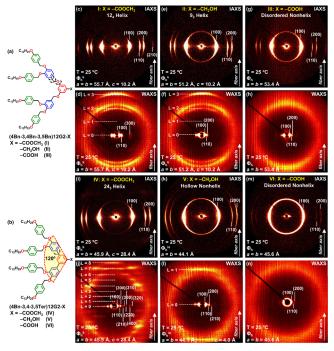


pubs.acs.org/JACS Communication

Hierarchical Self-Organization and Disorganization of Helical Supramolecular Columns Mediated by H-Bonding and Shape Complementarity

Dipankar Sahoo, Mihai Peterca, and Virgil Percec*

Cite This: J. Am. Chem. Soc. 2024, 146, 27299–27304


ACCESS

Metrics & More

Article Recommendations

s Supporting Information

ABSTRACT: H-bonding, shape complementarity, and quasi-equivalence are widely accepted as some of the most influential molecular recognition events mediating biological and synthetic self-organizations. H-bonds are weaker than ionic but stronger than van der Waals forces. However, the directionality of H-bonds makes them the most powerful among all nonbonding interactions. Here, we selected two taper-shaped self-assembling dendrons, one flexible and one rigid, and equipped them with $-\text{CO}_2\text{CH}_3$, $-\text{CH}_2\text{OH}$, and -COOH at their apex. They demonstrated the hierarchical way in which shape-complementarity in the presence of $-\text{CO}_2\text{CH}_3$ mediated highly ordered helical self-organization for the case of the rigid building block and less ordered helical arrays for the flexible one. Weak H-bonding by $-\text{CH}_2\text{OH}$ unwound the helix from the rigid dendron, yielding a porous column. Due to its quasi-equivalence, the flexible dendron tolerated better the H-bonding by $-\text{CH}_2\text{OH}$ self-organizing a different helical column. The rigid and the flexible dendrons yielded only disorganized nonhelical columns in the presence of -COOH at the apex. This balance between rigidity, flexibility, and tolerance or lack of it to diverse H-bonding architectures indicates that mechanistic elucidation of the self-organization process helps endow it with the same building block, both helical organizations approaching biological precision, and disorganized nonhelical arrangements.

Figure 1. Structures of (4Bn-3,4Bn-3,5Bn)12G2-X (a) and (4Bn-3,4-3,5Ter)12G2-X (b) with $X = -COOCH_3$, $-CH_2OH$, and -COOH groups and oriented fiber intermediate angle X-ray diffraction (IAXS) and wide-angle X-ray diffraction (WAXS) (c-h) for (a) and (i-n) for (b).

he α -helix and the pleated sheet of polypeptide chains, Chargaff's rule of complementary base pairing in DNA, and the double-helix of DNA⁴ have been, most probably, the most influential events demonstrating the powerful role of Hbonding during self-organization of biological macromolecules. A similar role was played by the H-bonding of the nylons⁵ for synthetic macromolecules. Shape complementarity and quasiequivalence of rodlike and icosahedral viruses^{6a-d} provided the second most influential molecular recognition tool of biological self-organization. In the field of dendrimers, Tomalia defined related structural events as "critical nanoscale design parameters" (CNDPs).6e,f The combination of directionality and strength of H-bonds integrated with shape complementarity and quasi-equivalence has impacted also the field of complex synthetic self-organization including that of supramolecular polymers. The merger of shape complementarity and H-bonding has been widely recognized as being dominant molecular recognition concepts in self-organization. However, we are not aware of any report demonstrating that shape complementarity and H-bonding can be as prominent in the disorganization processes as in the self-organization one. Here, we have selected two self-assembling dendrons developed by our laboratory, previously employed to self-organize a diversity

Received: August 9, 2024
Revised: September 20, 2024
Accepted: September 25, 2024
Published: September 27, 2024

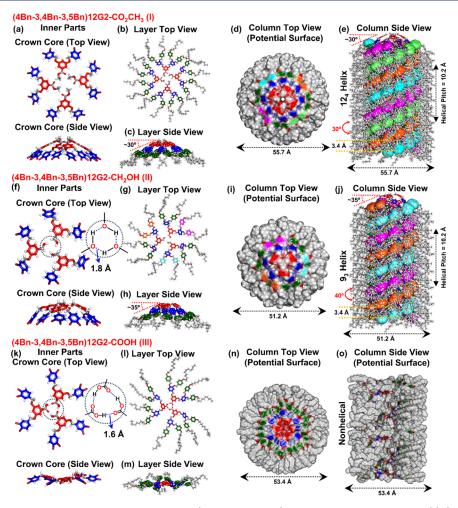


Figure 2. Mechanisms of self-organization and disorganization of (4Bn-3,4Bn-3,5Bn)12G2-X with $X = -COOCH_3$ (I) (a,b,c,d,e), $-CH_2OH$ (II) (f,g,h,I,j), and -COOH (k,l,m,n,o) (III) were obtained by the reconstruction of the oriented fiber X-rays by supramolecular models.

