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We study electromagnetic and gravitational properties of anti–de Seitter (AdS) black shells (also

referred to as AdS black bubbles)—a class of quantum gravity motivated black hole mimickers, that

in the classical limit are described as ultracompact shells of matter. We find that their electromagnetic

properties are remarkably similar to black holes. We then discuss the extent to which these objects are

distinguishable from black holes, both for intrinsic interest within the black shell model, and as a guide

for similar efforts in other subclasses of exotic compact objects (ECOs). We study photon rings and

lensing band characteristics, relevant for very large baseline interferometry (VLBI) observations,

as well as gravitational wave observables—quasinormal modes in the eikonal limit and the static

tidal Love number for nonspinning shells—relevant for ongoing and upcoming gravitational wave

observations.
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I. INTRODUCTION AND OVERVIEW

The ability to scrutinize black holes has recently kicked
into high gear. The detection of gravitational waves has
opened a window to directly examine dynamical, strong
field gravity, in particular from systems describing stellar
mass black hole mergers [1,2]. Electromagnetic signals
detected through very large baseline interferometry are
providing a glimpse into horizon-scale emission regions of
supermassive black holes [3]. These exquisite detection
efforts, which will be followed by increasingly more
sensitive campaigns, herald unprecedented opportunities
to test fundamental ideas about the nature of black holes,
and potential deviations from their simple structure pre-
dicted by (classical) general relativity.
Multiple lines of arguments rooted in quantum theory

call into question the classical picture. Indeed, the so-called
black hole information paradox, and the connection of
black hole entropy to its area, have motivated diverse
models attempting to interpret and reconcile such puzzling
aspects of black holes. These, and connected efforts to

address the presence of singularities inside black holes,

have motivated “extensions” to black holes, altering their

structure in the vicinity of the classical horizon and its

interior. Proposals for objects like fuzzballs [4–6], boson

stars [7], gravastars [8,9], AdS black shells, and other

alternatives have been presented (see [10] and references

therein), collectively referred to as exotic compact objects

(ECOs) (not all necessarily motivated by quantum gravity

considerations).
Here, we focus on a subclass of ECOs, “AdS black

bubbles” which, for their characteristics described in this

work, will be referred to as shells. Such an object is

modeled as an ultra-compact thin-shell: a 2-sphere surface

layer of matter close to the would-be horizon of the

analogous black hole, but still at a macroscopic distance

outside, that separates a nonsingular interior spacetime

from the exterior, asymptotically flat spacetime [11–15]. In

previous works we have focused on understanding the

dynamics of black shells in spherical symmetry, metric

properties of slowly rotating shells including its quadrupole

moment, and discussed prospects and challenges to be

addressed for testing the black shell paradigm [13,15]. In

this paper, short of considering binary black shell systems,

we study a set of observable consequences tied to black

shells in both electromagnetic and gravitational observ-

ables. We discuss the extent to which such objects are

distinguishable from black holes, both for intrinsic interest
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within the black shell model, and also as a guide for similar
efforts in other subclasses of ECOs.

1

In Sec. II, we begin with an overview highlighting key
aspects of black shells, which will serve as the concrete
model that we will study in the rest of this paper.
In Secs. III and IV, we focus on the electromagnetic

properties of black shells. By assigning sufficiently large
values to parameters determining the permittivity, per-
meability and conductivity of the shell, we find that the
black shells satisfy a “no-hair” property, akin to the electro-
magnetic no-hair properties of Kerr-Newman black holes.
We also find that they are fully absorbing, and that currents
flowing within the thin shells have the same properties as
the effective currents on black hole horizons. We argue that
black shells can serve as electric generators producing jets
in a similar way as black holes.
In Sec. V, we study observational signatures of

black shells in the electromagnetic spectrum, relevant for
very large baseline interferometry (VLBI) observations
made by the event horizon telescope (EHT). Since black
shells are macroscopically bigger than black holes, this
changes the size and shape of the inner shadow. Owing to
the difference in quadrupole moment of a rotating black
shell as compared to Kerr, the critical curve (photon ring)
has a shape distinct from that of a Kerr black hole with
identical mass and spin. Both of these are potentially
observable effects that could distinguish a black shell from
a black hole.
In Sec. VI, we study observables that are relevant for

gravitational wave observations of binary mergers by the
LIGO-Virgo-Kagra (LVK) collaboration, as well as upcom-
ing ground-based and space-based missions. We begin, in
Sec. VI A, by examining the characteristic frequencies
associated with the light ring—the orbital frequency and
the instability exponent—that can be used to estimate the
quasinormal mode frequencies in the large harmonic
number l limit. These frequencies are different from those
of a Kerr black hole because of a difference in multipole
moments. Unsurprisingly, the difference is small, owing to
only percent level differences in the multipole moments.
We then compute the tidal Love number of stationary black
shells in Sec. VI B, where we find it to be small and
positive. A nonzero Love number would be observable in
the inspiral phase of a gravitational wave signal prior to
merger, imprinting itself on the signal as an overall phase
difference compared to black hole waveforms (for which
the Love number vanishes).

Finally, in Sec. VII we comment on what to expect in the

gravitational wave signal from a black hole binary merger

event, a discussion on other pertinent aspects of the black

shell model which generalizes to ECOs, and conclude with

an outlook on future directions.

II. BLACK SHELLS: AN OVERVIEW

Introduced in [11], a black shell is a bubble of four-

dimensional anti–de Sitter (AdS) spacetime enclosed by a

2þ 1 dimensional thin material shell, outside of which

there is an asymptotically flat Minkowski vacuum. This

model is inspired by string theory, giving an alternative

endpoint to gravitational collapse than a black hole. The

construction assumes that our four-dimensional Minkowski

spacetime is metastable and may transition to an AdS

vacuum through a first-order phase transition, via quantum

tunneling. Such AdS vacua are ubiquitous in string theory,

and the decay proceeds through the nucleation of a

spherical brane bubble in four dimensions. This tunneling

process is highly suppressed, making the four-dimensional

Minkowski vacuum extremely long lived. However, during

gravitational collapse, a new possibility emerges. Should a

bubble form atop a collapsing shell of matter, the matter

transforms into a gas of open strings on the nucleating

brane. Assuming that this gas thermalizes at the Unruh

temperature, it acquires an entropy comparable to that of

the corresponding black hole, significantly increasing the

phase space for nucleation and rendering its creation

inevitable.
It was argued in [11] that the natural radius for

converting infalling matter into radiation is the Buchdahl

radius (¼ 9M=4), making it the natural radius for the

formation of a black shell as suggested by the entropy

argument above. To ensure stability of the shell at this

radius, it is necessary to allow a transfer of energy between

the matter components. This was studied in detail in [13],

where dynamical, nonlinear stability in response to radial

perturbations and accretion was shown to be possible for a

range of parameters describing the internal flux between

the matter components of the shell.
The construction was extended in [12,14,15] to include

rotating black shells with a moderately large spin (up to a6

perturbatively). The external spacetime of these rotating

shells shows deviations from the Kerr metric, including

multipole moments that vary from those of Kerr at a percent

level. Additionally, the gas on top of the rotating shell

exhibits significant viscous properties, such as nonzero heat

conductivity and shear viscosity. Despite its stringy origins,

astrophysical black shells can largely be modeled using

classical physics, provided that the matter is described by a

suitable equation of state. The electromagnetic and gravi-

tational characteristics of these shells will be further

examined in the remainder of this article.

1
There is increasing interest in understanding observational

properties of ECOs, with the intention of distinguishing them
from black holes see e.g. [16–18]. However, most efforts focus on
electromagnetic observables in stationary regimes. This is be-
cause dynamics of most models of ECOs (with the exception of
boson stars, see, e.g., [7,19,20]) are not sufficiently developed to
be able to study their merger in binaries.
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III. ELECTROMAGNETIC PROPERTIES

OF THE BLACK SHELL

A. The black shell is black

The defining property of a black hole is that it is black.
Any black hole mimicker, such as a black shell, should
reproduce this property at least to a reasonable extent. In
this section we will discover that blackness can be achieved
if the shell is made of a material with relative permittivity
ϵr and relative permeability μr, such that ϵ ¼ ϵrϵ0 and
μ ¼ μrμ0, with ϵr ¼ μr ≫ 1. Given that the shell is carrying

a large number of degrees of freedom, on order of R2=l24, it

is reasonable to expect that their response to electric and
magnetic fields can be strong, if these degrees of freedom
are associated with electric and magnetic dipoles. We will
not make any attempt to estimate these values, but plan to
return to this question in the future. As we will see, as long
as they are sufficiently big, physically measurable quan-
tities will not depend on their exact values. The speed of
light within the material that makes up the thin shell will
then be much smaller than the speed of light in vacuum

cs ≔
1
ffiffiffiffiffi
μϵ

p ≪ c ð1Þ

For this reason, we will refer to the region within the shell
as the black domain.

2

Maxwell’s equations with D⃗ ¼ ϵE⃗ and B⃗ ¼ μH⃗, are
given by

∇
!

