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Abstract
Binary black holes are the most abundant source of gravitational-wave obser-
vations. Gravitational-wave observatories in the next decade will require tre-
mendous increases in the accuracy of numerical waveforms modeling binary
black holes, compared to today’s state of the art. One approach to achieving
the required accuracy is using spectral-type methods that scale to many pro-
cessors. Using the SpECTRE numerical-relativity (NR) code, we present the
àrst simulations of a binary black hole inspiral, merger, and ringdown using
discontinuous Galerkin (DG)methods. The efàciency of DGmethods allows us
to evolve the binary through ∼ 18 orbits at reasonable computational cost. We
then use SpECTRE’s Cauchy Characteristic Evolution (CCE) code to extract the
gravitational waves at future null inànity. The open-source nature of SpECTRE
means this is the àrst time a spectral-type method for simulating binary black
hole evolutions is available to the entire NR community.

Keywords: discontinuous Galerkin, binary black holes, numerical relativity

1. Introduction

Binary black holes are the most abundant source of gravitational-wave observations to date [1].
Realizing the scientiàc potential of these observations requires accurate models of the emit-
ted gravitational waves as the black holes inspiral, merge, and ring down to a ànal, stationary
state. Building these models requires numerical-relativity (NR) simulations of binary black
holes, because analytic approximations (e.g. the post-Newtonian [2] approximation) alone
break down near the time of merger.

Since the àrst breakthrough simulations [3–5], the NR community has developed codes
capable of evolving two black holes through inspiral, merger, and ringdown (see [6, 7] for
a review). Several groups have used NR codes to build catalogs of gravitational waveforms
for applications to gravitational-wave astronomy [8–15]. Today’s NR codes are sufàciently
accurate for the observations that LIGO andVirgo aremaking. However, observatories planned
for the next decade, including the Einstein Telescope [16] and Cosmic Explorer [17] on Earth
and the Laser Interferometer Space Antenna (LISA) [18] in space, will be so sensitive that
they will require NR waveforms with a substantial increase in accuracy [19–21].
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Spectral-type methods are extremely efàcient; this makes them a promising avenue
toward the ultimate goal of achieving the needed accuracy for future gravitational-wave
observatories. In comparison, almost all current NR codes for evolving binary black holes use
ànite-difference methods, with numerical errors decreasing as a power law with increasing
resolution. However, recent results from the AthenaK code [22] show that ànite-difference
methods using graphics processing units (GPUs) might be another approach to achieving
the required accuracy. The spectral Einstein code (SpEC) [23] uses a pseudospectral method
(see [24] for a review of these methods) to construct and evolve binary-black-hole initial data.
With pseudospectral methods, errors decrease exponentially with increasing number of grids
points in the computational domain’s elements (‘p-reànement’). SpEC’s exponential conver-
gence makes it highly efàcient, but its performance, and therefore the achievable accuracy, is
limited by aspects of its design. For instance, because it uses computational domains divided
into a small number of high-resolution elements, SpEC simulations of binary black holes can-
not scale beyond O(102) CPU cores. SpEC is also a closed-source code, unavailable to most
of the NR community. Other examples of pseudospectral or spectral methods being used for
solving the initial value problem are Elliptica [25], FUKA [26], and bamps [27]. In terms
of evolving spacetimes, the Nmesh [28] code has been used to successfully simulate single
black holes using discontinuous Galerkin (DG) methods, and the bamps [29, 30] code uses
pseudospectral methods to evolve spacetimes with single dynamical black holes with a focus
on critical behavior [31–38] but has also simulated boson stars [39]. Recently, [40] performed
a 0.5 orbit grazing collision of two black holes (a similar setup to [41]) using a ànite volume
grid in the strong àeld region and a DG method in the wave zone.

We present the àrst simulations of a binary black hole inspiral, merger, and ringdown using
a DG method [42] (see [43] for a review of DG). The efàciency of DG methods allows us to
evolve the binary through ∼ 18 orbits at reasonable computational cost: DG, being a spectral-
type method, has exponential convergence with p-reànement. For context, 18 orbits is slightly
less than themedian (20) for binary-black-hole simulations in the SXS catalog [12] (which also
uses a spectral-type method) but larger than almost all of the simulations in the RIT and Maya
catalogs [14, 15] (which use ànite-difference methods). We chose the length of SpECTRE’s
àrst binary-black-hole simulation largely out of convenience, balancing a desire to demon-
strate SpECTRE’s capability with minimizing turnaround time as we tested and àne-tuned our
methods. We expect that using SpECTRE to simulate more orbits would be straightforward,
without requiring changes to the code, although extending the length beyond 100 orbits would
likely require implementing in SpECTRE similar techniques as those discussed in [44], which
presents a 175-orbit SpEC binary-black-hole simulation.

Speciàcally, in this work, we present SpECTRE’s [45] àrst simulations of ∼ 18 orbits of
inspiral, merger, and ringdown of an equal-mass, non-spinning binary black hole, using DG
methods. We then use SpECTRE’s Cauchy Characteristic Evolution (CCE) module [45–47] to
evolve the gravitational waves to future null inànity. These results demonstrate that DG meth-
ods can provide high-accuracy gravitational waveforms from binary black hole mergers for
application to gravitational-wave data analysis. By implementing our approach in SpECTRE,
an open-source NR code, we are also making a spectral-type binary-black-hole evolution code
available to the entire NR community for the àrst time.

The rest of this paper is organized as follows. In section 2, we discuss the numerical methods
used in SpECTRE’s binary-black-hole simulations. Then, in section 3, we àrst test our method’s
stability with simulations of single black holes before presenting results for simulations of
binary black holes with SpECTRE. We brieáy conclude in section 4.
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2. Methods

2.1. Equations of motion

We adopt the standard 3+1 form of the spacetime metric, (see, e.g. [48, 49]),

ds2 = gabdx
adxb =−α2dt2 + γij

(

dxi+βi dt
)(

dxj+βjdt
)

, (1)

where α is the lapse, βi the shift vector, and γij is the spatial metric.We use the Einstein sum-
mation convention, summing over repeated indices. Latin indices from the àrst part of the
alphabet a,b,c, . . . denote spacetime indices ranging from 0 to 3, while Latin indices i, j, . . .
are purely spatial, ranging from 1 to 3. We work in units where c= G= 1.

We evolve the àrst-order generalized harmonic (FOGH) system, given by [50],

∂tgab = (1+ γ1)β
k∂kgab−αΠab− γ1β

iΦiab+ γ1v
k
g (∂kgab−Φkab) , (2)

∂tΦiab = βk∂kΦiab−α∂iΠab+αγ2∂igab+
1
2
αncndΦicdΠab

+αγjkncΦijcΦkab−αγ2Φiab, (3)

∂tΠab = βk∂kΠab−αγki∂kΦiab+ γ1γ2β
k∂kgab

+ 2αgcd
(

γijΦicaΦjdb−ΠcaΠdb− gefΓaceΓbdf
)

− 2α∇(aHb) −
1
2
αncndΠcdΠab−αncΠciγ

ijΦjab

+αγ0
(

2δc(anb) − gabn
c
)

Cc− γ1γ2β
iΦiab, (4)

where gab is the spacetime metric, Φiab = ∂i gab,Πab = nc∂cgab, na is the unit normal vector to
the spatial slice, γ0 damps the 1-index or gauge constraint Ca = Ha+Γa, γ1 controls the linear
degeneracy of the system, γ2 damps the 3-index constraint Ciab = ∂i gab−Φiab, Γabc are the
spacetime Christoffel symbols of the àrst kind, Γa = gbcΓbca, and vkg is the grid/mesh velocity
as discussed in section 2.2.

The gauge source functionHa can be any arbitrary function depending only upon the space-
time coordinates xa and gab, but not derivatives of gab, since that may spoil the strong hyper-
bolicity of the system [51, 52].