of helical structures and functions,8 and demonstrated that their complementarity associated with the presence and/or absence of H-bonding can mediate both self-organization and disorganization. The first dendron known formerly as (4-3,4-3,5)12G2-X where X is the functional group attached to its apex is constructed from benzyl ether repeat units. Due to the low rotation barriers around its sp²-sp³-sp² bonds (Figure 1a), the flexible dendron exhibits a tapered shape with an adaptable taper angle enabled by its quasi-equivalence. This building block tolerates a large diversity of aromatic groups in various sequences ¹⁰ in its structure, all following the same selforganization principles. In this case, we will use the compound with benzyl ether groups only, and therefore, its structure will be referred to as (4Bn-3,4Bn-3,5Bn)12G2-X (Figure 1a) in order to discriminate it from the second rigid building block. The second self-assembling dendron selected by us¹¹ has a closely related primary structure based on a meta-terphenyl (Ter) combined with benzyl ether repeat units only on its periphery, (4Bn-3,4-3,5Ter)12G2-X (Figure 1b). In the second dendron, the replacement of $sp^2-sp^3-sp^3-sp^2$ bonds with sp^2-sp^2 maintains its taper shape but transforms the adaptable taper angle of the flexible dendron 12 into a rigid taper angle of 120° (Figure 1b). The structure of the X-group changes, but to a lesser extent, even the rigid taper angle, as will be discussed with examples in a future publication. We would like to specify that the branching points of (4Bn-3,4Bn-

3,5Bn)12G2-X are constructed from the renewable plant phenolic acids 3,4-dihydroxybenzoic acid, known also as protocatechuic acid, and 3,5-dihydroxybenzoic acid, known as α -resorcylic acid. The same two phenolic acids were employed in a Ni-catalyzed borylation paired with Ni-catalyzed cross-coupling methodology elaborated in our laboratory 11 to synthesize libraries of *m*-terphenyl phenolic acids¹⁴ including the one employed in the synthesis of (4Bn-3,4-3,5Ter)12G2-X.11 It should be noted that terphenyls are also natural products. 15 Both dendron structures have -COOCH₃, -CH₂OH, and -COOH as X groups. Intermediate-angle Xray scattering (IAXS) and wide-angle X-ray scattering (WAXS) on oriented fiber experiments together with the reconstruction of the molecular models combined with experimental and theoretical densities, according to methodologies elaborated and employed in our laboratory, were utilized for the structural and mechanistic determination of the self-organization obtained from all compounds.

The IAXS (top row in black) and WAXS (bottom row in red) of I, II, III (Figure 1c,d,e,f and g,h) and of IV, V, VI (Figure 1i,j,k,l and m,n) indicate the self-organization and disorganization concept. The IAXS results shown in Figure 1c,d,g and in Figure 1i,k,m demonstrate that regardless of the structure of X, all self-organizations form highly ordered columnar hexagonal crystalline (Φ_h^k), columnar hexagonal with intracolumnar order (Φ_h^{io}), or columnar hexagonal

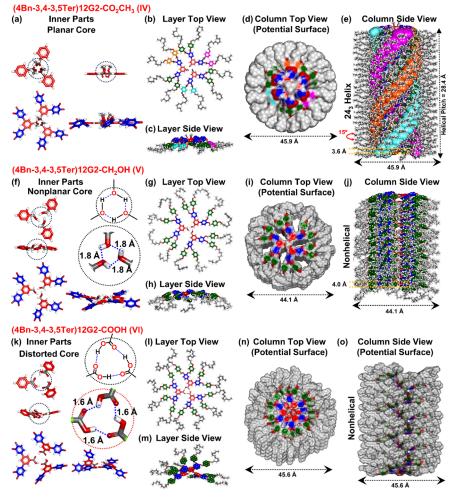


Figure 3. Mechanisms of self-organization and disorganization of (4Bn-3,4-3,5Ter)12G2-X with $X = -COOCH_3$ (IV) (a,b,c,d,e), $-CH_2OH$ (V) (f,g,h,I,j), and -COOH (VI) (k,l,m,n,o) were obtained by the reconstruction of the oriented fiber X-rays by supramolecular models.

disordered liquid crystalline (Φ_h) periodic arrays (Figure S1). The $\Phi_h{}^k$ periodic array is also exhibited by helical polypeptides. However, WAXS results from Figure 1d,f,h and Figure 1j,l,n exhibit contrastingly different diffractograms that are strongly dependent on the structure of X. WAXS of I and II (Figure 1d,f) always show diffractions corresponding to 12/4 and 9/3 helical ordered columnar hexagonal crystal ($\Phi_h{}^k$). Helical self-organization and quasi-equivalence represent universal methodologies employed by biological systems to minimize their free energy. ^{6c,16}

WAXS of III (Figure 1h) shows X-ray diffraction corresponding to a nonhelical disordered columnar hexagonal periodic array (Φ_h). These results validate that I and II form closely related helical ordered columnar structures even if in the case of I, X = $-COOCH_3$ and in the case of II, X = $-CH_2OH$.

