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Binary neutron star mergers produce massive, hot, rapidly differentially rotating neutron star remnants;

electromagnetic and gravitational wave signals associated with the subsequent evolution depend on the

stability of these remnants. Stability of relativistic stars has previously been studied for uniform rotation

and for a class of differential rotation with monotonic angular velocity profiles. Stability of those equilibria

to axisymmetric perturbations was found to respect a turning point criterion: along a constant angular

momentum sequence, the onset of unstable stars is found at maximum density less than but close to the

density of maximum mass. In this paper, we test this turning point criterion for nonmonotonic angular

velocity profiles and nonisentropic entropy profiles, both chosen to more realistically model postmerger

equilibria. Stability is assessed by evolving perturbed equilibria in 2D using the Spectral Einstein Code. We

present tests of the code’s new capability for axisymmetric metric evolution. We confirm the turning point

theorem and determine the region of our rotation law parameter space that provides highest maximum mass

for a given angular momentum.

DOI: 10.1103/PhysRevD.110.124063

I. INTRODUCTION

Binary neutron starmergers are importantmultimessenger

astrophysical sources and probes of high-density matter.

Gravitational waves from the late inspirals of such events

have now been detected [1,2], in one case accompanied by

electromagnetic counterparts [3]. The high-frequency post-

merger gravitational waveform and the electromagnetic

signals (e.g., kilonova, gamma ray burst) are sensitive to

the fate of the postmerger remnant. This will be a hot, rapidly

and differentially rotating star, which, depending on the

binary mass and the equation of state, might collapse

promptly to a black hole,might persist until secular evolution

drives it to an unstable state followed by collapse, or might

persist for longer times as a supramassive neutron star or

indefinitely as a regular neutron star. In delayed and no

collapse cases, the remnant persists for many dynamical

timescales, therefore in quasiequilibrium configurations.

The presence and timescale of prompt or delayed collapse

depends crucially on the stability of these equilibria to

collapse. (For review of binary neutron stars, see [4–6].)
Although the stability of stellar equilibria is a classic

problem [7–12], the stability of hypermassive neutron stars
is addressed in relatively few studies (e.g., [13–16]), and
much remains unknown. Stability of relativistic stellar
equilibria can be determined by finding the eigenfrequen-
cies of linear perturbations or by full nonlinear numerical
evolutions. A way of evaluating stability from equilibria
alone, without any sort of evolution, would be extremely
helpful. This explains interest in turning point methods,
which provide information about stability from sequences
of equilibria. A sequence here means a one-dimensional
slice in the space of equilibria, usually parametrized by the
maximum baryonic density ρmax. For arbitrary rotation,
entropy, and composition profiles, this space would be
infinite dimensional.
The turning point theorem [11,12,17] applies to uni-

formly rotating stars. It assumes a one-parameter equation
of state and, furthermore, that the pulsations of the star are
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governed by the same one-parameter equation of state.
Because uniform rotation is presumed to persist, it is a
criterion for secular stability, i.e., stability on timescales on
which uniform rotation is enforced. The theorem applies to
axisymmetric modes, the ones related to collapse, and does
not address nonaxisymmetric rotational instabilities.
[Indeed, many quasitoroidal differentially rotating neutron
stars are found to be unstable to nonaxisymmetric (one-arm
and bar mode) instabilities [16].] The space of equilibria is
then two-dimensional, with total baryonic mass M0 (the
number of nucleons multiplied by a fiducial mass per
baryon) and total angular momentum J uniquely determin-
ing a star. A constant-J subspace is a 1D sequence. If the
total gravitational massM on the sequence has a maximum,
then stars on the sequence at higher ρmax are unstable. The
neutral point on the sequence separating secularly stable
from unstable stars is at slightly lower ρmax for nonzero J
[17]. Numerical evolutions find the dynamical stability
neutral point to be close to the turning point [13,18].

The turning point theorem does not apply to differentially

rotating or nonisentropic stars, but Kaplan et al. [19]

conjecture that the turning point criterion remains approx-

imately valid. Their argument presumes that equilibrium M
depends to first order only on conservedquantitiesM0, J, and
total entropy S, and not on the angular momentum and

entropy distributions. They also note that only “approximate

turning points” (not all conserved quantities having extrema

at the same point on the sequence) are found in general, but

they propose that this will be sufficient.

The stability of hypermassive neutron stars was studied,

and the conjecture by Kaplan et al. tested, by Weih et al.

[13] using numerical evolutions of these equilibria. To

construct equilibria, one must choose a rotation profile, and

Weih et al. chose the j-constant law,

jðΩÞ ¼ A2ðΩc −ΩÞ; ð1Þ

where j is the specific angular momentum, Ω is the angular

velocity, Ωc is the central angular velocity, and A is a free

parameter with dimensions of length which controls the

degree of the differential rotation. The name j-constant is
chosen because in the Newtonian limit the specific angular

momentum is constant [20,21].

