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ABSTRACT: Helical self-organizations are equilibrium structures responsible for the assembly of nonequilibrium and equilibrium
living and synthetic systems. Racemic helical columnar systems transform into one-handed systems with the help of enantiomerically
rich or pure components. Racemic, enantiomerically rich, and enantiomerically pure helical periodic arrays of columns are analyzed
by oriented fiber X-ray diffraction (XRD). With few exceptions, highly ordered helical 3-D organizations as generated from
homochiral columns cannot be obtained from achiral, racemic, or enantiomerically rich helical columns. Here, we report an
unprecedented class of nonhelical porous ordered, disordered nonhelical columnar liquid crystalline (LC) self-organizations and
columnar liquids constructed from AB, to AB, isomeric terphenyls by molecular design unwinding of a 3-D helical organization. A
library of 16 nonhelical porous ordered, disordered columnar and four liquids was designed by employing as a model a closely
related achiral AB, meta-terphenyl, which self-organizes one of the most perfect synthetic ordered columnar hexagonal helices
known. A general molecular mechanism to unwind highly ordered 3-D helices into nonhelical porous columnar ordered LCs and
liquids was elaborated to design this transformation, which provided unprecedented nonequilibrium synthetic systems. This
methodology is expected to be general for transformation of helical macromolecular and supramolecular organizations into
nonhelical crystals, LCs, and liquids.

and liquid by molecular design unwinding of a columnar helix
into a nonhelical column, is known. Here, we report an

he a-helix of the peptides advanced by Pauling et al." and
demonstrated by Crick et al.” and Perutz,’® the incorrect

triple helix of DNA,* the double helix of DNA,** and the
helical viruses® are the main scientific events that pioneered the
field of helical self-organizations in biological systems. These
successes were accompanied by similarly spectacular failures in
some of the most renown laboratories.”” They also led to
historical statements like the one of Sir Lawrence Bragg, “the
greatest failure of my scientific carrier,” when he, together with
future Nobel laureates Kendrew and Perutz, misinterpreted the
a-helix of peptides,”>”* and “among the most beautiful X-way
photographs ever taken” of J. D. Bernal when referring to the
“photo 51” of Rosalind Franklin.’* These successes and failures
contributed equally to the develoFment of biological and
synthetic helical self-organizations.”®’ The helical peptides
forming fibrous but also globular proteins'* and the double
helix of DNA are equilibrium structures's that are key
components of the nonequilibrium self-organized living
matter.'” Brief discussions on the development of helical
macromolecules®”*'" and of helical supramolecular assemblies
are available and, with the exception of several publications on
highly ordered helical self-organizations including some
obtained by deracemization in bulk state,'” will not be
repeated here. Substantial progress has been made on the
design of helical macromolecules and of columnar and
spherical helical self-organizations.'” However, to our knowl-
edge, no rational approach to the design and synthesis of
nonhelical columnar nonequilibrium assemblies, including
three-dimensional (3-D), crystalline, liquid crystalline (LC),
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unprecedented class of 3-D-ordered nonhelical porous, non-
helical columnar LC, and even columnar liquid self-
organizations constructed from AB, to AB, dendrons.
Nineteen of them are constitutional isomers, which due to
their molecular design unwinding cannot be switched back into
equilibrium helical self-organizations. This unwinding process
is reversible only by synthesis. A closely related achiral AB,
meta-terphenyl dendron, which self-organizes into one of the
most perfect synthetic helical columns and periodic arrays
known,'*" was used as a model to elaborate the principles
employed to design a library containing one 3-D-ordered
nonhelical porous columnar, 15 nonhelical columnar LC, and
four columnar liquid self-organizations. We will start this
discussion with the design of the achiral AB, dendron Vy
(Figure la—e). Its synthesis and helical self-organization were
reported,’*® but its mechanism of self-organization and design
principles were not yet established in the previous publication,
and therefore, they will be reported here. The apex of Vjy is
based on an AB, meta-terphenyl phenolic acid, which because
of its sp’—sp” bonds, exhibits a rigid taper angle of about

