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Abstract 29 

Nearly all plants are colonized by fungal endophytes, and a growing body of work shows that 30 

both environment and host species shape plant-associated fungal communities. However, few 31 

studies place their work in a phylogenetic context to understand endophyte community assembly 32 

through an evolutionary lens. Here we investigated environmental and host effects on root 33 

endophyte assemblages in coastal Louisiana marshes. We isolated and sequenced culturable 34 

fungal endophytes from roots of three-four dominant plant species from each of three sites of 35 

varying salinity. We assessed taxonomic diversity and composition as well as phylogenetic 36 

diversity (mean phylogenetic distance, MPD) and phylogenetic composition (based on MPD). 37 

When we analyzed plant hosts present across the entire gradient, we found that the effect of 38 

environment on phylogenetic diversity (as measured by MPD) was host dependent and suggested 39 

phylogenetic clustering in some circumstances. We found that both environment and host plant 40 

affected taxonomic composition of fungal endophytes, but only host plant affected phylogenetic 41 

composition; suggesting different host plants selected for fungal taxa drawn from distinct 42 
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phylogenetic clades whereas environmental assemblages were drawn from similar clades. Our 43 

study demonstrates that including phylogenetic, as well as taxonomic, community metrics can 44 

provide a deeper understanding of community assembly in endophytes. 45 
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 49 

Introduction 50 

Plants are colonized by microbial communities that serve as key determinants of plant 51 

growth and health (Porras-Alfaro and Bayman 2011, Morelli et al. 2020). Residing in the root 52 

tissues, fungal endophytes can function as mutualists promoting nutrient uptake (Vergara et al. 53 

2018, Yakti et al. 2018), disease prevention (Dini-Andreote 2020), and tolerance to abiotic 54 

stressors (Jogawat et al. 2016, Yamaji et al. 2016, Gonzalez Mateu et al. 2020). There is 55 

increasing interest in restoration and agriculture to use fungal endophytes to enhance plant 56 

resilience and crop production, especially in this era of rapid environmental change (Chitnis et al. 57 

2020, Farrer et al. 2022). To better leverage microbial assemblages and their effects on plant 58 

health in applied contexts, it is important to understand what drives plant endophyte 59 

composition. 60 

One major determinant of endophyte diversity and composition is site-level 61 

environmental characteristics. Numerous studies have found that soil fungal communities are 62 

affected by abiotic site factors, such as salinity (Mohamed and Martiny 2011, Farrer et al. 2021), 63 

soil moisture (Zhang et al. 2013), soil nutrient levels (Zhou et al. 2016), and successional stage 64 
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(Farrer et al. 2019). Because root endophyte communities are primarily recruited from the 65 

surrounding soil (Lundberg et al. 2012, Frank et al. 2017), they should be strongly influenced by 66 

the composition of the soil microbial species pool. Indeed, studies of root fungal communities 67 

show that root endophyte composition is affected by factors such as soil salinity (Maciá-Vicente 68 

et al. 2012, Hammami et al. 2016, Gonzalez Mateu et al. 2020), site (geographic location) 69 

(Glynou et al. 2018), nitrogen (Dean et al. 2014), elevation (Wei et al. 2021), and latitudinal 70 

gradients in temperature and precipitation (Glynou et al. 2016). 71 

Host plant identity is another important driver of fungal endophyte communities since 72 

host plant traits – root metabolites, exudate chemistry, immune response, productivity, 73 

physiology, root morphology – determine whether endophytes can successfully colonize the 74 

plant tissue (Leach et al. 2017, Fitzpatrick et al. 2018, Bergelson et al. 2019, Galindo-Castañeda 75 

et al. 2019, Lu et al. 2021). Host species is very important in structuring root fungal endophyte 76 

communities within alpine (Dean et al. 2014, Wei et al. 2021, Brigham et al. 2023) and boreal 77 

(Kernaghan and Patriquin 2011) ecosystems. Other studies show that the effect of abiotic 78 

environment depends on host, with some host species exhibiting variable endophyte assemblages 79 

across environments and other host species retaining more consistent assemblages across 80 

environments (Maciá-Vicente et al. 2012, Dean et al. 2014). Different host plant genotypes (i.e., 81 

native vs. invasive genotypes of Phragmites) can also harbor distinct root fungal endophyte 82 

communities (Gonzalez Mateu et al. 2020). Consistent with this, in bacterial communities, 83 

endosphere community similarity is correlated to the phylogenetic relatedness of the host plants 84 

