

1    **Bacterial community response to novel versus repeated disturbances**

2    Susannah Halbrook<sup>1</sup>, William Wilber<sup>2</sup>, Mary Elizabeth Barrow<sup>1</sup>, Emily C. Farrer<sup>1</sup>

3    <sup>1</sup>Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, LA, USA

4    <sup>2</sup>Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA

5    Correspondence: S. Halbrook, Department of Ecology and Evolutionary Biology, Tulane

6    University, 6823 St. Charles Ave. Room# 400 Lindy Boggs Center, New Orleans, LA. 70118-

7    5698, USA

8    Email: shalbroo@tulane.edu, Phone: (206)719-1725

9    Keywords: soil microbial community, stability, perturbation, succession, Gulf Coast, wetland,

10    16S

11    **Abstract**

12       Disturbance response and recovery are an increasing focus in microbial ecology as  
13       microbes may recovery from disturbance differently than macro communities. Past disturbances  
14       can alter microbial community structure and disturbance response to subsequent disturbances  
15       events, but it remains unclear if the same recovery patterns continue after long-term exposure to  
16       stress. Here, we compare bacterial community composition in a community that experienced two  
17       years of monthly salinity addition disturbances with a community that has not experience salinity  
18       additions. We then track response and recovery to an additional salinity addition based on past  
19       disturbance exposure. We tested the following hypotheses: 1) communities with a repeated  
20       disturbance history will have different community composition than communities without a  
21       disturbance history; 2) communities exposed to repeated disturbances will undergo a different  
22       recovery trajectory than communities experiencing a novel disturbance. We find that repeated  
23       disturbances alter community composition and affect community response and recovery to a

24 subsequent disturbance after two years, primarily through increased resistance. This work  
25 improves our understanding of microbial temporal dynamics and suggests that novel disturbances  
26 may pose a threat to microbial community structure and function.

27 **INTRODUCTION**

28 The effects of disturbance history on community structure and stability have been well  
29 studied in animal and plant systems, but only recently has been studied in microbes (Shade review,  
30 Bardgett and Caruso 2020, Philippot et al 2021). The distinct physiologies and life histories of  
31 microbes compared to macro-organisms may lead to microbes exhibiting unique response patterns  
32 to environmental disturbance, making it necessary to re-examine these questions in microbial  
33 systems. For example, the high diversity and functional redundancy of microbial communities  
34 (Fierer 2017, Chen et al 2022), paired with short turnover times (Powel 1956, Gibson et al 2018)  
35 and ability to use dormancy to survive inhospitable periods (Lenon and Jones 2011, Blazewicz et  
36 al 2014) could lead to distinct community disturbance responses compared to animals and plants.

37 The disturbance regime of an ecosystem can impact microbial composition by repeatedly  
38 selecting for microbial taxa that are tolerant of, or can recover from, disturbance stressors over  
39 long time periods. Disturbance experiments have found that past disturbances alter microbial  
40 composition (Berga et al 2012, Santos-Medellin et al 2017) and function (Berard et al 2012,  
41 Bouskill 2013, Meisner et al 2015, Kaisermann et al 2017) following subsequent disturbances  
42 compared to naïve communities, but examples of the effects of long-term disturbance regimes on  
43 community structure (Nielsen and Ball 2015) are less common. Theoretical work shows that a  
44 history of environmental variation affects the functioning of microbial communities (Hawkes and  
45 Keitt 2015), and the field and laboratory experiments that have tested long-term, repeated  
46 disturbances have also shown that they alter diversity and composition (Osburn et al. 2019, Shen

47 et al. 2016, Preece et al 2019, Steitz et al 2022), functional diversity (Steitz et al 2022), function  
48 (Evans and Wallenstein 2012, Evans and Wallenstein 2014, Fuchsleuger et al 2016, Canarini et  
49 al 2021), and network structure (Osburn et al 2019) in a diverse array of systems and stressors.

50         Historic disturbance regimes may not only affect community structure and function but  
51 may also affect the community's recovery to future disturbances. Repeated disturbance may  
52 increase a community's resistance and resilience as the community adapts to the recurring  
53 environmental stress, where resistance describes the degree of compositional change following a  
54 disturbance and resilience describes how quickly the community returns to its pre-disturbance  
55 composition (Shade et al 2012). Considerable research effort has examined the effects of drought  
56 stress on soil microbiomes and finds that past drought events, whether over short or long-term  
57 periods, leads to increased resistance (Bouskill 2013, Canarini et al 2021) and/or resilience (Berard  
58 2012, de Nijls et al 2019) to future drought stress. Drought-stressed communities have also been  
59 found to adapt to drought by altering their recovery strategy (Evans and Wallenstein 2014).  
60 However, microbial response to other types of disturbances, like salinity, fire, and heat shock, have  
61 yielded less consistent results, including finding little or no community resilience (Berga 2012,  
62 Berhard et al 2015, Shen et al 2016, Jurberg 2017b, Calderon et al 2018, Feckler et al 2018, Hu et  
63 al 2018). A more thorough investigation of microbial responses to other disturbances, like has been  
64 done with drought stress, would lead to more conclusive understanding of the effect of historic  
65 disturbance regimes on microbial community recovery and adaptation.

66         We tested the effect of repeated disturbances on soil bacterial community structure and  
67 recovery in a brackish marsh in SE Louisiana using salinity pulses as the disturbance. Coastal  
68 wetlands are an understudied habitat (Carini et al 2016) prone to frequent and rapid changes in  
69 salinity and predicted to experience increased mean salinity over time with sea level rise

70 (Fagherazzi et al 2019). The frequent abiotic fluctuations and long-term salinity changes provide  
71 a useful context to examine how soil communities respond to salinity stress follow a long-term  
72 disturbance regime. The few studies that have tested salinity stress find communities to have  
73 inconsistent recovery and that the frequency of the disturbance impacts community composition  
74 (Berga et al 2012, Hu et al 2018, Mobilian et al 2020).

75 We work to expand our understanding of microbial response to salt stress in natural  
76 environments by implementing a field-based disturbance experiment, using a two-year monthly  
77 salinity addition regime as the historic disturbance. We assessed differences in community  
78 composition between communities with no artificial disturbance vs. two years of repeated  
79 disturbance history. We then compared the recovery trajectory of bacterial communities to an  
80 additional salinity disturbance in the community with the repeated disturbance history vs. the  
81 community for which the salinity addition was a novel disturbance. First, we hypothesize that the  
82 community with the repeated disturbance history will have different community composition than  
83 the community without a disturbance history, indicating the effect of long-term, repeated  
84 disturbances on composition. Second, we hypothesize that the community exposed to repeated  
85 disturbances will undergo a different recovery trajectory than the community experiencing a novel  
86 disturbance. Specifically, we predict that repeated disturbances will lead to less rapid and less  
87 extreme compositional change following the salinity addition (increased resistance), and a quicker  
88 recovery to the initial community composition (increased resilience) compared to novel  
89 disturbance community.

90 **MATERIALS AND METHODS**

91 **Experimental Design**

92           In the fall of 2018, 24 permanent 1x1m plots were established in the Pearl River WMA,  
93   LA (30°14'14.9"N 89°37'25.6"W). Plots were organized into three treatments: repeated  
94   disturbance (two-year monthly disturbance), novel disturbance (single disturbance event), and  
95   control (no disturbance), where each treatment had eight plots. Plots were organized in a block  
96   design, where each block contained one plot from each treatment for a total of 8 blocks. Each plot  
97   was 5-10m from neighboring plots, and all plots represent a native marsh plant community,  
98   dominated by *Spartina patens*. Repeated disturbance plots received a monthly addition of 750g of  
99   salt (Instant Ocean Sea Salt, Blacksburg, VA) (Moon and Stiling 2002) for two years, increasing  
100   salinity by about 33% but returning to initial levels within a month, to establish a 2-year repeated  
101   disturbance regime.

102           In December 2020, soil samples were collected from all plots (Day0, "pre-treatment")  
103   before adding 750g of salt to the repeated disturbance and novel disturbance plots as the  
104   subsequent disturbance event. An unexpected rain event on Day 0 following the sample collection  
105   and salinity addition diluted and washed away the salt so that there was no increase in salinity on  
106   the following day. To account for this, salt was added again the following day, this time  
107   successfully increasing salinity within 24 hours. Day 0 refers to pretreatment conditions (before  
108   any salt was added), and Day 1 (and beyond) refers to one day after the second salt addition that  
109   successfully increased salinity. Following the salinity addition (Day 1 and beyond), samples were  
110   collected in the following time sequence: every other day for the first week, once per week through  
111   the first month, and every other week for a second month. A total of ten time points were sampled,  
112   including Day 0, which will be referred to as the number of days post-disturbance (ranging from  
113   Day 1-55).

114   **Sample Collection**

115            Each collection day, samples were collected from a randomly selected, non-repeating  
116 subplot within the plot (excluding the outer 20cm of the plot to avoid edge effects). Soil pore-water  
117 salinity was measured at 15cm depth using sippers to suction up pore water and dispense into a  
118 falcon tube before measuring with a salinity meter. Daily salinity was measured at two locations  
119 in each plot, the plot center, and the daily subplot, to capture spatial heterogeneity. These values  
120 were averaged for statistical analyses. Once pore water was collected, soil samples were taken  
121 within the subplot with a sterile soil corer to 10 cm depth. Soils were kept on ice until returning to  
122 the lab.

123 **Molecular Methods**

124            Upon returning to the lab, samples were homogenized then treated with PMAxx (Biotium  
125 Inc., Freemont, CA) to remove relic DNA (free-floating, extracellular DNA or DNA in dead cells).  
126 PMAxx is a photo-sensitive reagent that binds to free-floating DNA and prevents downstream  
127 amplification. The result is the amplification only of DNA from intact, living cells. Relic DNA has  
128 been found to represent about 40% of amplified prokaryotic DNA in soil samples (Carini et al  
129 2016, Lennon et al 2018), so removing it provides a more accurate picture of the live bacterial  
130 community, which is important given the rapid time sequence of the experiment. Briefly, 0.3g of  
131 soil was suspended in 3mL of PBS buffer and 7.5uL of PMA to reach a final sample concentration  
132 of 50mM PMAxx. Samples were incubated in the dark for 10 minutes followed by a 15-minute  
133 light exposure on ice with a 500W Halogen bulb at a distance of 20cm to activate the PMAxx  
134 (Ramirez et al 2018). Samples were inverted and/or rotated to mix once per minute during the dark  
135 and light incubation. Samples were then stored at -20°C.