Received: July S, 2024

Revised:  August 4, 2024
Accepted: August 6, 2024
Published: August 8, 2024

=JACS
i

https://doi.org/10.1021/jacs.4c09127
J. Am. Chem. Soc. 2024, 146, 22943—22949


https://pubs.acs.org/action/doSearch?field1=Contrib&text1=%22Dipankar+Sahoo%22&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1=%22Mihai+Peterca%22&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1=%22Virgil+Percec%22&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/jacs.4c09127&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.4c09127?ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.4c09127?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.4c09127?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.4c09127?goto=supporting-info&ref=pdf
https://pubs.acs.org/toc/jacsat/146/33?ref=pdf
https://pubs.acs.org/toc/jacsat/146/33?ref=pdf
https://pubs.acs.org/toc/jacsat/146/33?ref=pdf
https://pubs.acs.org/toc/jacsat/146/33?ref=pdf
pubs.acs.org/JACS?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/jacs.4c09127?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://pubs.acs.org/JACS?ref=pdf
https://pubs.acs.org/JACS?ref=pdf

Journal of the American Chemical Society

Communication

pubs.acs.org/JACS

(a) AB,: V, ® ABg: Xl e
Cubaq Caats OCatas f200) -5
Qe P
7 o o |
o o~ ) (110
C«z"zs°'©—,’ cm,,o-@—/ N
L Cy2H50- O octs 3
0 9 5
\ d b 8
Ci2Hzs0

[ CiaHas
(4-3,4-3,5)12G2-CO,Me (4-3,4,5-3,5)12G2-CO,Me

fiber axis

XN
a=b=4594A, c=28.4A

Figure 1. Molecular structures, oriented-fiber IAXS and WAXS,
transparent potential surfaces of the supramolecular columns.
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Figure 2. Molecular structures, oriented-fiber IAXS and WAXS, and supramolecular LC organizations of XXIXy (a—e), X4 (f—j), IV4 (k—o0), VI,
(p—t), and XII; (u—y); potential surface images of tilted supramolecular nonhelical disordered columns are shown in (e,j,0,t,y).

120°"*%"* even after the substitution of its phenols with 4-n-
dodecyloxobenzyloxy groups. Therefore, three V3 atoms form
the cross-section of its supramolecular column. This cross-
section resembles a crown or hat conformation that allows free
rotation around column axis to impart the mechanism required
to fill the space through helical self-organization. This
generates a 24, triple helix (Figure le), which self-organizes

a columnar, hexagonal, 3-D-ordered, crystalline (@,*) lattice
(Figure 1b,c, Figure S1, and Table S1).!m

Reconstruction of the oriented fiber intermediary-angle
(IAXS) and wide-angle X-ray scattering (WAXS) data by
conventional methodologies used in our laboratory'* provides
diffractograms that agree with the experimental results shown
on the left side of Figure 1c and Figure S2. Incorporation of an
additional n-dodecyloxybenzyloxy group in V4 generates XI4
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Figure 3. Molecular structures, oriented-fiber IAXS and WAXS, and supramolecular LC organizations of IXy (a—e), XVI, (f—j), XVIII; (k—o),
XXl (p—t), and XXIII; (u—y); transparent potential surface images of supramolecular nonhelical disordered columns are shown in e;j,0,t,y.

(Figure 1f). The transition from V4 to XI4 eliminates the
helical self-organization, although it continues to provide a 3-
D-ordered, crystalline nonhelical columnar monoclinic peri-
odic array (®,%) (Figure 1g—j, Figure S1). The nonhelical
crystalline columns self-organized from XI4 contain four pores
parallel to the column axis (Figure 1i). An inspection of Figure
la,d,f,i reveals that although the parent meta-terphenyl building
blocks of V4 and XI, contains a rigid taper angle of about 120°,
only the taper angle of V4 in its supramolecular column
matches its rigid taper angle of 120°, while the rigid taper angle
of XI, increases its experimental taper angle to about 180°.
The adjustment of the taper angle at the transition from Vj to
XI; is mediated by the change in the pattern and degree of
substitution with n-dodecyloxybenzyloxy groups from 3,4-
disubstituted to 3,4,5-trisubstituted. This modification con-
tinues to facilitate the self-organization of XI, into the 3-D-
ordered column and periodic array ®,* but eliminates the
helicity of the supramolecular column of V4. The transition
from XI4 to XXIX, (Figure 2a) is attained by combining the
disubstitution of V; and trisubstitution of XI; in the 3- and 5-
positions of XXIX4. This modifies the structure of the self-
organizable dendron from symmetric V4 and XIy to non-
symmetric XXIXy. Surprisingly, the transition from symmetric

