
Generic Refinement Types
NICO LEHMANN, University of California, San Diego, USA
COLE KURASHIGE, University of California, San Diego, USA
NIKHIL AKITI, University of California, San Diego, USA
NIROOP KRISHNAKUMAR, University of California, San Diego, USA
RANJIT JHALA, University of California, San Diego, USA

We present Generic Re!nement Types: a way to write modular higher-order speci!cations that abstract
invariants over function contracts, while preserving automatic SMT-decidable veri!cation. We show how
generic re!nements let us write a variety of modular higher-order speci!cations, including speci!cations
for Rust’s traits which abstract over the concrete re!nements that hold for di"erent trait implementations.
We formalize generic re!nements in a core calculus and show how to synthesize the generic instantiations
algorithmically at usage sites via a combination of syntactic uni!cation and constraint solving. We give
semantics to generic re!nements via the intuition that they correspond to ghost parameters, and we formalize
this intuition via a type-preserving translation into the polymorphic contract calculus to establish the soundness
of generic re!nements. Finally, we evaluate generic re!nements by implementing them in F!"# and using it for
two case studies. First, we show how generic re!nements let us write modular speci!cations for Rust’s vector
indexing API that lets us statically verify the bounds safety of a variety of vector-manipulating benchmarks
from the literature. Second, we use generic re!nements to re!ne Rust’s D$%&%! ORM library to track the
semantics of the database queries issued by client applications, and hence, statically enforce data-dependent
access-control policies in several database-backed web applications.

CCS Concepts: • Theory of computation→ Type structures; Logic and veri!cation; • Software and its
engineering → Software veri!cation.

Additional Key Words and Phrases: Rust, liquid types, re!nement types, polymorphism

ACM Reference Format:
Nico Lehmann, Cole Kurashige, Nikhil Akiti, Niroop Krishnakumar, and Ranjit Jhala. 2025. Generic Re!nement
Types. Proc. ACM Program. Lang. 9, POPL, Article 49 (January 2025), 29 pages. https://doi.org/10.1145/3704885

1 Introduction
Modularity is a wonderful principle that helps one read or write programs. However, it can be a real
pebble in one’s shoe when it comes to automatically verifying them. To enable reuse across multiple
client with di"erent contexts, modular speci!cations must abstract over concrete invariants that
hold at those contexts. For example, consider a modular speci!cation for a HashMap library that
aims to statically ensure that every lookup uses a previously de!ned key. Such a library must
export contracts for insert, lookup and contains_key methods that abstract over the predicate
characterizing the map’s valid keys:

Authors’ Contact Information: Nico Lehmann, University of California, San Diego, San Diego, USA, nlehmann@ucsd.edu;
Cole Kurashige, University of California, San Diego, San Diego, USA, ckurashige@ucsd.edu; Nikhil Akiti, University of
California, San Diego, San Diego, USA, nakiti@ucsd.edu; Niroop Krishnakumar, University of California, San Diego, San
Diego, USA, nkrishnakumar@ucsd.edu; Ranjit Jhala, University of California, San Diego, San Diego, USA, rjhala@ucsd.edu.

© 2025 Copyright held by the owner/author(s).
ACM 2475-1421/2025/1-ART49
https://doi.org/10.1145/3704885

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 49. Publication date: January 2025.

This work is licensed under a Creative Commons Attribution 4.0 International License.

HTTPS://ORCID.ORG/0009-0003-6838-3714
HTTPS://ORCID.ORG/0009-0003-6699-0430
HTTPS://ORCID.ORG/0009-0009-4608-7256
HTTPS://ORCID.ORG/0009-0001-8638-6201
HTTPS://ORCID.ORG/0000-0002-1802-9421
https://doi.org/10.1145/3704885
https://orcid.org/0009-0003-6838-3714
https://orcid.org/0009-0003-6699-0430
https://orcid.org/0009-0009-4608-7256
https://orcid.org/0009-0001-8638-6201
https://orcid.org/0000-0002-1802-9421
https://doi.org/10.1145/3704885
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3704885&domain=pdf&date_stamp=2025-01-09

49:2 Nico Lehmann, Cole Kurashige, Nikhil Akiti, Niroop Krishnakumar, and Ranjit Jhala

pub struct HashMap<K, V>[valid: K -> bool] {...}

impl<K: Eq + Hash, V> HashMap<K, V> {

pub fn new() -> Self[|k| false];

pub fn lookup(&Self[@valid], key: K{ valid(key) }) -> &V;

pub fn contains_key(&Self[@valid], key: K) -> bool[valid(key)];

pub fn insert(self: &strg Self[@valid], key: K{ !valid(key) }, v: V)

ensures self: Self[|k| valid(k) || k == key];

}

Sadly, the need to abstract invariants over contracts implicitly requires higher-order speci!cations
which preclude decidable veri!cation. For example, the contract for contains_key says that for all
predicates valid that characterize the de!ned keys of the map Self, the output bool is equal to
the value of the predicate for the input key. To verify a client, we must instantiate the predicate
appropriately at the client call-sites, which is only feasible when working interactively with a proof
assistant conversant in higher-order logic, and so, outside the realm of decidable veri!cation.
Higher-Order Speci!cations via Generic Parameters In this paper, we show a way to reconcile
modular higher-order speci!cations with automatic and SMT-decidable veri!cation, by carefully
combining two key observations. Our !rst observation, following Vazou et al. [28], is that the
higher-order invariants can be viewed as re!nement parameters, analogous to type parameters.
Unfortunately, in the system of Vazou et al. [28], parameters are instantiated at call-sites via
Horn constraint solving which comes with rather onerous terms and conditions: the re!nement
parameters may only appear positively inside re!nements, i.e., only under conjunctions, but not
disjunctions or negations. This positivity prerequisite severely restricts the expressiveness of
speci!cations. For example, we cannot write the contracts for contains_key or insert for the
HashMap shown above! Following Economou et al. [10], we show how to circumvent this restriction
by the second observation that base-sorted (e.g., int or bool valued) re!nement parameters can be
automatically instantiated at usage sites via syntactic uni!cation—regardless of whether they appear
positively or negatively—as long as they appear in a value-dependent position. Our key insight
is that the same syntactic uni!cation technique can be generalized to instantiate higher-sorted
(e.g., function valued) re!nement parameters, and doing so lets us write modular higher-order
speci!cations, like for HashMap above, while preserving automatic veri!cation.
In this paper, we combine these two observations to develop Generic Re!nement Types, via the

following concrete contributions.
1. Formalization First, we formalize generic re!nement types in a core calculus 𝐿𝐿 , which extends
the simply typed 𝐿-calculus with generic re!nement types (§ 4). Our calculus starts with an index-
style formulation where base types (e.g., int, bool) are indexed by logical values that track the
exact value of the inhabitant [32, 33]. For example, the signature ↑𝑀 : Z. int[𝑀] → bool[𝑀 > 0]
corresponds to a function that determines whether its input int is strictly positive using 𝑀 as
a re!nement parameter that holds the logical value of the input integer. In 𝐿𝐿 , we extend (base-
sorted) re!nement parameters with two kinds of (function-sorted) generic arguments that permit
quanti!cation over invariants in contracts. The !rst kind, are Horn generics that get instantiated
via Horn constraint solving but which must satisfy the positivity prerequisite [28]. The second
kind, are Hindley generics that get instantiated via syntactic uni!cation [10] as long as they appear
in a value-dependent position. We develop the !rst algorithmic system for type checking programs
with Horn and Hindley generics thus reconciling modular speci!cation with decidable veri!cation.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 49. Publication date: January 2025.

Generic Refinement Types 49:3

2. Translation Second, we give a semantics to generic re!nements by showing how (well-typed)
𝐿𝐿 programs have a type-preserving translation into the polymorphic contract calculus F𝑀H of
Sekiyama et al. [24] (§ 5). Informally, generic re!nements are viewed as ghost parameters that
must be passed to functions, whose values are automatically synthesized during algorithmic
type checking. We formalize this intuition by de!ning an intermediate calculus 𝐿𝐿 with explicit
re!nement instantiations which are elaborated by the algorithmic typing rules. We then prove that
the elaboration is type-preserving, i.e., that if the algorithmic system gives a term in 𝐿𝐿 a type,
then there is a corresponding term in 𝐿𝐿 with the appropriately elaborated type (theorem 5.1).
Finally, we show how the elaborated terms of 𝐿𝐿 can be translated to F𝑀H, again in a type-preserving
fashion, which lets us use the soundness of F𝑀H to establish the soundness of 𝐿𝐿 (theorem 5.2).
3. Association Rust libraries pervasively uses traits to abstract over concrete implementations of
various groups of related operations, e.g., accessing collections like vectors, slices, or (hash)maps,
iteration, or building DSLs.We show how generic re!nements enable modular speci!cations for trait
methods, via Associated generic re!nements which abstract over the speci!c concrete re!nements
that hold for particular implementations of the trait (§ 2). Following Wadler and Blott [30]’s classic
observation that typeclasses can be translated to dictionaries, we illustrate how associated generics
can be translated to Hindley generics, thereby showing how the latter is a foundation for the former.
4. Evaluation We evaluate generic re!nements by implementing our core functional model, that
focuses on Hindley parameters, as an extensionin to F!"#, a re!nement type veri!er for Rust, and
then carrying out two case studies (§ 6). In the !rst case study, we show how generic re!nements
scale up to modularly specify vector bounds checking. Their use allows us to abstract over the
condition of when an index is in bounds into a generic re!nement that is then implemented as the
usual bounds-check for the vector. We show how this modular speci!cation lets us statically verify
the bounds safety of a variety of vector manipulating benchmarks from [16]. In the second case
study, we use generic re!nements to re!ne Rust’s D$%&%! ORM library to track the semantics of
the database queries issued by client applications, and hence, statically enforce data-dependent
access-control policies in database-backed web applications [17].

2 Overview
We start with a high-level overview of generic re!nements that begins by recapitulating prior
work as Horn generic re!nements (§ 2.1). Then, we describe the expressiveness limitations of Horn
generics and show how they are addressed via Hindley generic re!nements (§ 2.2). Next, we show
how generic re!nements scale up to permit modular speci!cation and veri!cation of code using
Rust’s traits via Associated generic re!nements (§ 2.3). Finally, we illustrate how Hindley generics
are a lower-level foundation for associated generic re!nements, by demonstrating how the standard
typeclasses-as-dictionaries translation [30] reduces associated generics to Hindley generics (§ 2.4).

2.1 Horn Generic Refinements
Vazou et al. [28] introduced a mechanism for abstracting or generalizing over re!nements via type
signatures with re!nement parameters which can be automatically instantiated by solving Horn
constraints. We recast this idea as Horn generic re!nements, which we illustrate with an example.
Problem: Multiple Mutable Borrows Rust’s borrowing discipline can sometimes be a straitjacket
that makes certain programs rather uncomfortable to write, most notably, when we requiremultiple
mutable references into objects stored in a collection. For example, suppose we represent particles
using a type Particle that provides a method interact, which takes mutable references to two
particles and updates them based on their interaction:

struct Particle {...}; impl Particle { fn interact(&mut self, other: &mut Self) }

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 49. Publication date: January 2025.

49:4 Nico Lehmann, Cole Kurashige, Nikhil Akiti, Niroop Krishnakumar, and Ranjit Jhala

fn sim_bad(vec: &mut Vec<Particle>) {

let n = vec.len();

for i in 0..n {

let a = &mut vec[i];

for j in i + 1..n {

let b =
!!!
&mut

!!!!!!
vec[j];

a.interact(b);

}

}

}

fn sim(vec: &mut { Vec<Particle>[@n] | 0 < n }) {

let n = vec.len();

for i in 0..n {

let mut mi = MultiIdx::new(vec);

let a = mi.get(i);

for j in i + 1..n { // mi: MultiIdx<Particle>[p]

let b = mi.get(j); // p = |k| 0<=k< i || j<=k<n

a.interact(b);

}

}

}

Fig. 1. A Particle simulation that requires multiple mutable borrows: the le! version is rejected by Rust’s
borrow checker, but the right version is accepted.

We might now wish to implement a simulator that computes the interaction of a collection of
Vec<Particle> as a simple nested loop as shown on the left in Fig. 1. Sadly, Rust’s borrow checker
will fuss about the second mutable borrow (at the let b =) as at that point we already have a
mutable borrow a that is alive (as required at the call to interact) and so we cannot have a second
mutable borrow from the same collection vec.
Solution: A Horn Generic API for Multiple Borrows Fig. 2 shows how Horn generics let
us implement an API that allows for multiple mutable borrows while still ensuring the key non-
aliasing invariant, namely, there is a unique borrow of any object. First, we de!ne a MultiIdx
struct that wraps the Vec and (temporarily) takes ownership of the underlying memory. Second,
we parameterize MultiIdx with a generic argument available: int -> bool which is a predicate
over int that describes the set of indices of the underlying vector that are available to be (mutably)
borrowed. (We use the hrn modi!er to declare the generic as Horn.) Third, our API ensures that the
only way to create a MultiIdx is using the constructor MultiIdx::new which takes a vector vec and
returns a MultiIdx whose available predicate says that every slot i satisfying 0 <= i < vec.len
is available to be mutably borrowed. Finally, to actually borrow a reference to an element in the
collection, a client can use the method get. This method is parametric on the available predicate
(declared with @av) and checks that the requested idx is indeed available, and then returns a mutable
reference to the underlying cell after “updating” self to ensure that (subsequently) the position idx
is excluded from the set of available borrows. The speci!cation uses a strong reference, the details
of which are not important. It su#ces to say that, by leveraging Rust’s borrow checker, F!"# can
do a sound strong update on the type of the reference after the function call [16].
Implementing this API requires internal use of unsafe code, but we can encapsulate it under a

(re!ned) safe interface. The key observation that makes this sound is that by wrapping a mutable
reference to the Vec, MultiIdx can prevent clients from using operations that can modify the
underlying storage to invalidate outstanding borrows (e.g., by calling push).
Using the MultiIdx API The following example shows how we can use this API. The comments
on the right illustrate how the type of mi is strongly updated after the !rst call to get. F!"# rejects
the second borrow at 0 as that index is not available after the !rst call mi.get(0).

fn test_multi_index(vec: &mut Vec<Particle>{v: v.len == 5}) {

let mi = MultiIdx::new(vec); // mi: MultiIdx[|i| 0 <= i < 5]

let a0 = mi.get(0); // mi: MultiIdx[|i| 0 <= i < 5 && i != 0]

let a1 =
!!!!!!!!
mi.get(0);

}

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 49. Publication date: January 2025.