136            DNA was extracted with the Qiagen PowerSoil Kit following the manufacturer's protocol,  
137 with the exception that a slurry of 960uL of soil from the PMAxx protocol was added instead of

138 dry soil (Carini et al 2016). Samples were standardized to 2ng/uL before dual-step PCR, done in  
139 duplicate, to amplify the 16S region with primers 515F/806R (Farrer et al 2021). PCR product was  
140 pooled, purified and concentrated with AMPure, and sequenced on Illumina Miseq v3 (300bp PE)  
141 at Duke Sequencing Core, Duke University, Durham, NC.

## 142 **Bioinformatics**

143 Sequencing data was processed with an ASV method using the Qiime2 (Boyle et al 2019)  
144 and DADA2 (Callahan et al 2016) bioinformatic pipelines. Reads were first trimmed where quality  
145 scores dropped below ~30, then quality filtered, denoised, and paired reads were joined. Potential  
146 contaminants identified from six control samples were removed using the R package decontam  
147 (prevalence option) (Davis et al 2018). The resulting data were rarefied to 5500 reads per sample  
148 for dissimilarity analysis, singletons were removed from the rarefied data for compositional  
149 analysis, and unrarefied with relative abundance was used for taxonomic analysis. Taxonomy was  
150 assigned using Greengenes (DeSantis et al 2006).

## 151 **Statistical Analysis**

152 To assess how the salinity addition increased plot salinity, we used linear mixed effects  
153 models to test the effect of Treatment (control, repeated disturbance, novel disturbance) on salinity  
154 on each day of the experiment using the function lme() with Plot and Block as nested random  
155 effects in the R package nlme (Pinheiro et al 2023). ANOVAs tested significance, and post-hoc  
156 tests with the function glht() from the R package multcomp (Hothorn et al 2008) compared the  
157 salinity levels between treatments on each day to confirm the two salt treatments (repeated  
158 disturbance and novel disturbance) did not differ from each other.

159 To test the first hypothesis and compare the pre-treatment communities, the data were  
160 subset to only include the Day 0 samples. A PERMANOVA using adonis2() in the R package

161 vegan (Oksanen et al 2022) was used to test the effect of Treatment on composition using the strata  
162 argument to restrict permutations by block. Dispersion was calculated with the function  
163 betadisper(). Subsequent pairwise PERMANOVAs were used to compare Day 0 composition  
164 between each treatment by further subsetting the Day 0 dataframe to only include two treatments  
165 per comparison. A dbRDA ordination plot was used to visualize the Day 0 communities with the  
166 capscale() function in vegan, conditioned on block. The points were plotted by extracting the CAP  
167 scores from the capscale() output and plotting in ggplot2 (Wickham 2016).

168 To test the second hypothesis, that the treatments had different recovery trajectories,  
169 PERMANOVAs were used to test the effect of Treatment, Day (as a factor), and their interaction  
170 on community composition over the whole collection period. In order to account for repeated  
171 measures of plots over time, PERMANOVAs were done manually in R with different types of  
172 models and randomization restrictions (Simpson 2020) using adonis2() and the how() function in  
173 the package permute (Simpson 2022). First, to calculate the correct *F*-statistic for the effect of  
174 Treatment, we ran an adonis2() model testing the effect of Plot + Treatment and extracted the sums  
175 of squares for the Treatment variable (divided by df) and divided it by the sums of squares for the  
176 Plot variable (divided by df); this accounts for the fact that in a repeated measures design, the  
177 denominator in the *F*-statistic is the whole-plot error rather than the residual error (Simpson 2020).  
178 We then performed a permutation test with 999 permutations, randomizing the plots freely within  
179 blocks (comparing Treatments), but not randomizing within plots (individual samples), using the  
180 how() function. For each permutation, we ran the same adonis2() model and calculated the *F*-  
181 statistic for the Treatment effect. We then calculated a *P*-value by comparing the *F*-statistic of our  
182 actual data to the distribution of *F*-statistics of the randomized data. To test the effect of Day, we  
183 fit an adonis2() model testing the effect of Plot + Day and restricted permutations within plot,

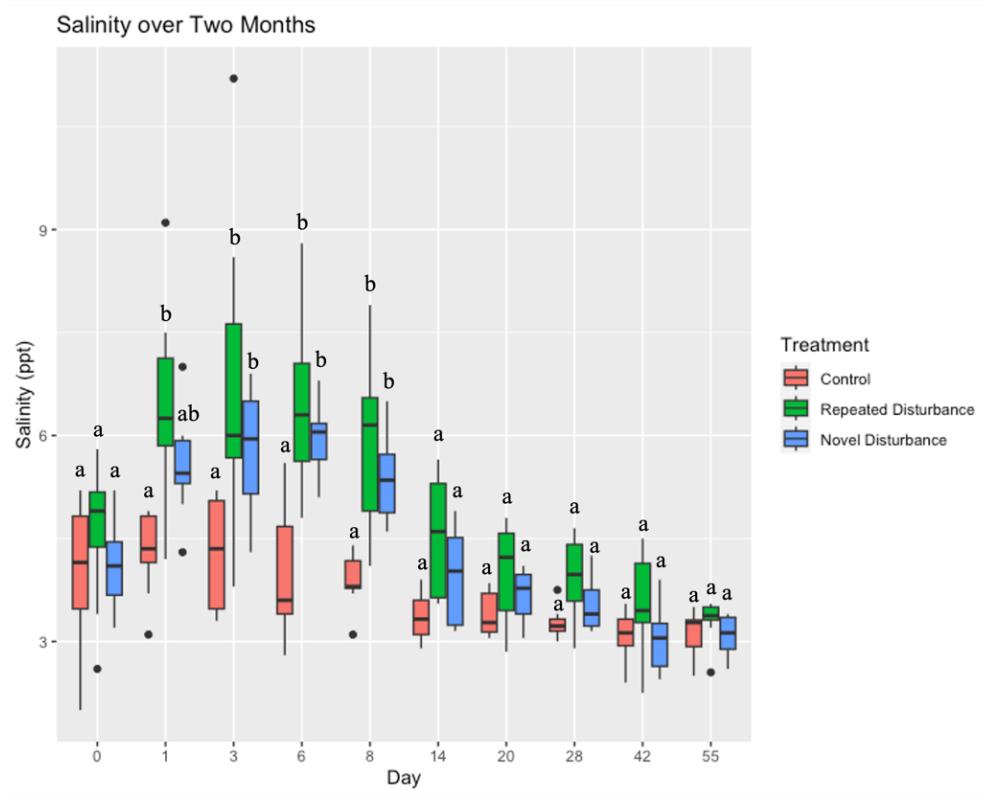
184 which compares samples taken over time to only the other samples within that plot. Lastly, to test  
185 the effect of Day\*Treatment, we fit an adonis2() model testing the effect of Plot + Day +  
186 Day\*Treatment, again randomizing the plots freely within blocks, but not within plots. Dispersion  
187 was calculated with the function betadisper(). These results were visualized with a dbRDA  
188 showing the effect of the interaction of Treatment and Day on composition, conditioning by block  
189 with the capscale() function. Centroids and standard error were calculated from the extracted CAP  
190 values and plotted in ggplot2.

191 To assess resistance and resilience, we examined day-to-day change in composition and  
192 abundance with several methods. Firstly, pairwise PERMANOVA identified significant  
193 compositional change between Day 0 and each subsequent day by treatment. With this method,  
194 we assessed resistance by how long the communities resisted significant compositional change  
195 following the salinity disturbance, and resilience by how quickly the community returned to a pre-  
196 disturbance community composition (not significantly different from Day 0). Due to the difference  
197 in composition found between treatments on Day 0 (treatment effect, see results), we compared  
198 daily composition to the Day 0 composition of each respective treatment, instead of to the control.  
199 This method identifies how each treatment deviates from its initial community, which more  
200 accurately describes community changes than comparing the treatments to the control since their  
201 initial communities differed (Supplement Table 2 for daily compositional comparisons of each  
202 treatment to the control). After first subsetting the data by treatment, then by day (so that each  
203 dataframe contained only two time points, Day 0 and one other day), we used the adonis2()  
204 function with the how() function as described above to account for repeated measures (permuting  
205 samples within plots, but not permuting plots freely). Resistance was assessed based on if or how  
206 quickly community composition significantly changed from Day 0. Resilience was assessed by if

207 or how quickly the community returned to a composition similar to the Day 0 composition. To  
208 visualize the results, we plotted the effect of Day on community composition with a dbRDA  
209 conditioned on block for each treatment. The treatments were ordinated separately to more  
210 accurately see how the bacterial composition changes from Day 0 in each treatment using the  
211 function capscale() conditioned on block. Spider plots show the centroids per day, calculated based  
212 on extracted CAP values, connected to each individual sample point, plotted in ggplot2.

213 In addition, we considered resistance in terms of the degree of community change  
214 following the disturbance by using Bray Curtis dissimilarity. We quantified the Bray Curtis  
215 dissimilarity between the Day 0 community of each treatment and every subsequent day. Higher  
216 values indicate more compositional change, representing lower resistance. We also compared the  
217 Bray Curtis Dissimilarity between Day 0 and the day that each treatment underwent significant  
218 composition change in response to the salinity addition (Day 1 (novel) and Day 3 (repeated), see  
219 results). This allows us to compare the degree of change that each treatment experienced and  
220 identify with treatment underwent more extreme change. We used the function beta.pair.abund()  
221 from the R package betapart (Baselga et al 2023) to create a dissimilarity matrix. We extracted the  
222 dissimilarity values between the Day 0 and every subsequent day per plot to compare dissimilarity  
223 between the treatments. Using the same linear model as described for the salinity tests, we  
224 compared how dissimilarity from Day 0 varied by treatment, and the same post hoc method as  
225 described above was used to assess significance between days and treatments.

