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Abstract

Dinitrogen (N;) fixation by diazotrophs supports ocean productivity. Diazotrophs include
photoautotrophic cyanobacteria, non-cyanobacterial diazotrophs (NCDs) and the recently
discovered N,-fixing haptophyte. While NCDs are ubiquitous in the ocean, their ecology and

metabolism remain largely unknown. Unlike cyanobacterial diazotrophs and the haptophyte, NCDs
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are primarily heterotrophic and depend on dissolved organic matter (DOM) for carbon and energy.
However, conventional DOM amendment incubations do not allow discerning how different
diazotrophs use DOM molecules, limiting our knowledge on DOM-diazotroph interactions. To
identify diazotrophs using DOM, we amended North Pacific microbial communities with '*C-labeled
DOM from phytoplankton cultures that was molecularly characterized, revealing the dominance of
nitrogen-rich compounds. After DOM additions, we observed a community shift from cyanobacterial
diazotrophs like Crocosphaera and Trichodesmium to NCDs at stations where the N»-fixing
haptophyte abundance was relatively low. Through DNA stable isotope probing and gene
sequencing, we identified diverse diazotrophs capable of taking up DOM. Our findings highlight
unexpected DOM uptake by the haptophyte’s nitroplast, changes in community-structure, and

previously unrecognized osmotrophic behavior in NCDs, shaped by.local hiogeochemical conditions.

Keywords: DNA-SIP, nifH, osmotrophy, N, fixation, DOM, DOM composition, mixotrophy, NCDs
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Introduction

Marine microorganisms called diazotrophs fix dinitrogen (N,) into ammonium, providing a critical
source of reactive nitrogen in marine ecosystems. Research has traditionally focused on
cyanobacterial diazotroph species such as the filamentous Trichodesmium, the unicellular
Crocosphaera and UCYN-A (e.g., 1-3), recently reconsidered as an early-stage organelle (the
'nitroplast') of the haptophyte Braarudosphaera bigelowii [4]. However, non-cyanobactefial
diazotrophs (NCDs) have a broader distribution than cyanobacterial diazotrophs in-marine
ecosystems, often representing the largest proportion of the community based on nitrogenase gene
(nifH) amplicon sequencing [5, 6]. Still, the contribution of NCDs to N, fixation inputs remains poorly

constrained [7].

Contrary to cyanobacterial diazotrophs and the N,-fixing B. bigelowii that obtain carbon and energy
from photosynthesis, metagenome-assembled‘genomes (MAGs) indicate that NCDs have the genetic
machinery to obtain carbon, nutrients and energy from organic matter through a wide range of
metabolic strategies, including photo- and chemoheterotrophy [8—11]. Several studies have reported
enhanced bulk N; fixation rates, nifH.gene expression, and growth of NCDs in response to dissolved
organic matter (DOM) additions; including proteobacteria and Cluster-Ill taxa [12—-14]. However,
cyanobacterial diazotrophs also respond to DOM additions with enhanced growth rates and nifH
gene expression (e.g., 13, 15-19), suggesting that DOM affects N, fixation inputs by both

cyanobacterial and NCDs.

By controlling nitrogen availability in vast ocean regions, diazotrophs sustain marine productivity and
contribute to carbon sequestration and the regulation of climate [20]. In turn, climate change-
induced stresses on diazotrophs, such as decreased activity under high temperatures and low pH,

can be alleviated by DOM uptake [21]. Investigating DOM-diazotroph interactions is needed to
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improve our understanding of their current and future role as key nitrogen suppliers. This can be a
daunting task due to the high molecular complexity of DOM [22]. Our current understanding of
DOM-diazotroph interactions is based on incubation experiments where field or cultured
diazotrophs are incubated with relatively simple DOM molecules such as glucose or mannitol, which
do not reflect the complexity of the marine DOM pool [22—-24]. Marine DOM is mainly produced by
phytoplankton photosynthates, subsequently consumed and transformed by heterotrophs and
altered by abiotic factors such as solar radiation [25-27]. As a result, labile DOM only represents
0.03% of the total dissolved organic carbon contained in marine DOM (662.2 Pg C;.28). The chemical
composition of DOM is not fully known. However, techniques such as ultra-highresolution mass
spectrometry have identified > 20,000 molecular formulas with > 30 isomers each, totaling > 600,000

compounds, although marine DOM may contain several million distinct organic compounds [28-30].