Generic Refinement Types 49:5

struct MultiIdx<'a, T>[hrn available: int -> bool];

impl<'a, T> MultiIdx<'a, T> {

fn new(vec: &'a mut Vec<T>]) -> Self[|i| 0 <= i && i < vec.len];

fn get(self: &strg Self[@av], idx: usize{ av(idx) }) -> &'a mut T

ensures self: Self[|i| av(i) && i != idx];

}

Fig. 2. An API for Multiple Mutable Borrows using a Horn generic refinement to track available positions.

A Veri!ed Particle SimulatorWe can now write the Particle simulator quite naturally as shown
in Fig. 1. F!"# statically guarantees that each object is borrowed at most once, by automatically
instantiating the available generic argument for mi, as shown on the right in the comments. In
particular, F!"# infers that the inner loop has the invariant that all the indices excluding those from
i to j are available, thereby verifying that the mb.get(j) call can safely return a mutable borrow b
that can then be used to call interact.

2.2 Hindley Generic Refinements
In general, generics are only ergonomic when they can be automatically instantiated [22]. In the
case of Horn generics, automatic inference comes at a steep price: the re!nement arguments (like
av in the signature of get in Fig. 2) can only appear positively inside re!nements, meaning they can
only appear under conjunctions, but not disjunctions or negations. This positivity prerequisite lets
the type checker automatically instantiate the generic arguments by solving Horn constraints [28],
but severely limits the expressiveness of APIs that can by speci!ed with Horn generics.

Next, let us see how to relax the posititivity prerequisite and expand expressiveness via Hindley
generic re!nements, which use syntactic uni!cation to automatically instantiate generic arguments
at usage sites. Hindley generic arguments can appear negatively—under a disjunction or negation—
as long as they appear in a value-dependent position (a notion identi!ed by Economou et al. [10],
and detailed in § 3.2) which lets us use them to specify a broader class of APIs.
Querying Databases using ORMs An object-relational mapping (ORM) library let programmers
interact with databases in a type safe manner using a high level API for constructing and executing
database queries. An ORM starts o" by letting the programmer describe the schema of their database
tables. Suppose we are building a shopping list application that maintains the list of items each
user needs to purchase, together with their price and description. The programmer describes the
schema for a table as shown on the left in Fig. 3, after which the ORM library generates a struct
to represent rows of the items table as a Rust value. An ORM provides a convenient way to build
queries that can be used to read and update the database. To do so, the ORM uses a type Field<R, V>
whose inhabitants represent the V-valued !eld of a row R. For example, from the table description
on the left in Fig. 3, the ORM will automatically generate the de!nitions shown on the right which
represent the database columns, i.e., the !elds of each row of the database. Next, as shown in Fig. 4,
the ORM also has a type Query<R> which is parameterized by the type of the row R that the query
returns, and a set of generic (table-independent) functions that allow the construction and execution
of queries. For example, we can use eq or lt to build atomic queries that compare the value of a
particular !eld or column (of the row) to some value val, and then, we can compose queries with
boolean connectives like and, or and not to construct complex queries that span multiple !elds.
Finally, the ORM includes a method run that executes the query on the actual database, to get back
a collection of rows of type R.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 49. Publication date: January 2025.

49:6 Nico Lehmann, Cole Kurashige, Nikhil Akiti, Niroop Krishnakumar, and Ranjit Jhala

table! {

items(id) {

id -> usize,

price -> i32,

owner -> usize,

descr -> String,

}

}

struct Item {

id: usize,

price: i32,

owner: usize,

descr: String,

}

const item_id : Field<Item, usize> = ... ;

const item_price : Field<Item, i32> = ... ;

const item_owner : Field<Item, usize> = ... ;

const item_descr : Field<Item, String> = ... ;

Fig. 3. (L) Specifying a database table using an ORM, (C) ORM-generated struct representing each row, (R)
ORM-generated Fields representing each column.

impl<R, V> Field<R,V> { impl<R> Query<R> {

fn eq(self: Field<R,V>, val:V) -> Query<R>; fn and(self: Query<R>, q: Query<R>) -> Query<R>;

fn lt(self: Field<R,V>, val:V) -> Query<R>; fn or(self: Query<R>, q: Query<R>) -> Query<R>;

fn gt(self: Field<R,V>, val:V) -> Query<R>; fn not(self: Query<R>) -> Query<R>;

} fn run(self: Query<R>) -> Vec<R>;

}

Fig. 4. (L) Methods to build atomic queries from a field. (R) Methods to compose queries and run them.

ORM clients Client or application code can now use the ORM’s API to build SQL queries and
execute them to get back plain Rust values that can be consumed by the rest of the application. For
example, Fig. 5 shows a Rust function that !nds all the items belonging to owner whose price is
below a certain cost. To do so, the code uses the query combinators to build a query q that is the
conjunction of two sub-queries, which respectively check that the item belongs to owner and that
the price is less than cost, and then runs the query to iterate over all the returned items.
Problem: Verifying Invariants of Query Results When verifying web-applications built using
the ORM, we need to track the invariants of the rows returned by various queries, to check, e.g.,
that the values being sent back to the user adhere to some desired security policy [17]. In our
setting, suppose that we wish to verify that every item returned by q.run() indeed has a price that
is less than some cost. To do so, we must precisely track the semantics of the query combinators
like eq, lt and and, and compose them appropriately to track the desired invariants of q and hence
item. However, for modularity, the types we assign to these combinators must be database agnostic
so that we can use the same API across di"erent applications and DB tables.
Solution: A Hindley-generic API for Database Queries We solve this problem by re!ning the
ORM’s Field and Query types with generic arguments that track the semantics of the respective
objects, and then re!ne the API for constructing and executing a Query so that the re!nements for
the sub-queries compose to yield compile-time invariants for the resulting database rows.
Re!ned Fields First, we re!ne the Field struct with a Hindley generic (declared with the hdl
modi!er) proj which represents the map from the row R to the speci!c !eld’s value V

struct Field<R, V>[hdl proj: R -> V] { ... }

Now, when the table from Fig. 3 is generated, the individual Field constants now get re!ned as
const item_id : Field<Item, usize >[|r| r.id] = ... ;

const item_price : Field<Item, i32 >[|r| r.price] = ... ;

const item_owner : Field<Item, usize >[|r| r.owner] = ... ;

const item_descr : Field<Item, String >[|r| r.descr] = ... ;

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 49. Publication date: January 2025.

Generic Refinement Types 49:7

fn get_items(owner: usize, cost: i32) {

let q1 = item_owner.eq(owner); // q1: Query<Item>[|i| i.owner == owner]

let q2 = item_price.lt(cost); // q2: Query<Item>[|i| i.price < cost]

let q = q1.and(q2); // q: Query<Item>[|i| i.owner == owner && i.price < cost]

for item in q.run() { // item: Item{i: i.owner == owner && i.price < cost}

assert(item.price < cost);

}

}

Fig. 5. Example of a client of the query API. The comments show the types of subqueries in the refined API.

Re!ned Queries Next, we re!ne Query with a generic argument that characterizes its result.
struct Query<R>[hdl inv: R -> bool] { ... }

impl<R> Query<R>{ fn run(self: Query<R>[@q]) -> Vec<R{r: q(r)}>; }

Crucially, the run method guarantees that each row returned by query.run() will satisfy the
invariant q that the query is re!ned with.
Atomic Queries We can now re!ne the types of the primitive query constructors to precisely
track the semantics of the primitive queries

impl<R, V> Field<R, V> {

fn eq(self: Field<R, V>[@proj], val: V) -> Query<R>[|r| proj(r) == v];

fn lt(self: Field<R, V>[@proj], val: V) -> Query<R>[|r| proj(r) < v];

fn gt(self: Field<R, V>[@proj], val: V) -> Query<R>[|r| proj(r) > v];

}

Thanks to the types of the !elds item_owner, item_price and the query constructors eq and gt
above, F!"# assigns the sub-queries q1 and q2 in Fig. 5 the re!ned types shown in comments.
Composing Queries Next, we can re!ne the query combinator API to track the types of the
constructed queries:

impl<R> Query<R> {

fn and(self: Query<R>[@q1], rhs: Query<R>[@q2]) -> Query<R>[|r| q1(r) && q2(r)];

fn or(self: Query<R>[@q1], rhs: Query<R>[@q2]) -> Query<R>[|r| q1(r) || q2(r)];

fn not(self: Query<R>[@q]) -> Query<R>[|r| !q(r)];

}

Crucially, as they are no longer subject to the positivity prerequisite, the Hindley generic arguments
can appear negatively under a disjunction or negation (as long as they also appear in a value-
dependent position as detailed in § 3.2), which lets us use them to compose the invariants of
sub-queries, to precisely track the invariants of the composed query.
Thus, using the type of and and the types of q1 and q2, F!"# infers that q (from Fig. 5) has the

type shown next to it in comments. This lets F!"# determine that q.run() returns a vector of items
each of which satis!es the condition in the assert.

2.3 Associated Generic Refinements
Generic re!nements scale up to provide a modular way to abstract speci!cations over Rust’s widely
used traits, and which mirrors Rust’s own associated types mechanism.
Safe Vector Indexing Rust’s Vec<T> is a workhorse type used ubiquitously to store and manipulate
collections of objects. Vector-bounds safety is one of the oldest use cases for re!nement types [32],

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 49. Publication date: January 2025.

49:8 Nico Lehmann, Cole Kurashige, Nikhil Akiti, Niroop Krishnakumar, and Ranjit Jhala

and so we might expect it would be straightforward to do vector-bounds checking with F!"#, e.g.,
to verify that the access vec[i] is safe in the following snippet, i.e., i is between 0 and vec.len().

fn sum(vec: &Vec<i32>) -> i32 {

let mut res = 0; let mut i = 0;

while i < vec.len() {

res += vec[i];

i += 1;

}

res

}

Trait-based Indexing Unfortunately, it is rather tricky to even specify vector access safety, because
Rust uses traits to make the indexing operation vec[i] extensible. The standard library de!nes a
trait Index—shown below on the left—that is parameterized by the type Idx used as the actual index.1
The trait has an associated type Output, which represents the result of the indexing operation. Thus,
the trait method index takes the value being indexed (self), the generic index (idx) and returns a
reference to Self::Output. The actual vec[i] operation inside sum uses a particular implementation
of the Index trait for Vec<T> using usize indices—shown below on the right—where the associated
type Output is specialized to T.
trait Index<Idx> { impl<T> Index<usize> for Vec<T> {

type Output; type Output = T;

fn index(&self, idx: Idx) -> &Self::Output; fn index(self: &Vec<T>, idx: usize) -> &T {...}

} }

Problem: Specifying Safe Vector Indexing The indirection introduced by the trait leaves us
with a conundrum: where do we specify that the index should be within bounds? One possibility is
to re!ne the signature of the index method in the trait implementation block:

impl<T> Index<usize> for Vec<T> {

fn index(self: &Vec<T>, idx: usize{idx < self.len}) -> &T { ... }

}

Now, the type checker could use the fact that the vec[i] operation in sum actually calls the above
method to use the re!ned API and thus enforce index safety. However, this route is unsound in
general as it is easy to bypass the check. For example, consider the below “wrapper” function to
index any container C with a usize:

fn get<C: Index<usize>>(c: C, i: usize) -> &C::Output { c[i] }

The above de!nition of get would typecheck. However, we could completely bypass the (static)
bounds check by replacing the v[i] in sumwith get(v,i)! Thus, our only viable option is to somehow
re!ne the de!nition of the Index trait. However, here we face a vexing puzzle. At the trait de!nition,
the underlying container and index are both generic: we do not even know we are talking about
vectors or usize indices, so how can we possibly re!ne the index method to require something so
speci!c as an arithmetic bound?
Solution: Associated Generic Re!nements We solve this conundrum by generalizing Horn-
and Hindley- generics to the trait setting as associated generic re!nements. At the trait-level, associ-
ated generic re!nements abstract over di"erent requirements for the di"erent implementations.
These generics can then be instantiated at the implementation-level, to the respective concrete
requirements. Let us see how associated generics allow us to specify safe vector indexing.

1We present a slightly simpli!ed account, the actual implementation uses another trait SliceIndex elided for clarity.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 49. Publication date: January 2025.

Generic Refinement Types 49:9

trait Index<Idx> {

type Output;

reft in_bounds(v: Self, idx: Idx) -> bool;

fn index(self: &Self[@v], idx: Idx { Self::in_bounds(v, idx) }) -> &Self::Output;

}

impl<T> Index<usize> for Vec<T> {

type Output = T;

reft in_bounds(v: Self, idx: Idx) -> bool { idx < v.len }

fn index(self: &Vec<T>, idx: usize) -> &T { ... }

}

Fig. 6. Specifying Safe Vector Indexing via an Associated Generic Refinement.

First, as shown at the top of Fig. 6, at the de!nition of trait Index, we extend Rust’s notion of
an associated (generic) type (e.g., Output) to de!ne an associated (generic) re!nement in_bounds that
is declared to be a binary predicate over Self (the generic container) and idx (the generic index).
The associated generic in_bounds as a trait-level is an analog of the Horn generic available (§ 2.1),
or Hindley generic proj, inv, q1 and q2 (§ 2.2). The concrete de!nition of in_bounds will be !lled
in at usage sites, in this case, the di"erent implementations of Index. However, we can use the
generic in_bounds in type speci!cations for the trait’s methods, akin to the use of the associated
type Self::Output. In particular, we can re!ne the type of the index method to require that the idx
passed in be such that Self::in_bounds(v, idx) holds, i.e., that the index idx is “within bounds”
for the container v.
Second, as shown in the bottom of Fig. 6, at the implementation of Index—where we “know”

that the indexing is specialized to Vec<T> with usize indices—we provide the actual concrete
implementation of in_bounds (for this instance) which speci!es that idx < v.len. Now, when
type checking sum, F!"# can use rustc’s trait normalization machinery to instantiate the generic
in_bounds in the precondition of index with the re!nement in the actual implementation used at
that call-site, thereby enforcing bounds safety!

Note that the associated generic eliminates the unsoundness introduced by wrappers like get, as
the generic precondition on the trait’s index method ensures that the de!nition of get does not
typecheck as is. Instead, we would have to write

fn get<C: Index<usize>>(c: C, i: usize{ C::in_bounds(c, i) }) -> &C::Output { c[i] }

and the moment we do so, the occurrence of get(v, i) in sum would again instantiate the generic
re!nement in_bounds to the instance for Vec at that call-site, thus enforcing bound safety.

