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Binary neutron star mergers produce massive, hot, rapidly differentially rotating neutron star remnants;
electromagnetic and gravitational wave signals associated with the subsequent evolution depend on the
stability of these remnants. Stability of relativistic stars has previously been studied for uniform rotation
and for a class of differential rotation with monotonic angular velocity profiles. Stability of those equilibria
to axisymmetric perturbations was found to respect a turning point criterion: along a constant angular
momentum sequence, the onset of unstable stars is found at maximum density less than but close to the
density of maximum mass. In this paper, we test this turning point criterion for nonmonotonic angular
velocity profiles and nonisentropic entropy profiles, both chosen to more realistically model postmerger
equilibria. Stability is assessed by evolving perturbed equilibria in 2D using the Spectral Einstein Code. We
present tests of the code’s new capability for axisymmetric metric evolution. We confirm the turning point
theorem and determine the region of our rotation law parameter space that provides highest maximum mass

for a given angular momentum.
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I. INTRODUCTION

Binary neutron star mergers are important multimessenger
astrophysical sources and probes of high-density matter.
Gravitational waves from the late inspirals of such events
have now been detected [1,2], in one case accompanied by
electromagnetic counterparts [3]. The high-frequency post-
merger gravitational waveform and the electromagnetic
signals (e.g., kilonova, gamma ray burst) are sensitive to
the fate of the postmerger remnant. This will be a hot, rapidly
and differentially rotating star, which, depending on the
binary mass and the equation of state, might collapse
promptly to a black hole, might persist until secular evolution
drives it to an unstable state followed by collapse, or might
persist for longer times as a supramassive neutron star or
indefinitely as a regular neutron star. In delayed and no
collapse cases, the remnant persists for many dynamical
timescales, therefore in quasiequilibrium configurations.
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The presence and timescale of prompt or delayed collapse
depends crucially on the stability of these equilibria to
collapse. (For review of binary neutron stars, see [4—6].)

Although the stability of stellar equilibria is a classic
problem [7—12], the stability of hypermassive neutron stars
is addressed in relatively few studies (e.g., [13-16]), and
much remains unknown. Stability of relativistic stellar
equilibria can be determined by finding the eigenfrequen-
cies of linear perturbations or by full nonlinear numerical
evolutions. A way of evaluating stability from equilibria
alone, without any sort of evolution, would be extremely
helpful. This explains interest in turning point methods,
which provide information about stability from sequences
of equilibria. A sequence here means a one-dimensional
slice in the space of equilibria, usually parametrized by the
maximum baryonic density p,.. For arbitrary rotation,
entropy, and composition profiles, this space would be
infinite dimensional.

The turning point theorem [11,12,17] applies to uni-
formly rotating stars. It assumes a one-parameter equation
of state and, furthermore, that the pulsations of the star are
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governed by the same one-parameter equation of state.
Because uniform rotation is presumed to persist, it is a
criterion for secular stability, i.e., stability on timescales on
which uniform rotation is enforced. The theorem applies to
axisymmetric modes, the ones related to collapse, and does
not address nonaxisymmetric rotational instabilities.
[Indeed, many quasitoroidal differentially rotating neutron
stars are found to be unstable to nonaxisymmetric (one-arm
and bar mode) instabilities [16].] The space of equilibria is
then two-dimensional, with total baryonic mass M, (the
number of nucleons multiplied by a fiducial mass per
baryon) and total angular momentum J uniquely determin-
ing a star. A constant-J subspace is a 1D sequence. If the
total gravitational mass M on the sequence has a maximum,
then stars on the sequence at higher p,,,, are unstable. The
neutral point on the sequence separating secularly stable
from unstable stars is at slightly lower p,,,, for nonzero J
[17]. Numerical evolutions find the dynamical stability
neutral point to be close to the turning point [13,18].

The turning point theorem does not apply to differentially
rotating or nonisentropic stars, but Kaplan et al [19]
conjecture that the turning point criterion remains approx-
imately valid. Their argument presumes that equilibrium M
depends to first order only on conserved quantities M, J, and
total entropy S, and not on the angular momentum and
entropy distributions. They also note that only “approximate
turning points” (not all conserved quantities having extrema
at the same point on the sequence) are found in general, but
they propose that this will be sufficient.

The stability of hypermassive neutron stars was studied,
and the conjecture by Kaplan et al. tested, by Weih et al.
[13] using numerical evolutions of these equilibria. To
construct equilibria, one must choose a rotation profile, and
Weih et al. chose the j-constant law,

J(Q) =A%(Q. - Q). (1)

where j is the specific angular momentum, € is the angular
velocity, Q. is the central angular velocity, and A is a free
parameter with dimensions of length which controls the
degree of the differential rotation. The name j-constant is
chosen because in the Newtonian limit the specific angular
momentum is constant [20,21].

Rotation profiles constructed with this law have € that
monotonically decreases with distance from the center of
the star. As Weih et al. themselves note, this is not a good
match for the rotation profiles observed in remnants
produced by binary neutron star merger simulations, which
predict a nonmonotonic € that peaks some distance away
from the rotation axis [22-28]. Rotation laws that do
capture this Q(r) profile shape have been constructed by
Uryt et al. [29]. The key idea is to specify Q as a function
of j rather than vice versa. In particular, one such profile is

1+ [j/(B*Q.)]”

