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Abstract

Exploring the diversity of diazotrophs is key to understanding their role in supplying fixed nitrogen that supports marine productivity.
A nested PCR assay using the universal primer set nifH1-nifH4, which targets the nitrogenase (nifH) gene, is a widely used approach
for studying marine diazotrophs by amplicon sequencing. Metagenomics, direct sequencing of DNA without PCR, has provided
complementary views of the diversity of marine diazotrophs. A significant fraction of the metagenome-derived nifH sequences (e.g.
Planctomycete- and Proteobacteria-affiliated) were reported to have nucleotide mismatches with the nifH1-nifH4 primers, leading to the
suggestion that nifH amplicon sequencing does not detect specific diazotrophic taxa and underrepresents diazotroph diversity. Here, we
report that these mismatches are mostly located in a single-base at the 5'-end of the nifH4 primer, which does not impact detection of
the nifH genes. This is demonstrated by the presence of nifH genes that contain the nucleotide mismatches in a recent compilation
of global ocean nifH amplicon datasets, with high relative abundances detected in a variety of samples. While the metagenome-
and metatranscriptome-derived nifH genes accounted for 4.4% of the total amplicon sequence variants from the global ocean nifH
amplicon database, the corresponding amplicon sequence variants can have high relative abundances (accounting for 47% of the reads
in the database). These analyses underscore that nifH amplicon sequencing using the nifH1-nifH4 primers is an important tool for
studying diversity of marine diazotrophs, particularly as a complement to metagenomics which can provide taxonomic and metabolic
information for some dominant groups.
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Introduction the marine environment to date, in which two pairs of degener-

Marine diazotrophs are a diverse group of prokaryotes that fix
dinitrogen (N,) gas to bioavailable forms of N, playing critical roles
in supporting ocean productivity and biological carbon export [1].
In particular, they can contribute over half of the new production
in oligotrophic waters like the North Pacific subtropical gyre [2,
3]. Historically, marine N, fixation has been mostly attributed to
Trichodesmium or diatom-associated cyanobacteria (which can be
easily identified with light microscopy) [4, 5]. However, numer-
ous marine diazotrophs have been discovered through amplicon
sequencing of the nifH gene, which encodes the iron-containing
dinitrogenase reductase subunit, and has been established as
a proxy for N, fixation potential. Amplification of nifH using
the universal primer set designed by Zehr and McReynolds [6]
and Zani et al. [7] is among the most widely used assay for
obtaining nifH gene fragments for amplicon sequencing from

ate primers (outer primers: nifH3 and nifH4 [7]; inner primers:
nifH1 and nifH?2 [6]) are used in subsequent PCR reactions. This
nested PCR assay targets a majority of the known nifH sequences
from the environment (8], providing high sensitivity for detecting
marine diazotrophs whose abundances are usually several orders
of magnitude lower than dominant prokaryotes in the ocean [9].
This approach led to the discovery of three genetically distinct
groups of unicellular cyanobacterial phylotypes, including UCYN-
A (Candidatus Atelocyanobacterium thalassa, recently discovered as
nitrogen-fixing organelles of haptophytes), UCYN-B (Crocosphaera
watsonii) and UCYN-C [10, 11], which have been demonstrated
to be widespread and quantitatively significant N,-fixers in the
ocean [12-14]. Moreover, diverse non-cyanobacterial diazotroph
(NCD) nifH phylotypes (i.e., putative diazotrophs) have also been
detected in marine nifH amplicon sequence datasets, although
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their N,-fixing activity in the ocean remains unclear [15]. Recent
studies discovered that two NCDs affiliated with Alphaproteobacte-
ria and Gammaproteobacteria are active Ny-fixers, which are widely
distributed in the ocean [16, 17].

Metagenomics and metatranscriptomics, which are sequenc-
ing approaches that do not rely on amplification using specific
PCR primers, have recently been used as alternative ways to
obtain genomic information of marine diazotrophs [18-21].
Delmont et al. [19, 21] have reported dozens of metagenome-
assembled genomes (MAGs) that contained nifH genes (and
other genes for N, fixation) from the seawater metagenome
dataset generated by the Tara Oceans expedition. These analyses
emphasized that some MAGs were affiliated with Planctomycetes
(Planctomycetota), which was the first report of N, fixation
potential of this phylum in the ocean [21]. Notably, they also
advised that the nifH genes of the Planctomycetes, along with some
other proteobacteria, would not be detected using nifH amplicon
sequencing approaches [19, 21], because the DNA sequences
of these genes did not completely match with the universal
nifH1-nifH4 primer set sequences. However, the impacts of these
mismatches on the amplification of those nifH genes were not
directly demonstrated in those studies.