2.4 Associated Generics are Hindley Generics
We conclude the overview by sketching how the classic typeclasses-as-dictionaries translation [30]
can be used to reduce Associated generics to Hindley generics, thereby showing the latter pro-
vides a solid foundation for the former. We illustrate the translation using the Index trait and the
implementation for Vec<i32> as an example (Fig. 6).
1. Translate trait into struct First, we translate the Index trait into a trait-struct IndexTrait
where the trait’s (1) associated types (e.g., Output) become extra type parameters, (2) methods
(e.g., index) become fn-valued !elds of the struct, and (3) associated re!nements (e.g., in_bounds)
translate to a Hindley generic for the struct.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 49. Publication date: January 2025.

49:10 Nico Lehmann, Cole Kurashige, Nikhil Akiti, Niroop Krishnakumar, and Ranjit Jhala

// trait Index translated into struct IndexTrait

struct IndexTrait<Self, Idx, Output>[hdl in_bounds: (Self, Idx) -> bool] {

index: fn(self: &Self[@v], idx: Idx { in_bounds(v, idx) }) -> &Output;

}

2. Translate impl into instance Next, given the concrete (monomorphic) trait implementation
of Index<usize> for Vec<i32>, we translate it into an impl-instance impl_index_vec_i32 that is an
instance of the corresponding trait-struct. The impl’s (1) associated types (e.g., Output) are specialized
to the concrete types (e.g., i32), (2) method implementations (e.g., index) are translated into concrete
function values (e.g., the actual lookup function), and crucially, (3) associated re!nements (e.g.,
in_bounds) are instantiated with the concrete re!nement.

// impl Index<usize> for Vec<i32> translated as instance

let impl_index_vec_i32: IndexTrait<Vec<i32>, usize, i32>[|v,idx| idx < v.len] = IndexTrait {

index: |self: &Vec<i32>, idx: usize{ idx < self.len }| -> &i32 { ... }

};

3. Translate trait bounds into explicit function parametersWe translate functions that use a
trait bound into functions taking an explicit parameter. This is illustrated below with the function
get where the C: Index<...> bound (on the left) is translated into an explicit parameter c_trait of
the correponding IndexTrait type instantiated with appropriate generics (on the right). Crucially,
notice that the associated generic in_bounds for the trait bound translates into the Hindley generic
for the trait-struct parameter. The actual use of the index method in the body is translated into a
call to the index !eld of the c_trait struct, and the in_bounds(c, i) precondition on i translate to
a call of the Hindley generic.

// get function with a trait bound // get translated to use a trait-struct

fn get<C: Index<usize>>(fn get_tx<C, Output>(

c_trait: &IndexTrait<C, usize, Output>[@in_bounds],

c: C, c: &C,

i: usize{ C::in_bounds(c, i) } i: usize { in_bounds(c, i)}

) -> &C::Output {) -> &Output {

c[i] (c_trait.index)(c, i)

} }

4. Translate bound instances by passing impl-instances Finally, we translate a call to get,
like the one shown below on the left, into a version like the one on the right that explicitly passes
impl_index_vec_i32 as the argument to the translated trait-bound parameter c_trait.

// sum client that uses get // sum translated to use impl-instance

fn sum(vec: &Vec<i32>) -> i32 { fn sum_tx(vec: &Vec<i32>) -> i32 {

let mut res = 0; let mut res = 0;

let mut i = 0; let mut i = 0;

while i < vec.len() { while i < vec.len() {

res += get(vec, i); res += get_tx(impl_index_vec_i32, vec, i);

i += 1; i += 1;

}; };

res res

} }

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 49. Publication date: January 2025.

Generic Refinement Types 49:11

Base 𝑁𝑁 := Z int
| B bool

Sort 𝑁 ::= 𝑁𝑁 base
| 𝑁𝑁 → 𝑁𝑁 func.

Re!. 𝑂 ::= 𝑃 | tt | " | 𝑀 atom
| 𝑂 ↓ 𝑂 | 𝑂 ↔ 𝑂 | ¬𝑂 bool
| 𝑂 𝐿𝑀 𝑂 | 𝑂 ↗ 𝑂 arith
| 𝐿𝑀 : 𝑁 . 𝑂 | 𝑂 𝑂 func.

Type 𝑄 ::= {𝑅 [𝑂] | 𝑂 } re!nement
| {𝑀. 𝑅 [𝑀] | 𝑂 } existential
| 𝑄 → 𝑄 function

RCtx. ω := · | ω,𝑀 :𝑂 𝑁 | ω, 𝑂

Mode 𝑆 := hdl hindley
| hrn horn

Scheme 𝑇 := 𝑄 type
| ↑𝑀 :𝑂 𝑁 . 𝑇 generalization

Expr. 𝑈 ::= 𝑉 variable
| 𝑊 constant
| op(𝑈1, . . . , 𝑈𝑃) operation
| 𝐿𝑉 . 𝑈 lambda
| 𝑈 (𝑈1, . . . , 𝑈𝑃) application
| 𝑈 : 𝑄 ascription

PCtx. ε := · | ε, 𝑉 : 𝑄

Fig. 7. Syntax of 𝐿𝐿 . An operation ↗ is either + or ↘. A relation 𝐿𝑀 is either = or >.

At this point, F!"# instantiates the Hindley generic for get_tx with the concrete re!nement
associated with impl_index_vec_i32, and hence, checks the precondition on the index i, namely
that i < vec.len.

3 A Core Calculus of Generic Refinements
Next, we formalize the key aspects of generic re!nement types in a core calculus 𝐿𝐿 , an extension
of the simply typed 𝐿-calculus with generic re!nements.

3.1 Syntax
Fig. 7 summarizes the syntax of 𝐿𝐿 . We stratify the syntax into two layers: re!nements (and their
sorts), and expressions (and their types). Our approach is generic over an underlying SMT decidable
logic used for re!nements. Since our system is syntactic in nature, we !x a logic of linear arithmetic
and uninterpreted functions for illustration.
Sorts A base sort 𝑁𝑁 is either an integer (Z) or a boolean (B). A sort 𝑁 generalizes base sorts to
also include function sorts. We distinguish between base and function sorts as, to preserve SMT-
based decidable checking, our algorithmic system will require that generic re!nements are only
instantiated with re!nement-level functions that take in base-sorted arguments (§ 3.2).
Re!nements The simplest re!nement is an atom which is either an integer literal 𝑃, the boolean
literals tt (true) or " (false), or a re!nement variable 𝑀. Further, we can combine re!nements using
the boolean connectives ↓, ↔, and ¬, or the arithmetic operators =, +, ↘, and >. Finally, 𝐿𝐿 also
includes re!nement applications 𝑂 𝑂 and re!nement abstractions 𝐿𝑀 : 𝑁 . 𝑂 . For example, the ensures
clause in the signature for get in Fig. 2 uses a re!nement abstraction 𝐿𝑋 : Z. available 𝑋 ↔¬(𝑋 = idx),
where available and idx are re!nement variables.
Types 𝐿𝐿 is parameterized by a family of base types 𝑅. For illustration, we assume we have int
and bool as base types. A re!nement type {𝑅 [𝑂1] | 𝑂2} instantiates a base type 𝑅 with a re!nement
𝑂1 attaching a constraint 𝑂2. Unlike a traditional re!nement type system, this syntax does not bind
a variable. Re!nement variables are introduced via re!nement generalization or existential types
(discussed next). When writing {𝑅 [𝑂1] | 𝑂2}, the intuitive meaning of 𝑂2 is a predicate that must be
true. Meanwhile, 𝐿𝐿 does not have an opinion on the meaning of the re!nement application 𝑅 [𝑂1].
We only assume a base type 𝑅 has a corresponding sort 𝑅𝑀 and must be applied to re!nements of
that sort. Syntactically, the meaning of a generic re!nement is given by its API as we discuss later

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 49. Publication date: January 2025.

49:12 Nico Lehmann, Cole Kurashige, Nikhil Akiti, Niroop Krishnakumar, and Ranjit Jhala

in this section. In § 5, we give a semantic interpretation of generic re!nements via a translation into
the polymorphic contract calculus [24]. 𝐿𝐿 also has function types 𝑄 → 𝑄 , and a limited form of
existential types {𝑀. 𝑅 [𝑀] | 𝑂 }, denoting a re!nement type {𝑅 [𝑀] | 𝑂 } where 𝑀 has been existentially
quanti!ed. Finally, we write 𝑅 [𝑂] as short for {𝑅 [𝑂] | tt} and 𝑅 as short for {𝑀. 𝑅 [𝑀] | tt}.
Schemes A scheme 𝑇 is a type 𝑄 over which various re!nement variables 𝑀 have been quanti!ed
(i.e., bound). We use two inference modes—hrn and hdl—to respectively denote whether a given
re!nement variable 𝑀 is a Horn generic re!nement (§ 2.1) or a Hindley generic re!nement (§ 2.2).
Note that unlike many formulations of re!nement types, we use generic re!nements and quan-
ti!cation instead of dependent function binders. For example, in a system like the one in [14], we
can write a dependent function type (𝑉 : int) → {𝑌 : int | 𝑌 < 𝑉} denoting a function that takes
an integer 𝑉 and returns some other integer less than 𝑉 . In 𝐿𝐿 , the same function is speci!ed via
the scheme that generalizes the input integer with a re!nement variable 𝑀1 that is then used to
constrain the output integer:

↑𝑀1 :hdl Z. int[𝑀1] → {𝑀2 . int[𝑀2] | 𝑀2 < 𝑀1}

Expressions Finally, the expressions 𝑈 of 𝐿𝐿 include variables 𝑉 , base constants 𝑊 (including
numbers, booleans, etc.), application of primitive operations op(𝑈1, . . . , 𝑈𝑃), lambda abstractions
𝐿𝑉 . 𝑈 , applications 𝑈 (𝑈1, . . . , 𝑈𝑃), and type ascriptions 𝑈 : 𝑄 . Each constant 𝑊 has a corresponding
type ty(𝑊). Similarly, each operation op has a scheme given by scheme(op). The set of constants
and operations constitute the API de!ning the meaning of generic re!nements. For example, given
the base type int and its corresponding sort int𝑀 = Z, we de!ne int[𝑂] by de!ning the type of
numeric constants and arithmetic operations as follows:

ty(0) := int[0]
ty(42) := int[42]
scheme(+) := ↑𝑀1 :hdl Z,𝑀2 :hdl Z. int[𝑀1] → int[𝑀2] → int[𝑀1 + 𝑀2]
scheme(/) := ↑𝑀1 :hdl Z,𝑀2 :hdl Z. int[𝑀1] → {int[𝑀2] | 𝑀2 ω 0} → int[𝑀1/𝑀2]

Similarly, we can de!ne the Query type discussed in § 2.2 assuming it is indexed by a row sort and
giving schemes for the operations in its API, e.g.:

scheme(and) := ↑𝑀1 :hdl row → B,𝑀2 :hdl row → B.
Query[𝑀1] → Query[𝑀2] → Query[𝐿𝑀3 : row. 𝑀1 𝑀3 ↓ 𝑀2 𝑀3]

3.2 Well-formedness
𝐿𝐿 has re!nement-level 𝐿-abstractions and applications, but the system carefully controls where
they occur to ensure that type checking only generates decidable, !rst-order SMT validity queries.
We achieve this by ensuring that types are well-formed, meaning, intuitively, that (I1) Horn generic
variables, i.e., bound as ↑𝑀 :hrn 𝑁 . 𝑇, only appear in 𝑇 under top-level conjunctions where they can be
instantiated via constrained Horn clauses at application sites; (I2) re!nement variables 𝑀 are either
base-sorted, or are functions that take base-sorted inputs; (I3) re!nement abstractions do not appear
arbitrarily nested but are only used as generic arguments where they can be eliminated as part of
constraint generation; and (I4) Hindley generic variables, i.e., bound as ↑𝑀 :hdl 𝑁 . 𝑇, appear in 𝑇 in
a value-dependent position that guarantees they can be syntactically instantiated via uni!cation
at application sites. These invariants are enforced by the well-sortedness and well-formedness
judgments whose syntax-directed rules are summarized in Fig. 8 and Fig. 9.
Re!nement Contexts A re!nement context ω is a sequence of re!nement bindings 𝑀 :𝑂 𝑁 and
re!nement constraints 𝑂 (used during type-checking). We write ω(𝑀) = (𝑆,𝑁) to extract the mode

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 49. Publication date: January 2025.

Generic Refinement Types 49:13

Well-sorted Re!nements ω ≃𝑄 𝑂 : 𝑁

WS’!"#
ω ≃⇐ 𝑂 : 𝑁𝑁 ω(𝑀) = (hrn,𝑁𝑁 → B)

ω ≃⇒ 𝑀 𝑂 : B

WS’!$%
ω(𝑀) = (hdl,𝑁)
ω ≃𝑄 𝑀 : 𝑁

WS’I()

ω ≃𝑄 𝑃 : Z

WS’))

ω ≃𝑄 tt : B

WS’**

ω ≃𝑄 " : B

WS’A(+
ω ≃𝑄 𝑂1 : B ω ≃𝑄 𝑂2 : B

ω ≃𝑄 𝑂1 ↓ 𝑂2 : B

WS’O,
ω ≃⇐ 𝑂1 : B ω ≃⇐ 𝑂2 : B

ω ≃𝑄 𝑂1 ↔ 𝑂2 : B

WS’N-)
ω ≃⇐ 𝑂 : B
ω ≃𝑄 ¬𝑂 : B

WS’R%!
ω ≃⇐ 𝑂1 : 𝑁𝑁 ω ≃⇐ 𝑂2 : 𝑁𝑁

ω ≃𝑄 𝑂1 𝐿𝑀 𝑂2 : B

WS’O.
ω ≃⇐ 𝑂1 : Z ω ≃⇐ 𝑂2 : Z

ω ≃𝑄 𝑂1 ↗ 𝑂2 : Z

WS’A..
ω ≃⇐ 𝑂1 : 𝑁𝑁 → 𝑁⇑𝑁 ω ≃⇐ 𝑂2 : 𝑁𝑁

ω ≃𝑄 𝑂1 𝑂2 : 𝑁⇑𝑁

Fig. 8. Well-Sorted Refinements

𝑆 and sort 𝑁 associated to a variable. When tracking variables introduced by 𝐿-abstractions we
omit the mode from the binding as it is not relevant. Formaly, we assume it has mode hdl.
Well-sorted Re!nements The well-sortedness judgment ω ≃𝑄 𝑂 : 𝑁 says that a re!nement 𝑂 has
sort 𝑁 at level 𝑍 in a re!nement context ω. The judgment is parameterized by a level 𝑍 which is one
of ⇒ (at the top-level, not under a disjunction, or negation), or ⇐ (any other position). Fig. 8 shows
the rules that establish the well-sortedness judgment. The majority of the rules use the syntax of
boolean and arithmetic operators to ensure that the operands are well-sorted, until they hit the
base cases for B or Z literals, or a variable.WS’!"# restricts variables bound with hrn mode to be
applied to a re!nement at the top-level (I1). On the other hand, a re!nement variable with hdl
mode is allowed at any level (WS’!$%). WS’/.. allows re!nement abstractions to be well-sorted
as long as the input parameter is of base sort (I2). Note that lambda abstractions are not well-sorted
under these rules, but can appear in a generic application as discussed next (I3).
Well-formed Generic Application The judgment ω ≃𝑅 𝑅 [𝑂] [ϑ] (ignore 𝑎 and ϑ for now)
states that the generic application 𝑅 [𝑂] is well-formed. This essentially means that 𝑂 is well-sorted
with sort 𝑅𝑀 (WF’-)0%,). Additionally, we allow !rst order re!nement abstractions to be used as
generic arguments (WF’!/1). Finally, we further require variables to be used at the appropriate
mode (WF’2/,’ andWF’2/,+). Each base type 𝑅 is associated with a mode 𝑅𝑂 and it can only be
instantiated with variables bound with that mode.
Well-formed Types The type well-formedness judgment ω ≃𝑅 𝑄 type [ϑ] says that the type
𝑄 is well-formed under ω with variables ϑ used in value-dependent position, when occurring
under polarity 𝑎 (either + or ↘). We call value-dependent a position that is tied to a value known at
call-sites. Variables used in these positions are called value-dependent. A value-dependent variable
is guaranteed to be uni!able when calling a function (I4). Our value-dependent notion is related to
the value-determined notion of Economou et al. [10], however, they are concerned with indexes
being uniquely determined by their use, in a semantic sense, whereas we take a more syntactic
view where our primary focus is in automatically instantiating re!nement generics at call-sites.