Replacing the H-bonding generated from $-CH_2OH$ with H-bonding obtained from -COOH disassembles the 12/4 helix by unwinding it into a nonhelical column (compare Figure 1f and h). This demonstrates, as will be discussed mechanistically in Figure 2, that the adaptable taper angle of (4-Bn-3,4Bn-3,5Bn)12G2-X tolerates $X = -COOCH_3$ and $X = -CH_2OH$ to mediate helical columns but does not tolerate X = -COOH. WAXS of IV, V, and VI are shown in Figure 1j, l, and n. The contrast between the diffractograms generated with a rigid taper angle containing different X groups is much higher than

in the case of the self-organizations obtained from the building blocks with adaptable taper angle. WAXS of IV containing X = -COOCH₃ exhibits a 24/3 triple-helix. WAXS of V containing $X = -CH_2OH$ and of VI containing X = -COOH (Figure 1l,n) demonstrated the unwinding of the 24/3 triple-helix of IV and generation of disorganized nonhelical columns. What is the mechanism of these self-organizations and disorganizations mediated by shape complementarity and H-bonding? Figure 2 outlines the mechanism of self-organization of the building blocks with adaptable taper angle I (Figure 2a,b,c,d,e), II (Figure 2f,g,h,i,j), and III (Figure 2k,l,m,n,o) containing X = -COOCH₃, -CH₂OH, and -COOH. The adaptability of the taper angle permits the self-organization of helical columns in the case of both I and II. A 12/4 helix with a helical pitch of 10.2 Å and diameter of 55.7 Å was obtained for the case of I (Figure 2a-e), while a 9/3 helix with a helical pitch of 10.2 Å and a diameter of 51.2 Å was generated in the case of II (Figure 2f,g,h,i,j). A nonhelical column was attained in the case of III (Figure 2k,l,m,n,o). The different structures of the Hbonding architectures are responsible for these self-organization and disorganization processes. These self-organization and disorganization processes mediated by shape complementarity and H-bonding are more dramatically observed for the case of the building block with a rigid taper angle (Figure 3). Compound IV with $X = -COOCH_3$ self-organized a highly ordered helical hexagonal crystalline columnar periodic array

 (Φ_h^k) that was already reported (Figure 3a,b,c,d,e). The apex of the terphenyl containing $X = -COOCH_3$ exhibits planar phenyl groups (Figure 1a). This process allows three tapered building blocks to form the cross-section of a column (Figure 3b,d) that will rotate around the long axis of the column to fill the space and generate a 24/3 triple-helix column (Figure 3e). Replacing $X = -COOCH_3$ with $-CH_2OH$ transforms IV into V, which due to directional H-bonding averting the planar arrangement of the phenyl groups in the center of the column (Figure 3f). The cross-section layer of the column continues to contain three building blocks which, due to their nonplanar arrangement, cannot rotate around the column axis and, instead of a helical conformation, generates a disorganized nonhelical column with intracolumnar order (Φ_h^{io}) containing multiple pores (Figure 3i,j). Replacing $X = -CH_2OH$ with X =-COOH transforms V into VI, which has a different Hbonding directionality when three building blocks generate the cross-section of the column (Figure 3k,l,m). The resulting supramolecular column is completely disorganized and selforganizes into nonhelical liquid crystals (Φ_h) (Figure 3n,0).

In conclusion, these results demonstrated that taper-shaped rigid and flexible self-assembling dendrons self-organize highly ordered helical columns in the presence of $X = -CO_2CH_3$ which does not provide any H-bonding at their apex. Replacing $X = -CO_2CH_3$ with $X = -CH_2OH$ at their apex unwinds the helical structure self-organized from the rigid dendron, providing a porous column. The same structural transformation mediated a different helical self-organization of the flexible quasi-equivalent dendron. Adding X = -COOH at the apex creates disorganized nonhelical columns for both the rigid and flexible dendrons. These data indicate that not only the strength of the H-bond but also the directionality of the weak H-bonds together with the flexibility of the shape complementary building blocks are important in mediating selforganization and disorganization. Interestingly and unexpectedly, both the rigid and the flexible dendrons self-organized the highest ordered helical column in the absence of H-bonding functional groups at their apex. Most importantly, the hierarchical processes involving H-bonding strength, directionality, and shape complementarity combined with rigidity, flexibility, and quasi-equivalence must be completely elucidated before biological precision can be enacted in any synthetic self-organization. This is very important because the kinetics and thermodynamics of tapered, conical, and crownlike dendrons are completely different during their selforganization processes, as briefly already discussed in a previous publication. 16f These experiments have definitively demonstrated that, as in the case of viral capsids,6 shape complementarity can be the dominant factor in the selforganization of synthetic complex helical systems. Additional developments based on the concepts elaborated here are being used to construct unprecedented supramolecular architectures, which will be reported soon.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/jacs.4c10958.