Given the wide diversity of both diazotroph species and DOM,compounds, establishing links
between them has proven challenging (e.g., 14;.16):Indirect approaches such as measuring bulk N,
fixation rates in response to DOM additions integrate the signals from the entire diazotroph
community and cannot resolve which diazotroph taxa are actively consuming DOM compounds. DNA
Stable-Isotope Probing (DNA<SIP)effers a means of tracing isotopically labeled substrates into DNA,
allowing microbial identity to.belinked to catabolic activity [31]. Here, we investigate the uptake of
phytoplankton-derived DOM by diazotroph communities in the North Pacific Ocean. Using DNA-SIP
with a molecularly characterized DOM substrate, we provide direct evidence of DOM uptake by
different diazotrophic taxa. Our results suggest that DOM plays an essential role for
photoautotrophic and chemoorganoheterotrophic diazotrophs alike, revealing novel osmotrophic
metabolisms and ecological strategies allowing them to thrive under unfavorable conditions and

expand their traditional niche.
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Materials and Methods

Experimental design and sampling procedure

This study was conducted during the NCD cruise (KM2206) between 4th June and 6th July 2022
onboard the R/V Kilo Moana. The cruise took place in the North Pacific Subtropical Gyre, west.of the
Hawaiian Islands between 15-309N and 159-1792W (Fig. 1A). Seawater was collected from four
stations (2, 4, 11 and 26; Fig. 1A) at 15 m depth and distributed into individual 4.5.lpolycarbonate
bottles (Nalgene, Rochester, NY, USA) to measure background conditions (time zero.or ‘T0’), DOM
uptake, and N, fixation rates, and perform DNA-SIP analyses (Fig. 1B; Supplementary Information).
Phytoplankton-derived DOM was extracted from cultures of Synechococcus sp. RCC2033 and
Thalassiosira pseudonana previously grown in the lab following Kieft et al., [23]; see Supplementary
Information for more details on 3C/**C-labeled DOM.production). This phytoplankton-derived DOM
was added to the ‘DOM incubation bottles’ to.a-final.concentration of 8 uM C (~10% of background
dissolved organic carbon (DOC) in surface waters of the North Pacific; 32, 33) (Fig. 1). All incubations
were performed on-deck incubators with flowing surface seawater for 24 h at in situ temperature in
the dark (to reduce any osmotrophic signal from diazotrophic cyanobacteria and focus on that of
NCDs). Subsamples for' DOC,"chromophoric and fluorescent DOM (CDOM and FDOM, respectively),
dissolved inorganic nutrients (phosphate and nitrate, see below), and heterotrophic bacteria
abundance*were collected from all experimental bottles at the beginning of the experiment (T0), and
after'18 hi(T18) and 24 h (T24) of incubation (Fig. 1B; Supplementary Information). The volume
remaining after sampling for DOC, CDOM, and FDOM was filtered either for DNA extractions (4 |
onto 0.2 um polysulfone membrane filters; Supor, Pall, Ann Arbor, Ml, USA) or for particulate
organic matter (POM; 4.4 | onto combusted GF/F filters; Whatman, Maidstone, UK) and POM
isotopic enrichments analyses to measure N; fixation and DOM uptake rates (see below;

Supplementary Information).
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Water column measurements, nutrient and DOM analyses

A conductivity, temperature, and depth probe (CTD 9/11plus, Sea-Bird Scientific) mounted on a 24-
Niskin bottle rosette sampler was used to measure hydrographic properties in the water column.
Additional sensors included turbidity, beam attenuation, and Chlorophyll-a fluorescence.

Samples for the measurement of nitrate and phosphate concentrations were obtained after
filtration through GF/F filters in 20 ml Teflon vials and stored at -20°C until analysis. (Supplementary
Information). Samples for DOC, CDOM, and FDOM were collected by filtering through Milli-Q water-
and sample-rinsed 0.45 um GMF GD/X syringe filters (Whatman, Florham Park, New Jersey, USA) and
stored in combusted (500°C, 4 h) 20 ml glass vials in the dark at 4%©C priorto analysis (Supporting

Information).

Molecular characterization of phytoplankton-derived DOM

Liquid chromatography coupled with high-resolution mass spectrometry was used simultaneously to
detect and identify the metabolites in the phytoplankton-derived DOM extracts produced in the lab
for onboard in situ incubations.(see Supplementary Information). To analyze the (i) polar and (ii)
apolar low-weight compotnds, we injected 1 pl of each 3C-DOM and 2C-DOM extracts in triplicates
and run them through a ZIC-HILIC column (150 x 2.1 mm, 5 um) and a Silica C18 column
(100%-2.2:mm; 2.6 um), respectively (see Supplementary Information for more details). The identity
of selected compounds was confirmed with tandem mass spectrometry, and the MS/MS spectra
were compared by spectral similarity search in Global natural product social networking (GNPS; see

Supplementary Information).
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The two data matrices were analyzed using the MetaboAnalyst 5.0 web tool [34], resulting in tables
with 12C and 3C isotopic peaks from the same compounds as distinct variables (separated rows).
Quantile normalization and normalization by sum methods were applied to the C18 and ZIC-HILIC
datasets, respectively. Volcano plots were generated to identify the significant features
discriminating between labeled and unlabeled DOM samples, using a fold change (FC) threshold of 2

and a p value threshold of 0.05 with False Discovery Rate correction.