Fig. 9 summarizes the rules establishing the well-formedness judgment.WF’,%*) checks that a
re!nement type {𝑅 [𝑂1] | 𝑂2} is well-formed by checking the application 𝑅 [𝑂1] is well-formed and
the constraint 𝑂2 is bool-sorted. In the case where 𝑂1 is a re!nement variable, the generic application
judgment will add the variable to the set of value-dependent variables if the type occurs negatively

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 49. Publication date: January 2025.

49:14 Nico Lehmann, Cole Kurashige, Nikhil Akiti, Niroop Krishnakumar, and Ranjit Jhala

Well-formed Generic Application ω ≃± 𝑅 [𝑂] [ϑ]

WF’2/,’
ω(𝑀) = (𝑅𝑂,𝑅𝑀)
ω ≃↘ 𝑅 [𝑀] [𝑀]

WF’2/,+
ω(𝑀) = (𝑅𝑂,𝑅𝑀)
ω ≃+ 𝑅 [𝑀] [·]

WF’!/1
𝑅𝑀 = 𝑁𝑁 → 𝑁 ⇑

𝑁
ω,𝑀 : 𝑁𝑁 ≃⇒ 𝑂 : 𝑁 ⇑

𝑁

ω ≃± 𝑅 [𝐿𝑀 : 𝑁𝑁 . 𝑂] [·]

WF’-)0%,
𝑂 ω 𝑀 ↓ 𝑂 ω 𝐿𝑀 : 𝑁 . 𝑂 ⇑

ω ≃⇒ 𝑂 : 𝑅𝑀
ω ≃± 𝑅 [𝑂] [·]

Well-formed Types ω ≃± 𝑄 type [ϑ]

WF’,%*)
ω ≃± 𝑅 [𝑂1] [ϑ] ω ≃⇒ 𝑂2 : B

ω ≃± {𝑅 [𝑂1] | 𝑂2} type [ϑ]

WF’%#$&)&
ω,𝑀 :hdl 𝑅𝑀 ≃⇒ 𝑂 : B

ω ≃± {𝑀. 𝑅 [𝑀] | 𝑂 } type [·]

WF’*"(
ω ≃¬𝑅 𝑄1 type [ϑ1] ω ≃𝑅 𝑄2 type [ϑ2]

ω ≃𝑅 𝑄1 → 𝑄2 type [ϑ1 ⇓ ϑ2]

Well-formed Schemes ω ≃ 𝑇 sch [ϑ]

WF’T3
ω ≃+ 𝑄 type [ϑ]
ω ≃ 𝑄 sch [ϑ]

WF’!"#
ω,𝑀 :hrn 𝑁 ≃ 𝑇 sch [ϑ]

ω ≃ ↑𝑀 :hrn 𝑁 . 𝑇 sch [ϑ]

WF’!$%
ω,𝑀 :hdl 𝑁 ≃ 𝑇 sch [ϑ] 𝑀 ⇔ ϑ

ω ≃ ↑𝑀 :hdl 𝑁 . 𝑇 sch [ϑ]

Fig. 9. Well-Formed Types and Schemes

(WF’2/,’). For existential types {𝑀. 𝑅 [𝑀] | 𝑂 }, the rule WF’%#$&)& checks that 𝑂 is bool-sorted in
the re!nement context ω extended with a binding for 𝑀. Finally, for function types 𝑄1 → 𝑄2, the rule
WF’F"(recursively checks the input and output types are well-formed after $ipping the polarity
for the input type, and states the set of value-dependent variables is the union of the sets returned
for the input and output types.
Well-formed Schemes The scheme well-formedness judgment ω ≃ 𝑇 sch [ϑ] says that the
scheme 𝑇 is well-formed under ω with value-dependent variables ϑ. Fig. 9 summarizes the rules
establishing the judgment. In the base case, the ruleWF’T3 checks that the scheme 𝑄 is well-formed
in a positive polarity. In the case where the scheme quanti!es over a constraint-generic re!nement
variable ↑𝑀 :hrn 𝑁 . 𝑇, the rule WF’!"# recursively checks the scheme 𝑇 after suitably extending
the re!nement context with 𝑀. RuleWF’!$% is similar, but additionally checks that variables of
hdl mode are in the set of value-dependent variables.
Example 1: Ill-formed Horn Generics With respect to Horn generics, the main purpose of
well-formedness is to ensure they do not appear under a negation or disjunction. For example,
consider the following (incorrect) scheme for the or operator.

↑𝑀1 :hrn row → B,𝑀2 :hrn row → B. Query[𝑀1] → Query[𝑀2] → Query[𝐿𝑀3 : row. 𝑀1 𝑀3 ↔ 𝑀2 𝑀3]
This de!nition is ill-formed because the application 𝑀1 𝑀3 (resp. 𝑀2 𝑀3) appears under a disjunction.
Concretely, when checking the body of the lambda the level starts at⇒ (WF’!/1) and then switches
to ⇐ after going through the disjunction (WS’O,). Consequently, the application of the Horn

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 49. Publication date: January 2025.

Generic Refinement Types 49:15

Re"nements 𝑂 ::= · · · | 𝑀 | 𝑏 (𝑂1, . . . , 𝑂𝑃)
SMT Terms 𝑐 ::= 𝑃 | tt | " | 𝑀 | (𝑐1, . . . , 𝑐𝑃) | 𝑑𝑆 𝑐

| 𝑐 ↓ 𝑐 | 𝑐 ↔ 𝑐 | ¬𝑐 | 𝑐 𝐿𝑀 𝑐 | 𝑐 ↗ 𝑐 | 𝑐 𝑐
Predicates 𝑎 := 𝑐 | 𝑏 (𝑐1, . . . , 𝑐𝑃) | 𝑎 ↓ 𝑎

Constraints ϖ := 𝑎 | ϖ ↓ ϖ | ↑𝑀 : 𝑁 . ϖ | ϖ ↖ ϖ
Evar context ϱ ::= · | ϱ,𝑀 : 𝑁 | ϱ,𝑀 : 𝑁 =𝑂

Fig. 10. Syntax of Constraints and Environments for Algorithmic Typing

parameter is not accepted because WS’!"# only accepts applications of Horn parameters when
the level is ⇒.
Example 2: Ill-formed Hindley Generics The de!nition above would be well-formed with
Hindley generics because they are allowed under a disjunction. However, Hindley generics must
appear in a value-dependent position which imposes a di"erent trade o". Intuitively, this means
they are used in a generic application in input position. For instance, consider a function that
computes the maximum between two integers. We may wish to abstract over some predicate 𝑎
satis!ed by both inputs and specify that the output also satis!es it. We could try to de!ne this by
abstracting over 𝑎 with a Hindley generic:

↑𝑎 :hdl Z→ B. {𝑀. int[𝑀] | 𝑎 𝑀} → {𝑀. int[𝑀] | 𝑎 𝑀} → {𝑀. int[𝑀] | 𝑎 𝑀}
This de!nition is ill-formed because 𝑎 is not used in a generic application in any of the inputs.
Concretely, the parameter 𝑎 does not appear in the set ϑ of value-dependent variables because
WF’2/,’ never applies.

4 Algorithmic Typing
The key challenge that generic re!nements pose is that of instantiating the generic re!nement
parameters at call-sites. (Requiring the programmer spell those out would make the system rather
too tiresome to use.) Next, we present an algorithmic type checker for 𝐿𝐿 that automatically
synthesizes the instantiations of generic re!nements.

All the rules in the algorithmic system presuppose well-formedness of their inputs. This ensures
that generic re!nements, both Hindley and Horn, can be automatically instantiated at function
calls. Note that well-formedness is not required for soundness (§ 5.3) but to guarantee predictable
inference. We could have instead chosen to fail “lazily” at call-sites if generics re!nements cannot
be instantiated.

4.1 Inference Variables and Constraints
We extend the syntax of re!nements with two types of inference variables (Fig. 10) used to instantiate
parameters in the two possible modes (hdl and hrn).
Instantiating Hindley Parameters The !rst kind of variables are evars 𝑀: existential re!nement
variables [10] that stand for the unknown indices that a hdl-generic re!nement parameter can be
instantiated with at a call-site, not dissimilar to existential variables used in Rocq [4]. Speci!cally,
the algorithmic typing rules introduce evars at call-sites, and use Evar Contexts ϱ (Fig. 10) to track
their sorts (𝑀 : 𝑁) and optionally, the re!nement 𝑂 they have been solved to (𝑀 : 𝑁 =𝑂).
Instantiating Horn Parameters The second kind of variables are Horn variables 𝑏 that represent
unknown relations (predicates) over di"erent re!nements. Horn variables are used at call-sites to
instantiate hrn-generic re!nement parameters, which cannot be directly solved via uni!cation

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 49. Publication date: January 2025.

49:16 Nico Lehmann, Cole Kurashige, Nikhil Akiti, Niroop Krishnakumar, and Ranjit Jhala

Subtyping ω;ϱ1 ≃ 𝑄1 <: 𝑄2 ↙ ϱ2;ϖ

<:%4
ω;ϱ ≃ 𝑂1 ∝ [ϱ]𝑂2 : 𝑅𝑀 ↙ ϱ⇑;ϖ

ω;ϱ ≃ {𝑅 [𝑂1] | tt} <: {𝑅 [𝑂2] | tt} ↙ ϱ⇑;ϖ

<:*"(
ω;ϱ ≃ 𝑄 ⇑1 <: 𝑄1 ↙ ϱ⇑;ϖ1 ω;ϱ⇑ ≃ 𝑄2 <: 𝑄 ⇑2 ↙ ϱ⇑⇑;ϖ2

ω;ϱ ≃ 𝑄1 → 𝑄2 <: 𝑄 ⇑1 → 𝑄 ⇑2 ↙ ϱ⇑⇑;ϖ1 ↓ ϖ2

<:,%*)/!
ω, 𝑂2;ϱ ≃ {𝑅 [𝑂1] | tt} <: 𝑄 ↙ ϱ⇑;ϖ

ω;ϱ ≃ {𝑅 [𝑂1] | 𝑂2} <: 𝑄 ↙ ϱ⇑; 𝑂2 ↖ ϖ

<:,%*)/,
ω;ϱ ≃ 𝑄 <: {𝑅 [𝑂1] | tt} ↙ ϱ⇑;ϖ

ω;ϱ ≃ 𝑄 <: {𝑅 [𝑂1] | 𝑂2} ↙ ϱ⇑; [ϱ⇑]𝑂2 ↓ ϖ

<:%#$&)&/!
ω,𝑀 :hdl 𝑅𝑀 ;ϱ ≃ {𝑅 [𝑀] | 𝑂 } <: 𝑄 ↙ ϱ⇑;ϖ

ω;ϱ ≃ {𝑀. 𝑅 [𝑀] | 𝑂 } <: 𝑄 ↙ ϱ⇑;↑𝑀 : 𝑅𝑀 . ϖ

<:%#$&)&/,
ω;ϱ,𝑀 : 𝑅𝑀 ≃ 𝑄 <: {𝑅 [𝑀] | 𝑂 [𝑀/𝑀]} ↙ ϱ,𝑀 : 𝑅𝑀=𝑂 ⇑;ϖ

ω;ϱ ≃ 𝑄 <: {𝑀. 𝑅 [𝑀] | 𝑂 } ↙ ϱ;ϖ

Re!nement Equivalence ω;ϱ ≃ 𝑂1 ∝ 𝑂2 : 𝑁 ↙ ϱ⇑;ϖ

∝$(&)
𝑂 ground ϱ ↭ ϱ1,𝑀 : 𝑁⇑,ϱ2

ω;ϱ ≃ 𝑂 ∝ 𝑀 : 𝑁 ↙ ϱ1,𝑀 : 𝑁⇑=𝑂 ,ϱ2; tt

∝5/&%
↑𝑀 ⇔ 𝑒𝑓𝑔(ϱ) . 𝑂2 ω 𝑀

ω;ϱ ≃ 𝑂1 ∝ 𝑂2 : 𝑁𝑁 ↙ ϱ; 𝑂1 = 𝑂2

∝𝑏/!
ϖ ↭ 𝑏 (𝑂) ↖ 𝑂 ⇑ ↓ 𝑂 ⇑ ↖ 𝑏 (𝑂)

ω;ϱ ≃ 𝑏 (𝑂) ∝ 𝑂 ⇑ : B ↙ ϱ;ϖ

∝𝑏/,
ϖ ↭ 𝑏 (𝑂) ↖ 𝑂 ⇑ ↓ 𝑂 ⇑ ↖ 𝑏 (𝑂)

ω;ϱ ≃ 𝑂 ⇑ ∝ 𝑏 (𝑂) : B ↙ ϱ;ϖ

∝*"(
ω,𝑀 : 𝑁𝑁 ;ϱ ≃ 𝑂1 𝑀 ∝ 𝑂2 𝑀 : 𝑁⇑𝑁 ↙ ϱ⇑;ϖ

ω;ϱ ≃ 𝑂1 ∝ 𝑂2 : 𝑁𝑁 → 𝑁⇑𝑁 ↙ ϱ;↑𝑀 :𝑁𝑁 . ϖ

Fig. 11. Subtyping and Refinement Equivalence

as they require a !xpoint computation. Our algorithmic typing rules instantiate hrn parameter
by following the recipe of liquid typing [6, 23] introducing a fresh Horn variable to represent the
unknown predicate. Using applications 𝑏 (𝑂1, . . . , 𝑂𝑃) of unknown predicates, the system builds a
Horn Constraint ϖ whose solution yields a valid instantiation of the generic re!nement parameters.
Note that constraints ϖ are built from a restricted set of SMT terms 𝑐 that do not contain re!nement
𝐿-abstractions. The type checking rules guarantee that abstractions are eliminated from re!nements
when generating the constraint. Moreover, note that invariant (I1), ensured by well-formedness
(§ 3.2), guarantees that we get a valid Horn constraint by verifying that applications of hrn
parameters only appear at the top-level, and not under negations or disjunctions.

