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We numerically investigate the imprints of gravitational radiation-reaction driven changes to a black

hole’s mass and spin on the corresponding ringdown waveform. We do so by comparing the dynamics of a

perturbed black hole evolved with the full (nonlinear) versus linearized Einstein equations. As expected, we

find that the quasinormal mode amplitudes extracted from nonlinear evolution deviate from their linear

counterparts at third order in initial perturbation amplitude. For perturbations leading to a change in the

black hole mass and spin of ∼5%, which is reasonable for a remnant formed in an astrophysical merger, we

find that nonlinear distortions to the complex amplitudes of some quasinormal modes can be as large as

∼50% at the peak of the waveform. Furthermore, the change in the mass and spin results in a drift in the

quasinormal mode frequencies, which for large amplitude perturbations causes the nonlinear waveform to

rapidly dephase with respect to its linear counterpart. Surprisingly, despite these nonlinear effects creating

significant deviations in the nonlinear waveform, we show that a linear quasinormal mode model still

performs quite well from close to the peak amplitude onward. Comparing the quality of quasinormal mode

fits for the linear and nonlinear waveforms, we show that the main obstruction to measuring high-n

overtones is the transient part of the waveform, already present at the linear level.

DOI: 10.1103/PhysRevD.110.124028

I. INTRODUCTION

According to the theory of general relativity, binary

black holes undergo an inspiral and merging process,

generating ripples in spacetime known as gravitational

waves. These waves carry valuable information about

strong-field gravitational dynamics and are now routinely

detected by the LIGO-Virgo-KAGRA Collaboration [1–3].

Subsequent to the coalescence of the two distinct black hole

horizons into one, a phase known as the ringdown occurs,

signifying the conclusion of the merger. In this phase, the

remnant black hole settles down to an equilibrium state,

emitting gravitational waves with distinctive frequencies

that provide insights into the black hole’s properties [4–6].

At some sufficiently late time in the merger process, the

ringdown waveform ought to be well described by linear

black hole perturbation theory [7–9]. In particular, the

Teukolsky equation, governing dynamics of linear pertur-

bations of Kerr black holes, admit eigensolutions known as

quasinormal modes (QNMs), which manifest as damped

sinusoids with frequencies uniquely determined by the mass

and spin of the background Kerr geometry. One can then in

principle independently measure the remnant mass and spin

by fitting the ringdown signal with these QNMs [10–12].

However, there has been much debate regarding how soon

after merger one can start the fit using a linear model of

ringdown and how many overtones can faithfully be

measured (whether from simulations or actual data) [13–33].

The debate is spurred by several complications that arise

in the analysis. First, QNMs are not a complete description
*
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of black hole perturbations even at the linear level (see, e.g.,

the discussions in [34,35]). In contrast with, for example,

certain quantum mechanics problems, where the self-

adjoint Hamiltonian operator yields a set of eigenmodes

that form a complete and orthonormal basis, the QNM

solutions of a perturbed black hole are not complete, due in

part to the dissipative nature of the theory.
1
Moreover, the

transient, typically representing the high frequency non-

QNM content of the perturbation, and the power-law tail,

arising from backscattering of the gravitational radiation off

spacetime curvature, are present in the ringdown waveform

for generic initial data [38–42]. Their presence may bias

the fitting using a model that only takes the QNMs into

account [43–45].

Furthermore, a plethora of nonlinear effects may domi-

nate the ringdown waveform at early time. At second order,

linear quasinormal modes couple to give rise to quadratic

quasinormal modes [46–58], which can be louder than their

linear counterparts in certain angular harmonics following

binary mergers [59–63].

Another nonlinear effect that has gained recent attention

is the change in the black hole mass and spin due to

radiation backreaction [64–68]. Given that in comparable

mass mergers ∼5% of the energy of the binary is radiated in

gravitational waves in the coalescence and early ringdown

phase [69], one could expect a significant fraction of that

would register as a change in the remnant mass and spin

over a few light crossing times. After that, the remnant

black hole’s properties stabilize exponentially.

At the perturbative level, changes in the mass and spin

can be introduced at the linear level through corresponding

zero frequency modes. However, since these modes are

zero frequency, they do not represent changes to the

background geometry due to dynamical perturbations

(including QNMs and transients). The latter only cause

backreaction at second order in perturbation theory and

hence will only produce an effective change in properties

of linear QNMs at third order.

Since even second-order perturbations of Kerr black

holes are not yet well understood (see, e.g., [70–74]),

works attempting to address imprints of mass and spin

change on QNMs have been heuristic in nature.