Considering that nifH amplicon sequencing using the nifH1-
nifH4 primer set has long been a fundamental approach for
studying marine diazotroph populations, it is critical to clarify if
this approach might be unable to detect the metagenome-derived
nifH gene diversity as suggested [18, 19, 21]. In this study, we
first conducted a thorough analysis of the nucleotide mismatches
between the nifH1-nifH4 primers and the marine nifH sequences
obtained with PCR-primer-free approaches (i.e. metagenomics,
metatranscriptomics, and genome sequencing of isolates) [18, 19].
Moreover, we searched the PCR-primer-free approach derived nifH
sequences in a global ocean nifH amplicon sequence variant (ASV)
database recently compiled by Morando et al. [22], in order to
compare the diversity obtained by nifH amplicon sequencing to
that of PCR-primer-free approaches.

Materials and methods

Identifying nucleotide mismatches between
PCR-primer-free approach derived nifH genes
and the nifH1-nifH4 primer set

We analyzed the nucleotide mismatches between the universal
nifH1-nifH4 primer set [7, 23] and the PCR-primer-free approach
derived nifH genes. These nifH sequences came from the
“extended nifH database” compiled by Delmont et al. [19], which
contained the nifH gene sequences detected in the global ocean
datasets of the Tara Oceans expedition, including the nifH genes
of 47 MAGs (Tara MAGs) and a metatranscriptomic-based contig
of Gamma A (a common marine NCD) reported from the Tara
Oceans datasets [19, 24], and the nifH genes from a larger marine
nifH database compiled by Pierella Karlusich et al. [14]. The nifH
genes of the MAGs (Arctic MAGs) recently obtained by Shiozaki
et al. [18] from the Arctic Ocean were also included in our analysis.
For simplicity, the database containing all these nifH sequences is
called the “metaGT database”. For the nine Arctic MAGs reported
by Shiozaki et al. [18], the nifH gene sequences were extracted
using Prokka [25]. The nifH gene of a MAG (Arc-Myxo) was not
included in our analysis because this MAG did not contain any of
the other essential genes (nifDK and nifEBN) for nitrogen fixation
[18]. The nifH sequences in the “extended nifH database” and the
eight Arctic MAGs were merged and aligned using the MUSCLE
algorithm in MEGA 11 [26], and the short sequences that did

not contain all the regions targeted by the nifH1-nifH4 primer
set were removed. The nucleotide mismatches of the remaining
nifH sequences (metaGT database, Table S1) and the nifH1-nifH4
primer set were analyzed using fuzznuc (EMBOSS version 6.6.0)
[27]. To compare the frequency of the nucleotide mismatches
for different taxonomic groups of diazotrophs, we analyzed the
taxonomy of these nifH sequences at phylum level. The nifH genes
of the MAGs and Gamma A were classified based on the taxonomy
of the corresponding MAGs [17-19], while the rest of the nifH
sequences were classified with blastX against the nr database
(=90% coverage, >80% amino acid similarity) [28]. Both the validly
published names and the old names of the diazotroph phyla are
shown in Table 52 [29].

Searching for PCR-primer-free approach derived
nifH genes in a global ocean nifH ASV database
In order to test if the nifH1-nifH4 primer set can amplify the
nifH genes derived from the PCR-primer-free approach that
mismatched with the universal nifH primers, sequences of the
nucleotide mismatch-containing nifH genes were used to search
against a global ocean nifH ASV database complied by Morando
et al. using BLASTN [22, 30]. This database contains the nifH
ASVs generated by reanalyzing published nifH amplicon sequence
datasets compiled from different regions of the ocean [22].
Distribution and relative abundances of the ASVs that showed
>99% and 100% similarities with the nucleotide mismatch-
containing nifH gene sequences were displayed on a world map
using ggplot2 in R [31, 32].

We also evaluated the contributions (in terms of proportions
of all reads and ASV numbers) of the nifH genes (54 sequences
in total) of the MAGs (Tara MAGs) and the contig of Gamma A
(Tara Gamma A) from Tara Oceans datasets and the MAGs (Arctic
MAGs) from Arctic Ocean [18, 19, 24] in surface dataset (sampling
depth <150 m) of the global ocean nifH ASV database [22]. The
ASVs in the database were used to search against these nifH genes
using BLASTN [30]. The ASVs showing >95% DNA similarity with
these nifH genes were classified as Tara MAGs, Tara Gamma A, or
Arctic MAGs. This criterion was chosen to reflect similar thresh-
olds implemented to recruit metagenomic/metatranscriptomic
reads for these nifH genes in previous studies [18, 24].

