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Abstract 11 

Disturbance response and recovery are an increasing focus in microbial ecology as 12 

microbes may recovery from disturbance differently than macro communities. Past disturbances 13 

can alter microbial community structure and disturbance response to subsequent disturbances 14 

events, but it remains unclear if the same recovery patterns continue after long-term exposure to 15 

stress. Here, we compare bacterial community composition in a community that experienced two 16 

years of monthly salinity addition disturbances with a community that has not experience salinity 17 

additions. We then track response and recovery to an additional salinity addition based on past 18 

disturbance exposure. We tested the following hypotheses: 1) communities with a repeated 19 

disturbance history will have different community composition than communities without a 20 

disturbance history; 2) communities exposed to repeated disturbances will undergo a different 21 

recovery trajectory than communities experiencing a novel disturbance. We find that repeated 22 

disturbances alter community composition and affect community response and recovery to a 23 



 

 

subsequent disturbance after two years, primarily through increased resistance. This work 24 

improves our understanding of microbial temporal dynamics and suggests that novel disturbances 25 

may pose a threat to microbial community structure and function. 26 

INTRODUCTION 27 

The effects of disturbance history on community structure and stability have been well 28 

studied in animal and plant systems, but only recently has been studied in microbes (Shade review, 29 

Bardgett and Caruso 2020, Philippot et al 2021). The distinct physiologies and life histories of 30 

microbes compared to macro-organisms may lead to microbes exhibiting unique response patterns 31 

to environmental disturbance, making it necessary to re-examine these questions in microbial 32 

systems. For example, the high diversity and functional redundancy of microbial communities 33 

(Fierer 2017, Chen et al 2022), paired with short turnover times (Powel 1956, Gibson et al 2018) 34 

and ability to use dormancy to survive inhospitable periods (Lenon and Jones 2011, Blazewicz et 35 

al 2014) could lead to distinct community disturbance responses compared to animals and plants. 36 

The disturbance regime of an ecosystem can impact microbial composition by repeatedly 37 

selecting for microbial taxa that are tolerant of, or can recover from, disturbance stressors over 38 

long time periods. Disturbance experiments have found that past disturbances alter microbial 39 

composition (Berga et al 2012, Santos-Medellin et al 2017) and function (Berard et al 2012, 40 

Bouskill 2013, Meisner et al 2015, Kaisermann et al 2017) following subsequent disturbances 41 

compared to naïve communities, but examples of the effects of long-term disturbance regimes on 42 

community structure (Nielsen and Ball 2015) are less common. Theoretical work shows that a 43 

history of environmental variation affects the functioning of microbial communities (Hawkes and 44 

Keitt 2015), and the field and laboratory experiments that have tested long-term, repeated 45 

disturbances have also shown that they alter diversity and composition (Osburn et al. 2019, Shen 46 



 

 

et al. 2016, Preece et al 2019, Steitz et al 2022), functional diversity (Steitz et al 2022), function 47 

(Evans and Wallenstein 2012, Evans and Wallenstein 2014, Fuchsleuger et al 2016,  Canarini et 48 

al 2021), and network structure (Osburn et al 2019) in a diverse array of systems and stressors.  49 

Historic disturbance regimes may not only affect community structure and function but 50 

may also affect the community’s recovery to future disturbances. Repeated disturbance may 51 

increase a community’s resistance and resilience as the community adapts to the recurring 52 

environmental stress, where resistance describes the degree of compositional change following a 53 

disturbance and resilience describes how quickly the community returns to its pre-disturbance 54 

composition (Shade et al 2012). Considerable research effort has examined the effects of drought 55 

stress on soil microbiomes and finds that past drought events, whether over short or long-term 56 

periods, leads to increased resistance (Bouskill 2013, Canarini et al 2021) and/or resilience (Berard 57 

2012, de Nijs et al 2019) to future drought stress. Drought-stressed communities have also been 58 

found to adapt to drought by altering their recovery strategy (Evans and Wallenstein 2014). 59 

However, microbial response to other types of disturbances, like salinity, fire, and heat shock, have 60 

yielded less consistent results, including finding little or no community resilience (Berga 2012, 61 

Berhard et al 2015, Shen et al 2016, Jurberg 2017b, Calderon et al 2018, Feckler et al 2018, Hu et 62 

al 2018). A more thorough investigation of microbial responses to other disturbances, like has been 63 

done with drought stress, would lead to more conclusive understanding of the effect of historic 64 

disturbance regimes on microbial community recovery and adaptation.  65 

We tested the effect of repeated disturbances on soil bacterial community structure and 66 

recovery in a brackish marsh in SE Louisiana using salinity pulses as the disturbance. Coastal 67 

wetlands are an understudied habitat (Carini et al 2016) prone to frequent and rapid changes in 68 

salinity and predicted to experience increased mean salinity over time with sea level rise 69 



 

 

