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ABSTRACT: Spherical supramolecular dendrimers including helical, self-organize soft Frank−Kasper, other cubic such as body-
centered cubic, and quasicrystal periodic and quasiperiodic arrays. When any of these periodic or quasiperiodic arrays forms
immediately above a columnar phase, a supramolecular orientational memory eHect was found to discriminate between mechanisms
of self-organization of supramolecular spheres and generate unprecedented periodic arrays of helical columns which cannot be
constructed by any other methodology. Here, we demonstrate that unwinding spherical helices, via their precursor nonhelical
columns, increases the entropy and stability of their periodic and quasiperiodic spherical arrays and places the Frank−Kasper and
other cubic phases immediately above the columnar phase. This process is not available in biology where spherical viruses self-
organize body-centered cubic lattices. However, this concept reengineers, on increasing temperature, the originally expected position
of the periodic and quasiperiodic array versus that of the columnar lattice. This process facilitates discrimination between diHerent
self-organization mechanisms of supramolecular spheres and also mediates the emergence of unprecedentedly complex and
technologically important periodic arrays of nonhelical columns.

Our laboratory discovered the Frank−Kasper1a,b A15
phase in supramolecular dendrimers and in self-

organizable dendronized polymers.1c−j Frank−Kasper phases
and quasicrystals exhibited by supramolecular dendrimers were
named soft Frank−Kasper phases and soft quasicrystals by one
of us (V.P.).1k Soon after, the Frank−Kasper σ periodic2a and
the liquid quasicrystal quasiperiodic arrays2b,c were discovered
in spherical supramolecular dendrimers. Several years later, the
same Frank−Kasper phases and quasicrystals were detected in
block copolymers,3 giant surfactants,4 lipids,5 surfactants,6
nanocrystals,7 and DNA particles.8 Together with substantial
theoretical work,9 research on soft Frank−Kasper phases and
quasicrystals facilitated the development of an independent
field of research.3−9 Chiral spherical helices have been shown
by our laboratory to generate Frank−Kasper and body-
centered-cubic (BCC) phases, as well as quasicrystals.10
They were predicted and demonstrated to occur both by our
and other laboratories, as the temperature increases, in the
following order: columnar hexagonal → Frank−Kasper A15 →
Frank−Kasper σ → BCC (see Figures 1a and 1b).1i,g,2a This
order corresponds to the decrease of the number of soft
spheres from the unit cell which have close contacts: 6 out of 8
spheres (75%) in the Frank−Kasper A15 phase have close
contacts, 8 out of 30 spheres (27%) have close contacts in
Frank−Kasper σ phase, and there are no close contacts in the
BCC phase (Figure 1a). This order corresponds to the
decreasing fraction of close spherical contacts and the
progressive loss of columnar character.1i,g,2a In the most
simplistic way, we can advance the hypothesis that soft
supramolecular spherical dendrimers are similar to transition
metals containing soft d atomic orbitals and therefore, they can
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Figure 1. (a, b) Self-organization of spherical helices from conical and
crown-like dendrimers and formation of their periodic arrays as a
function of increased temperature; (c) unwinding of spherical helices
and the potential order of their periodic arrays, as a function of
increased temperature.
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be considered giant soft transition-metal atom-like supra-
molecular structures. As a consequence, both transition metals
and soft spherical dendrimers exhibit Frank−Kasper phases.1
Although exceptions from this rule of periodic array-temper-
ature dependence exist, they have not yet been explained.11
For numerous applications, it would be of high interest if we

could re-engineer this order and generate all Frank−Kasper,
quasicrystal, and BCC arrays to occur, upon increasing the
temperature, immediately above the columnar phase. The
supramolecular spheres self-organizing Frank−Kasper, BCC,
and quasicrystals can be approximated by short fragments of
supramolecular columns when they are self-organized from
crown-shaped dendrimers (see the right-hand side of Figure
1b).10 When supramolecular spheres are produced from
conical dendrons (left side of Figure 1b), they must undergo
an additional cone to taper shape change at the sphere-to-
column transition.11 Therefore, in order to investigate the
internal structure of the supramolecular spheres responsible for
the self-organization of the Frank−Kasper phases and
quasicrystals, we decided to design the internal structure of
the columnar self-organizations, which are precursors to their
spherical assemblies. The rational for this unprecedented
conceptual approach is to design columnar self-organizations
that can be characterized by oriented fiber small-angle X-ray
scattering (SAXS), intermediate-angle X-ray scattering (IAXS)

combined with wide-angle X-ray scattering (WAXS) experi-
ments by the reconstruction of the X-ray diHractograms with
molecular models employing methods elaborated and used in
our laboratory.10,11 Since columnar assemblies are anisotropic,
they provide access to the determination of their internal
structure by this combination of X-ray methodologies. SAXS
and IAXS are used to determine their periodic or quasiperiodic
lattice symmetry while WAXS is employed to identify their
internal structure. However, Frank−Kasper, as well as other
cubic and quasicrystals, are isotropic; therefore, SAXS and
IAXS are used to determine only their periodic and
quasiperiodic lattice symmetries, while WAXS does not
provide any information on their internal structure. Therefore,
we advanced the hypothesis that determination of the internal
structure of supramolecular columns provides access to the
internal architecture of supramolecular spheres, which are
approximated by short columns (Figure 1b). As shown in
recent publications,12 this new approach was demonstrated to
be successful. These concepts were employed to design the
internal structure of columnar self-organizations ranging from
highly ordered helical crystalline self-organizations to highly
disordered nonhelical columnar liquid crystal structures. It is
well-accepted that helicity minimizes the free energy of
supramolecular columns, spheres and covalent macromole-
cules.13,14 It is also known that increasing entropy by

