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Abstract

Finite deformation finite element calculations are carried out to analyze nonuniform plane
strain tensile deformation of single crystals using an elastic-viscoplastic crystal plasticity
constitutive relation. The planar crystals considered have two potentially active slip systems
with the driving force for slip including a non-Schmid stress. The non-Schmid stress on a
slip system is taken to be dependent on the Schmid resolved shear stress on the other slip
system. In the calculations, the parameters characterizing the non-Schmid term, including
its magnitude and the slip interval over which it acts, are varied. The effects of non-Schmid
governed slip on the overall stress-strain response and on the strain at which a rapid drop in
overall stress occurs is investigated. Additionally, the dissipation rate associated with non-
Schmid governed slip is calculated both pointwise and integrated over the entire domain.
Results show that one consequence of non-Schmid governed slip is the change in the slip mode
and another consequence is that a non-negative dissipation rate for all possible deformation
histories is not guaranteed. However, stable calculations up to the rapid drop in overall stress
can be carried out even with the dissipation rate being negative at one or more points in
the domain over some strain range and, in some cases, even when the integrated dissipation
rate is negative. Implications for possible constitutive restrictions are briefly considered.

Keywords: Crystal Plasticity, Dissipation Rate, Non-Schmid Governed Slip, Slip Mode,
Localization

1. Introduction

Within the context of continuum slip crystal plasticity, Schmid’s law states that the slip
rate on a slip system (a combination of slip direction and slip plane normal) is governed
by the resolved shear stress on that system. As noted by Vitek et al. (2004); Vitek and
Paidar (2008), for plastic deformation by dislocation glide, Schmid’s law generally holds for
fcc crystals and to an extent for hcp crystals when dislocation glide is restricted to basal
planes. However, even for fcc crystals, when cross-slip occurs, stresses other than the Schmid
resolved shear stress can play a significant role, see Hussein et al. (2015); Malka-Markovitz
et al. (2021).

Deviations from Schmid’s law have also been observed for a wide variety of crystalline
solids including intermetallics (Ghorbanpour et al., 2020, 2017; Gröger, 2021; Qin and Bas-
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sani, 1992), such as Ni3Al, Ni2Ga, and Co3Ti; MAX phases (Zhan et al., 2020, 2021); and
bcc crystals, such as α-iron (Chen et al., 2014; Koester et al., 2012; Lim et al., 2015; Pa-
tra et al., 2014; Srivastava et al., 2015), molybdenum and tungsten (Cereceda et al., 2016;
Gröger et al., 2008a,b), chromium (Gröger and Vitek, 2020), and tantalum–tungsten alloys
(Knezevic et al., 2014).

Within the context of discrete dislocation plasticity, formulations involving non-Schmid
stress dependence have been developed, e.g., Chaussidon et al. (2008); Wang and Beyerlein
(2011). Indeed, incorporating non-Schmid effects into a discrete dislocation formulation
was found to be critical for obtaining predictions consistent with experimental observations
(Wang and Beyerlein, 2011). For rate independent continuum slip crystal plasticity Qin and
Bassani (1992) developed a yield criterion incorporating non-Schmid stresses.

Here, we formulate a rate dependent continuum slip crystal plasticity constitutive relation
that incorporates a non-Schmid shear stress term in a manner similar to Qin and Bassani
(1992); Knezevic et al. (2014). The crystal plasticity formulation is the same as that of
Peirce et al. (1983), which accounts for finite deformations, except for the non-Schmid stress
components in the slip system flow rule. In the rate dependent formulation here, the non-
Schmid stresses are taken to enter the driving force for slip and to act to reduce plastic
deformation on the affected slip system or slip systems. One consequence of this can be
a change in the slip mode. Another consequence is that with the inclusion of non-Schmid
stresses in the plastic flow rule, a non-negative dissipation rate for all possible deformation
histories is not guaranteed.

The requirement of a non-negative dissipation rate for all possible deformation histories,
which is typically imposed on continuum plasticity formulations, is a constraint analogous
to the postulate of Coleman and Noll (1964) that requires the Clausius-Duhem inequality
to be satisfied for all possible deformation histories. However, within the context of statis-
tical mechanics, satisfaction of the Clausius-Duhem inequality emerges in the limit of large
systems and long times (Evans and Searles, 2002; Jarzynski, 2010). It can be violated for
discrete events that take place for a short time period, see e.g. Evans and Searles (2002);
Jarzynski (2010). Most reported violations of the Clausius-Duhem inequality concern atomic
scale fluctuations, e.g. Wang et al. (2010), but Ostoja-Starzewski and Laudani (2020) ob-
served violation of the Clausius-Duhem inequality even in a continuum scale discrete particle
simulation.

For certain constitutive frameworks, satisfaction of the Clausius-Duhem inequality serves
in some sense as a stability condition (Coleman and Mizel, 1967; Dafermos, 1979). However,
for a viscoplastic solid, a simple one dimensional wave propagation calculation showed that
a stable numerical calculation could be carried out with a negative dissipation rate occur-
ring for a short period of time, but instability occurred with a sufficiently large negative
dissipation rate, Needleman (2023). Because a non-Schmid slip system flow rule allows for
the possibility of a negative dissipation rate, questions arise concerning the consequences
of this, in particular: (i) what are the consequences, in a continuum slip crystal plasticity
formulation, of the dissipation rate being negative (on a subset of the active slip systems or
on all active slip systems)? (ii) what is the effect on stability if a negative dissipation rate
does occur? and (iii), if so, are there conditions that can be imposed to ensure stability?
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In addition to questions regarding the sign of the dissipation rate, the issues associated
with a non-Schmid continuum slip formulation include: (i) what is the effect of non-Schmid
stress governed plastic flow on the overall stress-strain response? and (ii) what effect does
non-Schmid stress governed plastic flow have on the evolution of slip, particularly on the
occurrence of localization of deformation?

Here, we investigate implications of non-Schmid governed plastic flow for continuum slip
crystal plasticity in the context of quasi-static plane strain tension of a planar single crystal
with two potentially active slip systems as analyzed by Peirce et al. (1983) for Schmid
stress governed continuum slip plasticity. The crystal is oriented for symmetric double slip
with the slip rate on one or both of the slip systems being affected by a non-Schmid stress
which, for simplicity, is taken to be dependent on the Schmid resolved shear stress on the
other slip system. Finite deformation, finite element analyses are carried out for planar
tensile bars with an initial geometric imperfection to induce nonuniform deformations. The
overall stress-strain response, including the onset of a rapid drop in overall stress due to
the onset of localized deformation, and the evolution of the dissipation rate, both pointwise
and integrated over the entire bar, are calculated for several characterizations of the non-
Schmid stress term. The problem analyzed provides a simple context for investigating the
consequences, if any, of a negative plastic dissipation rate.

2. Problem formulation

2.1. Crystal plasticity constitutive relation

The crystal plasticity constitutive relation used in the calculations follows Peirce et al.
(1983) except for the slip system flow rule. For completeness, the basic equations are given
here.

The deformation gradient F is written as

F = F∗ · Fp (1)

The plastic part of the deformation gradient, Fp, results from slip occurring on crystallo-
graphic planes with normals m(α) and along directions s(α) on those plane, where α denotes
the slip system. The elastic part of the deformation gradient, F∗ is comprised of elastic
deformation of the crystal lattice as well as any rigid body rotation.