Methods for synthesis and structural analysis by XRD (PDF)

AUTHOR INFORMATION

Corresponding Author

Virgil Percec – Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States; orcid.org/0000-0001-5926-0489; Email: percec@ sas.upenn.edu

Authors

Dipankar Sahoo - Roy & Diana Vagelos Laboratories, Department of Chemistry and Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States; orcid.org/0000-0002-7646-6419

Mihai Peterca - Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States; orcid.org/0000-0002-7247-4008

Complete contact information is available at: https://pubs.acs.org/10.1021/jacs.4c10958

Author Contributions

The manuscript was written through the contributions of all authors. All authors have given approval to the final version of the manuscript.

Funding

This work was supported by National Science Foundation Grant DMR-2104554, the P. Roy Vagelos Chair at the University of Pennsylvania, and the Alexander von Humboldt Foundation (all to V.P.).

The authors declare no competing financial interest.

REFERENCES

- (1) (a) Pauling, L.; Corey, R. B. Two Hydrogen-Bonded Spiral Configurations of the Polypeptide Chain. J. Am. Chem. Soc. 1950, 72 (11), 5349-5349. (b) Pauling, L.; Corey, R. B.; Branson, H. R. The Structure of Proteins: Two Hydrogen-Bonded Helical Configurations of the Polypeptide Chain. Proc. Natl. Acad. Sci. U.S.A. 1951, 37 (4), 205-211. (c) Pauling, L.; Corey, R. B. Configuration of Polypeptide Chains. Nature 1951, 168 (4274), 550-551. (d) Perutz, M. F. New X-Ray Evidence on the Configuration of Polypeptide Chains: Polypeptide Chains in Poly-γ-Benzyl-L-Glutamate, Keratin and Hæmoglobin. Nature 1951, 167 (4261), 1053-1054.
- (2) Pauling, L.; Corey, R. B. The Pleated Sheet, A New Layer Configuration of Polypeptide Chains. Proc. Natl. Acad. Sci. U.S.A. **1951**, 37 (5), 251–256.
- (3) (a) Chargaff, E.; Zamenhof, S.; Green, C. Human Desoxypentose Nucleic Acid: Composition of Human Desoxypentose Nucleic Acid. Nature 1950, 165 (4202), 756-757. (b) Elson, D.; Chargaff, E. On the Desoxyribonucleic Acid Content of Sea Urchin Gametes. Experientia 1952, 8 (4), 143-145. (c) Chargaff, E.; Lipshitz, R.; Green, C. Composition of the Desoxypentose Nucleic Acids of Four Genera of Sea-Urchin. J. Biol. Chem. 1952, 195 (1), 155-160. (d) Rudner, R.; Karkas, J. D.; Chargaff, E. Separation of B. Subtilis DNA into Complementary Strands. 3. Direct Analysis. Proc. Natl. Acad. Sci. U.S.A. 1968, 60 (3), 921-922. (e) Cohen, S. S. Erwin Chargaff. Science in a Chaotic Time. Proc. Am. Philos. Soc. 2004, 148 (2), 221-228. (f) Chargaff, E. Heraclitean Fire. Sketches from a Life before Nature; The Rockefeller University Press: New York, 1978.
- (4) (a) Watson, J. D.; Crick, F. H. C. Molecular Structure of Nucleic Acids: A Structure for Deoxyribose Nucleic Acid. Nature 1953, 171 (4356), 737-738. (b) Wilkins, M. H. F.; Stokes, A. R.; Wilson, H. R. Molecular Structure of Nucleic Acids: Molecular Structure of Deoxypentose Nucleic Acids. Nature 1953, 171 (4356), 738-740.