4.2 Subtyping
𝐿𝐿 uses an algorithmic subtyping judgment of the form ω;ϱ1 ≃ 𝑄1 <: 𝑄2 ↙ ϱ2;ϖ which says that
the type 𝑄1 is a subtype of 𝑄2, in the re!nement context ω using the evar context ϱ1, with the evar
context updated to ϱ2, if the Horn constraint ϖ is satis!able.
Subtyping Rules Fig. 11 shows the syntax-directed rules that establish the subtyping judgment.
The rule <:*"(is the usual one for function types that recurses contra-variantly on inputs and
co-variantly on outputs, conjoining the constraints ϖ1 and ϖ2 that are generated by each. In rule
<:,%*)/!, the predicate 𝑂2 appears on the left, and it is then added as an assumption that can be
used to prove the rest of the constraint ϖ. Dually, in rule <:,%*)/,, 𝑂2 appears on the right and has

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 49. Publication date: January 2025.

Generic Refinement Types 49:17

to be proven. Thus, it is conjoined with the constraint ϖ. Note that we substitute in 𝑂2 all solved
evars in ϱ⇑ with their solution (written [ϱ⇑]𝑂2). This is to ensure that evars are eagerly resolved,
which we maintain as an invariant of the system. Rule <:%#$&)&/! adds the existential variable to
the context by universally quantifying over it in the resulting constraint. The dual rule, <:%#$&)&/,,
must !nd a suitable re!nement to instantiate the re!nement variable on the right. To this end, the
variable is replaced by an evar whose solution must be found by the recursive invocation of the
rule as speci!ed by the output evar context in the premise. Finally, the rule <:%4 delegates the work
of checking generic arguments to the re!nement equivalence judgment.
Re!nement Equivalence The judgment ω;ϱ ≃ 𝑂1 ∝ 𝑂2 : 𝑁 ↙ ϱ;ϖ checks if two re!nements are
equivalent at sort 𝑁 . For function sorts (∝*"(), we verify that the equivalence holds extensionally
by quantifying over the input variable and ensuring that the re!nements applied to this variable are
equivalent at the output sort. To check for equivalence at bool when Horn variables are involved,
we generate a double implication (<: 𝑏/! and <: 𝑏/,) ensuring the constraint is a well-formed Horn
constraint. The rule ∝$(&) instantiates an evar 𝑀 that is still not solved in ϱ by unifying it with a
ground re!nement 𝑂 that does not contain any evars. Finally, ∝5/&% kicks in when 𝑂2 is not an evar,
in which case it generates a constraint requiring 𝑂1 and 𝑂2 to be equal.

4.3 Typing
Finally, 𝐿𝐿 uses a bidirectional algorithmic typing judgment inspired by the system of Economou
et al. [10]. The rules establishing the judgments are shown in Fig. 12. The type checking judgment
ω; ε;ϱ ≃ 𝑈 ′ 𝑇 ↙ ϱ⇑;ϖ says that under re!nement context ω, program context ε (Fig. 7), and evar
context ϱ, the expression 𝑈 has the scheme 𝑇 outputing context ϱ⇑ if the constraint ϖ is satis!able.
T’A5& checks a lambda abstraction 𝐿𝑉 . 𝑈 against a function type 𝑄1 → 𝑄2 by checking that the

body 𝑈 has type 𝑄2 in the program context ε extended with a binding 𝑉 : 𝑄1. The subsumption
rule T’S"5 is mostly standard. We only draw attention to the fact that the output constraints of
the synthesis and subtyping judgments are conjoined in the generated constraint. The last rule,
T’F-,/!!, checks the expression 𝑈 against a generic scheme by extending the re!nement context
and universally quantifying over the re!nement variable in the generated constraint.
The synthesis judgment ω; ε ≃ 𝑈 ↖ 𝑇 ↙ ϖ says that under re!nement context ω and program

context ε the expression 𝑈 synthesizes scheme 𝑇 if the constraint ϖ is satis!able. T’V/, says that
variables 𝑉 get their types from the program context ε, and similarly T’C-(says that base constants
𝑊 are assigned their builtin types ty(𝑊), and this happens unconditionally, i.e., with the trivial Horn
constraint tt. As usual, the ascription rule T’/&6 allows switching to check mode.
The interesting action happens in the rules that check applications for functions and primitive

operations, as that is where we have to instantiate (i.e., synthesize) the generic re!nements for the
callee using evars or Horn variables. T’A.. checks an application 𝑈 (𝑈⇑1, . . . , 𝑈⇑𝑃) by !rst synthesizing
a scheme 𝑇 for the callee 𝑈 and then invoking the function application judgment to check that when
𝑇 is applied to the arguments 𝑈⇑1, . . . , 𝑈

⇑
𝑃 in an empty evar context, the result is the type 𝑄 and another

empty evar context, which will, informally speaking, ensure that all the evars in 𝑇 are instantiated
to ground re!nements. The Horn constraint for the application is then the conjunction of the
constraints ϖ1—generated by the callee’s typing—and ϖ2—generated by the application judgment.
The rule T’O. is similar, but uses the builtin scheme for op as the callee’s scheme.
Function Applications Fig. 12 shows the rules for establishing the function application judgment
ω; ε;ϱ ≃ [𝑇] (𝑈) ∞ 𝑄 ↙ ϱ⇑;ϖ which says that when the scheme 𝑇 is applied to the arguments 𝑈 in
the evar contextϱ, the result is the type 𝑄 , with the evar context updated toϱ⇑, if the Horn constraint
ϖ holds. (Recall that the evar contexts are used to track which evars need to be instantiated, denoted
by 𝑀 : 𝑁 , and which have already been solved, denoted by 𝑀 : 𝑁 =𝑂 .) We establish the application

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 49. Publication date: January 2025.

49:18 Nico Lehmann, Cole Kurashige, Nikhil Akiti, Niroop Krishnakumar, and Ranjit Jhala

Type Checking ω; ε;ϱ ≃ 𝑈 ′ 𝑇 ↙ ϱ;ϖ

T’F-,/!!
ω,𝑀 :𝑂 𝑁 ; ε;ϱ ≃ 𝑈 ′ 𝑇 ↙ ϱ⇑;ϖ

ω; ε;ϱ ≃ 𝑈 ′ ↑𝑀 :𝑂 𝑁 . 𝑇 ↙ ϱ⇑;↑𝑀 : 𝑁 . ϖ

T’S"5
ω; ε ≃ 𝑈 ↖ 𝑄1 ↙ ϖ1 ω;ϱ ≃ 𝑄1 <: 𝑄2 ↙ ϱ⇑;ϖ2

ω; ε;ϱ ≃ 𝑈 ′ 𝑄2 ↙ ϱ⇑;ϖ1 ↓ ϖ2

T’A5&
ω; ε, 𝑉 : 𝑄1;ϱ ≃ 𝑈 ′ 𝑄2 ↙ ϱ⇑;ϖ

ω; ε;ϱ ≃ 𝐿𝑉 . 𝑈 ′ 𝑄1 → 𝑄2 ↙ ϱ⇑;ϖ

Type Synthesis ω; ε ≃ 𝑈 ↖ 𝑇 ↙ ϖ

T’V/,
ε(𝑉) = 𝑄

ω; ε ≃ 𝑉 ↖ 𝑄 ↙ tt

T’C-(

ω; ε ≃ 𝑊 ↖ ty(𝑊) ↙ tt

T’A&6
ω; ε; · ≃ 𝑈 ′ 𝑇 ↙ ·;ϖ
ω; ε ≃ 𝑈 : 𝑇 ↖ 𝑇 ↙ ϖ

T’A..
ω; ε ≃ 𝑈 ↖ 𝑇 ↙ ϖ1 ω; ε; · ≃ [𝑇] (𝑈⇑1, . . . , 𝑈⇑𝑃) ∞ 𝑄 ↙ ·;ϖ2

ω; ε ≃ 𝑈 (𝑈⇑1, . . . , 𝑈⇑𝑃) ↖ 𝑄 ↙ ϖ1 ↓ ϖ2

T’O.
scheme(op) = 𝑇 ω; ε; · ≃ [𝑇] (𝑈1, . . . , 𝑈𝑃) ∞ 𝑄 ↙ ·;ϖ

ω; ε ≃ op(𝑈1, . . . , 𝑈𝑃) ↖ 𝑄 ↙ ϖ

Typing Applications ω; ε;ϱ ≃ [𝑇] (𝑈) ∞ 𝑄 ↙ ϱ⇑;ϖ

FA’!$%
ω; ε;ϱ,𝑀 : 𝑁 ≃ [𝑇 [𝑀/𝑀]] (𝑈) ∞ 𝑄 ↙ ϱ⇑,𝑀 : 𝑁 =𝑂 ;ϖ

ω; ε;ϱ ≃ [↑𝑀 :hdl 𝑁 . 𝑇] (𝑈) ∞ 𝑄 ↙ ϱ⇑;ϖ

FA’R%&

ω; ε;ϱ ≃ [𝑄] (·) ∞ 𝑄 ↙ ϱ; tt

FA’!"#
𝑏 fresh vars(ω) = 𝑀⇑ 𝑂 = 𝐿𝑀 : 𝑁 . 𝑏 (𝑀,𝑀⇑)

ω; ε;ϱ ≃ [𝑇 [𝑂/𝑀]] (𝑈) ∞ 𝑄 ↙ ϱ⇑;ϖ

ω; ε;ϱ ≃ [↑𝑀 :hrn 𝑁 . 𝑇] (𝑈) ∞ 𝑄 ↙ ϱ⇑;ϖ

FA’F"(
ω; ε;ϱ ≃ 𝑈 ′ 𝑄1 ↙ ϱ⇑;ϖ1

ω; ε;ϱ⇑ ≃ [[ϱ⇑]𝑄2] (𝑈⇑) ∞ 𝑄 ⇑ ↙ ϱ⇑⇑;ϖ2

ω; ε;ϱ ≃ [𝑄1 → 𝑄2] (𝑈, 𝑈⇑) ∞ 𝑄 ⇑ ↙ ϱ⇑⇑; [ϱ⇑⇑]ϖ1 ↓ ϖ2

Fig. 12. Algorithmic Typing for Expressions and Applications

judgment using four rules directed by the syntax of 𝑇. FA’!$% accounts for Hindley generics
𝑀 :hdl 𝑁 by substituting 𝑀 with a fresh evar 𝑀 that is added (unsolved) to the evar context in which
the (substituted) scheme is checked. Crucially, the rule also requires that in the resulting evar
context, 𝑀 is solved to some re!nement 𝑂 . FA’!"# handles Horn generics 𝑀 :hrn 𝑁 by creating a
fresh Horn variable 𝑏, and replacing 𝑀 with a Horn application 𝐿𝑀 : 𝑁 . 𝑏 (𝑀,𝑀⇑) in the scheme 𝑇.
FA’F"(kicks in after the generics have been instantiated, and checks that the (!rst) argument 𝑈
has the expected input type 𝑄1, by !rst typing 𝑈 as 𝑄 , then checking 𝑄 is a subtype of 𝑄1, and !nally

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 49. Publication date: January 2025.

Generic Refinement Types 49:19

checking the rest of the arguments 𝑈⇑ against the output 𝑄2. Finally, FA’R%& applies when we have
checked all the arguments and simply says the result is the (residual) scheme 𝑄 .
Example To illustrate the rules, let us recall the example in Fig. 5 and see how Hindley generics are
instantiated when combining the subqueries with the and method. As described in § 3.1, we model
the Query type assuming it is indexed by a row sort and giving the and operation the scheme:

↑𝑀1 :hdl row → B,𝑀2 :hdl row → B. Query[𝑀1] → Query[𝑀2] → Query[𝐿𝑀3 : row. 𝑀1 𝑀3 ↓ 𝑀2 𝑀3]
Now, consider the application 𝑀𝑕𝑒 (𝑖1,𝑖2) where 𝑖1 and 𝑖2 have the types shown in Fig. 5.

𝑖1 : Query[𝐿𝑂 : row. item 𝑂 = 𝑓𝑗𝑕𝑈𝑂]
𝑖2 : Query[𝐿𝑂 : row. price 𝑂 < 𝑊𝑓𝑘𝑐]

To check the function application, we begin by using FA’!$% twice to eliminate re!nement
parameters generating two evars, 𝑀1 and 𝑀2, for the corresponding parameters 𝑀1 and 𝑀2. This leaves
us with the following residual:

Query[𝑀1] → Query[𝑀2] → Query[𝐿𝑀3 : row. 𝑀1 𝑀3 ↓ 𝑀2 𝑀3]
Then, we use rule FA’F"(to check the !rst argument 𝑖1. This requires checking the subtyping
Query[𝐿𝑂 : row. item 𝑂 = 𝑓𝑗𝑕𝑈𝑂] <: Query[𝑀1]. By unifying the indices (∝$(&)) we can solve 𝑀1 to
𝐿𝑂 : row. item 𝑂 = 𝑓𝑗𝑕𝑈𝑂 . A subsequent application of FA’F"(solves 𝑀2 to 𝐿𝑂 : row. price 𝑂 < 𝑊𝑓𝑘𝑐 .
Substituting the solution to 𝑀1 and 𝑀2 in the output type gives us:

Query[𝐿𝑀3 : row. (𝐿𝑂 : row. item 𝑂 = 𝑓𝑗𝑕𝑈𝑂) 𝑀3 ↓ (𝐿𝑂 : row. price 𝑂 < 𝑊𝑓𝑘𝑐) 𝑀3]
Finally, we eliminate the lambdas by applying beta reduction to obtain:

Query[𝐿𝑀3 : row. item 𝑀3 = 𝑓𝑗𝑕𝑈𝑂 ↓ price 𝑀3 < 𝑊𝑓𝑘𝑐]
We note that well-formedness (§ 3.2) guarantees that lambdas can always be eliminated via beta re-
duction ensuring we only generate !rst-order SMT validity queries. Moreover, the value-dependent
restriction ensures that all evars can be solved after checking the arguments in a function call.