Deàning si to be the unit normal covector to a 2d surface with sa = (0,si), and sa = gabsb,
the characteristic àelds for the FOGH system are [50]

wgab = gab, (5)

w0
iab =

(

δki − sksi
)

Φkab, (6)

w±

ab =Πab± siΦiab− γ2gab, (7)

with associated characteristic speeds

λwg =− (1+ γ1)β
i si − (1+ γ1)v

i
gsi, (8)

λw0 =−βi si − vigsi, (9)

λw± =±α−βi si − vigsi, (10)

where we denote the velocity of the grid/mesh as vig (see section 2.2 for details on our moving
mesh method). The evolved variables as a function of the characteristic àelds are given by

gab = wgab, (11)
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Πab =
1
2

(

w+
ab+w−

ab

)

+ γ2w
g
ab, (12)

Φiab =
1
2

(

w+
ab−w−

ab

)

si +w0
iab. (13)

The constraints for the FOGH system are [50]

Ca = Ha+Γa, (14)

Cia = γjk∂jΦika−
1
2
γjag

cd∂jΦicd+ nb∂iΠba−
1
2
nag

cd∂iΠcd

+ ∂iHa+
1
2
γjaΦjcdΦiefg

cegdf+
1
2
γjkΦjcdΦikeg

cdnena

− γjkγmnΦjmaΦikn+
1
2
ΦicdΠbena

(

gcbgde+
1
2
gbencnd

)

−ΦicdΠban
c

(

gbd+
1
2
nbnd

)

+
1
2
γ2
(

nag
cd− 2δcan

d
)

Cicd, (15)

Ciab = ∂i gab−Φiab, (16)

Cijab = ∂iΦjab− ∂jΦiab, (17)

and

Fa =
1
2
γia g

bc∂iΠbc− γij∂iΠja− γijnb∂iΦjba+
1
2
nag

bcγij∂iΦjbc

+ naγ
ij∂iHj+ γiaΦijbγ

jkΦkcdg
bdnc− 1

2
γiaΦijbγ

jkΦkcdg
cdnb

− γia n
b∂iHb+ γijΦicdΦjbag

bcnd− 1
2
naγ

ijγmnΦimcΦnjdg
cd

− 1
4
naγ

ijΦicdΦjbeg
cbgde+

1
4
naΠcdΠbeg

cbgde− γijHiΠja

− nbγijΠbiΠja−
1
4
γiaΦicdn

cndΠbeg
be+

1
2
naΠcdΠbeg

cendnb

+ γiaΦicdΠben
cnbgde− γijΦiban

bΠjen
e− 1

2
γijΦicdn

cndΠja

− γijHiΦjban
b+ γiaΦicdHbg

bcnd+ γ2

(

γidCida−
1
2
γiag

cdCicd
)

+
1
2
naΠcdg

cdHbn
b− naγ

ijΦijcHdg
cd+

1
2
naγ

ijHiΦjcdg
cd. (18)

While only the gauge constraint (14) and 3-index constraint (16) are damped, all constraints
can be monitored to check the accuracy of the numerical simulation. All the constraints can
be combined into a scalar, the constraint energy, given by [50]

E = δab
[

CaCb+
(

FaFb+ CiaCjbγij
)]

+ δabδcd
(

CiacCjbdγij+ CikacCjlbdγijγkl
)

. (19)

In practice we have also found that it is typically only necessary to monitor violations of the
constraints Ca and Ciab, because they typically grow àrst and the other violations grow as a
consequence.
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Figure 1. A diagram of the forward and reverse mappings xi(̂t, ξı̂) and ξı̂(t,xi), respect-
ively, from logical (right side of the diagram) to inertial coordinates (left side of the
diagram) for an element Ωk.

2.2. DG Method

SpECTRE uses a DGmethod for the spatial discretization.We refer readers to [53, 54] and refer-
ences therein for a detailed discussion of the method and its implementation in SpECTRE; here
we summarize the necessary results. The FOGH equations are a àrst-order strongly hyperbolic
system in non-conservative form, which takes the general form

∂tuα +Biαβ (uα)∂i uβ = Sα (uα) , (20)

where uα = {gab,Φiab,Πab} is the state vector of evolved variables, Biαβ(u) is a matrix that
depends only on uα, and Sα(u) are source terms that also only depend on uα. We denote
the logical coordinates of our Legendre–Gauss–Lobatto DG scheme by {̂t, ξ ı̂}= {̂t, ξ,η,ζ}
and the inertial coordinates as {t= t̂,xi(̂t, ξ ı̂)}. We are using a moving mesh as in [53, 55];
therefore, the mapping from logical to inertial coordinates is time dependent. We denote the
determinant of the spatial Jacobian of this map as

J= det

(

∂xi

∂ξ ı̂

)

, (21)

and the grid or mesh velocity by [53, 55]

vig = ∂̂tx
i. (22)

SpECTRE decomposes the domain into a set of non-overlapping hexahedra which are
deformed using the map xi(̂t, ξ ı̂) illustrated in àgure 1. SpECTRE uses a different number of
grid points in each logical direction, which we denote by Nı̆ in the ξ direction, Nȷ̆ in the η
direction, and Nk̆ in the ζ direction below.

Since we use a moving mesh, we evolve the system

∂̂tuα +
[

Biαβ (uα)− vigδαβ
]

∂i uβ = S(uα) . (23)

We denote grid point and modal indices with a breve, i.e. uı̆ȷ̆k̆ is the value of u at the grid point

(̆ı, ȷ̆, k̆). The semi-discrete equations are given by [53, 55]

6
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(∂̂tuα)ı̆ȷ̆k̆ = (Sα)ı̆ȷ̆k̆−
(

Biαβ − vigδαβ
)

ı̆ȷ̆k̆





(

∂ξ1̂

∂xi

)

ı̆ȷ̆k̆

∑

l̆

D
(1̂)
ı̆̆l

(uβ )̆lȷ̆k̆

−
(

∂ξ2̂

∂xi

)

ı̆ȷ̆k̆

∑

l̆

D
(2̂)
ȷ̆̆l

(uβ)ı̆̆l̆k+

(

∂ξ3̂

∂xi

)

ı̆ȷ̆k̆

∑

l̆

D
(3̂)
k̆̆l

(uβ)ı̆ȷ̆̆l





−
δNk̆ k̆

wk̆Jı̆ȷ̆k̆













J

√

∂ξ3̂

∂xi
γij

∂ξ3̂

∂xj
Dα





ı̆ȷ̆Nk̆

+



J

√

∂ξ3̂

∂xi
γij

∂ξ3̂

∂xj
Dα





ı̆ȷ̆0











− δNȷ̆ ȷ̆

wȷ̆Jı̆ȷ̆k̆













J

√

∂ξ3̂

∂xi
γij

∂ξ3̂

∂xj
Dα





ı̆Nȷ̆ k̆

+



J

√

∂ξ3̂

∂xi
γij

∂ξ3̂

∂xj
Dα





ı̆0k̆











− δNı̆ ı̆

wı̆Jı̆ȷ̆k̆









J

√

∂ξ3̂

∂xi
γij

∂ξ3̂

∂xj
Dα





Nı̆ ȷ̆k̆

+



J

√

∂ξ3̂

∂xi
γij

∂ξ3̂

∂xj
Dα





0ȷ̆k̆







, (24)

where wı̆ are the Legendre–Gauss–Lobatto integration weights. We use a method of lines
approach to integrate these in time, with the details discussed in section 2.5 below.