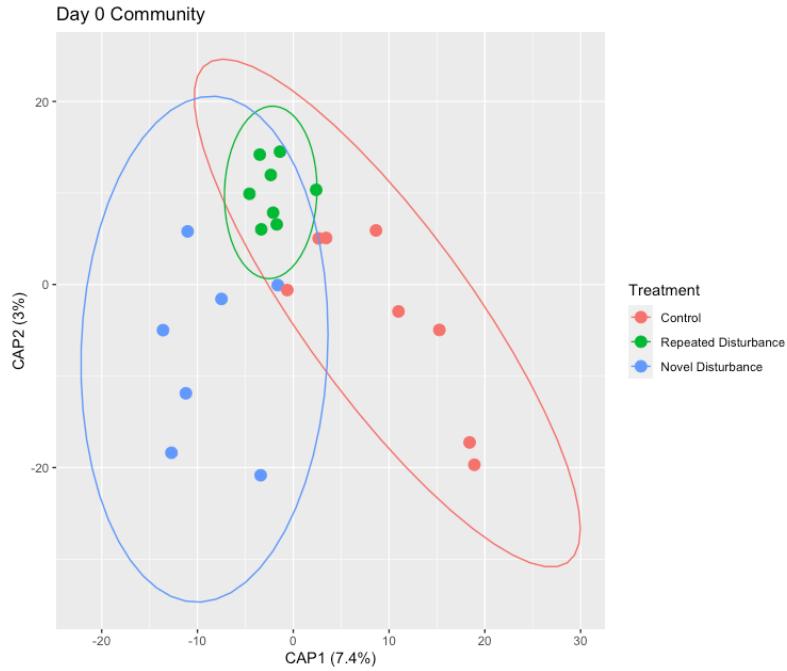
226 To assess how abundance of key taxa changed over time and between treatment, we used  
227 a similarity percentage analysis with the function simper() in the R packaged vegan. This analysis  
228 calculates the average contribution of each taxon to the community dissimilarity between sample  
229 units. Permutations then calculate if the contribution to dissimilarity is significant per taxa. We


230 considered the dissimilarity between the three treatments (control-repeated disturbance, control-  
231 novel disturbance, repeated disturbance-novel disturbance). Using unrarefied, relative abundance  
232 data, we identified the 100 ASVs that most significant contributed to dissimilarity between each  
233 treatment comparison (300 total). Some of the 300 ASVs were present in more than one  
234 comparison, so after repeats were removed, there were 254 ASVs (the repeated taxa were still  
235 present in the analysis, but only listed once, resulting in a total of 254). To visualize abundance  
236 changes in these taxa over time, we subset our data to only include these 254 ASVs. Abundance  
237 values were log transformed and plotted as a heatmap using the function `pheatmap()` in the R  
238 package `pheatmap` (Kold 2019), with abundance values centered and scaled and taxa summed and  
239 labeled by the phylum.

240 All statistics and figures were run in R 4.1.2 (R Core Team 2023).

## 241 **RESULTS**

### 242 **Salinity Disturbance**

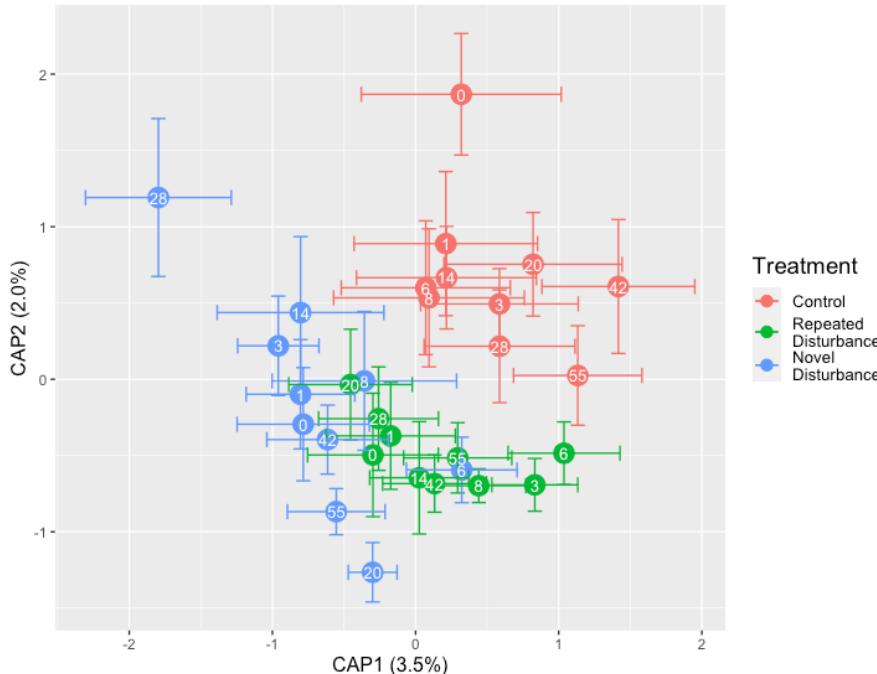

243 The salinity addition significantly increased salinity in the treatment plots for eight days,  
244 and by Day 14 salinity returned to pre-treatment levels (figure 1, Supplement Table 1). We  
245 consider the disturbance phase to last from Day 1 through Day 8, and the recovery phase to begin  
246 on Day 14. This timeline of salinity elevation is consistent with salinity measurements taken during  
247 the 2-year disturbance treatment to confirm the effect of the repeated salt additions, which showed  
248 salinity returning to ambient conditions after about two weeks.



**Figure 1:** A boxplot of the salinity of each treatment over the two-month sample collection. Salt was added after salinity was measured on Day 0. Changes in the control represent ambient salinity changes in the system. Significant differences ( $p<0.05$ ) in salinity per day between treatments are shown for Days 0-14 based on post-hoc tests (supplement table 1).

## Effect of repeated salinity additions on community composition

The Day 0 community composition significantly differed between treatments (figure 2;  $R^2 = 0.116$ , pseudo  $F_{(2,20)} = 1.31$ ,  $P = 0.014$ ), and pairwise PERMANOVAs comparing treatments find that the repeated disturbance composition was significantly different from the control ( $R^2 = 0.088$ , pseudo  $F_{(1,14)} = 1.34$ ,  $P = 0.039$ ) and the novel disturbance ( $R^2 = 0.087$ , pseudo  $F_{(1,13)} = 1.23$ ,  $P = 0.039$ ), but the novel disturbance and control did not differ ( $R^2 = 0.093$ , pseudo  $F_{(1,13)} = 1.33$ ,  $P = 0.094$ ). There was no significant difference in dispersion (compositional variance) between treatments ( $F = 1.98$ ,  $P = 0.163$ ), however, the repeated disturbance treatment showed a non-significant trend of decreased variance compared to the other treatments.




**Figure 2:** dbRDA plotting the effect of Treatment, conditioned by block, on community composition on Day 0.

261

262 **Effect of repeated salinity additions on disturbance response**

263 Over the two months following the salinity addition, community composition significantly  
 264 differed based on the disturbance regime (Treatment effect; pseudo  $F_{(2, 177)} = 2.05, P = 0.038$ ) and  
 265 days since disturbance (Day effect; pseudo  $F_{(9, 153)} = 1.67, P = 0.001$ ), and the disturbance  
 266 communities underwent different recovery trajectories over time (Treatment x Day interaction;  
 267 pseudo  $F_{(18, 135)} = 1.19, P = 0.0013$ ) (figure 3). Over the whole experiment, dispersion was  
 268 significantly different by Treatment ( $F = 6.00, P = 0.003$ ) and by Day ( $F = 2.16, P = 0.027$ ). Like the  
 269 Day 0 trend, the repeated disturbance treatment had lower compositional variance than the other  
 270 treatments (Supplement Figure 1). These results support our second hypothesis, that the treatment  
 271 communities respond to the disturbance differently based on their past disturbance regime.

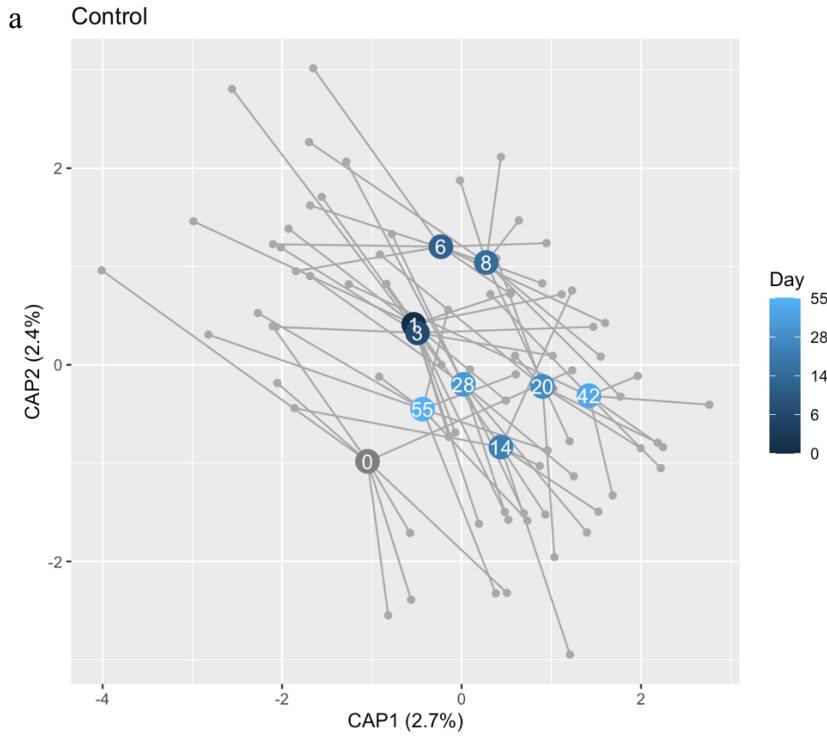


272

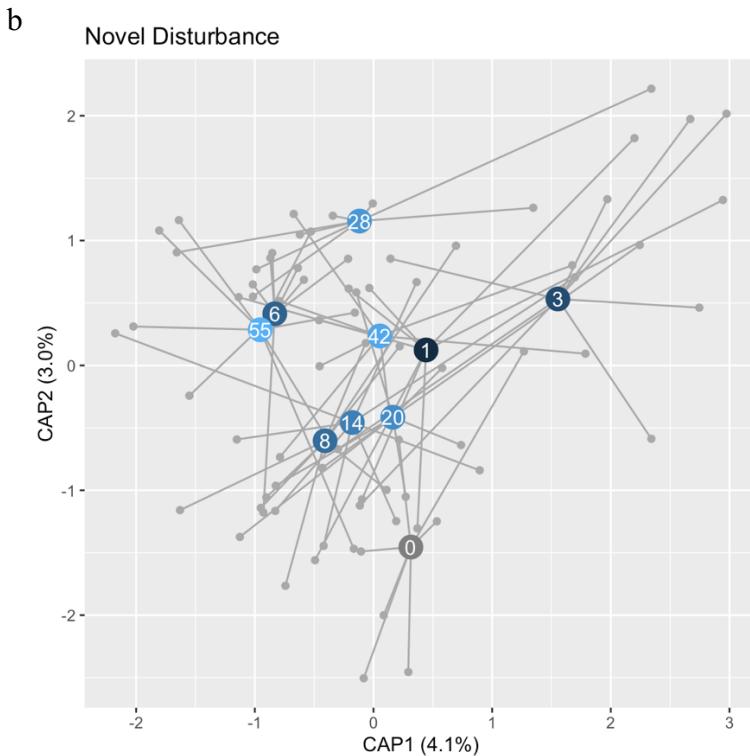
### 273 Resistance

274 We found a slight increase in resistance in the repeated disturbance community compared to  
 275 the novel disturbance based on how quickly the communities underwent significant compositional  
 276 change following the salinity disturbance (table 1, figures 4a-c). The repeated disturbance  
 277 treatment had only one day of significant compositional change away from the starting community,  
 278 on Day 3, and the variance of community composition never changed. The novel disturbance  
 279 underwent multiple days of compositional change, including on Day 1. This indicates lower  
 280 resistance, and a rapid response to the salinity disturbance. The novel disturbance also showed the  
 281 only significant change in compositional variance, which significantly decreased on Day 6  
 282 compared to Day 0. Overall, the control had multiple days of significant compositional change,  
 283 demonstrating ambient bacterial dynamics.