.Q.(.],Qc): Cl+[j/(AZQC)]q+p,

(2)
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FIG. 1. Angular velocity  normalized to €. as a function of
coordinate distance from the axis @ along the equator for two
rotation laws. The top curve uses Eq. (2) with p =1, ¢ =3,
A =0.96, B = 0.73. The bottom curve uses Eq. (1) with A = 0.2.

where A, B, g, and p are specified constants. An example of
rotation profiles produced with the two laws is shown
in Fig. 1.

In this paper, which may be considered an extension of
the study of Weih et al., we investigate the stability of
hypermassive stars with nonmonotonic angular velocity
profiles. Furthermore, we consider a range of (convectively
stable) entropy profiles within the range plausible for
binary neutron star mergers. We introduce a new 2D
axisymmetric implementation of the Spectral Einstein Code
for our numerical evolutions. Our results vindicate the
approximate turning point criterion. In addition, we survey
the parameter space of Uryil et al. type rotation laws, seeing
which values of the parameters are conducive to high
maximum mass.

The organization of the paper is as follows. In Sec. II, we
discuss the methods of building our initial data and carrying
out evolutions. Next, in Sec. III, we discuss the numerical
experiments undertaken for this study. Results are pre-
sented and analyzed in Sec. IV. We summarize and
conclude in Sec. V. We use the geometrized units, in
which ¢ = G = M, = 1, unless stated otherwise.

II. EQUILIBRIA AND EVOLUTION METHODS
A. Equation of state and entropy profile

The matter in the star is modeled as a perfect fluid with
stress-energy tensor,

™" = phutu* + Pg", (3)

where p is the baryonic density, /4 is the specific enthalpy,
ut is the 4-velocity, and P is the pressure. The neutron star
matter is modeled using the DD2 equation of state [30].
DD2 provides P and 4 as functions of baryonic density p,
temperature 7, and reduced electron fraction Y,. It is based
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on a relativistic mean field model and is publicly available
in tabulated form at [31,32]. It predicts radius Ryg =
13.1 km and tidal deformability A = 860 for a 1.35M
neutron star.

Our algorithm for constructing equilibrium models
requires one-dimensional equations of state (EOS);
P = P(p). The 1D EOS we use for equilibrium construc-
tion are one-dimensional cuts of DD2, created by imposing
two conditions to determine Y, and T for each p. The first
condition is beta equilibrium; u, + p, = p, + p,, where we
take the electron neutrino chemical potential y, to be zero.
The second condition is an explicit choice for the dependence
of specific entropy s on density; s = s¢q (p). We also produce
one EOS, ColdStar, for which the temperature is
T = 0.01 MeV, the table minimum temperature. Based on
the choice of 5.4 (p), we have the following nomenclature for
the EOSs; CE1 corresponds to constant specific entropy,
s = 1 kg /baryon, CE2 corresponds to s = 2.2 kg /baryon.
VE1 is a variable entropy cut motivated by the thermody-
namic profile of the merger remnant in Perego et al. [33]. It
has specific entropy varying between 1073—6 kj /baryon for
NS density range 10'-10'® gm/cm?. VE2 has entropy
varying between 3 kg /baryon and 1 kg /baryon for the same
density range.

Profiles of EOS cuts are shown in Fig. 2, where we plot
more than three decades of density up to the highest
neutron star maximum density, the range relevant to the
structure of our stars. Comparison of P to P.(T =
0.01 MeV) indicates the degree of degeneracy; we see
that the cores are always degenerate but the envelopes are
not (reflecting the expected outcome of mergers). Because
of entropy and composition (Y,) gradients in the equilib-
rium star, when perturbed, these stars will move to regions
of the equation of state space outside the cut used to
construct equilibria, another way in which our stars fall
outside the domain of turning point theorems. Therefore,
we also compare I'=dIn P/dlnp|szscq(p) to T'y=
dInP/dInp|,_ .. to indicate the strength of buoyancy
forces in the nonisentropic cases.

The entropy profile for VE1 has a sharp change in slope,
which leads to a density regime of very shallow P vs p.
In fact, dP/dp is actually slightly negative in the range
2 x 10" gm/cm?-2.5 x 10'* gm/cm?, which can be seen
in the plot of I'. (Note that this is neither an isothermal nor
an adiabatic derivative; the fluid is thermodynamically
stable, and sound waves are stable.) In practice, the
equilibrium solve “jumps over” this density region, so
P(p) is effectively flat, reminiscent of a first-order phase
transition, and the resulting stellar profiles have an abrupt
jump in density. Although inadvertent, this feature allows
us to test the turning point criterion for equilibria with
density jumps, a feature which might appear in postmerger
remnants if a first-order phase transition from hadronic to
quark matter is present [34-38].

=
o
e

| — CE1
1071+ — CE2

—— ColdStar
| — v
10 VE2

s (kg/Baryon)

—— ColdStar
~ 101 — VE1
VE2
10!
i8]
Q.
a
10°
2
[
L Fa (VE2)
0 I (VE2)
1012 1013 1014 1015 1016

p (g/cm?3)

FIG. 2. Profiles of different EOS cuts plotted for density range
10'2-10'® gm/cm?3. First panel: specific entropy against density.
Second panel: temperature against density. Third panel: P/P,
against density, where P, is the pressure corresponding to
Coldstar. Fourth panel: I" against density.

