

1 **Environmental and host plant effects on taxonomic and phylogenetic diversity of root
2 fungal endophytes**

3 Emily C. Farrer^{1*}, Nelle K. Kulick^{1*}, Christina Birnbaum^{1,2,3,4}, Susannah Halbrook¹, Caitlin R.
4 Bumby¹, Claire Willis¹

5 *These two authors contributed equally to this work

6 ¹Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, LA. 70118,
7 USA

8 ²School of Agriculture and Environmental Science, The University of Southern Queensland,
9 Toowoomba, Australia

10 ³Centre for Crop Health, The University of Southern Queensland, Toowoomba, Australia

11 ⁴Centre for Sustainable Agricultural Systems, The University of Southern Queensland,
12 Toowoomba, Australia

13

14 Corresponding author: Emily C. Farrer, efarrer@tulane.edu

15

16 ORCIDs

17 Emily Farrer 0000-0001-8003-8831

18 Nelle Kulick 0000-0001-5660-7176

19 Christina Birnbaum 0000-0002-2511-1845

20 Susannah Halbrook 0009-0008-9109-5362

21 Caitlin Bumby 0000-0001-5136-3686

22

23 **Author Contributions**

24 EF, CB, and CW conceived the ideas and designed methodology; NK, CB, SH, and CW
25 collected the data; NK, EF, and CRB analyzed the data; EF and NK led the writing of the
26 manuscript. All authors contributed critically to the drafts and gave final approval for
27 publication.

28

29 **Abstract**

30 Nearly all plants are colonized by fungal endophytes, and a growing body of work shows that
31 both environment and host species shape plant-associated fungal communities. However, few
32 studies place their work in a phylogenetic context to understand endophyte community assembly
33 through an evolutionary lens. Here we investigated environmental and host effects on root
34 endophyte assemblages in coastal Louisiana marshes. We isolated and sequenced culturable
35 fungal endophytes from roots of three-four dominant plant species from each of three sites of
36 varying salinity. We assessed taxonomic diversity and composition as well as phylogenetic
37 diversity (mean phylogenetic distance, MPD) and phylogenetic composition (based on MPD).
38 When we analyzed plant hosts present across the entire gradient, we found that the effect of
39 environment on phylogenetic diversity (as measured by MPD) was host dependent and suggested
40 phylogenetic clustering in some circumstances. We found that both environment and host plant
41 affected taxonomic composition of fungal endophytes, but only host plant affected phylogenetic
42 composition; suggesting different host plants selected for fungal taxa drawn from distinct

43 phylogenetic clades whereas environmental assemblages were drawn from similar clades. Our
44 study demonstrates that including phylogenetic, as well as taxonomic, community metrics can
45 provide a deeper understanding of community assembly in endophytes.

46

47 **Keywords:** coastal marsh, microbiome, *Phragmites australis*, plant-microbe interactions,
48 salinity gradient, *Spartina*

49

50 **Introduction**

51 Plants are colonized by microbial communities that serve as key determinants of plant
52 growth and health (Porras-Alfaro and Bayman 2011, Morelli et al. 2020). Residing in the root
53 tissues, fungal endophytes can function as mutualists promoting nutrient uptake (Vergara et al.
54 2018, Yakti et al. 2018), disease prevention (Dini-Andreatte 2020), and tolerance to abiotic
55 stressors (Jogawat et al. 2016, Yamaji et al. 2016, Gonzalez Mateu et al. 2020). There is
56 increasing interest in restoration and agriculture to use fungal endophytes to enhance plant
57 resilience and crop production, especially in this era of rapid environmental change (Chitnis et al.
58 2020, Farrer et al. 2022). To better leverage microbial assemblages and their effects on plant
59 health in applied contexts, it is important to understand what drives plant endophyte
60 composition.

61 One major determinant of endophyte diversity and composition is site-level
62 environmental characteristics. Numerous studies have found that *soil* fungal communities are
63 affected by abiotic site factors, such as salinity (Mohamed and Martiny 2011, Farrer et al. 2021),
64 soil moisture (Zhang et al. 2013), soil nutrient levels (Zhou et al. 2016), and successional stage

65 (Farrer et al. 2019). Because root endophyte communities are primarily recruited from the
66 surrounding soil (Lundberg et al. 2012, Frank et al. 2017), they should be strongly influenced by
67 the composition of the soil microbial species pool. Indeed, studies of *root* fungal communities
68 show that root endophyte composition is affected by factors such as soil salinity (Maciá-Vicente
69 et al. 2012, Hammami et al. 2016, Gonzalez Mateu et al. 2020), site (geographic location)
70 (Glynou et al. 2018), nitrogen (Dean et al. 2014), elevation (Wei et al. 2021), and latitudinal
71 gradients in temperature and precipitation (Glynou et al. 2016).

72 Host plant identity is another important driver of fungal endophyte communities since
73 host plant traits – root metabolites, exudate chemistry, immune response, productivity,
74 physiology, root morphology – determine whether endophytes can successfully colonize the
75 plant tissue (Leach et al. 2017, Fitzpatrick et al. 2018, Bergelson et al. 2019, Galindo-Castañeda
76 et al. 2019, Lu et al. 2021). Host species is very important in structuring root fungal endophyte
77 communities within alpine (Dean et al. 2014, Wei et al. 2021, Brigham et al. 2023) and boreal
78 (Kernaghan and Patriquin 2011) ecosystems. Other studies show that the effect of abiotic
79 environment depends on host, with some host species exhibiting variable endophyte assemblages
80 across environments and other host species retaining more consistent assemblages across
81 environments (Maciá-Vicente et al. 2012, Dean et al. 2014). Different host plant genotypes (i.e.,
82 native vs. invasive genotypes of *Phragmites*) can also harbor distinct root fungal endophyte
83 communities (Gonzalez Mateu et al. 2020). Consistent with this, in bacterial communities,
84 endosphere community similarity is correlated to the phylogenetic relatedness of the host plants
85 (Fitzpatrick et al. 2018).

86 Despite these advances towards understanding the structure of root microbial
87 communities, few studies have been placed in a phylogenetic context to understand endophyte

88 community assembly through an evolutionary lens. Understanding phylogenetic diversity, i.e., if
89 a community is composed of highly related or unrelated taxa, is important for both our
90 understanding of biodiversity and for ecosystem management. Recent studies have found that the
91 phylogenetic diversity of root arbuscular mycorrhizal fungi (AMF) increases with plantation age
92 of coffee farms (Aguila et al. 2022), and phylogenetic diversity of leaf-associated fungi increases
93 with successional age in glacial forelands (Matsuoka et al. 2019). If fungal traits are
94 phylogenetically conserved (which may or may not be the case, Kia et al. 2017), phylogenetic
95 diversity can inform mechanisms of community assembly. For example, if communities are more
96 closely related than expected by chance (phylogenetically clustered), habitat filtering may be
97 important in structuring community assembly; whereas if communities are more distantly related
98 than expected by chance (phylogenetically overdispersed), niche partitioning may be important
99 (Webb et al. 2002, Cavender-Bares et al. 2009). Strong phylogenetic clustering has been found in
100 root AMF communities, suggesting the importance of abiotic habitat filtering and host selectivity
101 in these communities (Davison et al. 2016). Another study found that elevated phosphorus
102 increased phylogenetic clustering of root AMF communities, suggesting an increase in host
103 selectivity under these high resource conditions (Frew et al. 2023). Phylogenetic patterns in
104 microbial communities also extend to community composition; for example one study showed
105 that precipitation affected the taxonomic composition of soil AMF communities but not
106 phylogenetic composition (Chen et al. 2017), suggesting that the differences in composition due
107 to precipitation occurred at the tips of the phylogenetic trees.

108 Here we tested how environment and host plant shape fungal root endophyte
109 communities in wetlands. Fungal endophytes in wetland systems are understudied (Lumibao et
110 al. 2024), however work that has been done suggests both salinity and host species can affect

111 wetland plant endophyte communities (Maciá-Vicente et al. 2012, Gonzalez Mateu et al. 2020).
112 We studied fungal endophytes isolated from roots of 3-4 dominant plants from three coastal
113 marshes in Louisiana ranging from fresh to saline habitats. We hypothesize that both
114 environment and host plant will affect the structure of fungal endophyte communities and that
115 patterns based on phylogenetic relationships (i.e., phylogenetic diversity, phylogenetic
116 composition) will differ from patterns based on taxonomy (i.e., richness, taxonomic
117 composition).