Rotation profiles constructed with this law have Ω that

monotonically decreases with distance from the center of

the star. As Weih et al. themselves note, this is not a good

match for the rotation profiles observed in remnants

produced by binary neutron star merger simulations, which

predict a nonmonotonic Ω that peaks some distance away

from the rotation axis [22–28]. Rotation laws that do

capture this ΩðrÞ profile shape have been constructed by

Uryū et al. [29]. The key idea is to specify Ω as a function

of j rather than vice versa. In particular, one such profile is

Ωðj;ΩcÞ ¼ Ωc

1þ ½j=ðB2
ΩcÞ�p

1þ ½j=ðA2
ΩcÞ�qþp

; ð2Þ

where A, B, q, and p are specified constants. An example of

rotation profiles produced with the two laws is shown

in Fig. 1.

In this paper, which may be considered an extension of

the study of Weih et al., we investigate the stability of

hypermassive stars with nonmonotonic angular velocity

profiles. Furthermore, we consider a range of (convectively

stable) entropy profiles within the range plausible for

binary neutron star mergers. We introduce a new 2D

axisymmetric implementation of the Spectral Einstein Code

for our numerical evolutions. Our results vindicate the

approximate turning point criterion. In addition, we survey

the parameter space of Uryū et al. type rotation laws, seeing

which values of the parameters are conducive to high

maximum mass.

The organization of the paper is as follows. In Sec. II, we

discuss the methods of building our initial data and carrying

out evolutions. Next, in Sec. III, we discuss the numerical

experiments undertaken for this study. Results are pre-

sented and analyzed in Sec. IV. We summarize and

conclude in Sec. V. We use the geometrized units, in

which c ¼ G ¼ M⊙ ¼ 1, unless stated otherwise.

II. EQUILIBRIA AND EVOLUTION METHODS

A. Equation of state and entropy profile

The matter in the star is modeled as a perfect fluid with

stress-energy tensor,

Tμν ¼ ρhuμuν þ Pgμν; ð3Þ

where ρ is the baryonic density, h is the specific enthalpy,

uμ is the 4-velocity, and P is the pressure. The neutron star

matter is modeled using the DD2 equation of state [30].

DD2 provides P and h as functions of baryonic density ρ,

temperature T, and reduced electron fraction Ye. It is based

FIG. 1. Angular velocity Ω normalized to Ωc as a function of

coordinate distance from the axis ϖ along the equator for two

rotation laws. The top curve uses Eq. (2) with p ¼ 1, q ¼ 3,

A ¼ 0.96, B ¼ 0.73. The bottom curve uses Eq. (1) with A ¼ 0.2.
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on a relativistic mean field model and is publicly available

in tabulated form at [31,32]. It predicts radius RNS ¼
13.1 km and tidal deformability Λ ¼ 860 for a 1.35M⊙

neutron star.

Our algorithm for constructing equilibrium models

requires one-dimensional equations of state (EOS);

P ¼ PeqðρÞ. The 1D EOS we use for equilibrium construc-

tion are one-dimensional cuts of DD2, created by imposing

two conditions to determine Ye and T for each ρ. The first

condition is beta equilibrium; μp þ μe ¼ μn þ μν, where we

take the electron neutrino chemical potential μν to be zero.

The second condition is an explicit choice for the dependence

of specific entropy s on density; s ¼ seqðρÞ.We also produce

one EOS, ColdStar, for which the temperature is

T ¼ 0.01 MeV, the table minimum temperature. Based on

the choice of seqðρÞ, we have the following nomenclature for

the EOSs; CE1 corresponds to constant specific entropy,

s ¼ 1 kB=baryon, CE2 corresponds to s ¼ 2.2 kB=baryon.

VE1 is a variable entropy cut motivated by the thermody-

namic profile of the merger remnant in Perego et al. [33]. It

has specific entropy varying between 10−3–6 kB=baryon for

NS density range 1012–1016 gm=cm3. VE2 has entropy

varying between 3 kB=baryon and 1 kB=baryon for the same

density range.

Profiles of EOS cuts are shown in Fig. 2, where we plot

more than three decades of density up to the highest

neutron star maximum density, the range relevant to the

structure of our stars. Comparison of P to PcðT ¼
0.01 MeVÞ indicates the degree of degeneracy; we see

that the cores are always degenerate but the envelopes are

not (reflecting the expected outcome of mergers). Because

of entropy and composition (Ye) gradients in the equilib-

rium star, when perturbed, these stars will move to regions

of the equation of state space outside the cut used to

construct equilibria, another way in which our stars fall

outside the domain of turning point theorems. Therefore,

we also compare Γ≡ d lnP=d ln ρjs¼seqðρÞ to Γad ≡

d lnP=d ln ρjs¼const to indicate the strength of buoyancy

forces in the nonisentropic cases.

The entropy profile for VE1 has a sharp change in slope,

which leads to a density regime of very shallow P vs ρ.

In fact, dP=dρ is actually slightly negative in the range

2 × 1014 gm=cm3
–2.5 × 1014 gm=cm3, which can be seen

in the plot of Γ. (Note that this is neither an isothermal nor

an adiabatic derivative; the fluid is thermodynamically

stable, and sound waves are stable.) In practice, the

equilibrium solve “jumps over” this density region, so

PðρÞ is effectively flat, reminiscent of a first-order phase

transition, and the resulting stellar profiles have an abrupt

jump in density. Although inadvertent, this feature allows

us to test the turning point criterion for equilibria with

density jumps, a feature which might appear in postmerger

remnants if a first-order phase transition from hadronic to

quark matter is present [34–38].