- (c) Franklin, R. E.; Gosling, R. G. Molecular Configuration in Sodium Thymonucleate. *Nature* 1953, 171 (4356), 740–741. (d) Klug, A. The Discovery of the DNA Double Helix. *J. Mol. Biol.* 2004, 335 (1), 3–26. (e) Percec, V.; Xiao, Q. The Legacy of Rosalind E. Franklin: Landmark Contributions to Two Nobel Prizes. *Chem.* 2021, 7 (3), 529–536.
- (5) Dasgupta, S.; Hammond, W. B.; Goddard, W. A. Crystal Structures and Properties of Nylon Polymers from Theory. *J. Am. Chem. Soc.* **1996**, *118* (49), 12291–12301.
- (6) (a) Franklin, R. E.; Klug, A. The Splitting of Layer Lines in X-Ray Fibre Diagrams of Helical Structures: Application to Tobacco Mosaic Virus. Acta Crystallogr. 1955, 8 (12), 777-780. (b) Klug, A. From Macromolecules to Biological Assemblies (Nobel Lecture). Angew. Chem., Int. Ed. Engl. 1983, 22 (8), 565-582. (c) Caspar, D. L. D.; Klug, A. Physical Principles in the Construction of Regular Viruses. Cold Spring Harb. Symp. Quant. Biol. 1962, 27, 1-24. (d) Klug, A. The Tobacco Mosaic Virus Particle: Structure and Assembly. Philos. Trans. R. Soc. London B 1999, 354 (1383), 531-535. (e) Tomalia, D. A. Dendritic Effects: Dependency of Dendritic Nano-Periodic Property Patterns on Critical Nanoscale Design Parameters (CNDPs). New J. Chem. 2012, 36 (2), 264-281. (f) Tomalia, D. A. Dendrons/Dendrimers: Quantized, Nano-Element like Building Blocks for Soft-Soft and Soft-Hard Nano-Compound Synthesis. Soft Matter 2010, 6 (3), 456-474. (g) Percec, V.; Grigoras, C.; Kim, H.-J. Toward Self-Assembling Dendritic Macromolecules from Conventional Monomers by a Combination of Living Radical Polymerization and Irreversible Terminator Multifunctional Initiator. J. Polym. Sci. A Polym. Chem. 2004, 42 (3), 505-513.
- (7) (a) Berl, V.; Schmutz, M.; Krische, M. J.; Khoury, R. G.; Lehn, J.-M. Supramolecular Polymers Generated from Heterocomplementary Monomers Linked through Multiple Hydrogen-Bonding Arrays-Formation, Characterization, and Properties. Chem.—Eur. J. 2002, 8 (5), 1227-1244. (b) Gulik-Krzywicki, T.; Fouquey, C.; Lehn, J. Electron Microscopic Study of Supramolecular Liquid Crystalline Polymers Formed by Molecular-Recognition-Directed Self-Assembly from Complementary Chiral Components. Proc. Natl. Acad. Sci. U.S.A. 1993, 90 (1), 163-167. (c) Fouquey, C.; Lehn, J.; Levelut, A. Molecular Recognition Directed Self-assembly of Supramolecular Liquid Crystalline Polymers from Complementary Chiral Components. Adv. Mater. 1990, 2 (5), 254-257. (d) Lehn, J. Supramolecular Polymer Chemistry-Scope and Perspectives. Polym. Int. 2002, 51 (10), 825-839. (e) Lehn, J.-M. Toward Complex Matter: Supramolecular Chemistry and Self-Organization. Proc. Natl. Acad. Sci. U.S.A. 2002, 99 (8), 4763-4768. (f) Sijbesma, R. P.; Beijer, F. H.; Brunsveld, L.; Folmer, B. J. B.; Hirschberg, J. H. K. K.; Lange, R. F. M.; Lowe, J. K. L.; Meijer, E. W. Reversible Polymers Formed from Self-Complementary Monomers Using Quadruple Hydrogen Bonding. Science 1997, 278 (5343), 1601-1604. (g) Brunsveld, L.; Folmer, B. J. B.; Meijer, E. W.; Sijbesma, R. P. Supramolecular Polymers. Chem. Rev. 2001, 101 (12), 4071-4098. (h) Aida, T.; Meijer, E. W.; Stupp, S. I. Functional Supramolecular Polymers. Science 2012, 335 (6070), 813-817. (i) Bong, D. T.; Clark, T. D.; Granja, J. R.; Ghadiri, M. R. Self-Assembling Organic Nanotubes. Angew. Chem., Int. Ed. 2001, 40 (6), 988-1011. (j) Weck, M. Side-chain Functionalized Supramolecular Polymers. Polym. Int. 2007, 56 (4), 453-460. (k) Yang, S. K.; Zimmerman, S. C. Hydrogen Bonding Modules for Use in Supramolecular Polymers. Isr. J. Chem. 2013, 53 (8), 511-520. (1) Olson, A. J.; Hu, Y. H. E.; Keinan, E. Chemical Mimicry of Viral Capsid Self-Assembly. Proc. Natl. Acad. Sci. U.S.A. 2007, 104 (52), 20731-20736. (m) Philp, D.; Stoddart, J. F. Self-Assembly in Natural and Unnatural Systems. Angew. Chem., Int. Ed. Engl. 1996, 35 (11), 1154-1196. (n) Percec, V.; Heck, J.; Johansson, G.; Tomazos, D.; Kawasumi, M.; Ungar, G. Molecular-Recognition-Directed Self-Assembly of Supramolecular Polymers. J. Macromol. Sci., Part A 1994, 31 (8), 1031-1070. (o) Percec, V.; Bera, T. K.; Glodde, M.; Fu, Q.; Balagurusamy, V. S. K.; Heiney, P. A. Hierarchical Self-Assembly, Coassembly, and Self-Organization of Novel Liquid Crystalline Lattices and Superlattices from a Twin-Tapered Dendritic Benzamide and Its Four-Cylinder-Bundle Supramolecular Polymer.

