ocean Sea Salt, Blacksburg, VA) (Moon and Stiling 2002) for two years, increasing
salinity by about 33% but returning to initial levels within a month, to establish a 2-year repeated
disturbance regime.

In December 2020, soil samples were collected from all plots (Day0, “pre-treatment”)
before adding 750g of salt to the repeated disturbance and novel disturbance plots as the
subsequent disturbance event. An unexpected rain event on Day 0 following the sample collection
and salinity addition diluted and washed away the salt so that there was no increase in salinity on
the following day. To account for this, salt was added again the following day, this time
successfully increasing salinity within 24 hours. Day 0 refers to pretreatment conditions (before
any salt was added), and Day 1 (and beyond) refers to one day after the second salt addition that
successfully increased salinity. Following the salinity addition (Day 1 and beyond), samples were
collected in the following time sequence: every other day for the first week, once per week through
the first month, and every other week for a second month. A total of ten time points were sampled,
including Day 0, which will be referred to as the number of days post-disturbance (ranging from
Day 1-55).

Sample Collection
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Each collection day, samples were collected from a randomly selected, non-repeating
subplot within the plot (excluding the outer 20cm of the plot to avoid edge effects). Soil pore-water
salinity was measured at 15cm depth using sippers to suction up pore water and dispense into a
falcon tube before measuring with a salinity meter. Daily salinity was measured at two locations
in each plot, the plot center, and the daily subplot, to capture spatial heterogeneity. These values
were averaged for statistical analyses. Once pore water was collected, soil samples were taken
within the subplot with a sterile soil corer to 10 cm depth. Soils were kept on ice until returning to
the lab.

Molecular Methods

Upon returning to the lab, samples were homogenized then treated with PMAxx (Biotium
Inc., Freemont, CA) to remove relic DNA (free-floating, extracellular DNA or DNA in dead cells).
PMAXxx is a photo-sensitive reagent that binds to free-floating DNA and prevents downstream
amplification. The result is the amplification only of DNA from intact, living cells. Relic DNA has
been found to represent about 40% of amplified prokaryotic DNA in soil samples (Carini et al
2016, Lennon et al 2018), so removing it provides a more accurate picture of the live bacterial
community, which is important given the rapid time sequence of the experiment. Briefly, 0.3g of
soil was suspended in 3mL of PBS buffer and 7.5uL of PMA to reach a final sample concentration
of 50mM PMAxx. Samples were incubated in the dark for 10 minutes followed by a 15-minute
light exposure on ice with a 500W Halogen bulb at a distance of 20cm to activate the PMAxx
(Ramirez et al 2018). Samples were inverted and/or rotated to mix once per minute during the dark
and light incubation. Samples were then stored at -20°C.

DNA was extracted with the Qiagen PowerSoil Kit following the manufacturer’s protocol,

with the exception that a slurry of 960uL of soil from the PMAxx protocol was added instead of
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dry soil (Carini et al 2016). Samples were standardized to 2ng/ulL before dual-step PCR, done in
duplicate, to amplify the 16S region with primers 515F/806R (Farrer at al 2021). PCR product was
pooled, purified and concentrated with AMPure, and sequenced on Illumina Miseq v3 (300bp PE)
at Duke Sequencing Core, Duke University, Durham, NC.
Bioinformatics

Sequencing data was processed with an ASV method using the Qiime2 (Boylen et al 2019)
and DADAZ2 (Callahan et al 2016) bioinformatic pipelines. Reads were first trimmed where quality
scores dropped below ~30, then quality filtered, denoised, and paired reads were joined. Potential
contaminants identified from six control samples were removed using the R package decontam
(prevalence option) (Davis et al 2018). The resulting data were rarefied to 5500 reads per sample
for dissimilarity analysis, singletons were removed from the rarefied data for compositional
analysis, and unrarefied with relative abundance was used for taxonomic analysis. Taxonomy was
assigned using Greengenes (DeSantis et al 2006).
Statistical Analysis

To assess how the salinity addition increased plot salinity, we used linear mixed effects
models to test the effect of Treatment (control, repeated disturbance, novel disturbance) on salinity
on each day of the experiment using the function Ime() with Plot and Block as nested random
effects in the R package nlme (Pinheiro et al 2023). ANOVAs tested significance, and post-hoc
tests with the function glht() from the R package multcomp (Hothorn et al 2008) compared the
salinity levels between treatments on each day to confirm the two salt treatments (repeated
disturbance and novel disturbance) did not differ from each other.