(Fitzpatrick et al. 2018). 85 

Despite these advances towards understanding the structure of root microbial 86 

communities, few studies have been placed in a phylogenetic context to understand endophyte 87 
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community assembly through an evolutionary lens. Understanding phylogenetic diversity, i.e., if 88 

a community is composed of highly related or unrelated taxa, is important for both our 89 

understanding of biodiversity and for ecosystem management. Recent studies have found that the 90 

phylogenetic diversity of root arbuscular mycorrhizal fungi (AMF) increases with plantation age 91 

of coffee farms (Aguila et al. 2022), and phylogenetic diversity of leaf-associated fungi increases 92 

with successional age in glacial forelands (Matsuoka et al. 2019). If fungal traits are 93 

phylogenetically conserved (which may or may not be the case, Kia et al. 2017), phylogenetic 94 

diversity can inform mechanisms of community assembly. For example, if communities are more 95 

closely related than expected by chance (phylogenetically clustered), habitat filtering may be 96 

important in structuring community assembly; whereas if communities are more distantly related 97 

than expected by chance (phylogenetically overdispersed), niche partitioning may be important 98 

(Webb et al. 2002, Cavender-Bares et al. 2009). Strong phylogenetic clustering has been found in 99 

root AMF communities, suggesting the importance of abiotic habitat filtering and host selectivity 100 

in these communities (Davison et al. 2016). Another study found that elevated phosphorus 101 

increased phylogenetic clustering of root AMF communities, suggesting an increase in host 102 

selectivity under these high resource conditions (Frew et al. 2023). Phylogenetic patterns in 103 

microbial communities also extend to community composition; for example one study showed 104 

that precipitation affected the taxonomic composition of soil AMF communities but not 105 

phylogenetic composition (Chen et al. 2017), suggesting that the differences in composition due 106 

to precipitation occurred at the tips of the phylogenetic trees.         107 

Here we tested how environment and host plant shape fungal root endophyte 108 

communities in wetlands. Fungal endophytes in wetland systems are understudied (Lumibao et 109 

al. 2024), however work that has been done suggests both salinity and host species can affect 110 
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wetland plant endophyte communities (Maciá-Vicente et al. 2012, Gonzalez Mateu et al. 2020). 111 

We studied fungal endophytes isolated from roots of 3-4 dominant plants from three coastal 112 

marshes in Louisiana ranging from fresh to saline habitats. We hypothesize that both 113 

environment and host plant will affect the structure of fungal endophyte communities and that 114 

patterns based on phylogenetic relationships (i.e., phylogenetic diversity, phylogenetic 115 

composition) will differ from patterns based on taxonomy (i.e., richness, taxonomic 116 

composition). 117 

 118 

Materials and Methods 119 

Study sites 120 

Samples were collected in July and August of 2017 and 2018 from three coastal marshes 121 

arranged along a salinity gradient in southeastern Louisiana (Turtle Cove Environmental 122 

Research Station, Coastal Education Research Facility, Louisiana Universities Marine 123 

Consortium) (Fig. 1). Marshes were classified as fresh, brackish, or saline based on vegetation 124 

and mean annual soil salinities from the three nearest Coastwide Reference Monitoring System 125 

(CRMS) and Coastal Wetlands Planning, Protect and Restoration Act (CWPPRA) sites to each 126 

study location (10 cm depth, 2010-2018).  127 

The freshwater marsh site was located at the Turtle Cove Environmental Research Station 128 

(Turtle Cove) in the wetlands of Pass Manchac, Louisiana, a natural pass which connects Lake 129 

Pontchartrain to the east with Lake Maurepas to the west (30.293105°N, 90.3353649°W). This 130 

site was dominated by Sagittaria lancifolia and had a mean annual soil salinity of 1.29 ppt ± 0.47 131 

ppt std. dev. based on CRMS stations 0002-H01, 3650-H01, and 4107-H01 (Coastal Protection 132 
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and Restoration Authority (CPRA) of Louisiana 2020). The intermediate/brackish marsh 133 