× H⃗ ¼ J⃗ þ dD⃗

dt
; ð2Þ

where J⃗ ¼ σE⃗, and

∇
!

× E⃗ ¼ −
dB⃗

dt
: ð3Þ

The solution for an electromagnetic wave traveling within

the thin shell is proportional to e−κz−ikzþiωt, where

k ¼ ω

ffiffiffiffiffi

ϵμ

2

r  ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ
�

σ

ϵω

�
2

s

þ 1

!
1=2

⟶

lim σ≪ϵω
ω
ffiffiffiffiffi
μϵ

p
; ð4Þ

verifying the expected expression for the speed of light in
the medium.

We also find an exponential decay governed by

κ ¼ ω

ffiffiffiffiffi

ϵμ

2

r  ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ
�

σ

ϵω

�
2

s

− 1

!
1=2

⟶

lim σ≪ϵω

ffiffiffi

μ

ϵ

r

σ

2
: ð5Þ

The length scale associated to this decay can be identified
with a characteristic skin depth

δs ≔
2

σ

ffiffiffi

ϵ

μ

r

; ð6Þ

to which fields can penetrate into the shell before being
damped by an e-fold. The effective resistance associated
with currents flowing within this slice is proportional to

σδs ∼
ffiffiffiffiffiffiffiffi

ϵ=μ
p

¼
ffiffiffiffiffiffiffiffiffiffiffi

ϵ0=μ0
p

, which is independent of σ and

identical to the impedance of the vacuum. This is exactly
the same value as in the case of the black hole horizon.
Provided that the skin depth is much smaller than the
thickness of the shell, δs ≪ δa, the waves will be absorbed
quickly and fully, long before they reach the other side of
the thin shell.
Using the Fresnel equations, ignoring conductivity, one

notes that any incident wave exactly normal to the surface
will be perfectly transmitted without any reflection if
ϵr ¼ μr. Taking conductivity into account, there will only
be a very small, imaginary, reflection coefficient propor-
tional to σ=ðϵωÞ ≪ 1. This is promising for a black shell.
In the case of a wave coming in at an angle, Snell’s law

tells us that the wave will be refracted toward the normal,
and, given the high refractive index within the shell,
continue on the inside almost exactly along the normal.
According to the Fresnel equations, there will now also
exist a reflected wave without any suppression. However, the
Fresnel equations assume a sharp boundary with ϵ and μ

behaving as step functions. In any physical system, this
cannot be true. There must be a gradient in the permittivity
and permeability such that they increase from the vacuum
value to the extreme values of the black domain over a finite
width. In the presence of a finite gradient, the refracted wave
will not take a sharp turn, but instead smoothly change its
direction along a geodesic in the medium. Furthermore, any
reflection will be suppressed if the wavelength of the light is
much smaller than the width of the step. In our case the
wavelength of light will decrease the further into the medium
the wave penetrates. Given that cs ¼ 1=

ffiffiffiffiffi
ϵμ

p
becomes very

small, there will be an enormous pile up of waves across the
step. For simplicity, we assume that the width of the step is
much smaller than the skin depth, δw ≪ δs. In order for
reflection to be suppressed we then need

cs=ω ≪ δw ≪ δs: ð7Þ

This is also compatible with our assumption that
σ=ðϵωÞ ≪ 1. Hence, any reflection due to either the step

2
This phrase is borrowed from “Death’s end” by Cixin Liu, the

third book in the trilogy starting with “The three body problem.”
In the book, black domain is a region of space where light slows
to a standstill.
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or conductivity is suppressed. One may note that suppres-
sion is strictly speaking needed only for wavelengths
∼c=ω ≪ a, where a is the radius of the shell. This implies
that σa=ðϵcÞ can be of order one. We conclude that all
waves with a wavelength much smaller than the
Schwarzschild radius will be fully absorbed, and the black
shell will look perfectly black. We expect these consid-

erations to be relevant for any black hole mimicker.
Let us see how this works in more detail. For the purpose

of this problem, it suffices to zoom in on the shell and look
at a tiny section that is effectively a flat slab of material with
a graded refractive index. We will work in Cartesian
coordinates, and put the boundary at z ¼ 0, with the
positive z-axis pointing toward the black domain. For
definiteness, we choose the polarization of the incoming
light such that Eyðx; zÞ,Hxðx; zÞ, and Hzðx; zÞ are nonzero.
For normal incidence, Hz ¼ 0. We put μ ¼ μ0αðzÞ and
ϵ ¼ ϵ0αðzÞ, with αðzÞ representing a step of width δw
around z ¼ 0, such that α → 1 as z → −∞, and α →

ϵr ¼ μr as z → þ∞. Taking the electric and magnetic

fields to be E⃗ ¼ Eyðx; zÞeiωtŷ, H⃗ ¼ Hxðx; zÞeiωtx̂þ
Hzðx; zÞeiωtẑ, Maxwell’s equations can be written as a
set of coupled, driven wave equations

∇2Ey þ ω2μϵEy − iω
dμ

dz
Hx ¼ 0;

∇2Hx þ ω2μϵHx − iω
dϵ

dz
Ey þ

1

μ

dμ

dz

∂Hz

∂x
¼ 0;

∇2Hz þ ω2μϵHz þ
∂

∂z

�

1

μ

dμ

dz
Hz

�

¼ 0; ð8Þ

where ∇2 ≔ ð∂2x þ ∂
2
zÞ. In case of normal incidence, where

kx ¼ 0, the third equation is trivially solved by Hz ¼ 0,
while the first two equations decouple and are solved by

Ey ∼ e
−ikz

R
z
αdz

, with kz ¼ ω=c and Hx ¼ −
ffiffiffiffiffiffiffiffiffiffiffi

ϵ0=μ0
p

Ey.

This is a purely ingoing wave with varying momentum but
no reflection, in agreement with Fresnel. If the light comes
in at an angle, with kx ≠ 0, it is easiest to solve the third

equation. Writing Hzðx; zÞ ¼ e−ikxxfðzÞ=
ffiffiffiffiffiffiffiffiffi

μðzÞ
p

, the last

equation above becomes (here and below, primes denote
derivatives with respect to z)

f00 þ
��

ω

c

�
2

α2 − k2x þ
α00

2α
−
3ðα0Þ2
4α2

�

f ¼ 0: ð9Þ

Through Maxwell’s equations, the solutions for Hz will
also generate solutions for the other components Ey and

Hx. The solution is uniquely specified by the condition that
it is an incoming wave at an angle. In the limit of normal
incidence, kx ¼ 0, the exact solution is

f ¼ 1
ffiffiffi

α
p e

−ikz

R
z
αdz

; ð10Þ

which implies zero reflection compatible with the Fresnel
result. The limit is, however, degenerate since the ampli-
tude of Hz needs to be put to zero for normal incidence.
Turning on kx, we can no longer easily find an exact
solution. (Note that kmax

x ¼ ω=c, corresponding to a graz-
ing ray of light). To better understand the physics, we
change coordinates to dζ ¼ αðzÞdz. In this new coordinate,
the wavelength of light becomes essentially constant within

the black domain. We then introduce gðzÞ ¼
ffiffiffiffiffiffiffiffiffi

αðzÞ
p

fðzÞ, to
find the very simple equation

−
d2g

dζ2
þ VðζÞg ¼ 0; ð11Þ

with the potential

VðzÞ ¼ k2x

αðzðζÞÞ2 −
�

ω

c

�
2

ð12Þ

such that we can think of the problem as a one-dimensional
Schrödinger equation for a particle passing over a barrier.
We note that for large jζj [i.e., large jzj, where αðzÞ
becomes effectively constant] the potential goes to a
constant according to

V → k2x −

�

ω

c

�
2

for ζ → −∞ ð13Þ

V →
k2x

α2r
−

�

ω

c

�
2

for ζ → þ∞ ð14Þ

where αr ¼ ϵr ¼ μr is large. Since α is monotonic in z
(and ζ), the potential V is a smooth and monotonic function

that goes from the negative value k2x − ðω=cÞ2 far from
the black domain, to the even more negative value

ðkx=αrÞ2 − ðω=cÞ2 deep inside the black domain.
As we have seen, reflection is identically zero for kx ¼ 0.

This is obvious from (12), since the potential is constant
everywhere. For kx ≠ 0 this is no longer true, but any
reflection will still be heavily suppressed. In the original
coordinate z, the step has width δw, while in the new
coordinate ζ the width is rescaled to αrδw. Although δw is
supposed to be much smaller than any realistic wave
length, αrδw is assumed to be much larger. This implies
that we are in an essentially classical regime, and the
reflection can be neglected for all values of kx. This is
sketched in Fig. 1.
What happens is that the graded boundary of the black

domain mimics space-time just outside of the horizon
of a black hole. That is, light rays are bent so that they
travel along the normal. This is compatible with the
well-known electromagnetic boundary condition on the
horizon [21–23], which says that the normal components

E⃗n and B⃗n, as well as the parallel components, E⃗H and B⃗H,
as measured by a freely falling observer are finite.
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In addition

E⃗H ¼ n⃗ × B⃗H; B⃗H ¼ −n⃗ × E⃗H; ð15Þ

which implies that all electromagnetic fields near the
horizon, look like incoming waves along the normal.
This can be understood as a consequence of a diverging
Lorentzboost.

