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Imprints of changing mass and spin on black hole ringdown
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We numerically investigate the imprints of gravitational radiation-reaction driven changes to a black
hole’s mass and spin on the corresponding ringdown waveform. We do so by comparing the dynamics of a
perturbed black hole evolved with the full (nonlinear) versus linearized Einstein equations. As expected, we
find that the quasinormal mode amplitudes extracted from nonlinear evolution deviate from their linear
counterparts at third order in initial perturbation amplitude. For perturbations leading to a change in the
black hole mass and spin of ~5%, which is reasonable for a remnant formed in an astrophysical merger, we
find that nonlinear distortions to the complex amplitudes of some quasinormal modes can be as large as
~50% at the peak of the waveform. Furthermore, the change in the mass and spin results in a drift in the
quasinormal mode frequencies, which for large amplitude perturbations causes the nonlinear waveform to
rapidly dephase with respect to its linear counterpart. Surprisingly, despite these nonlinear effects creating
significant deviations in the nonlinear waveform, we show that a linear quasinormal mode model still
performs quite well from close to the peak amplitude onward. Comparing the quality of quasinormal mode
fits for the linear and nonlinear waveforms, we show that the main obstruction to measuring high-n

6,5

overtones is the transient part of the waveform, already present at the linear level.
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I. INTRODUCTION

According to the theory of general relativity, binary
black holes undergo an inspiral and merging process,
generating ripples in spacetime known as gravitational
waves. These waves carry valuable information about
strong-field gravitational dynamics and are now routinely
detected by the LIGO-Virgo-KAGRA Collaboration [1-3].
Subsequent to the coalescence of the two distinct black hole
horizons into one, a phase known as the ringdown occurs,
signifying the conclusion of the merger. In this phase, the
remnant black hole settles down to an equilibrium state,
emitting gravitational waves with distinctive frequencies
that provide insights into the black hole’s properties [4—6].
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At some sufficiently late time in the merger process, the
ringdown waveform ought to be well described by linear
black hole perturbation theory [7-9]. In particular, the
Teukolsky equation, governing dynamics of linear pertur-
bations of Kerr black holes, admit eigensolutions known as
quasinormal modes (QNMs), which manifest as damped
sinusoids with frequencies uniquely determined by the mass
and spin of the background Kerr geometry. One can then in
principle independently measure the remnant mass and spin
by fitting the ringdown signal with these QNMs [10-12].
However, there has been much debate regarding how soon
after merger one can start the fit using a linear model of
ringdown and how many overtones can faithfully be
measured (whether from simulations or actual data) [13-33].

The debate is spurred by several complications that arise
in the analysis. First, QNMs are not a complete description
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of black hole perturbations even at the linear level (see, e.g.,
the discussions in [34,35]). In contrast with, for example,
certain quantum mechanics problems, where the self-
adjoint Hamiltonian operator yields a set of eigenmodes
that form a complete and orthonormal basis, the QNM
solutions of a perturbed black hole are not complete, due in
part to the dissipative nature of the theory.1 Moreover, the
transient, typically representing the high frequency non-
QNM content of the perturbation, and the power-law tail,
arising from backscattering of the gravitational radiation off
spacetime curvature, are present in the ringdown waveform
for generic initial data [38—42]. Their presence may bias
the fitting using a model that only takes the QNMs into
account [43-45].

Furthermore, a plethora of nonlinear effects may domi-
nate the ringdown waveform at early time. At second order,
linear quasinormal modes couple to give rise to quadratic
quasinormal modes [46—58], which can be louder than their
linear counterparts in certain angular harmonics following
binary mergers [59-63].

Another nonlinear effect that has gained recent attention
is the change in the black hole mass and spin due to
radiation backreaction [64—68]. Given that in comparable
mass mergers ~5% of the energy of the binary is radiated in
gravitational waves in the coalescence and early ringdown
phase [69], one could expect a significant fraction of that
would register as a change in the remnant mass and spin
over a few light crossing times. After that, the remnant
black hole’s properties stabilize exponentially.

At the perturbative level, changes in the mass and spin
can be introduced at the linear level through corresponding
zero frequency modes. However, since these modes are
zero frequency, they do not represent changes to the
background geometry due to dynamical perturbations
(including QNMs and transients). The latter only cause
backreaction at second order in perturbation theory and
hence will only produce an effective change in properties
of linear QNMs at third order.