(Fagherazzi et al 2019). The frequent abiotic fluctuations and long-term salinity changes provide 70 

a useful context to examine how soil communities respond to salinity stress follow a long-term 71 

disturbance regime. The few studies that have tested salinity stress find communities to have 72 

inconsistent recovery and that the frequency of the disturbance impacts community composition 73 

(Berga et al 2012, Hu et al 2018, Mobilian et al 2020).  74 

We work to expand our understanding of microbial response to salt stress in natural 75 

environments by implementing a field-based disturbance experiment, using a two-year monthly 76 

salinity addition regime as the historic disturbance. We assessed differences in community 77 

composition between communities with no artificial disturbance vs. two years of repeated 78 

disturbance history. We then compared the recovery trajectory of bacterial communities to an 79 

additional salinity disturbance in the community with the repeated disturbance history vs. the 80 

community for which the salinity addition was a novel disturbance. First, we hypothesize that the 81 

community with the repeated disturbance history will have different community composition than 82 

the community without a disturbance history, indicating the effect of long-term, repeated 83 

disturbances on composition. Second, we hypothesize that the community exposed to repeated 84 

disturbances will undergo a different recovery trajectory than the community experiencing a novel 85 

disturbance. Specifically, we predict that repeated disturbances will lead to less rapid and less 86 

extreme compositional change following the salinity addition (increased resistance), and a quicker 87 

recovery to the initial community composition (increased resilience) compared to novel 88 

disturbance community.  89 

MATERIALS AND METHODS 90 

Experimental Design  91 



 

 

In the fall of 2018, 24 permanent 1x1m plots were established in the Pearl River WMA, 92 

LA (30°14’14.9”N 89°37’25.6”W). Plots were organized into three treatments: repeated 93 

disturbance (two-year monthly disturbance), novel disturbance (single disturbance event), and 94 

control (no disturbance), where each treatment had eight plots. Plots were organized in a block 95 

design, where each block contained one plot from each treatment for a total of 8 blocks. Each plot 96 

was 5-10m from neighboring plots, and all plots represent a native marsh plant community, 97 

dominated by Spartina patens. Repeated disturbance plots received a monthly addition of 750g of 98 

salt (Instant Ocean Sea Salt, Blacksburg, VA) (Moon and Stiling 2002) for two years, increasing 99 

salinity by about 33% but returning to initial levels within a month, to establish a 2-year repeated 100 

disturbance regime.  101 

In December 2020, soil samples were collected from all plots (Day0, “pre-treatment”) 102 

before adding 750g of salt to the repeated disturbance and novel disturbance plots as the 103 

subsequent disturbance event. An unexpected rain event on Day 0 following the sample collection 104 

and salinity addition diluted and washed away the salt so that there was no increase in salinity on 105 

the following day. To account for this, salt was added again the following day, this time 106 

successfully increasing salinity within 24 hours. Day 0 refers to pretreatment conditions (before 107 

any salt was added), and Day 1 (and beyond) refers to one day after the second salt addition that 108 

successfully increased salinity. Following the salinity addition (Day 1 and beyond), samples were 109 

collected in the following time sequence: every other day for the first week, once per week through 110 

the first month, and every other week for a second month. A total of ten time points were sampled, 111 

including Day 0, which will be referred to as the number of days post-disturbance (ranging from 112 

Day 1-55).  113 

Sample Collection 114 



 

 

Each collection day, samples were collected from a randomly selected, non-repeating 115 

subplot within the plot (excluding the outer 20cm of the plot to avoid edge effects). Soil pore-water 116 

salinity was measured at 15cm depth using sippers to suction up pore water and dispense into a 117 

falcon tube before measuring with a salinity meter. Daily salinity was measured at two locations 118 

in each plot, the plot center, and the daily subplot, to capture spatial heterogeneity. These values 119 

were averaged for statistical analyses. Once pore water was collected, soil samples were taken 120 

within the subplot with a sterile soil corer to 10 cm depth. Soils were kept on ice until returning to 121 

the lab.  122 

Molecular Methods 123 

Upon returning to the lab, samples were homogenized then treated with PMAxx (Biotium 124 

Inc., Freemont, CA) to remove relic DNA (free-floating, extracellular DNA or DNA in dead cells). 125 

PMAxx is a photo-sensitive reagent that binds to free-floating DNA and prevents downstream 126 

amplification. The result is the amplification only of DNA from intact, living cells. Relic DNA has 127 

been found to represent about 40% of amplified prokaryotic DNA in soil samples (Carini et al 128 

2016, Lennon et al 2018), so removing it provides a more accurate picture of the live bacterial 129 

community, which is important given the rapid time sequence of the experiment. Briefly, 0.3g of 130 

soil was suspended in 3mL of PBS buffer and 7.5uL of PMA to reach a final sample concentration 131 

of 50mM PMAxx. Samples were incubated in the dark for 10 minutes followed by a 15-minute 132 

light exposure on ice with a 500W Halogen bulb at a distance of 20cm to activate the PMAxx 133 