To test the first hypothesis and compare the pre-treatment communities, the data were

subset to only include the Day 0 samples. A PERMANOVA using adonis2() in the R package
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vegan (Oksanen et al 2022) was used to test the effect of Treatment on composition using the strata
argument to restrict permutations by block. Dispersion was calculated with the function
betadisper(). Subsequent pairwise PERMANOVAs were used to compare Day 0 composition
between each treatment by further subsetting the Day 0 dataframe to only include two treatments
per comparison. A dbRDA ordination plot was used to visualize the Day 0 communities with the
capscale() function in vegan, conditioned on block. The points were plotted by extracting the CAP
scores from the capscale() output and plotting in ggplot2 (Wickham 2016).

To test the second hypothesis, that the treatments had different recovery trajectories,
PERMANOVAs were used to test the effect of Treatment, Day (as a factor), and their interaction
on community composition over the whole collection period. In order to account for repeated
measures of plots over time, PERMANOVAs were done manually in R with different types of
models and randomization restrictions (Simpson 2020) using adonis2() and the how() function in
the package permute (Simpson 2022). First, to calculate the correct F-statistic for the effect of
Treatment, we ran an adonis2() model testing the effect of Plot + Treatment and extracted the sums
of squares for the Treatment variable (divided by df) and divided it by the sums of squares for the
Plot variable (divided by df); this accounts for the fact that in a repeated measures design, the
denominator in the F-statistic is the whole-plot error rather than the residual error (Simpson 2020).
We then performed a permutation test with 999 permutations, randomizing the plots freely within
blocks (comparing Treatments), but not randomizing within plots (individual samples), using the
how() function. For each permutation, we ran the same adonis2() model and calculated the F-
statistic for the Treatment effect. We then calculated a P-value by comparing the F-statistic of our
actual data to the distribution of F-statistics of the randomized data. To test the effect of Day, we

fit an adonis2() model testing the effect of Plot + Day and restricted permutations within plot,
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which compares samples taken over time to only the other samples within that plot. Lastly, to test
the effect of Day*Treatment, we fit an adonis2() model testing the effect of Plot + Day +
Day*Treatment, again randomizing the plots freely within blocks, but not within plots. Dispersion
was calculated with the function betadisper(). These results were visualized with a dbRDA
showing the effect of the interaction of Treatment and Day on composition, conditioning by block
with the capscale() function. Centroids and standard error were calculated from the extracted CAP
values and plotted in ggplot2.

To assess resistance and resilience, we examined day-to-day change in composition and
abundance with several methods. Firstly, pairwise PERMANOVA identified significant
compositional change between Day 0 and each subsequent day by treatment. With this method,
we assessed resistance by how long the communities resisted significant compositional change
following the salinity disturbance, and resilience by how quickly the community returned to a pre-
disturbance community composition (not significantly different from Day 0). Due to the difference
in composition found between treatments on Day 0 (treatment effect, see results), we compared
daily composition to the Day 0 composition of each respective treatment, instead of to the control.
This method identifies how each treatment deviates from its initial community, which more
accurately describes community changes than comparing the treatments to the control since their
initial communities differed (Supplement Table 2 for daily compositional comparisons of each
treatment to the control). After first subsetting the data by treatment, then by day (so that each
dataframe contained only two time points, Day 0 and one other day), we used the adonis2()
function with the how() function as described above to account for repeated measures (permuting
samples within plots, but not permuting plots freely). Resistance was assessed based on if or how

quickly community composition significantly changed from Day 0. Resilience was assessed by if
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or how quickly the community returned to a composition similar to the Day 0 composition. To
visualize the results, we plotted the effect of Day on community composition with a dbRDA
conditioned on block for each treatment. The treatments were ordinated separately to more
accurately see how the bacterial composition changes from Day 0 in each treatment using the
function capscale() conditioned on block. Spider plots show the centroids per day, calculated based
on extracted CAP values, connected to each individual sample point, plotted in ggplot2.