B. Rotation profile and construction of equilibria

We produce axisymmetric equilibrium configurations
using the code of Cook et al. [39,40], which we call “RotNS.”
The spacetime metric is written in the form

ds* = —e'Adr* + **(dr* + r*d6?)
+ e"*r? sin® O(dep — wdt)?. (4)
The fluid motion is taken to be azimuthal, so the proper

velocity v, the Lorentz factor u’, and the specific angular
momentum j are

v = (Q—w)rsinfe, (5)
u' = (1 — UZ)—I/Ze—(ery)/Z’ (6)
j=u'uy = (u')?e’*r*sin? (Q — w). (7)

An integrability condition on the equation of hydrostatic
equilibrium requires we choose for the rotation law either
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uniform rotation (Q = constant) or that j = j(Q) or
Q = Q(j). The original RoiNs used the law j(Q) =
A%(Q.—Q) for constant A. This law does not allow
nonmonotonic rotation profiles of the sort seen in binary
neutron star simulations. Such profiles can be constructed if
Jj is taken to be the independent variable. Thus, following
Uryl et al. [41], we implement the following rotation law:

oo /B
Q(j; Q) = QCW’ (8)

i.e., we choose p = 1, ¢ = 3 from the more general law,
Eq. (2). A typical profile is shown in Fig. 1.

Given Q,, one can find j at any point (r, 8) by finding the
root of f;(j) = u'(Q[j])uy(Q[j]) — j = 0. Given j at each
point, the matter distribution is given by the Bernoulli
integral,

H(p) = Heq(j; Qc)

— eG4 )2+ 1R ()

1—-w

where H is the nonisentropic generalization of the specific
enthalpy [42],

__ [PdP

In(H) = o (10)

Here the integral is taken along the curve s = s¢4(p), { is an
integration constant, and the rotation profile integral

) i, d ) .
I(JQQC):/ J/FQ(J'QQc)dJ', (11)
0 J

is messy but analytic.

Let us call the equatorial radius r,, the polar radius r,
the maximum density p,., and its coordinate distance from
the axis r,,. To find a model for a single equilibrium, RotNS
specifies ppnac and the ratio #, =r,/r,. In addition to
solving for the metric, one needs to determine the appro-
priate constants Q. and {. This is done by an iterative
process of refining an initial guess. For the first p,,,, of each
sequence, we start with a TOV star and then adjust 7,
downward until the angular momentum J reaches the
desired value Jy4, a 1D root find for J(7,) — Jsq. For
the next p, ., the star on the sequence for the previous p,,«
serves as the initial guess.

The procedure for determining the global constants is the
following straightforward generalization of the original
RotNS. First, we define scaled metric potentials p = pr;2,
7 =yr;2, a = ar;?. These shall be taken as fixed for the
relaxation procedure.

Atthe pole, Q=Q.,v=j=0,h=1, so

1= Heq(j =0,r=0,Q.)
=(1- g)e(p,)+r,,>/2+1<0;96)’ (12)

which provides an equation for {. There are also two
equations at the equator (r =r,, 6 = /2, j=j,) and
another two at the point of maximum density (r = r,,,
0 =n/2, j = j,)- These equations are

1= Heq(j =Jes T =T¢,0 = ﬂ/Z;QL‘)’ (13)
Je = [“tu(ﬁ](j =Je T =7, 0= ”/Z;Qc)v (14)

H(pmax) = Heq(j = Jms T =T, 0= 77"/2;90)7 (15)

Jm = [utugf)](j = Jms T =Ty, 0 = ”/2;96‘)‘ (16)

We solve these using Newton’s method for the global
parameters (., j,., Jo» I'.)- When the maximum density is
at the center, we use instead a 2D root finder, solving
Egs. (13) and (14) for (Q.,j,).

The parameters A and B in Eq. (8) must also be specified.
In some sequences below, we take them to be constant.
Alternatively, we can fix the ratios Q,,,,/Q. and Q,/Q,,
where Q.. i1s the maximum value of € (note: not the value
of Q where p = p.x), and Q, is the equatorial Q. Given
these ratios, A and B can be determined by a 2D root find,
which does not converge for desired angular momentum if
the solve for A and B is performed within the relaxation for
a single model. Instead, the solver for A and B must be the
outer stage of the relaxation. If precise values of the ratios
are not needed, a close approximation is obtained by
solving for A and B at the completion of each successful
new model, assuming one takes fairly small steps in p,.-
Fixing angular velocity ratios is what was used for the
sequences in Uryd et al. [41].

We stress that there is no correct or (known) physically
realistic choice in how to specify A and B. This is part of the
ambiguity inherent in defining sequences and attempting to
apply a turning point criterion in a parameter space of
differentially rotating stars, something that is less likely to
be noticed when using a rotation law family (like the j-
constant family) with only one differential rotation param-
eter, which might seem natural to hold constant. Whether
this ambiguity turns out to be important in predicting
stability is something we address in this study.

C. Numerical evolution

We evolve using the Spectral Einstein Code (SpEC) [43]. SpEC
evolves the fluid using a conventional high-resolution
shock capturing finite difference method, and it evolves
the spacetime metric in the generalized harmonic formu-
lation using a multidomain pseudospectral method.
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Because the unstable mode triggering radial collapse is
expected to be axisymmetric, and because we evolve many
equilibria, we use the 2D axisymmetric version of SpEC.
Our multipatch 2D hydrodynamics code is described in
detail in Jesse et al. [44]. In that work, we had not
developed an axisymmetric version of the pseudospectral
metric evolution, so we were forced to evolve the metric on
a 3D grid of colocation points for those applications with
dynamical spacetimes. Although inefficient, this method
allowed accurate simulations of differentially rotating
neutron stars for tens of milliseconds, but eventually such
simulations succumbed to accumulating growth of viola-
tions in the constraint equations.