3
The fully developed black domain works

more like the horizon itself—including its electric proper-
ties as we will see later on.

B. The black shell has no hair

As an attempt to distinguish a black shell from a black
hole, one may wonder about the fate of a charge that falls
onto the stationary black shell. Had it been a black hole, the
information about the angular coordinates where the point
charge is dropped in will eventually be lost to an external
observer after the charge passes the horizon, and any
measurement performed will then see electric field lines
emanating radially from the spherical horizon of the
Schwarzschild black hole. This is a consequence of the
black hole no-hair theorem. Since the black shell lacks a
horizon, one does not naively expect such a no-hair effect.
On the other hand, the black shell has a large number of
degrees of freedom by construction, and one may expect
the charge to somehow “dissolve” into these degrees of
freedom, with the whole black shell carrying the charge.
But since charge is quantized, if the no-hair effect is to be
redeemed, dissolving cannot be the correct solution.

Another possibility is that the shell simply has a nonzero
conductivity, and that charges redistribute themselves so
that the entire shell is at the same electric potential. This is a
simple way to satisfy the no-hair theorem. As we have
already seen, we do need a nonzero conductivity for other
reasons, but this cannot on its own explain no hair. Due to
the large permittivity, that we needed for the black shell to
be black, the electric field sourced by a charge within the
black domain will be extremely weak (as we will show in
detail below), and any current much to weak to realize the
no-hair theorem fast enough.
Luckily, as we will now show, the large permittivity in

itself implies no hair. But this is not achieved through free
charges that redistribute due to currents, but through bound
charges that appear at the surface. To figure out what is
going on, we consider a point charge embedded within the
shell and compute the electric field that results. Since the
shell sits at r ¼ 9M=4, and we are interested in the effect of
the point charge within a stellar mass or larger shell; we
will, for the moment, The fully developed black domain
works more disregard the spacetime curvature and work in
flat space. The qualitative picture will be the same. In this
limit, this is simply a problem in classical electrostatics.
The general case of a point charge embedded both within
and inside a dielectric shell was discussed in [25]. In the
following, we will reproduce their results for the case that is
of interest to us.
To solve for the electric field, we need to solve the

Poisson equation for the scalar potential in three regions:
inside, within, and outside the shell. While there are no
sources inside and outside the shell, the point charge within
the shell provides a source term proportional to the charge.
Let us consider a shell of inner radius a, outer radius b
containing a point charge q at a radial distance s (and
θ ¼ 0), where a < s < b. We now make the following
ansatz for the scalar potential Φ (assuming regularity at the
origin and at infinity):

Φin ¼
X∞

n¼0

Anr
nPn;

Φshell ¼
q

ϵjr⃗ − s⃗j þ
X∞

n¼0

�

Bnr
n þ Cnr

−n−1
�

Pn;

Φout ¼
X∞

n¼0

Dnr
−n−1Pn: ð16Þ

jr⃗ − s⃗j−1 accounts for the point charge source within the
shell, while the other terms are Green’s functions for the
Laplace equation. Pn ¼ PnðθÞ are the Legendre polyno-
mials. The scalar potential on the shell can be rewritten
using the standard expansion from [26],

1

jr⃗ − s⃗j ¼
(P

∞
n¼0 r

ns−n−1Pn ða < r < sÞ;
P

∞
n¼0 s

nr−n−1Pn ðs < r < bÞ:
ð17Þ

FIG. 1. A sketch showing that a ray of light incident at an angle
to the black shell bends smoothly toward the normal and
continues along the normal thereafter, until it gets completely
absorbed. The refractive index of the medium, which increases
smoothly from its vacuum value outside the shell to a large value
in the shell, is shown as a graded background. The dimming of
the light ray as it passes through the shell represents a reduction in
its intensity until it is absorbed into the shell.

3
The similarity between Maxwell’s equations with nontrivial

permittivity and permeability, keeping the impedance
ffiffiffiffiffiffiffi

ϵ=μ
p

constant, and electromagnetism in a curved spacetime (in parti-
cularly close to a horizon) has previously been observed in [24].
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Boundary conditions are given by

�

∂Φin

∂r
¼ ϵ

∂Φshell

∂r

��
�
�
�
r¼a

;

�

∂Φin

∂θ
¼ ∂Φshell

∂θ

��
�
�
�
r¼a

; ð18Þ

�

∂Φout

∂r
¼ ϵ

∂Φshell

∂r

��
�
�
�
r¼b

;

�

∂Φout

∂θ
¼ ∂Φshell

∂θ

��
�
�
�
r¼b

: ð19Þ

A solution to this system of equations is given by (after correcting a minor misprint in [25])

An ¼ ð2nþ 1Þ q

Ens
nþ1

�

ðnþ 1Þðϵ − 1Þ
�

s

b

�
2nþ1

þ nðϵþ 1Þ þ 1

	

;

Bn ¼
�

1 −
1

ϵ

�

ðnþ 1Þ q

Ens
nþ1

�

nðϵ − 1Þ
�

a

b

�
2nþ1

þ ðϵþ ϵnþ nÞ
�

s

b

�
2nþ1

	

;

Cn ¼
�

1 −
1

ϵ

�

n
qa2nþ1

Ens
nþ1

�

ðϵnþ nþ 1Þ þ ðnþ 1Þðϵ − 1Þ
�

s

b

�
2nþ1

	

;

Dn ¼ ð2nþ 1Þ qa
2nþ1

Ens
nþ1

�

nðϵ − 1Þ þ ðϵþ ϵnþ nÞ
�

s

a

�
2nþ1

	

;

En ¼ ðϵnþ nþ 1Þðϵþ ϵnþ nÞ − nðnþ 1Þðϵ − 1Þ2
�

a

b

�
2nþ1

: ð20Þ

Consider the limit in which the shell is thin, δa=a ≪ 1,
where δa ≔ b − a is the thickness of the shell, and the shell
has a large relative permittivity ϵr → ∞. If the permittivity
goes to infinity faster than the thickness goes to zero, i.e.,

Δ ≔ ϵrδa=a ≫ 1, the electric field (E⃗ ¼ −∇
!
Φ) inside, and

within the shell vanishes, while it points radially outward
outside the shell

lim
Δ→∞

Ein ¼ lim
Δ→∞

Eshell ¼ 0; lim
Δ→∞

Eout ¼
q

r2
: ð21Þ

Remarkably, this hides the position of the charge within
the shell from an external observer, recovering a no-hair
property for the shell.

4
Within the shell, the displacement

vector (D⃗ ¼ −ϵ∇
!
Φ) is nontrivial in the limit ϵ → ∞ and

shows that the field lines from the charge bend along the

shell. The fields E⃗ and D⃗ are shown in Fig. 2. It is intriguing
that the same properties of the shell that lead to no-hair also
account for why the shell is black. As explained at the end
of the last section, this is presumably due to the outer layer
of black domain (which refracts the field lines in both
cases) acting in a way that is very similar to curved
spacetime just outside of an horizon.
The reason to expect large ϵ is, as already argued, related

to the huge number of degrees of freedom of the gas on top

of the shell. If each degree of freedom can induce a dipole
moment, the relative permittivity and permeability will be
proportional to the number density, which is large. The
same argument applies to permeability μ. Since we expect
the black shell to be democratic with respect to electric
and magnetic fields, we expect ϵr ¼ μr both large. In
other words, the impedance will be the same as that of the
vacuum. While we are making these arguments in the
context of the string inspired black shell model, they should
apply to any model that attempts to explain the origin of BH

entropy.
In the above, we ignored the conductivity of the shell for

the simple reason that the electric field for this particular
configuration was more or less vanishing. In the case of an
incoming electromagnetic wave, the electric field within
the black shell is nonvanishing, and the conductivity is
crucial for the wave to be absorbed. In the next sections, we
will study currents flowing through the shell, where again
conductivity will be important. We will first consider a
source exterior to the shell, and then consider the shell itself
as a generator.

C. The black shell as a conductor

Consider a black shell with a wire connected to the north
pole and another wire connected to the south pole; see
Fig. 3. We then connect the wires to an external voltage
source and expect a current to start flowing through the
circuit, including the black shell. As in the case of a black
hole we do not expect matter to be able to leave the shell. In
order for a current to flow, we therefore need, say, electrons

4
For the shell to have no electromagnetic hair, it needs to have

ϵrδa=a ≫ 1. For the classical analysis in this article, this is a
well-motivated assumption, and we would like to understand its
stringy origin in a future work.
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entering the shell through one of the wires and positrons
entering through the other.