Chem.—Eur. J. 2003, 9 (4), 921-935. (p) Ungar, G.; Abramic, D.; Percec, V.; Heck, J. A. Self-Assembly of Twin Tapered Bisamides into Supramolecular Columns Exhibiting Hexagonal Columnar Mesophases. Structural Evidence for a Microsegregated Model of the Supramolecular Column. Liq. Cryst. 1996, 21 (1), 73-86. (q) Simionescu, C. I.; Percec, V. Progress in Polyacetylene Chemistry. Prog. Polym. Sci. 1982, 8 (1-2), 133-214. (r) Sun, H.-J.; Zhang, S.; Percec, V. From Structure to Function via Complex Supramolecular Dendrimer Systems. Chem. Soc. Rev. 2015, 44 (12), 3900-3923. (s) Percec, V.; Imam, M. R.; Peterca, M.; Leowanawat, P. Self-Organizable Vesicular Columns Assembled from Polymers Dendronized with Semifluorinated Janus Dendrimers Act as Reverse Thermal Actuators. J. Am. Chem. Soc. 2012, 134 (9), 4408-4420. (t) Percec, V.; Peterca, M.; Tadjiev, X.; Ungar, G.; Leowanawat, P.; Aqad, E.; Imam, M. R.; Rosen, B. M.; Akbey, U.; Graf, R.; Sekharan, S.; Sebastiani, D.; Spiess, H. W.; Heiney, P. A.; Hudson, S. D. Self-Assembly of Dendronized Perylene Bisimides into Complex Helical Columns. J. Am. Chem. Soc. 2011, 133 (31), 12197-12219. (u) Sahoo, D.; Aqad, E.; Peterca, M.; Percec, V. Molecular Design Principles of Helical Pyramidal Chirality Self-Organized from Achiral Hexakis(Alkyloxy)Triphenylene. Giant 2023, 13, 100138. (v) Sahoo, D.; Peterca, M.; Imam, M. R.; Partridge, B. E.; Xiao, Q.; Percec, V. Conformationally Flexible Dendronized Cyclotetraveratrylenes (CTTV)s Self-Organize a Large Diversity of Chiral Columnar, Frank-Kasper and Quasicrystal Phases. Giant 2022, 10, 100096. (w) Sahoo, D.; Imam, M. R.; Peterca, M.; Partridge, B. E.; Wilson, D. A.; Zeng, X.; Ungar, G.; Heiney, P. A.; Percec, V. Hierarchical Self-Organization of Chiral Columns from Chiral Supramolecular Spheres. J. Am. Chem. Soc. 2018, 140 (41), 13478-13487. (x) Roche, C.; Sun, H.-J.; Prendergast, M. E.; Leowanawat, P.; Partridge, B. E.; Heiney, P. A.; Araoka, F.; Graf, R.; Spiess, H. W.; Zeng, X.; Ungar, G.; Percec, V. Homochiral Columns Constructed by Chiral Self-Sorting During Supramolecular Helical Organization of Hat-Shaped Molecules. J. Am. Chem. Soc. 2014, 136 (19), 7169-7185.

(8) (a) Percec, V.; Dulcey, A. E.; Balagurusamy, V. S. K.; Miura, Y.; Smidrkal, J.; Peterca, M.; Nummelin, S.; Edlund, U.; Hudson, S. D.; Heiney, P. A.; Duan, H.; Magonov, S. N.; Vinogradov, S. A. Self-Assembly of Amphiphilic Dendritic Dipeptides into Helical Pores. Nature 2004, 430 (7001), 764-768. (b) Percec, V.; Dulcey, A. E.; Peterca, M.; Ilies, M.; Nummelin, S.; Sienkowska, M. J.; Heiney, P. A. Principles of Self-Assembly of Helical Pores from Dendritic Dipeptides. Proc. Natl. Acad. Sci. U.S.A. 2006, 103 (8), 2518-2523. (c) Percec, V.; Dulcey, A. E.; Peterca, M.; Ilies, M.; Sienkowska, M. J.; Heiney, P. A. Programming the Internal Structure and Stability of Helical Pores Self-Assembled from Dendritic Dipeptides via the Protective Groups of the Peptide. J. Am. Chem. Soc. 2005, 127 (50), 17902-17909. (d) Kaucher, M. S.; Peterca, M.; Dulcey, A. E.; Kim, A. J.; Vinogradov, S. A.; Hammer, D. A.; Heiney, P. A.; Percec, V. Selective Transport of Water Mediated by Porous Dendritic Dipeptides. J. Am. Chem. Soc. 2007, 129 (38), 11698-11699. (e) Percec, V.; Peterca, M.; Dulcey, A. E.; Imam, M. R.; Hudson, S. D.; Nummelin, S.; Adelman, P.; Heiney, P. A. Hollow Spherical Supramolecular Dendrimers. J. Am. Chem. Soc. 2008, 130 (39), 13079-13094. (f) Rosen, B. M.; Peterca, M.; Morimitsu, K.; Dulcey, A. E.; Leowanawat, P.; Resmerita, A.-M.; Imam, M. R.; Percec, V. Programming the Supramolecular Helical Polymerization of Dendritic Dipeptides via the Stereochemical Information of the Dipeptide. J. Am. Chem. Soc. 2011, 133 (13), 5135-5151. (g) Percec, V.; Imam, M. R.; Peterca, M.; Wilson, D. A.; Heiney, P. A. Self-Assembly of Dendritic Crowns into Chiral Supramolecular Spheres. J. Am. Chem. Soc. 2009, 131 (3), 1294-1304. (h) Percec, V.; Imam, M. R.; Peterca, M.; Wilson, D. A.; Graf, R.; Spiess, H. W.; Balagurusamy, V. S. K.; Heiney, P. A. Self-Assembly of Dendronized Triphenylenes into Helical Pyramidal Columns and Chiral Spheres. J. Am. Chem. Soc. 2009, 131 (22), 7662-7677. (i) Kwon, Y. K.; Chvalun, S. N.; Blackwell, J.; Percec, V.; Heck, J. A. Effect of Temperature on the Supramolecular Tubular Structure in Oriented Fibers of a Poly-(Methacrylate) with Tapered Side Groups. Macromolecules 1995, 28 (5), 1552-1558. (j) Kwon, Y. K.; Danko, C.; Chvalun, S.; Blackwell,