Differentiating Eq. (1), with respect to time gives

Ḟ · F−1 = (D∗ + Ω∗) + (Dp + Ωp) (2)

where (˙) = ∂( )/∂t, (D∗+ Ω∗), is the elastic part of the rate of deformation tensor and the
second term is the plastic part. The plastic stretching, Dp, and spin tensors, Ωp, are given
by

Dp =
∑
α

γ̇(α)P(α) Ωp =
∑
α

γ̇(α)W(α) (3)

with γ̇(α) the slip rate on slip system (α) (no implicit sum on repeated Greek indices) and

P(α) =
1

2
(s(α)∗m(α)∗ + m(α)∗s(α)∗)
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W(α) =
1

2
(s(α)∗m(α)∗ −m(α)∗s(α)∗) (4)

where s(α)∗ and m(α)∗ are, respectively, the slip direction and slip plane normal in the current
lattice configuration given by

s(α)∗ = F∗ · s(α) , m(α)∗ = m(α) · F∗−1 (5)

The constitutive relation is written in terms of the Kirchhoff stress, τ = det(F)σ, with
σ the Cauchy stress, and det( ) the determinant. Also, elasticity is assumed to be unaffected
by slip and isotropic, and the elastic strains are assumed to remain small.

The lattice Jaumann rate of Kirchhoff stress, and the elastic rate of stretching are related
by

τ̂ ∗ = L : D∗ =
E

1 + ν

[
D∗ +

ν

1− 2ν
tr(D∗)I

]
(6)

where L is the tensor of elastic moduli, taken to be isotropic with E Young’s modulus and
ν Poisson’s ratio. Also, tr( ) is the trace and I is the second order identity tensor.

The resulting expression for the material convected rate of Kirchhoff stress, τ̇ c, is (Peirce
et al., 1983)

τ̇ c = L : D−
∑
α

γ̇(α)R(α) −D · τ − τ ·D (7)

with
R(α) = L : P(α) + W(α) · τ − τ ·W(α) (8)

The extension of the rate independent yield strength expression of Qin and Bassani
(1992) to rate dependent material behavior is taken to have the general form

γ̇(α) = ȧ(α)
(
χ(α)

g(α)

)
G

[∣∣∣∣χ(α)

g(α)

∣∣∣∣] (9)

where ȧ(α) is a material constant, g(α) is the hardness of slip system (α). G[·] is a specified
function and

χ(α) = τ (α) +
∑
κ

λακτ
(κ)
ns (10)

with τ (α) = s(α)∗ · τ ·m(α)∗ being the Schmid resolved shear stress on slip system (α), τ
(κ)
ns

are specified non-Schmid stresses, and λακ are specified constants. A relation of the form of
Eq. (10) can incorporate other types of non-Schmid stress terms. For example, it can include
normal stresses in addition to shear stresses so that a tension-compression asymmetry can
be incorporated into the flow rule or it can include a back stress (with an appropriate back
stress evolution expression).

In the calculations here, the slip rate γ̇(α) in Eq. (9) is given by the power law relation

γ̇(α) = ȧ(α)
(
χ(α)

g(α)

)[∣∣∣∣χ(α)

g(α)

∣∣∣∣](1/m−1) = ȧ(α)sign(χ(α))

[∣∣∣∣χ(α)

g(α)

∣∣∣∣](1/m)

(11)
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In the special case where the only non-Schmid stresses associated with slip system (α)
are the Schmid resolved shear stresses on other slip systems, Eq. (10) is written as

χ(α) =
∑
κ

cακτ
(κ) (12)

where cακ are specified constants, with the diagonal terms cαα = 1.
The initial value of g(α) is τ

(α)
0 and g(α) evolves as

ġ(α) =
∑
κ

hακ|γ̇(κ)| (13)

The dissipation rate, ξ̇, is given by

ξ̇ = τ : Dp =
∑
α

τ (α)γ̇(α) =
∑
α

ȧ(α)τ (α)sign(χ(α))

[∣∣∣∣χ(α)

g(α)

∣∣∣∣](1/m)

(14)

If cακ ≡ 0, then χ(α) = τ (α) and not only is ξ̇ guaranteed to be non-negative but τ (α)γ̇(α) ≥
0 for all (α). With χ(α) 6= τ (α) a non-negative dissipation rate is not guaranteed. It is
expected that at least in some circumstances a negative dissipation rate leads to instability
so we presume that some restriction needs to be imposed on the dissipation rate. However,
precisely what restriction should be imposed remains to be determined.

In Eq. (11), the non-Schmid terms are incorporated into the driving force for slip in
a manner similar to the formulation of Knezevic et al. (2014). This contrasts with the
formulations of Weinberger et al. (2012); Lim et al. (2013); Chen et al. (2014); Srivastava et
al. (2015); Asim et al. (2022) where non-Schmid stresses are incorporated into the hardness.
The fundamental basis for the formulation in Eq. (11) is twofold: (i) in discrete dislocation
plasticity, non-Schmid stress terms enters through the expression for dislocation velocity,
see for example Needleman (2023, 2024); and (ii) the hardness is regarded as a material
characteristic that depends on the state of the slip systems and not directly on the imposed
loading (the evolution of the hardness does of course depend on the imposed loading). In
discrete dislocation plasticity, the dissipation rate associated with dislocation K can be
written as, see e.g. Needleman (2023),

ḊK =

∫
LK

PKvKdl (15)

where the integration is over the dislocation line LK , vK is the dislocation velocity, and PK

is the Peach-Koehler (configurational) force given by

PK = τ̄K |bK | (16)

with bK the Burgers vector of dislocation K and τ̄K the total resolved shear stress minus
the dislocation self-stress on the slip plane in the direction bK . The dislocation velocity can
be specified by a relation of the form
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vK =
1

BK
QK =

1

BK

[
PK + βKτKns

]
(17)

with BK a specified constant. Then, Eq. (15) becomes

ḊK =

∫
LK

(
1

BK

)
PKQKdl (18)

If βK 6= 0, QK 6= PK and a non-negative dissipation rate is not guaranteed. Thus, in discrete
dislocation plasticity the Peach-Koehler force only involves the Schmid resolved shear stress
and non-Schmid stresses enter the expression for the dissipation rate through their effect on
the dislocation velocity. Eqs. (11) and (12) leading to Eq. (14) provide the continuum slip
analog of this.

The inclusion of non-Schmid stresses of the form in Eq. (12) leads to a slight modification
of the rate tangent expressions given by Peirce et al. (1983) for the constitutive integration.
For completeness the modified expressions are given in the Appendix.

2.2. Boundary value problem formulation

The Lagrangian finite deformation finite element formulation is based on the quasi-static
rate principle of virtual work that can be written as∫

V

ṡ : δFdV =

∫
S

Ṫ · δudS +

[
1

∆t

(∫
S

T · δudS −
∫
V

s : δFdV

)]
(19)

where s is the (unsymmetric) nominal stress tensor, s = F−1 · τ , Ṫ = ṡ · n, V is the volume
of the body in the undeformed reference configuration, S is the corresponding surface with
normal n, and the deformation gradient F is related to the displacement vector u via

F =
∂u

∂X
, u = x−X (20)

with X and x being the positions of a material point in the reference and current configura-
tions, respectively. The term in brackets on the right hand side of Eq. (19) is an equilibrium
correction term included in the calculations and ∆t is the time increment.