(hereafter “brackish”) was located at the Coastal Education Research Facility (CERF) on the 134 

Chef Menteur Pass in East New Orleans, Louisiana, connecting Lake Borgne and the Mississippi 135 

Sound to the east with Lake Pontchartrain to the west (30.070006°N, 89.801687°W). This site 136 

was dominated by Spartina alterniflora and Spartina patens  with a mean annual salinity of 3.81 137 

ppt ± 1.59 ppt std. dev. based on CRMS stations 0030-H01, 0033-H01, and 0034-H01 (Coastal 138 

Protection and Restoration Authority (CPRA) of Louisiana 2020). The saline marsh site was 139 

located at the Louisiana Universities Marine Consortium (LUMCON) in the estuarine wetlands 140 

of Cocodrie, Louisiana, adjacent to the Gulf of Mexico, between the Atchafalaya River and 141 

Mississippi River deltas (29.253158°N, 90.663280°W). This site was dominated by Spartina 142 

alterniflora with a mean annual salinity of 11.39 ppt ± 4.02 ppt std. dev. based on CRMS 143 

stations 0434-H01, TE45-H01, and TE45-H02 (Coastal Protection and Restoration Authority 144 

(CPRA) of Louisiana 2020). All sites had well-established monoculture stands of Phragmites 145 

australis (common reed), a common invader of marshes in coastal Louisiana and along the Gulf 146 

Coast. 147 

Field sampling 148 

Five replicates of 3-4 dominant plant species were collected at each site in June 2017 (n = 149 

50 plant individuals), and additional samples were collected in July 2018 (n = 35 plant 150 

individuals). Individual plants of each species were collected at least two meters apart across the 151 

site to avoid collecting clones. Whole plants were dug up, gently washed in water, and then roots 152 

were sampled to ensure they came from the correct host plant. Phragmites australis (Cav.) Trin. 153 

ex Steud. and Spartina patens (Aiton) Muhl. were collected from all sites. The Phragmites at the 154 

fresh and brackish sites were haplotype I (specifically varient I2, Farrer et al. 2021 and Farrer 155 
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unpublished data) and at the saline site was haplotype M1 (Farrer et al. 2021). The other species 156 

that were collected do not have as wide of a salinity tolerance so were not present at all sites. 157 

Sagittaria lancifolia L. was collected from the freshwater site, Spartina alterniflora Loisel. was 158 

collected from the brackish and saline site, and Juncus roemerianus Scheele was collected from 159 

the saline site. Roots were washed in the field to remove excess soil and placed on ice for 160 

transport to refrigeration at Tulane University.  161 

Root endophyte culturing 162 

Root processing and plating were completed within five days of collection. Samples were 163 

washed under tap water for five minutes at high pressure to remove detritus and soil. Ten 1-cm 164 

root samples were selected at random from each plant to maximize culturable endophyte 165 

diversity (total N plated = 850 root samples). In a sterile laminar flow hood, samples were 166 

surface sterilized using 95% ethanol (1 min), 4% bleach (3 min), 95% ethanol (1 min), and 167 

sterile water (2 min) (Schulz et al. 1993). Root samples were cut vertically to expose endophytes 168 

and plated on 2% malt extract agar (MEA; 20g of Malt Extract and 20g of Agar per 1 liter of 169 

deionized water) to select for fungi (Kandalepas et al. 2015). To verify the effectiveness of the 170 

sterilization method, four uncut samples from each species per site were selected at random and 171 

placed on 2% MEA plates for 1 minute; nothing grew on these plates. Plated samples and 172 

controls were sealed, and fungal endophytes were allowed to grow for 30 days at room 173 

temperature, receiving ~12 hours on/off natural light (Clay et al. 2016). To obtain pure fungal 174 

cultures, we isolated endophytes by transferring mycelium to fresh MEA plates, allowing them 175 

to grow for 14 days, and repeating the process until only a single morphotype was present on 176 

each plate. Morphotypes were distinguished by color, shape, margin, surface, opacity, and 177 

elevation. To preserve the isolates for reference and potential future use, we photographed each 178 
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isolate and created two MEA/mycelium vouchers submerged in sterile distilled water in 2.0mL 179 

microcentrifuge vials, and two MEA/mycelium slants in 1.5mL microcentrifuge tubes. These 180 

vouchers are stored in the Farrer laboratory at Tulane University. 181 

Sanger sequencing, taxonomic classification, and phylogenetic methods 182 

We extracted fungal DNA from all isolates using the DNeasyⓇ PowerPlantⓇ Pro Kit 183 