For the boundary terms Dα, we use an upwind multi-penalty method [24, 56–58] given by

Dgab = λ̃ext
wgw

ext,g
ab − λ̃int

wgw
int,g
ab , (25)

DΠab =
1
2

(

λ̃ext
w+w

ext,+
ab + λ̃ext

w−w
ext,−
ab

)

+ λ̃ext
wg γ2w

ext,g
ab

− 1
2

(

λ̃int
w+w

int,+
ab + λ̃int

w−w
int,−
ab

)

− λ̃int
wgγ2w

int,g
ab , (26)

DΦiab =
1
2

(

λ̃ext
w+w

ext,+
ab − λ̃ext

w−w
ext,−
ab

)

sexti + λ̃ext
w0w

ext,0
iab

− 1
2

(

λ̃int
w+w

int,+
ab − λ̃int

w−w
int,−
ab

)

sinti − λ̃int
w0w

int,0
iab , (27)

where the spatial normal vector to the element interface sinti is pointing out of the DG element
and λ̃= 0 if λ > 0, otherwise λ̃= λ, i.e. λ̃= λΘ(−λ). Note that we assume sexti and sinti point
in the same direction. Also note that these boundary áux terms differ from the multi-penalty
approach used in SpEC by a factor of 2. That is,

DSpECTRE = 2DSpEC, (28)

ultimately because the lifting terms are different. In SpEC and, similarly in bamps[29], the pen-
alty term is derived from requiring that the total energy be non-increasing, while in SpECTRE
the terms come from an integration by parts when deriving the semi-discrete DG equations.

2.3. Boundary conditions

At the outer radial boundary, we apply constraint-preserving boundary conditions [50, 59] by
adding terms to the time derivative of the characteristic àelds and thus also the time derivatives
of the evolved variables. We use the characteristic àelds and speeds deàned in section 2.1.

7
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We deàne d̂twα̂ as the time derivatives substituted into the transformation equations to the
characteristic àelds. That is,

d̂tw
g
ab = ∂̂tgab, (29)

d̂tw
0
iab =

(

δki − sksi
)

∂̂tΦkab, (30)

d̂tw
±

ab = ∂̂tΠab± si∂̂tΦiab− γ2∂̂tgab. (31)

We also deàne Dt̂wα̂ as the characteristic àeld transformation of the volume right-hand-side,
i.e. ∂̂tuα without any boundary terms. Finally, for brevity we deàne the projection tensor Pab =
gab+ nanb− sasb, the inward directed null vector àeld ka = (na− sa)/

√
2, and the outgoing

null vector àeld la = (na+ sa)/
√
2.

The àelds d̂tw
g
ab and d̂tw

0
iab are determined solely by the constraint-preserving boundary

condition, while the boundary condition for d̂tw
−

ab is composed of three parts: the constraint
preserving part, the physical part, and the gauge part. We denote these as BCab, B

P
ab and B

G
ab.

With this, the boundary conditions imposed on the àelds are

d̂tw
g
ab = Dt̂w

g
ab+λwgs

iCiab, (32)

d̂tw
0
kab = Dt̂w

0
ab+λw0siPjkCijab, (33)

d̂tw
−

ab = Dt̂w
−

ab+λw−

[

BCab+BPab+BGab
]

. (34)

Transforming to the evolved variables we ànd that the following terms need to be added in
order to impose the boundary condition,

∂̂tgab → ∂̂tgab+λwgs
iCiab, (35)

∂̂tΠab → ∂̂tΠab+
1
2
λw−

[

BCab+BPab+BGab
]

+ γ2λwgs
iCiab, (36)

∂̂tΦiab → ∂̂tΦiab−
si
2
λw−

[

BCab+BPab+BGab
]

+λw0siPjkCijab. (37)

We now need to specify the Bab boundary conditions. The constraint-preserving part is

BCab =
√
2

(

1
2
Pabl

c+
1
2
lalbk

c− l(aPb)
c

)

(

Fc− skCkc
)

. (38)

The physical boundary conditions are determined by the propagating parts of the Weyl
curvature tensor. That is,

BPab =

(

Pa
cPb

d− 1
2
PabP

cd

)

[

C−

cd− γ2s
iCicd

]

, (39)

where C−

ab is the inward propagating part of the Weyl tensor, given by

C±

ab =

(

Pa
cPb

d− 1
2
PabP

cd

)

(ne∓ se)
(

nf∓ sf
)

Ccedf. (40)

For the simulations presented here, we set C−

ab = 0, though Cauchy-Characteristic Matching
(CCM) [60] can be used to prescribe a more physically motivated boundary condi-
tion. Recently [61] presented an alternative approach to CCM for providing high-order
non-reáecting boundary conditions. Finally, the gauge boundary condition is set using a

8
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Sommerfeld condition on the components not set by the constraint-preserving and physical
boundary conditions. The projector for the gauge boundary condition is given by

δcaδ
d
b −PCab

cd−PPab
cd = δcaδ

d
b −

1
2
PabP

cd+ 2l(aPb)
(ckd)

− lalbk
ckd−Pa

cPb
d+

1
2
PabP

cd

= δcaδ
d
b + 2l(aPb)

(ckd) − lalbk
ckd−Pa

cPb
d. (41)

The Sommerfeld condition is

BGab =
1

λw−

(

2l(aPb)
(ckd) − 2k(alb)k

(cld) − kakbl
cld
)

(

γ2 −
1
r

)

∂tgcd. (42)

When evolving spacetimes with black holes, we excise the interior of the black hole as
is done in SpEC [50]. At excision boundaries, all information is áowing out of the grid and
into the black hole, so no boundary condition needs to be applied. However, we monitor the
characteristic speeds, (8)–(10), and terminate the code if any of them point into the compu-
tational domain. We denote the radius of the excision surfaces by rexc. See section 2.7 for a
brief explanation of how we control rexc to avoid any characteristic speed pointing into the
computational domain.

2.4. Spectral àlter

We use an exponential àlter applied to the spectral coefàcient ci in order to eliminate aliasing-
driven instabilities. Speciàcally, for a 1d spectral expansion

u(x) =
N
∑

ı̆=0

cı̆Pı̆ (x) , (43)

where Pı̆(x) are the Legendre polynomials, we use the àlter

cı̆ → cı̆ exp

[

−a
(

i
N

)2b
]

. (44)

We choose the parameters a= 64 and b= 210 so that only the highest spectral mode is àltered.
We apply the àlter to all FOGHvariables gab,Φiab andΠab. Note that the àlter drops the order of
convergence for the FOGH variables fromO(N+ 1) toO(N) on the DG grid, but is necessary
for stability.

2.5. Time integration

We decompose the system using the method of lines and solve the resulting differen-
tial equations using a local adaptive time-stepper based on the Adams–Moulton predictor–
corrector method [62].The step size in each element is chosen based on an estimate of the
truncation error of the time step, using the algorithm described in [63] section 17.2.1. The spe-
ciàc values for the absolute and relative tolerances are given in section 3. As the time-stepping
algorithm is more efàcient for aligned steps of the same size, the step size in each element is
rounded down to a value of the form 0.1M/2n for some non-negative integer n. For the highest-
resolution binary-black-hole run in section 3.3, this results in the most-demanding element
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taking 26–28 steps for each step on the least demanding element for most of the inspiral. At
the time of merger, this can increase to as high as 211 steps for the most-demanding element
for each step on the least demanding element.

2.6. Gauge condition

We evolve binary black holes (section 3.3) using the Damped Harmonic gauge condition [52,
64]:

Ha = [µL1 log(
√
γ/α)+µL2 log(1/α)]na−µSgaiβ

i /α, (45)

using

µL1 = AL1e
−(r/σr)

2

[log(
√
γ/α)]

eL1 , (46)

µL2 = AL2e
−(r/σr)

2

[log(
√
γ/α)]

eL2 , (47)

µS = ASe
−(r/σr)

2

[log(
√
γ/α)]

eS , (48)

where r is the coordinate distance from the origin. This condition is designed to drive
√
γ and

α to one, while damping out oscillations in the shift. This is because we observe an explosive
growth in

√
γ and a rapid collapse in α as the black holes merge. In practice, this ensures

coordinates remain sufàciently well behaved throughout inspiral, merger, and ringdown. The
amplitudes AL1, AL2, and AS and exponents eL1, eL2 and eS control the amount of damping,
and the spatial decay width σr ensures that at large distances, the gauge reduces to harmonic
gauge (i.e. toHa = 0). In this paper, we choose AL1 = AS = 1, AL2 = 0, eL1 = eL2 = eS = 2, and
σr = 100/

√
34.54. This choice for σr ensures that the spatial decay Gaussian falls to 10−15 at

a distance r= 100M from the origin.
For some of the single black-hole evolutions (section 3.1), we instead chooseHa to be Γa of

the analytic initial data. For other single black-hole evolutions, we evolve in harmonic gauge,
setting Ha = 0 everywhere. For the gauge wave evolution (section 3.2), we set Ha(t,xi) to the
value of Γa(t,xi) of the gauge wave analytic solution.

