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ABSTRACT: H-bonding, shape complementarity, and quasi-equivalence are widely accepted as some of the most influential
molecular recognition events mediating biological and synthetic self-organizations. H-bonds are weaker than ionic but stronger than
van der Waals forces. However, the directionality of H-bonds makes them the most powerful among all nonbonding interactions.
Here, we selected two taper-shaped self-assembling dendrons, one flexible and one rigid, and equipped them with —CO,CHj;,
—CH,OH, and —COOH at their apex. They demonstrated the hierarchical way in which shape-complementarity in the presence of
—CO0,CHj; mediated highly ordered helical self-organization for the case of the rigid building block and less ordered helical arrays for
the flexible one. Weak H-bonding by —CH,OH unwound the helix from the rigid dendron, yielding a porous column. Due to its
quasi-equivalence, the flexible dendron tolerated better the H-bonding by —CH,OH self-organizing a different helical column. The
rigid and the flexible dendrons yielded only disorganized nonhelical columns in the presence of —COOH at the apex. This balance
between rigidity, flexibility, and tolerance or lack of it to diverse H-bonding architectures indicates that mechanistic elucidation of
the self-organization process helps endow it with the same building block, both helical organizations approaching biological
precision, and disorganized nonhelical arrangements.

he a-helix' and the pleated sheet” of polypeptide chains,

Chargaff's rule of complementary base pairing in DNA,’
and the double-helix of DNA* have been, most probably, the
most influential events demonstrating the powerful role of H-
bonding during self-organization of biological macromolecules.
A similar role was played by the H-bonding of the nylons® for
synthetic macromolecules. Shape complementarity and quasi-
equivalence of rodlike and icosahedral viruses® ™ provided the
second most influential molecular recognition tool of biological
self-organization. In the field of dendrimers, Tomalia defined
related structural events as “critical nanoscale design
parameters” (CNDPs).°”" The combination of directionality
and strength of H-bonds integrated with shape complemen-
tarity and quasi-equivalence has impacted also the field of
complex synthetic self-organization including that of supra-
molecular polymers.” The merger of shape complementarity
and H-bonding has been widely recognized as being dominant
molecular recognition concepts in self-organization. However,
we are not aware of any report demonstrating that shape
complementarity and H-bonding can be as prominent in the
disorganization processes as in the self-organization one. Here,
we have selected two self-assembling dendrons developed by
our laboratory, previously employed to self-organize a diversity

Ill: X = —COOH
Disordered Nonhelix

(c) 1:X=-COOCH, IAXS](e) Il: X=-CH,0H  I1AXS [(9)
12, Helix 9 Helix

(100) (200 2 (100)

3| (K2

(100) (200

(4Bn-3,4Bn-3,5Bn)12G2-X

X =-COOCH,; (1)
~CH,OH (Il)
~COOH (Il

VI: X = -COOH
Disordered Nonhelix

©

IV: X = ~COOCH;, V: X =-CH,0H 1AXS
24, Helix Hollow Nonhelix

(100) {100)  (200)

! \\;
{

:(znn)(:nm

(100)| (Ia 0)(320)
I

[100](200'

(4Bn-3,4-3,5Ter)12G2-X e “
X =-COOCH, (IV)
—CH,0H (V)

| \l
i (110)|
(110)] 1240) 1 (210

—COOH (V) (zml("ﬂw
Received: August 9, 2024
Figure 1. Structures of (4Bn-3,4Bn-3,5Bn)12G2-X (a) and (4Bn-3,4- Revised:  September 20, 2024
3,5Ter)12G2-X (b) with X = —~COOCH;, —CH,0H, and —~COOH Accepted: September 25, 2024
groups and oriented fiber intermediate angle X-ray diffraction (IAXS) Published: September 27, 2024
and wide-angle X-ray diffraction (WAXS) (c—h) for (a) and (i—n) for

(b).

© 2024 American Chemical Society

WACS Publications

https://doi.org/10.1021/jacs.4c10958
J. Am. Chem. Soc. 2024, 146, 27299—27304


https://pubs.acs.org/action/doSearch?field1=Contrib&text1=%22Dipankar+Sahoo%22&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1=%22Mihai+Peterca%22&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1=%22Virgil+Percec%22&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/jacs.4c10958&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.4c10958?ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.4c10958?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.4c10958?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.4c10958?goto=supporting-info&ref=pdf
https://pubs.acs.org/toc/jacsat/146/40?ref=pdf
https://pubs.acs.org/toc/jacsat/146/40?ref=pdf
https://pubs.acs.org/toc/jacsat/146/40?ref=pdf
https://pubs.acs.org/toc/jacsat/146/40?ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.4c10958?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.4c10958?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.4c10958?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.4c10958?fig=fig1&ref=pdf
pubs.acs.org/JACS?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/jacs.4c10958?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://pubs.acs.org/JACS?ref=pdf
https://pubs.acs.org/JACS?ref=pdf

Journal of the American Chemical Society

Communication

pubs.acs.org/JACS

(4Bn-3,4Bn-3,5Bn)12G2-CO,CHj (I)
(a) InnerParts (b) Layer Top View

PR
srod ek,
\*\f:l ¥ o

Crown Core (Top View)