5
Maxwell’s equations for the

conducting shell are simply given by

∇ × E ¼ −∂tB; ∇ ×H ¼ σEþ ∂tD;

∇ ·H ¼ 0; ∇ · E ¼ 0: ð22Þ

Here we have used the constitutive equations for the shell

D ¼ ϵE; B ¼ μH; J ¼ σE: ð23Þ

We note that the electric field is source-free, ∇ · E ¼ 0,
everywhere, except where the external wires are connected.
In the static case, the fields will penetrate the shell in a way
similar to Fig. 4(a). However, in a physical situation there
will always be some time dependence, with the importance
of such a time dependence amplified by μ and ϵ.
Let us examine this in more detail. It is useful to split the

fields into components parallel to the equator, labeled by a
subscript jj, and the remainder labeled by a subscript ⊥
(which is normal to the parallel component)

∇ × E⊥ ¼ −μ∂tHk; ∇ ×Hk ¼ σE⊥ þ ϵ∂tE⊥; ð24Þ

∇ × Ek ¼ −μ∂tH⊥; ∇ ×H⊥ ¼ σEk þ ϵ∂tEk: ð25Þ

We now consider a situation where Ek ¼ H⊥ ¼ 0 so that

we only have a current flowing in the poloidal direction,
generating a magnetic field around the equator. It is
convenient to combine the two equations in (24) into

∇ × ð∇ ×HkÞ þ σμ∂tHk þ ϵμ∂2tHk ¼ 0: ð26Þ

Using Hk ¼ hðr; θ; tÞϕ̂, we find

−Δhþ σμ∂thþ ϵμ∂2t h ¼ 0; ð27Þ

where Δ≡ ð1=rÞ∂2rðrhÞ þ ð1=r2Þ∂θðð1= sin θÞ∂θðh sin θÞÞ
is the ϕ̂ component of the vector Laplacian. We make
the ansatz

hðr; θ; tÞ ¼
X

m

1

r
Aω;mðrÞBmðθÞeiωt; ð28Þ

FIG. 3. A schematic of a black shell as a resistor in a circuit
with an external battery.

FIG. 2. Plots showing the electric field (a) E⃗ and the displacement field (b) D⃗ for a point charge (in red) embedded within a shell

(shown in black) of infinitely large relative permittivity ϵ → ∞. The location of the charged particle within the shell is completely
shielded from an external observer, giving a no-hair property for the black shell.

5
A scenario already familiar in both neutron stars and black

holes [27,28].
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where BmðθÞ is an eigenfunction of the angular operator

∂

∂θ

�

1

sin θ

∂

∂θ
ðsin θBmðθÞÞ

�

¼ −m2BmðθÞ; ð29Þ

and can be written in terms of hypergeometric functions

BmðθÞ ¼ 2F1

�

−
1

4
− λ;−

1

4
þ λ;

1

2
; cos2θ

	

csc θc1 ð30Þ

þ 2F1

�

1

4
− λ;

1

4
þ λ;

3

2
; cos2θ

	

cot θc2; ð31Þ

with λ ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4m2
p

=4. The leads to the radial equation

∂
2An;m

∂r2
þ
�

k2 −
m2

r2

�

Aω;m ¼ 0: ð32Þ

where (in the limit σ ≪ ϵω)

k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ϵμω2 − σμωi

q

∼
ffiffiffiffiffi
ϵμ

p
ω − i

σ

2

ffiffiffi

μ

ϵ

r

: ð33Þ

The physically relevant solution is the one that decays as
we go into the black domain. This is proportional to a
modified Bessel function of the second kind

Aω;m ¼
ffiffiffi

r
p

K2λð−ikrÞ; ð34Þ

where the imaginary part of k gives the expected expo-
nential fall off. In summary, we find our solution

hðr; θ; tÞ ¼
X

m

1
ffiffiffi

r
p K2λð−ikrÞeiωtBmðθÞ: ð35Þ

We now use KνðzÞ∼
ffiffiffiffi
π
2z

p

e−z for large jzj (and argz<3π=2)

to get
6

hðr; θ; tÞ ∼ 1

r
er

σ
2

ffiffiffiffiffi

μ=ϵ
p

ei
ffiffiffiffi
ϵμ

p
ωrþiωt: ð36Þ

The radial component decays exponentially as r decreases
from its maximal value at the boundary of the shell. The
length scale associated with this decay is again given by the
skin depth δs defined in (6). Just as in the case of the EM
wave, we note that σ cancels out in the effective resistance,
and we reproduce (at large ω) the value for a black hole.
The requirements for this to happen are

ω >
σ

ϵ
; δs ≪ δa; ð37Þ

implying

ω ≫
cs

δa
; ð38Þ

FIG. 4. (a) Plot showing the magnetic field outside and within the cross-section of a static shell with large μ, ϵ placed in a uniform
constant external magnetic field pointing vertically upward. (b) Schematic of a rotating black shell placed within a circuit in an external
magnetic field. It acts like a generator in a closed electric circuit with current entering at the poles and leaving through a conductor in the
form of an accretion disc at the equator. There is also an external load.

6
We assume that the skin depth in (6) is small compared to

the thickness of the shell. This requires a large σ, which implies
large jzj.
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where, as before, δa is the thickness of the shell. This
means that any variation faster than it takes for the slowed
down light to cross the thin shell will experience a resis-
tance equal to that of a black hole. By choosing ϵr ¼ μr
sufficiently large, this will not lead to any practical differ-
ence. In principle, one would expect the resistance to
decrease for processes sustained over a very long time.
The above is the familiar phenomenon of resistance

depending on the skin depth. At high frequencies the skin
depth is small, and the current is only flowing in a thin slice
of the shell. The limiting resistance at high frequencies
is finite. At low frequencies, the field is penetrating the
entire width and the shell functions as an almost perfect
conductor.
The actual solution for a specific configuration depends

on the details of how the wires are attached to the shell. The
simplest possibility is when the thin wires have vanishing
resistance, and extend into the black domain. The relevant
solution then has only m ¼ 0 turned on, which leads to
Er ¼ 0 and Eθ ≠ 0. The electric field (and the current) is
then sourced by the inserted wires all the way down to the

skin depth. We then have exactly K1=2ðzÞ ¼
ffiffiffiffi
π
2z

p

, and the

exact solution is given by

hðr; θ; tÞ ¼ 1

r
er=δsei

ffiffiffiffi
ϵμ

p
ωrþiωt

1

sin θ
: ð39Þ

It is also possible to construct solutions where the wires end
at the surface, where they appear as localized sources. We
will not discuss this here.

IV. THE BLACK SHELL AS AN ELECTRIC

GENERATOR PRODUCING JETS

Let us now examine the impact of introducing a rotating
hollow shell with relative permeability μ and relative
permittivity ϵ into a uniform magnetic field. It is reasonable
to assume that the external magnetic field will penetrate
the shell, resulting in a magnetic field within the black
domain. Note, though, that the interior AdS is effectively
shielded from any magnetic field. As the shell rotates, the
bound charges within it will encounter a Lorenz force.
Consequently, this will give rise to a nonuniform distribu-
tion of charges within the black domain, leading to a
nontrivial electric field.
One key difference between a shell and a solid sphere

composed of the same material is that the magnetic field
within a solid sphere is directly proportional to the external
field, resulting in a constant magnetic field. However, this
relationship does not hold true for a shell. As a result, we
will approach the problem in two stages.

(i) We will first compute the magnetic field within the
black domain

(ii) using this magnetic field, we will compute the
electric field generated by the rotating shell.

A. Magnetic field inside the shell

Consider a spherical shell of inner radius a, and outer
radius b of relative permeability μ and relative permittivity

ϵ placed in a uniform external magnetic field H0


! ¼ H0ẑ.

Outside the shell (vacuum with μ0 ¼ 1), B⃗ ¼ H0


! ¼ H0ẑ.

The scalar field Φ corresponding to a magnetic field H⃗ is

given by H⃗ ¼ −∇
!
Φ. Outside the shell, ∇

!
Φ ¼ −H0ẑ,

which gives (in radial coordinates centered at the origin
of the shell)

Φ0 ¼ −H0r cos θ ¼ −H0rP1; ð40Þ

where Pn is the nth Legendre polynomial. To solve

Maxwell’s equation ∇
!

· B⃗ ¼ 0 ¼ ∇2
Φ, we make the fol-

lowing ansatz for Φ (assuming regularity at the origin and
at infinity):

Φ ¼

8

>
<

>
:

ArP1 ðr < aÞ;
BrP1 þ CP1=r

2 ða < r < bÞ;
−H0rP1 þDP1=r

2 ðr > bÞ:
ð41Þ

Boundary conditions are given by continuity of the
potential Φ and continuity of the radial component of

the magnetic field B⃗ ¼ μH⃗ (which follows from ∇
!