(Ramirez et al 2018). Samples were inverted and/or rotated to mix once per minute during the dark 134 

and light incubation. Samples were then stored at -20oC.  135 

DNA was extracted with the Qiagen PowerSoil Kit following the manufacturer’s protocol, 136 

with the exception that a slurry of 960uL of soil from the PMAxx protocol was added instead of 137 



 

 

dry soil (Carini et al 2016). Samples were standardized to 2ng/uL before dual-step PCR, done in 138 

duplicate, to amplify the 16S region with primers 515F/806R (Farrer at al 2021). PCR product was 139 

pooled, purified and concentrated with AMPure, and sequenced on Illumina Miseq v3 (300bp PE) 140 

at Duke Sequencing Core, Duke University, Durham, NC.  141 

Bioinformatics 142 

Sequencing data was processed with an ASV method using the Qiime2 (Boylen et al 2019) 143 

and DADA2 (Callahan et al 2016) bioinformatic pipelines. Reads were first trimmed where quality 144 

scores dropped below ~30, then quality filtered, denoised, and paired reads were joined. Potential 145 

contaminants identified from six control samples were removed using the R package decontam 146 

(prevalence option) (Davis et al 2018). The resulting data were rarefied to 5500 reads per sample 147 

for dissimilarity analysis, singletons were removed from the rarefied data for compositional 148 

analysis, and unrarefied with relative abundance was used for taxonomic analysis. Taxonomy was 149 

assigned using Greengenes (DeSantis et al 2006).  150 

Statistical Analysis 151 

To assess how the salinity addition increased plot salinity, we used linear mixed effects 152 

models to test the effect of Treatment (control, repeated disturbance, novel disturbance) on salinity 153 

on each day of the experiment using the function lme() with Plot and Block as nested random 154 

effects in the R package nlme (Pinheiro et al 2023). ANOVAs tested significance, and post-hoc 155 

tests with the function glht() from the R package multcomp (Hothorn et al 2008) compared the 156 

salinity levels between treatments on each day to confirm the two salt treatments (repeated 157 

disturbance and novel disturbance) did not differ from each other. 158 

To test the first hypothesis and compare the pre-treatment communities, the data were 159 

subset to only include the Day 0 samples. A PERMANOVA using adonis2() in the R package 160 



 

 

vegan (Oksanen et al 2022) was used to test the effect of Treatment on composition using the strata 161 

argument to restrict permutations by block. Dispersion was calculated with the function 162 

betadisper(). Subsequent pairwise PERMANOVAs were used to compare Day 0 composition 163 

between each treatment by further subsetting the Day 0 dataframe to only include two treatments 164 

per comparison. A dbRDA ordination plot was used to visualize the Day 0 communities with the 165 

capscale() function in vegan, conditioned on block. The points were plotted by extracting the CAP 166 

scores from the capscale() output and plotting in ggplot2 (Wickham 2016). 167 

To test the second hypothesis, that the treatments had different recovery trajectories, 168 

PERMANOVAs were used to test the effect of Treatment, Day (as a factor), and their interaction 169 

on community composition over the whole collection period. In order to account for repeated 170 

measures of plots over time, PERMANOVAs were done manually in R with different types of 171 

models and randomization restrictions (Simpson 2020) using adonis2() and the how() function in 172 

the package permute (Simpson 2022). First, to calculate the correct F-statistic for the effect of 173 

Treatment, we ran an adonis2() model testing the effect of Plot + Treatment and extracted the sums 174 

of squares for the Treatment variable (divided by df) and divided it by the sums of squares for the 175 

Plot variable (divided by df); this accounts for the fact that in a repeated measures design, the 176 

denominator in the F-statistic is the whole-plot error rather than the residual error (Simpson 2020). 177 

We then performed a permutation test with 999 permutations, randomizing the plots freely within 178 

blocks (comparing Treatments), but not randomizing within plots (individual samples), using the 179 

how() function. For each permutation, we ran the same adonis2() model and calculated the F-180 

statistic for the Treatment effect. We then calculated a P-value by comparing the F-statistic of our 181 

actual data to the distribution of F-statistics of the randomized data. To test the effect of Day, we 182 

fit an adonis2() model testing the effect of Plot + Day and restricted permutations within plot, 183 



 

 

which compares samples taken over time to only the other samples within that plot. Lastly, to test 184 

the effect of Day*Treatment, we fit an adonis2() model testing the effect of Plot + Day + 185 