Results and discussion

Nucleotide mismatches in the nifH4 primer are

unlikely to prevent amplification of nifH genes

By comparing the sequences of the nifH1-nifH4 primers and
the nifH sequences in the metaGT database [18, 19, 24],
we found that 37% of the nifH sequences had mismatches
with at least one of the nifH1-nifH4 primers, and that the
nucleotide mismatches were more frequently observed in NCDs
(e.g. Proteobacteria, Planctomycetes (Planctomycetota), Bacteroidetes
(Bacteroidota), Desulfobacterota, etc.) than in cyanobacterial dia-
zotrophs (Fig. 1), which agreed with the previous studies [18, 19].
Importantly, most mismatches (72/78) were at a single base
located at the 5’end of the nifH4 primer (Fig. 1, Table S2).
Notably, two of the phylotypes identified to have such mis-
matches located at the S’end of the nifH4 primer sequence
in the metaGT database were the marine proteobacterial
diazotrophs Gamma A (NifH Gamma-24774A11_MATOU) and
Gamma 4 (NifH_TARA_PON_109_MAG_00010), which are com-
monly reported in amplicon sequencing studies. Gamma A
and Gamma 4 are Alphaproteobacteria and Gammaproteobacteria,
respectively [17, 21, 33]. Both of these diazotrophs were first
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Figure 1. Nucleotide mismatches between the nifH1-nifH4 primers and the PCR-primer-free approach derived nifH genes in the metaGT database.

(A) Number of nifH sequences affiliated to different diazotroph groups (cyanobacteria, proteobacteria, and others) that show mismatches with the
nifH primers. The group “others” contains Planctomycetes (Planctomycetota), Desulfobacterota, Bacteroidetes (Bacteroidota), Firmicutes (Bacillota),
Verrucomicrobia (Verrucomicrobiota), etc.. The number of nifH sequences for each diazotroph phylum is shown in Table S2. (B) Number of nucleotide
mismatches that occur along each primer. xMiddle-1=1 mismatch at the middle of primer; 5'-1=1 mismatch at 5" end of primer; 5'-2 =2 mismatches

at 5" end of primer; 3’-1=1 mismatch at 3’ end of primer.

discovered with nifH amplicon sequencing using the nifH1-nifH4
primer set [34, 35]. Moreover, the nifH gene of Gamma A has been
found to be preferentially amplified by the nifH1-nifH4 primer
set [36]. It has been well established that primer binding is most
critical in the 3’ region, given the nature of replication using
DNA polymerases (5 to 3') and direct demonstrations that primer
mismatches at 5’ end (and the nearby region) do not significantly
affect the amplification efficiency of PCR reactions targeting 16S
TRNA genes [37]. Therefore, it is expected that mismatches at the
5" end of the nifH4 primer also do not prevent the amplification
of nifH genes with the nifH1-nifH4 primer set.

Nucleotide mismatches between the nifH sequences in the
MetaGT database and the nifH1-nifH4 primer set at other loca-
tions in the primer sequence were also found. The 5 (out of
6) nifH sequences with additional mismatches were primarily
single-base as well, occurring at the second base at the 3’ end of
the primer nifH3 (2/78) and at the middle of the primers nifH1
(1/78), nifH2 (1/78), and nifH3 (1/78). Finally, one 2-base nucleotide
mismatch was found at the first and third bases at the 5" end of
the primer nifH4 (Fig. 1, Table S2). The impact of these nucleotide
mismatches, especially those occurred at the 3’ end of primer,
should be further verified with PCR experiments [37].