Plane strain calculations of a planar single crystal subjected to tensile deformation (see
Fig. 1a) are carried out using a convected coordinate formulation of the governing equations
based on Eq. (19). Material particles are labeled by their position in the reference config-
uration, yi, and these labels, together with time, serve as the set of independent variables.
Time integration is carried out using a rate tangent method as in Peirce et al. (1983). For
the sake of simplicity, the planar single crystal is assumed to have only two slip systems that
are oriented symmetrically, as described in detail in the preceding Section 2.3.

Symmetry along both y1 and y2 axes is assumed, so that only one-fourth of the plane
strain bar needs to be analyzed numerically, as shown in Fig. 1b. The bar analyzed is of
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length L0 in the reference configuration and the width w0(y
2) in the reference configuration

is given by

w0(y
2) = w̄0

[
1− ρ cos

(
πy2

L0

)]
(21)

where yi, i = 1, 2 are the coordinates of material points in the plane of deformation in the
reference configuration, w̄0 is the nominal width and ρ is the imperfection amplitude.

A normal displacement is applied on y2 = L0 to give nominally constant strain rate
loading

u̇2 = ε̇0(U + L0) , Ṫ 1 = 0 on y2 = L0 (22)

Here, u̇j (j = 1, 2) are the in-plane displacement rates, ε̇0 is a specified applied strain rate,
and U is the applied end displacement.

The side y1 = w0(y
2) is taken to be traction free so that

Ṫ 1 = 0 Ṫ 2 = 0 on y1 = w0(y
2) (23)

Symmetry conditions are imposed on y1 = 0 and y2 = 0 via

u̇1 = 0 Ṫ 2 = 0 on y1 = 0 (24a)

u̇2 = 0 Ṫ 1 = 0 on y2 = 0 (24b)

2.3. Planar crystal model

As in Peirce et al. (1983), the calculations are carried out for a planar model crystal with
two slip systems (so that Greek indices range from 1 to 2) oriented symmetrically about the
tensile axis with angles φ(1) = φ and φ(2) = −φ. The initial slip directions are given by

s(1) = cosφk1 + sinφk2 , s(2) = cosφk1 − sinφk2 (25)

where ki are Cartesian base vectors in the initial configuration with k2 the tensile axis, see
Fig. 1a. Note that with the traction in the k2 direction given by T 2, for uniform deformation
the Schmid resolved shear stress on system (2) is given by τ (2) = −T 2 cosφ sinφ so that with
φ < π/2, τ (2) is negative for the symmetric double slip deformation mode.

The initial value of g is taken to be identical for both systems so that g
(1)
0 = g

(2)
0 = τ0

and in the calculations here χα is given by Eq. (12) with c12 = c(1)sign(τ (1))sign(τ (2)) and
c21 = c(2)sign(τ (2))sign(τ (1)). Values c(α) < 0 result in a reduced driving force for slip
regardless of the sign of τ (α).

The values of c(α) are taken to depend on γ(β) so that

c(α) = c(α)ampZ
(α)(γ(β)) β 6= α (26)

where c
(α)
amp is a specified constant, (α) 6= (β), and

Z(α)(γ(β)) =


0 for |γ(β)| ≤ γ

(β)
b∣∣ sin π( |γ(β)|−γ(β)b

γ
(β)
e

) ∣∣ for γ
(β)
b ≤ |γ(β)| ≤ γ

(β)
b + p(β)γ

(β)
e

0 for γ
(β)
b + p(β)γ

(β)
e ≤ |γ(β)|

(27)
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Figure 1: (a) Schematic representation of the crystal oriented for symmetric double slip. (b) The 16 × 64
quadrilateral element finite element mesh used in the calculations.

The variation of the non-Schmid effect during the loading history is expected to depend
on the physical mechanism that give rise to the involvement of the non-Schmid stress com-
ponent on plastic slip. For example, cross-slip would be expected to come into play for a
relatively short time interval whereas any effect arising from the dislocation core structure
would have an effect for a longer interval of the loading history. By varying γ

(β)
b , γ

(β)
e , and

p(β), the onset and duration of either a single or repeated non-Schmid events can be repre-
sented in the simple double slip context. An example of the variation of Z(α) with γ(β) as
given by Eq. (27) and for γ

(β)
b = 0.025, γ

(β)
e = 0.05, and p(β) = 10 is shown in Fig. 2a.

In order to limit the number of parameters considered, attention is restricted to self
hardening that is the same for each slip system so that h11 = h22 = h and h12 = h21 = 0. In
the calculations here

h = h0

(
|γ(1)|+ |γ(2)|

γ0 + 1

)N−1
(28)

where γ0 and N are specified constants. Calculations are carried out for various values of
c
(α)
amp in Eq. (26), and for various values of γ

(β)
b , p(β), and γ

(β)
e in Eq. (27).

3. Results and discussion

All calculations are carried out for fixed values of E/τ0 = 533.3, ν = 0.3333, h0/τ0 = 10,
γ0 = 0.01, N = 0.10, ȧ(1) = ȧ(2) = ȧ = 0.002/s, and m = 0.01. The initial slip system
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Figure 2: (a) An example of the variation of Z(α) with γ(β) as given by Eq. (27) and for γ
(β)
b = 0.025,

γ
(β)
e = 0.05, and p(β) = 10 in Eq. (27). (b) Overall stress-strain response for uniform symmetric double slip

with γ
(1)
b = γ

(2)
b = 0.025, γ

(1)
e = γ

(2)
e = 0.05, and p(1) = p(2) = 10 in Eq. (27) and with various values of

c
(1)
amp = c

(2)
amp = camp. The definition of σ and ε are given in Section. 3.1.

orientations are specified to be φ = π/3 and the bar aspect ratio is w̄0/L0 = 0.25. In all
calculations, the imposed loading rate in Eq. (22) is given by ε̇0/ȧ = 1. For comparison
purposes some calculations are carried out for a uniform bar, ρ = 0 in Eq. (21), but in
most calculations the imperfection amplitude, ρ, is taken to be ρ = 0.01. Unless specifically
stated otherwise, calculations are carried out using a 16 × 64 quadrilateral element mesh,
as shown in Fig. 1b, with each quadrilateral consisting of four crossed triangles. The finite
element mesh is nearly uniform (when ρ = 0) with mesh spacing in the y1−direction being
w0(y

2)/16 and in the y2−direction being L0/64.

3.1. Uniform non-Schmid governed slip

With ρ = 0 in Eq. (21) and c
(1)
amp = c

(2)
amp = camp, the deformation mode is one of uniform

symmetric double slip. Fig. 2b shows the computed overall stress-strain curves for various
values of camp with the parameters in Eq. (27) taken as stated in the caption of Fig. 2b. The
overall strain is defined as ε = ln(1 + U/L0), where U is the applied end displacement in
Eq. (22) and σ is given by

σ =

(
1

[w(L0) + u1(w(L0), L0)]

)∫ w(L0)

0

T 2dy1 (29)

where [w(L0) + u1(w(L0), L0)] is the width of the bar at y2 = L0 and the integral gives the
total force in the y2−direction.

With the boundary conditions imposed, there is no uniform or homogeneous deformation
solution with c(1) 6= c(2). From Eqs. (11) and (12), the effect of activating the non-Schmid
dependence is to reduce the driving force for plastic slip, so that the slip rate decreases and
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the hardening rate increases. For symmetric double slip, the overall stress-strain response
reflects the periodicity of Z(α) in Eq. (27). As the amplitude of negative camp increases the
stress magnitude increases, for example with camp = −0.8, the stress magnitude is more
than three times the stress magnitude attained with camp = 0.