2.7. Control systems

When evolving the FOGH system, if there are black holes, the physical singularities inside of
the black holes must be excised from the computational domain. To position the excisions with
our moving mesh (described in section 2.2), we use a feedback control system similar to what
is presented in [55, 65]. As discussed in section 2.3, the excision surfaces must have all charac-
teristic speeds pointing out of the computational domain, so that no boundary condition must
be imposed. In practice this means that the excision surfaces must remain inside the apparent
horizons, with the caveat that having them too close to the singularity causes instabilities. In
practice the excision surfaces are kept at approximately 95%–99% of the apparent horizons’
radii.

Since we a priori do not know the motion or shape of the apparent horizons, we use control
theory to dynamically update the parameters of the moving mesh periodically during the sim-
ulation. The time-dependent coordinate maps of the moving mesh and control signals used to
update them are discussed in [65] in sections 4.1–4.3, 4.5, and 5 for the inspiral and section 6
for the ringdown.
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The details of how the control systems are implemented within the context of asynchronous
task-based parallelism along with the local adaptive time stepping described in section 2.5 are
described in [66].

3. Results

In this section, we begin by testing SpECTRE’s long-term stability and convergence; àrst with
evolutions of single black holes in different coordinate systems (section 3.1) and then with
an evolution of a time-dependent gauge wave on a áat spacetime background (section 3.2).
Finally, we present results from a complete simulation of the inspiral, merger, and ringdown
of two black holes (section 3.3). The SpECTRE input àles used for simulations, including gen-
erating the BBH initial data, are provided as ancillary material with the paper.

3.1. Single black hole evolutions

In this section, we use SpECTRE to evolve a single, stationary, black hole that, unless otherwise
noted, is non-spinning. We evolve a black hole from analytic initial data corresponding to a
black hole at rest centered at the origin with zero spin. We choose the mass of the black hole to
beM= 1 and work in units ofM. In each evolution we use the following values for the FOGH
constraint damping parameters,

γ0 = γ2 = A0e
−r2/w2

0 +A1e
−r2/w2

1 , (49)

γ1 =−1, (50)

where r is the coordinate distance from the origin, A0 = 7.0/M , A1 = 0.1/M ,w0 = 2.5M , and
w1 = 100.0M . The computational domain of each evolution covers a spherical shell volume
(àgure 2) with inner radius rin = rexc which differs for our different test cases, and outer bound-
ary coordinate radius rout = 1000M . We apply boundary conditions as described in section 2.3.
We use a fourth-order Adams–Moulton predictor–corrector time integrator with absolute and
relative time stepper tolerances of 10−8 and 10−6, respectively, unless otherwise stated.

3.1.1. Kerr–Schild coordinates. We àrst evolve a single black hole in Kerr–Schild coordin-
ates fromKerr–Schild initial data. The inner radius of the computational domain is rin = rexc =
1.9M. In this case there are no coordinate dynamics, so a feedback control system is not neces-
sary, though it is enabled in the simulations presented here. The left panel of àgure 3 shows the
gauge constraint Ca and the 3-index constraint Ciab as a function of time for several different
resolutions. We evolve the lowest resolution to time t= 10 000M to assess long-term stability,
and we evolve the medium and high resolutions to assess convergence. To limit the computa-
tional cost of these tests, we choose to evolve the medium and high resolutions only to time
t= 2000M. All simulations are stable to time t= 2000M, and the lowest resolution remains
stable to t= 10 000M . The amount of violation of the gauge constraint Ca and the 3-index
constraint Ciab is indicative of the overall constraint violation in the simulation. In this evol-
ution, the constraints remain approximately constant, and they decrease exponentially with
increasing p-reànement (that is, increasing points per cell per dimension), as expected. We
suspect the transient at t= 2000Mt= 2000M results from constraint violations reáecting off
the outer boundary back to the interior.

The right panel of àgure 3 demonstrates long-term stability and convergence for the same
setup but with a black hole of dimensionless spin χ≡ S/M2 = 0.8 (with rin = rexc = 1.57M ).
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Figure 2. An illustration of a slice through the computational domain used in the evol-
utions of single black holes described in this paper. Six regions, each in the shape of a
deformed cube, combine to cover the volume of a spherical shell, with the inner bound-
ary (the excision surface) inside the black hole’s apparent horizon. The six regions are
themselves reàned radially and angularly into smaller deformed cubes. One of the six
regions is shown in blue for clarity.

Figure 3. Constraint violations for single black hole evolutions in Kerr–Schild coordin-
ates with Kerr–Schild initial data. We evolve the lowest resolution to time t= 10 000M
to demonstrate long term stability and evolve two higher resolutions to time t= 2000M
to assess convergence with spatial resolution. Left: Non-spinning black hole. Right:
Spinning black-hole with dimensionless spin χ = S/M2 = 0.8

Again, we see that the constraints remain approximately constant and converge exponentially
with increasing p-reànement.

3.1.2. Harmonic coordinates. Next, we evolve a single black hole in harmonic gaugeHa = 0
using initial data also in harmonic gauge. Here, rin = rexc = 0.9M. The absolute and relat-
ive time stepper tolerances for the highest resolution of this test case are 10−10 and 10−8,
respectively. Again, since the initial data and evolution use the same gauge there are no gauge
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Figure 4. Constraint violations for single black hole evolutions in harmonic coordinates.
We evolve the lowest resolution to time t= 10 000M to demonstrate long term stabil-
ity and evolve two higher resolutions to an earlier time to assess convergence with spa-
tial resolution. Left: Analytic initial data is in harmonic coordinates. Higher resolutions
evolved to t= 5000M. The highest resolution has 10× tighter time stepper tolerances.
Right: Analytic initial data is in Kerr–Schild coordinates. Higher resolutions evolved
to t= 2000M. The difference between the initial data and evolution gauge causes non-
trivial dynamics.

dynamics. The left panel of àgure 4 shows the gauge constraint Ca and the 3-index constraint
Ciab as a function of time for several different resolutions. We evolve the lowest resolution to
time t= 10 000M to assess stability and two higher resolutions to time t= 5000M to assess
convergence. The constraints again remain constant, and they decrease exponentially with
increasing p-reànement.

As a àrst test of the control system,we evolve aKerr–Schild black hole in harmonic coordin-
ates. The inner radius of the domain again is rin = rexc = 1.8M. The differing gauge choices in
the initial data and evolution create coordinate dynamics that cause the BH horizon to shrink.
The control system (section 2.7) must decrease the radius of the excision surface smoothly and
precisely to avoid incoming characteristic speeds, so that the problem remains well-posed and
the code does not terminate. The right panel of àgure 4 shows constraint violations over time
for three resolutions. All evolutions are stable, and the constraint violations converge away.
However, the constraints remain larger until after time 1000M. We suspect this is caused by
initial gauge dynamics, i.e. by time-dependent, outward-moving coordinate effects that travel
outward until exiting the domain through the outer boundary at rout = 1000M .