B. Rotation profile and construction of equilibria

We produce axisymmetric equilibrium configurations

using the code of Cook et al. [39,40], which we call “RotNS.”

The spacetime metric is written in the form

ds2 ¼ −eγþλdt2 þ e2αðdr2 þ r2dθ2Þ
þ eγ−λr2 sin2 θðdϕ − ωdtÞ2: ð4Þ

The fluid motion is taken to be azimuthal, so the proper

velocity v, the Lorentz factor ut, and the specific angular

momentum j are

v ¼ ðΩ − ωÞr sin θe−λ; ð5Þ

ut ¼ ð1 − v2Þ−1=2e−ðρþγÞ=2; ð6Þ

j≡ utuϕ ¼ ðutÞ2eγ−λr2 sin2 θðΩ − ωÞ: ð7Þ

An integrability condition on the equation of hydrostatic

equilibrium requires we choose for the rotation law either

FIG. 2. Profiles of different EOS cuts plotted for density range

1012–1016 gm=cm3. First panel: specific entropy against density.

Second panel: temperature against density. Third panel: P=Pc

against density, where Pc is the pressure corresponding to

ColdStar. Fourth panel: Γ against density.

STABILITY OF HYPERMASSIVE NEUTRON STARS WITH … PHYS. REV. D 110, 124063 (2024)

124063-3



uniform rotation (Ω ¼ constant) or that j ¼ jðΩÞ or

Ω ¼ ΩðjÞ. The original RotNS used the law jðΩÞ ¼
A2ðΩc −ΩÞ for constant A. This law does not allow

nonmonotonic rotation profiles of the sort seen in binary

neutron star simulations. Such profiles can be constructed if

j is taken to be the independent variable. Thus, following

Uryū et al. [41], we implement the following rotation law:

Ωðj;ΩcÞ ¼ Ωc

1þ j=ðB2
ΩcÞ

1þ ½j=ðA2
ΩcÞ�4

; ð8Þ

i.e., we choose p ¼ 1, q ¼ 3 from the more general law,

Eq. (2). A typical profile is shown in Fig. 1.

GivenΩc, one can find j at any point ðr; θÞ by finding the
root of fjðjÞ≡ utðΩ½j�ÞuϕðΩ½j�Þ − j ¼ 0. Given j at each

point, the matter distribution is given by the Bernoulli

integral,

HðρÞ ¼ Heqðj;ΩcÞ

¼ 1 − ζ
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − v2
p exp½−ðλþ γÞ=2þ Iðj;ΩcÞ�; ð9Þ

where H is the nonisentropic generalization of the specific

enthalpy [42],

lnðHÞ≡
Z

P

0

dP

ρh
: ð10Þ

Here the integral is taken along the curve s ¼ seqðρÞ, ζ is an
integration constant, and the rotation profile integral

Iðj;ΩcÞ ¼
Z

j

0

j0
d

dj0
Ωðj0;ΩcÞdj0; ð11Þ

is messy but analytic.

Let us call the equatorial radius re, the polar radius rp,
the maximum density ρmax and its coordinate distance from

the axis rm. To find a model for a single equilibrium, RotNS

specifies ρmax and the ratio r̂p ≡ rp=re. In addition to

solving for the metric, one needs to determine the appro-

priate constants Ωc and ζ. This is done by an iterative

process of refining an initial guess. For the first ρmax of each

sequence, we start with a TOV star and then adjust r̂p
downward until the angular momentum J reaches the

desired value Jseq, a 1D root find for Jðr̂pÞ − Jseq. For

the next ρmax, the star on the sequence for the previous ρmax

serves as the initial guess.

The procedure for determining the global constants is the

following straightforward generalization of the original

RotNS. First, we define scaled metric potentials ρ̂≡ ρr−2e ,

γ̂ ≡ γr−2e , α̂≡ αr−2e . These shall be taken as fixed for the

relaxation procedure.

At the pole, Ω ¼ Ωc, v ¼ j ¼ 0, h ¼ 1, so

1 ¼ Heqðj ¼ 0; r ¼ 0;ΩcÞ
¼ ð1 − ζÞeðρpþγpÞ=2þIð0;ΩcÞ; ð12Þ

which provides an equation for ζ. There are also two

equations at the equator (r ¼ re, θ ¼ π=2, j ¼ je) and

another two at the point of maximum density (r ¼ rm,
θ ¼ π=2, j ¼ jm). These equations are

1 ¼ Heqðj ¼ je; r ¼ re; θ ¼ π=2;ΩcÞ; ð13Þ

je ¼ ½utuϕ�ðj ¼ je; r ¼ re; θ ¼ π=2;ΩcÞ; ð14Þ

HðρmaxÞ ¼ Heqðj ¼ jm; r ¼ rm; θ ¼ π=2;ΩcÞ; ð15Þ

jm ¼ ½utuϕ�ðj ¼ jm; r ¼ rm; θ ¼ π=2;ΩcÞ: ð16Þ

We solve these using Newton’s method for the global

parameters (Ωc, jm, je, re). When the maximum density is

at the center, we use instead a 2D root finder, solving

Eqs. (13) and (14) for (Ωc,je).
The parameters A and B in Eq. (8) must also be specified.

In some sequences below, we take them to be constant.