The formulation here is rate dependent, so that a loss of ellipticity does not occur.
However, for m→ 0 with a fixed non-zero ∆t, the acoustic tensor based on the rate tangent
modulus, Ltan, in Eq. (A-14) can give rise to imaginary wave speeds. This does occur for the
calculation in Fig. 2b with camp = −0.8, while for camp ≥ −0.5 these calculated (numerical)
wave speeds remain real. Although loss of ellipticity does not occur, the governing equations
can become ill-conditioned in such a case and, for a given ∆t, lead to numerical stability
and accuracy issues as discussed by Needleman (1988). Increasing strain rate hardening
and decreasing numerical time step sizes all promote numerical stability in this sense. In
addition to loss of ellipticity, a flutter instability is possible with a nonassociative flow rule,
due to the stiffness matrix relating the nominal stress and the deformation gradient (or
rates thereof) being non-symmetric, Piccolroaz et al. (2006). In addition, deformation of a
rate dependent plastic solid for which the flow rule for the limiting rate independent solid is
nonassociative can exhibit intermittent strain bursts, Racherla and Bassani (2007); Bassani
and Racherla (2011).

3.2. Uniform and nonuniform Schmid governed slip

Fig. 3a shows the stress-strain responses for Schmid governed slip, c(1) = c(2) = 0 in
Eq. (26). With ρ = 0, the response is spatially uniform symmetric double slip. In the early
stages of deformation, there is little difference between the overall stress-strain responses with
ρ = 0 and ρ = 0.01 in Eq. (21). Once necking begins, Fig. 3b, the deformation field with
ρ = 0.01 is highly nonuniform and the overall stress, σ, decreases with increasing imposed
displacement. The deformation eventually localizes leading to a rapid drop in overall stress.
We term the strain at which such a rapid drop in overall stress occurs the failure strain and
denote it by εf .

The variation of the overall normalized dissipation rate with strain is shown in Figs. 3c
and 3d, where the overall normalized dissipation rate for slip system (α) is defined by

Ḋ(α) =

(
1

τ0ȧ

)∫
A0

τ (α)γ̇(α)dA =

(
1

τ0ȧ

)∫
A0

ξ̇(α)dA (30)

where A0 is the initial area of the bar and ξ̇(α) is the pointwise dissipation rate of slip system
(α).

The values of Ḋ(1) for uniform symmetric double slip, ρ = 0, and for ρ = 0.01 in Fig. 3c
nearly coincide until the onset of localization, at which strain, the dissipation rate for the
calculation with ρ = 0.01 increases rapidly. On the other hand in Fig. 3d for Ḋ(1) + Ḋ(2),
the difference between uniform symmetric double slip and the nonuniform deformation field
that emerges with ρ = 0.01 occurs for much smaller values of overall strain, indicating
that the nonuniform deformation field gives rise to more slip on slip system (1) than on
slip system (2) until the onset of localization when the dissipation rate for both systems
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Figure 3: (a) Overall stress-strain response for Schmid stress governed slip in the plane strain bars with
imperfection amplitude of ρ = 0 or ρ = 0.01. (b) The deformed shape of 1/4 of the plane strain bars at an
imposed overall strain of ε = 0.15. The contour plot in (b) shows the variation of slip (γ) on slip system (1).
The variation of slip on slip system (2) for the cases shown in (b) is the same but with a minus sign. (c)-(d)
Normalized dissipation rate Ḋ(α) given by Eq. (30) for Schmid stress governed slip: (c) For slip system (1),
and (d) for slip systems (1)+(2).

increases rapidly. Due to the rapidly localizing deformation, the time step for numerical
stability becomes extremely small and the calculation is terminated.

3.3. Nonuniform non-Schmid governed slip

We first consider cases where there is a single interval of slip over which non-Schmid
governed slip occurs, i.e., p(1) = p(2) = 1 in Eq. (27). Figs. 4a and 4b show overall stress-

strain responses for various values of c
(1)
amp when c

(2)
amp = 0 and when c

(1)
amp = c

(2)
amp = camp,

respectively, with γ
(1)
e = γ

(2)
e = 0.02. With c

(2)
amp = 0, Fig. 4a, there is a relatively small effect

of the non-Schmid term on the overall stress-strain response even with c
(1)
amp = −2 although
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Figure 4: Overall stress-strain response for cases with (a) γ
(1)
e = γ

(2)
e = 0.02, c

(2)
amp = 0, and various values

of c
(1)
amp; (b) γ

(1)
e = γ

(2)
e = 0.02, and various values of c

(1)
amp = c

(2)
amp = camp; (c) γ

(1)
e = γ

(2)
e = 0.2, c

(2)
amp = 0,

and various values of c
(1)
amp; and (d) γ

(1)
e = γ

(2)
e = 0.2, and various values of c

(1)
amp = c

(2)
amp = camp. For all

cases in (a)-(d), γ
(1)
b = γ

(2)
b = 0.05 and p(1) = p(2) = 1 in Eq. (27).

there is a small decrease in the value of the failure strain, εf , relative to that when plastic

flow is governed only by the Schmid stress. On the other hand, when c
(1)
amp = c

(2)
amp, Fig. 4b,

the effect of the non-Schmid term is to increase the stress magnitude and delay the onset
of failure, with nearly no dependence on the value of camp for −1 ≤ camp < 0. However,
when the value of camp is very large, e.g., camp = −2, although the overall stress-strain curve
initially follows the other curves for non-Schmid governed slip, the calculation terminates
at ε ≈ 0.05 because the time step required for numerical stability becomes extremely small.
All other cases shown in Figs. 4a and 4b terminate after the localization of deformation,
leading to a drop in overall stress.

With γ
(1)
e = γ

(2)
e = 0.2 in Figs. 4c and 4d, there is a very strong effect of the non-Schmid

term on the overall stress-strain response both for c
(1)
amp 6= 0 and c

(2)
amp = 0 (Fig. 4c), and
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Figure 5: The variation of strain to failure, εf , with the magnitude of the non-Schmid parameter, (a) c
(1)
amp

when c
(2)
amp = 0, and (b) c

(1)
amp = c

(2)
amp = camp, for various values of γ

(1)
e = γ

(2)
e = γe. For all cases in (a)-(b),

γ
(1)
b = γ

(2)
b = 0.05 and p(1) = p(2) = 1 in Eq. (27). The normalization parameter ε0f is the strain to failure

for Schmid stress-governed slip.

for c
(1)
amp = c

(2)
amp = camp (Fig. 4d). For both cases, there is a significant increase in stress

magnitude due to the activation of the non-Schmid term, along with a significant decrease in
the value of the overall strain at which a rapid drop in stress magnitude occurs. In Fig. 4c,
where c

(2)
amp = 0, the increase in the stress magnitude (beyond the Schmid governed case)

with increasing magnitude of c
(1)
amp is rather small for the range of values of c

(1)
amp considered.

However, with c
(1)
amp = c

(2)
amp = camp in Fig. 4d, a secondary increase in the hardening rate

occurs for camp ≤ −0.5 at ε > 0.1, where the overall stress increases almost linearly with
increasing overall strain. All the cases shown in Figs. 4c and 4d terminate after a drop
in overall stress occurs, except for camp = −2 in Fig. 4d, where the time step required for
numerical stability becomes extremely small even before the drop in overall stress.