NifH genes with primer nucleotide mismatches
are detected in nifH amplicon-based studies

In the global ocean nifH ASV database compiled by Morando et al.
[22], there were a total of 79 out of 7909 ASVs with >99% DNA
similarity to 21 of the 73 nifH phylotypes that contain nucleotide
mismatches with nifH primers in the metaGT database. These
were comprised of sequences from Gammaproteobacteria (51/79),
Alphaproteobacteria (i.e. Gamma A, 21/79), Desulfobacterota (3/79),
Bacteroidetes (2/79), Betaproteobacteria (1/79), and Planctomycetes
(1/79) (Table S3), which all have one base-mismatches with the
S’end of the nifH4 primer. Except for one Desulfobacterota- and
few Gammaproteobacteria-affiliated ASVs only detected in one

sample, these ASVs were detected repeatedly, often with high
relative abundances in the global ocean nifH ASV database (Fig. 2,
Table S3) [22]. Some Gammaproteobacteria- and Planctomycetes-
affiliated ASVs reached relative abundances of 100% and 16%,
respectively (Fig. 2, Table S3). We also found that 22 out of these
79 ASVs are identical (100% DNA similarity) to the nifH genes
that contain nucleotide mismatches with nifH primers, which
are affiliated to Gammaproteobacteria, Gamma A, Desulfobacterota,
Betaproteobacteria, and Planctomycetes (Table S3). These ASVs can
reach high relative abundances in the nifH ASV database (Fig. S1).
Collectively, these results reinforced that the most predominant
type of nucleotide mismatch (single base at 5" end of the nifH4
primer) between the nifH gene sequences and the nifH1-nifH4
primers do not prevent the amplification of these sequence types
using the nifH1-nifH4 primer set from the environment.

It is important to note that nifH sequences with non-5-end
primer nucleotide mismatches (e.g. single base at 3’end or middle)
were not detected in the nifH ASV database. These kinds of mis-
matches can impact the amplification significantly [37]. However,
very few of the nifH genes in the metaGT database have these
kinds of mismatches (Fig. 1). Considering that the distributions of
diazotrophs are known to be highly patchy in the ocean [38, 39]
and the sampling sites of the metagenomic studies had little over-
lap with sampling sites in the nifH ASV database [18, 19, 22], it is
possible that these undetected nifH sequences (i.e. the nucleotide
mismatch-containing nifH sequences from the metaGT database
that were not detected in the nifH ASV database) were simply not
present or very rare in the samples used for the nifH ASV database.
Moreover, distributions of the metagenome assembled nifH genes
were also highly heterogenous in the Tara Oceans datasets [19]. All
in all, it remains unclear if the nifH1-nifH4 primers can amplify
these non-5-end primer nucleotide mismatch-containing nifH
genes. To evaluate the amplification efficiency of the nucleotide
mismatch-containing nifH genes with nifH1-nifH4 primers, the
DNA samples in which the nucleotide mismatch-containing nifH
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Figure 2. Distribution and relative abundances of the ASVs that show 99%-100% DNA similarity with the “nucleotide-mismatched” PCR-primer-free
approach derived nifH genes (contain nucleotide mismatches with nifH primers) in the global ocean. These ASVs were grouped based on their
taxonomy (i.e. Gammaproteobacteria, Gamma A, Planctomycetes (Planctomycetota), and Bacteroidetes (Bacteroidota)). Relative abundances of the ASVs are
displayed with the sizes of data points. The sampling location for each nifH amplicon dataset is indicated with a cross.

genes were detected with metagenomics [19] would need to be
further analyzed with nifH amplicon sequencing.

Amplicon sequencing as a valuable approach to
explore diazotroph diversity

Considering that the Tara MAGs were reported to contribute the
vast majority (92%) of the nifH reads detected in surface and
deep chlorophyll maximum samples in the Tara Oceans datasets
[19], for comparison, we determined the contribution of the nifH
genes (54 sequences in total) of the Tara MAGs, Gamma A contig
from the Tara Oceans metatranscriptomic dataset [24] (the MAG
was reconstructed in a recent study [17]) and Arctic MAGs to the
ASV numbers and reads in the surface layer samples (sampling
depth <150 m) in global ocean nifH ASV database. As a result, 29 of
these nifH genes were detected in the nifH ASV database, account-
ing for 4.4% of the total ASVs (350 out of 7887 ASVs) (Fig. 3A).
The Tara MAGs, Gamma A, and Arctic MAGs contributed 3.5%,
0.85%, and 0.08% of the total ASVs, respectively. These results may
be influenced by different sampling locations and efforts in the
studies based on different approaches [18, 19, 22]. Nevertheless, it
is obvious that nifH amplicon sequencing can detect highly diverse
marine nifH phylotypes, for which the genomes (or MAGs) remain
mostly unknown.