WX

Crown Core (§ide View) (c) Layer Side View
m oA
(4Bn-3,4Bn-3,5Bn)12G2-CH,OH (II)

(f)  Inner Parts (9) Layer Top View
Crown Core (Top View) { &

(4Bn-3,4Bn-3,5Bn)12G2-COOH (lll)
() Layer Top View

(k)  Inner Parts
Crown Core (Top View)

Crown Core (Side View) (m) Layer Side View

(d) Column Top View

(n) Column Top View
(Potential Surface)

(e) Column Side View
(Potential Surface) 3

Column Top View
(Potential Surface)

(j) Column Side View

10.2A

Helical Pitch

(o) Column Side View
(Potential Surface)

Nonhelical

Figure 2. Mechanisms of self-organization and disorganization of (4Bn-3,4Bn-3,5Bn)12G2-X with X = ~COOCH; (I) (a,b,c,d,e), —CH,OH (II)
(fgh,Lj), and —COOH (k,,m,n,0) (III) were obtained by the reconstruction of the oriented fiber X-rays by supramolecular models.

of helical structures and functions,® and demonstrated that
their complementarity associated with the presence and/or
absence of H-bonding can mediate both self-organization and
disorganization. The first dendron known formerly as (4-3,4-
3,5)12G2-X where X is the functional group attached to its
apex is constructed from benzyl ether repeat units.” Due to the
low rotation barriers around its sp*-sp>-sp*>-sp* bonds (Figure
1a), the flexible dendron exhibits a tapered shape with an
adaptable taper angle enabled by its quasi-equivalence. This
building block tolerates a large diversity of aromatic groups in
various sequences10 in its structure, all following the same self-
organization principles. In this case, we will use the compound
with benzyl ether groups only, and therefore, its structure will
be referred to as (4Bn-3,4Bn-3,5Bn)12G2-X (Figure la) in
order to discriminate it from the second rigid building block.
The second self-assembling dendron selected by us'' has a
closely related primary structure based on a meta-terphenyl
(Ter) combined with benzyl ether repeat units only on its
periphery, (4Bn-3,4-3,5Ter)12G2-X (Figure 1b). In the
second dendron, the replacement of sp*-sp*-sp*-sp> bonds
with sp>-sp® maintains its taper shape but transforms the
adaptable taper angle of the flexible dendron'” into a rigid
taper angle of 120° (Figure 1b). The structure of the X-group
changes, but to a lesser extent, even the rigid taper angle, as
will be discussed with examples in a future publication. We
would like to specify that the branching points of (4Bn-3,4Bn-

3,5Bn)12G2-X are constructed from the renewable plant
phenolic acids 3,4-dihydroxybenzoic acid, known also as
protocatechuic acid, and 3,5-dihydroxybenzoic acid, known
as a-resorcylic acid.”> The same two phenolic acids were
employed in a Ni-catalyzed borylation paired with Ni-catalyzed
cross-coupling methodology elaborated in our laboratory'" to
synthesize libraries of m-terphenyl phenolic acids'* including
the one employed in the synthesis of (4Bn-3,4-3,5Ter)12G2-
X' It should be noted that terphenyls are also natural
products.'> Both dendron structures have —COOCH,,
—CH,0H, and —COOH as X groups. Intermediate-angle X-
ray scattering (IAXS) and wide-angle X-ray scattering (WAXS)
on oriented fiber experiments together with the reconstruction
of the molecular models combined with experimental and
theoretical densities, according to methodologies elaborated
and employed in our laboratory, were utilized for the structural
and mechanistic determination of the self-organization
obtained from all compounds.

The IAXS (top row in black) and WAXS (bottom row in
red) of I, II, Il (Figure lc,d,ef and gh) and of IV, V, VI
(Figure 1ijkl and m,n) indicate the self-organization and
disorganization concept. The IAXS results shown in Figure
lc,d,g and in Figure 1ik,m demonstrate that regardless of the
structure of X, all self-organizations form highly ordered
columnar hexagonal crystalline (®,*), columnar hexagonal
with intracolumnar order (®,°), or columnar hexagonal
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Figure 3. Mechanisms of self-organization and disorganization of (4Bn-3,4-3,5Ter)12G2-X with X = ~COOCH; (IV) (a)b,c,d,e), —CH,OH (V)
(f£gh,Lj), and —COOH (VI) (k],m,n,0) were obtained by the reconstruction of the oriented fiber X-rays by supramolecular models.

disordered liquid crystalline (®y,) periodic arrays (Figure S1).
The ®,% periodic array is also exhibited by helical
polypeptides.' However, WAXS results from Figure 1d,fh
and Figure 1j,L,n exhibit contrastingly different diffractograms
that are strongly dependent on the structure of X. WAXS of I
and II (Figure 1d,f) always show diffractions corresponding to
12/4 and 9/3 helical ordered columnar hexagonal crystal
(®y5). Helical self-organization and quasi-equivalence repre-
sent universal methodologies employed by biological systems
to minimize their free energy.’'°

WAXS of III (Figure 1h) shows X-ray diffraction
corresponding to a nonhelical disordered columnar hexagonal
periodic array (®y,). These results validate that I and II form
closely related helical ordered columnar structures even if in
the case of I, X = —COOCH; and in the case of II, X =
—CH,OH.