Alternatively, we can fix the ratios Ωmax=Ωc and Ωe=Ωc,

where Ωmax is the maximum value of Ω (note: not the value

of Ω where ρ ¼ ρmax), and Ωe is the equatorial Ω. Given

these ratios, A and B can be determined by a 2D root find,

which does not converge for desired angular momentum if

the solve for A and B is performed within the relaxation for

a single model. Instead, the solver for A and B must be the

outer stage of the relaxation. If precise values of the ratios

are not needed, a close approximation is obtained by

solving for A and B at the completion of each successful

new model, assuming one takes fairly small steps in ρmax.

Fixing angular velocity ratios is what was used for the

sequences in Uryū et al. [41].

We stress that there is no correct or (known) physically

realistic choice in how to specify A and B. This is part of the
ambiguity inherent in defining sequences and attempting to

apply a turning point criterion in a parameter space of

differentially rotating stars, something that is less likely to

be noticed when using a rotation law family (like the j-
constant family) with only one differential rotation param-

eter, which might seem natural to hold constant. Whether

this ambiguity turns out to be important in predicting

stability is something we address in this study.

C. Numerical evolution

We evolve using the Spectral EinsteinCode (SpEC) [43]. SpEC

evolves the fluid using a conventional high-resolution

shock capturing finite difference method, and it evolves

the spacetime metric in the generalized harmonic formu-

lation using a multidomain pseudospectral method.
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Because the unstable mode triggering radial collapse is

expected to be axisymmetric, and because we evolve many

equilibria, we use the 2D axisymmetric version of SpEC.

Our multipatch 2D hydrodynamics code is described in

detail in Jesse et al. [44]. In that work, we had not

developed an axisymmetric version of the pseudospectral

metric evolution, so we were forced to evolve the metric on

a 3D grid of colocation points for those applications with

dynamical spacetimes. Although inefficient, this method

allowed accurate simulations of differentially rotating

neutron stars for tens of milliseconds, but eventually such

simulations succumbed to accumulating growth of viola-

tions in the constraint equations.

Here we introduce a new fully 2D version of SpEC, with

metric evolution now carried out on a 2D grid representing

a meridional cut through the presumed axisymmetic

system. Derivatives in the spatial direction perpendicular

to the evolution plane are computed using the Cartoon

method [45,46]. The Cartoon method solves the symmetry

condition for tensor T; L∂=∂ϕT ¼ 0. (As Hilditch et al. [46]

explain, this technique can be applied essentially

unchanged even for spatial derivatives of the metric

∂kgαβ even though this is not a covariant tensor.)

Given axisymmetry, only one side of the axis on a 2D cut

needs to be evolved; the other is determined by the

symmetry and can be replaced by appropriate symmetry/

regularity boundary conditions on the axis. For this project,

we have taken the algorithmically simpler path of evolving

both sides. The spectral grid is then constructed of con-

centric circular wedge domains (corresponding to

Chebyshev radial basis functions and Fourier angular basis

functions) with a filled shape in the center (corresponding

to Matsushima-Marcus basis functions [47]). We choose

angular colocation points such that no points lie on the axis,

and the grid is exactly symmetric across the axis.

In principle, roundoff error could lead to a breakdown of

the symmetry across the axis. This does not appear to be an

issue in our simulations, but we have carried out simu-

lations which enforce symmetry by replacing each com-

ponent gμν and ∂αgμν after each time step with the average

of the component on both sides of the axis (with appro-

priate symmetry factors). This is inexpensive because

symmetric pairs of points lie on the same domain and thus

on the same processor. We see little difference with or

without averaging but have used it for the simulations

reported here.

Filtering is necessary for long-term stable evolutions,

and it is applied to the spacetime evolution variables, i.e.,

the 4-metric and its evolved first spacetime derivatives. In

each subdomain of the pseudospectral grid, there will be

two natural internal coordinates; Cartesian-like for rectan-

gular domains, polarlike for circular annuli. For internal

coordinate d, spectral expansion of functions are carried out
using basis functions PiðxdÞ, where the mode number i is
between 0 and Nd. Filtering is done by suppressing basis

function expansion coefficients for high-i modes. In angu-

lar directions, we always set the highest two modes to zero.

In all directions, we multiply the expansion coefficients by

a suppression factor of the form exp½−αði=NdÞP�, where a
wide range of α and P choices are acceptable, so long as

they are chosen to affect only the highest modes but to

suppress them strongly.

Figures 3 and 4 show the results of some tests of the new

code. First, we perform a very long-time evolution of a Kerr-

Schild black hole with spin a=M ¼ 0.5. The system should

be stationary but involves strong curvature. The grid consists

of 17 concentric annuli covering radii 1.82M–800M with

total number of radial and angular gridpoints ðNr; NϕÞ of

(306, 18), (374, 22), and (442, 26) at resolutions Lev1, Lev2,

and Lev3, respectively. Results are shown in Fig. 3. On the

top panel, we plot the violation of the generalized harmonic

constraints C, normalized to the size of the terms in the

constraints NC. For each, we compute a volume integral L2

norm; L2ðuÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð
R

u2dVÞ=ð
R

dVÞ
q

. Constraint plots see

rapid convergence with resolution and a quick settling to

numerical equilibrium followed by stasis through the end of

FIG. 3. Test evolutions of an isolated Kerr black hole in 2D.