Day*Treatment, again randomizing the plots freely within blocks, but not within plots. Dispersion 186 

was calculated with the function betadisper(). These results were visualized with a dbRDA 187 

showing the effect of the interaction of Treatment and Day on composition, conditioning by block 188 

with the capscale() function. Centroids and standard error were calculated from the extracted CAP 189 

values and plotted in ggplot2. 190 

To assess resistance and resilience, we examined day-to-day change in composition and 191 

abundance with several methods. Firstly, pairwise PERMANOVA identified significant 192 

compositional change between Day 0 and each subsequent day by treatment. With this method, 193 

we assessed resistance by how long the communities resisted significant compositional change 194 

following the salinity disturbance, and resilience by how quickly the community returned to a pre-195 

disturbance community composition (not significantly different from Day 0). Due to the difference 196 

in composition found between treatments on Day 0 (treatment effect, see results), we compared 197 

daily composition to the Day 0 composition of each respective treatment, instead of to the control. 198 

This method identifies how each treatment deviates from its initial community, which more 199 

accurately describes community changes than comparing the treatments to the control since their 200 

initial communities differed (Supplement Table 2 for daily compositional comparisons of each 201 

treatment to the control). After first subsetting the data by treatment, then by day (so that each 202 

dataframe contained only two time points, Day 0 and one other day), we used the adonis2() 203 

function with the how() function as described above to account for repeated measures (permuting 204 

samples within plots, but not permuting plots freely). Resistance was assessed based on if or how 205 

quickly community composition significantly changed from Day 0. Resilience was assessed by if 206 



 

 

or how quickly the community returned to a composition similar to the Day 0 composition. To 207 

visualize the results, we plotted the effect of Day on community composition with a dbRDA 208 

conditioned on block for each treatment. The treatments were ordinated separately to more 209 

accurately see how the bacterial composition changes from Day 0 in each treatment using the 210 

function capscale() conditioned on block. Spider plots show the centroids per day, calculated based 211 

on extracted CAP values, connected to each individual sample point, plotted in ggplot2.  212 

In addition, we considered resistance in terms of the degree of community change 213 

following the disturbance by using Bray Curtis dissimilarity. We quantified the Bray Curtis 214 

dissimilarity between the Day 0 community of each treatment and every subsequent day. Higher 215 

values indicate more compositional change, repressing lower resistance. We also compared the 216 

Bray Curtis Dissimilarity between Day 0 and the day that each treatment underwent significant 217 

composition change in response to the salinity addition (Day 1 (novel) and Day 3 (repeated), see 218 

results). This allows us to compare the degree of change that each treatment experienced and 219 

identify with treatment underwent more extreme change. We used the function beta.pair.abund() 220 

from the R package betapart (Baselga et al 2023) to create a dissimilarity matrix. We extracted the 221 

dissimilarity values between the Day 0 and every subsequent day per plot to compare dissimilarity 222 

between the treatments.  Using the same linear model as described for the salinity tests, we 223 

compared how dissimilarity from Day 0 varied by treatment, and the same post hoc method as 224 

described above was used to assess significance between days and treatments. 225 

To assess how abundance of key taxa changed over time and between treatment, we used 226 

a similarity percentage analysis with the function simper() in the R packaged vegan. This analysis 227 

calculates the average contribution of each taxon to the community dissimilarity between sample 228 

units. Permutations then calculate if the contribution to dissimilarity is significant per taxa. We 229 



 

 

considered the dissimilarity between the three treatments (control-repeated disturbance, control-230 

novel disturbance, repeated disturbance-novel disturbance). Using unrarefied, relative abundance 231 

data, we identified the 100 ASVs that most significant contributed to dissimilarity between each 232 

treatment comparison (300 total). Some of the 300 ASVs were present in more than one 233 

comparison, so after repeats were removed, there were 254 ASVs (the repeated taxa were still 234 

present in the analysis, but only listed once, resulting in a total of 254). To visualize abundance 235 

changes in these taxa over time, we subset our data to only include these 254 ASVs. Abundance 236 

values were log transformed and plotted as a heatmap using the function pheatmap() in the R 237 

package pheatmap (Kold 2019), with abundance values centered and scaled and taxa summed and 238 

labeled by the phylum.  239 

All statistics and figures were run in R 4.1.2 (R Core Team 2023). 240 

RESULTS 241 

Salinity Disturbance 242 

 The salinity addition significantly increased salinity in the treatment plots for eight days, 243 

and by Day 14 salinity returned to pre-treatment levels (figure 1, Supplement Table 1). We 244 

consider the disturbance phase to last from Day 1 through Day 8, and the recovery phase to begin 245 

on Day 14. This timeline of salinity elevation is consistent with salinity measurements taken during 246 

the 2-year disturbance treatment to confirm the effect of the repeated salt additions, which showed 247 

salinity returning to ambient conditions after about two weeks. 248 



 

 

 249 

Effect of repeated salinity additions on the pre-treatment communities 250 

 251 

Effect of repeated salinity additions on community composition 252 

The Day 0 community composition significantly differed between treatments (figure 2; R2 253 

= 0.116, pseudo F(2,20) = 1.31, P = 0.014), and pairwise PERMANOVAs comparing treatments 254 

find that the repeated disturbance composition was significantly different from the control (R2 = 255 