3.1.3. Damped harmonic coordinates. Our ànal single-black-hole test consists of evolving
Kerr–Schild analytic initial data in damped harmonic gauge with rin = rexc = 1.8M. The left
panel of àgure 5 shows the constraints as a function of time for several different resolutions.
Just as in the harmonic gauge case, the non-trivial gauge dynamics cause larger constraint
violations until after one light-crossing time to the outer boundary of rout = 1000M. The evol-
utions are stable and converge with increasing resolution. We also repeated this evolution but
for a black hole with a dimensionless spin of χ= 0.8 and rin = rexc = 0.57M. We show the
constraint violations in the right panel of àgure 5. Again we see stable evolutions and expo-
nential convergence with increasing p-reànement.
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Figure 5. Constraint violations for single black hole evolutions in damped harmonic
coordinates with Kerr–Schild initial data. We evolve the lowest resolution to time t=
10 000M to demonstrate long term stability and evolve two higher resolutions to time
t= 2000M to assess convergence with spatial resolution. Left: Non-spinning black hole.
Right: Spinning black-hole with dimensionless spin χ = S/M2 = 0.8.

3.2. Gauge wave

As a ànal test of convergence and stability, we evolve analytic initial data consisting of a gauge
wave in áat spacetime, a test conceived in [67] as part of a ‘standard testbed’ for NR codes.
Physically, the solution is equivalent to áat spacetime, but the chosen coordinates include a
sinusoidal traveling wave that introduces time-dependence, with a line element given by

ds2 =−H(t,x) dt2 +H(t,x) dx2 + dy2 + dz2, (51)

where

H(t,x) = 1−Asin

(

2π (x− t)
d

)

, (52)

where A and d are the amplitude and wavelength of the gauge wave, which travels along the
x-axis.

We evolve analytic initial data of this solution, using the gauge source functionHa computed
directly from the analytic initial data. We set the FOGH constraint damping parameters to
γ0 = γ2 = 1 and γ1 =−1.We evolve on the domain [0,1]3 with two elements in the x-direction,
one element in the y- and z-directions. We àx the y and z points per element to 6 (P5) and
perform a convergence test by running three resolutions with 15 (P14), 18 (P17), and 20 (P19)
points per element in the x direction. We apply periodic boundary conditions in all directions.
We use a sixth-order Adams–Moulton predictor–corrector time integrator. In our simulations
we choose A= 0.1 and d= 1.

Gauge wave simulations are known to be unstable in the BSSN formulation of the Einstein
equations [68], but are stable in the Z4 system [69]. Gauge wave simulations are stable in the
FOGH system, as we demonstrate with SpECTRE in àgure 6. The left panel of àgure 6 shows
the L2 norm of the 1-index and 3-index constraints as a function of time. While the lowest
resolution (P14) simulation has exponentially growing constraints, the higher resolution sim-
ulations have constant and convergent constraints. Similarly, the right panel of àgure 6 shows
the L2 norm of the error in the evolved variables gab,Πab, and Φiab at the three resolutions. We
observe stable and convergent long-term behavior. The highest resolution simulation is close
to being limited by the time stepper tolerance.
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Figure 6. Results from an amplitude 0.1 gauge wave simulation demonstrating long
term stable and convergent simulations. We show simulations at three resolutions, 15,
18, and 20 grid points per element in the x-direction. Left: The 1-index and 3-index
constraints as a function of time. The lowest resolution has exponentially growing con-
straints in time while the two higher resolutions have constant and convergent con-
straints in time. Right: Difference (error) of the FOGH evolved variables gab, Πab, and
Φiab from the analytic solution at the three resolutions. Since these are errors and not
constraint violations, we expect the errors will accumulate linearly in time, even for con-
stant constraint violations. We see stable and convergent long-term behavior with the
errors decreasing exponentially with increasing resolution. The errors for Πab and Φiab

lie on top of each other and so only the errors for Φiab are visible.

3.3. Binary black hole inspiral, merger, and ringdown

In this section, we use SpECTRE to generate binary black hole initial data and evolve the binary
through ∼ 18 orbits of inspiral, merger, and ringdown to a ànal, stationary state. We then use
SpECTRE’s CCE module to evolve the outgoing gravitational waves to future null inànity. We
perform the simulations at three different resolutions, which we refer to as ‘Lev0’, ‘Lev1’,
and ‘Lev2’ with Lev0 being the lowest resolution and Lev2 being the highest. Each increase
in resolution increases the number of points per element per dimension by one. During the
inspiral, each simulation uses 4800 elements, with Lev0, Lev1, and Lev2 having∼ 2.6;∼ 3.7;
and ∼ 5.0 million total grid points. During the ringdown, each simulation uses 7680 elements
and ∼ 10.2, ∼ 13.3, and ∼ 16.9 million total grid points, respectively. All simulations use
the damped harmonic gauge to prevent the lapse collapsing and

√
γ diverging at merger. All

simulations (both inspiral and ringdown) also use a fourth-order Adams–Moulton predictor–
corrector time integrator with absolute and relative time stepper tolerances of 10−10 and 10−8,
respectively.

The evolutions were each performed on 10 compute-nodes in the Resnick High
Performance Computing Center at Caltech. Each compute node has two 28-core Intel Cascade
Lake CPUs. Our Lev0, Lev1, and Lev2 evolutions cost 58 000; 71 000; and 117 000 core hours,
which amounts to 104; 127; and 209 wallclock hours, and an average of 120; 80; and 41M/hr
during the inspiral. In a future paper, we will assess SpECTRE’s performance and scaling in
more detail; our purpose for this paper is to demonstrate that SpECTRE can evolve binary black
holes through inspiral, merger, and ringdown.

3.3.1. Initial data. We begin our evolutions with initial data of two equal-mass and non-
spinning black holes in a quasicircular orbit. To generate the initial data we use the SpECTRE
initial data module [70–72], which solves the elliptic constraint sector of the Einstein equations
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Table 1. Parameters used to generate the binary-black-hole initial data evolved in
section 3.3: in terms of the sum of the black holes’ Christodoulou massesM=M1 +M2

of each black hole, the individual massesM1 andM2, the dimensionless spin magnitudes
|χ1|/M

2 and |χ2|/M
2, the orbital eccentricity e, the initial coordinate separation d0 of

the horizon centers, the initial orbital angular velocity Ω0, and the initial expansion rate
ȧ0.

M1/M M2/M |χ1|/M
2 |χ2|/M

2 d0/M MΩ0 e ȧ0

0.5 0.5 3× 10−8 3× 10−8 15.366 0.0159 7.2× 10−4 3.4× 10−5

in the extended conformal thin sandwich (XCTS) formalism [73–75]. It uses the superposed
Kerr–Schild formalism to construct a conformal background to the XCTS equations based
on the weighted superposition of two isolated Kerr–Schild black holes [76, 77]. The black
holes are represented as excisions with negative-expansion apparent horizon boundary con-
ditions [78, 79]. The initial data solver uses DG methods similar to those described in this
article to achieve scalable and parallelizable solutions to the elliptic equations and is also open
source [45, 71].

We choose an initial coordinate separation of the excision centers to be d0 = 15.366M to
facilitate future comparison with the family of simulations in [80] and to place the two black
holes at ∼ 18 orbits before they merge. The masses and spins of the black holes measured
on the horizons are driven to the desired values in a control loop that adjusts the initial data
parameters, similar to [81]. In a second control loop we performed eccentricity reduction by
evolving the initial data for a few orbits and adjusting the initial orbital parameters to iteratively
reduce the eccentricity of the orbit [82, 83] to 7.2× 10−4. The resulting initial data parameters
are summarized in table 1, and a plot of the resulting inertial trajectories for Lev2 is shown in
àgure 7.

3.3.2. Computational domain decomposition. The numerical evolution of the FOGH sys-
tem is performed with a DG scheme in which the physical domain of the problem is partitioned
into deformed hexahedral elements with conforming boundaries. The boundaries and gridpoint
distributions of an element are determined by a continuous and differentiable coordinate map
applied to the logical Cartesian coordinates, which we label ξ,η and ζ, of a regular cube span-
ning [−1,1]3. The maps corresponding to neighboring elements are required to be continuous
but are not required to be differentiable at element boundaries. This provides the áexibility
necessary to construct the complicated domains needed for binary merger simulations using
DG methods. An example of the domain used during the inspiral is shown in àgure 8 and
an example of the ringdown domain is shown in àgure 9. While the coordinate maps provide
signiàcant áexibility, we found that instabilities arise if neighboring elements differ by sig-
niàcantly more than a factor of two in size, placing a practical constraint on how quickly the
resolution can be reduced as one moves away from the BHs.