Top: the constraint violation at three resolutions. Bottom: the

norm on the time derivative of the metric. Runs all have the same

resolution, corresponding to Lev2. They differ in whether

equatorial symmetry (“EqSym”) is imposed and in the location

of the outer boundary Rbdry.
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the evolution at80;000M. For these tests,we impose not only

symmetry across the symmetry axis, but also symmetry

across the equator. The reason for this is to counteract a issue

with the gauge boundary condition in the SpEC code,

previously reported in binary black hole simulations

[48,49], which causes the center of mass to drift at late

times if symmetries are not explicitly imposed. The radial

and angular filteringmentioned above is also crucial for good

late-time behavior in this test. A demonstration of the gauge

effect is shown in the bottom panel, which includes for

comparison two runs which did not impose equatorial

symmetry. Here we plot the L∞ norm of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Σαβ∂tg
2
αβ

q

, where

the time derivative is computed from the difference in the

metric over time interval Δt ¼ M. This norm is much more

sensitive to subtle dynamics than the constraint violations

and shows the onset of trouble, when present, much sooner.

All runs in this plot haveLev2 resolution, but somehave extra

annuli to extend the outer boundary to 1;900M. We see that

failing to impose equatorial symmetry leads to a drift in the

metric, although it is ameliorated by moving the outer

boundary farther away.
1

For a dynamical vacuum problem, we evolve a radially

outgoing l ¼ 2, m ¼ 0 gravitational wave packet. The

packet initial amplitude is a Gaussian with width 1.5 and

peak amplitude 10−4.5 centered at distance r ¼ 15 from the

origin. The outer boundary for the run shown in the figure

is at Rbdry ¼ 60. For the reported simulation, the total grid

ðNr; NϕÞ ¼ ð468; 22Þ (including the circle in the middle).

The wave propagates to the boundary and leaves the grid,

with gαβ remaining very close to the analytic solution of the

linearized Einstein equations. We demonstrate this by

comparing L2ðgαβ − glinαβÞ (our error, plus the small effect

of nonlinearities) to L2ðglinαβ − ηαβÞ (a measure of the

strength of the wave). Eventually, after about 36 Rbdry,

long after the wave has passed, constraint violations begin

to grow and eventually spoil the simulation. This is another

manifestation of the boundary problem, and it can be

delayed—apparently without limit—by moving the outer

boundary sufficiently outward. One might find it surprising

that this particular simulation evolved low-amplitude,

residual scattered gravitational waves on Minkowski space

for less time than the black hole simulation was able to

evolve a strongly curved spacetime, but that is only because

the boundary was so much closer in the wave test.

Both of these tests indicate a need to improve the outer

boundary condition in 2D simulations for future studies

involving very long evolution times. Checks of our ability

to accurately and stably evolve equilibrium rotating star

spacetimes are reported in the next section.

III. SEQUENCES AND STABILITY TESTING

For this study, we have evolved more than 200 models on

31 different constant angular momentum sequences. The

initial data for these models are characterized by different

angular momenta, four different 1D EOS (encompassing

nonisentropic variants) and two distinct rotation laws. The

angular momenta, EOS details, parameters of Uryū rotation

FIG. 4. Tests of SpEC’s 2D metric evolution code. Error for an

axisymmetric gravitational wave. The sharp drop in L2ðg − ηÞ
(the deviation of the metric from Minkowski) is when the wave

reaches the outer boundary at r ¼ Rbdry and passes through.

TABLE I. List of constant-J sequences in this study. From left

to right, the columns represent the entropy profiles, angular

momenta, Uryū rotation law parameters A, B, and sequence

names, respectively.