118

119 **Materials and Methods**

120 *Study sites*

121 Samples were collected in July and August of 2017 and 2018 from three coastal marshes
122 arranged along a salinity gradient in southeastern Louisiana (Turtle Cove Environmental
123 Research Station, Coastal Education Research Facility, Louisiana Universities Marine
124 Consortium) (Fig. 1). Marshes were classified as fresh, brackish, or saline based on vegetation
125 and mean annual soil salinities from the three nearest Coastwide Reference Monitoring System
126 (CRMS) and Coastal Wetlands Planning, Protect and Restoration Act (CWPPRA) sites to each
127 study location (10 cm depth, 2010-2018).

128 The freshwater marsh site was located at the Turtle Cove Environmental Research Station
129 (Turtle Cove) in the wetlands of Pass Manchac, Louisiana, a natural pass which connects Lake
130 Pontchartrain to the east with Lake Maurepas to the west (30.293105°N, 90.3353649°W). This
131 site was dominated by *Sagittaria lancifolia* and had a mean annual soil salinity of $1.29 \text{ ppt} \pm 0.47$
132 ppt std. dev. based on CRMS stations 0002-H01, 3650-H01, and 4107-H01 (Coastal Protection

133 and Restoration Authority (CPRA) of Louisiana 2020). The intermediate/brackish marsh
134 (hereafter “brackish”) was located at the Coastal Education Research Facility (CERF) on the
135 Chef Menteur Pass in East New Orleans, Louisiana, connecting Lake Borgne and the Mississippi
136 Sound to the east with Lake Pontchartrain to the west (30.070006°N, 89.801687°W). This site
137 was dominated by *Spartina alterniflora* and *Spartina patens* with a mean annual salinity of 3.81
138 ppt \pm 1.59 ppt std. dev. based on CRMS stations 0030-H01, 0033-H01, and 0034-H01 (Coastal
139 Protection and Restoration Authority (CPRA) of Louisiana 2020). The saline marsh site was
140 located at the Louisiana Universities Marine Consortium (LUMCON) in the estuarine wetlands
141 of Cocodrie, Louisiana, adjacent to the Gulf of Mexico, between the Atchafalaya River and
142 Mississippi River deltas (29.253158°N, 90.663280°W). This site was dominated by *Spartina*
143 *alterniflora* with a mean annual salinity of 11.39 ppt \pm 4.02 ppt std. dev. based on CRMS
144 stations 0434-H01, TE45-H01, and TE45-H02 (Coastal Protection and Restoration Authority
145 (CPRA) of Louisiana 2020). All sites had well-established monoculture stands of *Phragmites*
146 *australis* (common reed), a common invader of marshes in coastal Louisiana and along the Gulf
147 Coast.

148 *Field sampling*

149 Five replicates of 3-4 dominant plant species were collected at each site in June 2017 (n =
150 50 plant individuals), and additional samples were collected in July 2018 (n = 35 plant
151 individuals). Individual plants of each species were collected at least two meters apart across the
152 site to avoid collecting clones. Whole plants were dug up, gently washed in water, and then roots
153 were sampled to ensure they came from the correct host plant. *Phragmites australis* (Cav.) Trin.
154 ex Steud. and *Spartina patens* (Aiton) Muhl. were collected from all sites. The *Phragmites* at the
155 fresh and brackish sites were haplotype I (specifically varient I2, Farrer et al. 2021 and Farrer

156 unpublished data) and at the saline site was haplotype M1 (Farrer et al. 2021). The other species
157 that were collected do not have as wide of a salinity tolerance so were not present at all sites.
158 *Sagittaria lancifolia* L. was collected from the freshwater site, *Spartina alterniflora* Loisel. was
159 collected from the brackish and saline site, and *Juncus roemerianus* Scheele was collected from
160 the saline site. Roots were washed in the field to remove excess soil and placed on ice for
161 transport to refrigeration at Tulane University.

162 *Root endophyte culturing*

163 Root processing and plating were completed within five days of collection. Samples were
164 washed under tap water for five minutes at high pressure to remove detritus and soil. Ten 1-cm
165 root samples were selected at random from each plant to maximize culturable endophyte
166 diversity (total N plated = 850 root samples). In a sterile laminar flow hood, samples were
167 surface sterilized using 95% ethanol (1 min), 4% bleach (3 min), 95% ethanol (1 min), and
168 sterile water (2 min) (Schulz et al. 1993). Root samples were cut vertically to expose endophytes
169 and plated on 2% malt extract agar (MEA; 20g of Malt Extract and 20g of Agar per 1 liter of
170 deionized water) to select for fungi (Kandalepas et al. 2015). To verify the effectiveness of the
171 sterilization method, four uncut samples from each species per site were selected at random and
172 placed on 2% MEA plates for 1 minute; nothing grew on these plates. Plated samples and
173 controls were sealed, and fungal endophytes were allowed to grow for 30 days at room
174 temperature, receiving ~12 hours on/off natural light (Clay et al. 2016). To obtain pure fungal
175 cultures, we isolated endophytes by transferring mycelium to fresh MEA plates, allowing them
176 to grow for 14 days, and repeating the process until only a single morphotype was present on
177 each plate. Morphotypes were distinguished by color, shape, margin, surface, opacity, and
178 elevation. To preserve the isolates for reference and potential future use, we photographed each

179 isolate and created two MEA/mycelium vouchers submerged in sterile distilled water in 2.0mL
180 microcentrifuge vials, and two MEA/mycelium slants in 1.5mL microcentrifuge tubes. These
181 vouchers are stored in the Farrer laboratory at Tulane University.

182 *Sanger sequencing, taxonomic classification, and phylogenetic methods*

183 We extracted fungal DNA from all isolates using the DNeasy® PowerPlant® Pro Kit
184 (QIAGEN, Germantown, MD, USA) following the manufacturer's protocols. The ITS-LSU
185 region of the nuclear ribosomal DNA was amplified using TopTaq DNA Polymerase (QIAGEN,
186 USA) in a 20 µL reaction with 2 µL template and primers ITS1F (5' -
187 CTTGGTCATTAGAGGAAGTAA) and LR3 (5' - GGTCCGTGTTCAAGAC) (Vilgalys and
188 Hester 1990, Gardes and Bruns 1993). See Supplementary Information for PCR conditions. PCR
189 products were submitted to Genewiz for purification and Sanger sequencing. Forward and
190 reverse sequences were aligned using Mesquite v3.6 (Maddison et al. 2016) and trimmed and
191 edited using Sequencher v5.0 (Gene Codes Corporation, Ann Arbor, MI). These aligned and
192 edited fungal sequences were deposited in NCBI Genbank, organized by host plant species,
193 under accession numbers MN644512-MN644532 (*Sagittaria lancifolia*), MN644591-MN644619
194 (*Juncus roemarianus*), MN644534-MN644589 (*Spartina patens*), MN644620-MN644684
195 (*Spartina alterniflora*), and MN644685-MN644801 (*Phragmites australis*).

196 We used the T-BAS: Tree-Based Alignment Selector toolkit v2.3 (Carbone et al. 2019)
197 for phylogenetic-based placement to place sequence data for ITS-partial LSU (ITS1F and LR3
198 primers) on a fungal reference tree created using six loci (Carbone et al. 2017). T-BAS leverages
199 their reference tree and generates multiple sequence alignments (MSA) that contain the reference
200 and unknown sequences. Their approach allows the reference MSA to include sequences that can

201 be correctly aligned over a portion of their lengths but not alignable in other regions (Carbone et
202 al. 2017). It was developed to work with and has been successfully used with the region
203 amplified by the ITS1F and LR3 primers (Carbone et al. 2017, DeMers and May 2021, Tellez et
204 al. 2022). We used the program's RAxML de novo multi locus analysis with 100 bootstrap
205 replicates and GTRGAMMA as the rate heterogeneity model. Additionally, we used T-BAS to
206 designate operational taxonomic units (OTUs) on the basis of 97% sequence similarity and we
207 assigned taxonomy using the UNITE database (Abarenkov et al. 2024). We used FUNGuild
208 (Nguyen et al. 2016) to classify fungal OTUs by putative ecological guild; because the majority
209 of our taxa could not be assigned to a single guild, we could not do further statistical analysis on
210 this data.