0.088, pseudo F(1,14) = 1.34, P = 0.039) and the novel disturbance (R2 = 0.087, pseudo F(1,13) = 256 

1.23, P = 0.039), but the novel disturbance and control did not differ (R2 = 0.093, pseudo F(1,13) = 257 

1.33, P = 0.094). There was no significant difference in dispersion (compositional variance) 258 

between treatments (F= 1.98, P = 0.163), however, the repeated disturbance treatment showed a 259 

non-significant trend of decreased variance compared to the other treatments.  260 

Figure 1: A boxplot of the salinity of each treatment over the two-month sample collection. Salt was added after 
salinity was measured on Day 0. Changes in the control represent ambient salinity changes in the system. Significant 
differences (p<0.05) in salinity per day between treatments are shown for Days 0-14 based on post-hoc tests 
(supplement table 1).  
 



 

 

 261 

Effect of repeated salinity additions on disturbance response 262 

Over the two months following the salinity addition, community composition significantly 263 

differed based on the disturbance regime (Treatment effect; pseudo F(2, 177) = 2.05, P = 0.038) and 264 

days since disturbance (Day effect; pseudo F(9, 153) = 1.67, P = 0.001), and the disturbance 265 

communities underwent different recovery trajectories over time (Treatment x Day interaction; 266 

pseudo F(18, 135) = 1.19, P = 0.0013) (figure 3). Over the whole experiment, dispersion was 267 

significantly different by Treatment (F= 6.00, P= 0.003) and by Day (F= 2.16, P= 0.027). Like the 268 

Day 0 trend, the repeated disturbance treatment had lower compositional variance than the other 269 

treatments (Supplement Figure 1). These results support our second hypothesis, that the treatment 270 

communities respond to the disturbance differently based on their past disturbance regime.  271 

Figure 2: dbRDA plotting 
the effect of Treatment, 
conditioned by block, on 
community composition on 
Day 0. 
 



 

 

 272 

Resistance 273 

We found a slight increase in resistance in the repeated disturbance community compared to 274 

the novel disturbance based on how quickly the communities underwent significant compositional 275 

change following the salinity disturbance (table 1, figures 4a-c). The repeated disturbance 276 

treatment had only one day of significant compositional change away from the starting community, 277 

on Day 3, and the variance of community composition never changed. The novel disturbance 278 

underwent multiple days of compositional change, including on Day 1. This indicates lower 279 

resistance, and a rapid response to the salinity disturbance. The novel disturbance also showed the 280 

only significant change in compositional variance, which significantly decreased on Day 6 281 

compared to Day 0. Overall, the control had multiple days of significant compositional change, 282 

demonstrating ambient bacterial dynamics. 283 

We also used Bray Curtis Dissimilarity to assess resistance by quantifying the degree of 284 

community change on each day compared to Day 0. Dissimilarity over time differed by treatment 285 

(df=13, F=12.77, P=0.0009; figure 5) and the novel disturbance had higher dissimilarity over the 286 

Figure 3: dbRDA plotting the 
effect of the Treatment x Day 
interaction, conditioned by 
block, on community 
composition. Points represent 
the centroid of community 
composition on a given day by 
Treatment and bars represent 
standard error. Centroids are 
labelled by day. 

 

 



 

 

sampling period than the repeated disturbance and the control, supporting our prediction. Post hoc 287 

tests show that dissimilarity on Day 3 was significantly higher in the novel disturbance community 288 

than the repeated disturbance (p=0.012) and the control (p=0.003). We also assessed the degree of 289 

change by comparing the dissimilarity of both salt treatments on the day that they underwent 290 

significant composition change based on the PERMANOVA results (novel: Day 1, repeated: Day 291 

3). While the novel disturbance had higher dissimilarity, the difference was not significant 292 

(p=0.89). Together with the PERMANOVA result, we found a moderate increase in resistance in 293 

the repeated disturbance treatment compared to the novel disturbance. 294 

 295 

 Repeated Disturbance Novel Disturbance Control 

Day 

Comparison 

P-value Dispersion P-value Dispersion P-value Dispersion 

Day 0-1 0.64 0.64 0.0078** 0.24 0.063† 0.46 

Day 0-3 0.015* 0.72 0.63 0.25 0.19 0.46 

Day 0-6 0.70 0.67 0.38 0.040* 0.016* 0.30 

Day 0-8 0.40 0.98 0.45 0.40 0.063† 0.26 

Day 0-14 0.87 0.80 0.57 0.82 0.14 0.70 

Day 0-20 0.90 0.64 0.46 0.95 0.0078** 0.23 

Day 0-28 0.98 0.43 0.0078** 0.90 0.070† 0.19 

Day 0-42 0.94 0.41 0.13 0.47 0.078† 0.60 

Day 0-55 0.996 0.40 0.047* 0.724 0.063† 0.43 

Table 1: Results of pairwise PERMANOVAs comparing the composition of each treatment on Day 0 to every 
subsequent day. Significance is represented as follow: † P<0.1, * P<0.05, ** P<0.01 
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 299 