Since even second-order perturbations of Kerr black
holes are not yet well understood (see, e.g., [70-74]),
works attempting to address imprints of mass and spin
change on QNMs have been heuristic in nature.
Reference [75] studied the frequency modulation in the
ringdown signal of a massless scalar field due to back-
reaction. Reference [64] explored what they call absorp-
tion-induced mode excitation (AIME) for black holes in
asymptotically anti—-de Sitter spacetime, where they
showed that the overtones (fast decaying QNMs) can
lead to excitation of the fundamental mode (slowest
decaying QNM) due to nonlinear backreaction on the
background spacetime; they further calculated the change
in fundamental mode amplitude in asymptotically flat

lThough some conjectures for completeness are formulated
with specific boundary conditions, see, e.g., Refs. [36,37].

Schwarzschild due to AIME using the “sudden mass-
change approximation.” Reference [66] developed a theo-
retical framework to model the backreaction of a scalar
field on the background spacetime, which yields excellent
agreement with numerical simulations. Reference [67]
found evidence for time-dependent frequencies in Vaidya
spacetimes, which describe accretion of null dust onto a
black hole, yielding a prescribed mass function. Concurrent
to our work, Ref. [76] is investigating AIME for asymp-
totically flat black holes using a perturbative approach.
They find that the prograde QNM can mix into the
retrograde QNM, potentially yielding observables of direct
astrophysical relevance.

In this paper, we work without the aforementioned
assumptions or approximations and directly investigate
the imprints of nonlinear absorption during black hole
ringdown through numerical experiments. To distinguish
linear and nonlinear contributions, we adopt a close-limit
type framework [77-82], in which we evolve a single
perturbed black hole by numerically integrating both the
linearized and nonlinear Einstein equations. With a con-
sistent gauge choice and initial data to linear order, we
attribute differences in the extracted gravitational waveform
to nonlinear effects.

A similar numerical approach has been adapted in
Refs. [81,82] for axially symmetric perturbations of a
Schwarzschild black hole; here we focus on nonaxisym-
metric perturbations of a Kerr black hole with dimension-
less spin of 0.7, the expected spin for the remnant formed
from the quasicircular inspiral of two nonspinning equal
mass black holes [69,83]. Furthermore, in the earlier works
the nonlinear waveforms were normalized by the initial
Arnowitt-Deser-Misner mass (i.e., including all the radia-
tion in the initial data), which results in a mismatch of the
time axis compared to the linear waveforms. Here, we
normalize the time axis by the initial mass of the back-
ground black hole to give a consistent comparison between
linear and nonlinear evolution. We also present a detailed
ringdown analysis in terms of the wave’s quasinormal
mode content, quantify different nonlinear effects, and
discuss their relevance to observations.

We focus on the dominant quadrupolar £ =m =2
harmonics of the waveform, which are traditionally thought
to be dominated by linear contributions. Here we show that
nonlinear effects can lead to relative changes of order
unity in the amplitude and phase of certain QNMs for the
largest, astrophysically reasonable perturbations we con-
sider. Despite these large nonlinear distortions, we find that
the resulting waveform can still be well modeled by a linear
superposition of QNMs. At a first glance this seems
counterintuitive, however ringdown modeling does not
make use of theoretical estimates of the amplitude and
phase of excited QNMs, and by the time the waveform is in
a regime where the fitting algorithm is stable, the instanta-
neous frequencies of the QNMs have largely settled down
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to those of the final remnant black hole. Moreover, the time
window over which modes can stably be extracted is
essentially the same for the linear versus nonlinear results,
suggesting that transients are the main culprit preventing
straightforward interpretation of the coalescence/early ring-
down phase of a merger in terms of black hole perturbation
theory, linear or otherwise.