· B⃗)
across the shell at r ¼ a, b

A ¼ Bþ C=a3;

Bþ C=b3 ¼ −H0 þD=b3;

A ¼ μðB − 2C=a3Þ;
μðB − 2C=b3Þ ¼ −H0 − 2D=b3: ð42Þ

Solving (41) with the above boundary conditions gives

A ¼ −9μb3
H0

E
;

B ¼ −3ð1þ 2μÞb3H0

E
;

C ¼ 3ð1 − μÞa3b3 H0

E
;

D ¼ ð1þ μ − 2μ2Þðb3 − a3Þb3 H0

E
; ð43Þ

with E ≔ −2a3ð1 − μÞ2 þ b3ð2þ 5μþ 2μ2Þ. In the limit
of large μ, ϵ, this results in the following magnetic field

B⃗ ¼ μH⃗ ¼ −μ∇
!
Φ:
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B⃗in ¼Oð1=μÞ;

B⃗shell ¼−
3b3H0

2r3ðb3 −a3Þ ½−ðr
3−a3Þcosθr̂

þða3þ 2r3Þ sinθθ̂� þOð1=μÞ;

B⃗out ¼
H0

r3

�

ð2b3þ r3Þcosθr̂− ðr3−b3Þ sinθθ̂
�

þOð1=μÞ:

ð44Þ

It should be noted that when the value of μ is large, the
interior of the shell is completely protected from the
magnetic field. The solution for this scenario is illustrated
in Fig. 4(a). As expected, the magnetic field within the shell
does not remain constant, unlike in the case of a solid
sphere. Instead, it exhibits a nontrivial dependence on both
r and θ.

B. The black shell as a generator

The black shell acts like a generator in a way very similar
to a black hole. Let us assume an external magnetic field
similar to the one in the previous section, with a radial
component of the magnetic field pointing outward in the
northern hemisphere and inward in the southern hemi-
sphere. We let the black shell spin with angular velocity Ω

with its axis pointing upward and connect to it a very long
wire that extends upward from the north pole as illustrated
in Fig. 4(b). The wire then turns around very far away
from the shell and connects back to the equator via sliding
contacts mounted on an equatorial disc such that they
maintain constant contact with the shell, closing the circuit.
This induces an emf in the closed circuit given by

E ¼ ΩΦ

2π
ð45Þ

where Φ is the total magnetic flux entering through the
southern hemisphere (and exiting through the northern).
This is the same result as for a black hole. A current will
flow from the north pole to the equator, generating a
magnetic field along the equator. As argued in Sec. III C,
the current will be flowing in a very thin sheet of the shell.
This current shields the interior from the magnetic field
pointing in the ϕ-direction on the outside of the shell.
Let us figure out the structure of the electric and

magnetic fields within the thin shell. As discussed above,
the radial component of the magnetic field will give rise to a
Lorentz force driving a current along the surface of the shell

in the direction of θ̂. A bit deeper into the black domain, the
magnetic field must turn in the angular direction in order
for the fields in the southern and northern hemispheres to be
connected. This will give rise to a Lorentz force pushing the
current toward the surface. Let us now work out the details.
To proceed we need to relate the E,D, B, and H fields in

the inertial system to the corresponding fields, E�, D�, B�,

and H� in a frame corotating with the shell. We have the
constitutive relations

D� ¼ ϵE�; B� ¼ μH�; J� ¼ σE�: ð46Þ

These fields are related to the inertial frame through the
Lorentz transformations

E�
⊥
¼ γðE⊥ þ v×BÞ; B�

⊥
¼ γ

�

B⊥ −
v

c2
×E

�

;

H�
⊥
¼ γðH⊥ − v×DÞ; D�

⊥
¼ γ

�

D⊥ þ v

c2
×H

�

: ð47Þ

Note that the component of the current transverse to v, has
J⊥ ¼ J�

⊥
, while the parallel component has Jk ¼ γJ�k. We

also note that if there is no charge density in the rest frame
of the shell, ρ� ¼ 0, there will be one generated in the

inertial frame given by ρ ¼ −γvJ�k=c
2.

Maxwell’s equations in the frame of the shell are
identical to those we used in the previous section

∇ × E� ¼ −μ∂tH
�; ∇ ×H� ¼ σE� þ ϵ∂tE

�;

∇ ·H� ¼ 0; ∇ · E� ¼ 0; ð48Þ

where the last relation is due to J� ¼ σE� being conserved
everywhere, except where the external wires are connected.
If one wants to compare with Maxwell’s equations in the
inertial frame it is useful to note that ∇ × ðv ×H�Þ ¼
∇ × ðv × E�Þ ¼ 0. We note, though, that ∇ · E⊥ ¼
−∇ · ðv ×H�Þ ≠ 0, reflecting the cancellation of the
Lorentz force pushing the current away from the rota-
tional axis.
Since the equations for E�

k ¼ 0 and H�
⊥
(determining the

magnetic field) decouple from E�
⊥
and H�

k (determining the

current), except through boundary conditions, we can use
the results from the previous sections. The only difference
is how the wires are connected to the shell. For a black shell
with an accretion disc, generating jets, we expect some-
thing like Fig. 4(b). We have thin wires connected at the
north and the south pole together with a thin, disc like wire
connected to the equator. With the magnetic field as well
as the rotation vector pointing upward, we will obtain a
current flowing from the poles to the equator.
The detailed profile of the solution depends, as discussed

previously, on the anatomy of the attached wires. The
simplest case is again m ¼ 0, but now the currents flow
along the longitudes from both poles (with Er ¼ 0), and are
intercepted by the disc shaped conductor that makes sliding
contact along the entire equator.
Based on the above analysis, let us now speculate on the

structure of the magnetosphere and the mechanism respon-
sible for jet production in the context of a supermassive
black shell.
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In the accretion disk, gravitational energy is converted
into kinetic and thermal energy, which keeps the accreting
plasma highly ionized and, therefore, highly conducting.
As a result, the magnetic fields within the accretion disk are
effectively “frozen” into the plasma (ideal magnetohydro-
dynamics far from the shell, with some reconnection of
field lines occurring closer to the shell due to Rayleigh-
Taylor instabilities). As the plasma slowly accretes toward
the shell under the influence of viscosity, it drags the
magnetic field lines along, transporting them onto the shell
in a manner analogous to that for black holes. Additionally,
the inner part of the accretion disk aligns itself with the
equatorial plane of the spinning shell (due to the Bardeen-
Petterson effect).
As the magnetized plasma accretes onto the shell, closed

magnetic field loops are destroyed, and field lines are
redistributed, leading to a roughly uniform distribution of
field lines threading the shell. All of this is similar to the
case of a black hole (see, e.g., Fig. 36 in [22]).
The resulting plasma-filled magnetosphere resembles the

circuit depicted in Fig. 4(b), where the shell’s rotational
energy is extracted and directed along the polar regions.
This extracted energy can drive the production of jets
observed in quasars and active galactic nuclei. While
systems with high accretion rates typically have thin disks,
supermassive black holes and black shells are expected to
accrete at low rates, resulting in thick disks. Although the
analysis presented here assumes a thin disk, the results are
expected to hold qualitatively for thick disks in slow
accretion scenarios characteristic of supermassive systems.

V. ELECTROMAGNETIC SIGNATURES

OF BLACK SHELLS

Having discussed electromagnetic properties of the black
shell, let us now turn our attention to their observational
signatures in the electromagnetic spectrum, i.e., images
obtained in VLBI experiments like the EHT.
Photons that travel from the object to the observer’s

camera make up the image on the observer’s screen. Given
the limited field of view of the camera, most photons
emitted near the object never make it to the screen. An
efficient way to reconstruct the image on the screen is,
therefore, to trace photon trajectories back in time from the
screen back toward the source. In the case of a black shell
(or a black hole), given enough time, the backward traced
photons will either end up at the surface of the black shell
(or at the event horizon in the case of a black hole) or
escape out of the camera sphere, to infinity. Computing
these photon trajectories goes by the name of ray tracing

and can be efficiently performed by integrating null geo-
desics in the given spacetime. While this can be done
analytically for the Kerr spacetime, the geodesic equations
need to be integrated numerically for general spacetimes.
Let us summarize the equations to solve, and initial
conditions below.

A. Geodesic equations and initial conditions

For a stationary, axisymmetric metric in Boyer-Lindquist
coordinates

ds2 ¼ gttdt
2 þ grrdr

2 þ gθθdθ
2 þ gϕϕdϕ

2 þ 2gtϕdtdϕ;

ð49Þ

null geodesics are solutions to a set of second order ODEs

ẍμ þ Γ
μ
νρẋ

νẋρ ¼ 0; ð50Þ

where Γ
μ
νρ is the torsion-free affine connection, and dots

represent derivatives with respect to the affine parameter.
These are four second order equations for the four
components of the position vector of the photon, which
can be integrated given the initial position and velocity of
the photon. However, stationarity and axisymmetry imply
that energy (E) and angular momentum (L) are constant
along the geodesic. Using these constants of motion, we
can integrate the t and ϕ components of the geodesic
equation once, to reduce them to two first order equations

ṫ ¼ Egϕϕ þ Lgtϕ

g2tϕ − gttgϕϕ
; ϕ̇ ¼ −

Egtϕ þ Lgtt

g2tϕ − gttgϕϕ
: ð51Þ

We now have a system of 2 first order and 2 second order
ODEs, which require 6 inital conditions to solve. In addi-
tion, we have the constraint for a null geodesic, ẋμẋμ ¼ 0,

which we use to monitor the accuracy of the integration.
A useful way to parametrize the initial condition is in

terms of position and velocity of the photon at the
observer’s screen. We use the formulation in [16], and
place the observer at robs ¼ 100M from the center of the
coordinate system, at an inclination of 17° and 60°
respectively. To perform the integration, geodesics are
evolved from the observer’s screen until they either (i) arrive

at the shell (with a tolerance of r ¼ rshell þ 10−5M), or
(ii) exit the camera sphere r > robs.