Figure 4a-c: dbRDAs 
plotting the community 
composition of each day by 
treatment (ordinated 
separately): a) control, b) 
novel disturbance, c) repeated 
disturbance. Centroids of 
each day at labeled, and 
segments show the distance 
of each individual points 
(grey points) from the daily 
centroid.  
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Figure 5: Bray Curtis dissimilarity between the Day 0 community and each subsequent day by treatment. 
The novel disturbance had significantly higher dissimilarity than the control (p=0.005) and repeated 
disturbance (p=0.023) on Day 3. On Day 14, the novel disturbance dissimilarity was significantly higher than 
the repeated disturbance (p=0.047), but not different from the control. 



 

 

Resilience 303 

We found equally high resilience in both treatments based on how quickly community 304 

composition recovered after undergoing significant compositional change. Both salt treatments 305 

experienced one day of significant composition change during the disturbance phase, and both 306 

immediately returned to a composition similar to Day 0, even while salinity was still elevated. This 307 

indicates high resilience in both communities. After salinity returned to normal (Day 14 and 308 

beyond) the community composition and abundance continued to change in the control and novel 309 

disturbance but remained constant in the repeated disturbance.  310 

To further examine resilience, we used a heatmap to plot relative abundance changes of the 311 

taxa that most significantly contributed to community dissimilarity between treatments based on a 312 

similarity percentage analysis (figure 6, Supplemental Table 3 for full taxonomy). In the control, 313 

Actinobacteria, Gemmatimonadetes, Caldithrix, Nitrospirae, and Euryarchaeota were among the 314 

most abundant phyla. The repeated disturbance had high abundance of Acidobacteria, Chlorobi, 315 

Chloroflexi, Proteobacteria, and Bacteroidetes. The novel disturbance was dominated by 316 

Actinobacteria, Acidobacteria, Verrucomicrobia, Chloroflexi, and AC1 (a phylum in Greengenes).  317 

There were notable changes in abundant taxa in the salt treatments before and after the salinity 318 

addition and over the course of the experiment. On Day 0, the novel disturbance treatment was 319 

like the control with high abundance of Actinobacteria. However, immediately following the 320 

salinity addition (Day 1), the abundance of Actinobacteria decreased in the novel disturbance, 321 

suggesting the salt sensitivity of this phylum. Interestingly, several phyla increased in abundance 322 

following the salinity addition, but differed in their abundance patterns between salt treatments. 323 

Acidobacteria was amplified in both treatments following the addition, but immediate recovered 324 

in the repeated disturbance while remaining high in the novel disturbance. Chlorobi and 325 



 

 

Bacteroidetes increased in the repeated treatment only, while the latter decreased in the novel 326 

treatment. Verrucomicrobia and AC1 were only elevated in the novel disturbance treatment.  327 

While there were many abundance changes unique to each salt treatment, overall, there was a 328 

pattern of phyla abundance spiking and quickly recovering in the repeated disturbance compared 329 

to abundance increases that were maintained in the novel disturbance. By the final timepoints, the 330 

repeated disturbance is similar to the control, with elevated Spirochaetes, Caldithrix, and 331 

Euryarchaeota, suggesting recovery, while the novel disturbance did not show taxonomic 332 

recovery. 333 

 334 

 335 
Figure 6: Heatmap plotting the abundance of the 100 taxa that significantly contributed the most to community 
dissimilarity by treatment (total 254), labeled by phylum. Warm colors represent high abundance and cool colors 
represent low abundance. The columns are arranged first by treatment, constituting each panel and indicated with 
colors on the top of the figure. Within each panel, the columns are in chronological order by day, labeled on the 
bottom of the figure. Full taxonomic classification of the ASVs represented in this analysis and figure can be found 
in Supplement Table 3. 

 



 

 

DISCUSSION 336 

 This study examined the effect of past disturbances on soil bacterial composition and 337 

disturbance response. We hypothesized that communities with a salinity disturbance history will 338 

differ from those that have not experienced an experimental disturbance, and that their recovery 339 

from a subsequent salinity disturbance will differ. Overall, we found support for both hypotheses.  340 

This experiment detected bacterial community compositional changes within days 341 

following an environmental disturbance. This rapid timescale is consistent with other lab and 342 

mesocosm research (Jurburg et al 2017a, Rodríguez-Valdecantos 2017, Hu et al 2018, Shade et al 343 

2011, Berga et al 2012, Ager et al 2010) and is the fastest timescale of microbial community 344 

change found in nature as far as we are aware. The control treatment captured the ambient bacterial 345 

dynamics that occur across two months, demonstrating how variable communities can be over 346 

time. This result helps inform our understanding of natural soil temporal dynamics in wetlands.  347 