5 Semantics of 𝐿𝐿
In § 3, we described how we can de!ne the meaning of generic re!nements via the set of primi-
tive constants and operations on base types. Next, we give a semantic interpretation of generic
re!nements by noting that we can think of them as ghost variables whose values are automatically
synthesized at function calls. We formalize this notion by translating 𝐿𝐿 into the polymorphic
contract calculus F𝑀H of Sekiyama et al. [24]. For space restrictions, we only give a high-level de-
scription of the translation and its properties. The complete de!nitions and proofs can be found in
the accompanying technical appendix [18].

5.1 Refinement Elaboration
To translate 𝐿𝐿 into F𝑀H we !rst de!ne an intermediate calculus 𝐿𝐿 where re!nement instantiations
are explicit. Expressions 𝑈 in 𝐿𝐿 follow the syntax of 𝐿𝐿 with the di"erence that applications are
instantiated with an explicit list of re!nements:

Expressions 𝑈 ::= 𝑉 | 𝑊 | 𝐿𝑉 : 𝑄 . 𝑈 | op ∈𝑂 ∋ (𝑈) | 𝑈 ∈𝑂 ∋ (𝑈) | 𝑈 : 𝑄

Next, we extend the algorithmic checking and sysntehsis judgments into elaboration judgments
that insert re!nement instantiations at function calls.

ω; ε;ϱ1 ≃ 𝑈 ′ 𝑇 ↙ ϱ2;ϖ↫ 𝑈 ω; ε ≃ 𝑈 ↖ 𝑇 ↙ ϖ↫ 𝑈

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 49. Publication date: January 2025.

49:20 Nico Lehmann, Cole Kurashige, Nikhil Akiti, Niroop Krishnakumar, and Ranjit Jhala

Solution of Horn Vars The elaborated expresion 𝑈 may contain unsolved Horn variables. A Horn
constraint solution ς is a list of re!nements to be substituted for Horn variables: ς ::= · | ς, 𝑂/𝑏.
The operation [ς]𝑈 applies the substitution ς to an expression 𝑈 . Using the algorithm in [6] we
can write a procedure Solve :: ϖ → ς ⇓ ⇐ that given a constraint ϖ either returns a solution or
determines the constraint to be unsatis!able. We additionally extend the Solve procedure to take a
re!nement context ω as follows:

Solve(ω,𝑀:𝑁 ;ϖ) := Solve(ω;↑𝑀:𝑁 . ϖ) Solve(ω, 𝑂 ;ϖ) := Solve(ω; 𝑂 ↖ ϖ)

Solve(·;ϖ) := Solve(ϖ)

Solution of Hindley Vars To handle evars, we de!ne an extension relation for evar contexts
ω ≃ ϱ ↘→ ϱ⇑ that intuitively stipulates that ϱ⇑ has more solved variables than ϱ. Aditionally, we
say that an evar context is complete, written φ, if it only contains solved evars.
Properties of the Algorithmic System The checking ω; ε ≃ 𝑈 ′ 𝑇 and synthesis ω; ε ≃ 𝑈 ′ 𝑇
judgments of 𝐿𝐿 mostly mirror the rules of the algorithmic system but instead of generating a
constraint, they rely on a declarative subtyping judgmentω ≃ 𝑄1 <: 𝑄2. We show that the algorithmic
system is sound with respect to the declarative system.

T0%-,%1 5.1 (S-"(+(%&& -* A!7-,$)01$6 T3.$(7).
(1) If ω; ε ≃ 𝑈 ↖ 𝑇 ↙ ϖ↫ 𝑈 and Solve(ω;ϖ ↓ ϖ⇑) = ς then [ς]ω; [ς]ε ≃ [ς] [φ]𝑈 ↖ [ς] [φ]𝑇
(2) If ω; ε;ϱ ≃ 𝑈 ′ 𝑇 ↙ ϱ⇑;ϖ↫ 𝑈 and Solve(ω;ϖ ↓ ϖ⇑) = ς and ω ≃ ϱ⇑ ↘→ φ then

[ς]ω; [ς]ε ≃ [ς] [φ]𝑈 ′ [ς] [φ]𝑇

The algorithmic system is fundamentally not complete because the Horn constraint solver is
not complete [6]. Following Economou et al. [10], we could prove completeness for the solution of
Hindley variables by relying on the well-formedness of types, which gurantees Hindley variables
can be uni!ed at call-sites. However, we do not consider this aspect fundamental to our approach,
and we are considering relaxing the de!nition of value-dependent to allow parameters that cannot
be solved locally.

5.2 Translation Into F𝑀H
Finally, we de!ne the semantics of generic re!nements by translating 𝐿𝐿 into the polymorphic
contract calculus F𝑀H [24]. F𝑀H is parametric over a family of base types B, constants, and primitive
operations. We instantiate the system to include sorts as base types and re!nements as expressions.
Re!nement constants (integers and booleans) and operations (arithmetic and boolean connectives)
are included as primitive constants and operations in F𝑀H. Thus, we give meaning to re!nements
via their operational behavior in F𝑀H. Additionally, we include base types 𝑅 as part of base types in
F𝑀H, and constants and operations in 𝐿𝐿 as constants and operations in F𝑀H.

We translate schemes and types in 𝐿𝐿 into types in F𝑀H as follows:

!↑𝑉 : 𝑁 . 𝑇" = (𝑉 : 𝑁) → !𝑇"
!{𝑅 [𝑂1] | 𝑂2}" = 𝑅 △ {𝑉 : !𝑂"𝑁𝐿 | 𝑂2}

!𝑄1 → 𝑄2" = !𝑄1" → !𝑄2"

!{𝑀. 𝑅 [𝑀] | 𝑂 }" = 𝑅 △ {𝑀 : 𝑅𝑀 | 𝑂 }
!𝑂"𝑀𝑀→𝑀 ⇑

𝑀
= (𝑉 : 𝑁𝑁) → !𝑂 𝑉"𝑀 ⇑

𝑀

!𝑂"𝑀𝑀 = {𝑉 : 𝑁𝑁 | 𝑉 = 𝑂 }
Most notably, a generic application 𝑅 [𝑂] is translated into a pair carrying a ghost value. The ghost
value, which can be of function type, must be (extensionally) equal to 𝑂 as denoted by !𝑂"𝑀 . This
translation is naturally extended to re!nement contexts !ω" and program contexts !ε".
Finally, we translate expressions 𝑈 in 𝐿𝐿 to expressions 𝑙 in F𝑀H via an elaboration judgment

ω; ε ≃ 𝑈 : 𝑇 ↫ 𝑙 that inserts explicit casts as F𝑀H does not have subsumption. We show the
translation is type preserving.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 49. Publication date: January 2025.

Generic Refinement Types 49:21

T0%-,%1 5.2 (T3.% P,%&%,2$(7 T,/(&!/)$-().
(1) If ω; ε ≃ 𝑈 ↖ 𝑇 ↫ 𝑙 then !ω", !ε" ≃𝑇 𝑙 : !𝑇"
(2) If ω; ε ≃ 𝑈 ′ 𝑇 ↫ 𝑙 then !ω", !ε" ≃𝑇 𝑙 : !𝑇"

5.3 Soundness
The dynamic semantics of 𝐿𝐿 is de!ned by the translation into F𝑀H. As mentioned in § 5.2, the
translation inserts casts whenever subsumption is required in 𝐿𝐿 . Since these casts may fail at
runtime, the type-preserving translation alone does not guarantee the soundness of 𝐿𝐿 . However,
since the translation only inserts casts between types related by subtyping—veri!ed statically via
SMT based implication—these casts should, in principle, never fail.
Following Vazou et al. [28], we can formalize this intuition using the upcast lemma from the

contract calculus [24]. This lemma states that casts related by subtyping are essentially a no-op (they
are logically related to the identity function) and therefore cannot fail. Unfortunately, Sekiyama et al.
[24] only conjectured, but did not prove, the upcast lemma. The lemma was proved for an earlier
system [3] which had meta-theoretical issues that F𝑀H later resolved. Sekiyama et al. [24] speculated
that the upcast lemma would hold for F𝑀H as well, given that the de!nition of parametricity remained
unchanged, but did not check it because it was not their focus. Assuming the upcast lemma holds,
we can combine theorem 5.2 and the type soundness theorem of F𝑀H to conjecture soundness for 𝐿𝐿
ensuring well-typed translated programs will never raise an error.

C-(8%6)",% 5.3 (T3.% S-"(+(%&&). Suppose ·; ·; · ≃ 𝑈 ′ 𝑇 ↙ ·;ϖ↫ 𝑈 and Solve(ϖ) = ς and
·; · ≃ [ς]𝑈 ′ [ς]𝑇 ↫ 𝑙 . If𝑙 ↘→▽ 𝑙 ⇑ and𝑙 does not reduce, then𝑙 ⇑ is a value.

6 Implementation and Case Studies
We implemented the inference rules from § 4 as an extension to F!"# [16]. To evaluate the e"ec-
tiveness of our approach, we conducted two case studies: one demonstrating the use of generic
re!nement to verify safe vector access, and the other verifying invariants in database queries
Implementation The core calculus 𝐿𝐿 described in previous sections, describes a simple model of
generic re!nements in a pure setting. Our actual implementation in F!"# has to account for all of
Rust’s imperative features, including references, mutable state, and lifetimes. Fortunately, previous
work on F!"# already shows how Rust’s type system can be used to cleanly separate the imperative
features and de!ne re!nements on pure values (indices) [16]. As re!nement generics operate largely
on indices—they can be thought of as function valued indices—the separation from the previous
work carries over directly, allowing us to implement generic re!nements as an extension to the
kinds of indices that were previously handled by F!"#.

6.1 Vector Bounds
The Rust standard library provides a vector type, Vec, which is widely used across Rust code bases.
In [16], the authors describe a way to implement a new RVec type that wraps Vec, and re!ne its
API to ensure, at compile time, that reads and writes stay within the vector’s bounds. However,
to use RVec the programmer would have to replace all the instances of Vec with RVec, which is a
non-trivial task, and makes that approach a non-starter in practice. Our !rst case study uses generic
associated re!nements to re!ne the Vec type, thereby allowing the programmer to use the standard
library’s vector type while using F!"# to get compile-time bounds checking.
Speci!cationWe follow the lightweight speci!cation from [16] and index each Vec with an integer
len that represents the vector’s length. Vector reads v[i] and writes v[i] = e are desugared by the
Rust compiler roughly into calls index(v, i) and *index_mut(v, i) = ewhere index and index_mut

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 49. Publication date: January 2025.

49:22 Nico Lehmann, Cole Kurashige, Nikhil Akiti, Niroop Krishnakumar, and Ranjit Jhala

V%6)-,& LOC Spec Time (s)

std::vec 65 — —

bsearch 25 0 0.18
dotprod 12 1 0.14
fft 162 7 0.51
heapsort 42 3 0.22
simplex 143 14 0.50
kmeans 85 8 0.37
kmp 48 2 0.35

9%,$%& LOC Spec Time (s)

RD$%&%! 434 — —

conf 251 50 0.92
wishlist 176 43 0.68
course 271 49 0.91
voltron 185 25 0.51

Fig. 13. Experimental results using Generic Refinements for checking std::vec bounds and RD!"#"$ database
queries. LOC is the number of lines of Rust source code, Spec is the number of lines for function specifications,
Time (s) is the time in seconds required to verify the code (trusted code does not have time). The LOC
reported for std::vec and RD!"#"$ are a combination of the intertwined specifications and Rust code.

are methods of the trait Index and IndexMut respectively that are implemented by the vector type.
We use associated re!nements to specify the preconditions for these methods, as described in § 2.3.
API Coverage Our benchmarks focus on a subset of the Vec API, including new, push, pop, len,
index and index_mut. While we have not extensively tested the entire API, many other methods,
such as as_slice, insert, and split_off, can be supported without problems. Some operations
that involve more advance features (e.g, pop_if) are not currently supported but could be added
with future extensions to F!"#. Finally, for some operations that depend on the speci!c values
stored in the vector, which our lightweight speci!cation does not track, we cannot specify the
exact length after the call. For example, we cannot specify the exact length of a vector after a call
to dedup, but we can say that the length is at least less than on equal.
Veri!cation The left table in Fig. 13 summarizes the results of using associated re!nements to verify
uses of Vec in a suite of loop- and vector-heavy benchmarks from [16] which does bound checking
using a bespoke RVec type. The LOC denotes non-comment source lines, and SPEC denotes the
lines of function contracts. (There are no loop invariants needed as F!"# infers them automatically
via liquid typing.) The veri!cation is quite e#cient, with the most complex benchmark taking well
under a second to verify.

6.2 Database Access Control via Refined Diesel
Database-backed web applications use ORM libraries like Rust’s D$%&%! library [26] to dynamically
generate queries to access and update sensitive user information. Our second case study is an
implementation of RD$%&%!, a library that uses generic re!nements to statically track the semantics
of database queries enabling the veri!cation of security properties of web applications in the style
of the S)-,1 framework [17]. We present this case study by !rst sketching the D$%&%! API § 6.2.1,
then showing how we re!ne it to statically track the semantics of queries § 6.2.2, and !nally, how
we can use the re!nements to specify and verify access control policies § 6.2.3.

6.2.1 The D!"#"$!ery DSL. In § 2.2 we saw a simple DSL where every Query<R> evaluated to a
bool valued result on an R-typed row. This simpli!cation meant that atomic comparisons eq and gt
could only be performed on program values, but not other !elds of the database, and that the DSL
disallowed arithmetic on database !elds, making it impractical for real-world applications.
Typed Queries via Traits To support such use-cases, Rust’s D$%&%! ORM framework [26] im-
plements a typed query DSL that allows for—and statically tracks—di"erent types of sub-query

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 49. Publication date: January 2025.