B. Lensing bands and critical curves

To understand the image produced on the observer’s
screen, it is useful to label each photon by the number of
times it crosses the equatorial plane.

7
Photons which cross

the equatorial plane exactly once constitute the direct

image of the object. Each subsequent turn that the photons

7
For a stationary axisymmetric object, the equatorial plane

(which is perpendicular to the spin axis) provides a well defined
notion of plane crossing, and in Boyer-Lindquist coordinates
corresponds to θ ¼ π=2, providing a simple way of tracking
photon trajectories. Other notions of n have also been used in the
literature, which include counting the number of full turns made
by the photon [29], and the number of times the photon crosses a
plane perpendicular to the observer’s axis [30]. For a discussion,
see [31].
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make around the equatorial plane give a lensed image of
this direct image and are referred to as the lensing bands

denoted by the additional number of times they cross the
equatorial plane—the nth lensing band includes photons
that cross the equatorial plane at least nþ 1 times. Each
subsequent lensing band becomes exponentially thinner,
and the n → ∞ image coincides with the critical curve,
which gives the location of the unstable photon orbit. The
complete image contains all the lensing bands superposed
on top of one another. By definition, each lensing band
includes all the subsequent lensing bands within it, and
therefore the critical curve is the brightest curve in the
image. The innermost region of the direct image, which
corresponds to photons that fall on to the black shell (or hit
the horizon of a black hole), therefore remains empty and is
referred to as the inner shadow [30]. The shape of the
critical curve can be conveniently characterized using the
projected diameter and centroid defined by [32].

C. Ray tracing: Results

With this, we can now study the lensing bands and critical
curve for a black shell rotating moderately fast. We will use

the rotating black shell metric obtained in [15] to order a6 in
Boyer-Lindquist coordinates and perform the computation at

a ¼ 0.45 (corresponding to a6 ∼ 0.456 < 1%.)
Before presenting the results of the computation, let us

first discuss our expectations. The black shell has two
important differences from a Kerr black hole with the same
mass and spin: (i) it has a surface which lies outside the
outer horizon for a Kerr black hole, and (ii) it has a
multipolar structure that differs from Kerr at a percent level.
We therefore expect to see two types of differences between
the curves of a black shell and a black hole:

(i) The inner boundary of the direct image (equiva-
lently, boundary of the inner shadow) consists of
photons that barely escape the black shell (or the
horizon of a black hole). A surface that is larger than
the horizon should lead to a larger inner shadow. The
lensing bands are higher-order lensed images of the
direct image—the inner boundary in particular is a
lensed image of the boundary of the inner shadow.
We would therefore expect the image of the black
shell to have larger inner boundaries for each band,
as compared to a black hole.

(ii) The shape of the critical curve and the outer boun-
daries of the lensing bands are a function of the
spacetime metric outside the object. Since the black
shell has a different multipolar structure compared to
a Kerr black hole, we expect the shape of the curves
to be different. The leading multipolar deviations are
small: ∼1% for the quadrupole, and ∼6% for the
octupole and we expect the critical curve to have a
small difference in shape compared to Kerr.

Finally, we can integrate the geodesic equations numeri-
cally from the observer’s screen with initial conditions

given by [16]. Since we are only interested in the inner
and outer boundaries of the lensing bands, we use a
binary search algorithm to find each boundary (method
of bisection). For the direct image (n ¼ 0), and the n ¼ 1

lensing band, we only need to track photons that cross the
equatorial plane once and twice respectively. Having
obtained those, we directly compute the critical curve
(corresponding to the n → ∞ photon ring), also using a
binary search (since the higher order lensing bands
approach the critical curve exponentially fast).
Before looking at the results, it is useful to look at Fig. 5

to orient ourselves. There, we have produced a simulated
230 GHz synchrotron emission image from an accretion
disk made of magnetized plasma around a rotating Kerr
black hole with a ¼ 0.45 using force-free GRMHD and
radiative transfer [33,34]. We have labeled the critical
curve, inner shadow and an instance of the projected
diameter on the image.
We are now ready to take a look at our results in

Figs. 6, 7. From Fig. 6, we see that both of our expectations
are realized. In the right most panels, we see that the inner
boundaries of the n ¼ 0 and n ¼ 1 bands for the black shell
are larger than those for a Kerr black hole with the same
mass and spin; the difference is big enough to see by eye.
The outer boundaries and the critical curve are also not
identical, but the difference is much smaller and harder to
make out by eye, just as expected.

FIG. 5. Snapshot of simulated synchrotron emission at 230 GHz
(obtained from a GRMHD simulation) of a Kerr black hole with

M ¼ 6.5 × 109M⊙, a ¼ 0.45, observed by a camera placed at a
distance of 16.9 Mpc from the source, and inclined at 17° to the
spin axis. Superimposed on the image are the critical curve (blue
curve), boundary of the inner shadow (white curve), and the
projected diameter dðφÞ. The axes are labeled in units of M.
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In Fig. 7, we have computed the projected position,
diameter and centroid of the critical curve as a function of
the angle. The largest difference is in the shape, given by
the projected diameter dðφÞ, shown in the center panel just
as expected.
While the critical curve for a black shell has a shape

distinct from a black hole with identical mass and spin, it is
imperative to keep in mind that current uncertainties in
mass and spin estimation from astrophysical observations
can conflate the shape of the curves, making them
indistinguishable [35,36].
The size of the inner shadow, and the inner boundary of

the n ¼ 1 lensing band, on the other hand, are the biggest
differences between a black shell and a black hole. Next
generation radio-VLBI observatories like the ground based

next generation EHT (ngEHT) [37] and the proposed space-
ground Black Hole EXplorer (BHEX) [38,39] are expected
to have a higher resolution (of up to a few μas), and have an
improved dynamic range, which could result in the meas-
urement of the n ¼ 1 lensing band. However, this is far
below the resolution required to distinguish a black shell
from a black hole in Fig. 6. The inner shadow, on the other
hand is not a robust observable feature; its observability
depends, among other things, on favorable conditions in the
accretion flow and optimum observer inclination. However, a
favorable detection, especially in the context of time-domain
observations with next-generation detectors, could provide
strong evidence either in favor of or against a black shell.
There is, however, an additional effect that could affect

the inner shadow for a black shell owing to how accreting

FIG. 6. The direct image (n ¼ 0) and the n ¼ 1 lensing band (light and dark gray regions, respectively) for a Kerr black hole and a
black shell as observed from an inclination angle of 17° and 60° respectively, relative to the spin axis (dimensionless spin of a ¼ 0.45)
are shown in Figs. [(a), (b)], and Figs. [(d), (e)]. The axes are labeled in units ofM. Critical curves for the Kerr black hole and the black

shell (corresponding to the n → ∞ lensing band) are shown with solid blue and dotted red lines, respectively. Figures (a) and (b) are
superimposed in Fig. (c), and Figs. (d) and (e) are superimposed in Fig. (f). The edges of the lensing bands for the Kerr black hole and the
black shell are shown with solid and dotted lines respectively. (a) Kerr, θobs ¼ 17°. (b) Black shell, θobs ¼ 17°. (d) Kerr, θobs ¼ 60°.
(e) Black shell, θobs ¼ 60°.
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magnetized plasma interacts with the shell. While a black
hole horizon provides purely ingoing boundary conditions
for the plasma, the surface of a black shell will interact with
the plasma in a much more nontrivial way. Although the
black shell is expected to be a very efficient absorber
similar to a black hole, the microscopics of how the
absorption and energy transfer takes place within the black
shell could have an effect on the accretion physics. These
effects are beyond the scope of the present work and are
being investigated separately using GRHMD simulations.
We will report on the results in an upcoming work.

VI. GRAVITATIONAL WAVE SIGNATURES

Having looked at electromagnetic signatures of black
shells, let us now turn our attention to gravitational obser-
vables. We will focus on two in particular: (a) Light ring
characteristics and quasinormal modes, and (b) the tidal
Love number.