Our computational domain is the region of space between the outer spherical boundary
and the excision boundaries that remove the black hole singularities from the domain. The
excision boundaries are spherical in the comoving coordinates with their sizes and shapes in
the inertial coordinates informed by the size and shape of the apparent horizons (section 2.7).
At merger the apparent horizons of the inspiraling black holes become enveloped by a single
common apparent horizon. We handle the different number of excision boundaries during the
inspiral and ringdown by having distinct domains for each. At merger we interpolate data
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Figure 7. The trajectories of the centers of each apparent horizon during the Lev2
inspiral evolution, in the evolution’s asymptotically inertial coordinates. The coordin-
ates x and y indicate the position of the black hole within the orbital plane in units of the
total initial mass M of the binary.

from the inspiral domain that has two excision boundaries to the ringdown domain that has
one excision boundary. We describe each domain below.

The inspiral domain:
The inspiral domain is more complicated than the ringdown domain. This is because of the
complexity of having two excisions. During the inspiral we must tile a two-excision domain
with conforming hexahedra. Our solution to this tiling problemmakes use of 44 element collec-
tions grouped into two radial and two ‘biradial’ layers. Our description of the domain decom-
position starts at the excision surfaces and extends radially outward.

The àrst layer consists of six wedges composing the spherical shell surrounding each
excision. Each wedge is subdivided into multiple elements. The black holes are located on
the x-axis at x∼±7.683M with an excision radius of rexc ∼ 0.792M . The shell around each
black hole has an outer radius of 6M. For a àxed target accuracy, distributing the grid points
logarithmically in radius and equiangularly [84, 85] in angles signiàcantly reduces computa-
tional cost.

The second layer uses a set of wedges that wrap the shells around each black hole in a
cubical shell, as seen in àgure 8. A consequence of the decreasing separation between the two
black holes during the inspiral is that the size of the excision within each cube grows as the
simulation progresses. Since we only deform the region inside the cubes to conform to the
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Figure 8. An illustration of the computational grid used during the inspiral. We make
use of two excision regions, each region lying inside a black hole’s apparent horizon.
Each excision is surrounded by a spherical shell partitioned into six deformed cubes as in
àgure 2. Each spherical shell is then surrounded by another shell of six deformed cubes
that transition to a cubical boundary. Then the two cubes themselves are surrounded by a
transitionary envelopewhich becomes spherical. Left: The transitionary envelope.Right:
A close-up of the domain structure around the excisions. The center of each excision is
offset from the center of the cube.

shape of the apparent horizons, the simulation will fail if the apparent horizons grow beyond
the cube boundaries. We remedy this by decoupling the excision center from the center of the
cube (see the right panel of àgure 8), effectively increasing the size of the cube relative to the
size of the excision by a constant factor that is sufàcient to keep the apparent horizons within
the cubes throughout the simulation. This generalized map is crucial for robust inspiral and
merger simulations.

The third layer consists of the elements surrounding the cubes around each black hole (lay-
ers 1 and 2). We refer to this region, which extends from r∼ 18M to r= 100M, as the ‘envel-
ope’. This layer serves to transition the grid point distributions fromwhat is used near the black
holes to the distribution that is used in the wave zone. We use a logarithmic map in the radial
direction and we interpolate between a ‘biradial’ equiangular map used for two excisions and
a ‘radial’ equiangular map suited for the spherical outer boundary.

The fourth and ànal layer is a spherical shell extending from the end of the envelope (r=
100M) to the outer boundary at r= 600M. This shell uses a linear distribution in the radial
direction and an equiangular distribution in the angular directions. Since the GW wavelength
is constant in radius, a linear distribution is necessary to avoid under resolving the waves. In
production quality simulations we expect to place the outer boundary at r= 1500M, since in
typical SpEC simulations we ànd that this radius is necessary to avoid a center-of-mass drift
caused by the gauge boundary condition. Errors in the gauge boundary condition fall off as
∼ 1/r2. We ànd that the drift is larger for longer simulations, but this can be compensated
for with a larger outer boundary. Since we use CCE to extract the gravitational waves, a large
domain for wave extraction is not required, as it would be if we instead extrapolated the waves
to spatial inànity.
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Figure 9. An image of the ringdown domain. After a common horizon is found, the
evolution is regridded onto a domain with a single excision as in àgure 2. Additional
time-dependent maps are used to deform the excision’s spherical shape into one that
corresponds to the common horizon shape.

In addition to the hexahedral maps that partition the domain, we also globally apply rotation
and expansion maps that track the angular, radial, and center of mass motion of the binary
system.

To characterize the errors in these coordinate mappings, we introduce the diagnostic quant-
ity (which we refer to as the ‘jacobian diagnsotic’) as

Ĉi = 1−
∑

i |∂̂ixi|
∑

i |Dîx
i| , (53)

following the convention in section 2.2 where hatted quantities are in the logical coordinates
and non-hatted quantities are in the inertial coordinates. In the numerator, ∂̂ix

i is the ana-
lytic Jacobian provided by the analytic coordinate mappings (both time dependent and time-
independent) described in this section. In the denominator, Dîx

i is the Jacobian computed by
taking numerical derivatives of the inertial coordinates in each logical direction. The sums
are over all gridpoints. If Ĉi = 0, the analytic and numerical Jacobians are identical, meaning
that our coordinate mappings are perfectly represented by our Legendre–Gauss–Lobatto DG
scheme.

The ringdown domain:
The ringdown domain is a single excision domain used after a common apparent horizon has
formed. An example of this domain is shown in àgure 9. It is similar in structure to the domain
used in the single black hole tests in section 3.1. We use a logarithmic radial map from the
excision surface to r= 50M and use a linear spacing further away to resolve the gravitational
waves. We used an equidistant map instead of an equiangular map in the angular directions.

A signiàcant challenge compared to the single black hole evolution is that the time-
dependent maps used during ringdown must be initialized from, and matched to, the corres-
ponding time-dependent maps in the inspiral. The rotation and expansion maps are matched
and then decay exponentially to being time-independent. Most challenging are the shape and
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size maps. For the shape map we perform a least squares àt in time to the spherical harmonic
coefàcients of the common horizon (and their time derivatives) found during the inspiral. We
àt to 100 times, and then initialize the shape of the excision by evaluating the àt at the trans-
ition time. For the size of the excision, we manually specify an excision radius rexc = 1.45 and
gave the excision surface an initial outward radial velocity of 1.0; we adjusted these choices
by hand until the ringdown was able to begin successfully, with the excision surface remain-
ing inside the common apparent horizon while having all characteristic characteristic speeds
pointing out of the computational domain (cf section 2.3).

For the simulations presented here, we carried out the transition from the inspiral domain
to the ringdown domain manually. First, when the coordinate separation of the centers of the
black holes’ apparent horizons in the asymptotically inertial frame fell to less than 2.38M
(a value chosen by hand to roughly correspond to the time that the common horizon àrst forms),
we chose to have the simulation begin outputting the evolution variables at every gridpoint
every ∆t= 0.01M . Then, we chose to terminate the inspiral portion of the simulation when
the coordinate separation between the two black holes decreased to less than 2.138M. This
value was chosen to be late enough that it yielded enough distinct common horizon ànds,
but also early enough that the constraint energy (cf section 3.3.4) did not grow too large. In
the future, we intend to implement the techniques that SpEC uses to automate the transition
process.