A. QNM conventions

In this paper, individual QNMs are denoted by four
indices (p,Z,m,n), following conventions in Ref. [84].
QNM angular structure is described by spheroidal har-
monics with indices £ and m, while their radial structure is
indicated by the index n: n = 0 QNMs are fundamental
modes, while n > 0 are overtones, ranked by increasing
decay rate. For a given (£, m,n), there are two QNMs
labeled by p, signifying modes with wavefronts corotating
(prograde, p = +) or counterrotating (retrograde, p = —)
with the black hole. We define A, /.. as the complex
amplitude for each QNM, and @, # ., (M, x) its complex
frequency, which is a function of the black hole mass M and
dimensionless spin y. To distinguish amplitudes of QNMs
from linear and nonlinear waveform, we use superscripts,

linear nonlinear
e.g., A(pf’m,n) and A(p,/,m,n)'

II. NUMERICAL SETUP

To obtain initial data for a single perturbed black hole,
as in Ref. [56], hereby referred to as paper I, in which
we investigated the spin and initial data dependence of
quadratic quasinormal modes, we use the conformal thin
sandwich approach developed in [85]. First, we superpose
the background Kerr metric in spherical Kerr-Schild
coordinates g; [86] with the following initial guess h;
for the metric perturbation:

(r=ro)?
hY(t,7.0,¢)]1—o = Aexp <_T20

)Yf;”w,qs), )
onY (1, 7,0, )

ot =0, 2)

t=0

where A, ry, and w are the amplitude, radial location, and
width of the initial perturbation, respectively, and Y f;” is the
pure-spin tensor spherical harmonics following conven-
tions in, e.g., Ref. [87]. Here (in contrast to paper 1) we
are choosing time-symmetric initial data.” This trivially
solves the momentum constraints, but more importantly
for our purposes means the background shift vector is

’A time-symmetric pulse can be thought of as a superposition
of the ingoing and outgoing pulse as used in paper 1. The out-
going pulse is cleanly separated from the ingoing one by 6t = 2r,
in the gravitational waveform (see Fig. 7 in the Appendix B), and
we ignore it in the analysis here.

not modified, making for more straightforward compari-
son between the linear and nonlinear evolution. The
Hamiltonian constraint is then solved for a conformal
factor y rescaling the initial guess for the spatial metric,
after which the perturbation can be read off as h;; =

w* (g + ;) — g} This procedure yields consistent initial
data for the nonlinear and linearized evolutions.

As mentioned in the Introduction, we restrict the initial
guess for the perturbation to only have £ = |m|=2
harmonics in the angular sector and the background black
hole to have a dimensionless spin of 0.7 initially. We further
fix ro = 30M and w = 2M, though we have checked that
our results are largely insensitive to such choices.

We then numerically evolve this family of initial data,
varying A from the perturbative to the nonperturbative
regime, using the Spectral Einstein Code (SpEC) for both
the linear and nonlinear evolution. The nonlinear evolu-
tion employs the generalized harmonic formulation of the
Einstein equations [88—90]. For the linearized evolution,
we use the implementation by Refs. [91,92], which is a
consistent linearization of the generalized harmonic equa-
tions about the given black hole background. In both cases
we use a freezing gauge condition, where the gauge source
functions are set to be those of the Kerr-Schild background.
The first-order gauge source function for the linearized
evolution is set to zero for consistency.

III. RESULTS

We performed linear and nonlinear evolutions of per-
turbed Kerr initial data with four amplitudes evenly spaced
on a logarithmic scale, labeled with amp 0-3 from low to
high. Amp O results in a relative mass and spin change of
less than 10~*, while amp 3 causes a change in the mass of
3.4% and dimensionless spin of 5.6%, where we use the
Christodoulou mass and dimensionless spin calculated
through approximate Killing fields [93,94]. In Fig. 1 we
show the amplitude of the linear and nonlinear £ = m = 2
spin-weighted spherical harmonic component of the wave-
form extracted at a coordinate radius of 100M with the
smallest (amp 0) and largest (amp 3) amplitude initial data.’
For the largest amp 3 run, the £ =m =2 waveform
receives a distortion in the waveform amplitude of ~30%.
At a first glance this is surprising in that the amplitude
distortion is a third-order effect (see Fig. 2). Though what
this indicates is that a perturbation resulting in a 3.4%
change in the black hole mass is well into the nonlinear
regime, consistent with the expectation that the analogous
“perturbation” (as measured by mass change) caused by a