Reference [75] studied the frequency modulation in the

ringdown signal of a massless scalar field due to back-

reaction. Reference [64] explored what they call absorp-

tion-induced mode excitation (AIME) for black holes in

asymptotically anti–de Sitter spacetime, where they

showed that the overtones (fast decaying QNMs) can

lead to excitation of the fundamental mode (slowest

decaying QNM) due to nonlinear backreaction on the

background spacetime; they further calculated the change

in fundamental mode amplitude in asymptotically flat

Schwarzschild due to AIME using the “sudden mass-

change approximation.” Reference [66] developed a theo-

retical framework to model the backreaction of a scalar

field on the background spacetime, which yields excellent

agreement with numerical simulations. Reference [67]

found evidence for time-dependent frequencies in Vaidya

spacetimes, which describe accretion of null dust onto a

black hole, yielding a prescribed mass function. Concurrent

to our work, Ref. [76] is investigating AIME for asymp-

totically flat black holes using a perturbative approach.

They find that the prograde QNM can mix into the

retrograde QNM, potentially yielding observables of direct

astrophysical relevance.

In this paper, we work without the aforementioned

assumptions or approximations and directly investigate

the imprints of nonlinear absorption during black hole

ringdown through numerical experiments. To distinguish

linear and nonlinear contributions, we adopt a close-limit

type framework [77–82], in which we evolve a single

perturbed black hole by numerically integrating both the

linearized and nonlinear Einstein equations. With a con-

sistent gauge choice and initial data to linear order, we

attribute differences in the extracted gravitational waveform

to nonlinear effects.

A similar numerical approach has been adapted in

Refs. [81,82] for axially symmetric perturbations of a

Schwarzschild black hole; here we focus on nonaxisym-

metric perturbations of a Kerr black hole with dimension-

less spin of 0.7, the expected spin for the remnant formed

from the quasicircular inspiral of two nonspinning equal

mass black holes [69,83]. Furthermore, in the earlier works

the nonlinear waveforms were normalized by the initial

Arnowitt-Deser-Misner mass (i.e., including all the radia-

tion in the initial data), which results in a mismatch of the

time axis compared to the linear waveforms. Here, we

normalize the time axis by the initial mass of the back-

ground black hole to give a consistent comparison between

linear and nonlinear evolution. We also present a detailed

ringdown analysis in terms of the wave’s quasinormal

mode content, quantify different nonlinear effects, and

discuss their relevance to observations.

We focus on the dominant quadrupolar l ¼ m ¼ 2

harmonics of the waveform, which are traditionally thought

to be dominated by linear contributions. Here we show that

nonlinear effects can lead to relative changes of order

unity in the amplitude and phase of certain QNMs for the

largest, astrophysically reasonable perturbations we con-

sider. Despite these large nonlinear distortions, we find that

the resulting waveform can still be well modeled by a linear

superposition of QNMs. At a first glance this seems

counterintuitive, however ringdown modeling does not

make use of theoretical estimates of the amplitude and

phase of excited QNMs, and by the time the waveform is in

a regime where the fitting algorithm is stable, the instanta-

neous frequencies of the QNMs have largely settled down

1
Though some conjectures for completeness are formulated

with specific boundary conditions, see, e.g., Refs. [36,37].
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to those of the final remnant black hole. Moreover, the time

window over which modes can stably be extracted is

essentially the same for the linear versus nonlinear results,

suggesting that transients are the main culprit preventing

straightforward interpretation of the coalescence/early ring-

down phase of a merger in terms of black hole perturbation

theory, linear or otherwise.

A. QNM conventions

In this paper, individual QNMs are denoted by four

indices ðp;l; m; nÞ, following conventions in Ref. [84].

QNM angular structure is described by spheroidal har-

monics with indices l and m, while their radial structure is

indicated by the index n: n ¼ 0 QNMs are fundamental

modes, while n > 0 are overtones, ranked by increasing

decay rate. For a given ðl; m; nÞ, there are two QNMs

labeled by p, signifying modes with wavefronts corotating

(prograde, p ¼ þ) or counterrotating (retrograde, p ¼ −)

with the black hole. We define Aðp;l;m;nÞ as the complex

amplitude for each QNM, and ωðp;l;m;nÞðM; χÞ its complex

frequency, which is a function of the black hole massM and

dimensionless spin χ. To distinguish amplitudes of QNMs

from linear and nonlinear waveform, we use superscripts,

e.g., Alinear
ðp;l;m;nÞ and Anonlinear

ðp;l;m;nÞ.