We also compared the detection of different categories of
nifH genes (cyanobacterial diazotrophs vs NCDs; “matched” vs
“mismatched” Tara MAGs of NCDs) with metagenomics and nifH
amplicon sequencing (Figs S2 and S3). We detected similar propor-
tions of cyanobacterial diazotrophs and NCDs in the Tara Oceans
metagenomic dataset (43%: 57%) and the nifH ASV database
(39%: 60%) (Fig. S2). For the NCD MAGs (including the contig of
Gamma A) reconstructed from the Tara Oceans datasets, we also
detected comparable proportions of the nifH genes that match and
mismatch with the nifH primers in the Tara Oceans metagenomic
dataset (12%: 88%) and the nifH ASV database (1%: 99%) (Fig. S3).
The amplification efficiency of different categories of nifH genes

should be further verified by analyzing the same environmental
DNA samples with both nifH amplicon sequencing and metage-
nomics.

When considering the merits of PCR-based vs. PCR-primer-
free approaches for studying diazotroph diversity, it is important
to consider that marine diazotrophs are usually rare species
compared to other dominant non-diazotrophic microbes in
the ocean [9], and the contribution of their genomic DNA to
the total DNA pool is minor compared to non-diazotrophic
microbes. Thus, deep sequencing is needed to recover their
genomes using metagenomic-based approaches. This problem
may also be exacerbated for particle-attached NCDs whose
reads can be masked by that of eukaryotic cells (with more
genomic DNA) during metagenomic sequencing. For example, the
nifH reads from Gamma A (mostly detected in large planktonic
size-fraction DNA samples >5 um, recently found to be the
symbionts of diatoms [17]) were less abundant than that of
Gamma 4 in the Tara Oceans datasets [19, 24], while their absolute
abundances may often be similar based on gPCR analysis [33].
Moreover, in the Tara Oceans datasets, an almost complete
MAG of Gamma 4 (5532770 bases) was obtained, but only a
short contig of Gamma A (4737 bases) was obtained. Marine
particles have been proposed to be important hotspots for
some NCDs [40], while the diversity and genomes of particle-
attached diazotrophs are difficult to access using metagenomic
sequencing, as mentioned above. In contrast, our results indicate
that nifH amplicon sequencing is a sensitive approach for
assessing the diversity of diazotrophs in environmental samples
(Fig. 3B). Moreover, high throughput amplicon (primer-based)
sequencing is also cost-effective relative to metagenomic/meta-
transcriptomic sequencing, and a user-friendly pipeline exists for
the bioinformatic processing of nifH amplicon sequencing [22].
On the other hand, the metagenome/metatranscriptome-sourced
nifH affiliated ASVs mostly showed high relative abundance
(Fig. 3C and D) that collectively contributed 47% of the reads in
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Figure 3. The metagenome/metatranscriptome-derived nifH affiliated ASVs in the global ocean nifH ASV database (sampling depth <150 m). The ASVs
in the nifH amplicon database were grouped into four categories based on DNA similarity (>95%) to the metagenome/metatranscriptome-derived
sequences: the ASVs affiliated to the MAGs (Tara MAGs [19]) and a metatranscriptome-derived contig of Gamma A from the Tara oceans dataset (Tara
Gamma A [24]); the ASVs affiliated to the MAGs from the Arctic Ocean (Arctic MAGs [18]) and the rest ASVs (rest). (A) Percentages of ASVs contributed
by different ASV groups in the nifH ASV database. (B) Proportion of all reads of different ASV groups in nifH ASV database. (C) Proportion of all reads of
different ASV groups among top 20%, top 20-40%, top 40-60%, top 60-80%, and last 20% ASVs in the nifH ASV database. (D) Percentages of the
metagenome/metatranscriptome-derived nifH affiliated ASVs that belong to the top 20%, top 20-40%, top 40-60%, top 60-80%, and last 20% ASVs.

the global ocean nifH ASV database (Fig. 3B, Table S4), suggests
that metagenomic sequencing can generally capture the genetic
diversity of abundant diazotrophs.

Metagenomics and metatranscriptomics are among the many
approaches for studying marine diazotrophs. In addition to
providing critical information of the metabolic potentials of
diazotrophs, these MAGs also provide taxonomic information for
the unidentified nifH genes discovered with amplicon sequencing,
especially the cluster III nifH phylotypes that branch deeply
(e.g. nifH genes of Planctomycetes and Verrucomicrobiota) [15]. In
conclusion, our analysis indicates that nifH amplicon sequencing
using the nifH1-nifH4 primer set remains an important approach
for studying the diversity of marine diazotrophs in terms
of coverage and sensitivity, while metagenomic sequencing
provides metabolic and taxonomic information on the abundant
diazotrophs.
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Supplementary material is available at ISME Communications
online.
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