(QIAGEN, Germantown, MD, USA) following the manufacturer’s protocols. The ITS-LSU 184 

region of the nuclear ribosomal DNA was amplified using TopTaq DNA Polymerase (QIAGEN, 185 

USA) in a 20 µL reaction with 2 µL template and primers ITS1F (5’ - 186 

CTTGGTCATTTAGAGGAAGTAA) and LR3 (5’ - GGTCCGTGTTTCAAGAC) (Vilgalys and 187 

Hester 1990, Gardes and Bruns 1993). See Supplementary Information for PCR conditions. PCR 188 

products were submitted to Genewiz for purification and Sanger sequencing. Forward and 189 

reverse sequences were aligned using Mesquite v3.6 (Maddison et al. 2016) and trimmed and 190 

edited using Sequencher v5.0 (Gene Codes Corporation, Ann Arbor, MI). These aligned and 191 

edited fungal sequences were deposited in NCBI Genbank, organized by host plant species, 192 

under accession numbers MN644512-MN644532 (Sagittaria lancifolia), MN644591-MN644619 193 

(Juncus roemarianus), MN644534-MN644589 (Spartina patens), MN644620-MN644684 194 

(Spartina alterniflora), and MN644685-MN644801 (Phragmites australis). 195 

We used the T-BAS: Tree-Based Alignment Selector toolkit v2.3 (Carbone et al. 2019) 196 

for phylogenetic-based placement to place sequence data for ITS-partial LSU (ITS1F and LR3 197 

primers) on a fungal reference tree created using six loci (Carbone et al. 2017). T-BAS leverages 198 

their reference tree and generates multiple sequence alignments (MSA) that contain the reference 199 

and unknown sequences. Their approach allows the reference MSA to include sequences that can 200 
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be correctly aligned over a portion of their lengths but not alignable in other regions (Carbone et 201 

al. 2017). It was developed to work with and has been successfully used with the region 202 

amplified by the ITS1F and LR3 primers (Carbone et al. 2017, DeMers and May 2021, Tellez et 203 

al. 2022). We used the program’s RAxML de novo multi locus analysis with 100 bootstrap 204 

replicates and GTRGAMMA as the rate heterogeneity model. Additionally, we used T-BAS to 205 

designate operational taxonomic units (OTUs) on the basis of 97% sequence similarity and we 206 

assigned taxonomy using the UNITE database (Abarenkov et al. 2024). We used FUNGuild 207 

(Nguyen et al. 2016) to classify fungal OTUs by putative ecological guild; because the majority 208 

of our taxa could not be assigned to a single guild, we could not do further statistical analysis on 209 

this data. 210 

Statistical analysis 211 

 Fungal root endophyte diversity was evaluated as OTU richness (number of unique OTUs 212 

per individual) and mean phylogenetic diversity (MPD). We used the R (R Core Team 2022) 213 

package picante to calculate MPD using the standardized effect size weighted by abundance with 214 

the function ses.mpd() (Kembel et al. 2010). This metric provides a measure of phylogenetic 215 

diversity by comparing the mean phylogenetic distance between all pairs of individuals in an 216 

observed community to that obtained for null communities generated by randomizing species 217 

across the tips of the phylogeny and normalizing by the standard deviation of phylogenetic 218 

distances in the null communities (Webb 2000, Kembel et al. 2010). MPD essentially gives a 219 

metric of phylogenetic diversity controlling for the number of individuals/species in a sample 220 

and tree topology by comparing it to null expectations. A mean MPD that does not differ from 221 

zero indicates no pattern of relatedness (i.e., randomness) among members within a community. 222 