In addition, we considered resistance in terms of the degree of community change
following the disturbance by using Bray Curtis dissimilarity. We quantified the Bray Curtis
dissimilarity between the Day 0 community of each treatment and every subsequent day. Higher
values indicate more compositional change, repressing lower resistance. We also compared the
Bray Curtis Dissimilarity between Day 0 and the day that each treatment underwent significant
composition change in response to the salinity addition (Day 1 (novel) and Day 3 (repeated), see
results). This allows us to compare the degree of change that each treatment experienced and
identify with treatment underwent more extreme change. We used the function beta.pair.abund()
from the R package betapart (Baselga et al 2023) to create a dissimilarity matrix. We extracted the
dissimilarity values between the Day 0 and every subsequent day per plot to compare dissimilarity
between the treatments. Using the same linear model as described for the salinity tests, we
compared how dissimilarity from Day 0 varied by treatment, and the same post hoc method as
described above was used to assess significance between days and treatments.

To assess how abundance of key taxa changed over time and between treatment, we used
a similarity percentage analysis with the function simper() in the R packaged vegan. This analysis
calculates the average contribution of each taxon to the community dissimilarity between sample

units. Permutations then calculate if the contribution to dissimilarity is significant per taxa. We
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considered the dissimilarity between the three treatments (control-repeated disturbance, control-
novel disturbance, repeated disturbance-novel disturbance). Using unrarefied, relative abundance
data, we identified the 100 ASVs that most significant contributed to dissimilarity between each
treatment comparison (300 total). Some of the 300 ASVs were present in more than one
comparison, so after repeats were removed, there were 254 ASVs (the repeated taxa were still
present in the analysis, but only listed once, resulting in a total of 254). To visualize abundance
changes in these taxa over time, we subset our data to only include these 254 ASVs. Abundance
values were log transformed and plotted as a heatmap using the function pheatmap() in the R
package pheatmap (Kold 2019), with abundance values centered and scaled and taxa summed and
labeled by the phylum.

All statistics and figures were run in R 4.1.2 (R Core Team 2023).
RESULTS
Salinity Disturbance

The salinity addition significantly increased salinity in the treatment plots for eight days,
and by Day 14 salinity returned to pre-treatment levels (figure 1, Supplement Table 1). We
consider the disturbance phase to last from Day 1 through Day 8, and the recovery phase to begin
on Day 14. This timeline of salinity elevation is consistent with salinity measurements taken during
the 2-year disturbance treatment to confirm the effect of the repeated salt additions, which showed

salinity returning to ambient conditions after about two weeks.
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Figure 1: A boxplot of the salinity of each treatment over the two-month sample collection. Salt was added after
salinity was measured on Day 0. Changes in the control represent ambient salinity changes in the system. Significant
differences (p<0.05) in salinity per day between treatments are shown for Days 0-14 based on post-hoc tests
(supplement table 1).

Effect of repeated salinity additions on community composition

The Day 0 community composition significantly differed between treatments (figure 2; R?
= 0.116, pseudo F(220) = 1.31, P = 0.014), and pairwise PERMANOVAs comparing treatments
find that the repeated disturbance composition was significantly different from the control (R? =
0.088, pseudo F(i,14 = 1.34, P = 0.039) and the novel disturbance (R?> = 0.087, pseudo F(1,13) =
1.23, P =0.039), but the novel disturbance and control did not differ (R? = 0.093, pseudo F(1,13) =
1.33, P = 0.094). There was no significant difference in dispersion (compositional variance)
between treatments (F'= .98, P = 0.163), however, the repeated disturbance treatment showed a

non-significant trend of decreased variance compared to the other treatments.
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Effect of repeated salinity additions on disturbance response