Fig. 5 shows the effect of the magnitude of the non-Schmid term, |c(1)amp| and c
(2)
amp = 0

(Fig. 5a) and with |c(1)amp| = |c(2)amp| (Fig. 5b) on the strain to failure, εf . In all cases shown

in Fig. 5, γ
(1)
b = γ

(2)
b = 0.05, p(1) = p(2) = 1, and γ

(1)
e = γ

(2)
e = γe in Eq. (27). In most

calculations, εf corresponds to the value of the overall strain at which the calculations

terminate due to a rapid drop in overall stress. However, with |c(1)amp| = |c(2)amp| ≥ 1.5,
calculations can be terminated because the time step required for numerical stability becomes
extremely small before the drop in overall stress. A comparison of Fig. 5a and Fig. 5b shows
that the value of εf has a much stronger dependence on the magnitude of the non-Schmid
term when it is active on both slip systems (Fig. 5b) compared to when it is active on only
one slip system (Fig. 5a). For example, when the non-Schmid is active on only one slip

system, the maximum increase in εf is only 8% (for γe = 0.1 and |c(1)amp| = 0.1), and the

maximum decrease in εf is roughly 24% (for γe = 0.2 and |c(1)amp| = 0.75). However, when
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the non-Schmid term is active on both slip systems, the maximum increase in εf is about

25% (for γe = 0.02 and |c(1)amp| = |c(2)amp| = 0.25), and the maximum decrease in εf is about

70% (for γe = 0.02 and |c(1)amp| = |c(2)amp| = 2). Furthermore, both when the non-Schmid
term is active on one or on both slip systems, the variation of εf with γe is not necessarily
monotonic. For example, in Fig. 5a, εf for γe = 0.05 is greater than that for γe = 0.02 when

|c(1)amp| < 1 and the reverse holds when |c(1)amp| > 1.

Figure 6: (a)-(b) Contour plots showing the distribution of slip (γ) on slip systems (1) and (2) for c
(1)
amp = −0.1

when c
(2)
amp = 0 at overall strain magnitudes of 0.04 and 0.08. (c)-(d) Contour plots showing the distribution

of γ on slip systems (1) and (2) for c
(1)
amp = c

(2)
amp = −0.1 at overall strain magnitudes of 0.04 and 0.08. In

both the cases, γ
(1)
b = γ

(2)
b = 0.05, γ

(1)
e = γ

(2)
e = 0.02, and p(1) = p(2) = 1 in Eq. (27).

The contour plots in Fig. 6 show the distribution of slip on the two slip systems (1)

and (2) at two values of ε for two cases: one with c
(1)
amp = −0.1 (and c

(2)
amp = 0), and the

other with c
(1)
amp = c

(2)
amp = −0.1. The values of the other parameters in Eq. (27) are given

in the figure caption. Non-Schmid governed slip on a slip system (β) is only active when
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Figure 7: Similar contour plots to those in Fig. 6, but with γ
(1)
e = γ

(2)
e = 0.2 (increased from 0.02), while

γ
(1)
b = γ

(2)
b = 0.05 and p(1) = p(2) = 1 remain unchanged. (a)-(b) Contour plots showing the distribution of

γ on slip systems (1) and (2) for c
(1)
amp = −0.1 when c

(2)
amp = 0 at overall strain magnitudes of 0.04 and 0.08.

(c)-(d) Contour plots showing the distribution of γ on slip systems (1) and (2) for c
(1)
amp = c

(2)
amp = −0.1 at

overall strain magnitudes of 0.04 and 0.08.

γ
(β)
b ≤ |γ(β)| ≤ γ

(β)
b + p(β)γ

(β)
e . Therefore, for the values of γb and γe considered, at ε = 0.04,

non-Schmid governed slip has not yet been activated, while at ε = 0.08, non-Schmid governed
slip has been deactivated, at least in regions with sufficiently large values of |γ(β)|. As a
consequence, in all four sub-figures of Fig. 6, the deformation mode is nearly symmetric
double slip.

The overall stress-strain response for the calculations in Fig. 6 are shown in Figs. 4a and
4b. The overall stress-strain response in Fig. 4a with c

(1)
amp = −0.1, c

(2)
amp = 0 differs little from

the overall stress-strain response with c
(1)
amp = c

(2)
amp = 0. On the other hand, Fig. 4b shows

that with c
(1)
amp = c

(2)
amp = camp = −0.1 the stress magnitudes are greater for ε > 0.05 than the

corresponding stress magnitudes with c
(1)
amp = c

(2)
amp = camp = 0. Also, the values of εf with
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Figure 8: Contour plots showing the distribution of γ on slip systems (1) and (2) for the same cases shown

in Fig. 7 but at a larger overall strain magnitude of 0.14. (a) For c
(1)
amp = −0.1 when c

(2)
amp = 0, and (b) for

c
(1)
amp = c

(2)
amp = −0.1.

c
(1)
amp = c

(2)
amp = camp = −0.1 are significantly greater than those with Schmid stress governed

slip. The slip distributions in Fig. 6 show that this is due to the difference in the mode of
deformation when non-Schmid governed slip is active on one slip system as compared with
when non-Schmid stress governed slip is active on both slip systems. When non-Schmid
stress governed slip is active on one slip system, the deformation pattern in the bar, shown
in Fig. 6b, is similar to the case with Schmid stress governed slip, where necking occurs at
the location of the minimum cross-section (see Fig. 3b). However, with non-Schmid governed
slip active on both slip systems, necking does not occur at the minimum cross-section but
occurs in the middle of the analyzed region of the bar, as shown in Fig. 6d. Because the
region shown in Fig. 6 represents only one-fourth of the entire plane strain tensile bar, this
suggests that even under quasi-static loading conditions, more than one neck can form in
the bar due to non-Schmid stress governed slip.

Plots of the slip distribution with γ
(1)
e = γ

(2)
e = 0.2 are shown in Fig. 7. Here, as in

Fig. 6 (where γ
(1)
e = γ

(2)
e = 0.02), plots are shown for c

(1)
amp = −0.1, c

(2)
amp = 0 and for

c
(1)
amp = c

(2)
amp = −0.1. Also, the plots in Fig. 7 are at the same two values of ε as are the plots

in Fig. 6. The values of the other parameters of Eq. (27) are given in the figure caption.
With the specified values of γb and γe, the non-Schmid term has not yet been activated at
ε = 0.04. As a result, at this magnitude of overall strain, the deformation is nearly symmetric
double slip, as seen in Figs. 7a and 7c. At ε = 0.08, however, the non-Schmid term is active,
leading to a change in deformation pattern: with c

(1)
amp = −0.1 and c

(2)
amp = 0 the deformation

on slip system (1) is nearly suppressed. On the other hand, with c
(1)
amp = c

(2)
amp = −0.1, the

deformation remains nearly symmetric double slip, but slip activity on both slip systems
is suppressed. This results in increased stress magnitudes both with c

(2)
amp = 0 and with

c
(2)
amp = −0.1 as compared to the corresponding stress magnitudes for Schmid governed slip
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Figure 9: Contour plots showing the distribution of γ on slip systems (1) and (2) for (a)-(b) c
(1)
amp = −1

when c
(2)
amp = 0, and (c)-(d) for c

(1)
amp = c

(2)
amp = −1 at overall strain magnitudes of 0.1 and 0.12. In both

cases, γ
(1)
b = γ

(2)
b = 0.05, γ

(1)
e = γ

(2)
e = 0.2, and p(1) = p(2) = 1 in Eq. (27).

when ε > 0.05, Figs. 4c and 4d. The stress magnitudes are greater when the non-Schmid
term is activated on both slip systems as compared with when it is activated on only one
slip system. Additionally, as seen in Figs. 4c and 4d, the values of εf for both cases with
non-Schmid stress governed slip is significantly lower than for the case with Schmid stress
governed slip. This is because with non-Schmid stress governed slip, as the imposed overall
strain increases, deformation localizes in slip bands, as seen in Fig. 8. However, the pattern
of slip localization differs between the cases with c

(1)
amp = −0.1 (c

(2)
amp = 0) in Fig. 8a, and

with c
(1)
amp = c

(2)
amp = −0.1 in Fig. 8b.