DNA-SIP

DNA-SIP experiments were performed by incubating natural planktonic communities with either
heavily labeled (*3C) or unlabeled (**C) DOM we had previously preparedfrom phytoplankton
cultures in the lab [31, 35, 36] (Supplementary Information). The rationale behind using both heavy
(13C) and light (*2C) isotopes of the substrate of interest (here,carbon contained in the DOM mixture)
is to allow separation of the DNA of the substrate-incorporators by density differences (Supporting
Information). After DNA extractions (see Supporting Information), heavy (high 3C-labelling) DNA was
separated from light (low 3C-labelling and high *2C-labelling) DNA using a density gradient for both
treatments, separating different molecular weight DNA fractions according to Neufeld et al. [31]
(Supplementary Information)..To verify the success of the DNA-SIP steps and determine the
distribution of the DNA fractions after isopycnic separation, the abundance of 16S rRNA genes in
each density fraction was quantified by quantitative PCR (gqPCR). The gPCR assay was performed
using'the primers 968F and 1401R [37] as described in Cébron et al. [38] (Supporting Information).
Based on the distribution of DNA and 16S rRNA copies along the density gradient and the
comparison of 3C-enriched and *>C-enriched DNA samples (Fig. S1), we selected four consecutive
DNA fractions here called heavy or ‘H’, medium or ‘M’, light or ‘L’ and super-light or ‘SL’ for
downstream sequencing analyses (nifH and 16S rRNA gene amplicon sequencing; see Supplementary

Information).
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Statistical analyses

The integrated development environment for the statistical software R, RStudio (RRID: SCR_000432,
Version 2023.12.1+402), was used to process and analyze the data and to generate graphs. All
differences between treatments or stations for all parameters and other statistical patterns were
evaluated by one-way ANOVA, after checking data for normality and heterogeneity of variance (QQ
plot, Shapiro—Wilk test, and Levene’s test). Significant differences in the relative abundance of nifH
or 165 rRNA genes between the two treatments (3C vs. 2C) were tested using the Wilcoxon test.

Statistical significance for all tests was set at a p-values less than 0.05 (95%confidence level).

Results

Biogeochemical and environmental patterns

Sea surface (< 15 m) temperature and salinity differed significantly among stations (ANOVA, p <
0.0001; Fig. S2A-B), being highest at'stations 26 and 11 (28 °C and 35.3, respectively), and lowest at
stations 4 and 2 (24 °C and/34:9; respectively). Fluorescence and beam attenuation at the same
depth were higher. at'stations 2 and 4 than at stations 11 and 26 (ANOVA, p < 0.0001; Fig. S2B, D;
Supplementary.Information). Nitrate and phosphate concentrations at 15 m ranged from 0.003 to
0.061 pMandfrom 0.007 to 0.060 uM, respectively, with the highest average concentrations
observed at stations 26 and 2 and the lowest at station 4 (Fig. S2E-F). DOC concentrations at the
same depth were lower at stations 2 and 4 (70 uM) than at the other two stations (84 uM) (ANOVA;
p < 0.001; Fig. S2G). The CDOM absorption coefficient at 325 nm (as2s) and the humification and
biological FDOM indices (HIX and BIX, respectively), indicated that DOM at station 2 (highest BIX,

lowest as»s) was fresher/more aliphatic than elsewhere. In contrast, DOM at station 4 (highest HIX,
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low BIX, high as;s) displayed a more humic/aromatic character (Fig. S21-K; 39, 40). The average
molecular weight of bulk DOM, depicted by the CDOM absorption spectral slope between 275 and
295 nm (S275-295), was higher at station 2 (lowest Sz7s.295 Values) and lower at the other stations (Fig.
S2L). The high values of S,75.295 and asys at stations 4, 11, and 26 (Fig. S2K, L) indicated the dominance
of low molecular weight and aromatic compounds, which potentially underwent photobleaching or

other degradation processes [41].

Molecular composition of phytoplankton-derived DOM

Two data matrices were obtained for metabolite analyses of the phytoplankton=derived DOM
extracts (*2C and *3C) produced in the lab (Supplementary Information) and used as substrate in our
onboard experiments. Together with the investigations of the\isotopic peaks (Tables S1, S2), volcano
plots using both datasets indicated that most 3C isotopic peaks were more abundant in the 3C-DOM
extract (right side), whereas the *C isotopic peaks Wwere/more abundant in the >)C-DOM (left side)
(Fig. S3). Moreover several compounds, for example methyl-guanosine and valeryl-carnitine, showed
high 13C atom enrichment (Fig. S4)./Thus, these analyses confirmed that the composition of *C- and
13C-DOM was very similar (Supporting Information), which is a prerequisite for DNA-SIP analysis [31].
After metabolite annotationyboth datasets showed that the prominent chemical families
corresponded to nitregen-containing molecules such as amino acids (e.g., arginine, tryptophan),
dipeptides-(e.g., alanyl-leucine, glycyl-leucine), nucleosides (e.g., deoxyadenosine, deoxyguanosine),
and carnitine derivatives (e.g. acetylcarnitine, propionylcarnitine) (Tables S1, S2). In addition,

zwitterions such as dimethylsulfoniopropionate (DMSP) and choline were identified (Tables S1, S2).