Over the two months following the salinity addition, community composition significantly
differed based on the disturbance regime (Treatment effect; pseudo F(2, 177) = 2.05, P = 0.038) and
days since disturbance (Day effect; pseudo Fo, 153y = 1.67, P = 0.001), and the disturbance
communities underwent different recovery trajectories over time (Treatment x Day interaction;
pseudo Fs, 135y = 1.19, P = 0.0013) (figure 3). Over the whole experiment, dispersion was
significantly different by Treatment (F= 6.00, P=0.003) and by Day (F=2.16, P=0.027). Like the
Day 0 trend, the repeated disturbance treatment had lower compositional variance than the other
treatments (Supplement Figure 1). These results support our second hypothesis, that the treatment

communities respond to the disturbance differently based on their past disturbance regime.
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Resistance

We found a slight increase in resistance in the repeated disturbance community compared to
the novel disturbance based on how quickly the communities underwent significant compositional
change following the salinity disturbance (table 1, figures 4a-c). The repeated disturbance
treatment had only one day of significant compositional change away from the starting community,
on Day 3, and the variance of community composition never changed. The novel disturbance
underwent multiple days of compositional change, including on Day 1. This indicates lower
resistance, and a rapid response to the salinity disturbance. The novel disturbance also showed the
only significant change in compositional variance, which significantly decreased on Day 6
compared to Day 0. Overall, the control had multiple days of significant compositional change,
demonstrating ambient bacterial dynamics.

We also used Bray Curtis Dissimilarity to assess resistance by quantifying the degree of
community change on each day compared to Day 0. Dissimilarity over time differed by treatment

(df=13, F=12.77, P=0.0009; figure 5) and the novel disturbance had higher dissimilarity over the
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sampling period than the repeated disturbance and the control, supporting our prediction. Post hoc
tests show that dissimilarity on Day 3 was significantly higher in the novel disturbance community
than the repeated disturbance (p=0.012) and the control (p=0.003). We also assessed the degree of
change by comparing the dissimilarity of both salt treatments on the day that they underwent
significant composition change based on the PERMANOVA results (novel: Day 1, repeated: Day
3). While the novel disturbance had higher dissimilarity, the difference was not significant
(p=0.89). Together with the PERMANOVA result, we found a moderate increase in resistance in

the repeated disturbance treatment compared to the novel disturbance.

Repeated Disturbance Novel Disturbance Control

Day P-value Dispersion P-value Dispersion P-value Dispersion
Comparison

Day 0-1 0.64 0.64 0.0078** 0.24 0.063" 0.46
Day 0-3 0.015* 0.72 0.63 0.25 0.19 0.46
Day 0-6 0.70 0.67 0.38 0.040%* 0.016* 0.30
Day 0-8 0.40 0.98 0.45 0.40 0.063" 0.26
Day 0-14 0.87 0.80 0.57 0.82 0.14 0.70
Day 0-20 0.90 0.64 0.46 0.95 0.0078** 0.23
Day 0-28 0.98 0.43 0.0078** 0.90 0.070" 0.19
Day 0-42 0.94 0.41 0.13 0.47 0.078" 0.60
Day 0-55 0.996 0.40 0.047* 0.724 0.063" 0.43

Table 1: Results of pairwise PERMANOVAs comparing the composition of each treatment on Day 0 to every
subsequent day. Significance is represented as follow: 1 P<0.1, * P<0.05, ** P<0.01
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Figure S: Bray Curtis dissimilarity between the Day 0 community and each subsequent day by treatment.
302 The novel disturbance had significantly higher dissimilarity than the control (p=0.005) and repeated

disturbance (p=0.023) on Day 3. On Day 14, the novel disturbance dissimilarity was significantly higher than
the repeated disturbance (p=0.047), but not different from the control.
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Resilience

We found equally high resilience in both treatments based on how quickly community
composition recovered after undergoing significant compositional change. Both salt treatments
experienced one day of significant composition change during the disturbance phase, and both
immediately returned to a composition similar to Day 0, even while salinity was still elevated. This
indicates high resilience in both communities. After salinity returned to normal (Day 14 and
beyond) the community composition and abundance continued to change in the control and novel
disturbance but remained constant in the repeated disturbance.