II. NUMERICAL SETUP

To obtain initial data for a single perturbed black hole,

as in Ref. [56], hereby referred to as paper I, in which

we investigated the spin and initial data dependence of

quadratic quasinormal modes, we use the conformal thin

sandwich approach developed in [85]. First, we superpose

the background Kerr metric in spherical Kerr-Schild

coordinates g0ij [86] with the following initial guess h0ij
for the metric perturbation:

h0ijðt; r; θ;ϕÞjt¼0 ¼ A exp

�

−
ðr − r0Þ

2

w2

�

Ylm
ij ðθ;ϕÞ; ð1Þ

∂h0ijðt; r; θ;ϕÞ

∂t

�

�

�

�

t¼0

¼ 0; ð2Þ

where A, r0, and w are the amplitude, radial location, and

width of the initial perturbation, respectively, and Ylm
ij is the

pure-spin tensor spherical harmonics following conven-

tions in, e.g., Ref. [87]. Here (in contrast to paper I) we

are choosing time-symmetric initial data.
2
This trivially

solves the momentum constraints, but more importantly

for our purposes means the background shift vector is

not modified, making for more straightforward compari-

son between the linear and nonlinear evolution. The

Hamiltonian constraint is then solved for a conformal

factor ψ rescaling the initial guess for the spatial metric,

after which the perturbation can be read off as hij ¼

ψ4ðg0ij þ h0ijÞ − g0ij. This procedure yields consistent initial

data for the nonlinear and linearized evolutions.

As mentioned in the Introduction, we restrict the initial

guess for the perturbation to only have l ¼ jmj ¼ 2

harmonics in the angular sector and the background black

hole to have a dimensionless spin of 0.7 initially. We further

fix r0 ¼ 30M and w ¼ 2M, though we have checked that

our results are largely insensitive to such choices.

We then numerically evolve this family of initial data,

varying A from the perturbative to the nonperturbative

regime, using the Spectral Einstein Code (SpEC) for both

the linear and nonlinear evolution. The nonlinear evolu-

tion employs the generalized harmonic formulation of the

Einstein equations [88–90]. For the linearized evolution,

we use the implementation by Refs. [91,92], which is a

consistent linearization of the generalized harmonic equa-

tions about the given black hole background. In both cases

we use a freezing gauge condition, where the gauge source

functions are set to be those of the Kerr-Schild background.

The first-order gauge source function for the linearized

evolution is set to zero for consistency.

III. RESULTS

We performed linear and nonlinear evolutions of per-

turbed Kerr initial data with four amplitudes evenly spaced

on a logarithmic scale, labeled with amp 0–3 from low to

high. Amp 0 results in a relative mass and spin change of

less than 10−4, while amp 3 causes a change in the mass of

3.4% and dimensionless spin of 5.6%, where we use the

Christodoulou mass and dimensionless spin calculated

through approximate Killing fields [93,94]. In Fig. 1 we

show the amplitude of the linear and nonlinear l ¼ m ¼ 2

spin-weighted spherical harmonic component of the wave-

form extracted at a coordinate radius of 100M with the

smallest (amp 0) and largest (amp 3) amplitude initial data.
3

For the largest amp 3 run, the l ¼ m ¼ 2 waveform

receives a distortion in the waveform amplitude of ∼30%.

At a first glance this is surprising in that the amplitude

distortion is a third-order effect (see Fig. 2). Though what

this indicates is that a perturbation resulting in a 3.4%

change in the black hole mass is well into the nonlinear

regime, consistent with the expectation that the analogous

“perturbation” (as measured by mass change) caused by a

2
A time-symmetric pulse can be thought of as a superposition

of the ingoing and outgoing pulse as used in paper I. The out-
going pulse is cleanly separated from the ingoing one by δt ¼ 2r0
in the gravitational waveform (see Fig. 7 in the Appendix B), and
we ignore it in the analysis here.

3
We do not use Cauchy-characteristic extraction (CCE) as in

paper I since a consistent linearized CCE module does not exist in
SpECTRE [95]. As shown in paper I, extracting the wave at a large
finite radius with our gauge choice yields consistent results with
those calculated through CCE.
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black hole merger should be considered a rather nonlinear

excitation of the remnant.