Impact of phytoplankton-derived DOM on N; fixation

10
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Background (TO) concentrations of particulate organic carbon (POC) and nitrogen (PON) (i.e., before
DOM additions) were highest at stations 26 and 2, respectively (Fig. 2). POC and PON concentrations
in the control incubations did not change after 24 h and were not significantly different from TO

values (t-test; p > 0.1; Fig. 2). Instead, a significant increase in both POC and PON was observed at all
stations following DOM additions (t-test; p < 0.01; Fig. 2), with the highest and lowest POC and PON

build-up measured at stations 2 and 11, respectively (Fig. 2A).

Given the potential inflation of bulk N; fixation rates by background PON concentrations [42, 43], in
this study we report the fractional *>N-enrichment of the particulate nitrogen (**N at %) which
provides a more accurate measure of diazotrophic activity (N, fixation). The *N'at% enrichment of
bulk PON was higher in controls than in DOM-amended incubations at all\stations (t-test, p < 0.05;
Fig. 2B). Still, the >N at% PON in DOM-amended samples was ‘significantly higher than in TO samples
at all stations, except at station 2 (t-test, p > 0.1; Fig. 2B). The,highest °N at% PON values were
observed at stations 26 and 11, which showed similar values (t-test, p > 0.05; Fig. 2B) regardless of
whether the samples were DOM-amended or not (Fig. 2B). All DOM-amended samples showed
significantly higher 3C at% POC enrichment than control and TO samples (t-test, p < 0.05; Fig. 2B).
The highest *C at% POC wassmeasured at station 4 and the lowest in one of the replicates at station

2, while all replicates at station 26 consistently showed the lowest values (Fig. 2B).

Diazotroph.community (nifH genes) response to DOM additions

Phytoplankton-derived DOM additions caused a shift from diazotrophic cyanobacteria to NCDs (nifH
genes) at stations where the abundance of the N,-fixing haptophyte was lower (stations 11 and 26).
The TO diazotroph community composition was heavily dominated by cyanobacteria over NCDs

(93.1% over 6.9% of nifH reads) at all stations (Fig. 3A). Stations 2 and 4 showed the highest relative

abundance of the B. bigelowii nitroplast (86.8% and 97%, respectively; Fig. 3B), previously referred

11
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to as UCYN-A. The relative abundance of the nitroplast at station 11 was similar to that of
Crocosphaera (35.7% and 41.1% of nifH reads, respectively). In contrast, Crocosphaera dominated at
station 26 (99.6%,; Fig. 3B). Trichodesmium nifH reads were found at low relative abundance at
stations 2 and 26 (6.5% and 0.1%, respectively; Fig. 3B). The few NCDs at TO were mainly assigned to

the Alcaligenaceae family (betaproteobacteria)(Fig. 3A), particularly at station 11 (Fig. 3B).

After 24 h of incubation, the relative abundance of the nitroplast in control incubations décreased by
35.6% and 12.5% at stations 2 and 11, respectively, but remained almost constant at station'4 (Fig.
3B). The initially high relative abundance of Crocosphaera at station 26 remained relatively constant
during the incubation but increased to 36.1% and 7.0% at stations 2 and 11, respéctively (Fig. 3B).
The relative abundance of Trichodesmium at station 2 also decreased during the control incubations
(Fig. 3B). Conversely, an alphaproteobacterium of the genus Marinibacterium had higher relative
abundance (20.5% and 1.0% at station 11 and 26, respectively) in control incubations than at TO (Fig.

3B).

Phytoplankton-derived DOM additions increased the relative abundance of two alpha- and one
gammaproteobacteria NCDs-annotated as Sagittula, Marinibacterium and Marinobacterium,
respectively, at stations 26.and 11 (Fig. 3B). The relative abundance of the nitroplast in DOM-
amended incubationsidecreased by 17.5 and 14.3% at stations 4 and 11, respectively, and only
slightly (2.5%).at station 2. No Trichodesmium nifH reads were detected in the DOM-amended
samples, and Crocosphaera was only detected at low abundance at stations 11 and 26 (0.4% and

0.1% of total nifH reads, respectively) (Fig. 3).