- J.; Heck, J. A.; Percec, V. Comparison of the Supramolecular Structures Formed by a Polymethacrylate with a Highly Tapered Side Chain and Its Monomeric Precursor. *Macromol. Symp.* 1994, 87 (1), 103–114. (k) Kwon, Y. K.; Danko, C.; Chvalun, S.; Blackwell, J.; Heck, J. A.; Percec, V. Comparison of the Supramolecular Structures Formed by a Polymethacrylate with a Highly Tapered Side Chain and Its Monomeric Precursor. *Macromol. Symp.* 1994, 87 (1), 103–114. (l) Sahoo, D.; Peterca, M.; Leowanawat, P.; Percec, V. Cogwheel Mechanism of Helical Self-Organization Is Thermodynamically Controlled, Self-Repairing, and Universal. *J. Am. Chem. Soc.* 2024, 146 (28), 18910–18915. (m) Sahoo, D.; Peterca, M.; Percec, V. Designing Highly Ordered Helical and Nonhelical Porous Crystalline and Disordered Nonhelical Columnar Liquid Crystalline Self-Organizations. *J. Am. Chem. Soc.* 2024, 146 (33), 22943–22949.
- (9) Percec, V.; Cho, W.-D.; Ungar, G.; Yeardley, D. J. P. Synthesis and Structural Analysis of Two Constitutional Isomeric Libraries of AB₂-Based Monodendrons and Supramolecular Dendrimers. *J. Am. Chem. Soc.* **2001**, *123* (7), 1302–1315.
- (10) (a) Percec, V.; Mitchell, C. M.; Cho, W.-D.; Uchida, S.; Glodde, M.; Ungar, G.; Zeng, X.; Liu, Y.; Balagurusamy, V. S. K.; Heiney, P. A. Designing Libraries of First Generation AB₃ and AB₂ Self-Assembling Dendrons via the Primary Structure Generated from Combinations of (AB)_v-AB₃ and (AB)_v-AB₂ Building Blocks. J. Am. Chem. Soc. 2004, 126 (19), 6078-6094. (b) Percec, V.; Holerca, M. N.; Nummelin, S.; Morrison, J. J.; Glodde, M.; Smidrkal, J.; Peterca, M.; Rosen, B. M.; Uchida, S.; Balagurusamy, V. S. K.; Sienkowska, M. J.; Heiney, P. A. Exploring and Expanding the Structural Diversity of Self-Assembling Dendrons through Combinations of AB, Constitutional Isomeric AB2, and AB3 Biphenyl-4-Methyl Ether Building Blocks. Chem.—Eur. J. 2006, 12 (24), 6216-6241. (c) Percec, V.; Peterca, M.; Sienkowska, M. J.; Ilies, M. A.; Aqad, E.; Smidrkal, J.; Heiney, P. A. Synthesis and Retrostructural Analysis of Libraries of AB3 and Constitutional Isomeric AB2 Phenylpropyl Ether-Based Supramolecular Dendrimers. J. Am. Chem. Soc. 2006, 128 (10), 3324-3334. (d) Percec, V.; Won, B. C.; Peterca, M.; Heiney, P. A. Expanding the Structural Diversity of Self-Assembling Dendrons and Supramolecular Dendrimers via Complex Building Blocks. J. Am. Chem. Soc. 2007, 129 (36), 11265-11278. (e) Rosen, B. M.; Wilson, D. A.; Wilson, C. J.; Peterca, M.; Won, B. C.; Huang, C.; Lipski, L. R.; Zeng, X.; Ungar, G.; Heiney, P. A.; Percec, V. Predicting the Structure of Supramolecular Dendrimers via the Analysis of Libraries of AB₃ and Constitutional Isomeric AB2 Biphenylpropyl Ether Self-Assembling Dendrons. J. Am. Chem. Soc. 2009, 131 (47), 17500-17521.
- (11) Percec, V.; Wang, S.; Huang, N.; Partridge, B. E.; Wang, X.; Sahoo, D.; Hoffman, D. J.; Malineni, J.; Peterca, M.; Jezorek, R. L.; Zhang, N.; Daud, H.; Sung, P. D.; McClure, E. R.; Song, S. L. An Accelerated Modular-Orthogonal Ni-Catalyzed Methodology to Symmetric and Nonsymmetric Constitutional Isomeric AB₂ to AB₉ Dendrons Exhibiting Unprecedented Self-Organizing Principles. *J. Am. Chem. Soc.* 2021, 143 (42), 17724–17743.
- (12) Ungar, G.; Percec, V.; Holerca, M. N.; Johansson, G.; Heck, J. A. Heat-Shrinking Spherical and Columnar Supramolecular Dendrimers: Their Interconversion and Dependence of Their Shape on Molecular Taper Angle. *Chem.—Eur. J.* **2000**, *6* (7), 1258–1266.
- (13) (a) Robbins, R. J. Phenolic Acids in Foods: An Overview of Analytical Methodology. *J. Agric. Food Chem.* **2003**, *51* (10), 2866–2887. (b) Mandal, S. M.; Chakraborty, D.; Dey, S. Phenolic Acids Act as Signaling Molecules in Plant-Microbe Symbioses. *Plant Signal. Behav.* **2010**, *5* (4), 359–368. (c) Kumar, N.; Goel, N. Phenolic Acids: Natural Versatile Molecules with Promising Therapeutic Applications. *Biotechnol. Rep.* **2019**, *24*, No. e00370.
- (14) (a) Rosen, B. M.; Huang, C.; Percec, V. Sequential Ni-Catalyzed Borylation and Cross-Coupling of Aryl Halides via in Situ Prepared Neopentylglycolborane. *Org. Lett.* **2008**, *10* (12), 2597–2600. (b) Wilson, D. A.; Wilson, C. J.; Rosen, B. M.; Percec, V. Two-Step, One-Pot Ni-Catalyzed Neopentylglycolborylation and Complementary Pd/Ni-Catalyzed Cross-Coupling with Aryl Halides, Mesylates, and Tosylates. *Org. Lett.* **2008**, *10* (21), 4879–4882.