*We do not use Cauchy-characteristic extraction (CCE) as in
paper I since a consistent linearized CCE module does not exist in
SPECTRE [95]. As shown in paper I, extracting the wave at a large
finite radius with our gauge choice yields consistent results with
those calculated through CCE.
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FIG. 1. Top: comparison between waveforms from linear and nonlinear evolution of a single perturbed black hole. The time axis is
normalized by the initial black hole mass M, and ¢t = O at the peak of the linear waveform. Waveforms from nonlinear evolution are
shown as red solid lines and those from linear evolution as orange dashed lines. We further plot the difference between the waveform
amplitudes, i.e., rM||ylned| — |ymentinear|| “ysing thick blue lines. We note that the amplitude difference does not take into account the
accumulation of a phase difference, which we show in Fig. 3. We find good agreement between the nonlinear and linear waveforms at
the lowest amplitude (left); however, near order unity relative disagreement (more clearly evident in Fig. 2) is found at the highest
amplitude (right). The latter causes a change of 3.4% (5.6%) in the mass (dimensionless spin) of the black hole in the nonlinear
evolution. Bottom: mismatch between the best-fit QNM model (including up to the second overtones) and the waveform varying fitting
start time, where we used the late-time mass and spin extracted at the horizon for the nonlinear waveforms. For the highest amplitude
case, the mismatch for the nonlinear evolution is only marginally larger than its linear counterpart at late time, suggesting that a linear
superposition of QNMs could still be a good model. In all panels, numerical error is estimated using the difference between the highest
and second highest resolution nonlinear evolution waveforms; linear evolution shows similar error characteristics.

black hole merger should be considered a rather nonlinear
excitation of the remnant.

In the bottom row of Fig. 1, we plot this mismatch as a
function of ¢, for both the linear and nonlinear waveforms.

Before describing the nonlinear changes to the phase
evolution of the waveforms, it would be useful to under-
stand their QNM content. Using the methods described in
paper I, we fit the £ = m = 2 component of the linear and
nonlinear waveforms with superpositions of QNMs includ-
ing up to the second overtone, using the final mass and spin
to define the corresponding QNM frequencies. We then
compute the mismatch as a function of fitting start time
between the best-fit QNM model 1//§2NM

relativity waveform w)X, defined as

and the numerical

Me1_-% W wH™) 3
VAR (B )
where
(alb) = / " a(e)BlRde @)
=t

At early time the mismatch for both the linear and nonlinear
waveform is high, which is as expected as here the signal is
dominated by a transient. From a time close to the peak
amplitude in the waveform onward, the mismatch drops
significantly. Surprisingly, the improvement in mismatch,
both in magnitude and when it occurs, is largely insensitive
to nonlinearities. This suggests that the time when non-
linearities are most relevant in modifying the properties of
the QNM excitation is also when the transient is still a
significant component of the signal, and hence it is the
latter that is ultimately the limiting factor in how early on in
a signal a QNM analysis can be used to interpret the
ringdown.

Figure 2 illustrates the nonlinear distortion to the
complex QNM amplitudes extracted from the linear and
nonlinear waveforms for three dominant modes: the fun-
damental prograde and retrograde modes (+,2,2,0) and
the first overtone for the prograde mode (+,2,2,1). The
QNM amplitudes are extrapolated to the peak of the
waveform, with uncertainties estimated from stability of
fit [56,96]. What is shown there are the relative differences
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FIG. 2.  Shift of the complex QNM amplitudes due to nonlinear
effects. On the vertical axis we plot the fractional amplitude
difference between the linear and nonlinear waveform for the

: li li li :
dominant QNMs A7 — ALY /JATSY |- On the hori-
zontal axis we used the linear Alnear ) as a proxy for linear

(+2.2,0
perturbation amplitude. We find that the QNM amplitudes drift
from the linear approximation at third order in the amplitude
(hence the fractional amplitudes drift at second order), in accor-
dance with formal perturbation theory. Despite being a higher-
order effect, for the largest amplitude perturbation we consider,
relevant to astrophysical mergers, the relative amplitude changes
are close to ~50%. We stress that this drift in complex amplitude
comes from both the absolute amplitude and the phase.

between nonlinear versus linear evolution as a function of
amplitude (see the Appendixes for plots of the absolute
amplitudes and the stability of the QNM fitting with time).
The scaling of the difference with amplitude is as expected
from perturbation theory.

The remaining QNMs, namely n > 2 prograde overtones
and any overtones for the retrograde mode, are not stable
for a meaningful time window (~10M) in either the linear
or nonlinear waveform, suggesting the linear transient is
obstructing the extraction of these modes.