A. Light ring frequency and QNMs

Quasinormal modes (QNMs) are defined as solutions
of the spacetime perturbation equations (with complex
characteristic frequencies) with boundary conditions that
are purely incoming at the horizon (or the surface of a
horizonless compact object) and purely outgoing at infinity.
A tantalizing relation between the QNM frequencies in the
eikonal limit and unstable null circular orbits for any static,
spherically symmetric, asymptotically flat spacetime has
been noted [40,41] (though, for a cautionary note see [42])

ωQNM ¼ Ωcl − iðnþ 1=2Þjλj; ð52Þ

where Ωc is the orbital angular velocity at the null circular
geodesic, λ is the principal Lyapunov exponent that
characterizes the deviation of nearby photon orbits around
the unstable circular orbit, n is the overtone number, and l is
the angular momentum quantum number of the perturba-
tion. Beyond spherical symmetry, it is known for Kerr [43]

and Kerr-Newmann [44] black holes that equatorial null
geodesics can account for l ¼ jmj modes.
Nevertheless, characteristics of unstable null circular

orbits in the equatorial plane carry information about the
compact object, and the deviation from their Kerr values
could serve as a test of how closely they mimic or differ
from a Kerr black hole. Following [45], let us write down
the geodesic equation in the equatorial plane ðθ ¼ π=2;

θ̇ ¼ 0Þ and find the radial potential for a stationary
axisymmetric metric. The appropriate Lagrangian for the
system is

2L ¼ gttṫ
2 þ grrṙ

2 þ gφφφ̇
2 þ 2gtφṫ φ̇ : ð53Þ

Next, we write down momenta canonically conjugate to the
coordinates pμ ¼ ∂L=∂xμ. Stationarity and axisymmetry

imply that energy and angular momentum are constants of
motion ðpt ¼ −E; pφ ¼ LÞ, from which it follows that ṫ; φ̇

are given by

ṫ ¼ Egφφ þ Lgtφ

g2tφ − gttgφφ
; φ̇ ¼ −

Egtφ þ Lgtt

g2tφ − gttgφφ
: ð54Þ

The Hamiltonian corresponding to the system (2H ¼
2ðpμẋ

μ − LÞ ≔ δ≡ constant) can be written as

ṙ2 ¼ L2gtt þ 2ELgtφ þ E2gφφ

grrðg2tφ − gttgφφÞ
þ δ

grr
≔ Vr: ð55Þ

For null (δ ¼ 0) circular geodesics to exist at r ¼ rc,
Vrðr ¼ rcÞ ¼ V 0

rðr ¼ rcÞ ¼ 0. The orbital angular fre-
quency on these circular geodesics follows from (54)

Ωc ≔
φ̇

ṫ

�
�
�
�
r¼rc

¼ −
Lgtt þ Egφφ

Lgtφ þ Egφφ

�
�
�
�
r¼rc

: ð56Þ

The Lyapunov exponent λ is a measure of the instability of
the orbit and is given by

FIG. 7. Shape of the critical curve for a Kerr black hole and a black shell (BSh) of the same mass and spin (M ¼ 1, a ¼ 0.45), as seen
by observers at two different inclinations with the spin axis, characterized using quantities defined by [32]. The projected position fðφÞ
as a function of the normal angle φ fully parametrizes the shape of the curve. Even and odd parity components of fðφÞ give the projected
diameter dðφÞ and centroid CðφÞ respectively.
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λ ¼
ffiffiffiffiffiffi

V 00
r

2ṫ2

r �
�
�
�
r¼rc

: ð57Þ

To each of these quantities, we can attach an associated
orbital timescale TΩ ≔ 2π=Ωc, an instability timescale
Tλ ≔ 2π=λ, and define a critical exponent γ following [46]

γ ≔
Ωc

2πλ
¼ Tλ

TΩ

; ð58Þ

or simply a dimensionless instability exponent λ=Ωc.
We can now use the metric of the rotating black shell to

order a6 in [15] to compute the orbital frequency and the
dimensionless instability exponent for a slowly rotating
black shell. It is convenient to introduce the impact
parameter b ≔ L=E. In Fig. 8 we present the orbital
frequency as a function of spin a for both the black shell
and a Kerr black hole for the same mass and spin. It is
interesting to note that

Ωc ¼
1

b
: ð59Þ

This special relationship between the angular frequency of
null circular geodesics and the impact parameter is known
to hold for the Kerr solution [45]. It was discovered in [41]
that it holds for a d dimensional Myers-Perry black hole
[47] (which is a rotating black hole solution in dimensions
d > 4) as well, where it was further speculated that it holds
for any stationary spacetime. That it holds for the black
shell provides evidence in support of this speculation.
The dimensionless instability exponent of a rotating

black shell compared to a Kerr black hole of the same
mass and spin, as a function of dimensional spin parameter
a is shown in Fig. 8. Since the rotating black shell metric is

known perturbatively to order a6, useful results can only be
obtained for spin up to a ∼ 0.45. The difference from a Kerr
black hole is extremely small, at subpercent to a percent
level, for this range of spin.

B. Tidal love number and gravitational waves

Gravitational waves from inspiraling compact objects,
prior to the merger stage, can be obtained through a post-
Newtonian approach. The system is then described by the
dynamics of two effective “point particles” where details of
its structure are captured, to leading order, for nonspinning
objects at the 5th post-Newtonian level via a tidal Love
number [48]. Such a number helps describe the deform-
ability of a self-gravitating object immersed in an external
tidal field. In an inspiraling binary, such a deformation
leaves a potentially detectable imprint in the gravitational-
wave (GW) signal emitted by the binary in the late stages of
its orbital evolution (e.g., [49]). We here undertake the
computation of the tidal Love number for nonspinning
black shells. (For simplicity, we do not concern ourselves in
this work with potential modulations introduced by spin-
induced quadrupole moments [50]).
We follow [51] and compute the (static) tidal Love

numbers for nonrotating black shells. To this end, we

expand the (static) metric as gab ¼ g
ð0Þ
ab þ δgab, using

ðt; r; θ;ϕÞ coordinates,

δgab ¼ diag

�

fHl
0ðrÞ;

Hl
2ðrÞ
h

; r2KlðrÞ; r2KlðrÞsin2θ
�

× Yl0ðθ;ϕÞ;

with Ylm spherical harmonics, and we focus on the
spherical symmetric case background so m ¼ 0 can be
chosen. The function f is given by

f ¼ 1 −
2M̂

r
þ Λ̂

r2

3
; ð60Þ

with Λ̂ ¼ ΛΘðR − rÞ and M̂ ¼ MΘðr − RÞ with Θ the
Heaviside step function and R the shell’s radius. In [51,52]
the case for a gravastar was studied, from which most
results can be derived, as the sign of Λ was not crucial.
The solution for the fields in each region, at linearized

order imply all functions can be determined from Hl
0ðrÞ.

FIG. 8. Characteristics of unstable null circular geodesics associated with the black shell (BSh) and a Kerr black hole with the same
mass and spin, shown as a function of the dimensionless spin a.
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This, in turn, obeys

d2Hl
0

dr2�
− VHl

0 ¼ 0; ð61Þ

with the potential

V ¼ 9r2

R4

�

lðlþ 1Þf þ 4
M̂2

r2
−
2

9
r2Λ̂ð9þ r2Λ̂Þ

�

; ð62Þ

with the tortoise coordinate defined as dr=dr� ≡ gðrÞ ¼
rR−2ð6M̂ − Λ̂r3 − 3rÞ.
Equation (61) can be solved independently inside/out-

side the shell requiring regularity and asymptotic decay

Hi;l
0 ¼ α1

rl
ffiffiffiffi

Λ
p

3þ r2Λ 2F1

�

l − 1

2
;
l

2
; lþ 3

2
;−r2Λ=3

	

;

Ho;l
0 ¼ α2P

2
l

�

r

M
− 1

�

þ β2Q
2
l

�

r

M
− 1

�

; ð63Þ

where P2
l ; Q

2
l are associated Legendre functions and 2F1

the hypergeometric function. The constants fαi; βig are
fixed (up to an overall value) by imposing Israel’s junction
conditions [53] (2 equations) together with coordinate
continuity (1 equation) and the equation of state describing
the shell that modulates the jump at linear order.

8
For

concreteness and simplicity we take δp ¼ −δσ (with p, σ
the pressure and energy density of the shell). For simplicity
we focus on the l ¼ 2 mode, asymptotically,

H2
0 → 3c1

r2

M2
− 6c1

r

M
þ 8

5

M3

r3
c2 þOðr−4Þ; ð64Þ

where we have introduced the constants ci which are
functions of the solutions obtained for fα2; β2g. The
quadrupole tidal Love number is given by [54]

λBSh ¼
8

45

c2

c1
M5: ð65Þ

The solution depends on Λ, taking its value to be (negative)

and large, we find to leading order λBSh ≈ 0.27M5.
In contrast to a Schwarzschild black hole (whose static

Love number vanishes), a stationary black shell has a
positive Love number. A nonzero Love number will induce
a phase shift in the early, low frequency part of a detected
gravitational wave signal from roughly comparable mass
mergers (the phase shift is suppressed by the third power of
the mass ratio), and is potentially a measurable feature of
the gravitational waveform (see [49]). For instance, this has

been exploited to scrutinize the neutron star equation of
state in GW170817 [55] and to systematically constrain the
Love number for black holes in the LVK catalog [56].
To put the nonzero Love number for a black shell into

perspective, it is useful to compare it with other compact

objects, e.g., neutron stars. They have λ ≈ 105 times larger,
and a proportionately large impact on observable conse-
quences, e.g., the phase offset in the gravitational wave.
While a comparable (say in terms of masses) binary
neutron star system merges at a lower frequency (as black
shells are significantly more compact) the overall phase
difference (δΦ) due to tidal effects, from far separation
until “contact” is much smaller for the black shell binary.