Beyond bulk changes in the relative abundance of the nifH gene between control or DOM-amended
incubations (Fig. 3), DNA-SIP analyses allowed us to identify which diazotrophic taxa incorporated

organic carbon from the added DOM mixture (Fig. 4). We examined changes in the relative

12
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abundance of nifH genes in the H, M, L and SL DNA density fractions comparing $3C- and 2C-DOM
amended samples (Fig. 4). The nitroplast (Fig. 4A), the alphaproteobacteria Sagittula and
Marinibacterium (Fig. 4B-C), and the gammaproteobacterium Marinobacterium (Fig. 4D) were the
main diazotrophs showing evidence of DOM incorporation (Fig. 4). The relative abundance of the
nitroplast was higher in the H 13C DNA fraction than in the H *2C DNA fraction at stations 2 and 4
(Kruskal-Wallis test; p < 0.0001; Fig. 4). The nifH genes of the alphaproteobacteria Marinibacterium
and Sagittula were not detected in H2C DNA fractions, while their relative abundance represented
11.8% and 35.2% of the nifH relative abundance in the H'*C DNA fraction (Fig. 4B-C). The relative
abundance of the gammaproteobacterium Marinobacterium was slightly higherin the H*3C DNA
fraction than in the H*2C DNA fraction (Kruskal-Wallis test; p = 0.6102; Fig."4D)."Moreover, the nifH
relative abundance of the nitroplast, Marinibacterium and Marinebacterium in M *3C DNA fractions
were also 1.32, 3.59 and 1.31 times higher than in M '2C DNA fractions treatment at stations 4, 11

and 26, respectively (Kruskal-Wallis test; p < 0.01; Fig. 4).

Overall prokaryote community (16S rRNA genes) response to DOM additions

16S rRNA gene amplicon sequencing revealed that phytoplankton-derived DOM additions
significantly increased the relative abundance of several alpha- and gammaproteobacteria groups,
while alphaproteobacteria’showed higher osmotrophic capacities. Groups of alphaproteobacteria
dominated-atTO at all stations (29.8-44.3%), followed by the non-diazotrophic cyanobacterium
Prochlorococcus (21.1-30.2%) (Fig. 5A). Gammaproteobacteria and Bacteroidia represented 13.2-
15%.and 9.7-13.2% of the total prokaryotic community, respectively, showing less variability among
stations (Fig. 5A). In general, the abundance of heterotrophic bacteria estimated by flow cytometry
(cells mI'?) did not vary during control incubations (t-test; p > 0.1; Fig. S5A), except at station 2 where
their abundance increased significantly over the incubation period (t-test; p = 2 x 107°). In control

incubations, the initially dominant alphaproteobacteria belonging to SAR11 clades la and Ib, and the

13
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marine group AEGEAN-169 were present together with Prochlorococcus, but their relative

abundance did not change by more than 6% as compared to TO (Fig. 5B).

The abundance (cells mI?) of heterotrophic bacteria increased at all stations following DOM
additions (p < 0.1; Fig. S5B), being mostly representatives of alpha- and gammaproteobacteria
groups (Fig. 5B). However, most groups showed similar relative abundances between *3C- and *2C-
DOM incubations when contrasting different DNA density fractions (e.g., H or M; Fig. 6), suggesting
no DOC incorporation. This was the case for most gammaproteobacteria, including
Pseudoalteromonas and Alteromonas (Fig. 5B). Similarly, the relative abundance-of some
alphaproteobacteria such as Shimia, which increased significantly after DOM additions (Fig. 5B), was
not higher in the H 3C DNA than in the H 2C DNA fractions (Fig. 6)=In contrast, we observed a
significant increase in the relative abundance of the alphaproteebacteria Leisingera (stations 2 and
11), Nautella (stations 11 and 26), Pseudooceaonicola (stations 11 and 26) and of Ruegeria (stations
2 and 11) in the heavier (H and M) 3C DNA fractions as compared to the corresponding 1*C DNA

fractions (Fig. 6).

To evaluate the competition.and partitioning of DOM between diazotrophic and non-diazotrophic
bacteria, we did a co-occurrence’network analysis (see Supplementary Information; Fig. S6) using
both the nifH and 165.rRNA gene reads from the different DNA SIP fractions. These networks
showed positive connections between alphaproteobacteria (diazotrophic or not), while negative
connéctions were observed between gamma- and alphaproteobacteria, and between diazotrophic
andnon-diazotrophic gammaproteobacteria (Fig. S6). Negative relationships between
alphaproteobacteria taxa were only observed between TO abundant oligotrophic groups such as
Clade la and all alphaproteobacteria taxa after DOM addition, and between Leisingera and Ruegeria

with the nitroplast (Fig. S6).

14
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Discussion

Phytoplankton-derived DOM additions to surface diazotroph communities revealed that both the B.
bigelowii nitroplast and diverse NCDs were able to take up DOM. However, the response of
diazotrophs to DOM additions varied largely among groups and between stations, influenced by
temperature, nutrient concentrations, DOM composition and differences in the in situ community

structure (Fig. S6).