Before describing the nonlinear changes to the phase

evolution of the waveforms, it would be useful to under-

stand their QNM content. Using the methods described in

paper I, we fit the l ¼ m ¼ 2 component of the linear and

nonlinear waveforms with superpositions of QNMs includ-

ing up to the second overtone, using the final mass and spin

to define the corresponding QNM frequencies. We then

compute the mismatch as a function of fitting start time

between the best-fit QNM model ψ
QNM
22

and the numerical

relativity waveform ψNR
22

, defined as

M ¼ 1 −R

8

<

:

�

ψNR
22

jψQNM
22

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�

ψNR
22

jψNR
22

��

ψ
QNM
22

jψQNM
22

�

q

9

=

;

; ð3Þ

where

hajbi ¼

Z

tf

t¼t0

aðtÞbðtÞdt: ð4Þ

In the bottom row of Fig. 1, we plot this mismatch as a

function of t0 for both the linear and nonlinear waveforms.

At early time the mismatch for both the linear and nonlinear

waveform is high, which is as expected as here the signal is

dominated by a transient. From a time close to the peak

amplitude in the waveform onward, the mismatch drops

significantly. Surprisingly, the improvement in mismatch,

both in magnitude and when it occurs, is largely insensitive

to nonlinearities. This suggests that the time when non-

linearities are most relevant in modifying the properties of

the QNM excitation is also when the transient is still a

significant component of the signal, and hence it is the

latter that is ultimately the limiting factor in how early on in

a signal a QNM analysis can be used to interpret the

ringdown.

Figure 2 illustrates the nonlinear distortion to the

complex QNM amplitudes extracted from the linear and

nonlinear waveforms for three dominant modes: the fun-

damental prograde and retrograde modes ð�; 2; 2; 0Þ and

the first overtone for the prograde mode ðþ; 2; 2; 1Þ. The
QNM amplitudes are extrapolated to the peak of the

waveform, with uncertainties estimated from stability of

fit [56,96]. What is shown there are the relative differences

FIG. 1. Top: comparison between waveforms from linear and nonlinear evolution of a single perturbed black hole. The time axis is

normalized by the initial black hole mass Mi, and t ¼ 0 at the peak of the linear waveform. Waveforms from nonlinear evolution are

shown as red solid lines and those from linear evolution as orange dashed lines. We further plot the difference between the waveform

amplitudes, i.e., rMjjψ linear
4

j − jψnonlinear
4

jj, using thick blue lines. We note that the amplitude difference does not take into account the

accumulation of a phase difference, which we show in Fig. 3. We find good agreement between the nonlinear and linear waveforms at

the lowest amplitude (left); however, near order unity relative disagreement (more clearly evident in Fig. 2) is found at the highest

amplitude (right). The latter causes a change of 3.4% (5.6%) in the mass (dimensionless spin) of the black hole in the nonlinear

evolution. Bottom: mismatch between the best-fit QNM model (including up to the second overtones) and the waveform varying fitting

start time, where we used the late-time mass and spin extracted at the horizon for the nonlinear waveforms. For the highest amplitude

case, the mismatch for the nonlinear evolution is only marginally larger than its linear counterpart at late time, suggesting that a linear

superposition of QNMs could still be a good model. In all panels, numerical error is estimated using the difference between the highest

and second highest resolution nonlinear evolution waveforms; linear evolution shows similar error characteristics.
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between nonlinear versus linear evolution as a function of

amplitude (see the Appendixes for plots of the absolute

amplitudes and the stability of the QNM fitting with time).

The scaling of the difference with amplitude is as expected

from perturbation theory.

The remaining QNMs, namely n ≥ 2 prograde overtones

and any overtones for the retrograde mode, are not stable

for a meaningful time window (∼10M) in either the linear

or nonlinear waveform, suggesting the linear transient is

obstructing the extraction of these modes.

Finally, we return to the drift in waveform phase due to

nonlinear effects. We illustrate this in Fig. 3 by showing the

phase difference (blue line) between the highest amplitude

amp 3 nonlinear (red line) and linear (dashed orange line)

waves versus time. At early times the two cases are in

phase, but then around the time corresponding to the peak

amplitude (t ¼ 0) there is a rapid shift in frequency

difference between the two. This results in a phase differ-

ence that afterward is dominated by a linear drift in time,

the slope of which is consistent with a change of the

prograde mode frequency due to the change in mass and

spin of the black hole; i.e., the slope of the solid black line

is ℜfωðþ;2;2;0ÞðMi; χiÞ − ωðþ;2;2;0ÞðMf; χfÞg, with Mi and

χi (Mf and χf) the initial (final) mass and spin.