211 *Statistical analysis*

212 Fungal root endophyte diversity was evaluated as OTU richness (number of unique OTUs
213 per individual) and mean phylogenetic diversity (MPD). We used the R (R Core Team 2022)
214 package picante to calculate MPD using the standardized effect size weighted by abundance with
215 the function ses.mpd() (Kembel et al. 2010). This metric provides a measure of phylogenetic
216 diversity by comparing the mean phylogenetic distance between all pairs of individuals in an
217 observed community to that obtained for null communities generated by randomizing species
218 across the tips of the phylogeny and normalizing by the standard deviation of phylogenetic
219 distances in the null communities (Webb 2000, Kembel et al. 2010). MPD essentially gives a
220 metric of phylogenetic diversity controlling for the number of individuals/species in a sample
221 and tree topology by comparing it to null expectations. A mean MPD that does not differ from
222 zero indicates no pattern of relatedness (i.e., randomness) among members within a community.
223 A mean MPD that is greater than zero reflects phylogenetic overdispersion, i.e., co-occurring

224 taxa are more distantly related than expected by chance. A mean MPD that is significantly less
225 than zero reflects phylogenetic clustering, where co-occurring taxa in a community are more
226 closely related than expected at random.

227 We used two different general linear models to test for effects of explanatory variables on
228 richness and MPD. First, using the full data set, we tested for the effect of host plant and
229 environment (as a factor/categorical variable) on richness and MPD (we could not test for the
230 interaction because not all species were present at all sites). Second, using only the species that
231 were present across the three sites (*Phragmites australis* and *Spartina patens*), we tested the
232 effects of host plant, environment, and their interaction on richness and MPD. Models were fit
233 using the function lme() in R package nlme (Pinheiro et al. 2023), and a type III ANOVA was
234 used to test for significance of independent variables. Year was used as a random effect to
235 account for any differences in the two collection years.

236 We also tested whether mean MPDs for each species at each site were different from zero
237 (indicating overdispersion or phylogenetic clustering) using t-tests within the package emmeans
238 (Lenth 2023) and correcting for multiple comparisons using fdr.

239 We tested the effect of host plant and environment on root endophyte community
240 composition using a taxonomic metric (Bray-Curtis dissimilarity) and a phylogenetic metric
241 (MPD) of composition. Again, we tested two models: 1) using the full data set, we tested the
242 effect of host plant and environment on composition, and 2) using the reduced data set (*P.*
243 *australis* and *S. patens*), we tested host plant, environment, and their interaction on composition.
244 We used distance-based redundancy analysis (dbRDA) ordination in the R package vegan
245 (Oksanen et al. 2022) and a PERMANOVA permutation test (999 permutations) to test

246 significance of the explanatory variables. Year was used as a conditioning variable in all
247 analyses.

248 All figures were created using ggplot2 (Wickham 2016).

249

250 **Results**

251 *Community description*

252 We cultured a total of 329 fungal endophyte isolates, 151 in 2017 and 178 in 2018. Of
253 these, we obtained 273 high quality sequences, 128 from 2017 and 145 from 2018. These
254 sequences represent 56 OTUs to which we could putatively assign 4 phyla (majority
255 Ascomycota), 18 orders, 33 genera, and 30 species (See Supplementary Table 1 for number of
256 isolates and OTUs per plant species at each site). Classification of the sequence data reported a
257 mix of putative pathogenic/parasitic (*Curvularia*, *Exserohilum*, *Fusarium*, *Ilyonectria*,
258 *Magnaportheaceae*, *Rhizopus*) and putative commensal/mutualistic (*Acephala*, *Mortierella*,
259 *Xylaria*, *Buergenerula*, *Paraconiothyrium*, *Sarocladium*) symbionts.

260 *Diversity*

261 Neither host plant nor environment significantly affected the richness of root fungal
262 communities (Fig. 2A-C). Similarly, when analysis was done on a reduced dataset including only
263 those host plants that were present across all sites (*P. australis*, *S. patens*), there was no effect of
264 host plant, environment, or their interaction.

265 Phylogenetic diversity (as measured by MPD) was likewise not affected by host plant or
266 environment in the full dataset; however when only *P. australis* and *S. patens* were analyzed, we

267 found that the effect of environment on phylogenetic diversity depended on host (significant host
268 \times environment interaction, $F_{2,22} = 5.16, P = 0.015$). Specifically, for *P. australis* phylogenetic
269 diversity was less than 0 only at the saline site, but for *S. patens* phylogenetic diversity was less
270 than 0 at the brackish and saline sites (Fig. 2D-F). A mean phylogenetic distance (MPD) less
271 than 0 is indicative of phylogenetic clustering.

272 *Composition*

273 Both host plant and environment significantly affected the taxonomic composition (as
274 measured by Bray-Curtis dissimilarity) of endophyte communities for the full dataset as well as
275 for the reduced dataset including only *P. australis* and *S. patens* (Fig. 3A, Table 1). Interestingly,
276 only host plant (not environment) affected phylogenetic composition (as measured by MPD) for
277 both the full dataset and the reduced dataset, suggesting that different host plants selected for
278 fungal taxa that were drawn from distinct phylogenetic clades (Fig. 3B, Table 1).

279

280 **Discussion**

281 Many different drivers can contribute to patterns of taxonomic and phylogenetic diversity
282 of plant endophytes. Here we found no effect of environment or host on the taxonomic richness
283 of root endophytes across a marsh salinity gradient. However, we found that the effect of
284 environment on phylogenetic diversity depended on host plant, such that different host plants had
285 different patterns of phylogenetic diversity at different sites. We also found evidence of
286 phylogenetic clustering for some of the plant species across the gradient suggesting that habitat
287 filtering may be structuring fungal endophyte communities. Both environment and host plant
288 strongly affected taxonomic composition of the fungal communities, but only host plant affected

289 phylogenetic composition. Overall, this indicates that both environment and host plant structure
290 fungal root endophyte communities, and some differences exist when assessing patterns with a
291 taxonomic vs. phylogenetic metric which can give us insights into characteristics and processes
292 occurring in these microbiomes.

293 We found an average of 2-3 fungal taxa per individual plant sample in our study (8-30
294 taxa per plant species), which is similar to what is found in other culture-based studies
295 (Kernaghan and Patriquin 2011, Maciá-Vicente et al. 2012, Clay et al. 2016, Kimbrough et al.
296 2019, Hoyer and Hodkinson 2021). The taxa we recovered are common symbionts in wetland
297 plant communities including the genera *Sarcocladium*, *Fusarium*, *Septoriella*, *Aureobasidium*,
298 *Mortierella*, *Sarocladium*, *Talaromyces*, and *Phaeosphaeria* (Kandalepas et al. 2015, Clay et al.
299 2016). The most common species were *Trichoderma harzianum* and *Paraconiothyrium*
300 *estuarinum*. *Trichoderma harzianum* is widely distributed across many ecosystems including
301 wetlands (Saravanakumar et al. 2016) and is commonly used in agriculture as a biocontrol agent
302 against plant pathogens (Poveda et al. 2019). *Paraconiothyrium estuarinum* has been isolated
303 from estuarine/wetland sediments (Verkley et al. 2004) and forage grasses (Martins Alves et al.
304 2021) and have been found to be able to degrade polycyclic aromatic hydrocarbons (Verkley et
305 al. 2004), inhibit pathogen growth, and promote plant growth (Martins Alves et al. 2021).

306 *Taxonomic diversity and composition*

307 We found no effect of host plant or environment on taxonomic richness, but we did find
308 differences in taxonomic composition, a pattern also found in two other endophyte studies across
309 a salinity gradient (Hammami et al. 2016, Gonzalez Mateu et al. 2020). This suggests that
310 salinity, as a stress, does not necessarily limit the diversity of microbes in plant roots, but just
311 changes their composition. Likewise, host plant species may not differ in fungal endophyte

312 diversity but they do differ in taxonomic composition, as has been found in boreal trees
313 (Kernaghan and Patriquin 2011). The lack of effects on richness may not be surprising in a
314 culture-dependent study since the richness of cultured endophytes is generally low. However,
315 other studies (Dean et al. 2014, Wei et al. 2021), including a culture-dependent study (Lyons et
316 al. 2021), have found that some environments and plant species can host a higher diversity of
317 endophytes than others. The strong host and environment effects on endophyte taxonomic
318 composition found here are consistent with many studies that find environment (Maciá-Vicente
319 et al. 2012, Hammami et al. 2016, Gonzalez Mateu et al. 2020) and host plant species
320 (Kernaghan and Patriquin 2011, Dean et al. 2014, Lyons et al. 2021, Wei et al. 2021) structure
321 fungal endophyte composition. Environmental effects on endophyte composition are perhaps not
322 surprising; even though living within the host plant may shield the endophyte from stressful
323 abiotic conditions, most endophytes are horizontally transmitted and many have free-living
324 lifestyles (Bard et al. 2024) that would require tolerance of the abiotic environmental conditions
325 in the habitat. Host species effects on endophyte composition are also expected, especially as our
326 host species are distantly related (in three different plant families) (Glynou et al. 2016), and thus
327 likely differ in their chemistry, morphology, and immunity genes.