A mean MPD that is greater than zero reflects phylogenetic overdispersion, i.e., co-occurring 223 
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taxa are more distantly related than expected by chance. A mean MPD that is significantly less 224 

than zero reflects phylogenetic clustering, where co-occurring taxa in a community are more 225 

closely related than expected at random.  226 

We used two different general linear models to test for effects of explanatory variables on 227 

richness and MPD. First, using the full data set, we tested for the effect of host plant and 228 

environment (as a factor/categorical variable) on richness and MPD (we could not test for the 229 

interaction because not all species were present at all sites). Second, using only the species that 230 

were present across the three sites (Phragmites australis and Spartina patens), we tested the 231 

effects of host plant, environment, and their interaction on richness and MPD. Models were fit 232 

using the function lme() in R package nlme (Pinheiro et al. 2023), and a type III ANOVA was 233 

used to test for significance of independent variables. Year was used as a random effect to 234 

account for any differences in the two collection years. 235 

We also tested whether mean MPDs for each species at each site were different from zero 236 

(indicating overdispersion or phylogenetic clustering) using t-tests within the package emmeans 237 

(Lenth 2023) and correcting for multiple comparisons using fdr. 238 

We tested the effect of host plant and environment on root endophyte community 239 

composition using a taxonomic metric (Bray-Curtis dissimilarity) and a phylogenetic metric 240 

(MPD) of composition. Again, we tested two models: 1) using the full data set, we tested the 241 

effect of host plant and environment on composition, and 2) using the reduced data set (P. 242 

australis and S. patens), we tested host plant, environment, and their interaction on composition. 243 

We used distance-based redundancy analysis (dbRDA) ordination in the R package vegan 244 

(Oksanen et al. 2022) and a PERMANOVA permutation test (999 permutations) to test 245 
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significance of the explanatory variables. Year was used as a conditioning variable in all 246 

analyses. 247 

All figures were created using ggplot2 (Wickham 2016).  248 

 249 

Results 250 

Community description 251 

We cultured a total of 329 fungal endophyte isolates, 151 in 2017 and 178 in 2018. Of 252 

these, we obtained 273 high quality sequences, 128 from 2017 and 145 from 2018. These 253 

sequences represent 56 OTUs to which we could putatively assign 4 phyla (majority 254 

Ascomycota), 18 orders, 33 genera, and 30 species (See Supplementary Table 1 for number of 255 

isolates and OTUs per plant species at each site). Classification of the sequence data reported a 256 

mix of putative pathogenic/parasitic (Curvularia, Exserohilum, Fusarium, Ilyonectria, 257 

Magnaporthaceae, Rhizopus) and putative commensal/mutualistic (Acephala, Mortierella, 258 

Xylaria, Buergenerula, Paraconiothyrium, Sarocladium) symbionts. 259 

Diversity 260 

 Neither host plant nor environment significantly affected the richness of root fungal 261 

communities (Fig. 2A-C). Similarly, when analysis was done on a reduced dataset including only 262 

those host plants that were present across all sites (P. australis, S. patens), there was no effect of 263 

host plant, environment, or their interaction. 264 

 Phylogenetic diversity (as measured by MPD) was likewise not affected by host plant or 265 

environment in the full dataset; however when only P. australis and S. patens were analyzed, we 266 
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found that the effect of environment on phylogenetic diversity depended on host (significant host 267 

× environment interaction, F2,22 = 5.16, P = 0.015). Specifically, for P. australis phylogenetic 268 

diversity was less than 0 only at the saline site, but for S. patens phylogenetic diversity was less 269 

than 0 at the brackish and saline sites (Fig. 2D-F). A mean phylogenetic distance (MPD) less 270 

than 0 is indicative of phylogenetic clustering. 271 

Composition  272 

 Both host plant and environment significantly affected the taxonomic composition (as 273 

measured by Bray-Curtis dissimilarity) of endophyte communities for the full dataset as well as 274 

for the reduced dataset including only P. australis and S. patens (Fig. 3A, Table 1). Interestingly, 275 

only host plant (not environment) affected phylogenetic composition (as measured by MPD) for 276 

both the full dataset and the reduced dataset, suggesting that different host plants selected for 277 

fungal taxa that were drawn from distinct phylogenetic clades (Fig. 3B, Table 1). 278 