Subdominant to the linear phase drift is a small oscillation

that eventually decays away. The oscillation appears to

come from beating of the prograde ðþ; 2; 2; 0Þ mode with

the frequency and amplitude-shifted retrograde mode

ð−; 2; 2; 0Þ. This oscillation eventually decays away as

the retrograde mode decays faster than the prograde mode.

The dashed black line in the figure combines this beating

effect with the linear drift, giving an excellent match to the

late-time full nonlinear waveform.

IV. DISCUSSION AND CONCLUSION

We investigated nonlinear effects in the gravitational

wave perturbation of a black hole by comparing evolution

of the same initial perturbation solving the full Einstein

equations versus the Einstein equations linearized about

the given black hole background. Our main goal for doing

this was to investigate how perturbations that result in

FIG. 2. Shift of the complex QNM amplitudes due to nonlinear

effects. On the vertical axis we plot the fractional amplitude

difference between the linear and nonlinear waveform for the

dominant QNMs jAlinear
ðp;l;n;mÞ − Anonlinear

ðp;l;n;mÞj=jA
linear
ðp;l;n;mÞj. On the hori-

zontal axis we used the linear Alinear
ðþ;2;2;0Þ as a proxy for linear

perturbation amplitude. We find that the QNM amplitudes drift

from the linear approximation at third order in the amplitude

(hence the fractional amplitudes drift at second order), in accor-

dance with formal perturbation theory. Despite being a higher-

order effect, for the largest amplitude perturbation we consider,

relevant to astrophysical mergers, the relative amplitude changes

are close to ∼50%. We stress that this drift in complex amplitude

comes from both the absolute amplitude and the phase.

FIG. 3. Phase difference between the highest amplitude (amp 3)

linear and nonlinear waveform. The phase of the nonlinear

waveform is the solid red line, the linear waveform the dashed

orange line, and their difference the solid blue line. Following the

peak of the waveform (t ¼ 0), the phase difference can be

characterized by a linear drift overlayed with an oscillation that

decays away at late time. The linear drift is caused by the change

in the ðþ; 2; 2; 0Þ frequency due to the mass and spin change;

the solid black line is a “prediction” of this effect using the

corresponding QNM frequencies. The oscillation is caused by the

drifted retrograde ð−; 2; 2; 0Þ mode beating against the prograde

mode, which decays with time since the retrograde mode decays

faster than the prograde mode. We include this effect in the

prediction of the difference as the dashed black line.
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astrophysically relevant changes in the mass and spin of the

black hole affect the QNM excitation and their extraction

from the full signal using models based on linear QNMs.

For such large amplitude perturbations we find an order

unity relative change in the amplitude of the dominant

quadrupolar QNM excited. However, despite such a large

difference, we find almost no adverse effect in extracting

this mode, its retrograde counterpart and its first overtone,

using a fitting procedure based on the linear problem. In

other words, the time in the fitting procedure where the

linear waveform becomes stable is almost identical to the

time when it becomes stable for the nonlinear waveform,

and the mismatch in either waveform compared to the

relevant sum of linear QNMs extracted becomes similarly

small. The reason for this appears to be that the time when

the nonlinear interaction is most relevant in affecting the

amplitude of the QNMs, and indirectly their frequencies

through the change in the black hole’s mass and spin, is also

when the transient part of the signal obscures the inter-

pretation of the waveform as a sum of QNMs.

Our findings would apply to more generic initial con-

ditions despite the use of a simple initial data configuration,

namely a single tensor spherical harmonic. When multiple

angular modes are present, the only added complication

is quadratic coupling of quasinormal modes. However,

the resulting quadratic quasinormal modes can be easily

incorporated into the fitting model by adding their corre-

sponding frequencies, and the challenge remains the

transient, which already presents at the linear level where

the angular modes decouple.

Though the particular form of the transient is a function

of our initial data, it is difficult to imagine that an effective

transient in the analogous problem of a remnant formed via

a black hole merger will be any less significant. The “good

news” in that regard is our work implies that linear QNM

fitting for the ringdown in black hole mergers, whether

from numerical predictions or detected events, does not

need to model a changing mass and spin. The “bad news” is

that even were a model of the changing mass and spin

developed, it might not help in extending the time over

which a stable extraction of QNMs can be obtained due to

obscuration by the transient, which is already present at the

linear level.
4
Note that our results certainly do not imply

that nonlinear effects cannot be observed in the ringdown.