Replacing the H-bonding generated from —CH,OH with H-
bonding obtained from —COOH disassembles the 12/4 helix
by unwinding it into a nonhelical column (compare Figure 1f
and h). This demonstrates, as will be discussed mechanistically
in Figure 2, that the adaptable taper angle of (4-Bn-3,4Bn-
3,5Bn)12G2-X tolerates X = —COOCH; and X = —CH,OH
to mediate helical columns but does not tolerate X = —COOH.
WAXS of IV, V, and VI are shown in Figure 1j, 1, and n. The
contrast between the diffractograms generated with a rigid
taper angle containing different X groups is much higher than

27301

in the case of the self-organizations obtained from the building
blocks with adaptable taper angle. WAXS of IV containing X =
—COOCH; exhibits a 24/3 triple-helix. WAXS of V containing
X = —CH,OH and of VI containing X = —COOH (Figure
11,n) demonstrated the unwinding of the 24/3 triple-helix of
IV and generation of disorganized nonhelical columns. What is
the mechanism of these self-organizations and disorganizations
mediated by shape complementarity and H-bonding? Figure 2
outlines the mechanism of self-organization of the building
blocks with adaptable taper angle I (Figure 2ab,c,d,e), 1I
(Figure 2fgh,ij), and III (Figure 2k),m,n,0) containing X =
—COOCH;, —CH,0OH, and —COOH. The adaptability of the
taper angle permits the self-organization of helical columns in
the case of both I and II. A 12/4 helix with a helical pitch of
10.2 A and diameter of 55.7 A was obtained for the case of I
(Figure 2a—e), while a 9/3 helix with a helical pitch of 10.2 A
and a diameter of 51.2 A was generated in the case of II
(Figure 2f,gh,i,j). A nonhelical column was attained in the case
of III (Figure 2kL,m,n,0). The different structures of the H-
bonding architectures are responsible for these self-organ-
ization and disorganization processes. These self-organization
and disorganization processes mediated by shape complemen-
tarity and H-bonding are more dramatically observed for the
case of the building block with a rigid taper angle (Figure 3).
Compound IV with X = —COOCH; self-organized a highly
ordered helical hexagonal crystalline columnar periodic array
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(@) that was already reported (Figure 3a,b,c,d,e)."" The apex
of the terphenyl containing X = —COOCHj; exhibits planar
phenyl groups (Figure 1a). This process allows three tapered
building blocks to form the cross-section of a column (Figure
3b,d) that will rotate around the long axis of the column to fill
the space and generate a 24/3 triple-helix column (Figure 3e).
Replacing X = —COOCH; with —CH,OH transforms IV into
V, which due to directional H-bonding averting the planar
arrangement of the phenyl groups in the center of the column
(Figure 3f). The cross-section layer of the column continues to
contain three building blocks which, due to their nonplanar
arrangement, cannot rotate around the column axis and,
instead of a helical conformation, generates a disorganized
nonhelical column with intracolumnar order (') containing
multiple pores (Figure 3i). Replacing X = —CH,OH with X =
—COOH transforms V into VI, which has a different H-
bonding directionality when three building blocks generate the
cross-section of the column (Figure 3klm). The resulting
supramolecular column is completely disorganized and self-
organizes into nonhelical liquid crystals (®,) (Figure 3n,0).

In conclusion, these results demonstrated that taper-shaped
rigid and flexible self-assembling dendrons self-organize highly
ordered helical columns in the presence of X = —CO,CHj,
which does not provide any H-bonding at their apex. Replacing
X = —CO,CH; with X = —CH,OH at their apex unwinds the
helical structure self-organized from the rigid dendron,
providing a porous column. The same structural trans-
formation mediated a different helical self-organization of the
flexible quasi-equivalent dendron. Adding X = —COOH at the
apex creates disorganized nonhelical columns for both the rigid
and flexible dendrons. These data indicate that not only the
strength of the H-bond but also the directionality of the weak
H-bonds together with the flexibility of the shape comple-
mentary building blocks are important in mediating self-
organization and disorganization. Interestingly and unexpect-
edly, both the rigid and the flexible dendrons self-organized the
highest ordered helical column in the absence of H-bonding
functional groups at their apex. Most importantly, the
hierarchical processes involving H-bonding strength, direction-
ality, and shape complementarity combined with rigidity,
flexibility, and quasi-equivalence must be completely eluci-
dated before biological precision can be enacted in any
synthetic self-organization. This is very important because the
kinetics and thermodynamics of tapered, conical, and crown-
like dendrons are completely different during their self-
organization processes, as briefly already discussed in a
previous publication.'® These experiments have definitively
demonstrated that, as in the case of viral capsids,6 shape
complementarity can be the dominant factor in the self-
organization of synthetic complex helical systems. Additional
developments based on the concepts elaborated here are being
used to construct unprecedented supramolecular architectures,
which will be reported soon.
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