284 We also used Bray Curtis Dissimilarity to assess resistance by quantifying the degree of  
 285 community change on each day compared to Day 0. Dissimilarity over time differed by treatment  
 286 (df=13, F=12.77, P=0.0009; figure 5) and the novel disturbance had higher dissimilarity over the


**Figure 3:** dbRDA plotting the effect of the Treatment x Day interaction, conditioned by block, on community composition. Points represent the centroid of community composition on a given day by Treatment and bars represent standard error. Centroids are labelled by day.

287 sampling period than the repeated disturbance and the control, supporting our prediction. Post hoc  
 288 tests show that dissimilarity on Day 3 was significantly higher in the novel disturbance community  
 289 than the repeated disturbance ( $p=0.012$ ) and the control ( $p=0.003$ ). We also assessed the degree of  
 290 change by comparing the dissimilarity of both salt treatments on the day that they underwent  
 291 significant composition change based on the PERMANOVA results (novel: Day 1, repeated: Day  
 292 3). While the novel disturbance had higher dissimilarity, the difference was not significant  
 293 ( $p=0.89$ ). Together with the PERMANOVA result, we found a moderate increase in resistance in  
 294 the repeated disturbance treatment compared to the novel disturbance.


295

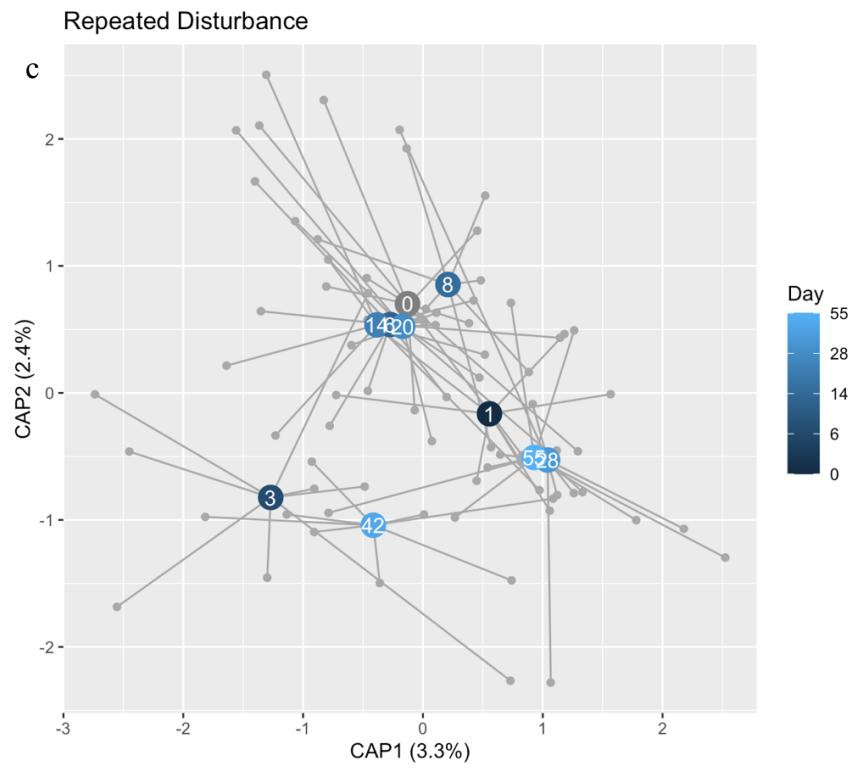
|                | Repeated Disturbance |            | Novel Disturbance |            | Control            |            |
|----------------|----------------------|------------|-------------------|------------|--------------------|------------|
| Day Comparison | P-value              | Dispersion | P-value           | Dispersion | P-value            | Dispersion |
| Day 0-1        | 0.64                 | 0.64       | 0.0078**          | 0.24       | 0.063 <sup>†</sup> | 0.46       |
| Day 0-3        | 0.015*               | 0.72       | 0.63              | 0.25       | 0.19               | 0.46       |
| Day 0-6        | 0.70                 | 0.67       | 0.38              | 0.040*     | 0.016*             | 0.30       |
| Day 0-8        | 0.40                 | 0.98       | 0.45              | 0.40       | 0.063 <sup>†</sup> | 0.26       |
| Day 0-14       | 0.87                 | 0.80       | 0.57              | 0.82       | 0.14               | 0.70       |
| Day 0-20       | 0.90                 | 0.64       | 0.46              | 0.95       | 0.0078**           | 0.23       |
| Day 0-28       | 0.98                 | 0.43       | 0.0078**          | 0.90       | 0.070 <sup>†</sup> | 0.19       |
| Day 0-42       | 0.94                 | 0.41       | 0.13              | 0.47       | 0.078 <sup>†</sup> | 0.60       |
| Day 0-55       | 0.996                | 0.40       | 0.047*            | 0.724      | 0.063 <sup>†</sup> | 0.43       |

**Table 1:** Results of pairwise PERMANOVAs comparing the composition of each treatment on Day 0 to every subsequent day. Significance is represented as follow:  $\dagger P<0.1$ ,  $*$   $P<0.05$ ,  $** P<0.01$



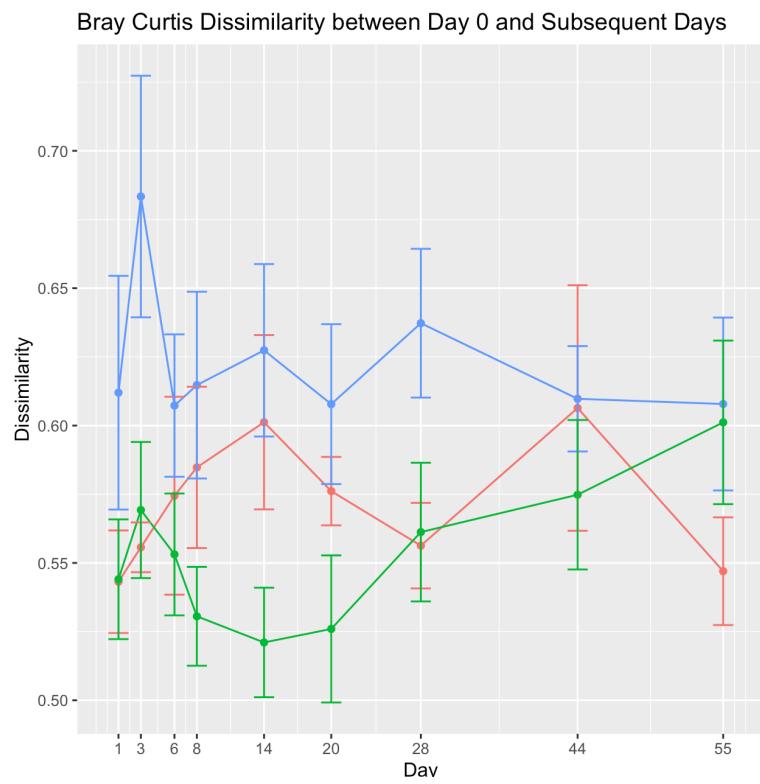
296




297

298

299


**Figure 4a-c:** dbRDAs plotting the community composition of each day by treatment (ordinated separately): a) control, b) novel disturbance, c) repeated disturbance. Centroids of each day are labeled, and segments show the distance of each individual points (grey points) from the daily centroid.

300



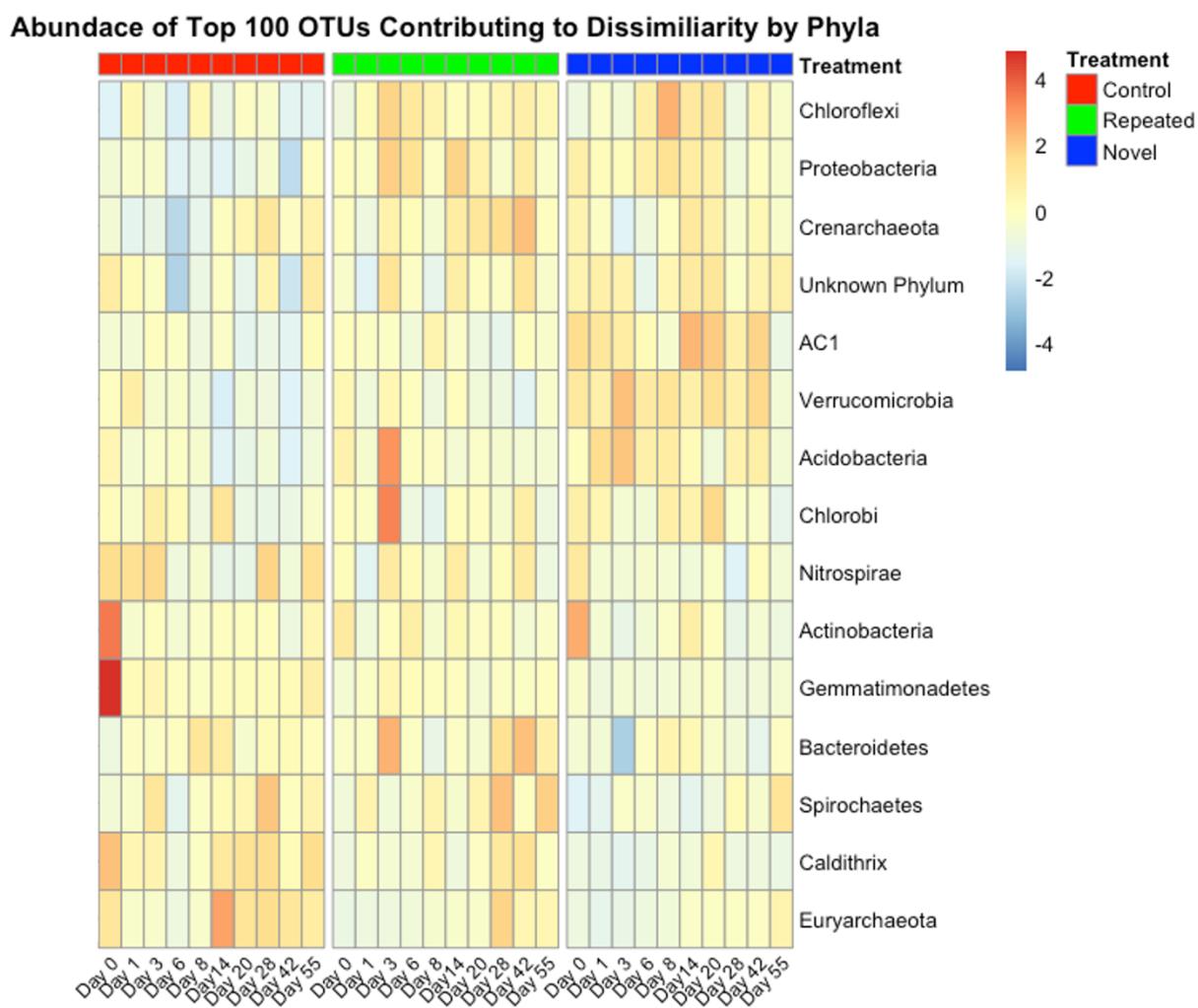
301

302



**Figure 5:** Bray Curtis dissimilarity between the Day 0 community and each subsequent day by treatment. The novel disturbance had significantly higher dissimilarity than the control ( $p=0.005$ ) and repeated disturbance ( $p=0.023$ ) on Day 3. On Day 14, the novel disturbance dissimilarity was significantly higher than the repeated disturbance ( $p=0.047$ ), but not different from the control.