For example, quadratic QNMs are present, though they

could similarly be incorporated into a linear QNM model

by including the appropriate frequency-doubled modes. A

significant caveat on the above broader reaching implica-

tions of these results is that we have only studied an initial

χ ¼ 0.7 spin black hole and a limited family of initial

conditions.

Our framework can be easily extended to investi-

gate other effects during ringdown, such as the quad-

ratic QNMs just mentioned or precession. Regarding the

latter, one could simply rotate the pulse relative to the

black hole to study precession of the remnant spin due to

radiation backreaction and test the toy model proposed

in Ref. [96]. We leave a study of these extensions and a

more thorough exploration of parameter space to future

endeavors.
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APPENDIX A: STABILITY OF QNM FITTING

We refer interested readers to Refs. [44,56] for a detailed

description of our fitting procedure. In Fig. 4, we plot the

extracted amplitudes for the three dominant quasinormal

modes as a function of fitting start time, for both the linear

(dashed line) and nonlinear (solid line) waveforms from

all four different initial amplitude runs, labeled by color. A

QNM is stably extracted if the measured amplitude is

nearly constant over a sufficiently large window of start

fitting time [43–45]. We find that even the first overtone

(rightmost panel) is stable for a period longer than 20M.

Surprisingly, the nonlinear effects due to mass and spin

change do not seem to affect the stability of the fit even

when the change in the background is large.

Furthermore, we show in Fig. 5 that any of the remaining

overtones cannot be stably extracted for a meaningful

4
Applying frequency agnostic fits to the linear and non-

linear waveform may further ascertain the relevance of such
models [43,60,61].
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period of fitting start time (∼10M). And the instability in

the fitting is similar between the linear and nonlinear

waveform, suggesting that the linear transient is the

dominant obstruction for measuring these faster decaying

modes. The exact cutoff in the extractability of overtones

is dependent on initial data, but we expect that the

transients always dominate over the nonlinear effects

for obstructing the measurement of overtones for generic

initial data.

In Fig. 6, we plot the horizon mass as a function of time

on top of the linear and nonlinear waveform for the highest

amplitude (amp 3) run, where the horizon time is shifted by

100M to roughly match the waveform time. We note that

this matching is very heuristic as the horizon is by

definition causally disjoint from the exterior. We find that

indeed most of the mass change occurs before the peak of

the waveform, during which the QNM fitting model fails

even for the linear waveform [44].

FIG. 4. Amplitudes of QNMs as a function of fitting start time for the linear (dashed) and nonlinear (solid) waveforms. The QNM is

stably extracted if its amplitude remains constant for a sufficiently long period of fit starting time. We note that the nonlinear effects of

changing mass and spin does not seem to affect the stability of quasinormal mode fitting, even for the first overtone at the highest

amplitude (blue lines in the rightmost plot).

FIG. 5. Same as Fig. 4 but for overtones that are not stable. For our initial data, the prograde overtones with n ≥ 2 and any of the

retrograde overtones cannot be stably extracted in both the linear and nonlinear waveforms.
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APPENDIX B: NUMERICAL CONVERGENCE

To test convergence, we run the linear and nonlinear

simulations with the highest perturbation amplitude at four

different resolutions. The computational domain consists of

24 nested spherical shells with inner boundary at 1M and

outer boundary at 330M; the number of collocation points in

each spherical shell is summarized in Table I. We show

convergence of the linear and nonlinear amp 3 waveform in

Fig. 7 and convergence of the L2 norm for the generalized

harmonic constraint (see Ref. [88] for its definition) in Fig. 8.

FIG. 6. An overlay of the waveform and the horizon mass as a

function of time for the largest amplitude (amp 3) run. The

horizon time has been shifted by 100M (the radius of wave

extraction) to align with the waveform. Barring coordinate

effects, it appears that the mass change does occur during the

transient phase, i.e., before the waveform peaks. Whether this

holds true for generic initial data deserves future investigations.

FIG. 7. Convergence of the linear (left) and nonlinear (right) waveform for the amp 3 runs. The resolutions are labeled by Lev0

(lowest) through Lev3 (highest); see Table I for details. We find the residual between different resolutions decreases as expected.

FIG. 8. L2 norm for the generalized harmonic constraint as a

function of simulation time, from the largest amplitude (amp 3)

run. The largest constraint violation is observed when the pulse

hits the horizon, which converges away with resolution.

TABLE I. Number of collocation points/spectral elements for

each resolution level (Lev).

Lev Nr NL

0 10 14

1 12 16

2 14 18

3 16 20
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