328 *Phylogenetic diversity and composition*

329 The phylogenetic perspective explored here brings a deeper understanding to fungal
330 endophyte community structure and assembly. While other studies have shown that host species
331 (Matsuoka et al. 2021) and environment (Matsuoka et al. 2019) can affect phylogenetic diversity
332 of litter-associated fungal communities and host functional group (Davison et al. 2020) and
333 environment (Aguila et al. 2022) can affect phylogenetic diversity of root AMF communities,
334 few studies test multiple hosts across multiple environments. Our results showed that the effect

335 of environment on phylogenetic diversity depended on species, with *Phragmites australis* having
336 the highest phylogenetic diversity in the brackish marsh and *Spartina patens* having the highest
337 phylogenetic diversity in the fresh marsh. Because phylogenetic diversity can affect
338 multifunctionality (Delgado-Baquerizo et al. 2016, Le Bagousse-Pinguet et al. 2019) and has
339 been used as a proxy for functional diversity in microbes (Davison et al. 2016), this might
340 suggest that different plants require or experience different levels of multifunctionality from their
341 endophytes in different environments.

342 The phylogenetic clustering ($MPD < 0$) observed in three instances (*S. patens* brackish, *S.
343 patens* saline, *P. australis* saline) is consistent with other studies that generally find phylogenetic
344 clustering (rather than overdispersion) of root endophytes (Maciá-Vicente and Popa 2022), AMF
345 communities (Davison et al. 2016), root sebacinoid (Basidiomycota: Agaricomycetes) fungi
346 (Garnica et al. 2013) and leaf endophytes (Del Olmo-Ruiz and Arnold 2017, Lumibao et al.
347 2019). There is evidence that at least some traits may be phylogenetically conserved in fungal
348 endophytes (Kia et al. 2017), AMF (Powell et al. 2009), and microbes in general (Martiny et al.
349 2015). If we assume some phylogenetic conservatism of fungal traits, then phylogenetic
350 clustering suggests that host and environmental filtering are structuring endophyte community
351 assembly by selecting for taxa with similar, adaptive, traits. Our finding that phylogenetic
352 clustering in root endophytes can change across salinity gradients for some species is consistent
353 with Frew et al. (2023), who found that phylogenetic clustering in *Sorghum* AMF communities
354 increases across a phosphorus gradient. Plant species may differ in selectivity (greater
355 phylogenetic clustering) of endophytes depending on the stresses they experience across
356 environmental gradients (Frew et al. 2023). Interestingly, we found more phylogenetic clustering
357 at the saline end of the gradient, which might suggest that both *Phragmites australis* (which is

358 abundant across the gradient) and *Spartina patens* (which is rare at high and low salinity) may
359 benefit from selectivity under stress.

360 We found that host plant affected phylogenetic composition, but environment did not.
361 This suggests that different host plants draw their communities from distinct phylogenetic clades,
362 but that environmental assemblages (which are taxonomically different, see above) are drawn
363 from similar clades. In other words, environmental assemblages differed only at the tips of the
364 phylogenetic tree. This is consistent with another recent study that found host species affects
365 phylogenetic composition of root fungal communities in bromeliads (Leroy et al. 2021).
366 However, our results contrast with those from another study that found different tropical forest
367 sites (which differed in precipitation, elevation, and fragmentation) differed in phylogenetic
368 composition of leaf endophytes (Del Olmo-Ruiz and Arnold 2017). It might be that salinity is
369 relatively easy for fungi to adapt to compared to other environmental stressors, and laboratory
370 evolution studies have shown that some fungal taxa can adapt to tolerance of higher salinities
371 over time (Jones et al. 2022).

372 *Limitations*

373 While this is an important first step in understanding root fungal assembly across
374 different hosts and environments, there are some limitations to our study. First, this is a culture-
375 dependent study, and it is well known that only a small percentage (estimated at 10%) of fungal
376 diversity is culturable (Wu et al. 2019). Furthermore, our sample sizes were rather small and we
377 only sampled a subset of the root system, thus we likely did not capture the full biodiversity of
378 fungi in our host plants (Supplementary Table 1). Future work utilizing culture-independent data
379 and the ghost tree approach is a promising direction for studying phylogenetic patterns in fungi
380 (Fouquier et al. 2016). Secondly, we only sampled one site per salinity regime, and as endophyte

381 biodiversity patterns and drivers can differ across sites (Alzarhani et al. 2019), future studies
382 should aim to sample more, replicated locations.

383 *Implications and conclusions*

384 Elucidating the drivers of endophyte assembly is important for our understanding of the
385 microbial biodiversity that impacts plant health, and a phylogenetic perspective can deepen our
386 understanding of microbial systems. Here we show that both environmental characteristics and
387 host plant identity affect composition of root fungal microbiomes, but that communities in
388 different salinity environments only differed at tips of the phylogenetic tree while host
389 microbiomes differed at a more basal level. Phylogenetic analysis also indicated phylogenetic
390 clustering, which suggests that host and habitat filtering (rather than competition) are important
391 in structuring root fungal communities. Understanding that environment and host species affect
392 root microbiomes is important to applied work in restoration and agriculture that may seek to
393 inoculate plants with novel endophytes to promote plant growth; our work suggests that sourcing
394 endophytes from similar hosts and environments may yield the highest inoculation success. Our
395 work also predicts that notable shifts in microbiomes will occur in the near future with increasing
396 saltwater intrusion and salinization in coastal areas worldwide. Overall, more study of fungal
397 microbiomes is critical to understand and ensure plant resilience, particularly in ecosystems such
398 as coastal wetlands that are at the frontlines of global change impacts.

399

400 **Data Availability**

401 The ITS1-LR3 sequence data were deposited in the NCBI GenBank under accession
402 numbers MN644512-MN644532 (*Sagittaria lancifolia*), MN644591-MN644619 (*Juncus*

403 *roemarianus*), MN644534-MN644589 (*Spartina patens*), MN644620-MN644684 (*Spartina*
404 *alterniflora*), and MN644685-MN644801 (*Phragmites australis*). Processed data and metadata
405 files (Farrer et al. 2025) are available through the Environmental Data Initiative (EDI) at
406 <https://doi.org/10.6073/pasta/06e760e23c3a288fc669f40ce53871c9>. Code is available on GitHub
407 at <https://github.com/ecfarrer/LAmarshCulture2>.

408

409 **Funding**

410 This research was supported by the Louisiana State Board of Regents [LEQSF(2017–20)-
411 RD-A-14] and the National Science Foundation [DEB-2141922] to EF, a grant from the Tulane
412 Newcomb College Institute awarded to NK, a grant from the Tulane Newcomb College Institute
413 awarded to CW, and a Tulane CELT undergraduate research grant to EF and HC.

414

415 **Acknowledgements**

416 We thank undergraduate students Liana Bethala, Helena Candaele, Alison Cunningham,
417 Isabella Donnell, Caitlin Ducat, Sophia Frohberg, Sara Good-Chanmugan, Charlotte Hankin,
418 Hannah Newsom, Kasandra Scholz, and Helen Weierbach for help with field and laboratory
419 work. We also thank the scientists and managers at our field sites for their gracious help with
420 coordinating logistics: Brian Roberts and Craig McClain at LUMCON, Robert Moreau at Turtle
421 Cove, and Dinah Maygarden at CERF.

422

423

424 **References**

425 Abarenkov, K., A. Zirk, T. Piirmann, R. Pöhönen, F. Ivanov, R. H. Nilsson, and U. Kõljalg.
426 2024. UNITE general FASTA release for Fungi 2. Version 04.04.2024. UNITE
427 Community. <https://doi.org/10.15156/BIO/2959333>.