303 **Resilience**


304 We found equally high resilience in both treatments based on how quickly community  
305 composition recovered after undergoing significant compositional change. Both salt treatments  
306 experienced one day of significant composition change during the disturbance phase, and both  
307 immediately returned to a composition similar to Day 0, even while salinity was still elevated. This  
308 indicates high resilience in both communities. After salinity returned to normal (Day 14 and  
309 beyond) the community composition and abundance continued to change in the control and novel  
310 disturbance but remained constant in the repeated disturbance.

311 To further examine resilience, we used a heatmap to plot relative abundance changes of the  
312 taxa that most significantly contributed to community dissimilarity between treatments based on a  
313 similarity percentage analysis (figure 6, Supplemental Table 3 for full taxonomy). In the control,  
314 Actinobacteria, Gemmatimonadetes, Caldithrix, Nitrospirae, and Euryarchaeota were among the  
315 most abundant phyla. The repeated disturbance had high abundance of Acidobacteria, Chlorobi,  
316 Chloroflexi, Proteobacteria, and Bacteroidetes. The novel disturbance was dominated by  
317 Actinobacteria, Acidobacteria, Verrucomicrobia, Chloroflexi, and AC1 (a phylum in Greengenes).

318 There were notable changes in abundant taxa in the salt treatments before and after the salinity  
319 addition and over the course of the experiment. On Day 0, the novel disturbance treatment was  
320 like the control with high abundance of Actinobacteria. However, immediately following the  
321 salinity addition (Day 1), the abundance of Actinobacteria decreased in the novel disturbance,  
322 suggesting the salt sensitivity of this phylum. Interestingly, several phyla increased in abundance  
323 following the salinity addition, but differed in their abundance patterns between salt treatments.  
324 Acidobacteria was amplified in both treatments following the addition, but immediate recovered  
325 in the repeated disturbance while remaining high in the novel disturbance. Chlorobi and

326 Bacteroidetes increased in the repeated treatment only, while the latter decreased in the novel  
327 treatment. Verrucomicrobia and AC1 were only elevated in the novel disturbance treatment.

328 While there were many abundance changes unique to each salt treatment, overall, there was a  
329 pattern of phyla abundance spiking and quickly recovering in the repeated disturbance compared  
330 to abundance increases that were maintained in the novel disturbance. By the final timepoints, the  
331 repeated disturbance is similar to the control, with elevated Spirochaetes, Caldithrix, and  
332 Euryarchaeota, suggesting recovery, while the novel disturbance did not show taxonomic  
333 recovery.



335 **Figure 6:** Heatmap plotting the abundance of the 100 taxa that significantly contributed the most to community dissimilarity by treatment (total 254), labeled by phylum. Warm colors represent high abundance and cool colors represent low abundance. The columns are arranged first by treatment, constituting each panel and indicated with colors on the top of the figure. Within each panel, the columns are in chronological order by day, labeled on the bottom of the figure. Full taxonomic classification of the ASVs represented in this analysis and figure can be found in Supplement Table 3.

336 **DISCUSSION**

337 This study examined the effect of past disturbances on soil bacterial composition and  
338 disturbance response. We hypothesized that communities with a salinity disturbance history will  
339 differ from those that have not experienced an experimental disturbance, and that their recovery  
340 from a subsequent salinity disturbance will differ. Overall, we found support for both hypotheses.

341 This experiment detected bacterial community compositional changes within days  
342 following an environmental disturbance. This rapid timescale is consistent with other lab and  
343 mesocosm research (Jurburg et al 2017a, Rodríguez-Valdecantos 2017, Hu et al 2018, Shade et al  
344 2011, Berga et al 2012, Ager et al 2010) and is the fastest timescale of microbial community  
345 change found in nature as far as we are aware. The control treatment captured the ambient bacterial  
346 dynamics that occur across two months, demonstrating how variable communities can be over  
347 time. This result helps inform our understanding of natural soil temporal dynamics in wetlands.

348 **Effect of long-term disturbances on composition**

349 The repeated salinity disturbances over two years altered community composition, as Day  
350 0 composition differed between the repeated disturbance treatment and the treatments that had not  
351 experience past disturbances (novel, control). While the methods used do not identify a  
352 mechanism, this points to the salinity addition selecting for salt tolerant taxa. Salinity is an  
353 important factor in structuring bacterial communities (Lozupone and Knight 2007), and  
354 community salt tolerance has been found to be proportional to soil salinity (Rath et al 2019). Our  
355 results show that the monthly salinity addition, which increased salinity by ~33% for about two  
356 weeks, or half of the time for two years, constituted a significant disturbance to the ambient salinity  
357 regime and cultivated a bacterial community adapted to altered salinity.

358 **Recovery trajectories**

359 We found that the repeated and novel disturbance treatments underwent different recovery  
360 trajectories following the salinity disturbance, supporting our second hypothesis. The differences  
361 in their trajectories were seen in compositional differences over the recovery period (interactive  
362 effect), elevated relative abundances of distinct taxa, and differences in community variance.  
363 While both salt treatments had similar responses to the salinity disturbance, the relative abundance  
364 results show the repeated disturbance recovered taxonomically while the novel disturbance does  
365 not, which could reflect the compositional results. The treatments also differed in terms of  
366 community variance, where the repeated disturbance had consistently lower variance than the other  
367 treatments, and the novel disturbance had a sharp decrease in dispersion following the salinity  
368 disturbance but recovered after the first week. This suggests that the salinity disturbance decreases  
369 community variance, likely due to the death of salt sensitive taxa (Wichern et al 2006). The low  
370 variance in the repeated disturbance treatment, both on Day 0 and following the salinity addition,  
371 suggest that the past disturbances had a strong filtering effect on the community.

372 **Disturbance response: resistance**

373 The repeated disturbance treatment increased community resistance to subsequent  
374 disturbances, as we predicted, but only slightly. The salinity addition led to compositional changes  
375 in the novel disturbance community on Day 1, and the repeated disturbance community changed  
376 on Day 3. While this result demonstrates increased resistance, as has been found in other repeated  
377 disturbance studies (Bérard et al 2012, Bouskill et al 2013, Canarini et al 2021), the difference  
378 between the treatments was only one sampling time point, representing only a modest increase.

379 We also considered resistance in terms of degree of community change using dissimilarity,  
380 which also demonstrated a modest increase in resistance in the repeated disturbance treatment.  
381 During the disturbance phase, the novel disturbance community had higher dissimilarity than the

382 repeated disturbance, indicating more extreme community changes. This generally supports our  
383 prediction, but with one notable exception. We anticipated that the novel disturbance would  
384 undergo more extreme compositional change than the repeated disturbance during its initial  
385 disturbance response (Day 1 and Day 3, respectively). However, we did not find a difference in  
386 dissimilarity between the novel treatment on Day 1 and the repeated treatment on Day 3,  
387 suggesting they both underwent similar degrees of change in the immediate response to salinity.  
388 Taken together, the resistance results show that 1) the initial community response to the salinity  
389 disturbance was slightly delayed in the repeated disturbance treatment due to past exposures, 2)  
390 the salt treatments underwent the same degree of community change in response to the initial  
391 disturbance, and 3) the repeated disturbance community remained more like its pre-treatment type  
392 over the disturbance phase than the novel disturbance.

393 The mechanisms that caused the slight increase in resistance are unknown. The repeated  
394 salinity additions could have filtered out salt sensitive taxa (Rath et al 2019, Logares et al 2013)  
395 as the decrease in community variance in the repeated disturbance treatment would suggest. The  
396 past disturbances could also have selected for taxa with an improved ability to withstand stressful  
397 conditions through adaptations like increased dormancy potential (Kearns et al 2018). While our  
398 methods removed relic DNA to capture a clearer signal of community change, they did not  
399 differentiate between the active and dormant community. If certain taxa adapted to survive  
400 frequent salinity pulses by increase dormancy potential, they would still be detected in our  
401 sampling and result in fewer compositional changes. Barnett and Shade (2023) compared the  
402 resilience of the whole bacterial community to only the active (non-dormant) community by  
403 comparing DNA and RNA sequencing and found stronger recovery patterns in the whole

404 community than the active subset. This suggest that dormancy and the microbial seedbank are  
405 critical for community disturbance response and might explain our results.

406 Other studies of disturbance dynamics have found that disturbances select for microbial  
407 specialists (Renes et al 202) and tolerant taxa (Jurburg et al 2017b), or cause bacteria to adopt new  
408 life strategies to withstand disturbances (Evans and Wallenstein 2014). Through evolution and/or  
409 horizontal gene transfer, these traits could have increased resistance to future salinity disturbances.  
410 Bacteria have been found to evolve stress tolerance in 250-2000 generations (Zhou and Ning  
411 2017), which is within the timeframe of the two-year repeated disturbance conditioning phase and  
412 could explain our results. These adaptations would lead to increased community resistance to a  
413 repeated disturbance, but more research is needed to understand which mechanisms are more  
414 important in driving microbial compositional changes in nature.

415 **Disturbance response: resilience**

416 Overall, we found resilience in this system in both the repeated and novel disturbance  
417 treatments, but the heat map suggest higher resilience in the repeated disturbance community, as  
418 expected. While the rapid community response to the salinity addition during the disturbance phase  
419 was notable, perhaps more surprising was the immediate recovery in both salt-disturbed  
420 treatments. We predicted that both communities would exhibit high resilience due to the frequent  
421 abiotic fluctuations in the system, but we did not expect recovery to happen while salinity was still  
422 elevated. Other studies have found bacterial communities to recover from a disturbance in about  
423 25 days (Jurburg et al 2017a), but more work examining bacterial community changes over short  
424 time periods would be beneficial to understand community recovery patterns on this time scale.  
425 Our results show that the repeated disturbance community maintained its post-recovery  
426 community (Day 6) for the remainder of the experiment, while the novel disturbance and control

427 communities continued to shift over time. This, along with the decreased community variance,  
428 suggests that the past salinity additions had a strong filtering effect on the taxa present and  
429 continues to impact the community dynamics beyond the recovery phase.