To further examine resilience, we used a heatmap to plot relative abundance changes of the
taxa that most significantly contributed to community dissimilarity between treatments based on a
similarity percentage analysis (figure 6, Supplemental Table 3 for full taxonomy). In the control,
Actinobacteria, Gemmatimonadetes, Caldithrix, Nitrospirae, and Euryarchaeota were among the
most abundant phyla. The repeated disturbance had high abundance of Acidobacteria, Chlorobi,
Chloroflexi, Proteobacteria, and Bacteroidetes. The novel disturbance was dominated by
Actinobacteria, Acidobacteria, Verrucomicrobia, Chloroflexi, and AC1 (a phylum in Greengenes).

There were notable changes in abundant taxa in the salt treatments before and after the salinity
addition and over the course of the experiment. On Day 0, the novel disturbance treatment was
like the control with high abundance of Actinobacteria. However, immediately following the
salinity addition (Day 1), the abundance of Actinobacteria decreased in the novel disturbance,
suggesting the salt sensitivity of this phylum. Interestingly, several phyla increased in abundance
following the salinity addition, but differed in their abundance patterns between salt treatments.
Acidobacteria was amplified in both treatments following the addition, but immediate recovered

in the repeated disturbance while remaining high in the novel disturbance. Chlorobi and



326

327

328

329

330

331

332

333

334

335

Bacteroidetes increased in the repeated treatment only, while the latter decreased in the novel
treatment. Verrucomicrobia and AC1 were only elevated in the novel disturbance treatment.
While there were many abundance changes unique to each salt treatment, overall, there was a
pattern of phyla abundance spiking and quickly recovering in the repeated disturbance compared
to abundance increases that were maintained in the novel disturbance. By the final timepoints, the
repeated disturbance is similar to the control, with elevated Spirochaetes, Caldithrix, and
Euryarchaeota, suggesting recovery, while the novel disturbance did not show taxonomic

recovery.
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Figure 6: Heatmap plotting the abundance of the 100 taxa that significantly contributed the most to community
dissimilarity by treatment (total 254), labeled by phylum. Warm colors represent high abundance and cool colors
represent low abundance. The columns are arranged first by treatment, constituting each panel and indicated with
colors on the top of the figure. Within each panel, the columns are in chronological order by day, labeled on the
bottom of the figure. Full taxonomic classification of the ASVs represented in this analysis and figure can be found
in Supplement Table 3.
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DISCUSSION

This study examined the effect of past disturbances on soil bacterial composition and
disturbance response. We hypothesized that communities with a salinity disturbance history will
differ from those that have not experienced an experimental disturbance, and that their recovery
from a subsequent salinity disturbance will differ. Overall, we found support for both hypotheses.

This experiment detected bacterial community compositional changes within days
following an environmental disturbance. This rapid timescale is consistent with other lab and
mesocosm research (Jurburg et al 2017a, Rodriguez-Valdecantos 2017, Hu et al 2018, Shade et al
2011, Berga et al 2012, Ager et al 2010) and is the fastest timescale of microbial community
change found in nature as far as we are aware. The control treatment captured the ambient bacterial
dynamics that occur across two months, demonstrating how variable communities can be over
time. This result helps inform our understanding of natural soil temporal dynamics in wetlands.
Effect of long-term disturbances on composition

The repeated salinity disturbances over two years altered community composition, as Day
0 composition differed between the repeated disturbance treatment and the treatments that had not
experience past disturbances (novel, control). While the methods used do not identify a
mechanism, this points to the salinity addition selecting for salt tolerant taxa. Salinity is an
important factor in structuring bacterial communities (Lozupone and Knight 2007), and
community salt tolerance has been found to be proportional to soil salinity (Rath et al 2019). Our
results show that the monthly salinity addition, which increased salinity by ~33% for about two
weeks, or half of the time for two years, constituted a significant disturbance to the ambient salinity
regime and cultivated a bacterial community adapted to altered salinity.