Effect of long-term disturbances on composition 348 

The repeated salinity disturbances over two years altered community composition, as Day 349 

0 composition differed between the repeated disturbance treatment and the treatments that had not 350 

experience past disturbances (novel, control). While the methods used do not identify a 351 

mechanism, this points to the salinity addition selecting for salt tolerant taxa. Salinity is an 352 

important factor in structuring bacterial communities (Lozupone and Knight 2007), and 353 

community salt tolerance has been found to be proportional to soil salinity (Rath et al 2019). Our 354 

results show that the monthly salinity addition, which increased salinity by ~33% for about two 355 

weeks, or half of the time for two years, constituted a significant disturbance to the ambient salinity 356 

regime and cultivated a bacterial community adapted to altered salinity. 357 

Recovery trajectories 358 



 

 

 We found that the repeated and novel disturbance treatments underwent different recovery 359 

trajectories following the salinity disturbance, supporting our second hypothesis. The differences 360 

in their trajectories were seen in compositional differences over the recovery period (interactive 361 

effect), elevated relative abundances of distinct taxa, and differences in community variance. 362 

While both salt treatments had similar responses to the salinity disturbance, the relative abundance 363 

results show the repeated disturbance recovered taxonomically while the novel disturbance does 364 

not, which could reflect the compositional results. The treatments also differed in terms of 365 

community variance, where the repeated disturbance had consistently lower variance than the other 366 

treatments, and the novel disturbance had a sharp decrease in dispersion following the salinity 367 

disturbance but recovered after the first week. This suggests that the salinity disturbance decreases 368 

community variance, likely due to the death of salt sensitive taxa (Wichern et al 2006). The low 369 

variance in the repeated disturbance treatment, both on Day 0 and following the salinity addition, 370 

suggest that the past disturbances had a strong filtering effect on the community. 371 

Disturbance response: resistance 372 

The repeated disturbance treatment increased community resistance to subsequent 373 

disturbances, as we predicted, but only slightly. The salinity addition led to compositional changes 374 

in the novel disturbance community on Day 1, and the repeated disturbance community changed 375 

on Day 3. While this result demonstrates increased resistance, as has been found in other repeated 376 

disturbance studies (Bérard et al 2012, Bouskill et al 2013, Canarini et al 2021), the difference 377 

between the treatments was only one sampling time point, representing only a modest increase. 378 

We also considered resistance in terms of degree of community change using dissimilarity, 379 

which also demonstrated a modest increase in resistance in the repeated disturbance treatment. 380 

During the disturbance phase, the novel disturbance community had higher dissimilarity than the 381 



 

 

repeated disturbance, indicating more extreme community changes. This generally supports our 382 

prediction, but with one notable exception. We anticipated that the novel disturbance would 383 

undergo more extreme compositional change than the repeated disturbance during its initial 384 

disturbance response (Day 1 and Day 3, respectively). However, we did not find a difference in 385 

dissimilarity between the novel treatment on Day 1 and the repeated treatment on Day 3, 386 

suggesting they both underwent similar degrees of change in the immediate response to salinity. 387 

Taken together, the resistance results show that 1) the initial community response to the salinity 388 

disturbance was slightly delayed in the repeated disturbance treatment due to past exposures, 2) 389 

the salt treatments underwent the same degree of community change in response to the initial 390 

disturbance, and 3) the repeated disturbance community remained more like its pre-treatment type 391 

over the disturbance phase than the novel disturbance.  392 

The mechanisms that caused the slight increase in resistance are unknown. The repeated 393 

salinity additions could have filtered out salt sensitive taxa (Rath et al 2019, Logares et al 2013) 394 

as the decrease in community variance in the repeated disturbance treatment would suggest. The 395 

past disturbances could also have selected for taxa with an improved ability to withstand stressful 396 

conditions through adaptations like increased dormancy potential (Kearns et al 2018). While our 397 

methods removed relic DNA to capture a clearer signal of community change, they did not 398 

differentiate between the active and dormant community. If certain taxa adapted to survive 399 

frequent salinity pulses by increase dormancy potential, they would still be detected in our 400 

sampling and result in fewer compositional changes. Barnett and Shade (2023) compared the 401 

resilience of the whole bacterial community to only the active (non-dormant) community by 402 

comparing DNA and RNA sequencing and found stronger recovery patterns in the whole 403 



 

 

community than the active subset. This suggest that dormancy and the microbial seedbank are 404 

critical for community disturbance response and might explain our results. 405 

Other studies of disturbance dynamics have found that disturbances select for microbial 406 

specialists (Renes et al 202) and tolerant taxa (Jurburg et al 2017b), or cause bacteria to adopt new 407 

life strategies to withstand disturbances (Evans and Wallenstein 2014). Through evolution and/or 408 

horizontal gene transfer, these traits could have increased resistance to future salinity disturbances. 409 

Bacteria have been found to evolve stress tolerance in 250-2000 generations (Zhou and Ning 410 