- (c) Wilson, D. A.; Wilson, C. J.; Moldoveanu, C.; Resmerita, A.-M.; Corcoran, P.; Hoang, L. M.; Rosen, B. M.; Percec, V. Neopentylglycolborylation of Aryl Mesylates and Tosylates Catalyzed by Ni-Based Mixed-Ligand Systems Activated with Zn. J. Am. Chem. Soc. 2010, 132 (6), 1800–1801. (d) Jezorek, R. L.; Zhang, N.; Leowanawat, P.; Bunner, M. H.; Gutsche, N.; Pesti, A. K. R.; Olsen, J. T.; Percec, V. Air-Stable Nickel Precatalysts for Fast and Quantitative Cross-Coupling of Aryl Sulfamates with Aryl Neopentylglycolboronates at Room Temperature. Org. Lett. 2014, 16 (24), 6326–6329. (e) Rosen, B. M.; Quasdorf, K. W.; Wilson, D. A.; Zhang, N.; Resmerita, A.-M.; Garg, N. K.; Percec, V. Nickel-Catalyzed Cross-Couplings Involving Carbon—Oxygen Bonds. Chem. Rev. 2011, 111 (3), 1346–1416.
- (15) (a) Mazik, M. Design of Lectin Mimetics. *ChemBioChem.* **2008**, 9 (7), 1015–1017. (b) Liu, J.-K. Natural Terphenyls: Developments since 1877. *Chem. Rev.* **2006**, 106 (6), 2209–2223.
- (16) (a) Snir, Y.; Kamien, R. D. Entropically Driven Helix Formation. Science 2005, 307 (5712), 1067–1067. (b) Crane, H. R. Principles and Problems of Biological Growth. Scientific Monthly 1950, 70 (6), 376–389. (c) Kushner, D. J. Self-Assembly of Biological Structures. Bacteriol. Rev. 1969, 33 (2), 302–345. (d) Caspar, D. L. Movement and Self-Control in Protein Assemblies. Quasi-Equivalence Revisited. Biophys. J. 1980, 32 (1), 103–138. (e) Makowski, L. An Unreasonable Man in a Quasi-Equivalent World. Biophys. J. 1998, 74 (1), 534–536. (f) Huang, N.; Imam, M. R.; Sienkowska, M. J.; Peterca, M.; Holerca, M. N.; Wilson, D. A.; Rosen, B. M.; Partridge, B. E.; Xiao, Q.; Percec, V. Supramolecular Spheres Assembled from Covalent and Supramolecular Dendritic Crowns Dictate the Supramolecular Orientational Memory Effect Mediated by Frank–Kasper Phases. Giant 2020, 1, No. 100001.