428 Aguilà, S. R.-D., A. M. De la Sota-Ricaldi, M. A. Corazon-Guivin, and Á. López-García. 2022.
429 Phylogenetic Diversity of Arbuscular Mycorrhizal Fungal Communities Increases with
430 Crop Age in Coffea arabica Plantations. *Journal of Soil Science and Plant Nutrition*
431 **22**:3291-3303.

432 Alzarhani, A. K., D. R. Clark, G. J. C. Underwood, H. Ford, T. E. A. Cotton, and A. J. Dumbrell.
433 2019. Are drivers of root-associated fungal community structure context specific? *The
434 ISME Journal* **13**:1330-1344.

435 Bard, N. W., Q. C. B. Cronk, and T. J. Davies. 2024. Fungal endophytes can modulate plant
436 invasion. *Biological Reviews* **in press**.

437 Bergelson, J., J. Mittelstrass, and M. W. Horton. 2019. Characterizing both bacteria and fungi
438 improves understanding of the *Arabidopsis* root microbiome. *Scientific Reports* **9**:24.

439 Brigham, L. M., C. P. Bueno de Mesquita, M. J. Spasojevic, E. C. Farrer, D. L. Porazinska, J. G.
440 Smith, S. K. Schmidt, and K. N. Suding. 2023. Drivers of bacterial and fungal root
441 endophyte communities: understanding the relative influence of host plant, environment,
442 and space. *FEMS Microbiology Ecology* **99**:fiad034.

443 Carbone, I., B. White James, J. Miadlikowska, A. E. Arnold, A. Miller Mark, N. Magain, M.
444 U'Ren Jana, and F. Lutzoni. 2019. T-BAS Version 2.1: Tree-Based Alignment Selector
445 Toolkit for Evolutionary Placement of DNA Sequences and Viewing Alignments and

446 Specimen Metadata on Curated and Custom Trees. Microbiology Resource

447 Announcements **8**:e00328-00319.

448 Carbone, I., J. B. White, J. Miadlikowska, A. E. Arnold, M. A. Miller, F. Kauff, J. M. U'Ren, G.

449 May, and F. Lutzoni. 2017. T-BAS: Tree-Based Alignment Selector toolkit for

450 phylogenetic-based placement, alignment downloads and metadata visualization: an

451 example with the Pezizomycotina tree of life. *Bioinformatics* **33**:1160-1168.

452 Cavender-Bares, J., K. H. Kozak, P. V. Fine, and S. W. Kembel. 2009. The merging of

453 community ecology and phylogenetic biology. *Ecol Lett* **12**:693-715.

454 Chen, Y.-L., Z.-W. Xu, T.-L. Xu, S. D. Veresoglou, G.-W. Yang, and B.-D. Chen. 2017.

455 Nitrogen deposition and precipitation induced phylogenetic clustering of arbuscular

456 mycorrhizal fungal communities. *Soil Biology and Biochemistry* **115**:233-242.

457 Chitnis, V. R., T. S. Suryanarayanan, K. N. Nataraja, S. R. Prasad, R. Oelmüller, and R. U.

458 Shaanker. 2020. Fungal Endophyte-Mediated Crop Improvement: The Way Ahead.

459 *Frontiers in Plant Science* **11**.

460 Clay, K., Z. R. C. Shearin, K. A. Bourke, W. A. Bickford, and K. P. Kowalski. 2016. Diversity

461 of fungal endophytes in non-native *Phragmites australis* in the Great Lakes. *Biological*

462 *Invasions* **18**:2703-2716.

463 Coastal Protection and Restoration Authority (CPRA) of Louisiana. 2020. Coastwide Reference

464 Monitoring System-Wetlands Monitoring Data. Retrieved from Coastal Information

465 Management System (CIMS) database. <http://cims.coastal.louisiana.gov>.

466 Davison, J., D. García de León, M. Zobel, M. Moora, C. G. Bueno, M. Barceló, M. Gerz, D.

467 León, Y. Meng, V. D. Pillar, S.-K. Sepp, N. A. Soudzilovaskaia, L. Tedersoo, S.

468 Vaessen, T. Vahter, B. Winck, and M. Öpik. 2020. Plant functional groups associate with
469 distinct arbuscular mycorrhizal fungal communities. *New Phytologist* **226**:1117-1128.

470 Davison, J., M. Moora, T. Jairus, M. Vasar, M. Öpik, and M. Zobel. 2016. Hierarchical assembly
471 rules in arbuscular mycorrhizal (AM) fungal communities. *Soil Biology and*
472 *Biochemistry* **97**:63-70.

473 Dean, S. L., E. C. Farrer, D. L. Taylor, A. Porras-Alfaro, K. N. Suding, and R. L. Sinsabaugh.
474 2014. Nitrogen deposition alters plant–fungal relationships: linking belowground
475 dynamics to aboveground vegetation change. *Molecular Ecology* **23**:1364-1378.

476 Del Olmo-Ruiz, M., and A. E. Arnold. 2017. Community structure of fern-affiliated endophytes
477 in three neotropical forests. *Journal of Tropical Ecology* **33**:60-73.

478 Delgado-Baquerizo, M., F. T. Maestre, P. B. Reich, T. C. Jeffries, J. J. Gaitan, D. Encinar, M.
479 Berdugo, C. D. Campbell, and B. K. Singh. 2016. Microbial diversity drives
480 multifunctionality in terrestrial ecosystems. *Nature Communications* **7**:10541.

481 DeMers, M., and G. May. 2021. Habitat-scale heterogeneity maintains fungal endophyte
482 diversity in two native prairie legumes. *Mycologia* **113**:20-32.

483 Dini-Andreote, F. 2020. Endophytes: The Second Layer of Plant Defense. *Trends in Plant*
484 *Science* **25**:319-322.

485 Farrer, E., N. Kulick, C. Birnbaum, S. Halbrook, C. Bumby, and C. Willis. 2025. Root fungi
486 isolated from common Louisiana marsh plants 2017-18. ver 1. Environmental Data
487 Initiative. <https://doi.org/10.6073/pasta/06e760e23c3a288fc669f40ce53871c9>.

488 Farrer, E. C., C. Birnbaum, P. Waryszak, S. R. Halbrook, M. V. Brady, C. R. Bumby, H.
489 Candaele, N. K. Kulick, S. F. H. Lee, C. S. Schroeder, M. K. H. Smith, and W. Wilber.

490 2021. Plant and microbial impacts of an invasive species vary across an environmental
491 gradient. *Journal of Ecology* **109**:2163-2176.

492 Farrer, E. C., D. L. Porazinska, M. J. Spasojevic, A. J. King, C. P. Bueno de Mesquita, S. A.
493 Sartwell, J. G. Smith, C. T. White, S. K. Schmidt, and K. N. Suding. 2019. Soil microbial
494 networks shift across a high-elevation successional gradient. *Frontiers in Microbiology*
495 **10**:2887.

496 Farrer, E. C., S. A. Van Bael, K. Clay, and M. K. H. Smith. 2022. Plant-Microbial Symbioses in
497 Coastal Systems: Their Ecological Importance and Role in Coastal Restoration. *Estuaries and Coasts*
498 **45**:1805–1822.

499 Fitzpatrick, C. R., J. Copeland, P. W. Wang, D. S. Guttman, P. M. Kotanen, and M. T. J.
500 Johnson. 2018. Assembly and ecological function of the root microbiome across
501 angiosperm plant species. *Proceedings of the National Academy of Sciences* **115**:E1157-
502 E1165.

503 Fouquier, J., J. R. Rideout, E. Bolyen, J. Chase, A. Shiffer, D. McDonald, R. Knight, J. G.
504 Caporaso, and S. T. Kelley. 2016. ghost-tree: creating hybrid-gene phylogenetic trees for
505 diversity analyses. *Microbiome* **4**:11.

506 Frank, A. C., J. P. Saldierna Guzmán, and J. E. Shay. 2017. Transmission of Bacterial
507 Endophytes. *Microorganisms*.

508 Frew, A., M. K. Heuck, and C. A. Aguilar-Trigueros. 2023. Host filtering, not competitive
509 exclusion, may be the main driver of arbuscular mycorrhizal fungal community assembly
510 under high phosphorus. *Functional Ecology* **n/a**.

511 Galindo-Castañeda, T., K. M. Brown, G. A. Kuldau, G. W. Roth, N. G. Wenner, S. Ray, H.
512 Schneider, and J. P. Lynch. 2019. Root cortical anatomy is associated with differential
513 pathogenic and symbiotic fungal colonization in maize. *Plant Cell Environ* **42**:2999-3014.