2017), which is within the timeframe of the two-year repeated disturbance conditioning phase and 411 

could explain our results. These adaptations would lead to increased community resistance to a 412 

repeated disturbance, but more research is needed to understand which mechanisms are more 413 

important in driving microbial compositional changes in nature. 414 

Disturbance response: resilience 415 

 Overall, we found resilience in this system in both the repeated and novel disturbance 416 

treatments, but the heat map suggest higher resilience in the repeated disturbance community, as 417 

expected. While the rapid community response to the salinity addition during the disturbance phase 418 

was notable, perhaps more surprising was the immediate recovery in both salt-disturbed 419 

treatments. We predicted that both communities would exhibit high resilience due to the frequent 420 

abiotic fluctuations in the system, but we did not expect recovery to happen while salinity was still 421 

elevated. Other studies have found bacterial communities to recover from a disturbance in about 422 

25 days (Jurburg et al 2017a), but more work examining bacterial community changes over short 423 

time periods would be beneficial to understand community recovery patterns on this time scale. 424 

Our results show that the repeated disturbance community maintained its post-recovery 425 

community (Day 6) for the remainder of the experiment, while the novel disturbance and control 426 



 

 

communities continued to shift over time. This, along with the decreased community variance, 427 

suggests that the past salinity additions had a strong filtering effect on the taxa present and 428 

continues to impact the community dynamics beyond the recovery phase.  429 

The focus of this study was on compositional responses to disturbance, but there were 430 

notable changes in the abundances of phyla known to be salt sensitive/tolerant and known as either 431 

nitrogen or sulfur cyclers, suggesting potential functional differences between treatments. Firstly, 432 

the control had high abundances of salt-sensitive phyla, such as Actinobacteria and 433 

Gemmatimonadetes (Wijaya et al 2022, Li et al 2021), and the repeated disturbance was defined 434 

by high abundance of salt-tolerance taxa, like Bacteroidetes and Proteobacteria (Wijaya et al 2022, 435 

Mhete et al 2020). The control had higher abundance of phyla know as nitrogen cyclers, like 436 

Nitrospira (Mhete et al 2020, Chen et al 2022), while the salt treatments had high abundance of 437 

sulfur cycling phyla, like Chlorobi (Kuypers et al 2018, Jagannathan and Golbeck 2009) and 438 

Proteobacteria (Arora 2017, Wasmund et al 2017). These results support other research finding 439 

that nitrogen fixers and nitrogen cycling genes decrease as soil salinity increases (Li et al 2021, 440 

Morrissey and Franklin 2015) while Proteobacteria (particularly sulfur-reducing classes) increase 441 

in abundance with salinity (Li et al 2021, Morrissey and Franklin 2015). Microbial communities 442 

are often considered to have high functional redundancy, but recent studies have found recovery 443 

patterns are decoupled between composition/diversity and soil community function, demonstrating 444 

the importance of considering the resilience of both community structure and function (Sjöstedt et 445 

al 2018, Choi et al 2017). It is possible that the repeated salinity disturbances in our experiment 446 

could have cultivated a community with different functions and altered nutrient availability, but a 447 

focused examination of microbial function would be necessary to determine this.  448 

Limitations 449 



 

 

The central limitations of this study are rooted in the challenges of field-based microbiome 450 

surveying. Soil collection required destructive sampling, so the same location and, potentially, 451 

community could not be repeatedly sampled within our plots. Instead, samples were collected over 452 

time from randomly chosen sub-plots. Our methods attempted to account for this by distributing 453 

salt across the plot as evenly as possible, measuring salinity from multiple plot locations, and 454 

taking care to ensure all plots had a similar and homogenous plant community; however, samples 455 

were collected from a new location in the plot on each sampling day which therefore introduced 456 

unknown community variance. The effects of the interacting plant community were also not 457 

considered, though care was taken to ensure all plots had a similar plant community and that 458 

collection was done outside of growing season to reduce plant effects on the soil microbes. The 459 

molecular methods used do not distinguish between active and dormant bacteria and do not focus 460 

on functional differences between treatments. Further investigation of these specific areas would 461 

provide greater insight into the mechanisms microbes utilized to withstand disturbance and 462 

functional consequences of disturbance events. 463 

CONCLUSION 464 

In conclusion, this study found long-term, past disturbances to alter bacterial community 465 

composition and response to future disturbances. We identified moderate increases in resistance 466 

and resilience to disturbance based on the community’s exposure to past disturbances, supporting 467 

similar results found in systems with different disturbances, mainly drought. Furthermore, we 468 

found soil bacterial to undergo significant compositional change following a salinity disturbance 469 

in a matter of days, confirming the short timescale of bacteria turnover found in lab-based 470 

experiments. These results suggest that soil microbiomes are likely well-adapted to typical abiotic 471 



 

 

fluctuations and are resilient to disturbances, but novel disturbances may alter community structure 472 

and function.  473 
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