430 The focus of this study was on compositional responses to disturbance, but there were  
431 notable changes in the abundances of phyla known to be salt sensitive/tolerant and known as either  
432 nitrogen or sulfur cyclers, suggesting potential functional differences between treatments. Firstly,  
433 the control had high abundances of salt-sensitive phyla, such as Actinobacteria and  
434 Gemmatimonadetes (Wijaya et al 2022, Li et al 2021), and the repeated disturbance was defined  
435 by high abundance of salt-tolerance taxa, like Bacteroidetes and Proteobacteria (Wijaya et al 2022,  
436 Mhete et al 2020). The control had higher abundance of phyla known as nitrogen cyclers, like  
437 Nitrospira (Mhete et al 2020, Chen et al 2022), while the salt treatments had high abundance of  
438 sulfur cycling phyla, like Chlorobi (Kuypers et al 2018, Jagannathan and Golbeck 2009) and  
439 Proteobacteria (Arora 2017, Wasmund et al 2017). These results support other research finding  
440 that nitrogen fixers and nitrogen cycling genes decrease as soil salinity increases (Li et al 2021,  
441 Morrissey and Franklin 2015) while Proteobacteria (particularly sulfur-reducing classes) increase  
442 in abundance with salinity (Li et al 2021, Morrissey and Franklin 2015). Microbial communities  
443 are often considered to have high functional redundancy, but recent studies have found recovery  
444 patterns are decoupled between composition/diversity and soil community function, demonstrating  
445 the importance of considering the resilience of both community structure and function (Sjöstedt et  
446 al 2018, Choi et al 2017). It is possible that the repeated salinity disturbances in our experiment  
447 could have cultivated a community with different functions and altered nutrient availability, but a  
448 focused examination of microbial function would be necessary to determine this.

449 **Limitations**

450        The central limitations of this study are rooted in the challenges of field-based microbiome  
451    surveying. Soil collection required destructive sampling, so the same location and, potentially,  
452    community could not be repeatedly sampled within our plots. Instead, samples were collected over  
453    time from randomly chosen sub-plots. Our methods attempted to account for this by distributing  
454    salt across the plot as evenly as possible, measuring salinity from multiple plot locations, and  
455    taking care to ensure all plots had a similar and homogenous plant community; however, samples  
456    were collected from a new location in the plot on each sampling day which therefore introduced  
457    unknown community variance. The effects of the interacting plant community were also not  
458    considered, though care was taken to ensure all plots had a similar plant community and that  
459    collection was done outside of growing season to reduce plant effects on the soil microbes. The  
460    molecular methods used do not distinguish between active and dormant bacteria and do not focus  
461    on functional differences between treatments. Further investigation of these specific areas would  
462    provide greater insight into the mechanisms microbes utilized to withstand disturbance and  
463    functional consequences of disturbance events.

464    **CONCLUSION**

465        In conclusion, this study found long-term, past disturbances to alter bacterial community  
466    composition and response to future disturbances. We identified moderate increases in resistance  
467    and resilience to disturbance based on the community's exposure to past disturbances, supporting  
468    similar results found in systems with different disturbances, mainly drought. Furthermore, we  
469    found soil bacterial to undergo significant compositional change following a salinity disturbance  
470    in a matter of days, confirming the short timescale of bacteria turnover found in lab-based  
471    experiments. These results suggest that soil microbiomes are likely well-adapted to typical abiotic

472 fluctuations and are resilient to disturbances, but novel disturbances may alter community structure  
473 and function.

474 **ACKNOWLEDGEMENTS**

475 This work was funded by grants from the Department of Ecology and Evolutionary Biology  
476 at Tulane University to SH and the Louisiana State Board of Regents (LEQSF(2017–20)-RD-A-  
477 14), the National Science Foundation (DEB-2141922), and the Tulane ByWater Institute to EF.  
478 We would like to recognize the manager of our field site Jeffrey Duguay at the Pearl River Wildlife  
479 Management Area, Louisiana.

480 **REFERENCES**

481 Ager, D., Evans, S., Li, H., Lilley, A. K., & van der Gast, C. J. (2010). Anthropogenic disturbance  
482 affects the structure of bacterial communities. *Environmental Microbiology*, 12(3), 670–  
483 678. <https://doi.org/10.1111/j.1462-2920.2009.02107.x>

484 Arora, N. K. (2017). *Advances in Soil Microbiology : Recent Trends and Future Prospects*. Uttar  
485 Pradesh-India, Vol. 2, 1–18. (Vol. 1).

486 Averill, C., Cates, L. L., Dietze, M. C., & Bhatnagar, J. M. (2019). Spatial vs. temporal controls  
487 over soil fungal community similarity at continental and global scales. *The ISME Journal*,  
488 13(8), 2082–2093. <https://doi.org/10.1038/s41396-0190420-1>

489 Averill, C., Waring, B. G., & Hawkes, C. V. (2016). Historical precipitation predictably alters the  
490 shape and magnitude of microbial functional response to soil moisture. *Global Change  
491 Biology*, 22(5), 1957–1964. <https://doi.org/10.1111/gcb.13219>

492 Bardgett, R. D., & Caruso, T. (2020). Soil microbial community responses to climate extremes:n  
493 Resistance, resilience and transitions to alternative states. *Philosophical Transactions of*

494 *the Royal Society B: Biological Sciences*, 375(1794).

495 <https://doi.org/10.1098/rstb.2019.0112>

496 Barnett, S. E., & Shade, A. (2024). Arrive and wait: inactive bacterial taxa contribute to perceived  
497 soil microbiome resilience after a multidecadal press disturbance. *Ecology Lett.*, March,  
498 2023.05.25.542271. <https://doi.org/10.1111/ele.14393>

499 Baselga A, Orme D, Villeger S, De Bortoli J, Leprieur F, Logez M, Martinez-Santalla S, Martin-  
500 Devasa R, Gomez-Rodriguez C, Crujeiras R (2023). `_betapart`: Partitioning Beta Diversity  
501 into Turnover and Nestedness Components. R package version 1.6, <[https://CRAN.R-  
502 project.org/package=betapart](https://CRAN.R-project.org/package=betapart)>.

503 Bell, C., McIntyre, N., Cox, S., Tissue, D., & Zak, J. (2008). Soil Microbial Responses to Temporal  
504 Variations of Moisture and Temperature in a Chihuahuan Desert Grassland. *Microbial  
505 Ecology*, 56(1), 153–167. <https://doi.org/10.1007/s00248-007 9333-z>

506 Bérard, A., Meriem, &, Sassi, B., Renault, P., & Gros, R. (2012). Severe drought-induced  
507 community tolerance to heat wave. An experimental study on soil microbial processes. *J*  
508 *Soils Sediments*, 12, 513–518. <https://doi.org/10.1007/s11368-012-0469-1>

509 Berga, M., Székely, A. J., & Langenheder, S. (2012). Effects of Disturbance Intensity and  
510 Frequency on Bacterial Community Composition and Function. *PLOS ONE*, 7(5), e36959.  
511 <https://doi.org/10.1371/JOURNAL.PONE.0036959>

512 Blazewicz, S. J., Schwartz, E., & Firestone, M. K. (2014). Growth and death of bacteria and fungi  
513 underlie rainfall-induced carbon dioxide pulses from seasonally dried soil. *Ecology*, 95(5),  
514 1162–1172. <https://doi.org/10.1890/13-1031.1>

515 Bolyen, E., Rideout, J. R., Dillon, M. R., Bokulich, N. A., Abnet, C. C., Al-Ghalith, G. A.,  
516 Alexander, H., Alm, E. J., Arumugam, M., Asnicar, F., Bai, Y., Bisanz, J. E., Bittinger, K.,  
517 Brejnrod, A., Brislawn, C. J., Brown, C. T., Callahan, B. J., Caraballo-Rodríguez, A. M.,  
518 Chase, J., ... Caporaso, J. G. (2019). Reproducible, interactive, scalable and extensible  
519 microbiome data science using QIIME 2. *Nature Biotechnology*, 37(8), 852–857.  
520 <https://doi.org/10.1038/s41587-019-0209-9>

521 Bouskill, N. J., Lim, H. C., Borglin, S., Salve, R., Wood, T. E., Silver, W. L., & Brodie, E. L.  
522 (2013). Pre-exposure to drought increases the resistance of tropical forest soil bacterial  
523 communities to extended drought. *ISME Journal*, 7(2), 384–394.  
524 <https://doi.org/10.1038/ismej.2012.113>

525 Calderón, K., Philippot, L., Bizouard, F., Breuil, M. C., Bru, D., & Spor, A. (2018). Compounded  
526 disturbance chronology modulates the resilience of soil microbial communities and N-  
527 cycle related functions. *Frontiers in Microbiology*, 9(NOV), 1–11.  
528 <https://doi.org/10.3389/fmicb.2018.02721>

529 Callahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J. A., & Holmes, S. P.  
530 (2016). DADA2: High-resolution sample inference from Illumina amplicon data. *Nature  
531 Methods*, 13(7), 581–583. <https://doi.org/10.1038/nmeth.3869>

532 Canarini, A., Schmidt, H., Fuchslueger, L., Martin, V., Herbold, C. W., Zezula, D., Gündler, P.,  
533 Hasibeder, R., Jecmenica, M., Bahn, M., & Richter, A. (2021). Ecological memory of  
534 recurrent drought modifies soil processes via changes in soil microbial community. *Nature  
535 Communications* 2021 12:1, 12(1), 1–14. <https://doi.org/10.1038/s41467-021-25675-4>

536 Carini, P., Delgado-Baquerizo, M., Hinckley, E. L. S., Holland-Moritz, H., Brewer, T. E., Rue, G.,  
537 Vanderburgh, C., McKnight, D., & Fierer, N. (2020). Unraveling the effects of spatial

538 variability and relic DNA on the temporal dynamics of soil microbial communities.

539 *BioRxiv*, 11(1), 1–16. <https://doi.org/10.1101/402438>

540 Carini, P., Marsden, P. J., Leff, J. W., Morgan, E. E., Strickland, M. S., & Fierer, N. (2016). Relic

541 DNA is abundant in soil and obscures estimates of soil microbial diversity. *Nature*

542 *Microbiology*, 2(December 2016). <https://doi.org/10.1038/nmicrobiol.2016.242>

543 Chen, H., Ma, K., Huang, Y., Fu, Q., Qiu, Y., & Yao, Z. (2022). Significant response of microbial

544 community to increased salinity across wetland ecosystems. *Geoderma*, 415, 115778.