Figure 2. Structures of ABn dendrons self-organizing columnar hexagonal, Frank−Kasper A15 (Pm3n), Frank−Kasper σ (P42/mnm), and body-
centered cubic (BCC) periodic arrays. Temperature ranges and the number of molecules in a unit cell are indicated.
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minimizing area is responsible for the self-organization of the
periodic and quasiperiodic arrays generated from nonhelical
supramolecular spheres.9b Unwinding the helical structure of a
spherical helix is therefore, expected to increase entropy and
stability of self-organizations created from supramolecular
spheres. This is mediated by an entropy increase that must
counterbalance the decrease in enthalpy. This concept was
inspired from the “maximizing entropy by minimizing area
principle of self-organization” advanced by Kamien,9b although
it is completely diHerent. Previously, our laboratory demon-
strated that helical chirality of the columnar assemblies is
transplanted from columns to spheres and therefore, both
supramolecular spheres assembled from conical dendrons and
from crowns form supramolecular spherical helices when
generated by a first-order transition from supramolecular
helical columns (see Figures 1a and 1b).10 Therefore, we
constructed nonhelical spheres from nonhelical columns12b,c
and investigated their stability. Figure 2 summarizes our
results. Unwinding of spherical helices increases the stability of
the BCC and Frank−Kasper σ phases to such an extent that
they both form directly from the columnar hexagonal phase.
SAXS and IAXS experiments (see Figures 1a and 1b, Figure

3, Figure 4, and Figure S1, as well as Table S1), together with
experimental density, indicated that most of these supra-
molecular spheres can be generated either from conical
dendrons or from crown-like supramolecular dendrimers.

Discrimination between these two mechanisms of self-
organization is not possible by X-ray diHraction experiments.
However, our laboratory demonstrated that the supra-

molecular orientational memory eHect (SOM) elaborated in
our laboratory15 can discriminate between supramolecular
spheres assembled from conical or from crown-like dendrons.
In order to provide this discrimination, the Frank−Kasper
phase must form immediately above the columnar hexagonal
array.
The sequence of phases shown in Figure 1a cannot be used

for these SOM experiments except for the case of the A15
Frank−Kasper phase. SOM was employed to demonstrate that
both the A15 and σ Frank−Kasper phases from Figure 2
generated supramolecular spheres produced from crown-like
supramolecular dendrimers, since they exhibit a SOM eHect
(see Figures S2 and S3, as well as Table S1).15 The
experiments reported here demonstrate the capability of the
concept advanced in the introductory part of this manuscript
and illustrate that, indeed, the internal structure of supra-
molecular spheres can be designed with the same helical or
nonhelical order as that of their supramolecular columnar
precursors. This new strategy allows SOM to discriminate
between mechanisms of self-organization and, in addition, to
develop unprecedented morphologies that are not accessible
by any other methodology. In this particular case, we
demonstrated, for the first time, the generation of orthogonal,

Figure 3. Self-organization of supramolecular spheres from conical ABn dendrons. The average number of dendrons in the unit cell for Pm3n and
BCC phase μcell = NAρa3/Mwt, for σ phase μcell = NAρabc/Mwt, where NA is Avogadro’s number (NA = 6.022 × 1023 mol−1) and ρ is the
experimental density at 23 °C. a, b, c are the experimental lattice parameters. Mwt is the molecular weight of the dendron. Number of molecules in
the supramolecular sphere are as follows: for Pm3n, μ = μcell/8; for BCC, μ = μcell/2; and, for σ, μ = μcell/30. Sphere diameters: for Pm3n, Dsphere =
2(3a3/32π)1/3; for the BCC phase, Dsphere = √3a/2; and, for σ, Dsphere = 2(abc/40π)1/3.
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tetrahedral, and rhombitruncated cubooctahedral arrange-
ments of nonhelical columns (Figure S3) with potential
technological applications diHerent from those of the helical
columns including water channels12b and unprecedented
peiodic arrays with unpredictable functions.15 Previous
examples of SOM reported from our laboratory generated
similar morphologies produced from helical columns.15 It is
well-known that all spherical viruses self-organize in BCC
phases.14 However, no similar unwinding mechanism is
available in biology,14 and, at this time, it is not known if
spherical dendrimersomes employed as one-component
mRNA delivery systems16 can be equipped with a related
unwinding process to facilitate the delivery of the nucleic acid
in the cell.
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