Finally, we return to the drift in waveform phase due to
nonlinear effects. We illustrate this in Fig. 3 by showing the
phase difference (blue line) between the highest amplitude
amp 3 nonlinear (red line) and linear (dashed orange line)
waves versus time. At early times the two cases are in
phase, but then around the time corresponding to the peak
amplitude (¢ = 0) there is a rapid shift in frequency
difference between the two. This results in a phase differ-
ence that afterward is dominated by a linear drift in time,
the slope of which is consistent with a change of the
prograde mode frequency due to the change in mass and
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FIG. 3. Phase difference between the highest amplitude (amp 3)

linear and nonlinear waveform. The phase of the nonlinear
waveform is the solid red line, the linear waveform the dashed
orange line, and their difference the solid blue line. Following the
peak of the waveform (# =0), the phase difference can be
characterized by a linear drift overlayed with an oscillation that
decays away at late time. The linear drift is caused by the change
in the (+,2,2,0) frequency due to the mass and spin change;
the solid black line is a “prediction” of this effect using the
corresponding QNM frequencies. The oscillation is caused by the
drifted retrograde (—, 2,2,0) mode beating against the prograde
mode, which decays with time since the retrograde mode decays
faster than the prograde mode. We include this effect in the
prediction of the difference as the dashed black line.

spin of the black hole; i.e., the slope of the solid black line
is W 220/(Mixi) = o220/(My.xr)}, with M; and
Xi My and y;) the initial (final) mass and spin.
Subdominant to the linear phase drift is a small oscillation
that eventually decays away. The oscillation appears to
come from beating of the prograde (+,2,2,0) mode with
the frequency and amplitude-shifted retrograde mode
(—,2,2,0). This oscillation eventually decays away as
the retrograde mode decays faster than the prograde mode.
The dashed black line in the figure combines this beating
effect with the linear drift, giving an excellent match to the
late-time full nonlinear waveform.

IV. DISCUSSION AND CONCLUSION

We investigated nonlinear effects in the gravitational
wave perturbation of a black hole by comparing evolution
of the same initial perturbation solving the full Einstein
equations versus the Einstein equations linearized about
the given black hole background. Our main goal for doing
this was to investigate how perturbations that result in
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astrophysically relevant changes in the mass and spin of the
black hole affect the QNM excitation and their extraction
from the full signal using models based on linear QNMs.
For such large amplitude perturbations we find an order
unity relative change in the amplitude of the dominant
quadrupolar QNM excited. However, despite such a large
difference, we find almost no adverse effect in extracting
this mode, its retrograde counterpart and its first overtone,
using a fitting procedure based on the linear problem. In
other words, the time in the fitting procedure where the
linear waveform becomes stable is almost identical to the
time when it becomes stable for the nonlinear waveform,
and the mismatch in either waveform compared to the
relevant sum of linear QNMs extracted becomes similarly
small. The reason for this appears to be that the time when
the nonlinear interaction is most relevant in affecting the
amplitude of the QNMs, and indirectly their frequencies
through the change in the black hole’s mass and spin, is also
when the transient part of the signal obscures the inter-
pretation of the waveform as a sum of QNMs.

Our findings would apply to more generic initial con-
ditions despite the use of a simple initial data configuration,
namely a single tensor spherical harmonic. When multiple
angular modes are present, the only added complication
is quadratic coupling of quasinormal modes. However,
the resulting quadratic quasinormal modes can be easily
incorporated into the fitting model by adding their corre-
sponding frequencies, and the challenge remains the
transient, which already presents at the linear level where
the angular modes decouple.

Though the particular form of the transient is a function
of our initial data, it is difficult to imagine that an effective
transient in the analogous problem of a remnant formed via
a black hole merger will be any less significant. The “good
news” in that regard is our work implies that linear QNM
fitting for the ringdown in black hole mergers, whether
from numerical predictions or detected events, does not
need to model a changing mass and spin. The “bad news” is
that even were a model of the changing mass and spin
developed, it might not help in extending the time over
which a stable extraction of QNMs can be obtained due to
obscuration by the transient, which is already present at the
linear level.* Note that our results certainly do not imply
that nonlinear effects cannot be observed in the ringdown.
For example, quadratic QNMs are present, though they
could similarly be incorporated into a linear QNM model
by including the appropriate frequency-doubled modes. A
significant caveat on the above broader reaching implica-
tions of these results is that we have only studied an initial
x = 0.7 spin black hole and a limited family of initial
conditions.