514 Gardes, M., and T. D. Bruns. 1993. ITS primers with enhanced specificity for basidiomycetes -
515 application to the identification of mycorrhizae and rusts. *Molecular Ecology* **2**:113-118.

516 Garnica, S., K. Riess, R. Bauer, F. Oberwinkler, and M. Weiß. 2013. Phylogenetic diversity and
517 structure of sebacinoid fungi associated with plant communities along an altitudinal
518 gradient. *FEMS Microbiology Ecology* **83**:265-278.

519 Glynou, K., T. Ali, A. K. Buch, S. Haggi Kia, S. Ploch, X. Xia, A. Çelik, M. Thines, and J. G.
520 Maciá-Vicente. 2016. The local environment determines the assembly of root endophytic
521 fungi at a continental scale. *Environ Microbiol* **18**:2418-2434.

522 Glynou, K., M. Thines, and J. G. Maciá-Vicente. 2018. Host species identity in annual
523 Brassicaceae has a limited effect on the assembly of root-endophytic fungal communities.
524 *Plant Ecology & Diversity* **11**:569-580.

525 Gonzalez Mateu, M., A. H. Baldwin, J. E. Maul, and S. A. Yarwood. 2020. Dark septate
526 endophyte improves salt tolerance of native and invasive lineages of *Phragmites australis*.
527 *The ISME Journal* **14**:1943-1954.

528 Hammami, H., P. Baptista, F. Martins, T. Gomes, C. Abdelly, and O. M.-B. Mahmoud. 2016.
529 Impact of a natural soil salinity gradient on fungal endophytes in wild barley (*Hordeum*
530 *maritimum* With.). *World Journal of Microbiology and Biotechnology* **32**:184.

531 Høyer, A. K., and T. R. Hodkinson. 2021. Hidden Fungi: Combining Culture-Dependent and -
532 Independent DNA Barcoding Reveals Inter-Plant Variation in Species Richness of
533 Endophytic Root Fungi in *Elymus repens*. *J Fungi (Basel)* **7**.

534 Jogawat, A., J. Vadassery, N. Verma, R. Oelmüller, M. Dua, E. Nevo, and A. K. Johri. 2016.

535 PiHOG1, a stress regulator MAP kinase from the root endophyte fungus *Piriformospora*

536 *indica*, confers salinity stress tolerance in rice plants. *Scientific Reports* **6**:36765.

537 Jones, E. B. G., S. Ramakrishna, S. Vikineswary, D. Das, A. H. Bahkali, S.-Y. Guo, and K.-L.

538 Pang. 2022. How Do Fungi Survive in the Sea and Respond to Climate Change? *Journal*

539 *of Fungi* **8**:291.

540 Kandalepas, D., M. J. Blum, and S. A. Van Bael. 2015. Shifts in Symbiotic Endophyte

541 Communities of a Foundational Salt Marsh Grass following Oil Exposure from the

542 Deepwater Horizon Oil Spill. *Plos One* **10**:e0122378.

543 Kembel, S. W., P. D. Cowan, M. R. Helmus, W. K. Cornwell, H. Morlon, D. D. Ackerly, S. P.

544 Blomberg, and C. O. Webb. 2010. Picante: R tools for integrating phylogenies and

545 ecology. *Bioinformatics* **26**:1463-1464.

546 Kernaghan, G., and G. Patriquin. 2011. Host associations between fungal root endophytes and

547 boreal trees. *Microbial Ecology* **62**:460-473.

548 Kia, S. H., K. Glynou, T. Nau, M. Thines, M. Piepenbring, and J. G. Maciá-Vicente. 2017.

549 Influence of phylogenetic conservatism and trait convergence on the interactions between

550 fungal root endophytes and plants. *The ISME Journal* **11**:777-790.

551 Kimbrough, E. R., M. L. Berlow, and S. A. Van Bael. 2019. Water Level and Salinity Drive

552 Community Structure of Culturable Baldcypress (*Taxodium distichum*) Endophytes in

553 Southern Louisiana. *Wetlands* **39**:329-335.

554 Le Bagousse-Pinguet, Y., S. Soliveres, N. Gross, R. Torices, M. Berdugo, and F. T. Maestre.

555 2019. Phylogenetic, functional, and taxonomic richness have both positive and negative

556 effects on ecosystem multifunctionality. *Proceedings of the National Academy of*
557 *Sciences* **116**:8419-8424.

558 Leach, J. E., L. R. Triplett, C. T. Argueso, and P. Trivedi. 2017. Communication in the
559 *Phytobiome*. *Cell* **169**:587-596.

560 Lenth, R. 2023. *emmeans: Estimated Marginal Means, aka Least-Squares Means.R package*
561 *version 1.8.4-1.*

562 Leroy, C., A. Q. Maes, E. Louisanna, H. Schimann, and N. Séjalon-Delmas. 2021. Taxonomic,
563 phylogenetic and functional diversity of root-associated fungi in bromeliads: effects of
564 host identity, life forms and nutritional modes. *New Phytologist* **231**:1195-1209.

565 Lu, H., T. Wei, H. Lou, X. Shu, and Q. Chen. 2021. A Critical Review on Communication
566 Mechanism within Plant-Endophytic Fungi Interactions to Cope with Biotic and Abiotic
567 Stresses. *J Fungi (Basel)* **7**.

568 Lumibao, C. Y., E. T. Borer, B. Condon, L. Kinkel, G. May, and E. W. Seabloom. 2019. Site-
569 specific responses of foliar fungal microbiomes to nutrient addition and herbivory at
570 different spatial scales. *Ecol Evol* **9**:12231-12244.

571 Lumibao, C. Y., G. Harris, and C. Birnbaum. 2024. Global Diversity and Distribution of
572 Rhizosphere and Root-Associated Fungi in Coastal Wetlands: A Systematic Review.
573 *Estuaries and Coasts* **47**:905-916.

574 Lundberg, D. S., S. L. Lebeis, S. H. Paredes, S. Yourstone, J. Gehring, S. Malfatti, J. Tremblay,
575 A. Engelbrektson, V. Kunin, T. G. d. Rio, R. C. Edgar, T. Eickhorst, R. E. Ley, P.
576 Hugenholtz, S. G. Tringe, and J. L. Dangl. 2012. Defining the core *Arabidopsis thaliana*
577 root microbiome. *Nature* **488**:86-90.

578 Lyons, K. G., M. Mann, M. Lenihan, O. Roybal, K. Carroll, K. Reynoso, S. N. Kivlin, D. L.
579 Taylor, and J. A. Rudgers. 2021. Culturable root endophyte communities are shaped by
580 both warming and plant host identity in the Rocky Mountains, USA. *Fungal Ecology*
581 **49**:101002.

582 Maciá-Vicente, J. G., V. Ferraro, S. Burruano, and L. V. Lopez-Llorca. 2012. Fungal
583 Assemblages Associated with Roots of Halophytic and Non-halophytic Plant Species
584 Vary Differentially Along a Salinity Gradient. *Microbial Ecology* **64**:668-679.

585 Maciá-Vicente, J. G., and F. Popa. 2022. Local endemism and ecological generalism in the
586 assembly of root-colonizing fungi. *Ecological Monographs* **92**:e01489.

587 Maddison, D. R., T. J. Wheeler, and W. P. Maddison. 2016. Align: a Mesquite package for
588 aligning sequence data. Version 1.8.

589 Martins Alves, N., R. Araújo Guimarães, S. Silva Costa Guimarães, A. Frausino de Faria, Í.
590 Augusto Férrer Melo Santos, F. Henrique Vasconcelos de Medeiros, L. Jank, and P.
591 Gomes Cardoso. 2021. A Trojan horse approach for white mold biocontrol:
592 Paraconiothyrium endophytes promotes grass growth and inhibits Sclerotinia
593 sclerotiorum. *Biological Control* **160**:104685.

594 Martiny, J. B. H., S. E. Jones, J. T. Lennon, and A. C. Martiny. 2015. Microbiomes in light of
595 traits: A phylogenetic perspective. *Science* **350**:aac9323.

596 Matsuoka, S., H. Doi, S. Masumoto, R. Kitagawa, K. Nishizawa, K. Tanaka, M. Hasegawa, S.
597 Hobara, T. Osono, A. S. Mori, and M. Uchida. 2021. Taxonomic, functional, and
598 phylogenetic diversity of fungi in a forest-tundra ecotone in Québec. *Polar Science*
599 **27**:100594.