Fig. 9 shows slip distributions for two cases with c
(1)
amp = −1. In one case c

(2)
amp = 0 and

in the other case c
(2)
amp = −1. For both cases, all parameters in Eq. (27) are the same as in

Figs. 7 and 8. In Fig. 9, at ε = 0.1, the deformation on slip system (1) is nearly suppressed,
and the minimum cross-section in the current configuration is not at the location of the
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minimum cross-section in the initial configuration. For both cases, this results in increased
stress magnitudes compared with the Schmid governed slip response in Figs. 4c and 4d.
The stress magnitudes are greater when c

(1)
amp = c

(2)
amp = −1 than with only c

(1)
amp = −1 (see

Figs. 4c and 4d). This is because slip activity is much more suppressed when c
(2)
amp = −1

than when c
(2)
amp = 0. Furthermore, for ε > 0.1 with c

(1)
amp = c

(2)
amp = −1 the overall stress

increases almost linearly with increasing strain until a rapid drop in overall stress occurs,
as seen in Fig. 4d. This is because, even with increasing overall strain, slip activity remains
rather suppressed and no slip bands form when c

(1)
amp = c

(2)
amp = −1, Fig. 9d. In contrast,

when c
(2)
amp = 0, deformation localizes into slip bands, as seen in Fig. 9b. In Fig. 9c and 9d

even with c
(1)
amp = c

(2)
amp = −1, slip activity is not the same on the two slip systems. This

is because the difference between non-Schmid governed plastic flow on only one slip system
versus on both slip systems depends on the complex changes in the deformation mode of
the bar.

The variation of various measures of dissipation rate with overall strain, ε, is shown in
Fig. 10 for cases with γ

(1)
b = γ

(2)
b = 0.05, γ

(1)
e = γ

(2)
e = 0.02, p(1) = p(2) = 1, c

(2)
amp = 0,

and various values of c
(1)
amp. The overall stress-strain responses for these cases are shown in

Fig. 4a. The variation of the normalized dissipation rate Ḋ(1)/(A0τ0ȧ) with ε is shown in
Fig. 10a and the variation of the sum (Ḋ(1) + Ḋ((2))/(A0τ0ȧ) is shown in Fig. 10b. When
the non-Schmid term comes into play, the dissipation rate for system (1) decreases because
of the decreased driving force for slip on that system. After the non-Schmid event has
ended, the resistance to slip decreases and the dissipation rate on system (1) increases. As
ε increases, the dissipation rate on system (1) becomes nearly independent of ε until the
overall stress drops rapidly as deformation localizes. This leads to a sharp increase in the
dissipation rate on system (1). By way of contrast, the value of the total dissipation rate

Ḋ = Ḋ(1) + Ḋ(2) is nearly independent of the value of c
(1)
amp until ε = εf . This is because

the value of Ḋ(2) changes to balance out the change in Ḋ(1). Also, the value of Ḋ(α) is
non-negative throughout the deformation history up to and including ε = εf .

Figs. 10c and 10d show the minimum values of normalized pointwise dissipation rate
ξ̇(1) and ξ̇(1) + ξ̇(2). The minimum values of both dissipation rate measures can become
negative. Note that the values shown are the minimum value of the dissipation rate in
the bar and so the point at which this minimum occurs can vary from time step to time
step. Hence, the associated curve can have strong oscillations. Also, for ε greater than
about 0.12, the minimum values are zero because elastic unloading has occurred and at all
points where slip is occurring the dissipation rates are non-negative. These results show
that strongly negative values of pointwise dissipation rate, ξ̇(α), can occur with the overall
response remaining stable.

Fig. 11 shows the evolution of normalized dissipation rate for calculations with all param-
eters as in the cases in Fig. 10 except that here c

(1)
amp = c

(2)
amp = camp. The overall stress-strain

responses for these cases are shown in Fig. 4b. The qualitative behavior is similar with
non-negative values of Ḋ(α) and with values of the pointwise dissipation rate ξ̇(α) attaining
locally negative values.

The evolution of normalized dissipation rate is quite different for the cases in Fig. 12
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Figure 10: The variation of the normalized dissipation rate, Ḋ, given by Eq. (30), with overall strain, ε, (a)
for slip system (1) and (b) for slip systems (1) + (2). The variation of the minimum value of the normalized
dissipation rate, min(ξ̇), at any point in the bar with ε (c) for slip system (1) and (d) for slip systems

(1) + (2). The results are shown for cases with γ
(1)
b = γ

(2)
b = 0.05, γ

(1)
e = γ

(2)
e = 0.02, p(1) = p(2) = 1,

c
(2)
amp = 0, and various values of c

(1)
amp.

where γ
(1)
b = γ

(2)
b = 0.05 and γ

(1)
e = γ

(2)
e = 0.2 so that the non-Schmid effect on the driving

force for slip is active over a larger range of strain. The overall stress-strain responses
for cases with γ

(1)
b = γ

(2)
b = 0.05, γ

(1)
e = γ

(2)
e = 0.2 and c

(2)
amp = 0 is shown in Fig. 4c.

For sufficiently large values of c
(1)
amp even the normalized values of Ḋ(1) and Ḋ(1) + Ḋ(2)

can become strongly negative. Nevertheless, no instability is encountered prior to ε = εf .
Although not shown here, the evolution of dissipation rate with ε for the calculations with
γ
(1)
b = γ

(2)
b = 0.05, γ

(1)
e = γ

(2)
e = 0.2 and c

(1)
amp = c

(2)
amp is similar to that in Fig. 12.

We now consider the response with a series of slip intervals over which non-Schmid
governed slip occurs. Fig. 13 shows the overall stress-strain response for calculations with
γ
(1)
e = γ

(2)
e = 0.02 and p(1) = p(2) = 10. In Fig. 13a, γ

(1)
b = γ

(2)
b = 0, while in Fig. 13c,
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Figure 11: The variation of Ḋ with ε (a) for slip system (1) and (b) for slip systems (1) + (2). The variation
of min(ξ̇) with ε (c) for slip system (1) and (d) for slip systems (1) + (2). The results are shown for cases

with γ
(1)
b = γ

(2)
b = 0.05, γ

(1)
e = γ

(2)
e = 0.02, p(1) = p(2) = 1, and various values of c

(1)
amp = c

(2)
amp = camp.

γ
(1)
b = γ

(2)
b = 0.01. In both figures, c

(2)
amp = 0, and the responses for various values of c

(1)
amp

are shown. Similarly, in Fig. 13b, γ
(1)
b = γ

(2)
b = 0, while in Fig. 13d, γ

(1)
b = γ

(2)
b = 0.01, and

the responses with various values of c
(1)
amp = c

(2)
amp = camp are shown.