545 <https://doi.org/10.1016/j.geoderma.2022.115778>

546 Choi, S., Song, H., Tripathi, B. M., Kerfahi, D., Kim, H., & Adams, J. M. (2017). Effect of

547 experimental soil disturbance and recovery on structure and function of soil community: A

548 metagenomic and metagenetic approach. *Scientific Reports*, 7(1), 1–15.

549 <https://doi.org/10.1038/s41598-017-02262-6>

550 Cruaud, P., Vigneron, A., Fradette, M., Dorea, C. C., Culley, A. I., Rodriguez, M. J., & Charette,

551 S. J. (2020). Annual bacterial community cycle in a seasonally ice-covered river reflects

552 environmental and climatic conditions. *Limnology and Oceanography*, 65(S1), S21–S37.

553 <https://doi.org/10.1002/lno.11130>

554 Davis, N. M., Proctor, D. M., Holmes, S. P., Relman, D. A., & Callahan, B. J. (2018). Simple

555 statistical identification and removal of contaminant sequences in marker-gene and

556 metagenomics data. *Microbiome*, 6(1), 1–14. <https://doi.org/10.1186/s40168-0180605-2>

557 de Nijs, E. A., Hicks, L. C., Leizeaga, A., Tietema, A., & Rousk, J. (2019). Soil microbial moisture

558 dependences and responses to drying–rewetting: The legacy of 18 years drought. *Global*

559 *Change Biology*, 25(3), 1005–1015. <https://doi.org/10.1111/gcb.14508>

560 DeSantis, T. Z., Hugenholtz, P., Larsen, N., Rojas, M., Brodie, E. L., Keller, K., Huber, T., Dalevi,  
561 D., Hu, P., & Andersen, G. L. (2006). Greengenes, a chimera-checked 16S rRNA gene  
562 database and workbench compatible with ARB. *Applied and Environmental Microbiology*,  
563 72(7), 5069–5072. <https://doi.org/10.1128/AEM.0300605>

564 Evans, S. E., & Wallenstein, M. D. (2012). Soil microbial community response to drying and  
565 rewetting stress: Does historical precipitation regime matter? *Biogeochemistry*, 109(1–3),  
566 101–116. <https://doi.org/10.1007/s10533-011-9638-3>

567 Evans, S. E., & Wallenstein, M. D. (2014). Climate change alters ecological strategies of soil  
568 bacteria. *Ecology Letters*, 17(2), 155–164. <https://doi.org/10.1111/ele.12206>

569 Fagherazzi, S., Anisfeld, S. C., Blum, L. K., Long, E. V., Feagin, R. A., Fernandes, A., Kearney,  
570 W. S., & Williams, K. (2019). Sea level rise and the dynamics of the marsh-upland  
571 boundary. *Frontiers in Environmental Science*, 7(FEB), 1–18.  
572 <https://doi.org/10.3389/fenvs.2019.00025>

573 Farrer, E. C., Birnbaum, C., Waryszak, P., Halbrook, S. R., Brady, M. V., Bumby, C. R., Candaele,  
574 H., Kulick, N. K., Lee, S. F. H., Schroeder, C. S., Smith, M. K. H., & Wilber, W. (2021).  
575 Plant and microbial impacts of an invasive species vary across an environmental gradient.  
576 *Journal of Ecology*, 00, 1–14. <https://doi.org/10.1111/13652745.13629>

577 Feckler, A., Goedkoop, W., Konschak, M., Bundschuh, R., Kenngott, K. G. J., Schulz, R., Zubrod,  
578 J. P., & Bundschuh, M. (2018). History matters: Heterotrophic microbial community  
579 structure and function adapt to multiple stressors. *Global Change Biology*, 24(2), e402–  
580 e415. <https://doi.org/10.1111/gcb.13859>

581 Ferrenberg, S., O'Neill, S. P., Knelman, J. E., Todd, B., Duggan, S., Bradley, D., Robinson, T.,  
582 Schmidt, S. K., Townsend, A. R., Williams, M. W., Cleveland, C. C., Melbourne, B. A.,

583 Jiang, L., & Nemergut, D. R. (2013). Changes in assembly processes in soil bacterial  
584 communities following a wildfire disturbance. *The ISME Journal*, 7(6), 1102–1111.  
585 <https://doi.org/10.1038/ismej.2013.11>

586 Fierer, N. (2017). Embracing the unknown: Disentangling the complexities of the soil microbiome.  
587 In *Nature Reviews Microbiology* (Vol. 15, Issue 10, pp. 579–590). Nature Publishing  
588 Group. <https://doi.org/10.1038/nrmicro.2017.87>

589 Fuchslueger, L., Bahn, M., Hasibeder, R., Kienzl, S., Fritz, K., Schmitt, M., Watzka, M., &  
590 Richter, A. (2016). Drought history affects grassland plant and microbial carbon turnover  
591 during and after a subsequent drought event. *Journal of Ecology*, 104(5), 1453–1465.  
592 <https://doi.org/10.1111/1365-2745.12593>

593 Gibson, B., Wilson, D. J., Feil, E., & Eyre-Walker, A. (2018). The distribution of bacterial  
594 doubling times in the wild. *Proc. R. Soc. B*, 1–9.

595 Hawkes, C. V., & Keitt, T. H. (2015). Resilience vs. historical contingency in microbial responses  
596 to environmental change. *Ecology Letters*, 18(7), 612–625.  
597 <https://doi.org/10.1111/ELE.12451>

598 Hothorn, T., Bretz, F., & Westfall, P. (2008). Simultaneous inference in general parametric  
599 models. *Biometrical Journal*, 50(3), 346–363. <https://doi.org/10.1002/bimj.200810425>

600 Hu, Y., Bai, C., Cai, J., Shao, K., Tang, X., & Gao, G. (2018). Low recovery of bacterial  
601 community after an extreme salinization-desalinization cycle. *BMC Microbiology*, 18(1),  
602 195. <https://doi.org/10.1186/s12866-018-1333-2>

603 Jagannathan, B., & Golbeck, J. H. (2009). Photosynthesis: Microbial. *Encyclopedia of  
604 Microbiology, Third Edition*, 325–341. <https://doi.org/10.1016/B978-0123739445.00352->

605 7

606 Jones, S. E., Chiu, C. Y., Kratz, T. K., Wu, J. T., Shade, A., & McMahon, K. D. (2008). Typhoons  
607 initiate predictable change in aquatic bacterial communities. *Limnology and*  
608 *Oceanography*, 53(4), 1319–1326. <https://doi.org/10.4319/lo.2008.53.4.1319>

609 Jurburg, S. D., Nunes, I., Brejnrod, A., Jacquiod, S., Priemé, A., Sørensen, S. J., Van Elsas, J. D.,  
610 & Salles, J. F. (2017). Legacy effects on the recovery of soil bacterial communities from  
611 extreme temperature perturbation. *Frontiers in Microbiology*, 8(SEP), 1–13.  
612 <https://doi.org/10.3389/fmicb.2017.01832>

613 Jurburg, S. D., Nunes, I., Stegen, J. C., Le Roux, X., Priemé, A., Sørensen, S. J., & Salles, J. F.  
614 (2017). Autogenic succession and deterministic recovery following disturbance in soil  
615 bacterial communities. *Scientific Reports* 2017 7:1, 7(1), 1–  
616 11. <https://doi.org/10.1038/srep45691>

617 Kaisermann, A., de Vries, F. T., Griffiths, R. I., & Bardgett, R. D. (2017). Legacy effects of  
618 drought on plant–soil feedbacks and plant–plant interactions. *New Phytologist*, 215(4),  
619 1413–1424. <https://doi.org/10.1111/nph.14661>

620 Kearns, P. J., & Shade, A. (2018). Trait-based patterns of microbial dynamics in dormancy  
621 potential and heterotrophic strategy: case studies of resource-based and post-press  
622 succession. *ISME Journal*, 12(11), 2575–2581. <https://doi.org/10.1038/s41396-018-0194-x>

623

624 Kearns, P. J., Angell, J. H., Howard, E. M., Deegan, L. A., Stanley, R. H. R., & Bowen, J. L.  
625 (2016). Nutrient enrichment induces dormancy and decreases diversity of active bacteria  
626 in salt marsh sediments. *Nature Communications*, 7, 1–9.  
627 <https://doi.org/10.1038/ncomms12881>

628 Kolde, R. (2019). *pheatmap: Pretty Heatmaps*. R package version 1.0.12, <<https://CRAN.R-project.org/package=pheatmap>>.

630 Kuypers, M. M. M., Marchant, H. K., & Kartal, B. (2018). The microbial nitrogen-cycling  
631 network. *Nature Reviews Microbiology*, 16(5), 263–276.  
632 <https://doi.org/10.1038/nrmicro.2018.9>

633 Lauber, C. L., Ramirez, K. S., Aanderud, Z., Lennon, J., & Fierer, N. (2013). Temporal variability  
634 in soil microbial communities across land-use types. *The ISME Journal*, 7(8), 1641–1650.  
635 <https://doi.org/10.1038/ismej.2013.50>

636 Lennon, J. T., & Jones, S. E. (2011). Microbial seed banks: The ecological and evolutionary  
637 implications of dormancy. In *Nature Reviews Microbiology* (Vol. 9, Issue 2, pp. 119–130).  
638 Nature Publishing Group. <https://doi.org/10.1038/nrmicro2504>

639 Lennon, J. T., Muscarella, M. E., Placella, S. A., & Lehmkuhl, B. K. (2018). How, When, and  
640 Where Relic DNA Affects Microbial Diversity. *MBio*, 9(3), 1–  
641 14.<https://doi.org/10.1128/mBio.00637-18>

642 Li, X., Wang, A., Wan, W., Luo, X., Zheng, L., He, G., Huang, D., Chen, W., & Huang, Q. (2021).  
643 High Salinity Inhibits Soil Bacterial Community Mediating Nitrogen Cycling. *Applied and  
644 Environmental Microbiology*, 87(21), e0136621. <https://doi.org/10.1128/AEM.01366-21>

645 Lipson, D. A., & Schmidt, S. K. (2004). Seasonal Changes in an Alpine Soil Bacterial Community  
646 in the Colorado Rocky Mountains. *Applied and Environmental Microbiology*, 70(5), 2867–  
647 2879. <https://doi.org/10.1128/AEM.70.5.2867-2879.2004>

648 Logares, R., Lindström, E. S., Langenheder, S., Logue, J. B., Paterson, H., Laybourn-Parry, J.,  
649 Rengefors, K., Tranvik, L., & Bertilsson, S. (2013). Biogeography of bacterial

650                   communities exposed to progressive long-term environmental change. *ISME Journal*, 7(5),  
651                   937–948. <https://doi.org/10.1038/ismej.2012.168>