Here we introduce a new fully 2D version of SpEC, with
metric evolution now carried out on a 2D grid representing
a meridional cut through the presumed axisymmetic
system. Derivatives in the spatial direction perpendicular
to the evolution plane are computed using the Cartoon
method [45,46]. The Cartoon method solves the symmetry
condition for tensor T; L5347 = 0. (As Hilditch ez al. [46]
explain, this technique can be applied essentially
unchanged even for spatial derivatives of the metric
Jrgap €ven though this is not a covariant tensor.)

Given axisymmetry, only one side of the axis on a 2D cut
needs to be evolved; the other is determined by the
symmetry and can be replaced by appropriate symmetry/
regularity boundary conditions on the axis. For this project,
we have taken the algorithmically simpler path of evolving
both sides. The spectral grid is then constructed of con-
centric circular wedge domains (corresponding to
Chebysheyv radial basis functions and Fourier angular basis
functions) with a filled shape in the center (corresponding
to Matsushima-Marcus basis functions [47]). We choose
angular colocation points such that no points lie on the axis,
and the grid is exactly symmetric across the axis.

In principle, roundoff error could lead to a breakdown of
the symmetry across the axis. This does not appear to be an
issue in our simulations, but we have carried out simu-
lations which enforce symmetry by replacing each com-
ponent g, and d,g,, after each time step with the average
of the component on both sides of the axis (with appro-
priate symmetry factors). This is inexpensive because
symmetric pairs of points lie on the same domain and thus
on the same processor. We see little difference with or
without averaging but have used it for the simulations
reported here.

Filtering is necessary for long-term stable evolutions,
and it is applied to the spacetime evolution variables, i.e.,
the 4-metric and its evolved first spacetime derivatives. In
each subdomain of the pseudospectral grid, there will be
two natural internal coordinates; Cartesian-like for rectan-
gular domains, polarlike for circular annuli. For internal
coordinate d, spectral expansion of functions are carried out
using basis functions P;(x,), where the mode number i is
between 0 and N,. Filtering is done by suppressing basis

function expansion coefficients for high-i modes. In angu-
lar directions, we always set the highest two modes to zero.
In all directions, we multiply the expansion coefficients by
a suppression factor of the form exp[—a(i/N,)’], where a
wide range of @ and P choices are acceptable, so long as
they are chosen to affect only the highest modes but to
suppress them strongly.

Figures 3 and 4 show the results of some tests of the new
code. First, we perform a very long-time evolution of a Kerr-
Schild black hole with spin a/M = 0.5. The system should
be stationary but involves strong curvature. The grid consists
of 17 concentric annuli covering radii 1.82M—-800M with
total number of radial and angular gridpoints (N,,N,) of
(306, 18), (374, 22), and (442, 26) at resolutions Lev1, Lev2,
and Lev3, respectively. Results are shown in Fig. 3. On the
top panel, we plot the violation of the generalized harmonic
constraints C, normalized to the size of the terms in the
constraints N . For each, we compute a volume integral L,

norm; L,(u) = \/(f u?dV) /([ dV). Constraint plots see

rapid convergence with resolution and a quick settling to
numerical equilibrium followed by stasis through the end of

—— Levl |
---- Lev2
) —— Lev3
3 1074
0
-~
=
)
g
10_5 T
0 20 40 60
t(1000M)
EqQSym, Rpary =800
10-8 —— Lev2 no EqSym, Rpgry = 800
—— Lev2 no EqSym, Rpgry = 1900
°
8
~ 10—9 i
10—10 ' i .
0 20 40 60
t(1000M)
FIG. 3. Test evolutions of an isolated Kerr black hole in 2D.

Top: the constraint violation at three resolutions. Botfom: the
norm on the time derivative of the metric. Runs all have the same
resolution, corresponding to Lev2. They differ in whether
equatorial symmetry (“EqSym”) is imposed and in the location
of the outer boundary Rygyy-
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FIG. 4. Tests of SpeC’s 2D metric evolution code. Error for an
axisymmetric gravitational wave. The sharp drop in L2(g —17)
(the deviation of the metric from Minkowski) is when the wave
reaches the outer boundary at r = R4,y and passes through.

the evolution at 80,000 For these tests, we impose not only
symmetry across the symmetry axis, but also symmetry
across the equator. The reason for this is to counteract a issue
with the gauge boundary condition in the SpEC code,
previously reported in binary black hole simulations
[48,49], which causes the center of mass to drift at late
times if symmetries are not explicitly imposed. The radial
and angular filtering mentioned above is also crucial for good
late-time behavior in this test. A demonstration of the gauge
effect is shown in the bottom panel, which includes for
comparison two runs which did not impose equatorial

symmetry. Here we plot the L, norm of /X309, ggﬁ, where

the time derivative is computed from the difference in the
metric over time interval A = M. This norm is much more
sensitive to subtle dynamics than the constraint violations
and shows the onset of trouble, when present, much sooner.
Allruns in this plot have Lev2 resolution, but some have extra
annuli to extend the outer boundary to 1,900M. We see that
failing to impose equatorial symmetry leads to a drift in the
metric, although it is ameliorated by moving the outer
boundary farther away.'