In Figs. 13a and 13c, with c
(2)
amp = 0, the effect of the non-Schmid term on the overall

stress-strain response is to increase the stress magnitude while it is active, but the effect
nearly disappears thereafter. This does, however, lead to a decrease in the value εf . A
comparison of these two figures shows that the effect of the value of γb, which dictates at
what point in the deformation history the non-Schmid term becomes active, is not very
strong on the overall stress-strain response due to the small difference in the values of γ

(α)
b .

Also, for nonuniform slip (i.e., for a bar with an initial geometric defect), the overall stress-
strain response does not reflect the periodicity of Z(α) in Eq. (27), as was the case for uniform
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Figure 12: The variation of Ḋ with ε (a) for slip system (1) and (b) for slip systems (1) + (2). The variation
of min(ξ̇) with ε (c) for slip system (1) and (d) for slip systems (1) + (2). The results are shown for cases

with γ
(1)
b = γ

(2)
b = 0.05, γ

(1)
e = γ

(2)
e = 0.2, p(1) = p(2) = 1, c

(2)
amp = 0, and various values of c

(1)
amp.

slip shown in Fig. 2b. In Figs. 13b and 13d where c
(1)
amp = c

(2)
amp, very high stress magnitudes

develop for camp < −0.1. Even though the overall stress magnitudes are higher, for both
camp = −0.1 and camp = −0.5, the rapid drop in overall stress occurs at a smaller value of ε
than for the comparison crystal with Schmid stress governed slip, camp = 0. For camp ≤ −1,
the overall stress-strain curves in both Figs. 13b and 13d initially follow the other curves for
non-Schmid governed slip, but with a further increase in the value of the imposed strain ε,
the stress tends to evolve almost linearly with strain, and the calculations terminate because
the time step required for numerical stability becomes extremely small. With camp ≥ −0.5
in Figs. 13b and 13d, the calculations are terminated following the rapid drop in overall
stress.

The variation of the strain to failure, εf , with the amplitude of the non-Schmid term,

|c(1)amp| is shown in Fig. 14 for calculations with p(1) = p(2) = 10 for two cases; (i) c
(2)
amp = 0
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Figure 13: Overall stress-strain response for cases with (a) γ
(1)
b = γ

(2)
b = 0, c

(2)
amp = 0, and various values of

c
(1)
amp; (b) γ

(1)
b = γ

(2)
b = 0, and various values of c

(1)
amp = c

(2)
amp = camp; (c) γ

(1)
b = γ

(2)
b = 0.01, c

(2)
amp = 0, and

various values of c
(1)
amp; and (d) γ

(1)
b = γ

(2)
b = 0.01, and various values of c

(1)
amp = c

(2)
amp = camp. For all cases

in (a)-(d), γ
(1)
e = γ

(2)
e = 0.02 and p(1) = p(2) = 10.

(Fig. 14a) and (ii) |c(1)amp| = |c(2)amp| (Fig. 14b). The values of εf correspond to the overall
strain at which the calculations terminate due to a rapid drop in overall stress, except for a
few cases with larger magnitudes of camp, where calculations are terminated because the time
step required for numerical stability becomes extremely small even before the drop in overall
stress. Results for c

(1)
amp = camp (with c

(2)
amp = 0) in Fig. 14a show that the variation of εf

with |camp| is not necessarily monotonic. The results in Fig. 14b where c
(1)
amp = c

(2)
amp = camp,

show that for γe < 0.05, the value of εf decreases monotonically with increasing value of
|camp|, but for γe = 0.05, the dependence of εf on |camp| is non monotonic. Moreover, for

p(1) = p(2) = 10 with c
(1)
amp = camp and c

(2)
amp = 0, the variation of εf with the value of γe is

substantially greater than in Fig. 5a, where p(1) = p(2) = 1, while with c
(1)
amp = c

(2)
amp = camp,
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Figure 14: The variation of strain to failure, εf , with the magnitude of the non-Schmid parameter, (a) c
(1)
amp

when c
(2)
amp = 0, and (b) c

(1)
amp = c

(2)
amp = camp, for various values of γ

(1)
b = γ

(2)
b = γb and γ

(1)
e = γ

(2)
e = γe.

For all cases in (a)-(b), p(1) = p(2) = 10 in Eq. (27). The normalization parameter ε0f is the strain to failure
for Schmid stress-governed slip.

the variation of εf with the value of γe is substantially smaller than in Fig. 5b, where
p(1) = p(2) = 1.

Fig. 15 shows the variation of various measures of dissipation rate with overall strain, ε,
for cases with γ

(1)
b = γ

(2)
b = 0, γ

(1)
e = γ

(2)
e = 0.02, p(1) = p(2) = 10 and c

(1)
amp = c

(2)
amp = camp,

for various values of camp. The overall stress-strain responses are shown in Fig. 13b. The
variation of the normalized dissipation rate Ḋ(1)/(A0τ0ȧ) with ε is shown in Fig. 15a and
the variation of the sum (Ḋ(1) + Ḋ((2))/(A0τ0ȧ) is shown in Fig. 15b. Figs. 15c and 15d show
the variations of the minimum values of ξ̇(1) and of ξ̇(1) + ξ̇(2), respectively. The values of
Ḋ(1)/(A0τ0ȧ) and (Ḋ(1) + Ḋ((2))/(A0τ0ȧ) are negative for a small range of ε at an early stage
of plastic deformation but both Ḋ(1)/(A0τ0ȧ) and (Ḋ(1) + Ḋ((2))/(A0τ0ȧ) remain positive
during most of the strain interval where non-Schmid governed slip is active, although they
oscillate wildly. Comparing Figs. 15c and 15d shows that at some stages of deformation,
the value of ξ̇(2) can be sufficiently positive so that even though ξ̇(1) is negative, the sum
ξ̇(1) + ξ̇(2) is non-negative.

4. Concluding Remarks

Quasi-static plane strain tension of a planar single crystal with two potentially active
slip systems, oriented for symmetric double slip, was analyzed for a rectangular bar with a
small geometric imperfection to trigger nonuniform deformation. The crystal plasticity con-
stitutive relation incorporates a non-Schmid stress into the expression for the driving force
of the slip system shear rate. Calculations were carried out for crystals having non-Schmid
stress affected slip on one or on both slip systems. In both cases, various characterizations
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Figure 15: The variation of Ḋ with ε (a) for slip system (1) and (b) for slip systems (1) + (2). The variation
of min(ξ̇) with ε (c) for slip system (1) and (d) for slip systems (1)+(2). The results are shown for cases with

γ
(1)
b = γ

(2)
b = 0, γ

(1)
e = γ

(2)
e = 0.02, p(1) = p(2) = 10 in Eq. (27), and various values of c

(1)
amp = c

(2)
amp = camp.

of the non-Schmid term were investigated. For comparison purposes, calculations were also
carried out for a crystal with Schmid stress governed slip.