DOM uptake by NCDs

The alphaproteobacteria Sagittula and Marinibacterium, and the gammaproteobacterium
Marinobacterium (see Supplementary Information for nifH sequence homology) assimilated
phytoplankton-derived DOM at the westernmost and.warm waters (26.31-27.82 °C; Fig. S2) stations
11 and 26 (Fig. 4). Previous studies have reported gammaproteobacteria as the dominant NCD group
in open waters of the Pacific and Atlantic’Oceans |5, 44, 45], with their nifH gene counts or relative
abundances positively correlating with nutrients and DOM availability or primary productivity [13,
14, 46, 47]. In contrast, nifH-feads of,the alphaproteobacterium Sagittula negatively correlate with
nitrate and phosphate concentrations in regions such as the Eastern Indian Ocean [48]. Consistent
with this, the detection of Sagittula nifH gene reads at station 11 coincided with low phosphate
concentrations,(Fig/S2F). Indeed, the genome of Sagittula shows diverse metabolic pathways to
obtain-disselved organic phosphorus, including phosphonates and phosphoanhydrides [49], which
mayallow this genus to thrive in phosphate-poor waters when other resources such as DOM are not
limiting. While Sagittula has been suggested as an important N, fixer worldwide (e.g., 49, 50),
Marinibacterium and Marinobacterium have rarely been reported from open ocean samples [51,
52]. Marinibacterium MAGs suggest that their metabolism is versatile, including the ability for

photoheterotrophy (anoxygenic photosystem II; 52) or to use methanol as a carbon and energy
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source (methanol dehydrogenase, XoxF; 51). However, our knowledge of their activity and

involvement in biogeochemical cycles is still limited.

Based on available reference genomes, both Sagittula and Marinobacterium are flexible in substrate
utilization (e.g., sugars, amino acids, and peptides) and energy acquisition mechanisms, including the
degradation of aromatic hydrocarbon compounds [49, 53]. The *C-DOM substrate used in our
incubations contained several compounds (i.e., amino acids and nucleosides; Tables S1, 52).that can
be utilized by both Sagittula and Marinobacterium. For example, Marinobacterium.can synthesize
glycine betaine from choline [53]. Glycine betaine is an important osmoprotectant, as well as
dimethylsulfoniopropionate (DMSP) and carnitine, which were present in our DOM mixture (Tables
S1, S2). These ubiquitous metabolites and their derivatives, such as,DMS;.are well known to serve as
energy and/or nutrient sources for most prokaryotes [54, 55],\including Sagittula [49] and even
eukaryotes such as marine diatoms [56, 57]. Sagittula and Marinobacterium may have benefitted
similarly from these widespread marine metabolites during our study. Still, Sagittula genes encode
for the uptake of a wider variety of substrates than'Marinobacterium species, such as
lipopolysaccharides, lipoproteins, tungstate,/and thiamine [49], which might explain their prevalence
at station 11 where the lowest biomass was observed (Fig. 2). In contrast, Marinobacterium is less
metabolically versatile but still had higher relative abundances than Crocosphaera upon
phytoplankton-derived DOM additions at station 26, suggesting an efficient uptake of the added
DOM allowing for rapid growth (Fig. 3). This contrasts with previous studies showing DOM uptake by
Crocosphaera{13, 21]. However, in those studies, photosynthesis was not limited (day/night cycle
incubations, while our incubations were 24 h in the dark), and the amended DOM consisted mainly
of’carbohydrates which were not detected in our **C-DOM mixture (Tables S1, S2). In addition, the
growth rates of different microorganisms may affect the amount of *3C incorporated into DNA at a
given time, as DNA needs to be replicated to be detected as a 3C-DOM signal. Therefore, even if

slow-growing microorganisms take up significant amounts of 1*C-DOM, the incorporation of isotopic
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labels in their DNA can be low, while a longer incubation to counteract this problem might introduce

bias as cross-feeding events [58].

Overall, our results indicate that different NCD groups grew on DON-rich DOM (Tables S1, S2),
allowing them to outcompete other diazotrophs but did not favor bulk N, fixation. NCDs are
considered facultative N, fixers as they show broad flexibility in their nitrogen metabolism [59]«Yet,
N, fixation rates were detectable after DOM additions and °N at% PON values were significantly
higher than at TO at stations where Sagittula, Marinibacterium, and Marinobacterium were present
(Fig. 2B). These NCDs groups were virtually absent at TO at stations 11 and 26 but increased their
relative abundance upon the addition of phytoplankton-derived DOM. This-observation could be due
to the low lability of the background DOM at TO (Fig. S2I-L) or to the dominance of better-adapted
photoautotrophic species such as Crocosphaera. Our results suggestthat Sagittula,
Marinobacterium, and Marinobacterium can contribute to DOM uptake and compete with other

prokaryotes even when nitrogen metabolites are available.