 279 

Discussion 280 

Many different drivers can contribute to patterns of taxonomic and phylogenetic diversity 281 

of plant endophytes. Here we found no effect of environment or host on the taxonomic richness 282 

of root endophytes across a marsh salinity gradient. However, we found that the effect of 283 

environment on phylogenetic diversity depended on host plant, such that different host plants had 284 

different patterns of phylogenetic diversity at different sites. We also found evidence of 285 

phylogenetic clustering for some of the plant species across the gradient suggesting that habitat 286 

filtering may be structuring fungal endophyte communities. Both environment and host plant 287 

strongly affected taxonomic composition of the fungal communities, but only host plant affected 288 
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phylogenetic composition. Overall, this indicates that both environment and host plant structure 289 

fungal root endophyte communities, and some differences exist when assessing patterns with a 290 

taxonomic vs. phylogenetic metric which can give us insights into characteristics and processes 291 

occurring in these microbiomes. 292 

We found an average of 2-3 fungal taxa per individual plant sample in our study (8-30 293 

taxa per plant species), which is similar to what is found in other culture-based studies 294 

(Kernaghan and Patriquin 2011, Maciá-Vicente et al. 2012, Clay et al. 2016, Kimbrough et al. 295 

2019, Høyer and Hodkinson 2021). The taxa we recovered are common symbionts in wetland 296 

plant communities including the genera Sarcocladium, Fusarium, Septoriella, Aureobasidium, 297 

Mortierella, Sarocladium, Talaromyces, and Phaeosphaeria (Kandalepas et al. 2015, Clay et al. 298 

2016). The most common species were Trichoderma harzianum and Paraconiothyrium 299 

estuarinum. Trichoderma harzianum is widely distributed across many ecosystems including 300 

wetlands (Saravanakumar et al. 2016) and is commonly used in agriculture as a biocontrol agent 301 

against plant pathogens (Poveda et al. 2019). Paraconiothyrium estuarinum has been isolated 302 

from estuarine/wetland sediments (Verkley et al. 2004) and forage grasses (Martins Alves et al. 303 

2021) and have been found to be able to degrade polycyclic aromatic hydrocarbons (Verkley et 304 

al. 2004), inhibit pathogen growth, and promote plant growth (Martins Alves et al. 2021). 305 

Taxonomic diversity and composition 306 

We found no effect of host plant or environment on taxonomic richness, but we did find 307 

differences in taxonomic composition, a pattern also found in two other endophyte studies across 308 

a salinity gradient (Hammami et al. 2016, Gonzalez Mateu et al. 2020). This suggests that 309 

salinity, as a stress, does not necessarily limit the diversity of microbes in plant roots, but just 310 

changes their composition. Likewise, host plant species may not differ in fungal endophyte 311 
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diversity but they do differ in taxonomic composition, as has been found in boreal trees 312 

(Kernaghan and Patriquin 2011). The lack of effects on richness may not be surprising in a 313 

culture-dependent study since the richness of cultured endophytes is generally low. However, 314 

other studies (Dean et al. 2014, Wei et al. 2021), including a culture-dependent study (Lyons et 315 

al. 2021), have found that some environments and plant species can host a higher diversity of 316 

endophytes than others. The strong host and environment effects on endophyte taxonomic 317 

composition found here are consistent with many studies that find environment (Maciá-Vicente 318 

et al. 2012, Hammami et al. 2016, Gonzalez Mateu et al. 2020) and host plant species 319 

(Kernaghan and Patriquin 2011, Dean et al. 2014, Lyons et al. 2021, Wei et al. 2021) structure 320 

fungal endophyte composition. Environmental effects on endophyte composition are perhaps not 321 

surprising; even though living within the host plant may shield the endophyte from stressful 322 

abiotic conditions, most endophytes are horizontally transmitted and many have free-living 323 

lifestyles (Bard et al. 2024) that would require tolerance of the abiotic environmental conditions 324 

in the habitat. Host species effects on endophyte composition are also expected, especially as our 325 

host species are distantly related (in three different plant families) (Glynou et al. 2016), and thus 326 

likely differ in their chemistry, morphology, and immunity genes.  327 

Phylogenetic diversity and composition 328 

The phylogenetic perspective explored here brings a deeper understanding to fungal 329 

endophyte community structure and assembly. While other studies have shown that host species 330 