EOS J A B Name Δ

CE1 6 0.79 0.55 A 0.041� 0.024

6.5 0.79 0.55 B 0.063� 0.009

8.5 1.45 1.48 C 0.059� 0.014

11 1.61 1.64 D 0.099� 0.006

10 1.22 0.92 E 0.108� 0.020

11 1.10 0.83 F 0.101� 0.014

CE2 11 0.96 0.73 G 0.095� 0.018

10 0.87 0.60 H 0.099� 0.014

10 0.91 0.63 I 0.096� 0.010

10 0.82 0.57 J 0.072� 0.014

11 0.89 0.62 K 0.061� 0.008

11 0.94 0.65 L 0.096� 0.010

9 0.88 0.60 M 0.066� 0.021

9 1.03 0.72 N 0.089� 0.012

VE1 10 0.65 0.45 O 0.100� 0.005

7 0.65 0.45 P 0.096� 0.096

4 0.65 0.45 Q 0.075� 0.003

VE2 10 1.08 0.75 R 0.083� 0.005

7 0.98 0.68 S 0.080� 0.009

7 1.08 0.75 T 0.063� 0.009

4 0.93 0.65 U 0.068� 0.007

1
An earlier version of this paper on arXiv reports this drift as

an always-present, unsolved problem. This was before we tried
imposing equatorial symmetry and slightly stronger filtering.
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law (A, B), and names of these sequences are reported in
Table I. Also included for each sequence is the number Δ
which quantifies the difference between the density of
maximum mass (ρmax) and the critical density separating
stable from unstable configurations (ρcrit). We define
Δ ¼ ðρmax − ρcritÞ=ρmax. Because only a discrete set of
equilibria are evolved, we actually only know the density of
the highest-density stable evolved model, ρstable, and of the
lowest-density unstable evolved model, ρunstable. Thus, we
estimate ρcrit ¼ ðρstable þ ρunstableÞ=2 and calculate the asso-
ciated error as ðρunstable − ρstableÞ=ð2ρmaxÞ. For the ease of
visibility, we have not shown all the models we evolved on
the plots to avoid too many data points on the sequences.
The stability tests are conducted on a dynamical timescale
spanning a few oscillation periods. This is adequate for
assessing stability, as the collapse of a dynamically
unstable hypermassive neutron star into a black hole occurs
within this timescale. As a result, no viscous or radiation
effects are included.

The fluid is evolved on a 2D uniform Cartesian grid,

covering a square that includes the star. The metric is

evolved on a separate 2D pseudospectral grid. The pseu-

dospectral grid includes a disk at the center surrounded by

concentric annuli. The disk and the annuli all have the same

angular resolution. The outer annuli are chosen to have

larger radial extent than the inner ones to allow grid to be

concentrated inside the star.

We carry out tests on unperturbed models to determine

adequate grid resolution. Six different resolutions for the

fluid and pseudospectral grid are used, labeled “Lev1”

through “Lev6,” with Lev1 the lowest and Lev6 the highest

resolution. It should be noted that these resolutions are

distinct from the resolutions for 2D dynamical metric

evolution discussed in Sec. II.

Figure 5 demonstrates the effect of resolution on

evolution. We plot maximum density and the L2-norm

of generalized harmonic constraint [L2ðCÞ=L2ðNcÞ]
against time. We see convergence toward stationarity and

constraint satisfaction at low resolutions, but at sufficiently

high resolution, deviation from equilibrium and constraint

violation are dominated by the finite error of the RotNS

initial data. As is evident from the figure, increasing the

resolution beyond Lev3 does not have a significant impact

on maximum density and L2ðCÞ=L2ðNcÞ. The resolution of
the Lev3 fluid grid is 3002 colocation points extending up

to ∼18 km. Its pseudospectral grid has a disk at the center

followed by five concentric annuli with angular extents of

50 for all of them. The total number of radial layers of

colocation points (unevenly spaced, as mentioned above) is

564, extending out to a distance of 2940 km.

When testing stability, it is useful to introduce a perturba-

tion in the equilibrium configuration, rather than relying on

truncation error to produce a resolution-dependent perturba-

tion. As our perturbation, we slightly increase the conserved

energy evolution variable τ [44] in the envelope, correspond-

ing to a small increase in the temperature and hence the

pressure of the outer layers. This reduces the pressure

gradient countering gravity and so leads to a small contrac-

tion of the core. We check that the perturbation is small

enough that the initial violation of the constraint equations is

not increased. Furthermore, we ensure that varying the

amplitude of the perturbation does not alter which stars

are stable and which are unstable for a sample sequence.

Figure 6 illustrates the rotation profile of sequence G at

t ¼ 0 ms and at t ¼ 6 ms (at the end of the dynamical

evolution). Note that the Ω does not monotonically

decrease with radius but has a peak between the center

and the equator. Since we are simulating postmerger

remnantlike stars, we use Ωmax=Ωc in the range 1.4–2.1

and Ωeq=Ωc in the range 0.3–0.8 for our evolutions [24].

FIG. 5. Convergence tests for a sample hypermassive star with a

maximum energy density of 8.897 × 1014 g=cm3 from sequence

F (see Table I). Lev1 through Lev6 represent low to high

resolution, respectively. The optimal grid resolution found was

Lev3. Top: maximum baryonic density vs time; Bottom: nor-

malized error of the generalized harmonic constraints.

FIG. 6. Angular velocity Ω as a function of coordinate distance

from the rotation axis ϖ along the equator at t ¼ 0 ms and

t ¼ 6 ms with A ¼ 0.96 and B ¼ 0.73.
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The rotation profile is preserved throughout the evolution,

indicating the model is in equilibrium. This is in contrast to

what was found for some toroidal stars with this rotational

profile evolved under the assumption of conformal flatness

[50]. The figure shows Ω of a model with ρmax ¼
7.3 × 1015 g cm−3. We checkedΩ for higher-energy density

stable stars on the sequence, and they show the same

stationarity. Furthermore, the density profile also does not

change much (less than 4% at all points on the axis).

IV. RESULTS

A. Stability

In this subsection, we discuss the main results regarding

stability. Figure 7 displays the evolution of the models on

one of the equilibrium sequences (sequence G). Here we

show some representative models that were evolved for this

sequence near the turning point. The maximum density

normalized to its initial value against time is presented. The

evolution was performed for 6 ms. The perturbation was

applied on the stars at t ¼ 0. Notice that the stars with the

higher energy densities collapse within the dynamical

timescale (∼1–2 ms). The low-energy density stars, on

the other hand, oscillate about their equilibria but remain

stable on the relevant timescale. All the stars that are stable

fall on the low density side of the turning point (for this

particular sequence at ∼0.97 × 1015 g=cm3), thus obeying

the turning point criterion. This feature can be observed in

all the other sequences, where the higher-energy density

stars will collapse within ∼1–2 ms and the lower density

stars are stable and oscillate. All the stars on the left side of

the turning point are not necessarily stable as pointed out by

Weih et al. [13]. Since the actual onset of instability is

marked by the neutral stability point which may lie to the

left of the turning point [17], some stars on the left side of

the turning point are unstable. Nevertheless, it can still be

concluded that the instability is reached at or before the

turning point, making the turning point criterion a sufficient

condition for instability. Our findings for all the sequences

conform to this. The oscillations in the stable stars are due

to the perturbation. If the same star is evolved without

perturbation, the oscillation amplitude is much smaller

(although not exactly zero, due to truncation error).