DOM uptake in the N-fixing haptophyte nitroplast

The B. bigelowii nitroplast assimilated DOM at the eastern and cooler waters (24.28-25.94 °C; Fig.
S2) stations 2 and 4 (Fig. 3; Fig. 4). These stations differed significantly from each other in the
background chemical composition and DOM lability (Fig. S2). At station 2, DOM was fresher and had
a higher molecular weight (higher BIX and lower Sy75.295 values characteristic of newly released DOM
by either bloom crash or zooplankton grazing 60, 61; Fig. S2J, L) than at station 4, which was more
chémically complex and refractory (e.g., higher HIX, as2s and Sz7s.205 values; Fig. S21, K, L).
Furthermore, nitrate and phosphate concentrations were the lowest at station 4 (Fig. S2). These
differences in the background availability of DOM and nutrients partly explain why higher **C-DOM

assimilation was observed at station 4 than at station 2 (Fig. 4). This indicates that DOM uptake is a
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beneficial trait for the coccolithophore B. bigelowii under dark and low nutrient availability
conditions. At station 2, B. bigelowii might have assimilated less DOM or even used some of the
more labile background DOM present in ambient waters, resulting in lower incorporation of $3C-
DOM and an isotopic dilution of the *3C signal in DNA extracts. Still, *C-DOM additions at station 2
induced a 15.45-fold increase in the relative abundance (bulk DNA) of nitroplast nifH reads (t-test; p
= 0.075; Fig. 3), suggesting that compounds other than organic carbon in the DOM mixture (e.gs,

nitrogen-rich amino acids or nucleosides; Tables S1, S2) may have stimulated their growth.

Mills et al. [62] found that B. bigelowii does not take up nitrate and assimilates only.small amounts
of ammonium, suggesting that its nitrogen requirements are met mainly by.N; fixation by the
nitroplast (62; Fig. 7A). However, the nitroplast may fail to meet the nitrogen demand of B. bigelowii
under conditions where the ratio of carbon fixation/nitrogen transfer or B. bigelowii/nitroplast size is
unbalanced [62, 63]. In these cases, the B. bigelowii/nitroplast-is likely to rely on other reactive
nitrogen sources such as dissolved organic nitrogeny(DON) or bacterial phagotrophy [64]. The
nitroplast lacks the genetic machinery toproduce some key organic nitrogen compounds, such as
amino acids and nucleotides. Still, the nitroplast can incorporate such compounds from the algae via
specific amino acid or purinedransporters [65] (Fig. 7B). This suggest a intricate exchange of
nitrogenous metabolites,with.Ns being fixed into ammonia in the nitroplast and then transferred to
B. bigelowii [3]. In retudrn;the host metabolizes ammonium into organic nitrogen, which is then

transferred.toithe nitroplast (Fig. 7B).

N fixation (presented as *N at% enrichment) was undetectable or lower than controls after DOM
additions at stations 2 and 4 (Fig. 2), suggesting that DOM inhibited N fixation. Using DOM as a
nitrogen source instead of relying on its nitroplast may reduce the overall energy requirements of B.
bigelowii (Fig. 7C). Flexibility in substrate use and resource allocation may be a key trait of B.

bigelowii, explaining its ability to thrive from tropical to polar oceans [66, 67], and to survive in
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turbid upwelling waters where diazotrophic cyanobacteria are uncompetitive [9, 68]. Indeed,
although light appears to be a critical factor controlling the metabolism of the B. bigelowii symbiosis,
the carbon fixed by the algae might be crucial in regulating N; fixation in the nitroplast [69]. The dark
incubations used in our experiments may have triggered an osmotrophic response of B. bigelowii
and subsequent transfer of 3C-DOM to the nitroplast (Fig. 7C) at stations where it was initially
abundant. These results call for a review of the role of the B. bigelowii/nitroplast ocean DOM cycling

in the ocean.

Competition between diazotrophic and non-diazotrophic bacteria for DOM

Bulk POC and PON concentrations increased after DOM additionsito dark.incubations (Fig. 2),
suggesting that microbial growth was DOM-limited without light. The POC 3C at% enrichment
confirmed substrate incorporation by the bulk planktonic community at all stations, while the PON
15N at% enrichment was consistently higher in econtrol than in DOM-amended incubations (Fig. 2).
This indicates a potential suppression of N fixation by DOM, e.g., by DON metabolites, which
constituted most of the molecules detected.in our DOM mixture (Tables S1, S2), or the faster uptake
of DOM by microbes other than diazotrophs, limiting resources for N, fixation (Fig. 5). A combination
of these scenarios is likély, and therefore the increase of *C at% enrichment in bulk POC arguably

includes the signal from both diazotrophic and non-diazotrophic microbes (Fig. 2, Fig. 5).