600 Matsuoka, S., Y. Ogisu, S. Sakoh, S. Hobara, and T. Osono. 2019. Taxonomic, functional, and
601 phylogenetic diversity of fungi along primary successional and elevational gradients near
602 Mount Robson, British Columbia. *Polar Science* **21**:165-171.

603 Mohamed, D. J., and J. B. H. Martiny. 2011. Patterns of fungal diversity and composition along
604 a salinity gradient. *The ISME Journal* **5**:379-388.

605 Morelli, M., O. Bahar, K. K. Papadopoulou, D. L. Hopkins, and A. Obradović. 2020. Editorial:
606 Role of Endophytes in Plant Health and Defense Against Pathogens. *Frontiers in Plant
607 Science* **11**.

608 Nguyen, N. H., Z. Song, S. T. Bates, S. Branco, L. Tedersoo, J. Menke, J. S. Schilling, and P. G.
609 Kennedy. 2016. FUNGuild: An open annotation tool for parsing fungal community
610 datasets by ecological guild. *Fungal Ecology* **20**:241-248.

611 Oksanen, J., G. Simpson, F. Blanchet, R. Kindt, P. Legendre, P. Minchin, R. O'Hara, P.
612 Solymos, M. Stevens, E. Szoecs, H. Wagner, M. Barbour, M. Bedward, B. Bolker, D.
613 Borcard, G. Carvalho, M. Chirico, M. De Caceres, S. Durand, H. Evangelista, R.
614 FitzJohn, M. Friendly, B. Furneaux, G. Hannigan, M. Hill, L. Lahti, D. McGlinn, M.
615 Ouellette, E. Ribeiro Cunha, T. Smith, A. Stier, C. Ter Braak, and J. Weedon. 2022.
616 vegan: Community Ecology Package. R package version 2.6-4.

617 Pinheiro, J., D. Bates, and R Core Team. 2023. nlme: Linear and Nonlinear Mixed Effects
618 Models, R package version 3.1-162.

619 Porras-Alfaro, A., and P. Bayman. 2011. Hidden Fungi, Emergent Properties: Endophytes and
620 Microbiomes. *Annual Review of Phytopathology* **49**:291-315.

621 Poveda, J., R. Hermosa, E. Monte, and C. Nicolás. 2019. *Trichoderma harzianum* favours the
622 access of arbuscular mycorrhizal fungi to non-host Brassicaceae roots and increases plant
623 productivity. *Scientific Reports* **9**:11650.

624 Powell, J. R., J. L. Parrent, M. M. Hart, J. N. Klironomos, M. C. Rillig, and H. Maherli. 2009.
625 Phylogenetic trait conservatism and the evolution of functional trade-offs in arbuscular
626 mycorrhizal fungi. *Proceedings: Biological Sciences* **276**:4237-4245.

627 R Core Team. 2022. R: A language and environment for statistical computing. R Foundation for
628 Statistical Computing, Vienna, Austria.

629 Saravanakumar, K., C. Yu, K. Dou, M. Wang, Y. Li, and J. Chen. 2016. Biodiversity of
630 Trichoderma Community in the Tidal Flats and Wetland of Southeastern China. *Plos One*
631 **11**:e0168020.

632 Schulz, B., U. Wanke, S. Draeger, and H. J. Aust. 1993. Endophytes from herbaceous plants and
633 shrubs: effectiveness of surface sterilization methods. *Mycological Research* **97**:1447-
634 1450.

635 Tellez, P. H., A. E. Arnold, A. B. Leo, K. Kitajima, and S. A. Van Bael. 2022. Traits along the
636 leaf economics spectrum are associated with communities of foliar endophytic
637 symbionts. *Frontiers in Microbiology* **13**.

638 Vergara, C., K. E. Campos Araujo, L. Soares Alves, S. R. de Souza, L. Azevedo Santos, C.
639 Santa-Catarina, K. da Silva, G. M. Duarte Pereira, G. Ribeiro Xavier, and J. É. Zilli.
640 2018. Contribution of dark septate fungi to the nutrient uptake and growth of rice plants.
641 *Braz. J. Microbiol.* **49**:67–78.

642 Verkley, G. J. M., M. da Silva, D. T. Wicklow, and P. W. Crous. 2004. Paraconiothyrium, a new
643 genus to accommodate the mycoparasite Coniothyrium minitans, anamorphs of
644 Paraphaeosphaeria, and four new species. *Studies in Mycology* **50**:323-335.

645 Vilgalys, R., and M. Hester. 1990. Rapid genetic identification and mapping of enzymatically
646 amplified ribosomal DNA from several *Cryptococcus* species. *Journal of Bacteriology*
647 **172**:4238-4246.

648 Webb, C. O. 2000. Exploring the Phylogenetic Structure of Ecological Communities: An
649 Example for Rain Forest Trees. *The American Naturalist* **156**:145-155.

650 Webb, C. O., D. D. Ackerly, M. A. McPeek, and M. J. Donoghue. 2002. Phylogenies and
651 Community Ecology. *Annual Review of Ecology and Systematics* **33**:475-505.

652 Wei, X., F. Jiang, B. Han, H. Zhang, D. Huang, and X. Shao. 2021. New insight into the
653 divergent responses of plants to warming in the context of root endophytic bacterial and
654 fungal communities. *PeerJ* **9**:e11340.

655 Wickham, H. 2016. *ggplot2: Elegant Graphics for Data Analysis*. Springer-Verlag, New York.

656 Wu, B., M. Hussain, W. Zhang, M. Stadler, X. Liu, and M. Xiang. 2019. Current insights into
657 fungal species diversity and perspective on naming the environmental DNA sequences of
658 fungi. *Mycology* **10**:127-140.

659 Yakti, W., G. M. Kovács, P. Vági, and P. Franken. 2018. Impact of dark septate endophytes on
660 tomato growth and nutrient uptake. *Plant Ecology & Diversity* **11**:637-648.

661 Yamaji, K., Y. Watanabe, H. Masuya, A. Shigeto, H. Yui, and T. Haruma. 2016. Root Fungal
662 Endophytes Enhance Heavy-Metal Stress Tolerance of *Clethra barbinervis* Growing
663 Naturally at Mining Sites via Growth Enhancement, Promotion of Nutrient Uptake and
664 Decrease of Heavy-Metal Concentration. *Plos One* **11**:e0169089.

665 Zhang, X. F., L. Zhao, S. J. Xu, Jr., Y. Z. Liu, H. Y. Liu, and G. D. Cheng. 2013. Soil moisture
666 effect on bacterial and fungal community in Beilu River (Tibetan Plateau) permafrost
667 soils with different vegetation types. *Journal of Applied Microbiology* **114**:1054-1065.

668 Zhou, J., X. Jiang, B. Zhou, B. Zhao, M. Ma, D. Guan, J. Li, S. Chen, F. Cao, D. Shen, and J.
669 Qin. 2016. Thirty four years of nitrogen fertilization decreases fungal diversity and alters
670 fungal community composition in black soil in northeast China. *Soil Biology and*
671 *Biochemistry* **95**:135-143.

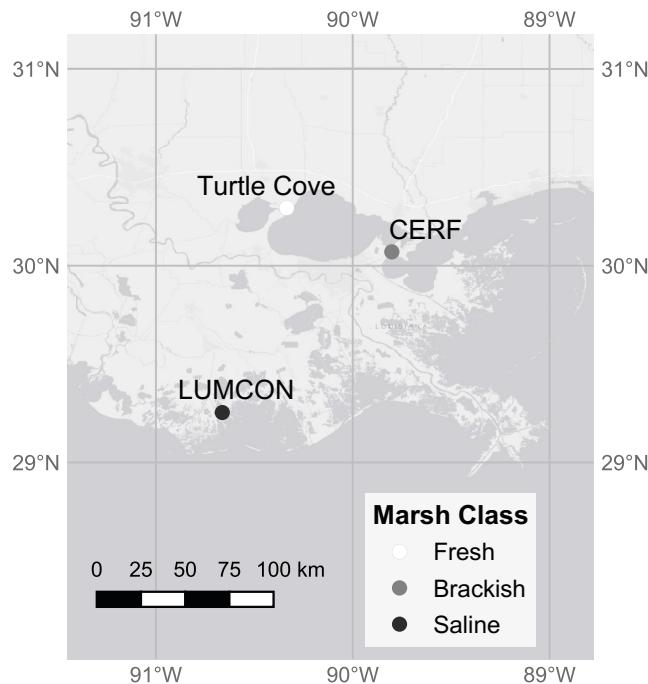
672

673

674

675 Table 1. Results from dbRDA permutation tests (PERMANOVA), testing the effect of host
 676 plant, environment, and (for the *P. australis* and *S. patens* models) their interaction on cultured
 677 root endophyte communities of marsh plants. Year was used as a conditioning variable in all
 678 ordinations. See Fig. 3 for ordination plots.