What has been illustrated in Fig. 7 for one sequence can be

succinctly presented in the sequence plots (see Figs. 8–10),

given that the focus of this study is the stability of these

models. These figures show the gravitational mass vs the

maximum energy density of constant angular momentum

sequences.

First, we reproduce the finding of Weih et al. for a

monotonic rotation law for a small sample of cases. The

left panel of Fig. 8 shows the sequences for CE1 equation of

FIG. 7. Evolution of the maximum baryonic density normalized

to its initial value. All models are from the same sequence G with

A ¼ 0.96 and B ¼ 0.73. The labels indicate the maximum energy

densities from sequence G in 1015 g=cm3 units.

FIG. 8. Constant angular momentum sequences for CE1 entropy profile. The filled and empty shapes represent the stable and unstable

configurations, respectively. Left: Sequences with j-constant rotation law [Eq. (1)]. Apart from j-sequences the TOVand mass-shedding

sequence are shown. Right: sequences with Uryū rotation law [Eq. (8)].
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state for j-constant rotation law. The top and the bottom

curves represent the mass shedding and the TOV sequences,

respectively. The middle curves represent J ¼ 3.5 and J ¼
3.8 sequences with a rotation parameter A ¼ 0.2. The filled

and unfilledmarkers on all the sequence figures represent the

stars thatwere evolvedon that respective sequence. The filled

shapes represent the stars that were stable after the evolution

and the hollow ones represent the stars that collapsed into a

black hole (the density blew up) within the dynamical

timescale. We find that the sequences with j-constant law
follow the turning point criterion. All the stable stars lie on

the low density side of the turning point. This result is

consistent with the findings of Weih et al. [13].

In the right panel of Fig. 8 the constant angular

momentum sequences with the Uryū et al. rotation law

for the CE1 EOS cut are presented. The angular momenta

of the sequences are 6, 6.5, 8.5, 10, and 11 (see Table I). All

the stable stars lie on the left of the turning point.

Furthermore, the transition from stable to unstable stars

is close (within ∼0.2 × 1015 g=cm3) to the turning point,

consistent with the approximate turning point conjecture of

Kaplan et al. [19].

In Fig. 9, different panels show sequences with different

1D cuts of the 3D DD2 equation of states. We note that

because these sequences have constant sðρÞ, they do not

have constant total entropy or total entropy per baryon. As

ρmax increases along a sequence, more of the low-entropy

high-density region is sampled, and the specific entropy

averaged over the star decreases. The panel on the left

shows sequences of equation of state cut CE2. The panel on

the right shows sequences with equation of state of variable

entropy VE1 and VE2. The panels have been divided

according to angular momentum ranges and EOSs for

better visualization. Each of the sequences are constructed

with different angular momenta and different combinations

of A and B (see Table I). The A and B combinations are

chosen to make neutron star mergerlike profiles. It is

reflected in Fig. 6, where the rotation profile of a star on

sequence G is plotted. The rotation profiles, in particular

the Ωmax=Ωc and the Ωeq=Ωc, of the stars are similar to that

of a neutron star merger remnant. It should be noted here

that the maximum mass of the TOV sequences for all the

EOS cuts and Uryū rotation law lies in the range

2.42M⊙–2.44M⊙. Therefore, all the sequences here have

maximum mass 20%–50% higher than the TOV mass

indicating the stars on these sequences are hypermassive.

The stability of stars on these sequences also conform to the

approximate turning point conjecture.

FIG. 9. Constant angular momentum sequences for Uryū rotation law. Left: Sequences with CE2 entropy profiles; Right: Sequences

with variable entropy profiles (VE1 and VE2).
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In Fig. 10 we exhibit the effects of different entropy

profiles on the turning point theorem. In order to do so, we

show four sequences, all of them having angular momen-

tum J ¼ 7, Uryū rotation law parameters A ¼ 0.65 and

B ¼ 0.45 and vary the entropy profiles only. All the

sequences in this figure also satisfy the approximate turning

point criterion. The equilibrium sequences themselves do

not change greatly between one of the entropy profiles

studied and another, which is not surprising given that the

central region is degenerate in all cases. However, the mode

determining radial stability extends into the nondegenerate

region, so these simulations were needed to check the effect

of entropy on dynamical stability.

Constant angular momentum sequences with constant A
and B are not the unique way to construct sequences with

this 2-parameter rotation law. This points to a certain

ambiguity of application in the turning point criterion.