To furtherunderstand the competition and partitioning of DOM between diazotrophic and non-
diazotrophic bacteria, we evaluated the differences in 16S rRNA gene reads in the different DNA
fractions as we did for the nifH genes (Fig. 5; Fig. 6). Although the non-diazotrophic prokaryotic
community was similar between stations at TO (Fig. 5A), and in contrast to the diazotrophic
community (Fig. 3A), we did not observe an analogous prokaryote response to DOM additions at the

different stations (Fig. 5B). Therefore, factors other than the metabolic capabilities of the non-
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diazotrophic prokaryotes such as nutrient availability or competition with other planktonic groups
may have shaped the DOM uptake at the different stations. In general, the relative abundance of
non-diazotrophic prokaryotes increased significantly after DOM additions, especially
alphaproteobacteria (Fig. 5B; Fig. S6). Notwithstanding, only a few groups showed *C-DOM
assimilation and their response varied spatially, indicating different use of the DOM and intraspecies
competition at the different stations (Fig. 5B; Fig. 6; Fig. S6). For example, the alphaproteobacteria
Leisingera and Nautella increased their relative abundance after DOM addition at most stations,
including station 4. Still, they only showed evidence of DOM uptake at stations 2 and 11, and 11 and
26, respectively (Fig. 6). At station 4, where the background DOM was refractory.and nutrients were
scarce (Fig. S2), DOM additions induced a high 3C at% enrichment of POC (Fig. 2B), suggesting that
the B. bigelowii nitroplast may be a significant contributor to DOM.assimilation at this station.
Conversely, the other prokaryotes that increased in relative abundances after DOM addition (bulk
DNA) at station 4 may have used the phytoplankton-derived'DOM as a source other than organic
carbon such as nutrients (e.g., nitrogen-containing metabolites; Tables S1, S2). This could explain the
uncoupling between increasing bacterial.growth and DOM incorporation, especially at stations 4 and
26 (Fig. 2A; Fig. 5; Fig. S5A). At station 26, the increase in relative abundance of the non-diazotrophic
alphaproteobacterium Ruegeria and of the two gammaproteobacteria, Alteromonas and
Pseudoalteromonas, in‘response’to DOM additions was also uncoupled from DOM uptake (Fig. 6).
Again, these species could’have benefited from DOM additions for different purposes such as
deriving theirsulfur requirements from DMSP, as observed in several Ruegeria species [70]. In
contrast, another study conducted during our cruise analyzing particle-associated NCDs found that
gammaproteobacteria were the most abundant groups [71], suggesting that POM is a more suitable

carbon source for gammaproteobacteria NCDs than DOM.

Our results suggest that the variability in ambient nutrients, DOM, and community structure

between stations drives contrasting responses to DOM additions between alpha- and
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gammaproteobacteria. The negative relationship between these two classes following DOM
additions is supported by co-occurrence network analyses (Fig. S6). Moreover, this analysis showed
mostly positive connections between alphaproteobacteria taxa (diazotrophic or not), revealing very
different ecologies within this class and a diverse and shared exploitaiton of DOM enabling different
planktonic groups to benefit from the same substrate. The weak negative relationship between
Leisingera and the nitroplast at stations 2 and 4 (Fig. S6) indicates some competition between the
two groups for the added substrate. Longer incubations and nutrient addition experiments,will.help
disentangle the competition of different bacterial groups for DOM. Such studies emerge as a priority
in the increasingly warmer and nutrient-starved subtropical gyres, where competition for DOM
substrates between microbial species may influence carbon cycling and contribution of DOM to the

biological carbon pump.
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Fig. 3. Heatmap showing the relative abundance of nifH gene readsiinsthe:diazotroph community

for 'TO' and post-incubation samples (unamended or 'Ctl' and amended with either 3C- or *C-

DOM) at each station. The relative abundance of nifH réads is sorted by the most abundant class

(A), and the top 15 most abundant taxa are further divided by genus (B) and into the different

DNA density fractions (heavy ‘H’, medium /M’ light'l’ and superlight ‘SL’).
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Fig. 4. nifH gene relative abundance of enriched/(higher in 3C fractions) amplicon sequence variant

(ASVs) (assigned to Genus) across DOM tréatments (**C-labeled: filled dot and solid line, and *C-

labeled; open dot and dashed line) @andidensity fractions (heavy or ‘H’, medium or ‘M’, light or ‘L’

and super-light or ‘SL’). Each, paint represents the average of the three experimental replicates.

Different lines within each panel indicate different ASVs assigned to the same genus. Diamond dots

show the average=of all"ASVs in each fraction and treatment. Significant differences in relative

abundance /between DOM treatments were tested with the Kruskal-Wallis Test and shown as

significant codes (****; p < 0.0001, ***; p < 0.001, **; p <0.01, *; p < 0.1, ns; not significant).
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Fig. 6. Relative abundance (16S rRNA gene), profiles of enriched (higher in 3C fractions) ASVs
(assigned to Genus) across DOM _treatments (‘*C-labeled: filled dot and solid line, and *C-
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‘L’ and super-light or ‘SL’). Each point represents the average of the three experimental replicates.

Different lines within each panel indicate different ASVs assigned to the same genus.
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Fig. 7. Schematic figure illustrating the known (A, B) and potential (C) carbon acfnw

acquisition and exchange pathways between the environment and the h
Braarudosphaera bigelowii and its nitroplast. Dotted lines indicate

decreased due to a new type of uptake or reallocation of resou
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