For a dynamical vacuum problem, we evolve a radially
outgoing £ =2, m = 0 gravitational wave packet. The
packet initial amplitude is a Gaussian with width 1.5 and
peak amplitude 10~* centered at distance r = 15 from the
origin. The outer boundary for the run shown in the figure
is at Ryqr, = 60. For the reported simulation, the total grid
(N,.N,) = (468,22) (including the circle in the middle).
The wave propagates to the boundary and leaves the grid,
with g, remaining very close to the analytic solution of the
linearized Einstein equations. We demonstrate this by

'An earlier version of this paper on arXiv reports this drift as
an always-present, unsolved problem. This was before we tried
imposing equatorial symmetry and slightly stronger filtering.

comparing L;(ges — ghys) (our error, plus the small effect
of nonlinearities) to L,(ghy —14p) (a measure of the
strength of the wave). Eventually, after about 36 Ryqyy,
long after the wave has passed, constraint violations begin
to grow and eventually spoil the simulation. This is another
manifestation of the boundary problem, and it can be
delayed—apparently without limit—by moving the outer
boundary sufficiently outward. One might find it surprising
that this particular simulation evolved low-amplitude,
residual scattered gravitational waves on Minkowski space
for less time than the black hole simulation was able to
evolve a strongly curved spacetime, but that is only because
the boundary was so much closer in the wave test.

Both of these tests indicate a need to improve the outer
boundary condition in 2D simulations for future studies
involving very long evolution times. Checks of our ability
to accurately and stably evolve equilibrium rotating star
spacetimes are reported in the next section.

III. SEQUENCES AND STABILITY TESTING

For this study, we have evolved more than 200 models on
31 different constant angular momentum sequences. The
initial data for these models are characterized by different
angular momenta, four different 1D EOS (encompassing
nonisentropic variants) and two distinct rotation laws. The
angular momenta, EOS details, parameters of Uryii rotation

TABLE I.  List of constant-J sequences in this study. From left
to right, the columns represent the entropy profiles, angular
momenta, Uryl rotation law parameters A, B, and sequence
names, respectively.

EOS J A B Name A
CEl1 6 0.79 0.55 A 0.041 £ 0.024
6.5 0.79 0.55 B 0.063 £ 0.009
8.5 1.45 1.48 C 0.059 £0.014
11 1.61 1.64 D 0.099 + 0.006
10 1.22 0.92 E 0.108 £ 0.020
11 1.10 0.83 F 0.101 £0.014
CE2 11 0.96 0.73 G 0.095 £0.018
10 0.87 0.60 H 0.099 +£0.014
10 0.91 0.63 1 0.096 £+ 0.010
10 0.82 0.57 J 0.072 £0.014
11 0.89 0.62 K 0.061 £ 0.008
11 0.94 0.65 L 0.096 £ 0.010
9 0.88 0.60 M 0.066 £ 0.021
9 1.03 0.72 N 0.089 +£0.012
VE1 10 0.65 0.45 (0] 0.100 + 0.005
7 0.65 0.45 P 0.096 + 0.096
4 0.65 0.45 Q 0.075 £ 0.003
VE2 10 1.08 0.75 R 0.083 + 0.005
7 0.98 0.68 S 0.080 + 0.009
7 1.08 0.75 T 0.063 £ 0.009
4 0.93 0.65 U 0.068 £ 0.007
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law (A, B), and names of these sequences are reported in
Table 1. Also included for each sequence is the number A
which quantifies the difference between the density of
maximum mass (pn.) and the critical density separating
stable from unstable configurations (p;). We define
A = (Pmax — Perit)/ Pmax- Because only a discrete set of
equilibria are evolved, we actually only know the density of
the highest-density stable evolved model, pg., and of the
lowest-density unstable evolved model, psapie- Thus, we
estimate pei = (Pstable + Punstable)/2 and calculate the asso-
ciated error as (Punsable — Pstable)/ (2Pmax ). For the ease of
visibility, we have not shown all the models we evolved on
the plots to avoid too many data points on the sequences.
The stability tests are conducted on a dynamical timescale
spanning a few oscillation periods. This is adequate for
assessing stability, as the collapse of a dynamically
unstable hypermassive neutron star into a black hole occurs
within this timescale. As a result, no viscous or radiation
effects are included.

The fluid is evolved on a 2D uniform Cartesian grid,
covering a square that includes the star. The metric is
evolved on a separate 2D pseudospectral grid. The pseu-
dospectral grid includes a disk at the center surrounded by
concentric annuli. The disk and the annuli all have the same
angular resolution. The outer annuli are chosen to have
larger radial extent than the inner ones to allow grid to be
concentrated inside the star.

We carry out tests on unperturbed models to determine
adequate grid resolution. Six different resolutions for the
fluid and pseudospectral grid are used, labeled “Levl”
through “Lev6,” with Lev1 the lowest and Lev6 the highest
resolution. It should be noted that these resolutions are
distinct from the resolutions for 2D dynamical metric
evolution discussed in Sec. II.