Suppose a star belongs to two sequences of the same J but

with different rotation profile parameter held fixed. Could

the star be on the stable branch of one and the unstable

branch of the other? We have therefore also evolved several

constant J sequences with constant Ωmax=Ωc and Ωeq=Ωc

(see Fig. 11 and Table II). The M vs ρmax plots for these

sequences are very close to the sequences of constant A and

B with which they share a common starting point, so

naturally the approximate turning point method works

equally well for them. This is consistent with the

assumption that M does not depend on angular momentum

distribution to first order.

B. Dependence of M
max

on A and B

It is already evident from the constant J sequence plots

that the maximum mass does not vary greatly (∼0.4%) with

A and B parameters of the Uryū law as compared with its

variation along angular momentum or the EOS cuts. This is

consistent with the assumption of Kaplan et al. that Mmax

depends to first order only on the total angular momentum

(and other global conserved quantities) and not its

distribution.

Nevertheless, it is interesting to consider, for a flexible

rotation law family like the Uryū law, what angular

momentum distribution gives the largest increase in

Mmax for a given J. For this form of rotation law and a

given equation of state, one can considerMmax a function of

J, A, and B;MmaxðJ;A;BÞ. For J ¼ 0, we must recover the

TOV limit for any A and B; Mmaxð0;A; BÞ ¼ MTOV max.

Except for extremely high J, the effect of rotation can be

well-approximated by the lowest-order quadratic [51]

correction,

FIG. 10. Constant angular momentum sequences with the same

angular momentum (J ¼ 7), same A (A ¼ 0.65) and B
(B ¼ 0.45) parameters but different entropy profiles.

FIG. 11. Constant angular momentum and constant angular

velocity sequences (see Table II).

TABLE II. List of constant-J and constant angular velocity ratio

sequences. From left to right, the columns represent the entropy

profiles, angular momenta, ratio of maximum angular velocity to

the central angular velocity, ratio of equatorial angular velocity to

the central angular velocity, and sequence names, respectively.

EOS J Ωmax=Ωc Ωeq=Ωc Name

CE2 11 1.4 0.7 V

VE1 10 2.0 0.3 W

7 2.0 0.3 X

VE2 10 2.0 0.5 Y
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MmaxðJ;A;BÞ ≈MTOV max þ
�

dMmax

dðJ2Þ

�

ðA; BÞJ2: ð17Þ

We can estimate this derivative dMmax=dðJ2Þ as a function
of A and B by calculating the maximum mass for a modest

J but a wide range of A and B. To this end, we have

systematically explored the dependence of the maximum

mass for entropy profile CE2 on A and B for one fixed J.
Figure 12 illustrates the maximum mass of the sequences

with J ¼ 4 in the parameter space of A and B parameters of

the Uryū rotation law. Note that this J is lower than that of

most of the hypermassive sequences studied above. The

plot shows not what is the greatestMmax attainable at any J,
but which distribution of angular momentum gives the

greatest enhancement of maximummass for a given modest

total angular momentum. In this plot the parameter A has

been varied with an increment of 0.05, starting from 0.3

varying up to 0.8. The increment in B is the same with a

range 0.4–1.05. We find that the maximum mass is more

sensitive to A as compared to B in this range. This indicates

greater sensitivity to the form of the rotation law at high j
(farther from the axis) rather than at low j (closer to the

axis). One might have expected the opposite, presuming

that rotational support in the inner region would be most

helpful in resisting gravitational collapse. However, for

these realistic, nonmonotonic rotation profiles, rotation

support is fairly unimportant in the core but crucial in

the envelope [22]. Highest Mmax for a given J is obtained

for low A.

V. SUMMARY AND CONCLUSIONS

We have seen that the approximate turning point method

successfully predicts stability for the range of entropy and

nonmonotonic rotation profiles studied, chosen to model

postmerger equilibria more realistically than previously

realized. No doubt it would be possible to devise rotation

and entropy profiles that resemble postmerger remnants

even more closely. However, if the goal is to test turning

point methods in extreme conditions under which they

might fail, perhaps a better strategy would be to investigate

less realistic profiles. For example, significantly wider

exploration of entropy effects will confront the inconven-

ience that entropies high enough for a nondegenerate core

will (assuming one insists on convectively stable ds=dρ < 0

profiles) have thermally supported envelopes with extended

lowdensity region. This can, in fact,make themass-shedding

limit more severe [19].
In the process of carrying out this exploration of rotation

law parameter space for hypermassive neutron stars with

Uryū et al. equilibria, we have shown that we can generalize

the RotNS code to cover a fair approximation to the realistic

range of postmerger remnant rotation and entropy profiles.

Investigations of the late-time (∼ seconds) evolution of

binary neutron star and black hole-neutron star mergers

often resort to 2D axisymmetric simulations. The initial data

for these simulations has been either simple equilibria (e.g.,

constant entropy, j-constant rotation), which are artificial, or
azimuthally averaged profiles of 3D mergers, and this

averaging is a strong and sudden perturbation of the 3D

system (evenmany that are “roughly axisymmetric”) and can

produce worrying transients. Axisymmetric equilibria with

profiles extracted frommerger simulations [e.g., a fit toA,B,
and sðρÞ] might provide an attractive combination of the best

of these two methods; arguably capturing as much realism

from 3D merger profiles as 2D can accommodate while

avoiding transients.
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