Recovery trajectories
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We found that the repeated and novel disturbance treatments underwent different recovery
trajectories following the salinity disturbance, supporting our second hypothesis. The differences
in their trajectories were seen in compositional differences over the recovery period (interactive
effect), elevated relative abundances of distinct taxa, and differences in community variance.
While both salt treatments had similar responses to the salinity disturbance, the relative abundance
results show the repeated disturbance recovered taxonomically while the novel disturbance does
not, which could reflect the compositional results. The treatments also differed in terms of
community variance, where the repeated disturbance had consistently lower variance than the other
treatments, and the novel disturbance had a sharp decrease in dispersion following the salinity
disturbance but recovered after the first week. This suggests that the salinity disturbance decreases
community variance, likely due to the death of salt sensitive taxa (Wichern et al 2006). The low
variance in the repeated disturbance treatment, both on Day 0 and following the salinity addition,
suggest that the past disturbances had a strong filtering effect on the community.

Disturbance response: resistance

The repeated disturbance treatment increased community resistance to subsequent
disturbances, as we predicted, but only slightly. The salinity addition led to compositional changes
in the novel disturbance community on Day 1, and the repeated disturbance community changed
on Day 3. While this result demonstrates increased resistance, as has been found in other repeated
disturbance studies (Bérard et al 2012, Bouskill et al 2013, Canarini et al 2021), the difference
between the treatments was only one sampling time point, representing only a modest increase.

We also considered resistance in terms of degree of community change using dissimilarity,
which also demonstrated a modest increase in resistance in the repeated disturbance treatment.

During the disturbance phase, the novel disturbance community had higher dissimilarity than the
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repeated disturbance, indicating more extreme community changes. This generally supports our
prediction, but with one notable exception. We anticipated that the novel disturbance would
undergo more extreme compositional change than the repeated disturbance during its initial
disturbance response (Day 1 and Day 3, respectively). However, we did not find a difference in
dissimilarity between the novel treatment on Day 1 and the repeated treatment on Day 3,
suggesting they both underwent similar degrees of change in the immediate response to salinity.
Taken together, the resistance results show that 1) the initial community response to the salinity
disturbance was slightly delayed in the repeated disturbance treatment due to past exposures, 2)
the salt treatments underwent the same degree of community change in response to the initial
disturbance, and 3) the repeated disturbance community remained more like its pre-treatment type
over the disturbance phase than the novel disturbance.

The mechanisms that caused the slight increase in resistance are unknown. The repeated
salinity additions could have filtered out salt sensitive taxa (Rath et al 2019, Logares et al 2013)
as the decrease in community variance in the repeated disturbance treatment would suggest. The
past disturbances could also have selected for taxa with an improved ability to withstand stressful
conditions through adaptations like increased dormancy potential (Kearns et al 2018). While our
methods removed relic DNA to capture a clearer signal of community change, they did not
differentiate between the active and dormant community. If certain taxa adapted to survive
frequent salinity pulses by increase dormancy potential, they would still be detected in our
sampling and result in fewer compositional changes. Barnett and Shade (2023) compared the
resilience of the whole bacterial community to only the active (non-dormant) community by

comparing DNA and RNA sequencing and found stronger recovery patterns in the whole
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community than the active subset. This suggest that dormancy and the microbial seedbank are
critical for community disturbance response and might explain our results.

Other studies of disturbance dynamics have found that disturbances select for microbial
specialists (Renes et al 202) and tolerant taxa (Jurburg et al 2017b), or cause bacteria to adopt new
life strategies to withstand disturbances (Evans and Wallenstein 2014). Through evolution and/or
horizontal gene transfer, these traits could have increased resistance to future salinity disturbances.
Bacteria have been found to evolve stress tolerance in 250-2000 generations (Zhou and Ning
2017), which is within the timeframe of the two-year repeated disturbance conditioning phase and
could explain our results. These adaptations would lead to increased community resistance to a
repeated disturbance, but more research is needed to understand which mechanisms are more
important in driving microbial compositional changes in nature.