Figure 5 demonstrates the effect of resolution on
evolution. We plot maximum density and the L,-norm
of generalized harmonic constraint [L,(C)/L,(N.)]
against time. We see convergence toward stationarity and
constraint satisfaction at low resolutions, but at sufficiently
high resolution, deviation from equilibrium and constraint
violation are dominated by the finite error of the RotNS
initial data. As is evident from the figure, increasing the
resolution beyond Lev3 does not have a significant impact
on maximum density and L,(C)/L,(N..). The resolution of
the Lev3 fluid grid is 300% colocation points extending up
to ~18 km. Its pseudospectral grid has a disk at the center
followed by five concentric annuli with angular extents of
50 for all of them. The total number of radial layers of
colocation points (unevenly spaced, as mentioned above) is
564, extending out to a distance of 2940 km.

When testing stability, it is useful to introduce a perturba-
tion in the equilibrium configuration, rather than relying on
truncation error to produce a resolution-dependent perturba-
tion. As our perturbation, we slightly increase the conserved
energy evolution variable 7 [44] in the envelope, correspond-
ing to a small increase in the temperature and hence the

=80 — Levl
IS — Lev2
%7-9 — Lev3
b — Lev4
S7.8 S — Lev5 |
E v — —— Lev6 |
&77
— Levl
0.015 —— Lev2
=3 —— Lev3
='0.010 —— Lev4 -
g . —— Lev5
<0.005 — Levé |
0.0 0.5 1.0 1.5 2.0 2.5 3.0
t (ms)
FIG.5. Convergence tests for a sample hypermassive star with a

maximum energy density of 8.897 x 10'* g/cm? from sequence
F (see Table I). Levl through Lev6 represent low to high
resolution, respectively. The optimal grid resolution found was
Lev3. Top: maximum baryonic density vs time; Botfom: nor-
malized error of the generalized harmonic constraints.

pressure of the outer layers. This reduces the pressure
gradient countering gravity and so leads to a small contrac-
tion of the core. We check that the perturbation is small
enough that the initial violation of the constraint equations is
not increased. Furthermore, we ensure that varying the
amplitude of the perturbation does not alter which stars
are stable and which are unstable for a sample sequence.
Figure 6 illustrates the rotation profile of sequence G at
t=0ms and at t = 6 ms (at the end of the dynamical
evolution). Note that the Q does not monotonically
decrease with radius but has a peak between the center
and the equator. Since we are simulating postmerger
remnantlike stars, we use Q,./€. in the range 1.4-2.1
and Q.,/Q in the range 0.3-0.8 for our evolutions [24].

=
%
o
~
P

FIG. 6. Angular velocity Q as a function of coordinate distance
from the rotation axis @ along the equator at + =0 ms and
t =6 ms with A =0.96 and B = 0.73.
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The rotation profile is preserved throughout the evolution,
indicating the model is in equilibrium. This is in contrast to
what was found for some toroidal stars with this rotational
profile evolved under the assumption of conformal flatness
[50]. The figure shows Q of a model with p,.. =
7.3 x 10 gecm™3. We checked Q for higher-energy density
stable stars on the sequence, and they show the same
stationarity. Furthermore, the density profile also does not
change much (less than 4% at all points on the axis).

IV. RESULTS
A. Stability

In this subsection, we discuss the main results regarding
stability. Figure 7 displays the evolution of the models on
one of the equilibrium sequences (sequence G). Here we

Sequence G (€max in 101> g/cm? units)

1.30
—— £max = 1.0046
1.251 —— Emax = 0.9653
—— £max = 0.9275
s % —— £y = 0.8912
8 1.15 —— Emax = 0.8564
S —— £max = 0.8229
X110 Emax = 0.7907
S
< 1.05-
1.00 4~ M
0.95 :
0 1 2 3 4 5

t (ms)

FIG.7. Evolution of the maximum baryonic density normalized
to its initial value. All models are from the same sequence G with
A = 0.96 and B = 0.73. The labels indicate the maximum energy
densities from sequence G in 10'> g/cm? units.

EOS: CE1

— J=35
— TOV
—— Mass Shedding Sequence

2.00 ; T " T ; T
0.75 1.00 1.25 150 1.75 2.00 2.25 2.50

Emax (1013 g/cm?3)

FIG. 8.

show some representative models that were evolved for this
sequence near the turning point. The maximum density
normalized to its initial value against time is presented. The
evolution was performed for 6 ms. The perturbation was
applied on the stars at + = 0. Notice that the stars with the
higher energy densities collapse within the dynamical
timescale (~1-2 ms). The low-energy density stars, on
the other hand, oscillate about their equilibria but remain
stable on the relevant timescale. All the stars that are stable
fall on the low density side of the turning point (for this
particular sequence at ~0.97 x 10" g/cm?), thus obeying
the turning point criterion. This feature can be observed in
all the other sequences, where the higher-energy density
stars will collapse within ~1-2 ms and the lower density
stars are stable and oscillate. All the stars on the left side of
the turning point are not necessarily stable as pointed out by
Weih et al. [13]. Since the actual onset of instability is
marked by the neutral stability point which may lie to the
left of the turning point [17], some stars on the left side of
the turning point are unstable. Nevertheless, it can still be
concluded that the instability is reached at or before the
turning point, making the turning point criterion a sufficient
condition for instability. Our findings for all the sequences
conform to this. The oscillations in the stable stars are due
to the perturbation. If the same star is evolved without
perturbation, the oscillation amplitude is much smaller
(although not exactly zero, due to truncation error).