V4 and XIy to nonsymmetric XXIX; is accompanied by a
change from 3-D-ordered, crystalline helical @,* or porous
nonhelical ®_* to a disordered nonhelical nonporous
columnar simple rectangular (®,.,) LC (Figure 2b—e). This
transition maintains the taper angle of 180° of XI; in XXIXy4
(Figures 1i and 2d). What is the mechanism of these
transformations? In the cross section of the supramolecular
column of X1, its dimer is missing the free rotation around the
column axis, which is required to transit from nonhelical to
helical. This prohibited free rotation is mediated by some
orthogonal arrangements of the benzyl ethers and is close to
orthogonal, 35°, of the phenyl groups of the biphenyl parts of
the meta-terphenyl groups of XIy and XXIXy The non-
symmetric arrangement of XXIX;y eliminates crystallization
forming the ®,, LC. Dendron nonsymmetry was also
introduced by the transition from meta- to ortho-terphenyl,
as shown by X, and IV, in Figure 2f—o and Figure S3. Both
IV4 and X4 exhibit theoretical rigid taper angles of about 60°
(Figure 2fk), which experimentally convert to about 120°
(Figure 2i,n). The high degree of substitution on the periphery
of IV4 and X, makes them disregard their rigid taper angle of
60°. Both IV, and X, adopt a taper angle of 120° (Figure 2i,n)
and, via orthogonal or close to orthogonal placement of
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Figure 4. Molecular structures of the five AB, constitutional isomers, three AB; constitutional isomers, two AB4 constitutional isomers, three AB,
constitutional isomers, and two ABy constitutional isomers and their self-organized supramolecular structures. Col. Liq. indicates a columnar liquid.

aromatic groups, eliminate rotation around the column axis
and helicity, which results in a nonhelical columnar hexagonal
(®y,) LC array (Figure 2hm and Figure S1). The non-
symmetric substitution and the crowding arrangement of
aromatic groups do not allow helicity and crystallinity, which
provides a general method to design disordered nonhelical
nonporous columns by molecular unwinding.

It is interesting to observe that IVy and V4 have identical
chemical compositions but are constitutional isomers. XI; and
X4 are also constitutional isomers. Constitutional isomers are
expected to display completely different physical properties,
although they have identical chemical composition but
different arrangement of their atoms.'* An additional concept
that produces disordered nonhelical self-organizations is
presented in Figures 2p—y and 3a—y and Figures S3 and S4.
This concept involves the incorporation of an additional
trisubstituted, disubstituted, or monosubstituted phenolic acid
in the meta-position of the meta-terphenyl part of the dendron.
Structures VI; and XII, (Figure 2p,u) and IXy XVI; XVII,,
XVII;, XXII; and XXIII; (Figure 3a—y) demonstrate this
concept. Interestingly, both symmetrically substituted XII4
(Figure 2u—y) and IX; (Figure 3a—e) and nonsymetrically
substituted VI, (Figure 2p—t), XVI,, XVIII; XXII; XXIII,,
XXIII; (Figure 3f—y), VI, and XVII; (Figure S1f—0) yield

22946

disordered nonhelical columnar liquid crystal self-organizations
exhibiting @, and columnar centered orthorhombic ®_, LC
(Figure S1) periodic arrays. Four of the structures investigated,
XXy, XXy XIg and XXIV,4 (Figure SS), are liquids at room
temperature.

However, they exhibit phase transitions below room
temperature, and therefore, by analogy with the other
structures, we expect that they are columnar liquid crystals
below room temperature and “columnar liquids” at and above
room temperature (Figure S6).

Nineteen of these building blocks are constitutional isomers
(Figure 4) supporting the idea that their physical properties
must be different. In conclusion, the results reported here
demonstrate a general methodology to transform by changing
the primary structure, self-organizing supramolecular helical
columnar crystals (Figure la—e) into nonhelical nonequili-
brium porous 3-D-ordered columns (Figure 1f—j) and
nonporous nonhelical columnar LCs (Figures 2,3) and
columnar liquids. The design of porous columnar 3-D-ordered
columns presented here is complementary to other method-
ologies that mimic aquaporin and provides biologically
inspired channels for fast transport of water across cell
membranes, and for water purification.”” This general
methodology establishes an unprecedented molecular design
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approach to irreversible helical unwinding maintaining a
columnar structure, which is expected to provide numerous
and unparalleled applications in the fields of macromolecular
and supramolecular sciences. The role of the functional group
from the apex of the building block on its taper angle and on
the self-organization process will be reported in a future
publication.
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