4Applying frequency agnostic fits to the linear and non-
linear waveform may further ascertain the relevance of such
models [43,60,61].

Our framework can be easily extended to investi-
gate other effects during ringdown, such as the quad-
ratic QNMs just mentioned or precession. Regarding the
latter, one could simply rotate the pulse relative to the
black hole to study precession of the remnant spin due to
radiation backreaction and test the toy model proposed
in Ref. [96]. We leave a study of these extensions and a
more thorough exploration of parameter space to future
endeavors.
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APPENDIX A: STABILITY OF QNM FITTING

We refer interested readers to Refs. [44,56] for a detailed
description of our fitting procedure. In Fig. 4, we plot the
extracted amplitudes for the three dominant quasinormal
modes as a function of fitting start time, for both the linear
(dashed line) and nonlinear (solid line) waveforms from
all four different initial amplitude runs, labeled by color. A
QNM is stably extracted if the measured amplitude is
nearly constant over a sufficiently large window of start
fitting time [43—45]. We find that even the first overtone
(rightmost panel) is stable for a period longer than 20M.
Surprisingly, the nonlinear effects due to mass and spin
change do not seem to affect the stability of the fit even
when the change in the background is large.

Furthermore, we show in Fig. 5 that any of the remaining
overtones cannot be stably extracted for a meaningful
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FIG. 4. Amplitudes of QNM:s as a function of fitting start time for the linear (dashed) and nonlinear (solid) waveforms. The QNM is
stably extracted if its amplitude remains constant for a sufficiently long period of fit starting time. We note that the nonlinear effects of
changing mass and spin does not seem to affect the stability of quasinormal mode fitting, even for the first overtone at the highest

amplitude (blue lines in the rightmost plot).
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FIG. 5. Same as Fig. 4 but for overtones that are not stable. For our initial data, the prograde overtones with n > 2 and any of the

retrograde overtones cannot be stably extracted in both the linear and nonlinear waveforms.

period of fitting start time (~10M). And the instability in
the fitting is similar between the linear and nonlinear
waveform, suggesting that the linear transient is the
dominant obstruction for measuring these faster decaying
modes. The exact cutoff in the extractability of overtones
is dependent on initial data, but we expect that the
transients always dominate over the nonlinear effects
for obstructing the measurement of overtones for generic
initial data.

In Fig. 6, we plot the horizon mass as a function of time
on top of the linear and nonlinear waveform for the highest
amplitude (amp 3) run, where the horizon time is shifted by
100M to roughly match the waveform time. We note that
this matching is very heuristic as the horizon is by
definition causally disjoint from the exterior. We find that
indeed most of the mass change occurs before the peak of
the waveform, during which the QNM fitting model fails
even for the linear waveform [44].
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FIG. 6. An overlay of the waveform and the horizon mass as a
function of time for the largest amplitude (amp 3) run. The
horizon time has been shifted by 100M (the radius of wave
extraction) to align with the waveform. Barring coordinate
effects, it appears that the mass change does occur during the
transient phase, i.e., before the waveform peaks. Whether this
holds true for generic initial data deserves future investigations.

APPENDIX B: NUMERICAL CONVERGENCE

To test convergence, we run the linear and nonlinear
simulations with the highest perturbation amplitude at four
different resolutions. The computational domain consists of
24 nested spherical shells with inner boundary at 1M and
outer boundary at 330M; the number of collocation points in

TABLE I. Number of collocation points/spectral elements for
each resolution level (Lev).

Lev N r N L

0 10 14

1 12 16

2 14 18

3 16 20

each spherical shell is summarized in Table I. We show
convergence of the linear and nonlinear amp 3 waveform in
Fig. 7 and convergence of the L? norm for the generalized
harmonic constraint (see Ref. [88] for its definition) in Fig. 8.

x=0.7

100 4

10—1 4

1072 -

10—3 -

1l
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10—6 4

T T T T T
100 150 200 250 300
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FIG. 8. L? norm for the generalized harmonic constraint as a
function of simulation time, from the largest amplitude (amp 3)
run. The largest constraint violation is observed when the pulse
hits the horizon, which converges away with resolution.
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FIG. 7. Convergence of the linear (left) and nonlinear (right) waveform for the amp 3 runs. The resolutions are labeled by Lev0
(lowest) through Lev3 (highest); see Table I for details. We find the residual between different resolutions decreases as expected.
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