For instance, in the equal mass case, δΦNS ≈ 103δΦBSh.
Naturally, measuring such small phase offsets would
require next generation (3G) detectors.

VII. SUMMARY, DISCUSSION, AND OUTLOOK

Understanding all potential observables related to exotic
compact objects is imperative to scrutinize them and, in
particular, to realize their role to help reveal insights into
open problems on the fundamental physics of compact
objects. In this work we have studied electromagnetic and
gravitational properties of black shells, and discussed the
extent to which they are distinguishable from black holes.
While we have focused exclusively on black shells as a
subclass of ECOs, another aim of this paper is to provide
guidance and lessons for similar effects in the study of
other ECOs.
We have analyzed the electromagnetic properties of

black shells in the classical limit, and flat spacetime,
9

highlighting the lack of reflection for light with wave-
lengths commensurate and smaller than the black shell.
This is a natural consequence of such wavelengths being
reduced as the wave propagates into a material with high
relative permittivity and permeability, and the conductivity
lies within a wide interval.

10
To avoid contributing to

reflection, the conductivity needs to be small enough, i.e.
σ ≪ ϵω, but large enough to make sure that the electro-
magnetic skin depth δs, defined in (6), is much smaller
than the thickness of the shell (δa), i.e., δs ≪ δa, or σ ≫

ð2=δaÞ
ffiffiffiffiffiffiffiffi

ϵ=μ
p

. For consistency, this requires ðδa=csÞ ≫
ð2=ωÞ, where cs ≔ 1=

ffiffiffiffiffi
ϵμ

p
is the speed of light within

the shell. This only needs to apply for ω ≫ c=a, that is,

8
Reference [51] works out explicitly for l ¼ 2 the junction

conditions together with the coordinate condition transformation
with respect to time scalings so that the boundary is at the same
coordinate value r.

9
A reasonable approach, since the shell is located at the

Buchdahl radius, a point where spacetime curvature effects are
weak for supermassive black holes. A more detailed investigation
is certainly doable, as is the case of axisymmetry.

10
We have argued in Sec. III that a large relative permeability

and permittivity, ϵr ¼ μr ≫ 1, is natural to expect from the
stringy nature of black shells. However, we have not yet derived
this from first principles, and for the classical analysis in this
article, this has served as a well motivated assumption. We would
like to return to this in the future and attempt to compute/estimate
these electromagnetic properties of the shell from string theory.
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light with a wavelength smaller than the Schwarzschild
radius. This implies

ϵrδa=a ≫ 1; ð66Þ

which is the same condition as we derived in Sec. III B
around (21). In summary, σ needs to satisfy

2

δa

ffiffiffi

ϵ

μ

r

≪ σ ≪
ϵc

a
; ð67Þ

Hence, we conclude that all constraints are satisfied if the
time it takes for the slowed down light to cross the thin shell
(i.e., the black domain) is longer than the light crossing
time of the Schwarzschild radius. On the other hand, for
processes that are really slow, with time scales orders of
magnitude longer than the light crossing time, we could in
principle allow for a reduction in the resistance due to an
increased skin depth. Should precise future estimates of
relevant magnetic fields and other plasma characteristics
become available, an opportunity to calculate this resis-
tance would emerge, thereby facilitating a meaningful
connection with the underlying model.
We have further initiated an effort to connect the black

shell model with VLBI observations of supermassive
compact objects, and identify key observables that can
distinguish them from black holes. Our first analysis
focused on the photon ring, where the differences between
a Kerr black hole and corresponding black shell are subtle.
Future steps involve investigating astrophysical accretion
flow dynamics to achieve a realistic depiction of the image
of a black shell. While the accreting plasma falls into the
horizon of a black hole, the interaction with a black shell
proves significantly more complex. Upon contact with the
shell, the incoming fluid transforms into string degrees of
freedom, resulting in a novel state of matter with a different
equation of state. The nuances of this interaction might
reveal characteristics that better distinguish black shells
from black holes than the structure of the photon ring.

11

Our current efforts are focused on simulating this inter-
action through a force-free GRMHD simulation of mag-
netized plasma accreting onto a black shell. We anticipate
discussing these findings in forthcoming publications.
We have inferred gravitational wave properties by

estimating the QNM frequencies in the eikonal limit
(through the photon orbital frequency) and computing
the tidal Love numbers. This complements our previous
study [13] which unearthed features related to propagation
of scalar waves through the hollow interior of the black

shell. Future efforts involve extending this to the gravita-

tional wave case, computing the spectrum of black shell

QNMs, and contrasting this with that of a black hole.
A typical characteristic of most ECOs is the presence of a

stable light ring. In Schwarzschild spacetime, the potential

for a radial null geodesic peaks at r ¼ 3M (unstable light

ring), and declines to VðrÞ→ −∞ as r → 0. In contrast,

ECOs typically have nonsingular centers, with a potential

that rises to VðrÞ → þ∞ as r → 0. This results in a local

minimum between r ¼ 0 and r ¼ 3M, which allows for a

trapping of null geodesics, hence called the stable light

ring. The presence of a stable light ring is often thought to

allow for the possibility of nonlinear instabilities, even if

the underlying compact object is linearly stable [59]. For a

black shell, the stable light ring is situated on the shell.
While we have not discussed black shell binaries so far,

we can make some informed comments on what one would

reasonably expect in such a situation. Like a binary black

hole system, the evolution of a black shell binary would

go through roughly three stages: (i) inspiral, (ii) merger,

(iii) ringdown, though arguably, the ringdown phase can be

further subdivided into: early ringdown, ringdown, and

late-ringdown stages.
(i) We expect the inspiral to be similar to that of a black

hole binary, as tidal effects are very small. Further-
more, the high compactness means that up until
frequencies ∼4=ð9mTÞ, (where mT is the total mass
of the system) the gravitational waves are expected
to be very similar. This expectation is supported by
nonlinear simulations of highly compact boson star
merger [20] as well as of binary black holes in higher
curvature gravity [60].

(ii) The merger is a highly nonlinear process, the details
of which we cannot yet begin to describe. In [13], it
was shown how the black shell grows in size under
slow accretion of matter. If the accretion is fast
enough, or if two black shells collide, we expect
tunneling events to take place similar to the nucle-
ation of a black shell when, e.g., a star collapses. The
nucleation of a common shell should be a close
parallel to the sudden formation of a common
apparent horizon when two black holes collide.

(iii) During the early ringdown, we can imagine that the
shell formed from the merger is highly distorted, and
will shed its structure on a “viscous” timescale.
Assuming that the spherically symmetric model
analyzed in [13] can inform what happens here,
bulk viscosity would play a role here. A back-of-the-
envelope estimate gives that the timescale for modes
to smooth out is of order ρg=ðξk2Þ, where ρg is given
by the black hole temperature (and commen-
surate with mT), ξ is the bulk viscosity (which
we choose to be ∼1), and k is each wave number
that can be supported by the black shell (hence they
are ∝ 2π=n). As a result, high frequencies would

11
In [57,58], attempts have been made to constrain the size and

nature of ECOs using EHT data from M87* and Sgr A*,
assuming that their surface is in thermal equilibrium with the
accreting environment. Since black shells have a very large heat
capacity, they are not expected to thermalize and are not bounded
by the analysis there.
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smooth out very quickly. Supported sound modes
would have frequencies quantized by 1=cs, and the
rotating quadrupole would have a frequency corre-
lated to Ωorbital at the light ring frequency.

(iv) The ringdown phase would be marked by quasi-
normal modes dominating the gravitational wave-
form. These would be longer wavelength/slower
modes, and we would expect their decay rate to
be comparable to that of a black hole of comparable
mass. The lowest of them are estimated by the light
ring frequency as discussed in Sec. VI A.

(v) The late ringdown would be dominated by the long
term behavior of modes that make it into the shell
and leak to the outside. These waves would not be
present in a comparable black hole ringdown.

Obtaining an accurate description of all these stages
demand significant new developments, some of which will
be presented in due course. Nevertheless, the heuristics
given in this work provide valuable guidance moving
forward.
We conclude by emphasizing our hope that this work

inspires similar efforts involving other exotic compact
objects, with the aim to provide as much information as
possible to discover or constrain them through observation.

Beyond the heuristics presented here, these methods are
likely to be relevant and valuable for such an enterprise.
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