652                   Lozupone, C. A., & Knight, R. (2007). Global patterns in bacterial diversity. *Proceedings of the  
653                   National Academy of Sciences of the United States of America*, 104(27), 11436–11440.  
654                   <https://doi.org/10.1073/pnas.0611525104>

655                   Meisner, A., Rousk, J., & Bååth, E. (2015). Prolonged drought changes the bacterial growth  
656                   response to rewetting. *Soil Biology and Biochemistry*, 88, 314–322.  
657                   <https://doi.org/10.1016/j.soilbio.2015.06.002>

658                   Mhete, M., Eze, P. N., Rahube, T. O., & Akinyemi, F. O. (2020). Soil properties influence bacterial  
659                   abundance and diversity under different land-use regimes in semi-arid environments.  
660                   *Scientific African*, 7. <https://doi.org/10.1016/j.sciaf.2019.e00246>

661                   Mobilian, C., Wisnoski, N. I., Lennon, J. T., Alber, M., Widney, S., & Craft, C. B. (2020).  
662                   Differential effects of press vs. pulse seawater intrusion on microbial communities of a  
663                   tidal freshwater marsh. *Limnology and Oceanography Letters*.  
664                   <https://doi.org/10.1002/lol2.10171>

665                   Moon, D. C., & Stiling, P. (2002). The effects of salinity and nutrients on a tritrophic salt-marsh  
666                   system. *Ecology*, 83(9), 2465–2476.  
667                   [https://doi.org/10.1890/00129658\(2002\)083\[2465:TEOSAN\]2.0.CO;2](https://doi.org/10.1890/00129658(2002)083[2465:TEOSAN]2.0.CO;2)

668                   Morrissey, E. M., & Franklin, R. B. (2015). Evolutionary history influences the salinity preference  
669                   of bacterial taxa in wetland soils. *Frontiers in Microbiology*, 6(OCT), 1–12.  
670                   <https://doi.org/10.3389/fmicb.2015.01013>

671 Nielsen, U. N., & Ball, B. A. (2015). Impacts of altered precipitation regimes on soil communities  
672 and biogeochemistry in arid and semi-arid ecosystems. *Global Change Biology*, 21(4),  
673 1407–1421. <https://doi.org/10.1111/gcb.12789>

674 Oksanen J, Simpson G, Blanchet F, Kindt R, Legendre P, Minchin P, O'Hara R, Solymos P,  
675 Stevens M, Szoecs E, Wagner H, Barbour M, Bedward M, Bolker B, Borcard D, Carvalho  
676 G, Chirico M, De Caceres M, Durand S, Evangelista H, FitzJohn R, Friendly M, Furneaux  
677 B, Hannigan G, Hill M, Lahti L, McGlinn D, Ouellette M, Ribeiro Cunha E, Smith T, Stier  
678 A, Ter Braak C, Weedon J (2022). *vegan: Community Ecology Package*. R package version  
679 2.6-4.

680 Osburn, E. D., Badgley, B. D., Aylward, F. O., & Barrett, J. E. (2021). Historical forest disturbance  
681 mediates soil microbial community responses to drought. *Environmental Microbiology*,  
682 23(11), 6405–6419. <https://doi.org/10.1111/1462-2920.15706>

683 Osburn, E. D., McBride, S. G., Aylward, F. O., Badgley, B. D., Strahm, B. D., Knoepp, J. D., &  
684 Barrett, J. E. (2019). Soil Bacterial and Fungal Communities Exhibit Distinct Long-Term  
685 Responses to Disturbance in Temperate Forests. *Frontiers in Microbiology*, 10(December).  
686 <https://doi.org/10.3389/fmicb.2019.02872>

687 Philippot, L., Griffiths, B. S., & Langenheder, S. (2021). Microbial Community Resilience across  
688 Ecosystems and Multiple Disturbances. *Microbiology and Molecular Biology Reviews*,  
689 85(2). <https://doi.org/10.1128/mmbr.00026-20>

690 Pinheiro J, Bates D, R Core Team (2023). *nlme: Linear and Nonlinear Mixed Effects Models*. R  
691 package version 3.1-164, <<https://CRAN.R-project.org/package=nlme>>.

692 Powell, E. O. (1956). Growth Rate and Generation Time of Bacteria, with Special Reference to  
693 Continuous Culture. *Journal of General Microbiology*, 15(3), 492–  
694 511.<https://doi.org/10.1099/00221287-15-3-492>

695 Preece, C., Verbrugge, E., Liu, L., Weedon, J. T., & Peñuelas, J. (2019). Effects of past and  
696 current drought on the composition and diversity of soil microbial communities. *Soil  
697 Biology and Biochemistry*, 131(December 2018), 28–39.  
698 <https://doi.org/10.1016/j.soilbio.2018.12.022>

699 R Core Team (2023). *R: A Language and Environment for Statistical Computing*. R Foundation  
700 for Statistical Computing, Vienna, Austria. <https://www.R-project.org/>.

701 Ramírez, G. A., Jørgensen, S. L., Zhao, R., & D'Hondt, S. (2018). Minimal Influence of  
702 Extracellular DNA on Molecular Surveys of Marine Sedimentary Communities. *Frontiers  
703 in Microbiology*, 9(December), 1–12. <https://doi.org/10.3389/fmicb.2018.02969>

704 Rath, K. M., Fierer, N., Murphy, D. V., & Rousk, J. (2019). Linking bacterial community  
705 composition to soil salinity along environmental gradients. *ISME Journal*, 13(3), 836–846.  
706 <https://doi.org/10.1038/s41396-018-0313-8>

707 Renes, S. E., Sjöstedt, J., Fetzer, I., & Langenheder, S. (2020). Disturbance history can increase  
708 functional stability in the face of both repeated disturbances of the same type and novel  
709 disturbances. *Scientific Reports*, 10(1), 1–13. <https://doi.org/10.1038/s41598-020-68104-0>

710 Rodríguez-Valdecantos, G., Manzano, M., Sánchez, R., Urbina, F., Hengst, M. B., Lardies, M. A.,  
711 Ruz, G. A., & González, B. (2017). Early successional patterns of bacterial communities  
712 in soil microcosms reveal changes in bacterial community composition and network  
713 architecture, depending on the successional condition. *Applied Soil Ecology*, 120, 44–54.  
714 <https://doi.org/10.1016/j.apsoil.2017.07.015>

715 Santos-Medellín, C., Edwards, J., Liechty, Z., Nguyen, B., & Sundaresan, V. (2017). Drought  
716 stress results in a compartment-specific restructuring of the rice root-associated  
717 microbiomes. *MBio*, 8(4). <https://doi.org/10.1128/mBio.00764-17>

718 Schmidt, S. K., Costello, E. K., Nemergut, D. R., Cleveland, C. C., Reed, S. C., Weintraub, M. N.,  
719 Meyer, A. F., & Martin, A. M. (2007). Biogeochemical consequences of rapid microbial  
720 turnover and seasonal succession in soil. In *Ecology* (Vol. 88, Issue 6, pp. 1379–1385).  
721 <https://doi.org/10.1890/06-0164>

722 Seitz, T. J., Schütte, U. M. E., & Drown, D. M. (2022). Unearthing Shifts in Microbial  
723 Communities Across a Soil Disturbance Gradient. *Frontiers in Microbiology*, 13(May), 1–  
724 12. <https://doi.org/10.3389/fmicb.2022.781051>

725 Shade, A., Peter, H., Allison, S. D., Baho, D. L., Berga, M., Bürgmann, H., Huber, D. H.,  
726 Langenheder, S., Lennon, J. T., Martiny, J. B. H., Matulich, K. L., Schmidt, T. M., &  
727 Handelsman, J. (2012). Fundamentals of Microbial Community Resistance and Resilience.  
728 *Frontiers in Microbiology*, 3, 1–19. <https://doi.org/10.3389/fmicb.2012.00417>

729 Shade, A., Read, J. S., Welkie, D. G., Kratz, T. K., Wu, C. H., & McMahon, K. D. (2011).  
730 Resistance, resilience and recovery: Aquatic bacterial dynamics after water column  
731 disturbance. *Environmental Microbiology*, 13(10), 2752–  
732 2767. <https://doi.org/10.1111/j.1462-2920.2011.02546.x>

733 Shen, J. P., Chen, C. R., & Lewis, T. (2016). Long term repeated fire disturbance alters soil  
734 bacterial diversity but not the abundance in an Australian wet sclerophyll forest. *Scientific  
735 Reports*, 6 (July 2015), 1–10. <https://doi.org/10.1038/srep19639>

736 Simpson, G. L. 2020. *Advanced community ecological data analysis using vegan*.  
737 <https://fromthebottomoftheheap.net/slides/advanced-vegan-webinar-2020/advanced-vegan.html#83>.

739 Simpson, G. L. 2022. *permute: Functions for Generating Restricted Permutations of Data*. R  
740 package version 0.9-7.

741 Sjöstedt, J., Langenheder, S., Kritzberg, E., Karlsson, C. M. G., & Lindström, E. S. (2018).  
742 Repeated disturbances affect functional but not compositional resistance and resilience in  
743 an aquatic bacterioplankton community. *Environmental Microbiology Reports*, 10(4), 493–  
744 500. <https://doi.org/10.1111/1758-2229.12656>

745 Tardy, V., Mathieu, O., Lévéque, J., Terrat, S., Chabbi, A., Lemanceau, P., Ranjard, L., & Maron,  
746 P. A. (2014). Stability of soil microbial structure and activity depends on microbial  
747 diversity. *Environmental Microbiology Reports*, 6(2), 173–183.  
748 <https://doi.org/10.1111/1758-2229.12126>

749 Wasmund, K., Mußmann, M., & Loy, A. (2017). The life sulfuric: microbial ecology of sulfur  
750 cycling in marine sediments. *Environmental Microbiology Reports*, 9(4), 323–344.  
751 <https://doi.org/10.1111/1758-2229.12538>

752 Wichern, J., Wichern, F., & Joergensen, R. G. (2006). Impact of salinity on soil microbial  
753 communities and the decomposition of maize in acidic soils. *Geoderma*, 137(1–2), 100–  
754 108. <https://doi.org/10.1016/j.geoderma.2006.08.001>

755 Wickham, H. *ggplot2: Elegant Graphics for Data Analysis*. Springer-Verlag New York, 2016.

756 Wijaya, W., Suhaimi, Z., Chua, C., Er, X., Sunil, R. S., Muzakkir, A., Rohaizat, B., Azmi, N. B.,  
757 & Hazlin, N. (2022). *Frequent pulse disturbances influence resistance and resilience in  
758 tropical marine microbial communities*. 65.

759 Zhou, J., & Ning, D. (2017). Stochastic Community Assembly: Does It Matter in Microbial  
760 Ecology? *Microbiology and Molecular Biology Reviews*, 81(4).  
761 <https://doi.org/10.1128/mmbr.00002-17>