(Matsuoka et al. 2021) and environment (Matsuoka et al. 2019) can affect phylogenetic diversity 331 

of litter-associated fungal communities and host functional group (Davison et al. 2020) and 332 

environment (Aguila et al. 2022) can affect phylogenetic diversity of root AMF communities, 333 

few studies test multiple hosts across multiple environments. Our results showed that the effect 334 
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of environment on phylogenetic diversity depended on species, with Phragmites australis having 335 

the highest phylogenetic diversity in the brackish marsh and Spartina patens having the highest 336 

phylogenetic diversity in the fresh marsh. Because phylogenetic diversity can affect 337 

multifunctionality (Delgado-Baquerizo et al. 2016, Le Bagousse-Pinguet et al. 2019) and has 338 

been used as a proxy for functional diversity in microbes (Davison et al. 2016), this might 339 

suggest that different plants require or experience different levels of multifunctionality from their 340 

endophytes in different environments.  341 

The phylogenetic clustering (MPD < 0) observed in three instances (S. patens brackish, S. 342 

patens saline, P. australis saline) is consistent with other studies that generally find phylogenetic 343 

clustering (rather than overdispersion) of root endophytes (Maciá-Vicente and Popa 2022), AMF 344 

communities (Davison et al. 2016), root sebacinoid (Basidiomycota: Agaricomycetes) fungi 345 

(Garnica et al. 2013) and leaf endophytes (Del Olmo-Ruiz and Arnold 2017, Lumibao et al. 346 

2019). There is evidence that at least some traits may be phylogenetically conserved in fungal 347 

endophytes (Kia et al. 2017), AMF (Powell et al. 2009), and microbes in general (Martiny et al. 348 

2015). If we assume some phylogenetic conservatism of fungal traits, then phylogenetic 349 

clustering suggests that host and environmental filtering are structuring endophyte community 350 

assembly by selecting for taxa with similar, adaptive, traits. Our finding that phylogenetic 351 

clustering in root endophytes can change across salinity gradients for some species is consistent 352 

with Frew et al. (2023), who found that phylogenetic clustering in Sorghum AMF communities 353 

increases across a phosphorus gradient. Plant species may differ in selectivity (greater 354 

phylogenetic clustering) of endophytes depending on the stresses they experience across 355 

environmental gradients (Frew et al. 2023). Interestingly, we found more phylogenetic clustering 356 

at the saline end of the gradient, which might suggest that both Phragmites australis (which is 357 
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abundant across the gradient) and Spartina patens (which is rare at high and low salinity) may 358 

benefit from selectivity under stress. 359 

We found that host plant affected phylogenetic composition, but environment did not. 360 

This suggests that different host plants draw their communities from distinct phylogenetic clades, 361 

but that environmental assemblages (which are taxonomically different, see above) are drawn 362 

from similar clades. In other words, environmental assemblages differed only at the tips of the 363 

phylogenetic tree. This is consistent with another recent study that found host species affects 364 

phylogenetic composition of root fungal communities in bromeliads (Leroy et al. 2021). 365 

However, our results contrast with those from another study that found different tropical forest 366 

sites (which differed in precipitation, elevation, and fragmentation) differed in phylogenetic 367 

composition of leaf endophytes (Del Olmo-Ruiz and Arnold 2017). It might be that salinity is 368 

relatively easy for fungi to adapt to compared to other environmental stressors, and laboratory 369 

evolution studies have shown that some fungal taxa can adapt to tolerance of higher salinities 370 

over time (Jones et al. 2022). 371 

Limitations 372 

While this is an important first step in understanding root fungal assembly across 373 

different hosts and environments, there are some limitations to our study. First, this is a culture-374 

dependent study, and it is well known that only a small percentage (estimated at 10%) of fungal 375 

diversity is culturable (Wu et al. 2019). Furthermore, our sample sizes were rather small and we 376 

only sampled a subset of the root system, thus we likely did not capture the full biodiversity of 377 

fungi in our host plants (Supplementary Table 1). Future work utilizing culture-independent data 378 

and the ghost tree approach is a promising direction for studying phylogenetic patterns in fungi 379 