Generic Refinement Types 49:23

results. Instead of a single bool valued struct Query<R>, D$%&%! de!nes a trait Expr<R, V> that
represents queries over the row R that evaluate to a value of type V.

trait Expr<R, V> { ... }

Program values can be “lifted” up into queries by implementing the Expr trait for the underlying
values, e.g., to treat i32 and usize values as Expr<R, i32> and Expr<R, usize> D$%&%! implements

impl<R> Expr<R, i32> for i32 { ... }

impl<R> Expr<R, usize> for usize { ... }

Representing Rows and Fields As discussed in Section § 2.2, a schema de!ned by table!{ ... }
automatically generates a struct that represents a row in the underlying table. However, rather
than representing !elds as values of a single type Field, it generates a distinct struct for each
!eld. Along with this, it provides a suitable implementation of Expr, thereby representing each !eld
at the type level. As discussed in § 2.2, a table!{ ... } schema automatically generates a struct
representing a row in the underlying table. However, instead of representing !elds as values of a
single type Field, it represents them at the type level by generating a distinct struct for each one
together with suitable implementation of Expr.

struct ItemId;

struct ItemOwner;

struct ItemPrice;

struct ItemDescr;

impl Expr<Item, usize> for ItemOwner { ... }

impl Expr<Item, usize> for ItemId { ... }

impl Expr<Item, i32> for ItemPrice { ... }

impl Expr<Item, String> for ItemDescr { ... }

Query Composition The indirection of the trait Expr allows D$%&%! to build a typed Query
DSL by de!ning separate structs for di"erent kinds of queries, and suitably constraining the Expr
implementations for those structs:

struct Add<A, B> { lhs: A, rhs: B } impl<R, A, B> Expr<R, i32> for Add<A, B>

fn add<A, B>(a: A, b: B) -> Add<A, B>; where A: Expr<R, i32>, B: Expr<R, i32>;

struct Eq<V, A, B> { lhs: A, rhs: B, ... }; impl<R, V, A, B> Expr<R, bool> for Eq<V, A, B>

fn eq<V, A, B>(a: A, b: B) -> Eq<V, A, B>; where A: Expr<R, V>, B: Expr<R, V>;

struct Gt<V, A, B> { lhs: A, rhs: B, ... } impl<R, V, A, B> Expr<R, bool> for Gt<V, A, B>

fn gt<V, A, B>(a: A, b: B) -> Gt<V, A, B>; where A: Expr<R, V>, B: Expr<R, V>;

struct And<A, B> { lhs: A, rhs: B } impl<R, A, B> Expr<R, bool> for And<A, B>

fn and<A, B>(a: A, b: B) -> And<A, B>; where A: Expr<R, bool>, B:Expr<R, bool>;

Each of Add, Eq, Gt and And contain two sub-expressions corresponding to the !elds lhs and rhs.
Crucially, the corresponding impl blocks ensure that only “well-typed” queries have valid Expr
implementations. For example, Add requires that the two sub-queries are i32-valued, producing an
i32 valued Expr; Eq and Gt require the two sub-queries are V-valued, producing a bool valued Expr
and And requires two bool valued sub-queries, producing a bool valued result.2

6.2.2 Refining the D!"#"$ API. Database-backed applications manipulate sensitive user data by
dynamically generating and executing read and write queries via the ORM’s (i.e., D$%&%!’s) DSL
API. Next, let us see how we re!ne the API to implement RD$%&%! which precisely tracks query
semantics in a modular, type-directed fashion.

2We might think of this approach as using trait machinery to implement one of the classic use-cases for Generalized
Algebraic Data Types [2, 31].

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 49. Publication date: January 2025.

49:24 Nico Lehmann, Cole Kurashige, Nikhil Akiti, Niroop Krishnakumar, and Ranjit Jhala

Generic Re!nements for Expr As D$%&%!’s queries are all abstracted by the Expr trait, in RD$%&%!
we track the semantics of each (implementation) of Expr using an associated re!nement eval that
speci!es what the Expr evaluates to. The implementations of Expr for program values specify that
the associated re!nement equals that value. Similarly, the RD$%&%! implementations of Expr for the
(generated) type-level !elds, stipulate that the associated re!nement eval returns the corresponding
element of the row.

trait Expr<R, V> { reft eval(e: Self, r: R) -> V; }

// Implementation of Expr for program values

impl<R> Expr<R, i32> for i32 { impl<R> Expr<R, usize> for usize {

reft eval(val: int, _: R) -> int { val } reft eval(val: int, _: R) -> int { val }

} }

// Implementation of Expr for type-level fields

impl Expr<Item, i32> for ItemOwner { impl Expr<Item, i32> for ItemPrice {

reft eval(_: Self, item: Item) -> int { reft eval(_: Self, item: Item) -> int {

item.owner item.price

} }

} }

Generic Re!nements for Expr Composition Next, RD$%&%! uses Rust’s trait projection mecha-
nism to implement the associated re!nement for the composition of queries. For example, for Gt
(resp. Eq) expressions, the associated re!nement invokes the eval function for the Expr implemen-
tations of the two sub-expressions and checks if the !rst is greater than (resp. equal to) the second.
Similarly, for And expressions, the associated re!nement conjoins the results of invoking eval on
the two sub-expressions.

impl<R, A:Expr<R, i32>, E2:Expr<R, i32>> Expr<R, i32> for Add<A, B> {

reft eval(e: Self, row: R) -> V { A::eval(e.lhs, row) + B::eval(e.rhs, row) }

}

impl<R, V, A: Expr<R, V>, B: Expr<R, V>> Expr<R, bool> for Gt<V, A, B> {

reft eval(e: Self, row: R) -> V { A::eval(e.lhs, row) > B::eval(e.rhs, row) }

}

impl<R, V, A: Expr<R, V>, B: Expr<R, V>> Expr<R, bool> for Eq<V, A, B> {

reft eval(e: Self, row: R) -> V { A::eval(e.lhs, row) == B::eval(e.rhs, row) }

}

impl<R, A: Expr<R, bool>, B: Expr<R, bool>> Expr<R, bool> for And<A, B> {

reft eval(e: Self, row: R) -> V { A::eval(e.lhs, row) && B::eval(e.rhs, row) }

}

6.2.3 Access Control Verification. Finally, let us see how RD$%&%! lets us statically verify that the
database-backed applications manipulate sensitive user data according to application speci!c access
control policies that govern which users can read or write the database rows and columns.
Generic Access Control for Reads Building on the re!ned Expr trait, RD$%&%! de!nes the method
select_where to read all the rows of a table that satisfy a query. The method takes in a Context<U>
carrying the database connection (the parameter U is discussed next) and a query Q implementing
Expr<R, bool>:

fn select_where<U, R, Q: Expr<R, bool>>(cx: &Context<U>, qry: Q) -> Vec<R{r: Q::eval(qry, r)}>

We use the associated generic for the query Q to re!ne the API to specify that select_where only
returns rows on which the query evaluates to true.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 49. Publication date: January 2025.

Generic Refinement Types 49:25

Generic Access Control for Updates RD$%&%! also provides an update_where method to write a
new value into the !eld (column) of each row that satis!es some query

fn update_where<F, U, R, Q>(cx: &Context<U>, qry: Q, fld: F, val: V)

requires forall row. Q::eval(qry, row) => F::allow_update(cx.user, row);

where

Q: Expr<R, bool>,

F: FieldPolicy<R, U>,

trait FieldPolicy<R, U> {

reft allow_update(user: U, row: R) -> bool;

}

Crucially, RD$%&%! re!nes the type of update_where to specify !ne-grained access control policies
that restrict the sets of users who are allowed to write to a particular !eld of the database. To
this end, RD$%&%!’s API requires !elds to implement the FieldPolicy trait, which includes an
associated re!nement that speci!es whether a given user is allowed to update the (corresponding
!eld of) the given row. By tracking the current authenticated user in the Context, the update_where
method requires that every row returned by evaluating the query (i.e., every row that may get
updated) be one that the user is allowed to update, per the allow_update re!nement speci!ed in
the FieldPolicy.3 Finally, we highlight that the API is generic on the type of the user U which can
be instantiated to a concrete user type by client applications.
Generic Access Control for Insert Similar to updates, RD$%&%! de!nes a way to control which
users are allowed to insert rows in a table. In this case, the access is controlled by the RowPolicy
trait that must be implemented on the row type to specify when a user is allowed to insert a row
via the allow_insert associated re!nement. The insert_row method, uses allow_insert to specify
that the authenticated user must be allowed to insert the row.

fn insert_row<F, U, R, Q>(cx: &Context<U>, row: R)

requires R::allow_insert(cx.user, row);

where

Q: Expr<R, bool>,

F: RowPolicy<R, U>,

trait RowPolicy<R, U> {

reft allow_insert(user: U, row: R) -> bool;

}

Example: Verifying Read Policies The function show_items in Fig. 14 retrieves all the items
that are owned by the user owner. The impl Expr for ItemOwner and ItemLevel in Fig. 14 have
their associated eval generic re!nements respectively be the functions |_,item| item.owner and
|_,item| item.level. Hence, the impl Expr for the !rst qry on line 6 has the associated eval
re!nement |_, item| item.owner == owner. Therefore, the items returned in line 8 are guaranteed
to be owned by the viewer. In the else branch, where the viewer is not the owner, the qry is conjoined
with a clause that checks the ItemLevel is PUBLIC. That is, the impl Expr for the second qry on line
10 has the associated re!nement |_, item| item.owner == owner && item.level == PUBLIC, and
hence the items returned in line 12 are guaranteed to have their level set to PUBLIC. Consequently,
F!"# statically veri!es the read access control policy that says that every item read by the viewer
is either owned by them, or is marked PUBLIC.

3Both D$%&%! and RD$%&%! allow simultaneously updating multiple !elds via Changesets but we omit them for simplicity.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 49. Publication date: January 2025.

49:26 Nico Lehmann, Cole Kurashige, Nikhil Akiti, Niroop Krishnakumar, and Ranjit Jhala

1 fn show_items(

2 cx:&Context<User>,

3 owner: usize

4) {

5 let viewer = cx.auth_user().id;

6 let qry = eq(ItemOwner, owner);

7 let items = if viewer == owner {

8 select_where(cx, qry)

9 } else {

10 let qry = qry.and(

11 eq(ItemLevel, PUBLIC));

12 select_where(cx, qry)

13 };

14 // READ POLICY

15 for item in items {

16 assert(item.owner == viewer ||

17 item.level == PUBLIC)

18 }

19 }

1 fn update_item_descr(

2 cx: &Context<U>,

3 item_id: ItemId,

4 descr: String

5) {

6 let updater = cx.auth_user().id;

7 let qry = eq(ItemId, item_id);

8 let qry_own = eq(ItemOwner, updater);

9 let qry = and(qry, qry_own);

10 update_where(cx, qry, ItemDescr, descr);

11 }

12
13
14 // UPDATE POLICY

15 impl FieldPolicy<Item, User> for ItemDescr {

16 reft allow_update(u: User, i: Item) -> bool {

17 u.id == i.owner

18 }

19 }

Fig. 14. Verifying read policies (L) and update policies (R) in web-applications.

Example: Verifying Update Policies Fig. 14 shows a function that updates the descr !eld of
a given item using the update_where API call. The update policy for the ItemDescr !eld states
that only the user who owns the item is allowed to update the !eld, i.e., the owner must be the
authorized user performing the !eld update. The qry on line 9 has the associated eval re!nement
|_, item| item.id == item_id && item.owner == updater, and hence, every row matching the
above is indeed owned by the authorized user updater, thereby verifying the update satis!es the
policy. However, if the code omitted the lines 8 and 9 then F!"# would reject the code as it would
allow a user other than the owner to update the item’s description.

6.2.4 Implementing Web Applications with RD!"#"$. We ported some of the web applications from
[17] to Rust using the RD$%&%! API and veri!ed the same access control policies. Fig. 3 summarizes
the results. The speci!cation size is modest, most of which correspond to boilerplate required to
implement the various traits. This size could be further reduced by providing a more concise syntax
via a procedural macro.

7 Related Work

Interactive Veri!ers based on higher order logics like Rocq [4], Isabelle [20], Lean [7], and
dependently-typed languages like Agda [21], directly allow for quantifying over propositions, and
hence, can easily express the same speci!cations as generic re!nements, which, ultimately are a
way to parameterize invariants or properties over a set of contracts (types). However, all these
systems require the programmer to explicitly instantiate the quanti!ers at each usage site (and
then potentially interactively prove various facts about the instantiations).
Autoactive Veri!ers like Dafny [19], F* [25], and Why3 [11], allow users to write Floyd-Hoare
style speci!cations using loop invariants, pre- and post-conditions, and then automatically ver-
ify those using SMT solvers. F* and Why3 additionally support higher-order speci!cations (i.e.,
quantifying over invariants). However, the SMT validity queries issued by these tools contain
universal quanti!ers, and hence, fall outside the decidable logical fragments supported by SMT

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 49. Publication date: January 2025.

Generic Refinement Types 49:27

solvers. Consequently, veri!cation is undecidable in theory, and somewhat brittle in practice, as
the success of the automated veri!cation hinges upon the particular SMT solver’s unpredictable
quanti!er instantiation heuristics. Additionally, the higher order predicates must be explicitly
instantiated, which is unpleasant for the programmer. In contrast, 𝐿𝐿 ’s generic re!nements are
carefully engineered to yield decidable SMT queries, and to be automatically instantiable at usage
sites via a combination of uni!cation and horn constraint solving.
Rust Veri!ers like Prusti [1], Verus [15], and Creusot [9] bring SMT-based, Floyd-Hoare style
veri!cation to Rust, by cleverly exploiting Rust’s ownership type system to simplify reasoning
about state. Creusot [8] and Prusti [5] support modular speci!cations for traits by allowing users
to write ghost methods that describe additional properties of traits, which can then be used in
other contracts on the traits (much like our associated generic re!nement in_bounds in Fig. 6).
However, none of them support quantifying over invariants in contracts in the style of 𝐿𝐿 ’s generic
re!nement types. In contrast, we view generic re!nements as a way to parameterize types and
contracts over invariants while preserving decidable checking and instantiation. As an added bonus,
generics generalize nicely to the trait setting with typeclass-as-dictionary interpretation as discussed
in § 2.4.
Interactive Rust Veri!ers like Aeneas [13] and Re!nedRust[12], work by translating Rust pro-
grams into Lean or Rocq bringing the full power of interactive theorem proving to verifying Rust.
Consequently, these tools can also specify arbitrary higher-order contracts about Rust functions,
but this expressiveness comes at the cost of interactive proof.
Re!nement Type based Veri!ers like Liquid Haskell [29] support a feature called abstract
re!nements [28] that are very closely related to 𝐿𝐿 ’s generic re!nements. In particular, abstract
re!nements are similar to 𝐿𝐿 ’s Horn generics (i.e., hrn parameters). Horn generics have limited
expressiveness as they have to appear only under top-level conjunctions which makes it impossible
to use them inmore complex ways, e.g., under negations or disjunctions. LiquidHaskell also supports
bounded re!nements [27] which allow for various ways to relate abstract re!nements, but these
are signi!cantly more complicated to write (as specifying the correct bounds can require some
substantial mental gymnastics), and slower to check (as instantiating the bounds requires solving
Horn constraints). In contrast, this work shows how indices [32] in particular, the bidirectional
synthesis (instantiation) technique of Economou et al. [10] can be used as foundation upon which
to build a means of quantifying over re!nements, that permits simple speci!cation, and decidable
and e#cient instantiation and veri!cation.