679

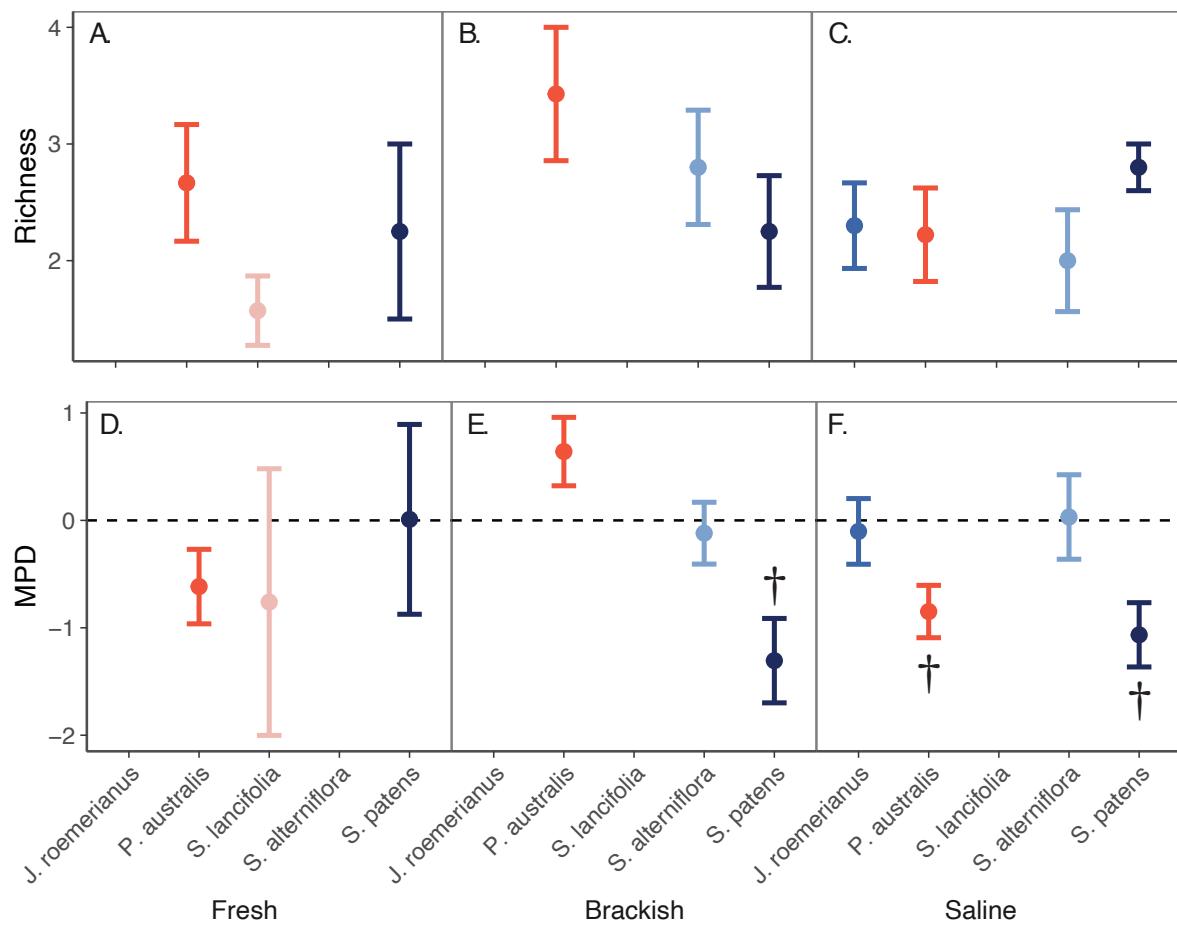

Dependent variable	Model	Explanatory variable	Variance explained	Pseudo-F (df)	P
Taxonomic composition (Bray-Curtis)	Full model	Host plant	7.1%	1.32 (4, 61)	0.018 *
		Environment	4.6%	1.71 (2, 61)	0.003 **
	<i>P. australis</i> and <i>S. patens</i>	Host plant	6.6%	2.86 (1, 33)	<0.001 ***
		Environment	9.8%	2.13 (2, 33)	<0.001 ***
		Host plant × env	5.7%	1.26 (2, 31)	0.114
Phylogenetic composition (MPD)	Full model	Host plant	8.3%	1.59 (4, 64)	0.045 *
		Environment	2.2%	0.86 (2, 64)	0.566
	<i>P. australis</i> and <i>S. patens</i>	Host plant	14.2%	6.51 (1, 33)	<0.001 ***
		Environment	6.7%	1.52 (2, 33)	0.134
		Host plant × env	3.8%	0.85 (2, 31)	0.534

680

681

682 Fig. 1. Map of study sites in SE Louisiana, USA. "Turtle Cove" is the Turtle Cove
683 Environmental Research Station, "CERF" is the Coastal Education Research Facility, and
684 "LUMCON" is the Louisiana Universities Marine Consortium.

Figure 1

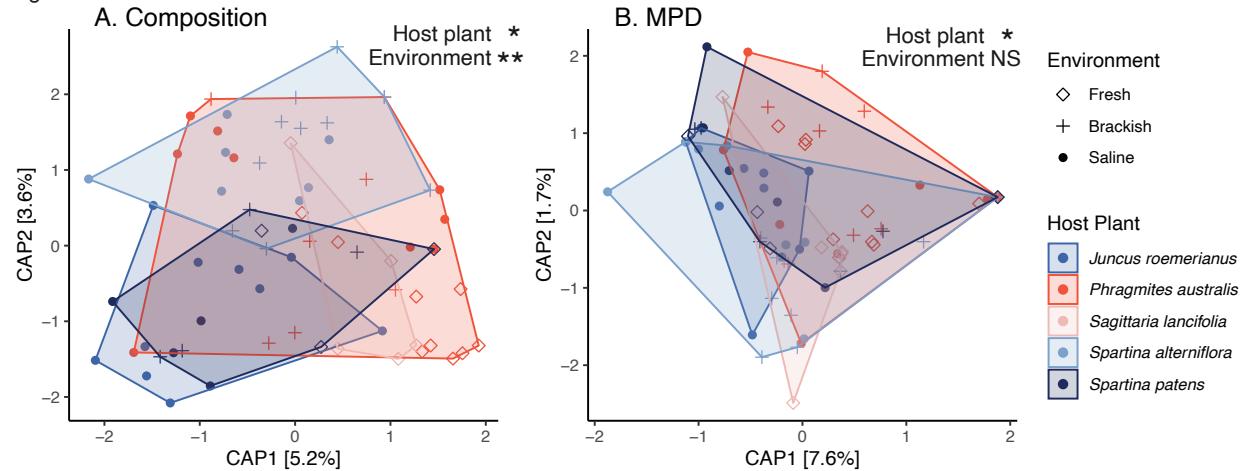


685

686

687 Fig. 2. Endophyte richness (A-C) and phylogenetic diversity (MPD, D-F) in different host plants
 688 and environments. Error bars represent means ± 1 SE. For phylogenetic diversity, negative MPD
 689 values indicate phylogenetic clustering and positive MPD values indicate overdispersion.
 690 Symbols denote mean MPD significantly different from zero (corrected for multiple
 691 comparisons): $\dagger P < 0.1$.

Figure 2


692

693

694

695 Fig. 3. Distance-based RDAs showing the effect of environment (symbol) and host plant (color)
 696 on taxonomic composition (measured by Bray-Curtis dissimilarity) (A) and phylogenetic
 697 composition (measured by abundance-weighed mean phylogenetic distance) (B) of root
 698 endophyte communities. Symbols denote significance of permutation (PERMANOVA) tests:
 699 * $P<0.05$, ** $P<0.01$, NS=not significant; see Table 1 for full permutation test results.

Figure 3

700

701

702

703