What has been illustrated in Fig. 7 for one sequence can be
succinctly presented in the sequence plots (see Figs. 8—10),
given that the focus of this study is the stability of these
models. These figures show the gravitational mass vs the
maximum energy density of constant angular momentum
sequences.

First, we reproduce the finding of Weih ef al. for a
monotonic rotation law for a small sample of cases. The
left panel of Fig. 8 shows the sequences for CE1 equation of

EOS: CE1

M

Tettty

0.6 0.8 1.0 1.2 1.4 1.6
Emax (101 g/cm?3)

Constant angular momentum sequences for CE1 entropy profile. The filled and empty shapes represent the stable and unstable

configurations, respectively. Left: Sequences with j-constant rotation law [Eq. (1)]. Apart from j-sequences the TOV and mass-shedding
sequence are shown. Right: sequences with Uryi rotation law [Eq. (8)].
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EOS: CE2

3.6471

3.624

3.60+

3.58+

3.50+

M/M

3.46-
3.38~

3.371

3.36+1

3.351

3.34 -

06 07 08 09 10 11 1.2
Emax (101> g/cm?3)

EOS: VE1 and VE2

—— 0O
3.48 —=— R
- /’\
3.107
""ee_eeee-e-e-e.e_s_e o P
3.081 —= S
S 3.06 T
Ny
3.041
3.021
—— Q ..l'.'
2.701 u
2.681
2.661
08 09 10 1.1 12 13 14 15 16

Emax (101> g/cm?3)

FIG. 9. Constant angular momentum sequences for Uryi rotation law. Left: Sequences with CE2 entropy profiles; Right: Sequences

with variable entropy profiles (VE1 and VE2).

state for j-constant rotation law. The top and the bottom
curves represent the mass shedding and the TOV sequences,
respectively. The middle curves represent J = 3.5 and J =
3.8 sequences with a rotation parameter A = 0.2. The filled
and unfilled markers on all the sequence figures represent the
stars that were evolved on that respective sequence. The filled
shapes represent the stars that were stable after the evolution
and the hollow ones represent the stars that collapsed into a
black hole (the density blew up) within the dynamical
timescale. We find that the sequences with j-constant law
follow the turning point criterion. All the stable stars lie on
the low density side of the turning point. This result is
consistent with the findings of Weih et al. [13].

In the right panel of Fig. 8 the constant angular
momentum sequences with the Uryl et al. rotation law
for the CE1 EOS cut are presented. The angular momenta
of the sequences are 6, 6.5, 8.5, 10, and 11 (see Table I). All
the stable stars lie on the left of the turning point.
Furthermore, the transition from stable to unstable stars
is close (within ~0.2 x 10" g/cm?) to the turning point,
consistent with the approximate turning point conjecture of
Kaplan et al. [19].

In Fig. 9, different panels show sequences with different
1D cuts of the 3D DD2 equation of states. We note that

because these sequences have constant s(p), they do not
have constant total entropy or total entropy per baryon. As
Pmax 10CTEases along a sequence, more of the low-entropy
high-density region is sampled, and the specific entropy
averaged over the star decreases. The panel on the left
shows sequences of equation of state cut CE2. The panel on
the right shows sequences with equation of state of variable
entropy VE1 and VE2. The panels have been divided
according to angular momentum ranges and EOSs for
better visualization. Each of the sequences are constructed
with different angular momenta and different combinations
of A and B (see Table I). The A and B combinations are
chosen to make neutron star mergerlike profiles. It is
reflected in Fig. 6, where the rotation profile of a star on
sequence G is plotted. The rotation profiles, in particular
the Q¢ /€2 and the Q. /Q., of the stars are similar to that
of a neutron star merger remnant. It should be noted here
that the maximum mass of the TOV sequences for all the
EOS cuts and Uryta rotation law lies in the range
2.42M 5-2.44M 5. Therefore, all the sequences here have
maximum mass 20%-50% higher than the TOV mass
indicating the stars on these sequences are hypermassive.
The stability of stars on these sequences also conform to the
approximate turning point conjecture.
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3.12

3.11 1

3.10 1

3.09 1

3.08 1

3'07-l T T T T T
0.9 1.0 1.1 1.2 1.3 1.4

FIG. 10. Constant angular momentum sequences with the same
angular momentum (J=7), same A (A=0.65) and B
(B = 0.45) parameters but different entropy profiles.

In Fig. 10 we exhibit the effects of different entropy
profiles on the turning point theorem. In order to do so, we
show four sequences, all of them having angular momen-
tum J =7, Uryl rotation law parameters A = 0.65 and
B =0.45 and vary the entropy profiles only. All the
sequences in this figure also satisfy the approximate turning
point criterion. The equilibrium sequences themselves do
not change greatly between one of the entropy profiles
studied and another, which is not surprising given that the
central region is degenerate in all cases. However, the mode
determining radial stability extends into the nondegenerate
region, so these simulations were needed to check the effect
of entropy on dynamical stability.

Constant angular momentum sequences with constant A
and B are not the unique way to construct sequences with
this 2-parameter rotation law. This points to a certain
ambiguity of application in the turning point criterion.
Suppose a star belongs to two sequences of the same J but
with different rotation profile parameter held fixed. Could
the star be on the stable branch of one and the unstable
branch of the other? We have therefore also evolved several
constant J sequences with constant €., /Q. and Q. /Q.
(see Fig. 11 and Table II). The M vs p.x plots for these
sequences are very close to the sequences of constant A and
B with which they share a common starting point, so
naturally the approximate turning point method works
equally well for them. This is consistent with the
assumption that M does not depend on angular momentum
distribution to first order.