Acknowledgments
We thank the anonymous referees for their excellent suggestions for improving the paper. This
work was supported by NSF grants CNS-2327336, CNS-2155235, CNS-2120642 and generous gifts
from Microsoft Research.

References
[1] Vytautas Astrauskas, Peter Müller, Federico Poli, and Alexander J. Summers. 2019. Leveraging Rust Types for

Modular Speci!cation and Veri!cation. Proc. ACM Program. Lang. 3, OOPSLA, Article 147 (oct 2019), 30 pages.
https://doi.org/10.1145/3360573

[2] Lennart Augustsson and Kent Petersson. 1994. Silly Type Families. (1994). https://web.cecs.pdx.edu/~sheard/papers/
silly.pdf.

[3] Joao Filipe Belo, Michael Greenberg, Atsushi Igarashi, and Benjamin C Pierce. 2011. Polymorphic contracts. In
Programming Languages and Systems: 20th European Symposium on Programming, ESOP 2011, Held as Part of the Joint
European Conferences on Theory and Practice of Software, ETAPS 2011, Saarbrücken, Germany, March 26–April 3, 2011.
Proceedings 20. Springer, 18–37. https://doi.org/10.1007/978-3-642-19718-5_2

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 49. Publication date: January 2025.

https://doi.org/10.1145/3360573
https://web.cecs.pdx.edu/~sheard/papers/silly.pdf
https://web.cecs.pdx.edu/~sheard/papers/silly.pdf
https://doi.org/10.1007/978-3-642-19718-5_2

49:28 Nico Lehmann, Cole Kurashige, Nikhil Akiti, Niroop Krishnakumar, and Ranjit Jhala

[4] Yves Bertot and Pierre Castran. 2010. Interactive Theorem Proving and Program Development: Coq’Art The Calculus of
Inductive Constructions (1st ed.). Springer Publishing Company, Incorporated.

[5] Aurel Bíl%, Jonas Hansen, Peter Müller, and Alexander J. Summers. 2022. Compositional Reasoning for Side-e"ectful Iter-
ators and Iterator Adapters. CoRR abs/2210.09857 (2022). https://doi.org/10.48550/ARXIV.2210.09857 arXiv:2210.09857

[6] Benjamin Cosman and Ranjit Jhala. 2017. Local Re!nement Typing. Proc. ACM Program. Lang. 1, ICFP, Article 26 (aug
2017), 27 pages. https://doi.org/10.1145/3110270

[7] Leonardo de Moura, Soonho Kong, Jeremy Avigad, Floris van Doorn, and Jakob von Raumer. 2015. The Lean Theorem
Prover (System Description). In Automated Deduction - CADE-25, Amy P. Felty and Aart Middeldorp (Eds.). Springer
International Publishing, Cham, 378–388. https://doi.org/10.1007/978-3-319-21401-6_26

[8] Xavier Denis and Jacques-Henri Jourdan. 2023. Specifying and Verifying Higher-order Rust Iterators. In Tools and
Algorithms for the Construction and Analysis of Systems - 29th International Conference, TACAS 2023, Held as Part of the
European Joint Conferences on Theory and Practice of Software, ETAPS 2022, Paris, France, April 22-27, 2023, Proceedings,
Part II (Lecture Notes in Computer Science, Vol. 13994), Sriram Sankaranarayanan and Natasha Sharygina (Eds.). Springer,
93–110. https://doi.org/10.1007/978-3-031-30820-8_9

[9] Xavier Denis, Jacques-Henri Jourdan, and Claude Marché. 2022. Creusot: A Foundry for the Deductive Veri!ca-
tion of Rust Programs. In Formal Methods and Software Engineering, Adrian Riesco and Min Zhang (Eds.). Springer
International Publishing, Cham, 90–105. https://doi.org/10.1007/978-3-031-17244-1_6

[10] Dimitrios J. Economou, Neel Krishnaswami, and Jana Dun!eld. 2023. Focusing on Re!nement Typing. ACM Trans.
Program. Lang. Syst. 45, 4, Article 22 (dec 2023), 62 pages. https://doi.org/10.1145/3610408

[11] Jean-Christophe Filliâtre and Andrei Paskevich. 2013. Why3 - Where Programs Meet Provers. In Programming
Languages and Systems - 22nd European Symposium on Programming, ESOP 2013, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2013, Rome, Italy, March 16-24, 2013. Proceedings (Lecture
Notes in Computer Science, Vol. 7792), Matthias Felleisen and Philippa Gardner (Eds.). Springer, 125–128. https:
//doi.org/10.1007/978-3-642-37036-6_8

[12] Lennard Gaher, Michael Sammler, Ralf Jung, Robbert Krebbers, and Derek Dreyer. 2023. Re!ned Rust: Towards
high-assurance veri!cation of unsafe Rust programs. https://people.mpi-sws.org/~gaeher/slides/re!nedrust_rw23.pdf

[13] Son Ho and Jonathan Protzenko. 2022. Aeneas: Rust Veri!cation by Functional Translation. Proc. ACM Program. Lang.
6, ICFP, Article 116 (aug 2022), 31 pages. https://doi.org/10.1145/3547647

[14] Ranjit Jhala and Niki Vazou. 2021. Re!nement Types: A Tutorial. Foundations and Trends® in Programming Languages
6, 3–4 (2021), 159–317. https://doi.org/10.1561/2500000032

[15] Andrea Lattuada, Travis Hance, Chanhee Cho, Matthias Brun, Isitha Subasinghe, Yi Zhou, Jon Howell, Bryan Parno,
and Chris Hawblitzel. 2023. Verus: Verifying Rust Programs using Linear Ghost Types. Proc. ACM Program. Lang. 7,
OOPSLA1 (2023), 286–315. https://doi.org/10.1145/3586037

[16] Nico Lehmann, Adam T. Geller, Niki Vazou, and Ranjit Jhala. 2023. Flux: Liquid Types for Rust. Proc. ACM Program.
Lang. 7, PLDI, Article 169 (jun 2023), 25 pages. https://doi.org/10.1145/3591283

[17] Nico Lehmann, Rose Kunkel, Jordan Brown, Jean Yang, Niki Vazou, Nadia Polikarpova, Deian Stefan, and Ranjit Jhala.
2021. STORM: Re!nement Types for Secure Web Applications. In 15th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 21). USENIX Association, 441–459. https://www.usenix.org/conference/osdi21/
presentation/lehmann

[18] Nico Lehmann, Cole Kurashige, Nikhil Akiti, Niroop Krishnakumar, and Ranjit Jhala. 2025. Generic Re!nement Types
- Technical Appendix. https://github.com/$ux-rs/popl25

[19] K. Rustan M. Leino. 2010. Dafny: An Automatic Program Veri!er for Functional Correctness. In Logic for Programming,
Arti!cial Intelligence, and Reasoning (LPAR). https://doi.org/10.1007/978-3-642-17511-4_20

[20] Tobias Nipkow, Markus Wenzel, and Lawrence C. Paulson. 2002. Isabelle/HOL — A Proof Assistant for Higher-Order
Logic. https://link.springer.com/book/10.1007/3-540-45949-9

[21] Ulf Norell. 2007. Towards a practical programming language based on dependent type theory. Ph. D. Dissertation.
Chalmers.

[22] Benjamin C. Pierce and David N. Turner. 2000. Local type inference. ACM Trans. Program. Lang. Syst. 22, 1 (jan 2000),
1–44. https://doi.org/10.1145/345099.345100

[23] Patrick M. Rondon, Ming Kawaguci, and Ranjit Jhala. 2008. Liquid Types. In Proceedings of the 29th ACM SIGPLAN
Conference on Programming Language Design and Implementation (Tucson, AZ, USA) (PLDI ’08). Association for
Computing Machinery, New York, NY, USA, 159–169. https://doi.org/10.1145/1375581.1375602

[24] Taro Sekiyama, Atsushi Igarashi, and Michael Greenberg. 2017. Polymorphic manifest contracts, revised and resolved.
ACM Transactions on Programming Languages and Systems (TOPLAS) 39, 1 (2017), 1–36. https://doi.org/10.1145/2994594

[25] Nikhil Swamy, Juan Chen, Cédric Fournet, Pierre-Yves Strub, Karthikeyan Bhargavan, and Jean Yang. 2011. Secure
distributed programming with value-dependent types. In Proceeding of the 16th ACM SIGPLAN international conference
on Functional Programming, ICFP 2011, Tokyo, Japan, September 19-21, 2011, Manuel M. T. Chakravarty, Zhenjiang Hu,

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 49. Publication date: January 2025.

https://doi.org/10.48550/ARXIV.2210.09857
https://arxiv.org/abs/2210.09857
https://doi.org/10.1145/3110270
https://doi.org/10.1007/978-3-319-21401-6_26
https://doi.org/10.1007/978-3-031-30820-8_9
https://doi.org/10.1007/978-3-031-17244-1_6
https://doi.org/10.1145/3610408
https://doi.org/10.1007/978-3-642-37036-6_8
https://doi.org/10.1007/978-3-642-37036-6_8
https://people.mpi-sws.org/~gaeher/slides/refinedrust_rw23.pdf
https://doi.org/10.1145/3547647
https://doi.org/10.1561/2500000032
https://doi.org/10.1145/3586037
https://doi.org/10.1145/3591283
https://www.usenix.org/conference/osdi21/presentation/lehmann
https://www.usenix.org/conference/osdi21/presentation/lehmann
https://github.com/flux-rs/popl25
https://doi.org/10.1007/978-3-642-17511-4_20
https://link.springer.com/book/10.1007/3-540-45949-9
https://doi.org/10.1145/345099.345100
https://doi.org/10.1145/1375581.1375602
https://doi.org/10.1145/2994594

Generic Refinement Types 49:29

and Olivier Danvy (Eds.). ACM, 266–278. https://doi.org/10.1145/2034773.2034811
[26] The Diesel Core Team. 2024. Diesel: A Safe, Extensible ORM and Query Builder for Rust. (2024). https://diesel.rs.
[27] Niki Vazou, Alexander Bakst, and Ranjit Jhala. 2015. Bounded re!nement types. In ICFP. https://doi.org/10.1145/

2784731.2784745
[28] Niki Vazou, Patrick Maxim Rondon, and Ranjit Jhala. 2013. Abstract Re!nement Types. In Programming Languages

and Systems - 22nd European Symposium on Programming, ESOP 2013, Held as Part of the European Joint Conferences on
Theory and Practice of Software, ETAPS 2013, Rome, Italy, March 16-24, 2013. Proceedings (Lecture Notes in Computer
Science, Vol. 7792), Matthias Felleisen and Philippa Gardner (Eds.). Springer, 209–228. https://doi.org/10.1007/978-3-
642-37036-6_13

[29] Niki Vazou, Eric L. Seidel, Ranjit Jhala, Dimitrios Vytiniotis, and Simon L. Peyton Jones. 2014. Re!nement types for
Haskell. In Proceedings of the 19th ACM SIGPLAN international conference on Functional programming, Gothenburg,
Sweden, September 1-3, 2014, Johan Jeuring and Manuel M. T. Chakravarty (Eds.). ACM, 269–282. https://doi.org/10.
1145/2628136.2628161

[30] P. Wadler and S. Blott. 1989. How to make ad-hoc polymorphism less ad hoc. In Proceedings of the 16th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (Austin, Texas, USA) (POPL ’89). Association for Computing
Machinery, New York, NY, USA, 60–76. https://doi.org/10.1145/75277.75283

[31] Hongwei Xi, Chiyan Chen, and Gang Chen. 2003. Guarded recursive datatype constructors. In Proceedings of the 30th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (New Orleans, Louisiana, USA) (POPL ’03).
Association for Computing Machinery, New York, NY, USA, 224–235. https://doi.org/10.1145/604131.604150

[32] Hongwei Xi and Frank Pfenning. 1998. Eliminating array bound checking through dependent types. SIGPLAN Not. 33,
5 (may 1998), 249–257. https://doi.org/10.1145/277652.277732

[33] Christoph Zenger. 1997. Indexed types. Theor. Comput. Sci. 187, 1–2 (nov 1997), 147–165. https://doi.org/10.1016/S0304-
3975(97)00062-5

Received 2024-07-11; accepted 2024-11-07

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 49. Publication date: January 2025.

https://doi.org/10.1145/2034773.2034811
https://diesel.rs
https://doi.org/10.1145/2784731.2784745
https://doi.org/10.1145/2784731.2784745
https://doi.org/10.1007/978-3-642-37036-6_13
https://doi.org/10.1007/978-3-642-37036-6_13
https://doi.org/10.1145/2628136.2628161
https://doi.org/10.1145/2628136.2628161
https://doi.org/10.1145/75277.75283
https://doi.org/10.1145/604131.604150
https://doi.org/10.1145/277652.277732
https://doi.org/10.1016/S0304-3975(97)00062-5
https://doi.org/10.1016/S0304-3975(97)00062-5

	Abstract
	1 Introduction
	2 Overview
	2.1 Horn Generic Refinements
	2.2 Hindley Generic Refinements
	2.3 Associated Generic Refinements
	2.4 Associated Generics are Hindley Generics

	3 A Core Calculus of Generic Refinements
	3.1 Syntax
	3.2 Well-formedness

	4 Algorithmic Typing
	4.1 Inference Variables and Constraints
	4.2 Subtyping
	4.3 Typing

	5 Semantics of G
	5.1 Refinement Elaboration
	5.2 Translation Into FH
	5.3 Soundness

	6 Implementation and Case Studies
	6.1 Vector Bounds
	6.2 Database Access Control via Refined Diesel

	7 Related Work
	Acknowledgments
	References