(Fouquier et al. 2016). Secondly, we only sampled one site per salinity regime, and as endophyte 380 
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biodiversity patterns and drivers can differ across sites (Alzarhani et al. 2019), future studies 381 

should aim to sample more, replicated locations. 382 

Implications and conclusions 383 

Elucidating the drivers of endophyte assembly is important for our understanding of the 384 

microbial biodiversity that impacts plant health, and a phylogenetic perspective can deepen our 385 

understanding of microbial systems. Here we show that both environmental characteristics and 386 

host plant identity affect composition of root fungal microbiomes, but that communities in 387 

different salinity environments only differed at tips of the phylogenetic tree while host 388 

microbiomes differed at a more basal level. Phylogenetic analysis also indicated phylogenetic 389 

clustering, which suggests that host and habitat filtering (rather than competition) are important 390 

in structuring root fungal communities. Understanding that environment and host species affect 391 

root microbiomes is important to applied work in restoration and agriculture that may seek to 392 

inoculate plants with novel endophytes to promote plant growth; our work suggests that sourcing 393 

endophytes from similar hosts and environments may yield the highest inoculation success. Our 394 

work also predicts that notable shifts in microbiomes will occur in the near future with increasing 395 

saltwater intrusion and salinization in coastal areas worldwide. Overall, more study of fungal 396 

microbiomes is critical to understand and ensure plant resilience, particularly in ecosystems such 397 

as coastal wetlands that are at the frontlines of global change impacts. 398 
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Table 1. Results from dbRDA permutation tests (PERMANOVA), testing the effect of host 675 

plant, environment, and (for the P. australis and S. patens models) their interaction on cultured 676 

root endophyte communities of marsh plants. Year was used as a conditioning variable in all 677 

ordinations. See Fig. 3 for ordination plots.  678 

 679 

Dependent 

variable 

Model Explanatory 

variable 

Variance 

explained 

Pseudo-F 

(df) 

P 

Taxonomic 

composition 

(Bray-

Curtis) 

Full model Host plant 7.1% 1.32 (4, 61) 0.018 * 

 Environment 4.6% 1.71 (2, 61) 0.003 ** 

P. australis 

and S. patens 

Host plant 6.6% 2.86 (1, 33) <0.001 *** 

Environment 9.8% 2.13 (2, 33) <0.001 *** 

Host plant × env 5.7% 1.26 (2, 31) 0.114 

Phylogenetic 

composition  

(MPD) 

Full model Host plant 8.3% 1.59 (4, 64) 0.045 * 

 Environment 2.2% 0.86 (2, 64) 0.566 

P. australis 

and S. patens 

Host plant 14.2% 6.51 (1, 33) <0.001 *** 

Environment 6.7% 1.52 (2, 33) 0.134 

Host plant × env 3.8% 0.85 (2, 31) 0.534 

 680 

 681 
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Fig. 1. Map of study sites in SE Louisiana, USA. “Turtle Cove” is the Turtle Cove 682 

Environmental Research Station, “CERF” is the Coastal Education Research Facility, and 683 

“LUMCON” is the Louisiana Universities Marine Consortium.684 
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Fig. 2. Endophyte richness (A-C) and phylogenetic diversity (MPD, D-F) in different host plants 687 

and environments. Error bars represent means ±1 SE. For phylogenetic diversity, negative MPD 688 

values indicate phylogenetic clustering and positive MPD values indicate overdispersion. 689 

Symbols denote mean MPD significantly different from zero (corrected for multiple 690 

comparisons): †P<0.1.691 
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Fig. 3. Distance-based RDAs showing the effect of environment (symbol) and host plant (color) 695 

on taxonomic composition (measured by Bray-Curtis dissimilarity) (A) and phylogenetic 696 

composition (measured by abundance-weighed mean phylogenetic distance) (B) of root 697 

endophyte communities. Symbols denote significance of permutation (PERMANOVA) tests: 698 

*P<0.05, **P<0.01, NS=not significant; see Table 1 for full permutation test results.699 
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