B. Dependence of M,,, on A and B

It is already evident from the constant J sequence plots
that the maximum mass does not vary greatly (~0.4%) with
A and B parameters of the Uryl law as compared with its
variation along angular momentum or the EOS cuts. This is
consistent with the assumption of Kaplan et al. that M,
depends to first order only on the total angular momentum

3.621
3.601
3.581

3.561

3.491 —-— W
— Y

3.481

3.47

3.461
3.451

3.0975+
3.0950+

3.0925+

3.0900+

07 08 09 10 11 12 13

FIG. 11. Constant angular momentum and constant angular
velocity sequences (see Table II).

(and other global conserved quantities) and not its
distribution.

Nevertheless, it is interesting to consider, for a flexible
rotation law family like the Uryt law, what angular
momentum distribution gives the largest increase in
M .« for a given J. For this form of rotation law and a
given equation of state, one can consider M, a function of
J, A, and B; M, (J; A, B). For J = 0, we must recover the
TOV limit for any A and B; M, (0;A, B) = M1ov max-
Except for extremely high J, the effect of rotation can be
well-approximated by the lowest-order quadratic [51]
correction,

TABLEIIL. List of constant-J and constant angular velocity ratio
sequences. From left to right, the columns represent the entropy
profiles, angular momenta, ratio of maximum angular velocity to
the central angular velocity, ratio of equatorial angular velocity to
the central angular velocity, and sequence names, respectively.

EOS J Qo / Qe Q,,/Q, Name
CE2 11 1.4 0.7 \%
VE1 10 2.0 0.3 w
7 2.0 0.3 X
VE2 10 2.0 0.5 Y
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1.0 2.7288
0.9 2.7272
0.8 2.7256
0.7 2.72403g
0.6 2.7224
0.5 2.7208
O'%’.3 0.4 0.5 ) 0.6 0.7 0.8 27192

FIG. 12. Maximum mass for J = 4 sequences as a function of
Uryt law rotation parameters A and B.

dM max
d(J?)

Mmax(J;A7B) zMTOVmaX"’ < )(A’B)‘ﬂ' (17)

We can estimate this derivative dM,,,,/d(J?) as a function
of A and B by calculating the maximum mass for a modest
J but a wide range of A and B. To this end, we have
systematically explored the dependence of the maximum
mass for entropy profile CE2 on A and B for one fixed J.
Figure 12 illustrates the maximum mass of the sequences
with J = 4 in the parameter space of A and B parameters of
the Uryt rotation law. Note that this J is lower than that of
most of the hypermassive sequences studied above. The
plot shows not what is the greatest M ,,,, attainable at any J,
but which distribution of angular momentum gives the
greatest enhancement of maximum mass for a given modest
total angular momentum. In this plot the parameter A has
been varied with an increment of 0.05, starting from 0.3
varying up to 0.8. The increment in B is the same with a
range 0.4-1.05. We find that the maximum mass is more
sensitive to A as compared to B in this range. This indicates
greater sensitivity to the form of the rotation law at high j
(farther from the axis) rather than at low j (closer to the
axis). One might have expected the opposite, presuming
that rotational support in the inner region would be most
helpful in resisting gravitational collapse. However, for
these realistic, nonmonotonic rotation profiles, rotation
support is fairly unimportant in the core but crucial in
the envelope [22]. Highest M, for a given J is obtained
for low A.

V. SUMMARY AND CONCLUSIONS

We have seen that the approximate turning point method
successfully predicts stability for the range of entropy and
nonmonotonic rotation profiles studied, chosen to model
postmerger equilibria more realistically than previously
realized. No doubt it would be possible to devise rotation

and entropy profiles that resemble postmerger remnants
even more closely. However, if the goal is to test turning
point methods in extreme conditions under which they
might fail, perhaps a better strategy would be to investigate
less realistic profiles. For example, significantly wider
exploration of entropy effects will confront the inconven-
ience that entropies high enough for a nondegenerate core
will (assuming one insists on convectively stable ds/dp < 0
profiles) have thermally supported envelopes with extended
low density region. This can, in fact, make the mass-shedding
limit more severe [19].

In the process of carrying out this exploration of rotation
law parameter space for hypermassive neutron stars with
Uryl et al. equilibria, we have shown that we can generalize
the RotNS code to cover a fair approximation to the realistic
range of postmerger remnant rotation and entropy profiles.
Investigations of the late-time (~ seconds) evolution of
binary neutron star and black hole-neutron star mergers
often resort to 2D axisymmetric simulations. The initial data
for these simulations has been either simple equilibria (e.g.,
constant entropy, j-constant rotation), which are artificial, or
azimuthally averaged profiles of 3D mergers, and this
averaging is a strong and sudden perturbation of the 3D
system (even many that are “roughly axisymmetric”) and can
produce worrying transients. Axisymmetric equilibria with
profiles extracted from merger simulations [e.g., afitto A, B,
and s(p)] might provide an attractive combination of the best
of these two methods; arguably capturing as much realism
from 3D merger profiles as 2D can accommodate while
avoiding transients.
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