3.3.3. Constraint damping. Based on our experience evolving binary black holes in SpEC,
we use a superposition of three Gaussians and a constant for γ0 and γ2, and a single Gaussian
plus a constant for γ1. See (4) for how the constraint damping terms appear in the evolution
equations. Themotivation for the different Gaussians is to increase the constraint damping near
each black hole, which requires the Gaussians to move with the black holes as they inspiral.
In SpEC and SpECTRE we achieve this by making the Gaussians functions of the comoving
‘grid frame’ coordinates xı̄. As the black holes inspiral, their coordinate radius increases in
the comoving xı̄ coordinates, which means the width w of the Gaussian must also increase
by the same amount. Increasing the width is achieved by dividing the width by the expansion
factor E(t), which starts at 1 and decreases as the black holes inspiral. The speciàc form of the
damping parameters we use is

γ0
(

t,xı̄
)

= γ2
(

t,xı̄
)

= C+
2
∑

I=0

AI exp

[

−
(

r̄I
w̄I/E(t)

)2
]

, (54)

γ1
(

t,xı̄
)

= C+A0 exp

[

−
(

r̄0
w̄0

)2
]

, (55)

where C is a constant, AI are the amplitudes of the Gaussians, r̄I are the grid-frame radii from
the center of each Gaussian, and w̄I are the widths of the Gaussians in the grid frame. Table 2
shows the parameters during the inspiral and table 3 shows them during the ringdown. In the
grid frame the black holes are always located on the x̄-axis so we only specify the grid frame
x̄-coordinate at which each Gaussian is centered, denoted by x̄C in tables 2 and 3.

3.3.4. Constraint violations. Figure 10 shows the constraint energy E (see (19)) as a func-
tion of time at each resolution. Experience from SpEC suggests that the initial, rapid growth
in E is caused by not resolving the initial data’s rapid relaxation and emission of spurious,
high-frequency ‘junk’ gravitational radiation at the start of the simulation. Resolving the junk
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Table 2. Parameters for the Gaussians that make up the constraint damping functions
during the inspiral. See (54) and (55) for how the coefàcients appear in the functional
form of the constraint damping parameters.

C A0 w̄0 x̄C0 A1 w̄1 x̄C1 A2 w̄2 x̄C2

γ0 0.01/M 0.75/M 38.415 0 8/M 3.5 7.683 8/M 3.5 −7.683
γ1 −0.999/M 0.999/M 10d0 — — — — — — —
γ2 0.01/M 0.75/M 38.415 0 8/M 3.5 7.683 8/M 3.5 −7.683

Table 3. Parameters for the Gaussians that make up the constraint damping functions
during the ringdown. See (54) and (55) for how the coefàcients appear in the functional
form of the constraint damping parameters.

C A0 w̄0 x̄C0 A1 w̄1 x̄C1 A2 w̄2 x̄C2

γ0 0.01/M 1.0/M 100 0 7/M 2.5 0 — — —
γ1 −0.999 999/M — — — — — — — — —
γ2 0.001/M 0.1/M 100 0 7/M 2.5 0 — — —

radiation is computationally expensive and generally not done in NR evolutions of binary
black holes. After the initial growth of constraint violation damps away, the constraints con-
verge exponentially with increasing p-reànement. The constraints grow sharply near the time
of merger, as the black holes become more distorted by each others’ tidal gravity, causing
the solution to be less resolved by our àxed computational mesh. We anticipate that future
SpECTRE simulations using adaptive mesh reànement will improve the behavior of the con-
straints near the time of merger.

To ensure the errors from our coordinate mappings do not affect our constraint violations,
we compare the L2-norms of the constraint energy and the jacobian diagnostic in table 4 at t=
3000M during the inspiral. For all our resolutions, the mapping error is below our constraint
violations, meaning that our coordinate maps do not affect the results of these simulations.

After the merger, as the remnant black hole rings down, the constraint violations decrease
to much smaller values again. When the black hole has settled to its ànal stationary state, the
constraint violations continue to slowly decrease in time. Because the ringdown constraints in
the highest resolution are not smaller than those with the medium spatial resolution, we suspect
that the numerical error is dominated not by spatial resolution in the ringdown but by some
other factor. One possibility is the time-stepping accuracy during the late inspiral and ring-
down. We leave a careful study of this, including improvements to the domain decomposition
and use of adaptive mesh reànement during the ringdown, to future work.

3.3.5. Apparent horizons. Another way of measuring the accuracy of BBH simulations is to
track the masses and spins of the BHs using the apparent horizon surfaces. We ànd the appar-
ent horizons surfaces using a ‘fast áow’ approach similar to the one outlined in [86]. There
are a number of subtleties that arise when implementing this approach with an asynchronous
task-based parallelism setting. These are due to the fact that the ‘fast áow’ approach is an iter-
ative method and thus needs to store the metric on the full computational domain at a given
simulation time until all iterations are complete. A more in-depth explanation of this will be
available in [66].

We measure masses and spins on the individual apparent horizons every 0.5M during the
inspiral and merger and on the common apparent horizon every 0.1M during ringdown. The
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Figure 10. L2-norm of the constraint energy E (see (19)) over the entire computational
domain for evolutions of an equal-mass, non-spinning, binary black hole at low (‘Lev0’),
medium (‘Lev1’), and high (‘Lev2’) spatial resolution, as a function of time t in units of
the initial total massM. The peak of the constraint energy for each resolution is when we
transition to the ringdown grid. We see exponential convergence with resolution except
at merger and early ringdown, where we suspect adaptivemesh reànement will be neces-
sary to resolve the additional dynamics. The inset shows this exponential convergence
at time t= 3000M during the inspiral as a function of the cube root of the total number
of grid points (and ‘Lev’).

Table 4. The L2-norm of the constraint energy E and jacobian diagnostic Ĉi over all
gridpoints at t= 3000M during the inspiral. For all of our resolutions, the jacobian
diagnostic (which is a measure of our mapping error) is below the error of the constraint
energy.

L2-norm Lev0 Lev1 Lev2

E 1.0× 10−8 1.9× 10−10 3.2× 10−12

Ĉi 8.8× 10−11 6.2× 10−12 5.7× 10−13

irreducible mass, deàned as Mirr ≡
√

A/16π, where A is the surface area of the apparent
horizon, should be monotonically increasing. Thus, any decreases in Mirr can be viewed as
a measure of the numerical error in the simulation. Another useful metric is the Christodoulou
mass MCh ≡

√

M2
irr + S2/4M2

irr, which includes both the irreducible mass and rotational kin-

etic energy. The dimensionless spin χ = S/M2
Ch measures the spin in terms of approximate

rotational Killing vectors, as discussed in appendix A of [76]. For equal-mass non-spinning
simulationsMirr andMCh should remain constant until merger, while χ should remain identic-
ally zero. Deviations from this behavior help quantify numerical errors in the simulation.

Figure 11 showsMirr,MCh, and χ during the inspiral and ringdown. We ànd that the masses
and spins over time are convergent, in the sense that the difference between Lev0 and Lev1
is greater than the difference between Lev1 and Lev2. During the inspiral, after the initial
transient, the masses and spins remain more constant in time as resolution increases, until
sharp gains near the time of merger as the black holes gain energy and angular momentum.
During the ringdown, the masses and spins relax to ànal, constant values, as expected. The
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Figure 11. Apparent horizon masses and spins as a function of time. The left column
shows the irreducible massMirr, Christodoulou massMch, and dimensionless spin angu-
lar momentum χ≡ S/M2

ch for one of the individual apparent horizons during inspiral, as
a function of time t in units of the total initial Christodoulou massM. The right column
shows the same quantities during the ringdown for the common apparent horizon. We
see convergence with increasing resolution, speciàcally that the Lev1 and Lev2 evolu-
tions track each other more closely than the Lev0 and Lev1 simulations.

ànal Christodoulou mass Mch = 0.952 differs from the initial Christodoulou mass (Mch = 1)
by 4.8%, and the ànal spin is 0.686. Both values are consistent with the àtting formulas in [80],
tuned using SpEC evolutions of equal-mass, equal-aligned-spin binary black holes.