Results were presented for the effect of non-Schmid governed slip on the overall stress-
strain response, on the strain at which a rapid drop in overall stress carrying capacity
occurs, termed the failure strain, and on the evolution of the dissipation rate with the
imposed straining. It was found that including a non-Schmid stress in the driving force
expression can have a significant effect on the overall stress-strain response (Fig. 4) and on
the slip mode that develops (Figs. 6 to 9). These effects can lead either to an increase or to
a decrease in the failure strain (relative to that for Schmid stress governed slip), Figs. 5 and
14. All of these depend on: (i) whether non-Schmid governed slip is on one slip system or
both slip systems; and (ii) the value of the parameters in Eqs. (26) and (27), the magnitude

of the non-Schmid term (c
(α)
amp), the slip at which the non-Schmid term is active (γ

(β)
b ), the
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slip interval over which the non-Schmid term is active (γ
(β)
e ), and the number of non-Schmid

slip events (p(β)). Furthermore, the dependence of the failure strain on the parameters
characterizing the non-Schmid dependence is not necessarily monotonic, Fig. 5.

In developing plastic constitutive relations, the requirement is generally imposed that
the dissipation rate be non-negative at each point of the body analogous to the postulate
of Coleman and Noll (1964) that requires the Clausius-Duhem inequality to be satisfied
for all possible deformation histories. For a purely mechanical theory, i.e. temperature
and entropy not included in the formulation (except possibly through material parameters
depending on a temperature that has a rate proportional to the plastic dissipation rate),
the requirement of a non-negative dissipation rate does not directly follow from the second
law of thermodynamics. It is analogous to, but not derived from, the Clausius-Duhem
inequality, e.g. Needleman (2024). In continuum slip crystal plasticity formulations, the
even stronger requirement that the dissipation rate associated with each slip system is non-
negative is generally imposed. This requirement is readily met when the slip on each system
is only governed by the Schmid stress. When a non-Schmid stress is incorporated into the
driving force, a non-negative dissipation rate is not guaranteed. The occurrence of a negative
dissipation rate does not violate any fundamental physical principle. However, a physically
based restriction on the magnitude or duration of a a non-positive dissipation rate may arise
from consideration of the kinetics of plastic flow.

There are constitutive frameworks for which satisfaction of the Clausius-Duhem inequal-
ity can serve as a stability condition, Coleman and Mizel (1967); Dafermos (1979). In the
quasi-static crystal plasticity calculations here, as in the one dimensional wave propagation
problem of Needleman (2023), a negative dissipation rate with a sufficiently large magnitude
occurring over a sufficiently long time can lead to an instability, either a physical instability
or, depending on the parameters characterizing non-Schmid plasticity and/or the material
strain rate sensitivity, a numerical instability. The present results for a quasi-static rate
dependent continuum slip crystal plasticity problem, as those of Needleman (2023) for a one
dimensional wave propagation problem, show that stable solutions can be obtained with a
negative dissipation rate. Indeed, as seen in Fig. 12, stable solutions can be obtained even
when the integrated dissipation rate is negative,

∑
α Ḋ(α), where Ḋ(α) is given by Eq. (30).

In addition, for plasticity theories with a nonassociative flow rule phenomena such as a flut-
ter instability, Piccolroaz et al. (2006), and abrupt strain bursts can occur, Racherla and
Bassani (2007); Bassani and Racherla (2011). The role, if any, of a negative dissipation rate
in promoting such phenomena remains to be investigated.

The results here indicate that, quite generally, for rate dependent plastic constitutive
relations imposing the requirement for the plastic dissipation rate to be non-negative at
each point of the body for all times is overly restrictive. Presumably there is some condition
that should be imposed to limit how negative the dissipation rate can be. Comparing Figs. 10
and 12 shows that if the slip range over which the pointwise dissipation rate is sufficiently
small, the integrated dissipation rate Ḋ remains non-negative. Imposing the requirement of
a sufficiently short time interval or a sufficiently small slip interval over which a negative
dissipation rate is allowed at some points of the body (based on the kinetics of plastic
flow) would be qualitatively similar to the situation in statistical mechanics where, due to
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fluctuations, the Clausius-Duhem inequality is permitted to be violated over a sufficiently
small distance for a sufficiently short time period. What is sufficiently small and what is
sufficiently short remain to be delineated.
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Appendix

For completeness, the derivation of the rate tangent expressions used in the calculations
is briefly outlined. The derivation closely follows that for Schmid stress governed slip given
by Peirce et al. (1983) and Needleman et al. (1985) where more detailed derivations are
presented.

The slip increment on system (α) at time t is

∆γ(α) = γ(α)(t+ ∆t)− γ(α)(t) (A-1)

Linear interpolation within the time increment gives

∆γ(α) =
[
(1− θ)γ̇(α)(t) + θγ̇(α)(t+ ∆t)

]
∆t (A-2)

Using a Taylor expansion for γ̇(α)(t+ ∆t)

γ̇(α)(t+ ∆t) = γ̇(α)(t) +
∂γ̇(α)

∂χ(α)
∆χ(α) +

∂γ̇(α)

∂g(α)
∆g(α) + ... (A-3)

Substituting Eq. (A-3) into Eq. (A-2) gives to first order

∆γ(α) = γ̇
(α)
t + (θ∆t)

[
∂γ̇(α)

∂χ(α)
∆χ(α) +

∂γ̇(α)

∂g(α)
∆g(α)

]
(A-4)

where here and subsequently ( )t denotes quantities evaluated at time t, e.g. γ̇
(α)
t = γ̇(α)(t).

Calculating the partial derivatives, using the definition of χ(α) in Eq. (12) and carrying
out some algebraic manipulations analogous to those given by Peirce et al. (1983) and
Needleman et al. (1985) leads to the equation to solve for ∆γ(κ) = γ̇(κ)∆t as

∑
κ

Nακ∆γ
(κ) = γ̇

(α)
t ∆t+

(
(θ∆t)γ̇

(α)
t

m

)[
R̄(α) : D

χ(α)

]
∆t (A-5)

with
R̄(α) =

∑
β

cαβR
(β) (A-6)

where R(β) is given by Eq. (7).

26



In Eq. (A-5)

Nακ = δακ + ξ(α)
[

R̄(α) : P(κ)

χ(α)
+ sign(χ(κ))

hακ
g(α)

]
(A-7)

and

γ̇
(α)
t = ȧ(α)sign(χ

(α)
t )

[∣∣∣∣χ(α)
t

g
(α)
t

∣∣∣∣](1/m)

(A-8)

Also,

ξ(α) =

(
θ∆tγ̇

(α)
t

m

)
(A-9)

Define

Q(α) = ξ(α)
[

R̄(α)

χ(α)

]
(A-10)

Using the notation of Peirce et al. (1983)

ḟ (κ) =
∑
δ

N−1κδ γ̇
(δ)
t F(κ) =

∑
δ

N−1κδ Q(δ) (A-11)

Eq. (A-5) then gives
∆γ(α)

∆t
= ḟ (α) + F(α) : D (A-12)

and substituting ∆γ(α)/∆t for γ̇(α) in Eq. (7) results in the rate tangent expression

τ̇ c = Ltan : D−
∑
α

ḟ (α)R(α) −D · τ − τ ·D (A-13)

where

Ltan =

(
L−

∑
α

F(α) : R(α)

)
(A-14)

The rate tangent expressions are the same as those given by Peirce et al. (1983) and-
Needleman et al. (1985) but with χ(α) replacing τ (α) and R̄(α) replacing R(α) in the expression
for Q(α) .

The rate independent limit corresponds to m → 0 with ∆t > 0 so that ξ(α) → ∞. In
that limit, ḟ (α) = 0, F(α) is independent of ξ(α) and N−1κδ is replaced by the inverse of the
expression in [ . ] in Eq. (A-7).
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