Disturbance response: resilience

Overall, we found resilience in this system in both the repeated and novel disturbance
treatments, but the heat map suggest higher resilience in the repeated disturbance community, as
expected. While the rapid community response to the salinity addition during the disturbance phase
was notable, perhaps more surprising was the immediate recovery in both salt-disturbed
treatments. We predicted that both communities would exhibit high resilience due to the frequent
abiotic fluctuations in the system, but we did not expect recovery to happen while salinity was still
elevated. Other studies have found bacterial communities to recover from a disturbance in about
25 days (Jurburg et al 2017a), but more work examining bacterial community changes over short
time periods would be beneficial to understand community recovery patterns on this time scale.
Our results show that the repeated disturbance community maintained its post-recovery

community (Day 6) for the remainder of the experiment, while the novel disturbance and control
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communities continued to shift over time. This, along with the decreased community variance,
suggests that the past salinity additions had a strong filtering effect on the taxa present and
continues to impact the community dynamics beyond the recovery phase.

The focus of this study was on compositional responses to disturbance, but there were
notable changes in the abundances of phyla known to be salt sensitive/tolerant and known as either
nitrogen or sulfur cyclers, suggesting potential functional differences between treatments. Firstly,
the control had high abundances of salt-sensitive phyla, such as Actinobacteria and
Gemmatimonadetes (Wijaya et al 2022, Li et al 2021), and the repeated disturbance was defined
by high abundance of salt-tolerance taxa, like Bacteroidetes and Proteobacteria (Wijaya et al 2022,
Mhete et al 2020). The control had higher abundance of phyla know as nitrogen cyclers, like
Nitrospira (Mhete et al 2020, Chen et al 2022), while the salt treatments had high abundance of
sulfur cycling phyla, like Chlorobi (Kuypers et al 2018, Jagannathan and Golbeck 2009) and
Proteobacteria (Arora 2017, Wasmund et al 2017). These results support other research finding
that nitrogen fixers and nitrogen cycling genes decrease as soil salinity increases (Li et al 2021,
Morrissey and Franklin 2015) while Proteobacteria (particularly sulfur-reducing classes) increase
in abundance with salinity (Li et al 2021, Morrissey and Franklin 2015). Microbial communities
are often considered to have high functional redundancy, but recent studies have found recovery
patterns are decoupled between composition/diversity and soil community function, demonstrating
the importance of considering the resilience of both community structure and function (Sjostedt et
al 2018, Choi et al 2017). It is possible that the repeated salinity disturbances in our experiment
could have cultivated a community with different functions and altered nutrient availability, but a
focused examination of microbial function would be necessary to determine this.

Limitations
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The central limitations of this study are rooted in the challenges of field-based microbiome
surveying. Soil collection required destructive sampling, so the same location and, potentially,
community could not be repeatedly sampled within our plots. Instead, samples were collected over
time from randomly chosen sub-plots. Our methods attempted to account for this by distributing
salt across the plot as evenly as possible, measuring salinity from multiple plot locations, and
taking care to ensure all plots had a similar and homogenous plant community; however, samples
were collected from a new location in the plot on each sampling day which therefore introduced
unknown community variance. The effects of the interacting plant community were also not
considered, though care was taken to ensure all plots had a similar plant community and that
collection was done outside of growing season to reduce plant effects on the soil microbes. The
molecular methods used do not distinguish between active and dormant bacteria and do not focus
on functional differences between treatments. Further investigation of these specific areas would
provide greater insight into the mechanisms microbes utilized to withstand disturbance and
functional consequences of disturbance events.

CONCLUSION

In conclusion, this study found long-term, past disturbances to alter bacterial community
composition and response to future disturbances. We identified moderate increases in resistance
and resilience to disturbance based on the community’s exposure to past disturbances, supporting
similar results found in systems with different disturbances, mainly drought. Furthermore, we
found soil bacterial to undergo significant compositional change following a salinity disturbance
in a matter of days, confirming the short timescale of bacteria turnover found in lab-based

experiments. These results suggest that soil microbiomes are likely well-adapted to typical abiotic
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fluctuations and are resilient to disturbances, but novel disturbances may alter community structure
and function.
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