3.3.6. Gravitational waveforms. We compute gravitational waveforms using Cauchy-
Characteristic Evolution (CCE) [46, 87–90], using the SpECTRE implementation of CCE [47].
This method utilizes an additional characteristic evolution code, the one described in [47],
that solves the full Einstein equations on a set of outgoing null slices that extend from some
inner worldtube all the way to future null inànity. Boundary conditions on the worldtube are
provided by the interior Cauchy evolution, in this case also done with SpECTRE. For the char-
acteristic evolution, there is freedom to choose one complex function on the initial null slice,
which encodes the initial incoming radiation. We set it according to equation (16) of [47].
From the characteristic evolution, one can compute the gravitational-wave strain and all àve
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Weyl scalars at future null inànity. Gravitational waveforms computed via CCE are in a well-
deàned gauge modulo Bondi-van der Burg–Metzner–Sachs (BMS) transformations [91, 92],
which are extensions of Poincaré transformations and correspond to symmetries of asymp-
totically áat spacetimes at future null inànity. The raw output from CCE is in an effectively
random BMS frame, so to completely àx the gauge, it is necessary to perform a BMS trans-
formation [93].We choose to transform waveforms into the superrest frame of the inspiral [94,
95], which can be thought of as the BMS extension of a frame in which the binary is at rest
during the inspiral. We ànd the BMS transformation to map to this frame using data from
the strain and Weyl scalars over the time window [1800M,2200M]. See [93] and references
therein for an in-depth review of BMS frame àxing.

Figure 12 shows the leading-order ℓ= m= 2 spin-weighted spherical harmonic mode of
the gravitational-wave strain as a function of retarded time t. To estimate the accuracy of the
waveforms, we àrst apply a time shift tpeak22 so that the peak amplitudes at each spatial res-
olution occur at the same shifted time. Then, we apply a constant phase offset such that the
gravitational-wave phase of the ℓ= m= 2 mode vanishes at time t− tpeak22 =−4000M . This
time was chosen as an early time after most of the initial spurious ‘junk’ radiation (especially
visible in the amplitude at early times) has been emitted. This junk radiation is characteristic-
ally different than the junk radiation seen in àgure 10. The junk radiation in àgure 12 is of a
lower frequency and is due to our choice of data on the initial null slice. It is an active area of
research to improve data on the initial null slice.

We choose to post-process the data in this way because it enables us to transform each sim-
ulation to some reasonable BMS frame without using information from the other simulations.
As a result, we can perform more meaningful convergence tests, since the output from each
simulation is independent of every other. While one could obtain better agreement between
different resolutions by ànding the BMS transformation whichminimizes the residual between
the simulations’ waveforms, this would go beyond computing a convergence error, because
the frame of one simulation is determined by the other.

Finally, we interpolate the amplitudes and phases at each spatial resolution onto a com-
mon set of times and take differences, estimating the numerical error of a spatial resolu-
tion in terms of its difference with the next highest spatial resolution. We ànd that between
time t− tpeak22 =−4000M and merger time t− tpeak22 = 0, the amplitude and phase differences
decrease with increasing resolution, as expected, with the medium and high resolution differ-
ing in amplitude by 0.01% at time of merger and about 0.1% throughout the inspiral. During
the window between t− tpeak22 =−4000M and t= tpeak22 , the medium and high spatial resolu-
tions accumulate 0.03 radians of phase error. After merger time, the fractional amplitude and
phase errors grow, which is expected, because the amplitude itself is exponentially falling to
zero, making determining the phase accurately increasingly challenging.

4. Conclusion

We present the àrst inspiral-merger-ringdown simulations of two binary black holes using
DG methods. We use the open-source numerical relativity code SpECTRE [45] to perform
all simulations. These include several long-term stability and accuracy tests, e.g. evolutions
of a single black hole in Kerr–Schild, harmonic, and damped harmonic gauge, as well as a
long-term stable gauge wave simulation. All simulations demonstrate the expected exponen-
tial convergence.
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Figure 12. The ℓ= m= 2 spin-weighted spherical-harmonic mode of the gravitational
waves, computed using Cauchy Characteristic Evolution (CCE) and frame-àxed using
the Python package scri, with a worldtube radius of 200M, whereM is the total initial
Christodouloumass. From top to bottom, as a function of retarded time t− tpeak22 , the pan-
els show (i) the real and imaginary part of the strain rh22/M; ii) the amplitude |rh22/M|
at the highest spatial resolution; iii) the fractional amplitude difference |∆h22|/|h22|,
deàned as the magnitude of the ℓ= m= 2 amplitude difference between two spatial res-
olutions, divided by the magnitude of the higher spatial resolution’s amplitude; iv) the
difference in phase∆ϕ22, deàned as the difference between the ℓ= m= 2 gravitational-
wave phase at two different spatial resolutions, with each phase offset such that the phase
vanishes at t− tpeak22 =−4000M . The vertical black lines shows where the amplitude
goes below ∼ 10−3.

The binary black hole simulation is of the last 18 orbits before merger of an equal
mass non-spinning binary. We extract gravitational waveforms at future null inànity using
SpECTRE’s CCEmodule.We observe exponential convergence in the constraint violations with
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increasing resolution, and demonstrate convergence in amplitude and phase of the ℓ= m= 2
mode of the gravitational wave strain. The simulations presented here are the àrst binary mer-
ger simulations where the initial data, evolution, and wave extraction are all performed using
the open-source code SpECTRE.

Our medium and high resolution SpECTRE simulations run at 80 and 41M/hr on ten 56-core
Intel Cascade Lake nodes during inspiral. A proper comparison between this performance from
SpECTRE and an analogous calculation in SpECwould be nontrivial, in part because a meaning-
ful comparison should ensure that the SpEC and SpECTRE simulations have the same accuracy.
We plan to perform such a comparison in the future. Here, for an initial ballpark comparison,
we simply note that a SpEC evolution of analogous initial data, at what we typically would
consider high resolution in SpEC (approximately 300,000 grid points, with SpEC’s adaptive
mesh reànement algorithm varying the precise number of points throughout the simulation),
ran at approximately 90M/hr on 32 Intel Sky Lake cores. The SpECTRE high-resolution cal-
culation ran about half as fast in wall time, using about 17 times more cores on a grid with
about 17 times more gridpoints. SpECTRE’s domain has manymore elements with fewer points
per element, enabling it to scale to more CPU cores than SpEC; however, SpEC’s choice to use
fewer elements with higher number of points (especially spherical shells near the horizons and
in the wave zone) mean that SpEC’s domain is currently much more efàcient.

We expect that SpECTRE would outperform SpEC in wall time at sufàciently high resolu-
tions, running on enough CPU cores, but that it would be less efàcient, requiring more cost
for the same accuracy. We also expect that planned future optimizations (discussed in the next
paragraph) will greatly reduce the computational cost of a SpECTRE binary-black-hole cal-
culation at a given accuracy. Finally, note that in its current state, SpECTRE is still efàcient
enough to perform an ∼ 18 orbit inspiral—longer than almost all inspirals published to date
using moving-puncture codes—at feasible cost (less than 9 days of wall time on less than 600
compute cores).

While the results here present a milestone for SpECTRE simulations, several further
advancements are necessary to enable building catalogs for future gravitational wave detect-
ors. These fall in one of four categories: (i) performance improvements like using adaptive
mesh reànement, dynamic load balancing, and GPU support; (ii) robustness and parameter
space improvements like ensuring that high-spin, high-mass-ratio, and eccentric simulations
can be performed robustly without hand tuning; (iii) automation infrastructure that allows a
single user to run hundreds of simulations, such as automatically restarting failed simulations,
automatically transitioning from inspiral to ringdown, and automatically running CCE after
the Cauchy simulation completes; and (iv) improving documentation and tutorials to make
the code more accessible to the broader community. Item (v) also includes developing a good
understanding of how error diagnostics, like constraint violations, impact gravitational-wave
amplitude and phase errors; our experience with SpEC suggests that the answer is complicated
and will require careful investigation. These will allow SpECTRE to outperform our current
code SpEC and to be more useful to the broader NR community.

Data availability statement
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